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Preface

PURPOSE OF THIS BOOK

Why yet another book on linear models? Over the years, a multitude of books have
already been written about this well-traveled topic, many of which provide more
comprehensive presentations of linear modeling than this one attempts. My book is
intended to present an overview of the key ideas and foundational results of linear
and generalized linear models. I believe this overview approach will be useful for
students who lack the time in their program for a more detailed study of the topic.
This situation is increasingly common in Statistics and Biostatistics departments. As
courses are added on recent influential developments (such as “big data,” statistical
learning, Monte Carlo methods, and application areas such as genetics and finance),
programs struggle to keep room in their curriculum for courses that have traditionally
been at the core of the field. Many departments no longer devote an entire year or
more to courses about linear modeling.

Books such as those by Dobson and Barnett (2008), Fox (2008), and Madsen
and Thyregod (2011) present fine overviews of both linear and generalized linear
models. By contrast, my book has more emphasis on the theoretical foundations—
showing how linear model fitting projects the data onto a model vector subspace
and how orthogonal decompositions of the data yield information about effects,
deriving likelihood equations and likelihood-based inference, and providing extensive
references for historical developments and new methodology. In doing so, my book
has less emphasis than some other books on practical issues of data analysis, such as
model selection and checking. However, each chapter contains at least one section
that applies the models presented in that chapter to a dataset, using R software. The
book is not intended to be a primer on R software or on the myriad details relevant to
statistical practice, however, so these examples are relatively simple ones that merely
convey the basic concepts and spirit of model building.

The presentation of linear models for continuous responses in Chapters 1–3 has a
geometrical rather than an algebraic emphasis. More comprehensive books on linear
models that use a geometrical approach are the ones by Christensen (2011) and by

xi



xii PREFACE

Seber and Lee (2003). The presentation of generalized linear models in Chapters 4–
9 includes several sections that focus on discrete data. Some of this significantly
abbreviates material from my book, Categorical Data Analysis (3rd ed., John Wiley
& Sons , 2013). Broader overviews of generalized linear modeling include the classic
book by McCullagh and Nelder (1989) and the more recent book by Aitkin et al.
(2009). An excellent book on statistical modeling in an even more general sense is
by Davison (2003).

USE AS A TEXTBOOK

This book can serve as a textbook for a one-semester or two-quarter course on linear
and generalized linear models. It is intended for graduate students in the first or
second year of Statistics and Biostatistics programs. It also can serve programs with
a heavy focus on statistical modeling, such as econometrics and operations research.
The book also should be useful to students in the social, biological, and environmental
sciences who choose Statistics as their minor area of concentration.

As a prerequisite, the reader should be familiar with basic theory of statistics,
such as presented by Casella and Berger (2001). Although not mandatory, it will
be helpful if readers have at least some background in applied statistical modeling,
including linear regression and ANOVA. I also assume some linear algebra back-
ground. In this book, I recall and briefly review fundamental statistical theory and
matrix algebra results where they are used. This contrasts with the approach in many
books on linear models of having several chapters on matrix algebra and distribu-
tion theory before presenting the main results on linear models. Readers wanting
to improve their knowledge of matrix algebra can find on the Web (e.g., with a
Google search of “review of matrix algebra”) overviews that provide more than
enough background for reading this book. Also helpful as background for Chapters
1–3 on linear models are online lectures, such as the MIT linear algebra lectures
by G. Strang at http://ocw.mit.edu/courses/mathematics on topics such
as vector spaces, column space and null space, independence and a basis, inverses,
orthogonality, projections and least squares, eigenvalues and eigenvectors, and sym-
metric and idempotent matrices. By not including separate chapters on matrix algebra
and distribution theory, I hope instructors will be able to cover most of the book in a
single semester or in a pair of quarters.

Each chapter contains exercises for students to practice and extend the theory
and methods and also to help assimilate the material by analyzing data. Com-
plete data files for the text examples and exercises are available at the text website,
http://www.stat.ufl.edu/~aa/glm/data/. Appendix A contains supplemen-
tary data analysis exercises that are not tied to any particular chapter. Appendix B
contains solution outlines and hints for some of the exercises.

I emphasize that this book is not intended to be a complete overview of linear and
generalized linear modeling. Some important classes of models are beyond its scope;
examples are transition (e.g., Markov) models and survival (time-to-event) models. I
intend merely for the book to be an overview of the foundations of this subject—that
is, core material that should be part of the background of any statistical scientist. I

http://ocw.mit.edu/courses/mathematics
http://www.stat.ufl.edu/~aa/glm/data/
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invite readers to use it as a stepping stone to reading more specialized books that
focus on recent advances and extensions of the models presented here.

ACKNOWLEDGMENTS

This book evolved from a one-semester course that I was invited to develop and
teach as a visiting professor for the Statistics Department at Harvard University in
the fall terms of 2011–2014. That course covers most of the material in Chapters
1–9. My grateful thanks to Xiao-Li Meng (then chair of the department) for inviting
me to teach this course, and likewise thanks to Dave Harrington for extending this
invitation through 2014. (The book’s front cover, showing the Zakim bridge in Boston,
reflects the Boston-area origins of this book.) Special thanks to Dave Hoaglin, who
besides being a noted statistician and highly published book author, has wonderful
editing skills. Dave gave me detailed and helpful comments and suggestions for my
working versions of all the chapters, both for the statistical issues and the expository
presentation. He also found many errors that otherwise would have found their way
into print!

Thanks also to David Hitchcock, who kindly read the entire manuscript and made
numerous helpful suggestions, as did Maria Kateri and Thomas Kneib for a few chap-
ters. Hani Doss kindly shared his fine course notes on linear models (Doss 2010) when
I was organizing my own thoughts about how to present the foundations of linear
models in only two chapters. Thanks to Regina Dittrich for checking the R code and
pointing out errors. I owe thanks also to several friends and colleagues who provided
comments or datasets or other help, including Pat Altham, Alessandra Brazzale, Jane
Brockmann, Phil Brown, Brian Caffo, Leena Choi, Guido Consonni, Brent Coull,
Anthony Davison, Kimberly Dibble, Anna Gottard, Ralitza Gueorguieva, Alessandra
Guglielmi, Jarrod Hadfield, Rebecca Hale, Don Hedeker, Georg Heinze, Jon Hen-
nessy, Harry Khamis, Eunhee Kim, Joseph Lang, Ramon Littell, I-Ming Liu, Brian
Marx, Clint Moore, Bhramar Mukherjee, Dan Nettleton, Keramat Nourijelyani, Don-
ald Pierce, Penelope Pooler, Euijung Ryu, Michael Schemper, Cristiano Varin, Larry
Winner, and Lo-Hua Yuan. James Booth, Gianfranco Lovison, and Brett Presnell have
generously shared materials over the years dealing with generalized linear models.
Alex Blocker, Jon Bischof, Jon Hennessy, and Guillaume Basse were outstanding
and very helpful teaching assistants for my Harvard Statistics 244 course, and Jon
Hennessy contributed solutions to many exercises from which I extracted material at
the end of this book. Thanks to students in that course for their comments about the
manuscript. Finally, thanks to my wife Jacki Levine for encouraging me to spend the
terms visiting Harvard and for support of all kinds, including helpful advice in the
early planning stages of this book.

Alan Agresti

Brookline, Massachusetts, and Gainesville, Florida

June 2014





C H A P T E R 1

Introduction to Linear and Generalized
Linear Models

This is a book about linear models and generalized linear models. As the names
suggest, the linear model is a special case of the generalized linear model. In this first
chapter, we define generalized linear models, and in doing so we also introduce the
linear model.

Chapters 2 and 3 focus on the linear model. Chapter 2 introduces the least squares
method for fitting the model, and Chapter 3 presents statistical inference under the
assumption of a normal distribution for the response variable. Chapter 4 presents
analogous model-fitting and inferential results for the generalized linear model. This
generalization enables us to model non-normal responses, such as categorical data
and count data.

The remainder of the book presents the most important generalized linear models.
Chapter 5 focuses on models that assume a binomial distribution for the response
variable. These apply to binary data, such as “success” and “failure” for possible
outcomes in a medical trial or “favor” and “oppose” for possible responses in a
sample survey. Chapter 6 extends the models to multicategory responses, assuming
a multinomial distribution. Chapter 7 introduces models that assume a Poisson or
negative binomial distribution for the response variable. These apply to count data,
such as observations in a health survey on the number of respondent visits in the
past year to a doctor. Chapter 8 presents ways of weakening distributional assump-
tions in generalized linear models, introducing quasi-likelihood methods that merely
focus on the mean and variance of the response distribution. Chapters 1–8 assume
independent observations. Chapter 9 generalizes the models further to permit corre-
lated observations, such as in handling multivariate responses. Chapters 1–9 use the
traditional frequentist approach to statistical inference, assuming probability distri-
butions for the response variables but treating model parameters as fixed, unknown
values. Chapter 10 presents the Bayesian approach for linear models and generalized
linear models, which treats the model parameters as random variables having their

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
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2 INTRODUCTION TO LINEAR AND GENERALIZED LINEAR MODELS

own distributions. The final chapter introduces extensions of the models that handle
more complex situations, such as high-dimensional settings in which models have
enormous numbers of parameters.

1.1 COMPONENTS OF A GENERALIZED LINEAR MODEL

The ordinary linear regression model uses linearity to describe the relationship
between the mean of the response variable and a set of explanatory variables,
with inference assuming that the response distribution is normal. Generalized linear
models (GLMs) extend standard linear regression models to encompass non-normal
response distributions and possibly nonlinear functions of the mean. They have three
components.

� Random component: This specifies the response variable y and its probability
distribution. The observations1 y = (y1,… , yn)T on that distribution are treated
as independent.

� Linear predictor: For a parameter vector 𝜷 = (𝛽1, 𝛽2,… , 𝛽p)T and a n × p model
matrix X that contains values of p explanatory variables for the n observations,
the linear predictor is X𝜷.

� Link function: This is a function g applied to each component of E(y) that relates
it to the linear predictor,

g[E(y)] = X𝜷.

Next we present more detail about each component of a GLM.

1.1.1 Random Component of a GLM

The random component of a GLM consists of a response variable y with independent
observations (y1,… , yn) having probability density or mass function for a distribu-
tion in the exponential family. In Chapter 4 we review this family of distributions,
which has several appealing properties. For example,

∑
i yi is a sufficient statistic

for its parameter, and regularity conditions (such as differentiation passing under an
integral sign) are satisfied for derivations of properties such as optimal large-sample
performance of maximum likelihood (ML) estimators.

By restricting GLMs to exponential family distributions, we obtain general expres-
sions for the model likelihood equations, the asymptotic distributions of estimators
for model parameters, and an algorithm for fitting the models. For now, it suffices
to say that the distributions most commonly used in Statistics, such as the normal,
binomial, and Poisson, are exponential family distributions.

1The superscript T on a vector or matrix denotes the transpose; for example, here y is a column
vector. Our notation makes no distinction between random variables and their observed values; this
is generally clear from the context.
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1.1.2 Linear Predictor of a GLM

For observation i, i = 1,… , n, let xij denote the value of explanatory variable xj,
j = 1,… , p. Let xi = (xi1,… , xip). Usually, we set xi1 = 1 or let the first variable
have index 0 with xi0 = 1, so it serves as the coefficient of an intercept term in the
model. The linear predictor of a GLM relates parameters {𝜂i} pertaining to {E(yi)}
to the explanatory variables x1,… , xp using a linear combination of them,

𝜂i =
p∑

j=1

𝛽jxij, i = 1,… , n.

The labeling of
∑p

j=1 𝛽jxij as a linear predictor reflects that this expression is linear
in the parameters. The explanatory variables themselves can be nonlinear functions
of underlying variables, such as an interaction term (e.g., xi3 = xi1xi2) or a quadratic
term (e.g., xi2 = x2

i1).
In matrix form, we express the linear predictor as

𝜼 = X𝜷,

where 𝜼 = (𝜂1,… , 𝜂n)T, 𝜷 is the p × 1 column vector of model parameters, and X
is the n × p matrix of explanatory variable values {xij}. The matrix X is called the
model matrix. In experimental studies, it is also often called the design matrix. It has
n rows, one for each observation, and p columns, one for each parameter in 𝜷. In
practice, usually p ≤ n, the goal of model parsimony being to summarize the data
using a considerably smaller number of parameters.

GLMs treat yi as random and xi as fixed. Because of this, the linear predictor is
sometimes called the systematic component. In practice xi is itself often random, such
as in sample surveys and other observational studies. In this book, we condition on its
observed values in conducting statistical inference about effects of the explanatory
variables.

1.1.3 Link Function of a GLM

The third component of a GLM, the link function, connects the random component
with the linear predictor. Let 𝜇i = E(yi), i = 1,… , n. The GLM links 𝜂i to 𝜇i by
𝜂i = g(𝜇i), where the link function g(⋅) is a monotonic, differentiable function. Thus,
g links 𝜇i to explanatory variables through the formula:

g(𝜇i) =
p∑

j=1

𝛽jxij, i = 1,… , n. (1.1)

In the exponential family representation of a distribution, a certain parameter
serves as its natural parameter. This parameter is the mean for a normal distribution,
the log of the odds for a binomial distribution, and the log of the mean for a Poisson
distribution. The link function g that transforms 𝜇i to the natural parameter is called
the canonical link. This link function, which equates the natural parameter with the
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linear predictor, generates the most commonly used GLMs. Certain simplifications
result when the GLM uses the canonical link function. For example, the model
has a concave log-likelihood function and simple sufficient statistics and likelihood
equations.

1.1.4 A GLM with Identity Link Function is a “Linear Model”

The link function g(𝜇i) = 𝜇i is called the identity link function. It has 𝜂i = 𝜇i. A
GLM that uses the identity link function is called a linear model. It equates the linear
predictor to the mean itself. This GLM has

𝜇i =
p∑

j=1

𝛽jxij, i = 1,… , n.

The standard version of this, which we refer to as the ordinary linear model, assumes
that the observations have constant variance, called homoscedasticity. An alternative
way to express the ordinary linear model is

yi =
p∑

j=1

𝛽jxij + 𝜖i,

where the “error term” 𝜖i has E(𝜖i) = 0 and var(𝜖i) = 𝜎2, i = 1,… , n. This is natural
for the identity link and normal responses but not for most GLMs.

In summary, ordinary linear models equate the linear predictor directly to the
mean of a response variable y and assume constant variance for that response. The
normal linear model also assumes normality. By contrast, a GLM is an extension that
equates the linear predictor to a link-function-transformed mean of y, and assumes a
distribution for y that need not be normal but is in the exponential family. We next
illustrate the three components of a GLM by introducing three of the most important
GLMs.

1.1.5 GLMs for Normal, Binomial, and Poisson Responses

The class of GLMs includes models for continuous response variables. Most impor-
tant are ordinary normal linear models. Such models assume a normal distribution
for the random component, yi ∼ N(𝜇i, 𝜎

2) for i = 1, ..., n. The natural parameter for a
normal distribution is the mean. So, the canonical link function for a normal GLM is
the identity link, and the GLM is then merely a linear model. In particular, standard
regression and analysis of variance (ANOVA) models are GLMs assuming a normal
random component and using the identity link function. Chapter 3 develops statistical
inference for such normal linear models. Chapter 2 presents model fitting for linear
models and shows this does not require the normality assumption.

Many response variables are binary. We represent the “success” and “failure” out-
comes, such as “favor” and “oppose” responses to a survey question about legalizing



COMPONENTS OF A GENERALIZED LINEAR MODEL 5

same-sex marriage, by 1 and 0. A Bernoulli trial for observation i has probabilities
P(yi = 1) = 𝜋i and P(yi = 0) = 1 − 𝜋i, for which 𝜇i = 𝜋i. This is the special case of
the binomial distribution with the number of trials ni = 1. The natural parameter for
the binomial distribution is log[𝜇i∕(1 − 𝜇i)]. This is the log odds of response outcome
1, the so-called logit of 𝜇i. The logit is the canonical link function for binary random
components. GLMs using the logit link have the form:

log
(

𝜇i

1 − 𝜇i

)
=

p∑
j=1

𝛽jxij, i = 1,… , n.

They are called logistic regression models, or sometimes simply logit models. Chapter
5 presents such models. Chapter 6 introduces generalized logit models for multino-
mial random components, for handling categorical response variables that have more
than two outcome categories.

Some response variables have counts as their possible outcomes. In a criminal
justice study, for instance, each observation might be the number of times a person
has been arrested. Counts also occur as entries in contingency tables. The simplest
probability distribution for count data is the Poisson. It has natural parameter log𝜇i,
so the canonical link function is the log link, 𝜂i = log𝜇i. The model using this link
function is

log𝜇i =
p∑

j=1

𝛽jxij, i = 1,… , n.

Presented in Chapter 7, it is called a Poisson loglinear model. We will see there that
a more flexible model for count data assumes a negative binomial distribution for yi.

Table 1.1 lists some GLMs presented in Chapters 2–7. Chapter 4 presents basic
results for GLMs, such as likelihood equations, ways of finding the ML estimates,
and large-sample distributions for the ML estimators.

1.1.6 Advantages of GLMs versus Transforming the Data

A traditional way to model data, introduced long before GLMs, transforms y so that
it has approximately a normal conditional distribution with constant variance. Then,
the least squares fitting method and subsequent inference for ordinary normal linear

Table 1.1 Important Generalized Linear Models for Statistical Analysis

Random Component Link Function Model Chapters

Normal Identity Regression 2 and 3
Analysis of variance 2 and 3

Exponential family Any Generalized linear model 4
Binomial Logit Logistic regression 5
Multinomial Generalized logits Multinomial response 6
Poisson Log Loglinear 7

Chapter 4 presents an overview of GLMs, and the other chapters present special cases.



6 INTRODUCTION TO LINEAR AND GENERALIZED LINEAR MODELS

models presented in the next two chapters are applicable on the transformed scale.
For example, with count data that have a Poisson distribution, the distribution is
skewed to the right with variance equal to the mean, but

√
y has a more nearly normal

distribution with variance approximately equal to 1/4. For most data, however, it is
challenging to find a transformation that provides both approximate normality and
constant variance. The best transformation to achieve normality typically differs from
the best transformation to achieve constant variance.

With GLMs, by contrast, the choice of link function is separate from the choice
of random component. If a link function is useful in the sense that a linear model
with the explanatory variables is plausible for that link, it is not necessary that it
also stabilizes variance or produces normality. This is because the fitting process
maximizes the likelihood for the choice of probability distribution for y, and that
choice is not restricted to normality.

Let g denote a function, such as the log function, that is a link function in the
GLM approach or a transformation function in the transformed-data approach. An
advantage of the GLM formulation is that the model parameters describe g[E(yi)],
rather than E[g(yi)] as in the transformed-data approach. With the GLM approach,
those parameters also describe effects of explanatory variables on E(yi), after applying
the inverse function for g. Such effects are usually more relevant than effects of
explanatory variables on E[g(yi)]. For example, with g as the log function, a GLM
with log[E(yi)] = 𝛽0 + 𝛽1xi1 translates to an exponential model for the mean, E(yi) =
exp(𝛽0 + 𝛽1xi1), but the transformed-data model2 E[log(yi)] = 𝛽0 + 𝛽1xi1 does not
translate to exact information about E(yi) or the effect of xi1 on E(yi). Also, the
preferred transform is often not defined on the boundary of the sample space, such
as the log transform with a count or a proportion of zero.

GLMs provide a unified theory of modeling that encompasses the most important
models for continuous and discrete response variables. Models studied in this text
are GLMs with normal, binomial, or Poisson random component, or with extended
versions of these distributions such as the multinomial and negative binomial, or
multivariate extensions of GLMs. The ML parameter estimates are computed with
an algorithm that iteratively uses a weighted version of least squares. The same
algorithm applies to the entire exponential family of response distributions, for any
choice of link function.

1.2 QUANTITATIVE/QUALITATIVE EXPLANATORY VARIABLES
AND INTERPRETING EFFECTS

So far we have learned that a GLM consists of a random component that identifies the
response variable and its distribution, a linear predictor that specifies the explanatory
variables, and a link function that connects them. We now take a closer look at the
form of the linear predictor.

2We are not stating that a model for log-transformed data is never relevant; modeling the mean on
the original scale may be misleading when the response distribution is very highly skewed and has
many outliers.
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1.2.1 Quantitative and Qualitative Variables in Linear Predictors

Explanatory variables in a GLM can be

� quantitative, such as in simple linear regression models.
� qualitative factors, such as in analysis of variance (ANOVA) models.
� mixed, such as an interaction term that is the product of a quantitative explana-

tory variable and a qualitative factor.

For example, suppose observation i measures an individual’s annual income yi,
number of years of job experience xi1, and gender xi2 (1 = female, 0 = male). The
linear model with linear predictor

𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi1xi2

has quantitative xi1, qualitative xi2, and mixed xi3 = xi1xi2 for an interaction term.
As Figure 1.1 illustrates, this model corresponds to straight lines 𝜇i = 𝛽0 + 𝛽1xi1 for
males and 𝜇i = (𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)xi1 for females. With an interaction term relating
two variables, the effect of one variable changes according to the level of the other.
For example, with this model, the effect of job experience on mean annual income
has slope 𝛽1 for males and 𝛽1 + 𝛽3 for females. The special case, 𝛽3 = 0, of a lack
of interaction corresponds to parallel lines relating mean income to job experience
for females and males. The further special case also having 𝛽2 = 0 corresponds to
identical lines for females and males. When we use the model to compare mean
incomes for females and males while accounting for the number of years of job
experience as a covariate, it is called an analysis of covariance model.

M
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e

Slope β1 (Males)

Job experience

Slope β1 + β3 (Females)

β0 + β2

β0

Figure 1.1 Portrayal of linear predictor with quantitative and qualitative explanatory
variables.
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A quantitative explanatory variable x is represented by a single 𝛽x term in the
linear predictor and a single column in the model matrix X. A qualitative explanatory
variable having c categories can be represented by c − 1 indicator variables and terms
in the linear predictor and c − 1 columns in the model matrix X. The R software uses
as default the “first-category-baseline” parameterization, which constructs indicators
for categories 2,… , c. Their parameter coefficients provide contrasts with category
1. For example, suppose racial–ethnic status is an explanatory variable with c = 3
categories, (black, Hispanic, white). A model relating mean income to racial–ethnic
status could use

𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2

with xi1 = 1 for Hispanics and 0 otherwise, xi2 = 1 for whites and 0 otherwise, and
xi1 = xi2 = 0 for blacks. Then 𝛽1 is the difference between the mean income for His-
panics and the mean income for blacks, 𝛽2 is the difference between the mean income
for whites and the mean income for blacks, and 𝛽1 − 𝛽2 is the difference between the
mean income for Hispanics and the mean income for whites. Some other software,
such as SAS, uses an alternative “last-category-baseline” default parameterization,
which constructs indicators for categories 1,… , c − 1. Its parameters then provide
contrasts with category c. All such possible choices are equivalent, in terms of having
the same model fit.

Shorthand notation can represent terms (variables and their coefficients) in symbols
used for linear predictors. A quantitative effect 𝛽x is denoted by X, and a qualitative
effect is denoted by a letter near the beginning of the alphabet, such as A or B.
An interaction is represented3 by a product of such terms, such as A.B or A.X. The
period represents forming component-wise product vectors of constituent columns
from the model matrix. The crossing operator A*B denotes A + B + A.B. Nesting of
categories of B within categories of A (e.g., factor A is states, and factor B is counties
within those states) is represented by A∕B = A + A.B, or sometimes by A + B(A).
An intercept term is represented by 1, but this is usually assumed to be in the model
unless specified otherwise. Table 1.2 illustrates some simple types of linear predictors
and lists the names of normal linear models that equate the mean of the response
distribution to that linear predictor.

Table 1.2 Types of Linear Predictors for Normal Linear Models

Linear Predictor Name of Model

X1 + X2 + X3 +⋯ Multiple regression
A One-way ANOVA
A + B Two-way ANOVA, no interaction
A + B + A.B Two-way ANOVA, interaction
A + X or A + X + A.X Analysis of covariance

3In R, a colon is used, such as A:B.
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1.2.2 Interval, Nominal, and Ordinal Variables

Quantitative variables are said to be measured on an interval scale, because numerical
intervals separate levels on the scale. They are sometimes called interval variables.
A qualitative variable, as represented in a model by a set of indicator variables,
has categories that are treated as unordered. Such a categorical variable is called a
nominal variable.

By contrast, a categorical variable whose categories have a natural ordering is
referred to as ordinal. For example, attained education might be measured with the cat-
egories (<high school, high school graduate, college graduate, postgraduate degree).
Ordinal explanatory variables can be treated as qualitative by ignoring the ordering
and using a set of indicator variables. Alternatively, they can be treated as quantita-
tive by assigning monotone scores to the categories and using a single 𝛽x term in the
linear predictor. This is often done when we expect E(y) to progressively increase, or
progressively decrease, as we move in order across those ordered categories.

1.2.3 Interpreting Effects in Linear Models

How do we interpret the 𝛽 coefficients in the linear predictors of GLMs? Suppose
the response variable is a college student’s math achievement test score yi, and we
fit the linear model having xi1 = the student’s number of years of math education as
an explanatory variable, 𝜇i = 𝛽0 + 𝛽1xi1. Since 𝛽1 is the slope of a straight line, we
might say, “If the model holds, a one-year increase in math education corresponds
to a change of 𝛽1 in the expected math achievement test score.” However, this may
suggest the inappropriate causal conclusion that if a student attains another year of
math education, her or his math achievement test score is expected to change by 𝛽1.
To validly make such a conclusion, we would need to conduct an experiment that adds
a year of math education for each student and then observes the results. Otherwise,
a higher mean test score at a higher math education level (if 𝛽1 > 0) could at least
partly reflect the correlation of several other variables with both test score and math
education level, such as parents’ attained educational levels, the student’s IQ, GPA,
number of years of science courses, etc. Here is a more appropriate interpretation:
If the model holds, when we compare the subpopulation of students having a certain
number of years of math education with the subpopulation having one fewer year of
math education, the difference in the means of their math achievement test scores is 𝛽1.

Now suppose the model adds xi2 = age of student and xi3 = mother’s number of
years of math education,

𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3.

Since 𝛽1 = 𝜕𝜇i∕𝜕xi1, we might say, “The difference between the mean math achieve-
ment test score of a subpopulation of students having a certain number of years of
math education and a subpopulation having one fewer year of math education equals
𝛽1, when we keep constant the student’s age and the mother’s math education.”
Controlling variables is possible in designed experiments. But it is unnatural and
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possibly inconsistent with the data for many observational studies to envision increas-
ing one explanatory variable while keeping all the others fixed. For example, x1 and
x2 are likely to be positively correlated, so increases in x1 naturally tend to occur
with increases in x2. In some datasets, one might not even observe a 1-unit range in
an explanatory variable when the other explanatory variables are all held constant.
A better interpretation is this: “The difference between the mean math achievement
test score of a subpopulation of students having a certain number of years of math
education and a subpopulation having one fewer year equals 𝛽1, when both subpop-
ulations have the same value for 𝛽2xi2 + 𝛽3xi3.” More concisely we might say, “The
effect of the number of years of math education on the mean math achievement test
score equals 𝛽1, adjusting4 for student’s age and mother’s math education.” When the
model also has a qualitative factor, such as xi4 = gender (1 = female, 0 = male), then
𝛽4 is the difference between the mean math achievement test scores for female and
male students, adjusting for the other explanatory variables in the model. Analogous
interpretations apply to GLMs for a link-transformed mean.

The effect 𝛽1 in the equation with a sole explanatory variable is usually not the
same as 𝛽1 in the equation with multiple explanatory variables, because of factors
such as confounding. The effect of x1 on E(y) will usually differ if we ignore other
variables than if we adjust for them, especially in observational studies containing
“lurking variables” that are associated both with y and with x1. To highlight such
a distinction, it is sometimes helpful to use different notation5 for the model with
multiple explanatory variables, such as

𝜇i = 𝛽0 + 𝛽y1⋅23
xi1 + 𝛽y2⋅13

xi2 + 𝛽y3⋅12
xi3,

where 𝛽yj⋅k𝓁 denotes the effect of xj on y after adjusting for xk and x𝓁 .
Some other caveats: In practice, such interpretations use an estimated linear pre-

dictor, so we replace “mean” by “estimated mean.” Depending on the units of mea-
surement, an effect may be more relevant when expressed with changes other than one
unit. When an explanatory variable also occurs in an interaction, then its effect should
be summarized separately at different levels of the interacting variable. Finally, for
GLMs with nonidentity link function, interpretation is more difficult because 𝛽j refers
to the effect on g(𝜇i) rather than 𝜇i. In later chapters we will present interpretations
for various link functions.

1.3 MODEL MATRICES AND MODEL VECTOR SPACES

For the data vector y with 𝝁 = E(y), consider the GLM 𝜼 = X𝜷 with link function
g and transformed mean values 𝜼 = g(𝝁). For this GLM, y, 𝝁, and 𝜼 are points in
n-dimensional Euclidean space, denoted by ℝn.

4For linear models, Section 2.5.6 gives a technical definition of adjusting, based on removing effects
of x2 and x3 by regressing both y and x1 on them.
5Yule (1907) introduced such notation in a landmark article on regression modeling.
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1.3.1 Model Matrices Induce Model Vector Spaces

Geometrically, model matrices of GLMs naturally induce vector spaces that deter-
mine the possible 𝝁 for a model. Recall that a vector space S is such that if u and v
are elements in S, then so are u + v and cu for any constant c.

For a particular n × p model matrix X, the values of X𝜷 for all possible vectors 𝜷
of model parameters generate a vector space that is a linear subspace of ℝn. For all
possible 𝜷, 𝜼 = X𝜷 traces out the vector space spanned by the columns of X, that is,
the set of all possible linear combinations of the columns of X. This is the column
space of X, which we denote by C(X),

C(X) = {𝜼 : there is a 𝜷 such that 𝜼 = X𝜷}.

In the context of GLMs, we refer to the vector space C(X) as the model space. The
𝜼, and hence the 𝝁, that are possible for a particular GLM are determined by the
columns of X.

Two models with model matrices Xa and Xb are equivalent if C(Xa) = C(Xb). The
matrices Xa and Xb could be different because of a change of units of an explanatory
variable (e.g., pounds to kilograms), or a change in the way of specifying indicator
variables for a qualitative predictor. On the other hand, if the model with model
matrix Xa is a special case of the model with model matrix Xb, for example, with Xa
obtained by deleting one or more of the columns of Xb, then the model space C(Xa)
is a vector subspace of the model space C(Xb).

1.3.2 Dimension of Model Space Equals Rank of Model Matrix

Recall that the rank of a matrix X is the number of vectors in a basis for C(X), which
is a set of linearly independent vectors whose linear combinations generate C(X).
Equivalently, the rank is the number of linearly independent columns (or rows) of
X. The dimension of the model space C(X) of 𝜼 values, denoted by dim[C(X)], is
defined to be the rank of X. In all but the final chapter of this book, we assume p ≤ n,
so the model space has dimension no greater than p. We say that X has full rank when
rank(X) = p.

When X has less than full rank, the columns of X are linearly dependent, with
any one column being a linear combination of the other columns. That is, there exist
linear combinations of the columns that yield the 0 vector. There are then nonzero
p × 1 vectors 𝜻 such that X𝜻 = 0. Such vectors make up the null space of the model
matrix,

N(X) = {𝜻 : X𝜻 = 0}.

When X has full rank, then dim[N(X)] = 0. Then, no nonzero combinations of
the columns of X yield 0, and N(X) consists solely of the p × 1 zero vector, 0 =
(0, 0,… , 0)T. Generally,

dim[C(X)] + dim[N(X)] = p.
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When X has less than full rank, we will see that the model parameters 𝜷 are not
well defined. Then there is said to be aliasing of the parameters. In one way this can
happen, called extrinsic aliasing, an anomaly of the data causes the linear dependence,
such as when the values for one predictor are a linear combination of values for the
other predictors (i.e., perfect collinearity). Another way, called intrinsic aliasing,
arises when the linear predictor contains inherent redundancies, such as when (in
addition to the usual intercept term) we use an indicator variable for each category of
a qualitative predictor. The following example illustrates.

1.3.3 Example: The One-Way Layout

Many research studies have the central goal of comparing response distributions for
different groups, such as comparing life-length distributions of lung cancer patients
under two treatments, comparing mean crop yields for three fertilizers, or comparing
mean incomes on the first job for graduating students with various majors. For c
groups of independent observations, let yij denote response observation j in group i,
for i = 1,… , c and j = 1,… , ni. This data structure is called the one-way layout.

We regard the groups as c categories of a qualitative factor. For 𝜇ij = E(yij), the
GLM has linear predictor,

g(𝜇ij) = 𝛽0 + 𝛽i.

Let𝜇i denote the common value of {𝜇ij, j = 1,… , ni}, for i = 1,… , c. For the identity
link function and an assumption of normality for the random component, this model
is the basis of the one-way ANOVA significance test of H0: 𝜇1 = ⋯ = 𝜇c, which we
develop in Section 3.2. This hypothesis corresponds to the special case of the model
in which 𝛽1 = ⋯ = 𝛽c.

Let y = (y11,… , y1n1
,… , yc1,… , ycnc

)T and 𝜷 = (𝛽0, 𝛽1,… , 𝛽c)T. Let 1ni
denote

the ni × 1 column vector consisting of ni entries of 1, and likewise for 0ni
. For the one-

way layout, the model matrix X for the linear predictor X𝜷 in the GLM expression
g(𝝁) = X𝜷 that represents g(𝜇ij) = 𝛽0 + 𝛽i is

X =
⎛⎜⎜⎜⎝

1n1
1n1

0n1
⋯ 0n1

1n2
0n2

1n2
⋯ 0n2

⋮ ⋮ ⋮ ⋱ ⋮
1nc

0nc
0nc

⋯ 1nc

⎞⎟⎟⎟⎠
.

This matrix has dimension n × p with n = n1 +⋯ + nc and p = c + 1.
Equivalently, this parameterization corresponds to indexing the observations as yh

for h = 1,… , n, defining indicator variables xhi = 1 when observation h is in group
i and xhi = 0 otherwise, for i = 1,… , c, and expressing the linear predictor for the
link function g applied to E(yh) = 𝜇h as

g(𝜇h) = 𝛽0 + 𝛽1xh1 +⋯ + 𝛽cxhc.

In either case, the indicator variables whose coefficients are {𝛽1,… , 𝛽c} add up to
the vector 1n. That vector, which is the first column of X, has coefficient that is
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the intercept term 𝛽0. The columns of X are linearly dependent, because columns
2 through c + 1 add up to column 1. Here 𝛽0 is intrinsically aliased with

∑c
i=1 𝛽i.

The parameter 𝛽0 is marginal to {𝛽1,… , 𝛽c}, in the sense that the column space for
the coefficient of 𝛽0 in the model lies wholly in the column space for the vector
coefficients of {𝛽1,… , 𝛽c}. So, 𝛽0 is redundant in any explanation of the structure of
the linear predictor.

Because of the linear dependence of the columns of X, this matrix does not have full
rank. But we can achieve full rank merely by dropping one column of X, because we
need only c − 1 indicators to represent a c-category explanatory variable. This model
with one less parameter has the same column space for the reduced model matrix.

1.4 IDENTIFIABILITY AND ESTIMABILITY

In the one-way layout example, let d denote any constant. Suppose we transform the
parameters 𝜷 to a new set,

𝜷∗ = (𝛽∗0 , 𝛽∗1 ,… , 𝛽∗c )T = (𝛽0 + d, 𝛽1 − d,… , 𝛽c − d)T.

The linear predictor with this new set of parameters is

g(𝜇ij) = 𝛽∗0 + 𝛽∗i = (𝛽0 + d) + (𝛽i − d) = 𝛽0 + 𝛽i.

That is, the linear predictor X𝜷 for g(𝝁) is exactly the same, for any value of d. So,
for the model as specified with c + 1 parameters, the parameter values are not unique.

1.4.1 Identifiability of GLM Model Parameters

For this model, because the value for 𝜷 is not unique, we cannot estimate 𝜷 uniquely
even if we have an infinite amount of data. Whether we assume normality or some
other distribution for y, the likelihood equations have infinitely many solutions. When
the model matrix is not of full rank, 𝜷 is not identifiable.

Definition. For a GLM with linear predictor X𝜷, the parameter vector 𝜷 is identifi-
able if whenever 𝜷∗ ≠ 𝜷, then X𝜷∗ ≠ X𝜷.

Equivalently, 𝜷 is identifiable if X𝜷∗ = X𝜷 implies that 𝜷∗ = 𝜷, so this definition
tells us that if we know g(𝝁) = X𝜷 (and hence if we know 𝝁 satisfying the model),
then we can also determine 𝜷.

For the parameterization just given for the one-way layout, 𝜷 is not identifiable,
because 𝜷 = (𝛽0, 𝛽1,… , 𝛽c)T and 𝜷∗ = (𝛽0 + d, 𝛽1 − d,… , 𝛽c − d)T do not have dif-
ferent linear predictor values. In such cases, we can obtain identifiability and eliminate
the intrinsic aliasing among the parameters by redefining the linear predictor with
fewer parameters. Then, different 𝜷 values have different linear predictor values X𝜷,
and estimation of 𝜷 is possible.
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For the one-way layout, we can either drop a parameter or add a linear constraint.
That is, in g(𝜇ij) = 𝛽0 + 𝛽i, we might set 𝛽1 = 0 or 𝛽c = 0 or

∑
i 𝛽i = 0 or

∑
i ni𝛽i = 0.

With the first-category-baseline constraint 𝛽1 = 0, we express the model as g(𝝁) = X𝜷
with

X𝜷 =

⎛⎜⎜⎜⎜⎜⎝

1n1
0n1

0n1
⋯ 0n1

1n2
1n2

0n2
⋯ 0n2

1n3
0n3

1n3
⋯ 0n3

⋮ ⋮ ⋮ ⋱ ⋮
1nc

0nc
0nc

⋯ 1nc

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
𝛽0
𝛽2
⋮
𝛽c

⎞⎟⎟⎟⎠
.

When used with the identity link function, this expression states that𝜇1 = 𝛽0 (from the
first n1 rows of X), and for i > 1, 𝜇i = 𝛽0 + 𝛽i (from the ni rows of X in set i). Thus,
the model parameters then represent 𝛽0 = 𝜇1 and {𝛽i = 𝜇i − 𝜇1}. Under the last-
category-baseline constraint 𝛽c = 0, the parameters are 𝛽0 = 𝜇c and {𝛽i = 𝜇i − 𝜇c}.
Under the constraint

∑
i ni𝛽i = 0, the parameters are 𝛽0 = �̄� and {𝛽i = 𝜇i − �̄�}, where

�̄� = (
∑

i ni𝜇i)∕n.
A slightly more general definition of identifiability refers instead to linear combi-

nations𝓵T𝜷 of parameters. It states that𝓵T𝜷 is identifiable if whenever𝓵T𝜷∗ ≠ 𝓵T𝜷,
then X𝜷∗ ≠ X𝜷. This definition permits a subset of the terms in 𝜷 to be identifiable,
rather than treating the entire 𝜷 as identifiable or nonidentifiable. For example, sup-
pose we extend the model for the one-way layout to include a quantitative explanatory
variable taking value xij for observation j in group i, yielding the analysis of covariance
model

g(𝜇ij) = 𝛽0 + 𝛽i + 𝛾xij.

Then, without a constraint on {𝛽i} or 𝛽0, according to this definition {𝛽i} and 𝛽0 are
not identifiable, but 𝛾 is identifiable. Here, taking 𝓵T𝜷 = 𝛾 , different values of 𝓵T𝜷

yield different values of X𝜷.

1.4.2 Estimability in Linear Models

In a non-full-rank model specification, some quantities are unaffected by the parame-
ter nonidentifiability and can be estimated. In a linear model, the adjective estimable
refers to certain quantities that can be estimated in an unbiased manner.

Definition. In a linear model E(y) = X𝜷, the quantity 𝓵T𝜷 is estimable if there exist
coefficients a such that E(aTy) = 𝓵T𝜷.

That is, some linear combination of the observations estimates 𝓵T𝜷 unbiasedly.
We show now that if 𝓵T𝜷 can be expressed as a linear combination of means, it

is estimable. Recall that xi denotes row i of the model matrix X, corresponding to
observation yi, for which E(yi) = xi𝜷. Letting 𝓵T = xi and taking a to be identically 0
except for a 1 in position i, we have E(aTy) = E(yi) = xi𝜷 = 𝓵T𝜷 for all 𝜷. So E(yi) =
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xi𝜷 is estimable. More generally, for any particular a, since E(aTy) = aTE(y) = aTX𝜷,
the quantity 𝓵T𝜷 is estimable with 𝓵T = aTX. That is, the estimable quantities are
linear functions aT𝝁 of 𝝁 = X𝜷. This is not surprising, since 𝜷 affects the response
variable only through 𝝁 = X𝜷.

To illustrate, for the one-way layout, consider the over-parameterization 𝜇ij = 𝛽0 +
𝛽i. Then, 𝛽0 + 𝛽i = 𝜇i as well as contrasts such as 𝛽h − 𝛽i = 𝜇h − 𝜇i are estimable.
Any sole element in 𝜷 is not estimable.

When X has full rank, 𝜷 is identifiable, and then all linear combinations 𝓵T𝜷 are
estimable. (We will see how to form the appropriate aTy for the unbiased estimator
in Chapter 2 when we learn how to estimate 𝜷.) The estimates do not depend on
which constraints we employ, if necessary, to obtain identifiability. When X does not
have full rank, 𝜷 is not identifiable. Also in that case, for the more general definition
of identifiability in terms of linear combinations 𝓵T𝜷, at least one component of 𝜷
is not identifiable. In fact, for that definition, 𝓵T𝜷 is estimable if and only if it is
identifiable. Then the estimable quantities are merely the linear functions of 𝜷 that
are identifiable (Christensen 2011, Section 2.1).

Nonidentifiability of 𝜷 is irrelevant as long as we focus on 𝝁 = X𝜷 and other
estimable characteristics. In particular, when 𝓵T𝜷 is estimable, the values of 𝓵T�̂� are
the same for every solution �̂� of the likelihood equations. So, just what is the set of
linear combinations𝓵T𝜷 that are estimable? Since E(aTy) = 𝓵T𝜷 with𝓵T = aTX, the
linear space of such p × 1 vectors 𝓵 is precisely the set of linear combinations of rows
of X. That is, it is the row space of the model matrix X, which is equivalently C(XT).
This is not surprising, since each mean is the inner product of a row of X with 𝜷.

1.5 EXAMPLE: USING SOFTWARE TO FIT A GLM

General-purpose statistical software packages, such as R, SAS, Stata, and SPSS, can
fit linear models and GLMs. In each chapter of this book, we introduce an example
to illustrate the concepts of that chapter. We show R code and output, but the choice
of software is less important than understanding how to interpret the output, which
is similar with different packages.

In R, the lm function fits and performs inference for normal linear models, and
the glm function does this for GLMs6. When the glm function assumes the normal
distribution for y and uses the identity link function, it provides the same fit as the lm
function.

1.5.1 Example: Male Satellites for Female Horseshoe Crabs

We use software to specify and fit linear models and GLMs with data from a study of
female horseshoe crabs7 on an island in the Gulf of Mexico. During spawning season,

6For “big data,” the biglm package in R has functions that fit linear models and GLMs using an
iterative algorithm that processes the data in chunks.
7See http://en.wikipedia.org/wiki/Horseshoe_crab and horseshoecrab.org for details
about horseshoe crabs, including pictures of their mating.

http://en.wikipedia.org/wiki/Horseshoe_crab
http://www.horseshoecrab.org
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Table 1.3 Number of Male Satellites (y) by Female Crab’s Characteristics

y C S W Wt y C S W Wt y C S W Wt

8 2 3 28.3 3.05 0 3 3 22.5 1.55 9 1 1 26.0 2.30
4 3 3 26.0 2.60 0 2 3 23.8 2.10 0 3 2 24.7 1.90
0 3 3 25.6 2.15 0 3 3 24.3 2.15 0 2 3 25.8 2.65
0 4 2 21.0 1.85 14 2 1 26.0 2.30 8 1 1 27.1 2.95

Source:The data are courtesy of Jane Brockmann, University of Florida. The study is described in Ethology
102: 1–21 (1996). Complete data (n = 173) are in file Crabs.dat at the text website, www.stat.
ufl.edu/~aa/glm/data.
C, color (1, medium light; 2, medium; 3, medium dark; 4, dark); S, spine condition (1, both good; 2, one
worn or broken; 3, both worn or broken); W, carapace width (cm); Wt, weight (kg).

a female migrates to the shore to breed. With a male attached to her posterior spine,
she burrows into the sand and lays clusters of eggs. The eggs are fertilized externally,
in the sand beneath the pair. During spawning, other male crabs may cluster around
the pair and may also fertilize the eggs. These male crabs are called satellites.

The response outcome for each of the n = 173 female crabs is her y = number of
satellites. Explanatory variables are the female crab’s color, spine condition, weight,
and carapace width.Table 1.3 shows a small portion of the data and the categories for
color and spine condition. As you read through the discussion below, we suggest that
you download the data from the text website and practice data analysis by replicating
these analyses and conduct others that occur to you (including additional plots) using
R or your preferred software.

We now fit some linear models and GLMs to these data. Since the data are counts,
the Poisson might be the first distribution you would consider for modeling y.

---------------------------------------------------------------------

> Crabs <- read.table("Crabs.dat", header=T)

> attach(Crabs)

> mean(y); var(y)

[1] 2.9191

[1] 9.9120

> hist(y) # Provides a histogram display

> table(y) # Shows frequency distribution for y values

0 1 2 3 4 5 6 7 8 9 10 11 12 14 15

62 16 9 19 19 15 13 4 6 3 3 1 1 1 1

> fit.pois <- glm(y ~ 1, family = poisson(link=identity), data=Crabs)

> summary(fit.pois) # y ~ 1 puts only an intercept in model

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.9191 0.1299 22.47 <2e-16

---------------------------------------------------------------------

Fitting the Poisson distribution with a GLM containing only an intercept and using
the identity link function gives an estimated Poisson mean that is the sample mean
2.92, for reasons we will see in Chapter 7 on models for count data. However, the
Poisson mean equals its variance, and the mode is the integer part of the mean. The

http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
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sample variance of 9.92 and the strong mode at 0 shown by the frequency distribution
suggest that a Poisson assumption is inappropriate for the marginal distribution of y.
We study more appropriate distributions for the counts in Chapter 7.

1.5.2 Linear Model Using Weight to Predict Satellite Counts

Of the explanatory variables, two are quantitative (width and weight) and two are
ordinal categorical (color and spine condition). We begin by illustrating the use
of a quantitative explanatory variable. Weight and width are very highly positively
correlated, and for illustrative purposes we will use weight, in kilograms, as an
explanatory variable. We first find some simple descriptive statistics:

-----------------------------------------------------------------------

> mean(weight); sd(weight); quantile(weight, c(0, 0.25, 0.50, 0.75, 1))

[1] 2.4372

[1] 0.5770

0% 25% 50% 75% 100% # minimum, quartiles, and maximum

1.20 2.00 2.35 2.85 5.20

> plot(weight, y) # Scatterplot of y and x = weight

-----------------------------------------------------------------------

The quantiles reveal a relatively large maximum weight, which the scatterplot in
Figure 1.2 of the number of satellites against weight also highlights. That plot shows
there is not a clear trend in the relation.

We next fit the linear model having a straight-line relationship between E(y) and
x = weight.

---------------------------------------------------------------------

> fit.weight <- lm(y ~ weight, data=Crabs)

> summary(fit.weight)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.9911 0.9710 -2.050 0.0418

weight 2.0147 0.3878 5.196 5.75e-07

---

> fit.weight2 <- glm(y ~ weight, family=gaussian(link=identity),

+ data=Crabs)

> summary(fit.weight2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.9911 0.9710 -2.050 0.0418

weight 2.0147 0.3878 5.196 5.75e-07

> abline(lm(y ~ weight)) # puts fitted line on the scatterplot

---------------------------------------------------------------------

The fit of an ordinary linear model is the same as the fit of the GLM using
normal (Gaussian family) random component with identity link function. The fit
�̂�i = −1.991 + 2.015xi, with positive estimated slope, suggests that heavier female
crabs tend to have more satellites. Figure 1.2 shows the fitted line superimposed on
the scatterplot.
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Figure 1.2 Scatterplot of y = number of crab satellites against x = crab weight.

For linear modeling, it is most common to assume a normal response distribution,
with constant variance. This is not ideal for the horseshoe crab satellite counts, since
they are discrete and since count data usually have variability that increases as the
mean does. However, the normal assumption has the flexibility, compared with the
Poisson, that the variance is not required to equal the mean. In any case, Chapter 2
shows that the linear model fit does not require an assumption of normality.

1.5.3 Comparing Mean Numbers of Satellites by Crab Color

To illustrate the use of a qualitative explanatory variable, we next compare the mean
satellite counts for the categories of color. Color is a surrogate for the age of the crab,
as older crabs tend to have a darker color. It has five categories, but no observations
fell in the “light” color. Let us look at the category counts and the sample mean and
variance of the number of satellites for each color category.

---------------------------------------------------------------------

> table(color)

color # 1 = medium light, 2 = medium, 3 = medium dark, 4 = dark

1 2 3 4

12 95 44 22

> cbind(by(y,color,mean), by(y,color,var))

[,1] [,2]

1 4.0833 9.7197 # color 1 crabs have mean(y) = 4.08, var(y) = 9.72

2 3.2947 10.2739

3 2.2273 6.7378

4 2.0455 13.0931

---------------------------------------------------------------------

The majority of the crabs are of medium color, and the mean response decreases as the
color gets darker. There is evidence of too much variability for a Poisson distribution
to be realistic for y, conditional on color.
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We next fit the linear model for a one-way layout with color as a qualitative
explanatory factor. By default, without specification of a distribution and link func-
tion, the R glm function fits the normal linear model:

---------------------------------------------------------------------

> fit.color <- glm(y ~ factor(color)) # normal dist. is default

> summary(fit.color)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.0833 0.8985 4.544 1.05e-05

factor(color)2 -0.7886 0.9536 -0.827 0.4094

factor(color)3 -1.8561 1.0137 -1.831 0.0689

factor(color)4 -2.0379 1.1170 -1.824 0.0699

---------------------------------------------------------------------

The output does not report a separate estimate for the first category of color, because
that parameter is aliased with the other color parameters. To achieve identifiability, R
specifies first-category-baseline indicator variables (i.e., for all but the first category).
In fact, 𝛽0 = ȳ1, 𝛽2 = ȳ2 − ȳ1, 𝛽3 = ȳ3 − ȳ1, and 𝛽4 = ȳ4 − ȳ1.

If we instead assume a Poisson distribution for the conditional distribution of the
response variable, we find:

---------------------------------------------------------------------

> fit.color2 <- glm(y ~ factor(color), family=poisson(link=identity))

> summary(fit.color2)

Estimate Std. Error z value Pr(>|t|)

(Intercept) 4.0833 0.5833 7.000 2.56e-12

factor(color)2 -0.7886 0.6123 -1.288 0.19780

factor(color)3 -1.8561 0.6252 -2.969 0.00299

factor(color)4 -2.0379 0.6582 -3.096 0.00196

---------------------------------------------------------------------

The estimates are the same, because the Poisson distribution also has sample means
as ML estimates of {𝜇i} for a model with a single factor predictor. However, the
standard error values are much smaller than under the normal assumption. Why do
you think this is? Do you think they are trustworthy?

Finally, we illustrate the simultaneous use of quantitative and qualitative explana-
tory variables by including both weight and color in the normal model’s linear
predictor.

---------------------------------------------------------------------

> fit.weight.color <- glm(y ~ weight + factor(color))

> summary(fit.weight.color)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8232 1.3549 -0.608 0.544

weight 1.8662 0.4018 4.645 6.84e-06

factor(color)2 -0.6181 0.9011 -0.686 0.494

factor(color)3 -1.2404 0.9662 -1.284 0.201

factor(color)4 -1.1882 1.0704 -1.110 0.269

---------------------------------------------------------------------
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Let us consider the model for this analysis and its model matrix. For response yi for
female crab i, let xi1 denote weight, and let xij = 1 when the crab has color j and
xij = 0 otherwise, for j = 2, 3, 4. Then, the model has linear predictor

𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3 + 𝛽4xi4.

The model has the form 𝝁 = E(y) = X𝜷 with, using some of the observations shown
in Table 1.3,

y =

⎛⎜⎜⎜⎜⎝

8
0
9
4
⋮

⎞⎟⎟⎟⎟⎠
, X𝜷 =

⎛⎜⎜⎜⎜⎝

1 3.05 1 0 0
1 1.55 0 1 0
1 2.30 0 0 0
1 2.60 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

𝛽0
𝛽1
𝛽2
𝛽3
𝛽4

⎞⎟⎟⎟⎟⎠
.

From 𝛽1 = 1.866, for crabs of a particular color that differ by a kilogram of weight,
the estimated mean number of satellites is nearly 2 higher for the heavier crabs. As
an exercise, construct a plot of the fit and interpret the color coefficients.

We could also introduce an interaction term, letting the effect of weight vary
by color. However, even for the simple models fitted, we have ignored a notable
outlier—the exceptionally heavy crab weighing 5.2 kg. As an exercise, you can redo
the analyses without that observation to check whether results are much influenced
by it. We’ll develop better models for these data in Chapter 7.

CHAPTER NOTES

Section 1.1: Components of a Generalized Linear Model

1.1 GLM: Nelder and Wedderburn (1972) introduced the class of GLMs and the algorithm
for fitting them, but many models in the class were in practice by then.

1.2 Transform data: For the transforming-data approach to attempting normality and vari-
ance stabilization of y for use with ordinary normal linear models, see Anscombe (1948),
Bartlett (1937, 1947), Box and Cox (1964), and Cochran (1940).

1.3 Random x and measurement error: When x is random, rather than conditioning on
x, one can study how the bias in estimated effects depends on the relation between x
and the unobserved variables that contribute to the error term. Much of the econometrics
literature deals with this (e.g., Greene 2011). Random x is also relevant in the study of
errors of measurement of explanatory variables (Buonaccorsi 2010). Such error results
in attenuation, that is, biasing of the effect toward zero.

1.4 Parsimony: For a proof of the result that a parsimonious reduction of the data to fewer
parameters results in improved estimation, see Altham (1984).

Section 1.2: Quantitative/Qualitative Explanatory Variables and Interpreting Effects

1.5 GLM effect interpretation: Hoaglin (2012, 2015) discussed appropriate and inappro-
priate interpretations of parameters in linear models. For studies that use a nonidentity
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link function g, 𝜕𝜇i∕𝜕xij has value depending on g and 𝜇i as well as 𝛽j. For sample data
and a GLM fit, one way to summarize partial effect j, adjusting for the other explanatory
variables, is by 1

n

∑
i(𝜕�̂�i∕𝜕xij), averaging over the n sample settings. For example, for a

Poisson loglinear model, 1

n

∑
i(𝜕�̂�i∕𝜕xij) = 𝛽jȳ (Exercise 7.9).

1.6 Average causal effect: Denote two groups to be compared by x1 = 0 and x1 = 1. For
GLMs, an alternative effect summary is the average causal effect,

1
n

n∑
i=1

[
E(yi|xi1 = 1, xi2,… xip) − E(yi|xi1 = 0, xi2,… , xip)

]
.

This uses, for each observation i, the expected response for its values of xi2,… , xip if that
observation were in group 1 and if that observation were in group 0. For a particular model
fit, the sample version estimates the difference between the overall means if all subjects
sampled were in group 1 and if all subjects sampled were in group 0. For observational
data, this mimics a counterfactual measure to estimate if we could instead conduct an
experiment and observe subjects under each treatment group, rather than have half the
observations missing. See Gelman and Hill (2006, Chapters 9 and 10), Rubin (1974),
and Rosenbaum and Rubin (1983).

EXERCISES

1.1 Suppose that yi has a N(𝜇i, 𝜎
2) distribution, i = 1,… , n. Formulate the normal

linear model as a special case of a GLM, specifying the random component,
linear predictor, and link function.

1.2 Link function of a GLM:

a. Describe the purpose of the link function g.

b. The identity link is the standard one with normal responses but is not
often used with binary or count responses. Why do you think this is?

1.3 What do you think are the advantages and disadvantages of treating an ordinal
explanatory variable as (a) quantitative, (b) qualitative?

1.4 Extend the model in Section 1.2.1 relating income to racial–ethnic status to
include education and interaction explanatory terms. Explain how to interpret
parameters when software constructs the indicators using (a) first-category-
baseline coding, (b) last-category-baseline coding.

1.5 Suppose you standardize the response and explanatory variables before fitting
a linear model (i.e., subtract the means and divide by the standard deviations).
Explain how to interpret the resulting standardized regression coefficients.

1.6 When X has full rank p, explain why the null space of X consists only of the
0 vector.
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1.7 For any linear model 𝝁 = X𝜷, is the origin 0 in the model space C(X)? Why
or why not?

1.8 A model M has model matrix X. A simpler model M0 results from removing
the final term in M, and hence has model matrix X0 that deletes the final
column from X. From the definition of a column space, explain why C(X0)
is contained in C(X).

1.9 For the normal linear model, explain why the expression yi =
∑p

j=1 𝛽jxij + 𝜖i

with 𝜖i ∼ N(0, 𝜎2) is equivalent to yi ∼ N(
∑p

j=1 𝛽jxij, 𝜎
2).

1.10 GLMs normally use a hierarchical structure by which the presence of a
higher-order term implies also including the lower-order terms. Explain why
this is sensible, by showing that (a) a model that includes an x2 explanatory
variable but not x makes a strong assumption about where the maximum or
minimum of E(y) occurs, (b) a model that includes x1x2 but not x1 makes a
strong assumption about the effect of x1 when x2 = 0.

1.11 Show the form of X𝜷 for the linear model for the one-way layout, E(yij) =
𝛽0 + 𝛽i, using a full-rank model matrix X by employing the constraint

∑
i 𝛽i =

0 to make parameters identifiable.

1.12 Consider the model for the two-way layout for qualitative factors A and B,

E(yijk) = 𝛽0 + 𝛽i + 𝛾j,

for i = 1,… , r, j = 1,… , c, and k = 1,… , n. This model is balanced, having
an equal sample size n in each of the rc cells, and assumes an absence of
interaction between A and B in their effects on y.

a. For the model as stated, is the parameter vector identifiable? Why or why
not?

b. Give an example of a quantity that is (i) not estimable, (ii) estimable. In
each case, explain your reasoning.

1.13 Consider the model for the two-way layout shown in the previous exercise.
Suppose r = 2, c = 3, and n = 2.

a. Show the form of a full-rank model matrix X and corresponding parameter
vector 𝜷 for the model, constraining 𝛽1 = 𝛾1 = 0 to make 𝜷 identifiable.
Explain how to interpret the elements of 𝜷.

b. Show the form of a full-rank model matrix and corresponding param-
eter vector 𝜷 when you constrain

∑
i 𝛽i = 0 and

∑
j 𝛾j = 0 to make 𝜷

identifiable. Explain how to interpret the elements of 𝜷.

c. In the full-rank case, what is the rank of X?
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1.14 For the model in the previous exercise with constraints 𝛽1 = 𝛾1 = 0, gener-
alize the model by adding an interaction term 𝛿ij.

a. Show the new full-rank model matrix. Specify the constraints that {𝛿ij}
satisfy. Indicate how many parameters the 𝛿ij term represents in 𝜷.

b. Show how to write the linear predictor using indicator variables for the
factor categories, with the model parameters as coefficients of those indi-
cators and the interaction parameters as coefficients of products of indi-
cators.

1.15 Refer to Exercise 1.12. Now suppose r = 2 and c = 4, but observations for the
first two levels of B occur only at the first level of A, and observations for the
last two levels of B occur only at the second level of A. In the corresponding
model, E(yijk) = 𝛽0 + 𝛽i + 𝛾j(i), B is said to be nested within A. Specify a
full-rank model matrix X, and indicate its rank.

1.16 Explain why the vector space of p × 1 vectors 𝓵 such that 𝓵T𝜷 is estimable
is C(XT).

1.17 If A is a nonsingular matrix, show that C(X) = C(XA). (If two full-rank
model matrices correspond to equivalent models, then one model matrix is
the other multiplied by a nonsingular matrix.)

1.18 For the linear model for the one-way layout, Section 1.4.1 showed the model
matrix that makes parameters identifiable by setting 𝛽1 = 0. Call this model
matrix X1.

a. Suppose we instead obtain identifiability by imposing the constraint 𝛽c =
0. Show the model matrix, say Xc.

b. Show how to obtain X1 as a linear transformation of Xc.

1.19 Consider the analysis of covariance model without interaction, denoted by
1 + X + A.

a. Write the formula for the model in such a way that the parameters are not
identifiable. Show the corresponding model matrix.

b. For the model parameters in (a), give an example of a characteristic that
is (i) estimable, (ii) not estimable.

c. Now express the model so that the parameters are identifiable. Explain
how to interpret them. Show the model matrix when A has three groups,
each containing two observations.

1.20 Show the first five rows of the model matrix for (a) the linear model
for the horseshoe crabs in Section 1.5.2, (b) the model for a one-way
layout in Section 1.5.3, (c) the model containing both weight and color
predictors.
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1.21 Littell et al. (2000) described a pharmaceutical clinical trial in which 24
patients were randomly assigned to each of three treatment groups (drug A,
drug B, placebo) and compared on a measure of respiratory ability (FEV1 =
forced expiratory volume in 1 second, in liters). The data file8FEV.dat at
www.stat.ufl.edu/~aa/glm/data has the form shown in Table 1.4.
Here, we let y be the response after 1 hour of treatment (variable fev1 in
the data file), x1 = the baseline measurement prior to administering the
drug (variable base in the data file), and x2 = drug (qualitative with labels
a, b, p in the data file). Download the data and fit the linear model for y
with explanatory variables (a) x1, (b) x2, (c) both x1 and x2. Interpret model
parameter estimates in each case.

Table 1.4 Part of FEV Clinical Trial Data File for Exercise 1.21

Patient Base fev1 fev2 fev3 fev4 fev5 fev6 fev7 fev8 Drug

01 2.46 2.68 2.76 2.50 2.30 2.14 2.40 2.33 2.20 a
02 3.50 3.95 3.65 2.93 2.53 3.04 3.37 3.14 2.62 a
03 1.96 2.28 2.34 2.29 2.43 2.06 2.18 2.28 2.29 a
...
72 2.88 3.04 3.00 3.24 3.37 2.69 2.89 2.89 2.76 p

Complete data (file FEV.dat) are at the text website www.stat.ufl.edu/~aa/glm/data

1.22 Refer to the analyses in Section 1.5.3 for the horseshoe crab satellites.

a. With color alone as a predictor, why are standard errors much smaller for
a Poisson model than for a normal model? Out of these two very imperfect
models, which do you trust more for judging significance of the estimates
of the color effects? Why?

b. Download the data (file Crabs.dat) from www.stat.ufl.edu/~

aa/glm/data. When weight is also a predictor, identify an outlying
observation. Refit the model with color and weight predictors without
that observation. Compare results, to investigate the sensitivity of the
results to this outlier.

1.23 Another horseshoe crab dataset9 (Crabs2.dat at www.stat.ufl.edu/~
aa/glm/data) comes from a study of factors that affect sperm traits of male
crabs. A response variable, SpermTotal, is measured as the log of the total
number of sperm in an ejaculate. It has mean 19.3 and standard deviation
2.0. Two explanatory variables are the crab’s carapace width (in centimeters,
with mean 18.6 and standard deviation 3.0) and color (1 = dark, 2 = medium,

8Thanks to Ramon Littell for making these data available.
9Thanks to Jane Brockmann and Dan Sasson for making these data available.

http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
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3 = light). Explain how to interpret the estimates in the following table. Is the
model fitted equivalent to a GLM with the log link for the expected number
of sperm? Why or why not?

--------------------------------------------------------------

> summary(lm(SpermTotal ~ CW + factor(Color))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.366 0.638 17.822 < 2e-16

CW 0.391 0.034 11.651 < 2e-16

factor(Color)2 0.809 0.246 3.292 0.00114

factor(Color)3 1.149 0.271 4.239 3.14e-05

--------------------------------------------------------------

1.24 For 72 young girls suffering from anorexia, the Anorexia.dat file at the
text website shows their weights before and after an experimental period.
Table 1.5 shows the format of the data. The girls were randomly assigned to
receive one of three therapies during this period. A control group received
the standard therapy, which was compared to family therapy and cognitive
behavioral therapy. Download the data and fit a linear model relating the
weight after the experimental period to the initial weight and the therapy.
Interpret estimates.

Table 1.5 Weights of Anorexic Girls, in Pounds, Before and After Receiving
One of Three Therapies

Cognitive Behavioral Family Therapy Control

Weight Weight Weight Weight Weight Weight
Before After Before After Before After

80.5 82.2 83.8 95.2 80.7 80.2
84.9 85.6 83.3 94.3 89.4 80.1
81.5 81.4 86.0 91.5 91.8 86.4

Source: Thanks to Brian Everitt for these data. Complete data are at text website.



C H A P T E R 2

Linear Models: Least Squares Theory

The next two chapters consider fitting and inference for the ordinary linear model. For
n independent observations y = (y1,… , yn)T with 𝜇i = E(yi) and 𝝁 = (𝜇1,… ,𝜇n)T,
denote the covariance matrix by

V = var(y) = E[(y − 𝝁)(y − 𝝁)T].

Let X =
(
xij

)
denote the n × p model matrix, where xij is the value of explanatory

variable j for observation i. In this chapter we will learn about model fitting when

𝝁 = X𝜷 with V = 𝜎2I,

where 𝜷 is a p × 1 parameter vector with p ≤ n and I is the n × n identity matrix. The
covariance matrix is a diagonal matrix with common value 𝜎2 for the variance. With
the additional assumption of a normal random component, this is the normal linear
model, which is a generalized linear model (GLM) with identity link function. We
will add the normality assumption in the next chapter. Here, though, we will obtain
many results about fitting linear models and comparing models that do not require
distributional assumptions.

An alternative way to express the ordinary linear model is

y = X𝜷 + 𝝐

for an error term 𝝐 having E(𝝐) = 0 and covariance matrix V = var(𝝐) = 𝜎2I. Such a
simple additive structure for the error term is not natural for most GLMs, however,
except for normal models and latent variable versions of some other models and their
extensions with multiple error components. To be consistent with GLM formulas, we
will usually express linear models in terms of E(y).

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Section 2.1 introduces the least squares method for fitting linear models. Sec-
tion 2.2 shows that the least squares model fit �̂� is a projection of the data y onto
the model space C(X) generated by the columns of the model matrix. Section 2.3
illustrates for a few simple linear models. Section 2.4 presents summaries of vari-
ability in a linear model. Section 2.5 shows how to use residuals to summarize how
far y falls from �̂� and to estimate 𝜎2 and check the model. Following an example in
Section 2.6, Section 2.7 proves the Gauss–Markov theorem, which specifies a type
of optimality that least squares estimators satisfy. That section also generalizes least
squares to handle observations that have nonconstant variance or are correlated.

2.1 LEAST SQUARES MODEL FITTING

Having formed a model matrix X and observed y, how do we obtain parameter
estimates 𝜷 and fitted values �̂� = X𝜷 that best satisfy the linear model? The standard
approach uses the least squares method. This determines the value of �̂� that minimizes

‖y − �̂�‖2 =
∑

i

(yi − �̂�i)
2 =

n∑
i=1

(
yi −

p∑
j=1

𝛽jxij

)2

.

That is, the fitted values �̂� are such that

‖y − �̂�‖ ≤ ‖y − 𝝁‖ for all 𝝁 ∈ C(X).

Using least squares corresponds to maximum likelihood when we add a nor-
mality assumption to the model. The logarithm1 of the likelihood for independent
observations yi ∼ N(𝜇i, 𝜎

2), i = 1,… , n, is (in terms of {𝜇i})

log

[
n∏

i=1

(
1√
2𝜋𝜎

e−(yi−𝜇i)
2∕2𝜎2

)]
= constant −

[
n∑

i=1

(yi − 𝜇i)
2

]/
2𝜎2.

To maximize the log-likelihood function, we must minimize
∑

i(yi − 𝜇i)
2.

2.1.1 The Normal Equations and Least Squares Solution

The expression L(𝜷) =
∑

i(yi − 𝜇i)
2 =

∑
i(yi −

∑
j 𝛽jxij)

2 is quadratic in {𝛽j}, so we
can minimize it by equating

𝜕L
𝜕𝛽j

= 0, j = 1,… , p.

1In this book, we use the natural logarithm throughout.
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These partial derivatives yield the equations:∑
i

(yi − 𝜇i)xij = 0, j = 1,… , p.

Thus, the least squares estimates satisfy

n∑
i=1

yixij =
n∑

i=1

�̂�ixij, j = 1,… , p. (2.1)

These are called2 the normal equations. They occur naturally in more general settings
than least squares. Chapter 4 shows that these are the likelihood equations for GLMs
that use the canonical link function, such as the normal linear model, the binomial
logistic regression model, and the Poisson loglinear model.

Using matrix algebra provides an economical expression for the solution of these
equations in terms of the model parameter vector 𝜷 for the linear model 𝝁 = X𝜷. In
matrix form,

L(𝜷) = ‖y − X𝜷‖2 = (y − X𝜷)T(y − X𝜷) = yTy − 2yTX𝜷 + 𝜷TXTX𝜷.

We use the results for matrix derivatives that

𝜕(aT𝜷)∕𝜕𝜷 = a and 𝜕(𝜷TA𝜷)∕𝜕𝜷 = (A + AT)𝜷,

which equals 2A𝜷 for symmetric A. So, 𝜕L(𝜷)∕𝜕𝜷 = −2XT(y − X𝜷). In terms of 𝜷,
the normal equations (2.1) are

XTy = XTX𝜷. (2.2)

Suppose X has full rank p. Then, the p × p matrix (XTX) also has rank p and is
nonsingular, its inverse exists, and the least squares estimator of 𝜷 is

𝜷 = (XTX)−1XTy. (2.3)

Since 𝜕2L(𝜷)∕𝜕𝜷2 = 2XTX is positive definite, the minimum rather than maximum
of L(𝜷) occurs at 𝜷.

2.1.2 Hat Matrix and Moments of Estimators

The fitted values �̂� are a linear transformation of y,

�̂� = X𝜷 = X(XTX)−1XTy.

2Here “normal” refers not to the normal distribution but to orthogonality of (y − �̂�) with each column
of X.
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The n × n matrix H = X(XTX)−1XT is called3 the hat matrix because it linearly
transforms y to �̂� = Hy. The hat matrix H is a projection matrix, projecting y to �̂�
in the model space C(X). We define projection matrices and study their properties in
Section 2.2.

Recall that for a matrix of constants A, E(Ay) = AE(y) and var(Ay) = Avar(y)AT.
So, the mean and variance of the least squares estimator are

E(𝜷) = E[(XTX)−1XTy] = (XTX)−1XTE(y) = (XTX)−1XTX𝜷 = 𝜷,

var(𝜷) = (XTX)−1XT(𝜎2I)X(XTX)−1 = 𝜎2(XTX)−1. (2.4)

For the ordinary linear model with normal random component, since 𝜷 is a linear
function of y, 𝜷 has a normal distribution with these two moments.

2.1.3 Bivariate Linear Model and Regression Toward the Mean

We illustrate least squares using the linear model with a single explanatory variable
for a single response, that is, the “bivariate linear model”

E(yi) = 𝛽0 + 𝛽1xi.

From (2.1) with xi1 = 1 and xi2 = xi, the normal equations are

n∑
i=1

yi = n𝛽0 + 𝛽1

n∑
i=1

xi,
n∑

i=1

xiyi = 𝛽0

(
n∑

i=1

xi

)
+ 𝛽1

n∑
i=1

x2
i .

By straightforward solution of these two equations, you can verify that the least
squares estimates are

𝛽1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

, 𝛽0 = ȳ − 𝛽1x̄. (2.5)

From the solution for 𝛽0, the least squares fitted equation �̂�i = 𝛽0 + 𝛽1xi satisfies
ȳ = 𝛽0 + 𝛽1x̄. It passes through the center of gravity of the data, that is, the point
(x̄, ȳ). The analogous result holds for the linear model with multiple explanatory
variables and the point (x̄1,… , x̄p, ȳ).

Denote the sample marginal standard deviations of x and y by sx and sy. From the
Pearson product-moment formula, the sample correlation

r = corr(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)√
[
∑n

i=1(xi − x̄)2][
∑n

i=1(yi − ȳ)2]
= 𝛽1

(
sx

sy

)
.

3According to Hoaglin and Welsch (1978), John Tukey proposed the term “hat matrix.”
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One implication of this is that the correlation equals the slope when both variables
are standardized to have sx = sy = 1. Another implication is that an increase of sx in x

corresponds to a change of 𝛽1sx = rsy in �̂�. This equation highlights the famous result
of Francis Galton (1886) that there is regression toward the mean: When |r| < 1, a
standard deviation change in x corresponds to a predicted change of less than a
standard deviation in y.

In practice, explanatory variables are often centered before entering them in a
model by taking x∗i = xi − x̄. For the centered values, x̄∗ = 0, so

𝛽0 = ȳ, 𝛽1 =

(
n∑

i=1

x∗i yi

)/
n∑

i=1

(x∗i )2.

Under centering, (XTX) is a diagonal matrix with elements n and
∑

i(x
∗
i )2. Thus, the

covariance matrix for 𝜷 is then

var(𝜷) = 𝜎2(XTX)−1 = 𝜎2

(
1∕n 0

0 1∕[
∑n

i=1(xi − x̄)2]

)
.

Centering the explanatory variable does not affect 𝛽1 and its variance but results in
corr(𝛽0, 𝛽1) = 0.

You can show directly from the expression for the model matrix X that the hat
matrix for the bivariate linear model is

H = X(XTX)−1XT =

⎛⎜⎜⎜⎜⎜⎝

1
n
+ (x1−x̄)2∑

i(xi−x̄)2 ⋯ 1
n
+ (x1−x̄)(xn−x̄)∑

i(xi−x̄)2

⋮ ⋱ ⋮

1
n
+ (xn−x̄)(x1−x̄)∑

i(xi−x̄)2 ⋯ 1
n
+ (xn−x̄)2∑

i(xi−x̄)2

⎞⎟⎟⎟⎟⎟⎠
.

In Section 2.5.4 we will see that each diagonal element of the hat matrix is a measure
of the observation’s potential influence on the model fit.

2.1.4 Least Squares Solutions When X Does Not Have Full Rank

When X does not have full rank, neither does (XTX) in the normal equations. A
solution 𝜷 of the normal equations then uses a generalized inverse of (XTX), denoted
by (XTX)−. Recall that for a matrix A, G is a generalized inverse if and only if
AGA = A. Generalized inverses always exist but may not be unique. The least squares
estimate 𝜷 = (XTX)−XTy is not then unique, reflecting that 𝜷 is not identifiable.

With rank(X) < p, the null space N(X) has nonzero elements. For any solution 𝜷
of the normal equations XTy = XTX𝜷 and any element 𝜸 ∈ N(X), �̃� = 𝜷 + 𝜸 is also
a solution. This follows because X𝜸 = 0 and XTX(𝜷 + 𝜸) = XTX𝜷. Although there
are multiple solutions �̃� for estimating 𝜷, �̂� = X�̃� is invariant to the solution (as are
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estimates of estimable quantities), because X�̃� = X(𝜷 + 𝜸) has the same fitted values
as given by �̂� = X𝜷.

Likewise, if 𝓵T𝜷 is estimable, then 𝓵T�̂� is the same for all solutions to the normal
equations. This follows because 𝓵T�̂� can be expressed as aTX�̂� for some a, and fitted
values are identical for all �̂�.

2.1.5 Orthogonal Subspaces and Residuals

Section 1.3.1 introduced the model space C(X) of X𝜷 values for all the possible 𝜷
values. This vector space is a linear subspace of n-dimensional Euclidean space, R

n.
Many results in this chapter relate to orthogonality for this representation, so let us
recall a few basic results about orthogonality for vectors and for vector subspaces of
R

n:

� Two vectors u and v in R
n are orthogonal if uTv = 0. Geometrically, orthogonal

vectors are perpendicular in R
n.

� For a vector subspace W of R
n, the subspace of vectors v such that for any

u ∈ W, uTv = 0, is the orthogonal complement of W, denoted by W⟂.
� Orthogonal complements W and W⟂ in R

n satisfy dim(W) + dim(W⟂) = n.
� For orthogonal complements W and W⟂, any y ∈ R

n has a unique4 orthogonal
decomposition y = y1 + y2 with y1 ∈ W and y2 ∈ W⟂.

Figure 2.1 portrays the key result about orthogonal decompositions into compo-
nents in orthogonal complement subspaces. In the decomposition y = y1 + y2, we
will see in Section 2.2 that y1 is the orthogonal projection of y onto W.

yW⊥
W

yz

0

y1

Figure 2.1 Orthogonal decomposition of y into components y1 in subspace W plus y2 in
orthogonal complement subspace W⟂.

4The proof uses the Gram–Schmidt process on a basis for R
n that extends one for W to construct an

orthogonal basis of vectors in W and vectors in W⟂; y1 and y2 are then linear combinations of these
two sets of vectors. See Christensen (2011, pp. 414–416).
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Now, suppose W = C(X), the model space spanned by the columns of a model
matrix X. Vectors in its orthogonal complement C(X)⟂ in R

n are orthogonal with any
vector in C(X), and hence with each column of X. So any vector v in C(X)⟂ satisfies
XTv = 0, and C(X)⟂ is the null space of XT, denoted N(XT). We will observe next
that C(X)⟂ is an error space that contains differences between possible data vectors
and model-fitted values for such data.

The normal equations XTy = XTX𝜷 that the least squares estimates satisfy can be
expressed as

XT(y − X𝜷) = XTe = 0,

where e = (y − X𝜷). The elements of e are prediction errors when we use �̂� = X𝜷 to
predict y or 𝝁. They are called residuals. The normal equations tell us that the residual
vector e is orthogonal to each column of X. So e is in the orthogonal complement
to the model space C(X), that is, e is in C(X)⟂ = N(XT). Figure 2.2 portrays the
orthogonality of e with C(X).

C(X)

y–μ

y

μ
μ

Figure 2.2 Orthogonality of residual vector e = (y − �̂�) with vectors in the model space C(X)
for a linear model 𝝁 = X𝜷.

Some linear model analyses decompose y into several orthogonal components.
An orthogonal decomposition of R

n into k orthogonal subspaces {Wi} is one for
which any u ∈ Wi and any v ∈ Wj have uTv = 0 for all i ≠ j, and any y ∈ R

n can be
uniquely expressed as y = y1 +⋯ + yk with yi ∈ Wi for i = 1,… , k.

2.1.6 Alternatives to Least Squares

In fitting a linear model, why minimize
∑

i(yi − �̂�i)
2 rather than some other metric,

such as
∑

i |yi − �̂�i|? Minimizing a sum of squares is mathematically and computa-
tionally much simpler. For this reason, least squares has a long history, dating back
to a published article by the French mathematician Adrien-Marie Legendre (1805),
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followed by German mathematician Carl Friedrich Gauss’s claim in 1809 of prior-
ity5 in having used it since 1795. Another motivation, seen at the beginning of this
section, is that it corresponds to maximum likelihood when we add the normality
assumption. Yet another motivation, presented in Section 2.7, shows that the least
squares estimator is best in the class of estimators that are unbiased and linear in the
data.

Recent research has developed alternatives to least squares that give sensible
answers in situations that are unstable in some way. For example, instability may be
caused by a severe outlier, because in minimizing a sum of squared deviations, a single
observation can have substantial influence. Instability could also be caused by an
explanatory variable being linearly determined (or nearly so) by the other explanatory
variables, a condition called collinearity (Section 4.6.5). Finally, instability occurs
in using least squares with datasets containing very large numbers of explanatory
variables, sometimes even with p > n.

Regularization methods add an additional term to the function minimized, such
as 𝜆

∑
j |𝛽j| or 𝜆

∑
j 𝛽

2
j for some constant 𝜆. The solution then is a smoothing of the

least squares estimates that shrinks them toward zero. This is highly effective when
we have a large number of explanatory variables but expect few of them to have
a substantively important effect. Unless n is extremely large, because of sampling
variability the ordinary least squares estimates {𝛽j} then tend to be much larger in
absolute value than the true values {𝛽j}. Shrinkage toward 0 causes a bias in the
estimators but tends to reduce the variance substantially, resulting in their tending to
be closer to {𝛽j}.

Regularization methods are increasingly important as more applications involve
“big data.” Chapter 11, which introduces extensions of the GLM, presents some
regularization methods.

2.2 PROJECTIONS OF DATA ONTO MODEL SPACES

We have mentioned that the least squares fit �̂� is a projection of the data y onto the
model space C(X), and the hat matrix H that projects y to �̂� is a projection matrix.
We now explain more precisely what is meant by projection of a vector y ∈ R

n onto
a vector subspace such as C(X).

2.2.1 Projection Matrices

Definition. A square matrix P is a projection matrix onto a vector subspace W if
(1) for all y ∈ W, Py = y.
(2) for all y ∈ W⟂, Py = 0.

For a projection matrix P, since Py is a linear combination of the columns of P, the
vector subspace W onto which P projects is the column space C(P). The projection

5See Stigler (1981, 1986, Chapters 1 and 4) for details.
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matrix P onto W projects an arbitrary y ∈ R
n to its component y1 ∈ W for the unique

orthogonal decomposition of y into y1 + y2 using W and W⟂ (Recall Section 2.1.5).
We next list this and some other properties of a projection matrix:

� If y = y1 + y2 with y1 ∈ W and y2 ∈ W⟂, then Py = P(y1 + y2) = Py1 + Py2 =
y1 + 0 = y1. Since the orthogonal decomposition is unique, so too is the projec-
tion onto W unique6.

� The projection matrix onto a subspace W is unique. To see why, suppose P∗ is
another one. Then for the orthogonal decomposition y = y1 + y2 with y1 ∈ W,
P∗y = y1 = Py for all y. Hence, P = P∗. (Recall that if Ay = By for all y, then
A = B.)

� I − P is the projection matrix onto W⟂. For an arbitrary y = y1 + y2 with y1 ∈ W
and y2 ∈ W⟂, we have Py = y1 and (I − P)y = y − y1 = y2. Thus,

y = Py + (I − P)y

provides the orthogonal decomposition of y. Also, P(I − P)y = 0.
� P is a projection matrix if and only if it is symmetric and idempotent (i.e.,

P2 = P).

We will use this last property often, so let us see why it is true. First, we suppose
P is symmetric and idempotent and show that this implies P is a projection matrix.
For any v ∈ C(P) (the subspace onto which P projects), v = Pb for some b. Then,
Pv = P(Pb) = P2b = Pb = v. For any v ∈ C(P)⟂, we have PTv = 0, but this is also
Pv by the symmetry of P. So, we have shown that P is a projection matrix onto C(P).
Second, to prove the converse, we suppose P is the projection matrix onto C(P) and
show this implies P is symmetric and idempotent. For any v ∈ R

n, let v = v1 + v2
with v1 ∈ C(P) and v2 ∈ C(P)⟂. Since

P2v = P(P(v1 + v2)) = Pv1 = v1 = Pv,

we have P2 = P. To show symmetry, let w = w1 + w2 be any other vector in R
n, with

w1 ∈ C(P) and w2 ∈ C(P)⟂. Since I − P is the projection matrix onto C(P)⟂,

wTPT(I − P)v = wT
1 v2 = 0.

Since this is true for any v and w, we have PT(I − P) = 0, or PT = PTP. Since PTP
is symmetric, so is PT and hence P.

Next, here are two useful properties about the eigenvalues and the rank of a
projection matrix.

� The eigenvalues of any projection matrix P are all 0 and 1.

6The projection defined here is sometimes called an orthogonal projection, because Py and y − Py
are orthogonal vectors. This text considers only orthogonal and not oblique projections, and we take
“projection” to be synonymous with “orthogonal projection.”
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This follows from the definitions of a projection matrix and an eigenvalue. For
an eigenvalue 𝜆 of P with eigenvector 𝝂, P𝝂 = 𝜆𝝂; but either P𝝂 = 𝝂 (if 𝝂 ∈ W) or
P𝝂 = 0 (if 𝝂 ∈ W⟂), so 𝜆= 1 or 0. In fact, this is a property of symmetric, idempotent
matrices.

� For any projection matrix P, rank(P) = trace(P), the sum of its main diagonal
elements.

This follows because the trace of a square matrix is the sum of the eigenvalues, and
for symmetric matrices the rank is the number of nonzero eigenvalues. Since the
eigenvalues of P (which is symmetric) are all 0 and 1, the sum of its eigenvalues
equals the number of nonzero eigenvalues.

Finally, we state a useful property7 about decompositions of the identity matrix
into a sum of projection matrices:

� Suppose {Pi} are symmetric n × n matrices such that
∑

i Pi = I. Then, the
following three conditions are equivalent:

1. Pi is idempotent for each i.

2. PiPj = 0 for all i ≠ j.

3.
∑

i rank(Pi) = n.

The aspect we will use is that symmetric idempotent matrices (thus, projection
matrices) that satisfy

∑
i Pi = I also satisfy PiPj = 0 for all i ≠ j. The proof of this is

a by-product of a key result of the next chapter (Cochran’s theorem) about independent
chi-squared quadratic forms.

2.2.2 Projection Matrices for Linear Model Spaces

Let PX denote the projection matrix onto the model space C(X) corresponding to a
model matrix X for a linear model. We next present some properties for this particular
case.

� If X has full rank, then PX is the hat matrix, H = X(XTX)−1XT.

This follows by noting that H satisfies the two parts of the definition of a projection
matrix for C(X):

� If y ∈ C(X), then y = Xb for some b. So

Hy = X(XTX)−1XTy = X(XTX)−1XTXb = Xb = y.

� Recall from Section 2.1.5 that C(X)⟂ = N(XT). If y ∈ N(XT), then XTy = 0,
and thus, Hy = X(XTX)−1XTy = 0.

7For a proof, see Bapat (2000, p. 60).
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We have seen that H projects y to the least squares fit �̂� = X𝜷.

� If X does not have full rank, then PX = X(XTX)−XT. Moreover, PX is invariant
to the choice for the generalized inverse (XTX)−.

The proof is outlined in Exercise 2.16. Thus, �̂� is invariant to the choice of the
solution 𝜷 of the normal equations. In particular, if rank(X) = r < p and if X0 is any
matrix having r columns that form a basis for C(X), then PX = X0(XT

0 X0)−1XT
0 . This

follows by the same proof just given for the full-rank case.

� If X and W are model matrices satisfying C(X) = C(W), then PX = PW .

To see why, for an arbitrary y ∈ R
n, we use the orthogonal decompositions y =

PXy + (I − PX)y and y = PWy + (I − PW)y. By the uniqueness of the decomposition,
PXy = PWy. But y is arbitrary, so PX = PW . It follows that �̂� and e = y − X𝜷 are also
the same for both models. For example, projection matrices and model fits are not
affected by reparameterization, such as changing the indicator coding for a factor.

� Nested model projections: When model a is a special case of model b, with
projection matrices Pa and Pb for model matrices Xa and Xb, then PaPb = PbPa =
Pa and Pb − Pa is also a projection matrix.

When one model is a special case of another, we say that the models are nested. To
show this result, for an arbitrary y, we use the unique orthogonal decomposition y =
y1 + y2, with y1 ∈ C(Xa) and y2 ∈ C(Xa)⟂. Then, Pay = y1, from which Pb(Pay) =
Pby1 = y1 = Pay, since the fitted value for the simpler model also satisfies the more
complex model. So PbPa = Pa. But PbPa = PaPb because of their symmetry, so we
have also that PaPb = Pa. Since Pay = Pa(Pby), we see that Pay is also the projection
of Pby onto C(Xa). Since PbPa = PaPb = Pa and Pa and Pb are idempotent,

(Pb − Pa)(Pb − Pa) = Pb − Pa.

So (Pb − Pa) is also a projection matrix. In fact, an extended orthogonal decomposition
incorporates such difference projection matrices,

y = Iy = [Pa + (Pb − Pa) + (I − Pb)]y = y1 + y2 + y3.

Here Pa projects y onto C(Xa), (Pb − Pa) projects y to its component in C(Xb) that is
orthogonal with C(Xa), and (I − Pb) projects y to its component in C(Xb)⟂.

2.2.3 Example: The Geometry of a Linear Model

We next illustrate the geometry that underlies the projections for linear models. We
do this for two simple models for which we can easily portray projections graphically.
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The first model has a single quantitative explanatory variable,

𝜇i = E(yi) = 𝛽xi, i = 1,… , n,

but does not contain an intercept. Its model matrix X is the n × 1 vector (x1,… , xn)T.
Figure 2.3 portrays the model, the data, and the fit. The response values y =
(y1,… , yn)T are a point in R

n. The explanatory variable values X are another such
point. The linear predictor values X𝛽 for all the possible real values for 𝛽 trace out a
line in R

n that passes through the origin. This is the model space C(X). The model
fit �̂� = PXy = 𝛽X is the orthogonal projection of y onto the model space line.

y

0 X

C(X)

βX
μ μ = PXy = βX

y – βX

Figure 2.3 Portrayal of simple linear model with quantitative predictor x and no intercept,
showing the observations y, the model matrix X of predictor values, and the fit �̂� = PXy = 𝛽X.

Next, we extend the modeling to handle two quantitative explanatory variables.
Consider the models

E(yi) = 𝛽y1xi1, E(yi) = 𝛽y2xi2, E(yi) = 𝛽y1⋅2xi1 + 𝛽y2⋅1xi2.

We use Yule’s notation to reflect that 𝛽y1⋅2 and 𝛽y2⋅1 typically differ from 𝛽y1 and 𝛽y2,
as discussed in Section 1.2.3. Figure 2.4 portrays the data and the three model fits.
When evaluated for all real 𝛽y1⋅2 and 𝛽y2⋅1, 𝝁 traces out a plane in R

n that passes

through the origin. The projection P12y = 𝛽y1⋅2X1 + 𝛽y2⋅1X2 gives the least squares

fit using both predictors together. The projection P1y = 𝛽y1X1 onto the model space
for X1 = (x11,… , xn1)T gives the least squares fit when x1 is the sole predictor. The
projection P2y = 𝛽y2X2 onto the model space for X2 = (x12,… , xn2)T gives the least
squares fit when x2 is the sole predictor.

From the result in Section 2.2.2 that PaPb = Pa when model a is a special case of
model b, P1y is also the projection of P12y onto the model space for X1, and P2y is
also the projection of P12y onto the model space for X2. These ideas extend directly
to models with several explanatory variables as well as an intercept term.

2.2.4 Orthogonal Columns and Parameter Orthogonality

Although 𝛽y1 in the reduced model 𝝁 = 𝛽y1X1 is usually not the same as 𝛽y1⋅2 in
the full model 𝝁 = 𝛽y1⋅2X1 + 𝛽y2⋅1X2, the effects are identical when X1 is orthogonal
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y

0

βX1

βX2

P12y = βy1.2 X1 + βy2.1 X2

P1y = βy1 X1

P
2y = βy2  X

2

Figure 2.4 Portrayal of linear model with two quantitative explanatory variables, showing
the observations y and the fits P1y = 𝛽y1X1, P2y = 𝛽y2X2, and P12y = 𝛽y1⋅2X1 + 𝛽y2⋅1X2.

with X2. We show this for a more general context in which X1 and X2 may each refer
to a set of explanatory variables.

We partition the model matrix and parameter vector for the full model into

X𝜷 =
(
X1 : X2

)(𝜷1

𝜷2

)
= X1𝜷1 + X2𝜷2.

Then, 𝜷1 and 𝜷2 are said to be orthogonal parameters if each column from X1 is
orthogonal with each column from X2, that is, XT

1 X2 = 0. In this case

XTX =

(
XT

1 X1 0

0 XT
2 X2

)
and XTy =

(
XT

1 y

XT
2 y

)
.

Because of this, (XTX)−1 also has block diagonal structure, and 𝜷1 = (XT
1 X1)−1XT

1 y
from fitting the reduced model 𝝁 = X1𝜷1 is identical to 𝜷1 from fitting 𝝁 = X1𝜷1 +
X2𝜷2. The same property holds if each column from X1 is orthogonal with each
column from X2 after centering each column of X1 (i.e., from subtracting off the
mean) or centering each column of X2. In that case, the correlation is zero for each
such pair (Exercise 2.19), and the result is a consequence of a property to be presented
in Section 2.5.6 showing that the same partial effects occur in regression modeling
using two sets of residuals.
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2.2.5 Pythagoras’s Theorem Applications for Linear Models

The projection matrix plays a key role for linear models. The first important result is
that the projection matrix projects the data vector y to the fitted value vector �̂� that is
the unique point in the model space C(X) that is closest to y.

Data projection gives unique least squares fit: For each y ∈ R
n and its projection

PXy = �̂� onto the model space C(X) for a linear model 𝝁 = X𝜷,

‖y − PXy‖ ≤ ‖y − z‖ for all z ∈ C(X),

with equality if and only if z = PXy.

To show why this is true, for an arbitrary z ∈ C(X) we express

y − z = (y − PXy) + (PXy − z).

Now (y − PXy) = (I − PX)y is in C(X)⟂ = N(XT), whereas (PXy − z) is in C(X)
because each component is in C(X). Since the subspaces C(X) and C(X)⟂ are orthog-
onal complements,

‖y − z‖2 = ‖y − PXy‖2 + ‖PXy − z‖2,

because uTv = 0 for any u ∈ C(X) and v ∈ C(X)⟂. It follows from this application
of Pythagoras’s theorem that ‖y − z‖2 ≥ ‖y − PXy‖2, with equality if and only if
PXy = z.

The fact that the fitted values �̂� = PXy provide the unique least squares solution
for 𝝁 is no surprise, as Section 2.2.2 showed that the projection matrix for a linear
model is the hat matrix, which projects the data to the least squares fit. Likewise,
(I − PX) is the projection onto C(X)⟂, and the residual vector e = (I − PX)y = y − �̂�
falls in that error space.

Here is another application of Pythagoras’s theorem for linear models.

True and sample residuals: For the fitted values �̂� of a linear model 𝝁 = X𝜷
obtained by least squares,

‖y − 𝝁‖2 = ‖y − �̂�‖2 + ‖�̂� − 𝝁‖2.

This follows by decomposing (y − 𝝁) = (y − �̂�) + (�̂� − 𝝁) and using the fact that
(�̂� − 𝝁), which is in C(X), is orthogonal to (y − �̂�), which is in C(X)⟂. In particular,
the data tend to be closer to the model fit than to the true means, and the fitted
values vary less than the data. From this result, a plot of ‖y − 𝝁‖2 against 𝜷 shows
a quadratic function that is minimized at 𝜷. Figure 2.5 portrays this for the case of a
one-dimensional parameter 𝛽.
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β
β

⎜⎜y – μ μ ⎜⎜
2

Figure 2.5 For a linear model 𝝁 = X𝜷, the sum of squares ‖y − 𝝁‖2 is minimized at the least
squares estimate 𝜷.

Here is a third application of Pythagoras’s theorem for linear models.

Data = fit + residuals: For the fitted values �̂� of a linear model 𝝁 = X𝜷 obtained
by least squares,

‖y‖2 = ‖�̂�‖2 + ‖y − �̂�‖2.

This uses the decomposition illustrated in Figure 2.6,

y = �̂� + (y − �̂�) = PXy + (I − PX)y, that is, data = fit + residuals,

Residual

C(X)

y

0 μ

Figure 2.6 Pythagoras’s theorem for a linear model applies to the data vector, the fitted
values, and the residual vector; that is, data = fit + residuals.
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with �̂� in C(X) orthogonal to (y − �̂�) in C(X)⟂. It also follows using the symmetry
and idempotence of projection matrices, from

‖y‖2 = yTy = yT[PX + (I − PX)]y = yTPXy + yT(I − PX)y

= yTPT
X PXy + yT(I − PX)T(I − PX)y = �̂�T�̂� + (y − �̂�)T(y − �̂�).

A consequence of �̂� being the projection of y onto the model space is that the squared
length of y equals the squared length of �̂� plus the squared length of the residual
vector. The orthogonality of the fitted values and the residuals is a key result that we
will use often.

Linear model analyses that decompose y into several orthogonal components
have a corresponding sum-of-squares decomposition. Let P1, P2,… , Pk be projection
matrices satisfying an orthogonal decomposition:

I = P1 + P2 +⋯ + Pk.

That is, each projection matrix refers to a vector subspace in a decomposition of R
n

using orthogonal subspaces. The unique decomposition of y into elements in those
orthogonal subspaces is

y = Iy = P1y + P2y +⋯ + Pky = y1 +⋯ + yk.

The corresponding sum-of-squares decomposition is

yTy = yTP1y +⋯ + yTPky.

2.3 LINEAR MODEL EXAMPLES:
PROJECTIONS AND SS DECOMPOSITIONS

We next use a few simple linear models to illustrate concepts introduced in this
chapter. We construct projection matrices for the models and show corresponding
sum-of-squares decompositions for the data.

2.3.1 Example: Null Model

The simplest model assumes independent observations with constant variance 𝜎2 but
has only an intercept term,

E(yi) = 𝛽, i = 1,… , n.

It is called the null model, because it has no explanatory variables. This is the relevant
model for inference about the population marginal mean for a response variable. We
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also use it as a baseline for comparison with models containing explanatory variables
to analyze whether those variables collectively have a significant effect.

With its model matrix X, the null model is

E(y) = X𝛽 for X =

⎛⎜⎜⎜⎜⎜⎝

1

1

⋮

1

⎞⎟⎟⎟⎟⎟⎠
= 1n.

The null model has projection matrix:

PX = X(XTX)−1XT = Xn−1XT = 1
n

1n1T
n ,

which is a n × n matrix with 1∕n in each entry. The fitted values for the model are
therefore

�̂� = PXy = 1
n

1n1T
n y = ȳ1n,

the n × 1 vector with the sample mean in each element. In the sum-of-squares decom-
position yTy = yTPXy + yT(I − PX)y,

yTPXy = yTȳ1n = ȳyT1n =

(
n∑

i=1

yi

)2 /
n = nȳ2,

yT(I − PX)y = yT(I − PX)T(I − PX)y = (y − ȳ1n)T(y − ȳ1n) =
n∑

i=1

(yi − ȳ)2.

The sum-of-squares decomposition for “data = fit + residual” simplifies8 to

n∑
i=1

y2
i = nȳ2 +

n∑
i=1

(yi − ȳ)2.

Let us visualize the model space, the projection matrix, and these sums of squares
for a simple dataset—a sample of size n = 2 with y1 = 3 and y2 = 4. For it, 𝛽 = ȳ =
3.5. For two-dimensional Euclidean space, Figure 2.7 shows the model space for the
null model. This is the straight line passing through the origin with slope 1, equating
the two components. The figure shows the data point y having coordinates (3, 4) and
its projection to the point �̂� = X𝛽 in the model space having coordinates (3.5, 3.5) for

8Historical comment: Until the modern era of statistical software, introductory statistics textbooks
suggested reducing complexity in by-hand computing of the numerator of the sample variance for
an integer-valued response by instead computing

∑
i y2

i − nȳ2.
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y1

y = (3, 4)

μ μ = (3.5, 3.5)

Figure 2.7 Data space and the projection of the data onto the null model space for n = 2
observations, y1 = 3, and y2 = 4.

which each component is the sample mean of the two observations. The projection
matrix for the model space is

PX = X(XTX)−1XT = 1
n

1n1T
n =

(
1∕2 1∕2

1∕2 1∕2

)
.

The projection matrix for the error space is

I − PX =

(
1∕2 −1∕2

−1∕2 1∕2

)
.

This is the projection onto the orthogonal complement subspace spanned by the
vector with coordinates (−1, 1), that is, the line passing through the origin with
slope −1. For these two observations, for example, (I − PX)y = (−1∕2, 1∕2)T. The
total variability is yTy = 25, which decomposes into yTPXy = �̂�T�̂� = nȳ2 = 24.5 plus
yT(I − PX)y =

∑
i(yi − ȳ)2 = 0.5.

2.3.2 Example: Model for the One-way Layout

We next extend the null model to the linear model for the one-way layout. This is the
model for comparing means {𝜇i} for c groups, first considered in a GLM context in
Section 1.3.3. Let yij denote observation j in group i, for j = 1,… , ni and i = 1,… , c,
with n =

∑
i ni. With independent observations, an important case having this data

format is the completely randomized experimental design: Experimental units are
randomly assigned to c treatments, such as in a randomized clinical trial in which
subjects with a particular malady are randomly assigned to receive drug A, drug B,
or a placebo. The model for 𝜇i = E(yij) has linear predictor

E(yij) = 𝛽0 + 𝛽i.
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Identifiability requires a constraint, such as 𝛽1 = 0. For now, we continue without a
constraint. In Exercise 2.33 you can analyze how the following discussion simplifies
by adding one.

As in Section 1.3.3, we express the linear predictor as 𝝁 = X𝜷 with

X𝜷 =

⎛⎜⎜⎜⎜⎜⎝

1n1
1n1

0n1
⋯ 0n1

1n2
0n2

1n2
⋯ 0n2

⋮ ⋮ ⋮ ⋱ ⋮

1nc
0nc

0nc
⋯ 1nc

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝛽0

𝛽1

⋮

𝛽c

⎞⎟⎟⎟⎟⎟⎠
.

Here, 𝜷 has p = c + 1 elements, but X has rank c. For this model matrix,

XTX =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

n n1 n2 ⋯ nc

n1 n1 0 ⋯ 0

n2 0 n2 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

nc 0 0 ⋯ nc

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

You can verify that a generalized inverse for this matrix is

(XTX)− =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ⋯ 0

0 1∕n1 0 ⋯ 0

0 0 1∕n2 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1∕nc

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

by checking that (XTX)(XTX)−(XTX) = XTX. Since

XTy = (nȳ, n1ȳ1,… , ncȳc)T,

this generalized inverse yields the model parameter estimate, 𝜷 = (𝛽0, 𝛽1,… , 𝛽c)T =
(0, ȳ1,… , ȳc)T.
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For this model matrix and generalized inverse, the corresponding projection matrix
is

PX = X(XTX)−XT =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
n1

1n1
1T

n1
0 ⋯ 0

0 1
n2

1n2
1T

n2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1
nc

1nc
1T

nc

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.6)

This yields the fitted values

�̂� = PXy = (ȳ1,… , ȳ1, ȳ2,… , ȳ2,… , ȳc,… , ȳc)T.

The same fitted values are generated by all generalized inverses and their correspond-
ing 𝜷, since they all have the same projection matrix. That is, the estimable quantities
{𝜇i = 𝛽0 + 𝛽i} from the linear predictor have {ȳi} as their least squares estimates.

With this parameterization, any individual 𝛽i in the linear predictor is not
estimable. So which linear combinations

∑
i ai𝛽i of {𝛽i} are estimable? In Section

1.4.2 we noted that 𝓵T𝜷 is estimable when 𝓵 ∈ C(XT), that is, in the row space
of X. Now, the null space N(X) is the orthogonal complement for C(XT). Since
dim[C(X)] + dim[N(X)] = p, with here p = c + 1, and since X has rank c, N(X) has
dimension 1. Now (1,−1,… ,−1)T is in N(X), since from the above expression for
X, X(1,−1,… ,−1)T = 0 (i.e, the first column is the sum of the other c columns).
Thus, this vector serves as a basis for N(X) and is orthogonal to C(XT). So

∑
i ai𝛽i is

estimable when (0, a1,… , ac) is orthogonal to (1,−1,… ,−1). It follows that
∑

i ai𝛽i
is estimable if and only if

∑
i ai = 0, that is, when

∑
i ai𝛽i is a contrast. Then, since

𝛽i = 𝜇i − 𝛽0, a contrast has form
∑

i ai𝛽i =
∑

i ai𝜇i, and its estimate is
∑

i aiȳi. An
example of a contrast is 𝛽1 − 𝛽2 = 𝜇1 − 𝜇2, with estimate ȳ1 − ȳ2.

The normal equations (2.2), namely XTy = XTX𝜷, are also satisfied by

𝜷 =

⎛⎜⎜⎜⎜⎜⎝

𝛽0

𝛽1

⋮

𝛽c

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

0

ȳ1

⋮

ȳc

⎞⎟⎟⎟⎟⎟⎠
− 𝜆

⎛⎜⎜⎜⎜⎜⎝

−1

1

⋮

1

⎞⎟⎟⎟⎟⎟⎠
for an arbitrary real value of 𝜆. In fact, these are the non-full-rank solutions cor-
responding to the various generalized inverses. For example, with 𝜆 = ȳ1, we have
𝜷 = (ȳ1, 0, ȳ2 − ȳ1,… , ȳc − ȳ1)T. This corresponds to the full-rank solution obtained
by imposing the constraint 𝛽1 = 0 to make the parameters identifiable.
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2.3.3 Sums of Squares and ANOVA Table for One-Way Layout

For the linear model for the one-way layout, we next use an orthogonal decomposition
of the data to induce a corresponding sum-of-squares decomposition and a table for
displaying data analyses. We use

yij = ȳ + (ȳi − ȳ) + (yij − ȳi),

for j = 1,… , ni and i = 1,… , c. Let P0 = 1
n
1n1T

n denote the projection matrix for the
null model. That model has X = 1n, which is the first column of X as given above
for the one-way layout, and P0 projects y to the overall mean vector ȳ1n. When we
view the data decomposition for the entire n × 1 vector y expressed as Iy for the n × n
identity matrix I, it uses a decomposition of I into three projection matrices using P0
and PX from (2.6),

y = Iy = [P0 + (PX − P0) + (I − PX)]y.

The corresponding sum-of-squares decomposition is

yTy = yTIy = yT[P0 + (PX − P0) + (I − PX)]y.

For the null model, we have already found that yTP0y = nȳ2. Using the block diagonal
structure for the projection matrix PX found above for the one-way layout, you can
verify that yTPXy =

∑c
i=1 niȳ

2
i . Therefore,

yT(PX − P0)y =
c∑

i=1

niȳ
2
i − nȳ2 =

c∑
i=1

ni(ȳi − ȳ)2,

called the between-groups sum of squares. It represents variability explained by
adding the group factor to the model as an explanatory variable. The final term in the
sum-of-squares decomposition is

yT(I − PX)y =
c∑

i=1

ni∑
j=1

y2
ij −

c∑
i=1

niȳ
2
i =

c∑
i=1

ni∑
j=1

(yij − ȳi)
2,

called the within-groups sum of squares. Since the fitted value corresponding to
observation yij is �̂�ij = ȳi, this is a sum of squared residuals for the model for the
one-way layout.

An analysis of variance (ANOVA) table displays the components in the sum-of-
squares decomposition. Table 2.1 shows the form of this table for a one-way layout.
We have included in this table the corresponding projection matrices. The degrees of
freedom (df ) values listed determine specific sampling distributions for the normal
linear model in the next chapter. Each df value equals the rank of the projection
matrix and the dimension of the corresponding vector subspace to which that matrix
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Table 2.1 ANOVA Table for Linear Model for One-Way Layout

Projection df Name for
Source Matrix (rank) Sum of Squares Sum of Squares

Mean P0 1 nȳ2

Groups PX − P0 c − 1
∑c

i=1 ni(ȳi − ȳ)2 Between-groups

Error I − PX n − c
∑c

i=1

∑ni
j=1(yij − ȳi)

2 Within-groups

Total I n
∑c

i=1

∑ni
j=1 y2

ij

projects. Sometimes the first source (mean) is not shown, and the total row is replaced
by a corrected total sum of squares:

c∑
i=1

ni∑
j=1

y2
ij − nȳ2 =

c∑
i=1

ni∑
j=1

(yij − ȳ)2.

This sum of squares has df = n − 1.

2.3.4 Example: Model for Two-Way Layout with Randomized Block Design

The model for the one-way layout generalizes to models with two or more explanatory
factors. We outline some basic ideas for two factors, with one observation at each
combination of their categories. An important case having this data format is the
randomized block design: The rows represent treatments whose means we would
like to compare. The columns represent blocks such that experimental units are more
homogeneous within blocks than between blocks. A classic example is comparing
mean yields of some type of crop for r fertilizer treatments, using c fields as blocks.
Within each field, the treatments are randomly assigned to r plots within that field.
The experiment yields n = rc observations.

Let yij be the observation for treatment i in block j. Consider the linear model with
linear predictor

E(yij) = 𝛽0 + 𝛽i + 𝛾j, i = 1,… , r, j = 1,… , c,

with constraints such as 𝛽1 = 𝛾1 = 0 for identifiability. Let ȳi. be the sample mean
observation for treatment i, ȳ.j the sample mean observation in block j, and ȳ the
overall sample mean. The orthogonal decomposition of the data for all i and j as

yij = ȳ + (ȳi. − ȳ) + (ȳ.j − ȳ) + (yij − ȳi. − ȳ.j + ȳ)

corresponds to applying to y a decomposition of the n × n identity matrix into four
projection matrices,

I = P0 + (Pr − P0) + (Pc − P0) + (I − Pr − Pc + P0).
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Here, the null model projection matrix P0 = 1
n
1n1T

n , when applied to y = (y11,… ,

y1c,… , yr1,… , yrc)T, generates ȳ1n. The matrix

Pr =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1∕c ⋯ 1∕c ⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

1∕c ⋯ 1∕c ⋯ 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ 0 ⋯ 1∕c ⋯ 1∕c

⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

0 ⋯ 0 ⋯ 1∕c ⋯ 1∕c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a block diagonal matrix with r blocks of size c × c, in which each element equals
1∕c. The projection Pry generates the vector (ȳ1.,… , ȳ1.,… , ȳr.,… , ȳr.)

T, where ȳi.
occurs in the locations for the c observations for treatment i. A corresponding projec-
tion matrix Pc has elements 1∕r in appropriate locations to generate the block means
(ȳ.1,… , ȳ.c,… , ȳ.1,… , ȳ.c), where ȳ.j occurs in the locations for the r observations
for block j. You can check that PrPc = P0 and that each of the four matrices in the
decomposition for I is symmetric and idempotent and hence a projection matrix.

Recall that the rank of a projection matrix equals its trace. For this decompo-
sition of projection matrices, the trace of (Pr − P0) equals the difference of traces,
r − 1, corresponding to the (r − 1) nonredundant {𝛽i}. Applied to y, it generates
the sample treatment effects (ȳ1. − ȳ,… , ȳ1. − ȳ,… , ȳr. − ȳ,… , ȳr. − ȳ)T. Likewise,
(Pc − P0) has rank c − 1 and generates sample block effects. The projection matrix
(I − Pr − Pc + P0) generates the term representing the residual error. Its rank is
rc − r − c + 1 = (r − 1)(c − 1).

The decomposition of observations and of projection matrices corresponds to the
sum-of-squares decomposition shown in the ANOVA table (Table 2.2). The corrected
total sum of squares is

∑
i
∑

j y2
ij − rcȳ2. The larger the between-treatments sum of

squares relative to the error sum of squares, the stronger the evidence of a treatment

Table 2.2 ANOVA Table for Linear Model for Two-Way r × c Layout with One
Observation Per Cell (as in Randomized Block Design)

Projection df
Source Matrix (rank) Sum of Squares

Mean P0 1 rcȳ2

Treatments Pr − P0 r − 1 c
∑r

i=1(ȳi. − ȳ)2

Blocks Pc − P0 c − 1 r
∑c

j=1(ȳ.j − ȳ)2

Error I − Pr − Pc + P0 (r − 1)(c − 1)
∑r

i=1

∑c
j=1(yij − ȳi. − ȳ.j + ȳ)2

Total I n = rc
∑r

i=1

∑c
j=1 y2

ij
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effect. Inferential details for the normal linear model follow from results in the
next chapter.

2.4 SUMMARIZING VARIABILITY IN A LINEAR MODEL

For a linear model E(y) = X𝜷 with model matrix X and covariance matrix V = 𝜎2I,
in Section 2.2.5 we introduced the “data = fit + residuals” orthogonal decomposition
using the projection matrix PX = X(XTX)−1XT (i.e., the hat matrix H),

y = �̂� + (y − �̂�) = PXy + (I − PX)y.

This represents the orthogonality of the fitted values �̂� and the raw residuals e =
(y − �̂�). We have used PXy = �̂� to estimate 𝝁. The other part of this decomposition,
(I − PX)y = (y − �̂�), falls in the error space C(X)⟂ orthogonal to the model space
C(X). We next use it to estimate the variance 𝜎2 of the conditional distribution of
each yi, given its explanatory variable values. This variance is sometimes called the
error variance, from the representation of the model as y = X𝜷 + 𝝐with var(𝝐) = 𝜎2I.

2.4.1 Estimating the Error Variance for a Linear Model

To obtain an unbiased estimator of 𝜎2, we apply a result about E(yTAy), for a n × n
matrix A. Since E(y − 𝝁) = 0,

E[(y − 𝝁)TA(y − 𝝁)] = E(yTAy) − 𝝁TA𝝁.

Using the commutative property of the trace of a matrix,

E[(y − 𝝁)TA(y − 𝝁)] = E{trace[(y − 𝝁)TA(y − 𝝁)]} = E{trace[A(y − 𝝁)(y − 𝝁)T]}

= trace{AE[(y − 𝝁)(y − 𝝁)T]} = trace(AV).

It follows that

E(yTAy) = trace(AV) + 𝝁TA𝝁. (2.7)

For a linear model with full-rank model matrix X and projection matrix PX, we
now apply this result with A = (I − PX) and V = 𝜎2I for the n × n identity matrix I.
The rank of X, which also is the rank of PX, is the number of model parameters p.
We have

E[yT(I − PX)y] = trace[(I − PX)𝜎2I] + 𝝁T(I − PX)𝝁

= 𝜎2trace(I − PX),
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because (I − PX)𝝁 = 𝝁 − 𝝁 = 0. Then, since

trace(PX) = trace[X(XXT)−1XT] = trace[XTX(XXT)−1] = trace(Ip),

where Ip is the p × p identity matrix, we have trace(I − PX) = n − p, and

E

[
yT(I − PX)y

n − p

]
= 𝜎2.

So s2 = [yT(I − PX)y]∕(n − p) is an unbiased estimator of 𝜎2. Since PX and (I − PX)
are symmetric and idempotent, the numerator of s2 is

yT(I − PX)y = yT(I − PX)T(I − PX)y = (y − �̂�)T(y − �̂�) =
n∑

i=1

(yi − �̂�i)
2.

In summary, an unbiased estimator of the error variance 𝜎2 in a linear model with
full-rank model matrix is

s2 =
∑n

i=1(yi − �̂�i)
2

n − p
,

an average of the squared residuals. Here, the average is taken with respect to the
dimension of the error space in which these residual components reside. When X
has less than full rank r < p, the same argument holds with the trace(PX) = r. Then,
s2 has denominator n − r. The estimate s2 is called9 the error mean square, where
error = residual, or residual mean square.

For example, for the null model (Section 2.3.1), the numerator of s2 is
∑n

i=1(yi − ȳ)2

and the rank of X = 1n is 1. An unbiased estimator of 𝜎2 is

s2 =
∑n

i=1(yi − ȳ)2

n − 1
.

This is the sample variance and the usual estimator of the marginal variance of y.
There is nothing special about using an unbiased estimator. In fact s, which is on a

more helpful scale for interpreting variability, is biased. However, s2 occurs naturally
in distribution theory for the ordinary linear model, as we will see in the next chapter.
The denominator (n − p) of the estimator occurs as a degrees of freedom measure in
sampling distributions of relevant statistics.

9Not to be confused with the “mean squared error,” which is E(�̂� − 𝜃)2 for an estimator �̂� of a
parameter 𝜃.
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2.4.2 Sums of Squares: Error (SSE) and Regression (SSR)

The sum of squares
∑

i(yi − �̂�i)
2 in the numerator of s2 is abbreviated by SSE, for

“sum of squared errors,” It is also referred to as the residual sum of squares.
The orthogonal decomposition of the data, y = PXy + (I − PX)y, expresses obser-

vation i as yi = �̂�i + (yi − �̂�i). Correcting for the sample mean,

(yi − ȳ) = (�̂�i − ȳ) + (yi − �̂�i).

Using (yi − ȳ) as the observation corresponds to adjusting yi by including an intercept
term before investigating effects of the explanatory variables. (For the null model
E(yi) = 𝛽, Section 2.3.1 showed that �̂�i = ȳ.) This orthogonal decomposition into
the component in the model space and the component in the error space yields the
sum-of-squares decomposition:∑

i

(yi − ȳ)2 =
∑

i

(�̂�i − ȳ)2 +
∑

i

(yi − �̂�i)
2.

We abbreviate this decomposition as

TSS = SSR + SSE,

for the (corrected) total sum of squares TSS, the sum of squares due to the regression
model SSR, and the sum of squared errors SSE. Here, TSS summarizes the total
variation in the data after fitting the model containing only an intercept. The SSE
component represents the variation in y “unexplained” by the full model, that is, a
summary of prediction error remaining after fitting that model. The SSR component
represents the variation in y “explained” by the full model, that is, the reduction in
variation from TSS to SSE resulting from adding explanatory variables to a model
that contains only an intercept term. For short, we will refer to SSR as the regression
sum of squares. It is also called the model sum of squares.

We illustrate with the model for the one-way layout. From Section 2.3.3, TSS
partitions into a between-groups SS =

∑c
i=1 ni(ȳi − ȳ)2 and a within-groups SS =∑c

i=1

∑ni
j=1(yij − ȳi)

2. The between-groups SS is the SSR for the model, representing
variability explained by adding the indicator predictors to the model. Since the fitted
value corresponding to observation yij is �̂�ij = ȳi, the within-groups SS is SSE for the
model. For the model for the two-way layout in Section 2.3.4, SSR is the sum of the
SS for the treatment effects and the SS for the block effects.

2.4.3 Effect on SSR and SSE of Adding Explanatory Variables

The least squares fit minimizes SSE. When we add an explanatory variable to a
model, SSE cannot increase, because we could (at worst) obtain the same SSE value
by setting 𝛽j = 0 for the new variable. So, SSE is monotone decreasing as the set
of explanatory variables grows. Since TSS depends only on {yi} and is identical for
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every model fitted to a particular dataset, SSR = TSS − SSE is monotone increasing
as variables are added.

Let SSR(x1, x2) denote the regression sum of squares for a model with two explana-
tory variables and let SSR(x1) and SSR(x2) denote it for the two models having only
one of those explanatory variables (plus, in each case, the intercept). We can partition
SSR(x1, x2) into SSR(x1) and the additional variability explained by adding x2 to
the model. Denote that additional variability explained by x2, adjusting for x1, by
SSR(x2 ∣ x1). That is,

SSR(x1, x2) = SSR(x1) + SSR(x2 ∣ x1).

Equivalently, SSR(x2 ∣ x1) is the decrease in SSE from adding x2 to the model.
Let {�̂�i1} denote the fitted values when x1 is the sole explanatory variable, and let

{�̂�i12} denote the fitted values when both x1 and x2 are explanatory variables. Then,
from the orthogonal decomposition (�̂�i12 − ȳ) = (�̂�i1 − ȳ) + (�̂�i12 − �̂�i1),

SSR(x2 ∣ x1) =
n∑

i=1

(�̂�i12 − �̂�i1)2.

To show that this application of Pythagoras’s theorem holds, we need to show that∑
i(�̂�i1 − ȳ)(�̂�i12 − �̂�i1) = 0. But denoting the projection matrices by P0 for the model

containing only an intercept, P1 for the model that also has x1 as an explanatory
variable, and P12 for the model that has x1 and x2 as explanatory variables, this sum
is

(P1y − P0y)T(P12y − P1y) = yT(P1 − P0)(P12 − P1)y.

Since PaPb = Pa when model a is a special case of model b, (P1 − P0)(P12 − P1) = 0, so
yT(P1 − P0)(P12 − P1)y = 0. This also follows from the result about decompositions
of I into sums of projection matrices stated at the end of Section 2.2.1, whereby
projection matrices that sum to I have pairwise products of 0. Here, I = P0 + (P1 −
P0) + (P12 − P1) + (I − P12).

2.4.4 Sequential and Partial Sums of Squares

Next we consider the general case with p explanatory variables, x1, x2,… , xp, and an
intercept or centered value of y. From entering these variables in sequence into the
model, we obtain the regression sum of squares and successive increments to it,

SSR(x1), SSR(x2 ∣ x1), SSR(x3 ∣ x1, x2),… , SSR(xp ∣ x1, x2,… , xp−1).

These components are referred to as sequential sums of squares. They sum to
the regression sum of squares for the full model, denoted by SSR(x1,… , xp). The
sequential sum of squares corresponding to adding a term to the model can depend
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strongly on which other variables are already in the model, because of correlations
among the predictors. For example, SSR(xp) often tends to be much larger than
SSR(xp ∣ x1,… , xp−1) when xp is highly correlated with the other predictors, as hap-
pens in many observational studies. We discuss this further in Section 4.6.5.

An alternative set10 of increments to regression sums of squares, called partial
sums of squares, uses the same set of p explanatory variables for each:

SSR(x1 ∣ x2,… , xp), SSR(x2 ∣ x1,… , xp),… , SSR(xp ∣ x1,… , xp−1).

Each of these represents the additional variability explained by adding a particular
explanatory variable to the model, when all the other explanatory variables are already
in the model. Equivalently, it is the drop in SSE when that explanatory variable is
added, after all the others. These partial SS values may differ from all the corre-
sponding sequential SS values SSR(x1), SSR(x2 ∣ x1),… , SSR(xp ∣ x1, x2,… , xp−1),
except for the final one.

2.4.5 Uncorrelated Predictors:
Sequential SS = Partial SS = SSR Component

We have seen that the “data = fit + residuals” orthogonal decomposition y = PXy +
(I − PX)y implies the corresponding SS decomposition, yTy = yTPXy + yT(I − PX)y.
When the values of y are centered, this is TSS = SSR + SSE. Now, suppose the p
parameters are orthogonal (Section 2.2.4). Then, XTX and its inverse are diagonal.
With the model matrix partitioned into X =

(
X1 : X2 : ⋯ : Xp

)
,

PX = X(XTX)−1XT = X1(XT
1 X1)−1XT

1 +⋯ + Xp(XT
p Xp)−1XT

p .

In terms of the projection matrices for separate models, each with only a single
explanatory variable, this is PX1

+⋯ + PXp
. Therefore,

yTy = yTPX1
y +⋯ + yTPXp

y + yT(I − PX)y.

Each component of SSR equals the SSR for the model with that sole explanatory
variable, so that

SSR(x1,… , xp) = SSR(x1) + SSR(x2) +⋯ + SSR(xp). (2.8)

When X1 = 1n is the coefficient of an intercept term, SSR(x1) = nȳ2 and TSS =
yTy − SSR(x1) for the uncentered y. The sum of squares that software reports as

10Alternative names are Type 1 SS for sequential SS and Type 3 SS for partial SS. Type 2 SS is an
alternative partial SS that adjusts only for effects not containing the given effect, such as adjusting
x1 for x2 but not for x1x2 when that interaction term is also in the model.
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SSR is then SSR(x2) +⋯ + SSR(xp). Also, with an intercept in the model, orthogo-
nality of the parameters implies that pairs of explanatory variables are uncorrelated
(Exercise 2.20).

When the explanatory variables in a linear model are uncorrelated, the sequential
SS values do not depend on their order of entry into a model. They are then identical
to the corresponding partial SS values, and the regression SS decomposes exactly in
terms of them. We would not expect this in observational studies, but some balanced
experimental designs have such simplicity.

For instance, consider the main effects model for the two-way layout with two
binary qualitative factors and an equal sample size n in each cell,

E(yijk) = 𝛽0 + 𝛽i + 𝛾j,

for i = 1, 2, j = 1, 2, and k = 1,… , n. With constraints 𝛽1 + 𝛽2 = 0 and 𝛾1 + 𝛾2 = 0
for identifiability and with y listing (i, j) in the order (1,1), (1,2), (2,1), (2,2), we can
express the model as E(y) = X𝜷 with

X𝜷 =

⎛⎜⎜⎜⎜⎜⎝

1n 1n 1n

1n 1n −1n

1n −1n 1n

1n −1n −1n

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
𝛽0

𝛽1

𝛾1

⎞⎟⎟⎟⎠
.

The scatterplot for the two indicator explanatory variables has n observations that
occur at each of the points (−1,−1), (−1,1), (1,−1), and (1,1). Thus, those explanatory
variables are uncorrelated (and orthogonal), and SSR decomposes into its separate
parts for the row effects and for the column effects.

2.4.6 R-Squared and the Multiple Correlation

For a particular dataset and TSS value, the larger the value of SSR relative to SSE,
the more effective the explanatory variables are in predicting the response variable.
A summary of this predictive power is

R2 = SSR
TSS

= TSS − SSE
TSS

=
∑

i(yi − ȳ)2 −
∑

i(yi − �̂�i)
2∑

i(yi − ȳ)2
.

Here SSR=TSS−SSE measures the reduction in the sum of squared prediction errors
after adding the explanatory variables to the model containing only an intercept. So, R2

measures the proportional reduction in error, and it falls between 0 and 1. Sometimes
called the coefficient of determination, it is usually merely referred to as “R-squared.”

A related way to measure predictive power is with the sample correlation between
the {yi} and {�̂�i} values. From (2.1), the normal equations solved to find the least
squares estimates are

∑
i yixij =

∑
i �̂�ixij, j = 1,… , p. The equation corresponding to
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the intercept term is
∑

i yi =
∑

i �̂�i, so the sample mean of {�̂�i} equals ȳ. Therefore,
the sample value of

corr(y, �̂�) =
∑

i(yi − ȳ)(�̂�i − ̄̂𝜇)√[∑
i(yi − ȳ)2

] [∑
i(�̂�i − ̄̂𝜇)2

] =
∑

i(yi − �̂�i + �̂�i − ȳ)(�̂�i − ȳ)√[∑
i(yi − ȳ)2

] [∑
i(�̂�i − ȳ)2

] .

The numerator simplifies to
∑

i(�̂�i − ȳ)2 = SSR, since
∑

i(yi − �̂�i)�̂�i = 0 by the

orthogonality of (y − �̂�) and �̂�, and the denominator equals
√

(TSS)(SSR). So,

corr(y, �̂�) =
√

SSR/TSS = +
√

R2. This positive square root of R2 is called the
multiple correlation. Note that 0 ≤ R ≤ 1. With a single explanatory variable,
R = |corr(x, y)|.

Out of all possible linear prediction equations �̃� = X�̃� that use the given model
matrix, the least squares solution �̂� has the maximum correlation with y. To ease
notation as we show this, we suppose that all variables have been centered, which
does not affect correlations. For an arbitrary �̃� and constant c, for the least squares
fit,

‖y − �̂�‖2 ≤ ‖y − c�̃�‖2.

Expanding both sides, subtracting the common term ‖y‖2, and dividing by a common
denominator yields

2yT�̂�‖y‖‖�̂�‖ −
‖�̂�‖2

‖y‖‖�̂�‖ ≥
2cyT�̃�‖y‖‖�̂�‖ −

c2‖�̃�‖2

‖y‖‖�̂�‖ .
Now, taking c2 = ‖�̂�‖2∕‖�̃�‖2, we have

yT�̂�‖y‖‖�̂�‖ ≥
yT�̃�‖y‖‖�̃�‖ .

But since the variables are centered, this says that R = corr(y, �̂�) ≥ corr(y, �̃�).
When explanatory variables are added to a model, since SSE cannot increase, R and

R2 are monotone increasing. For a model matrix X, let x∗j denote column j for explana-
tory variable j. For the special case in which the sample corr(x∗j, x∗k) = 0 for each
pair of the p explanatory variables, by the decomposition (2.8) of SSR(x1,… , xp),

R2 = [corr(y, x∗1)]2 + [corr(y, x∗2)]2 +⋯ + [corr(y, x∗p)]2.

When n is small and a model has several explanatory variables, R2 tends to
overestimate the corresponding population value. An adjusted R-squared is designed
to reduce this bias. It is defined to be the proportional reduction in variance based
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on the unbiased variance estimates, s2
y for the marginal distribution and s2 for the

conditional distributions; that is,

adjusted R2 =
s2

y − s2

s2
y

= 1 −
SSE∕(n − p)

TSS∕(n − 1)
= 1 − n − 1

n − p
(1 − R2).

It is slightly smaller than ordinary R2, and need not monotonically increase as we
add explanatory variables to a model.

2.5 RESIDUALS, LEVERAGE, AND INFLUENCE

Since the residuals from the linear model fit are in the error space, orthogonal to the
model space, they contain the information in the data that is not explained by the
model. Thus, they are useful for investigating a model’s lack of fit. This section
takes a closer look at the residuals, including their moments and ways of plotting
them to help check a model. We also present descriptions of the influence that each
observation has on the least squares fit, using the residuals and “leverage” values
from the hat matrix.

2.5.1 Residuals and Fitted Values Are Uncorrelated

From Section 2.4.6, the normal equation corresponding to the intercept term is
∑

i yi =∑
i �̂�i. Thus,

∑
i ei =

∑
i(yi − �̂�i) = 0, and the residuals have a sample mean of 0.

Also,

E(e) = E(y − �̂�) = X𝜷 − XE(𝜷) = X𝜷 − X𝜷 = 0.

For linear models with an intercept, the sample correlation between the residuals
e and fitted values �̂� has numerator

∑
i ei�̂�i = eT�̂�. So, the orthogonality of e and �̂�

implies that corr(e, �̂�) = 0.

2.5.2 Plots of Residuals

Because corr(e, �̂�) = 0, the least squares line fitted to a scatterplot of the elements of
e = (y − �̂�) versus the corresponding elements of �̂� has slope 0. A scatterplot of the
residuals against the fitted values helps to identify patterns of a model’s lack of fit.
Examples are nonconstant variance, sometimes referred to as heteroscedasticity, and
nonlinearity. Likewise, since the residuals are also orthogonal to C(X), they can be
plotted against each explanatory variable to detect lack of fit.

Figure 2.8 shows how a plot of e against �̂� tends to look if (a) the linear model
holds, (b) the variance is constant (homoscedasticity), but the mean of y is a quadratic
rather than a linear function of the predictor, and (c) the linear trend predictor is
correct, but the variance increases dramatically as the mean increases. In practice,
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e

(a)

0 0 0

(c)(b)

e e

μ μ μ

Figure 2.8 Residuals plotted against linear-model fitted values that reflect (a) model ade-
quacy, (b) quadratic rather than linear relationship, and (c) nonconstant variance.

plots do not have such a neat appearance, but these illustrate how the plots can
highlight model inadequacy. Section 2.6 shows an example.

For the normal linear model, the conditional distribution of y, given the explanatory
variables, is normal. This implies that the residuals, being linear in y, also have
normal distributions. A histogram of the residuals provides some information about
the actual conditional distribution. Another check of the normality assumption is
a plot of ordered residual values against expected values of order statistics from a
N(0, 1) distribution, called a Q–Q plot. We will discuss this type of plot in Section
3.4.2, in the chapter about the normal linear model.

2.5.3 Standardized and Studentized Residuals

For the ordinary linear model, the covariance matrix for the observations is V = 𝜎2I.
In terms of the hat matrix H = X(XTX)−1XT, this decomposes into

V = 𝜎2I = 𝜎2H + 𝜎2(I − H).

Since �̂� = Hy and since H is idempotent,

var(�̂�) = 𝜎2H.

So, var(�̂�i) = 𝜎2hii, where {hii} denote the main diagonal elements of H. Since
variances are nonnegative, hii ≥ 0. Likewise, since (y − �̂�) = (I − H)y and since
(I − H) is idempotent,

var(y − �̂�) = 𝜎2(I − H).

So, the residuals are correlated, and their variance need not be constant, with

var(ei) = var(yi − �̂�i) = 𝜎2(1 − hii).
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Again since variances are nonnegative, 0 ≤ hii ≤ 1. Also, var(�̂�i) = 𝜎2hii ≤ 𝜎2

reveals a consequence of model parsimony: If the model holds (or nearly holds),
�̂�i is better than yi as an unbiased estimator of 𝜇i.

A standardized version of ei = (yi − �̂�i) that divides it by 𝜎
√

1 − hii has a standard
deviation of 1. In practice, 𝜎 is unknown, so we replace it by the estimate s of 𝜎 derived
in Section 2.4.1. The standardized residual is

ri =
yi − �̂�i

s
√

1 − hii

. (2.9)

This describes the number of estimated standard deviations that (yi − �̂�i) departs from
0. If the normal linear model truly holds, these should nearly all fall between about −3
and +3. A slightly different residual, called11 a studentized residual, estimates 𝜎 in
the expression for var(yi − �̂�i) based on the fit of the model to the n − 1 observations
after excluding observation i. Then, that estimate is independent of observation i.

2.5.4 Leverages from Hat Matrix Measure Potential Influence

The element hii from H, on which var(ei) depends, is called the leverage of observation
i. Since var(�̂�i) = 𝜎2hii with 0 ≤ hii ≤ 1, the leverage determines the precision with
which �̂�i estimates 𝜇i. For large hii close to 1, var(�̂�i) ≈ var(yi) and var(ei) ≈ 0. In
this case, yi may have a large influence on �̂�i. In the extreme case hii = 1, var(ei) = 0,
and �̂�i = yi. By contrast, when hii is close to 0 and thus var(�̂�i) is relatively small,
this suggests that �̂�i is based on contributions from many observations.

Here are two other ways to visualize how a relatively large leverage hii indicates
that yi may have a large influence on �̂�i. First, since �̂�i =

∑
j hijyj, 𝜕�̂�i∕𝜕yi = hii.

Second, since {yi} are uncorrelated12,

cov(yi, �̂�i) = cov

(
yi,

n∑
j=1

hijyj

)
=

n∑
j=1

hijcov(yi, yj) = hiicov(yi, yi) = 𝜎2hii.

Then, since var(�̂�i) = 𝜎2hii, it follows that the theoretical correlation,

corr(yi, �̂�i) =
𝜎2hii√
𝜎2 ⋅ 𝜎2hii

=
√

hii.

When the leverage is relatively large, yi is highly correlated with �̂�i.

11Student is a pseudonym for W. S. Gosset, who discovered the t distribution in 1908. For the normal
linear model, each studentized residual has a t distribution with df = n − p.
12Recall that for matrices of constants A and B, cov(Ax, By) = Acov(x, y)BT.
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So, what do the leverages look like? For the bivariate linear model E(yi) = 𝛽0 + 𝛽xi,
Section 2.1.3 showed the hat matrix. The leverage for observation i is

hii =
1
n
+

(xi − x̄)2∑n
k=1(xk − x̄)2

.

The n leverages have a mean of 2∕n. They tend to be smaller with larger datasets.
With multiple explanatory variables and values xi for observation i and means x̄
(as row vectors), let X̃ denote the model matrix using centered variables. Then, the
leverage for observation i is

hii =
1
n
+ (xi − x̄)(X̃

TX̃)−1(xi − x̄)T (2.10)

(Belsley et al. 1980, Appendix 2A). The leverage increases as xi is farther from x̄.
With p explanatory variables, including the intercept, the leverages have a mean of
p∕n. Observations with relatively large leverages, say exceeding about 3p∕n, may be
influential in the fitting process.

2.5.5 Influential Points for Least Squares Fits

An observation having small leverage is not influential in its impact on {�̂�i} and {𝛽j},
even if it is an outlier in the y direction. A point with extremely large leverage can be
influential, but need not be so. It is influential when the observation is a “regression
outlier,” falling far from the least squares line that results using only the other n − 1
observations. See the first panel of Figure 2.9. By contrast, when the observation has
a large leverage but is consistent with the trend shown by the other observations, it is
not influential. See the second panel of Figure 2.9. To be influential, a point needs to
have both a large leverage and a large standardized residual.

Summary measures that describe an observation’s influence combine information
from the leverages and the residuals. For any such measure of influence, larger values
correspond to greater influence. Cook’s distance (Cook 1977) is based on the change
in 𝜷 when the observation is removed from the dataset. Let 𝜷(i) denote the least

y

x

y

x

Figure 2.9 High leverage points in a linear model fit may be influential (first panel) or
noninfluential (second panel).
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squares estimate of 𝜷 for the n − 1 observations after excluding observation i. Then,
Cook’s distance for observation i is

Di =
(𝜷(i) − 𝜷)T[v̂ar(𝜷)]−1(𝜷(i) − 𝜷)

p
=

(𝜷(i) − 𝜷)T(XTX)(𝜷(i) − 𝜷)

ps2
.

Incorporating the estimated variance of 𝜷 makes the measure free of the units of
measurement and approximately free of the sample size. An equivalent expression
uses the standardized residual ri and the leverage hii,

Di = r2
i

[
hii

p(1 − hii)

]
=

(yi − �̂�i)
2hii

ps2(1 − hii)2
. (2.11)

A relatively large Di, usually on the order of 1, occurs when both the standardized
residual and the leverage are relatively large.

A measure with a similar purpose, DFFIT, describes the change in �̂�i due to
deleting observation i. A standardized version (DFFITS) equals the studentized resid-
ual multiplied by the “leverage factor”

√
hii∕(1 − hii). A variable-specific measure,

DFBETA (with standardized version DFBETAS), is based on the change in 𝛽j alone
when the observation is removed from the dataset. Each observation has a separate
DFBETA for each 𝛽j.

2.5.6 Adjusting for Explanatory Variables by Regressing Residuals

Residuals are at the heart of what we mean by “adjusting for the other explana-
tory variables in the model,” in describing the partial effect of an explanatory vari-
able xj. Suppose we use least squares to (1) regress y on the explanatory vari-
ables other than xj, (2) regress xj on those other explanatory variables. When we
regress the residuals from (1) on the residuals from (2), Yule (1907) showed that
the fit has slope that is identical to the partial effect of variable xj in the multi-
ple regression model. A scatterplot of these two sets of residuals is called a par-
tial regression plot, also sometimes called an added variable plot. The residuals
for the least squares line between these two sets of residuals are identical to the
residuals in the multiple regression model that regresses y on all the explanatory
variables.

To show Yule’s result, we use his notation for linear model coefficients, introduced
in Section 1.2.3. To ease formula complexity, we do this for the case of two explana-
tory variables, with all variables centered to eliminate intercept terms. Consider the
models

E(yi) = 𝛽y2xi2, E(xi1) = 𝛽12xi2, E(yi) = 𝛽y1⋅2xi1 + 𝛽y2⋅1xi2.
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The normal equations (2.1) for the bivariate models are

n∑
i=1

xi2(yi − 𝛽y2xi2) = 0,
n∑

i=1

xi2(xi1 − 𝛽12xi2) = 0.

The normal equations for the multiple regression model are

n∑
i=1

xi1(yi − 𝛽y1⋅2xi1 − 𝛽y2⋅1xi2) = 0,
n∑

i=1

xi2(yi − 𝛽y1⋅2xi1 − 𝛽y2⋅1xi2) = 0.

From these two equations for the multiple regression model,

0 =
n∑

i=1

(yi − 𝛽y1⋅2xi1 − 𝛽y2⋅1xi2)(xi1 − 𝛽12xi2).

Using this and the normal equation for the second bivariate model,

0 =
n∑

i=1

yi(xi1 − 𝛽12xi2) − 𝛽y1⋅2

n∑
i=1

xi1(xi1 − 𝛽12xi2)

=
n∑

i=1

(yi − 𝛽y2xi2)(xi1 − 𝛽12xi2) − 𝛽y1⋅2

n∑
i=1

(xi1 − 𝛽12xi2)2.

It follows that the estimated partial effect of x1 on y, adjusting for x2, is

𝛽y1⋅2 =
∑n

i=1(yi − 𝛽y2xi2)(xi1 − 𝛽12xi2)∑n
i=1(xi1 − 𝛽12xi2)2

.

But from (2.5) this is precisely the result of regressing the residuals from the regression
of y on x2 on the residuals from the regression of x1 on x2.

This result has an interesting consequence. From the regression of residuals just
mentioned, the fit for the full model satisfies

�̂�i − 𝛽y2xi2 = 𝛽y1⋅2(xi1 − 𝛽12xi2)

so that

�̂�i = 𝛽y2xi2 + 𝛽y1⋅2(xi1 − 𝛽12xi2) = 𝛽y1⋅2xi1 + (𝛽y2 − 𝛽y1⋅2𝛽12)xi2.

Therefore, the partial effect of x2 on y, adjusting for x1, has the expression

𝛽y2⋅1 = 𝛽y2 − 𝛽y1⋅2𝛽12.
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In particular, 𝛽y2⋅1 = 𝛽y2 if 𝛽12 = 0, which is equivalent to corr(x∗1, x∗2) = 0. They

are also equal if 𝛽y1⋅2 = 0. Likewise, 𝛽y1⋅2 = 𝛽y1 − 𝛽y2⋅1𝛽21. An implication is that if
the primary interest in a study is the effect of x1 while adjusting for x2 but the model
does not include x2, then the difference between the effect of interest and the effect
actually estimated is the omitted variable bias, 𝛽y2⋅1𝛽21.

2.5.7 Partial Correlation

A partial correlation describes the association between two variables after adjusting
for other variables. Yule (1907) also showed how to formalize this concept using
residuals. For example, the partial correlation between y and x1 while adjusting for
x2 and x3 is obtained by (1) finding the residuals for predicting y using x2 and x3,
(2) finding the residuals for predicting x1 using x2 and x3, and then (3) finding the
ordinary correlation between these two sets of residuals.

The squared partial correlation between y and a particular explanatory variable
considers the variability unexplained without that variable and evaluates the pro-
portional reduction in variability after adding it. That is, if R2

0 is the proportional
reduction in error without it, and R2

1 is the value after adding it to the model, then
the squared partial correlation between y and the variable, adjusting for the others, is
(R2

1 − R2
0)∕(1 − R2

0).

2.6 EXAMPLE: SUMMARIZING THE FIT OF A LINEAR MODEL

Each year the Scottish Hill Runners Association (www.shr.uk.com) publishes a list
of hill races in Scotland for the year. Table 2.3 shows data on the record time for
some of the races (in minutes). Explanatory variables listed are the distance of the
race (in miles) and the cumulative climb (in thousands of feet).

Table 2.3 Record Time to Complete Race Course (in minutes), by Distance of Race
(miles) and Climb (in thousands of feet)

Race Distance Climb Record Time

Greenmantle New Year Dash 2.5 0.650 16.08
Craig Dunain Hill Race 6 0.900 33.65
Ben Rha Hill Race 7.5 0.800 45.60
Ben Lomond Hill Race 8 3.070 62.27
Bens of Jura Fell Race 16 7.500 204.62
Lairig Ghru Fun Run 28 2.100 192.67

Source: From Atkinson (1986), by permission of the Institute of Mathematical Statistics, with correction
by Hoaglin13 (2012). The complete data for 35 races are in the file ScotsRaces.dat at the text website,
www.stat.ufl.edu/~aa/glm/data.

13Thanks to David Hoaglin for showing me his article and this data set.

http://www.shr.uk.com
http://www.stat.ufl.edu/~aa/glm/data
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We suggest that you download all 35 observations from the text website and view
some summary statistics and graphics, such as follows:

---------------------------------------------------------------------

> attach(ScotsRaces) # complete data at www.stat.ufl.edu/~aa/glm/data

> matrix(cbind(mean(time),sd(time),mean(climb),sd(climb),

+ mean(distance),sd(distance)),nrow=2)

[,1] [,2] [,3] # e.g., time has mean = 56, std.dev.= 50

[1,] 56.0897 1.8153 7.5286

[2,] 50.3926 1.6192 5.5239

> pairs(~time+climb+distance) # scatterplot matrix for variable pairs

> cor(cbind(climb,distance,time)) # correlation matrix

climb distance time

climb 1.0000 0.6523 0.8327

distance 0.6523 1.0000 0.9431

time 0.8327 0.9431 1.0000

---------------------------------------------------------------------

Figure 2.10 is a scatterplot matrix, showing a plot for each pair of variables. It
seems natural that longer races would tend to have greater record times per mile,
so we might expect the record time to be a convex increasing function of distance.
However, the scatterplot relating these variables reveals a strong linear trend, apart
from a single outlier. The scatterplot of record time by climb also shows linearity,
apart from a rather severe outlier discussed below.

time
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Figure 2.10 Scatterplot matrix for record time, climb, and distance, in Scottish hill races.

http://www.stat.ufl.edu/~aa/glm/data
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For the ordinary linear model that uses both explanatory variables, without inter-
action, here is basic R output, not showing inferential results that assume normality
for y:

---------------------------------------------------------------------

> fit.cd <- lm(time ~ climb + distance)

> summary(fit.cd)

Coefficients:

Estimate Std. Error

(Intercept) -13.1086 2.5608

climb 11.7801 1.2206

distance 6.3510 0.3578

---

Residual standard error: 8.734 on 32 degrees of freedom # This is s

Multiple R-squared: 0.9717, Adjusted R-squared: 0.970

> cor(time, fitted(fit.cd)) # multiple correlation

[1] 0.9857611

---------------------------------------------------------------------

The model fit indicates that, adjusted for climb, the predicted record time increases
by 6.35 minutes for every additional mile of distance. The “Residual standard error”
reported for the model fit is the estimated standard deviation of record times, at fixed
values of climb and distance; that is, it is s = 8.734 minutes. From Section 2.4.1,
the error variance estimate s2 = 76.29 averages the variability of the residuals, with
denominator n − p, which is here df = 35 − 3 = 32. The sample marginal variance
for the record times is s2

y = 2539.42, considerably larger than s2.

From the output, R2 = 0.972 indicates a reduction of 97.2% in the sum of squared
errors from using this prediction equation instead of ȳ to predict the record times.

The multiple correlation of R =
√

0.972 = 0.986 equals the correlation between the
35 observed yi and fitted �̂�i values. The output also reports adjusted R2 = 0.970. We
estimate that the conditional variance for record times is only 3% of the marginal
variance.

The standardized residuals (rstandard in R) have an approximate mean of 0 and
standard deviation of 1. A histogram (not shown here) of them or of the raw residuals
exhibits some skew to the right. From Section 2.5, the residuals are orthogonal to the
model fit, and we can check model assumptions by plots of them. Figure 2.11 plots
the standardized residuals against the model-fitted values. We suggest you construct
the plots against the explanatory variables. These plots do not suggest this model’s
lack of fit, but they and the histogram reveal an outlier. This is the record time of
204.62 minutes with fitted value of 176.86 for the Bens of Jura Fell Race, the race
having the greatest climb. For this race, the standardized residual is 4.175 and Cook’s
distance is 4.215, the largest for the 32 observations and 13 times the next largest
value. From Figure 2.10, the Lairig Ghru Fun Run is a severe outlier when record time
is plotted against climb; yet when considered with both climb and distance predictors
it has standardized residual of only 0.66 and Cook’s distance of 0.32. Its record time
of 192.67 minutes seems very large for a climb of 2.1 thousand feet, but not at all
unusual when we take into account that it is the longest race (28 miles). Atkinson
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Figure 2.11 Plot of standardized residuals versus fitted values, for linear model predicting
record time using climb and distance.

(1986) presented other diagnostic measures and plots for these data that are beyond
the scope of this book.

---------------------------------------------------------------------

> hist(residuals(fit.cd)) # Histogram display of residuals

> quantile(rstandard(fit.cd), c(0,0.25,0.5,0.75,1))

0% 25% 50% 75% 100%

-2.0343433 -0.5684549 0.1302666 0.6630338 4.1751367

> cor(fitted(fit.cd),residuals(fit.cd)) # correlation equals zero

[1] -7.070225e-17

> mean(rstandard(fit.cd)); sd(rstandard(fit.cd))

[1] 0.03068615 # Standardized residuals have mean approximately = 0

[1] 1.105608 # and standard deviation approximately = 1

> plot(distance, rstandard(fit.cd)) # scatterplot display

> plot(fitted(fit.cd), rstandard(fit.cd))

> cooks.distance(fit.cd)

> plot(cooks.distance(fit.cd))

---------------------------------------------------------------------

When we fit the model using the glm function in R, the output states:

---------------------------------------------------------------------

Null deviance: 86340.1 on 34 degrees of freedom

Residual deviance: 2441.3 on 32 degrees of freedom

---------------------------------------------------------------------

We introduce the deviance in Chapter 4. For now, we mention that for the normal
linear model, the null deviance is the corrected TSS and the residual deviance is the
SSE. Thus, R2 = (86340.1 − 2441.3)∕86340.1 = 0.972. The difference 86340.1 −
2441.3 = 83898.8 is the SSR for the model.
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Next, we show ANOVA tables that provide SSE and the sequential SS for each
explanatory variable in the order in which it enters the model, considering both
possible sequences:

---------------------------------------------------------------------

> anova(lm(time ~ climb + distance)) # climb entered, then distance

Analysis of Variance Table

Df Sum Sq Mean Sq

climb 1 59861 59861

distance 1 24038 24038

Residuals 32 2441 76

---

> anova(lm(time ~ distance + climb)) # distance entered, then climb

Analysis of Variance Table

Df Sum Sq Mean Sq

distance 1 76793 76793

climb 1 7106 7106

Residuals 32 2441 76

---------------------------------------------------------------------

The sequential SS values differ substantially according to the order of entering
the explanatory variables into the model, because the correlation is 0.652 between
distance and climb. However, the SSE and SSR values for the full model, and hence
R2, do not depend on this. For each ANOVA table display, SSE = 2441 and SSR =
59861 + 24038 = 76793 + 7106 = 83,899.

One way this model containing only main effects fails is if the effect of distance is
greater when the climb is greater, as seems plausible. To allow the effect of distance
to depend on the climb, we add an interaction term:

---------------------------------------------------------------------

> summary(lm(time ~ climb + distance + climb:distance))

Coefficients:

Estimate Std. Error

(Intercept) -0.7672 3.9058

climb 3.7133 2.3647

distance 4.9623 0.4742

climb:distance 0.6598 0.1743

---

Residual standard error: 7.338 on 31 degrees of freedom

Multiple R-squared: 0.9807, Adjusted R-squared: 0.9788

---------------------------------------------------------------------

The effect on record time of a 1 mile increase in distance now changes from
4.962 + 0.660(0.3) = 5.16 minutes at the minimum climb of 0.3 thousand feet to
4.962 + 0.660(7.5) = 9.91 minutes at the maximum climb of 7.5 thousand feet.
As R2 has increased from 0.972 to 0.981 and adjusted R2 from 0.970 to 0.979,
this more informative summary explains about a third of the variability that had
been unexplained by the main effects model. That is, the squared partial correlation,
which summarizes the impact of adding the interaction term, is (0.981 − 0.972)∕(1 −
0.972) = 0.32.



OPTIMALITY OF LEAST SQUARES AND GENERALIZED LEAST SQUARES 67

2.7 OPTIMALITY OF LEAST SQUARES AND GENERALIZED
LEAST SQUARES

In this chapter, we have used least squares to estimate parameters in the ordinary
linear model, which assumes independent observations with constant variance. We
next show a criterion by which such estimators are optimal. We then generalize least
squares to permit observations to be correlated and to have nonconstant variance.

2.7.1 The Gauss–Markov Theorem

For the ordinary linear model, least squares provides the best possible estimator of
model parameters, in a certain restricted sense. Like most other results in this chapter,
this one does not require an assumption (such as normality) about the distribution
of the response variable. We express it here for linear combinations aT𝜷 of the
parameters, but then we apply it to the individual parameters.

Gauss–Markov theorem: Suppose E(y) = X𝜷, where X has full rank, and
var(y) = 𝜎2I. The least squares estimator 𝜷 = (XTX)−1XTy is the best linear
unbiased estimator (BLUE) of 𝜷, in this sense: For any aT𝜷, of the estimators that
are linear in y and unbiased, aT𝜷 has minimum variance.

To prove this, we express aT𝜷 in its linear form in y as

aT𝜷 = aT(XTX)−1XTy = cTy,

where cT = aT(XTX)−1XT. Suppose bTy is an alternative linear estimator of aT𝜷 that
is unbiased. Then,

E(b − c)Ty = E(bTy) − E(cTy) = aT𝜷 − aT𝜷 = 0

for all 𝜷. But this also equals (b − c)TX𝜷 = [𝜷TXT(b − c)]T for all 𝜷. Therefore14,
XT(b − c) = 0. So, (b − c) is in the error space C(X)⟂ = N(XT) for the model. Now,

var(bTy) = var[cTy + (b − c)Ty] = var(cTy) + ||b − c||2𝜎2 + 2cov[cTy, (b − c)Ty].

But since XT(b − c) = 0,

cov[cTy, (b − c)Ty] = cTvar(y)(b − c) = 𝜎2aT(XTX)−1XT(b − c) = 0.

Thus, var(bTy) ≥ var(cTy) = var(aT𝜷), with equality if and only if b = c.
From the theorem’s proof, any other linear unbiased estimator of aT𝜷 can be

expressed as aT𝜷 + dTy where E(dTy) = 0 and dTy is uncorrelated with aT𝜷; that is,

14Recall that if 𝜷TL = 𝜷TM for all 𝜷, then L = M; here we identify L = XT(b − c) and M = 0.
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the variate added to aT𝜷 is like extra noise. The Gauss–Markov theorem extends to
non-full-rank models. Using a generalized inverse of (XTX) in obtaining 𝜷, aT𝜷 is a
BLUE of an estimable function aT𝜷.

With the added assumption of normality for the distribution of y, aT𝜷 is the
minimum variance unbiased estimator (MVUE) of aT𝜷. Here, the restriction is still
unbiasedness, but not linearity in y. This follows from the Lehmann–Scheffé theorem,
which states that a function of a complete, sufficient statistic is the unique MVUE of
its expectation.

Let a have 1 in position j and 0 elsewhere. Then the Gauss–Markov theorem implies
that, for all j, var(𝛽j) takes minimum value out of all linear unbiased estimators of 𝛽j.

At first glance, the Gauss–Markov theorem is impressive, the least squares estima-
tor being declared “best.” However, the restriction to estimators that are both linear
and unbiased is severe. In later chapters, maximum likelihood (ML) estimators for
parameters in non-normal GLMs usually satisfy neither of these properties. Also, in
some cases in Statistics, the best unbiased estimator is not sensible (e.g., see Exer-
cise 2.41). In multivariate settings, Bayesian-like biased estimators often obtain a
marked improvement in mean squared error by shrinking the ML estimate toward a
prior mean15.

2.7.2 Generalized Least Squares

The ordinary linear model, for which E(y) = X𝜷 with var(y) = 𝜎2I, assumes that
the response observations have identical variances and are uncorrelated. In practice,
this is often not plausible. With count data, the variance is typically larger when the
mean is larger. With time series data, observations close together in time are often
highly correlated. With survey data, sampling designs are usually more complex than
simple random sampling, and analysts weight observations so that they receive their
appropriate influence.

A linear model with a more general structure for the covariance matrix is

E(y) = X𝜷 with var(y) = 𝜎2V,

where V need not be the identity matrix. We next see that ordinary least squares is
still relevant for a linear transformation of y, and the method then corresponds to a
weighted version of least squares on the original scale.

Suppose the model matrix X has full rank and V is a known positive definite
matrix. Then, V can be expressed as V = BBT for a square matrix B that is denoted
by V1∕2. This results from using the spectral decomposition for a symmetric matrix
as V = Q𝚲QT, where 𝚲 is a diagonal matrix of the eigenvalues of V and Q is
orthogonal16 with columns that are its eigenvectors, from which V1∕2 = Q𝚲1∕2QT

15A classic example is Charles Stein’s famous result that, in estimating a vector of normal means,
the sample mean vector is inadmissible. See Efron and Morris (1975).
16Recall that an orthogonal matrix Q is a square matrix having QQT = QTQ = I.
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using the positive square roots of the eigenvalues. Then, V−1 exists, as does V−1∕2 =
Q𝚲−1∕2QT. Let

y∗ = V−1∕2y, X∗ = V−1∕2X.

For these linearly transformed values,

E(y∗) = V−1∕2X𝜷 = X∗𝜷, var(y∗) = 𝜎2V−1∕2V(V−1∕2)T = 𝜎2I.

So y∗ satisfies the ordinary linear model, and we can apply least squares to the trans-
formed values. The sum of squared errors comparing y∗ and X∗𝜷 that is minimized
is

(y∗ − X∗𝜷)T(y∗ − X∗𝜷) = (y − X𝜷)TV−1(y − X𝜷).

The normal equations [(X∗)TX∗]𝜷 = (X∗)Ty∗ become

(XTV−1∕2V−1∕2X)𝜷 = XTV−1∕2V−1∕2y, or XTV−1(y − X𝜷) = 0.

From (2.3), the least squares solution for the transformed values is

𝜷GLS = [(X∗)TX∗]−1(X∗)Ty∗ = (XTV−1X)−1XTV−1y. (2.12)

The estimator 𝜷GLS is called the generalized least squares estimator of 𝜷. When V is
diagonal and var(yi) = 𝜎2∕wi for a known positive weight wi, as in a survey design
that gives more weight to some observations than others, 𝜷GLS is also referred to
as a weighted least squares estimator. This form of estimator arises in fitting GLMs
(Section 4.5.4).

The generalized least squares estimator has

E(𝜷GLS) = (XTV−1X)−1XTV−1E(y) = 𝜷.

Like the OLS estimator, it is unbiased. The covariance matrix is

var(𝜷GLS) = (XTV−1X)−1XTV−1(𝜎2V)V−1X(XTV−1X)−1

= 𝜎2(XTV−1X)−1.

It shares other properties of the ordinary least squares estimator, such as 𝜷 being the
BLUE estimator of 𝜷 and also the maximum likelihood estimator under the normality
assumption.

The fitted values for this more general model are

�̂� = X𝜷GLS = X(XTV−1X)−1XTV−1y.
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Here, H = X(XTV−1X)−1XTV−1 plays the role of a hat matrix. In this case, H is
idempotent but need not be symmetric, so it is not a projection matrix as defined in
Section 2.2. However, H is a projection matrix in a more general sense if we instead
define the inner product to be (w, z) = wTV−1z, as motivated by the normal equations
given above. Namely, if w ∈ C(X), say w = Xv, then

Hw = X(XTV−1X)−1XTV−1w

= X(XTV−1X)−1XTV−1Xv = Xv = w.

Also, if w ∈ C(X)⟂ = N(XT), then for all v ∈ C(X), (w, v) = wTV−1v = 0, so
Hw = 0.

The estimate of 𝜎2 in the generalized model with var(y) = 𝜎2V uses the usual
unbiased estimator for the linearly transformed values. If rank(X) = r, the estimate
is

s2 =
(y∗ − X∗𝜷)T(y∗ − X∗𝜷)

n − r
=

(y − �̂�)TV−1(y − �̂�)
n − r

.

Statistical inference for the model parameters can be based directly on the regular
inferences of the next chapter for the ordinary linear model but using the transformed
variables.

2.7.3 Adjustment Using Estimated Heteroscedasticity

This generalization of the model seems straightforward, but we have neglected a
crucial point: In applications, V itself is also often unknown and must be estimated.
Once we have done that, we can use 𝜷GLS in (2.12) with V replaced by V̂. But this
estimator is no longer unbiased nor has an exact formula for the covariance matrix,
which also must be estimated.

Since 𝜷GLS is no longer optimal once we have substituted estimated variances,
we could instead use the ordinary least squares estimator, which does not require
estimating the variances and is still unbiased and consistent (i.e., converging in
probability to 𝜷 as n → ∞). In doing so, however, we should adapt standard errors to
adjust for the departure from the ordinary linear model assumptions. An important
case (heteroscedasticity) is when V is diagonal. Let var(yi) = 𝜎2

i . Then, with xi as

row i of X, 𝜷 = (XTX)−1XTy =
(
XTX

)−1(∑n
i=1 xT

i yi

)
, so

var(𝜷) =
(
XTX

)−1

(
n∑

i=1

𝜎2
i xT

i xi

)(
XTX

)−1
.

Since var(ei) = 𝜎2
i (1 − hii), we can estimate var(𝜷) by replacing 𝜎2

i by e2
i ∕(1 − hii),

for each i.
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CHAPTER NOTES

Section 2.1: Least Squares Model Fitting

2.1 History: Harter (1974), Plackett (1972), and Stigler (1981, 1986, Chapters 1 and 4)
discussed the history of the least squares method.

2.2 Computing 𝜷: For details about how software inverts XTX or uses another method to
compute 𝜷, see McCullagh and Nelder (1989, pp. 81–89), Seber and Lee (2003, Chapter
11), Wood (2006, Chapter 1), or do an Internet search on the Gauss–Jordan elimination
method (e.g., see the Gaussian elimination article in Wikipedia).

Section 2.2: Projections of Data onto Model Spaces

2.3 Geometry: For more on the geometry of least squares for linear models, see Rawlings
et al. (1998, Chapter 6), Taylor (2013), and Wood (2006, Section 1.4).

Section 2.4: Summarizing Variability in a Linear Model

2.4 Correlation measures: The correlation is due to Galton (1888), but later received much
more attention from Karl Pearson, such as in Pearson (1920). Yule (1897), in extending
Galton’s ideas about correlation and regression to multiple variables, introduced the
multiple correlation and partial correlation. Wherry (1931) justified adjusted R2 as a
reduced-bias version of R2.

Section 2.5: Residuals, Leverage, and Influence

2.5 Influence: For details about influence measures and related diagnostics, see Belsley et al.
(1980), Cook (1977, 1986), Cook and Weisberg (1982), Davison and Tsai (1992), Fox
(2008, Chapters 11–13), and Hoaglin and Welsch (1978).

Section 2.7: Optimality of Least Squares and Generalized Least Squares

2.6 Gauss–Markov and GLS: The Gauss–Markov theorem is named after results estab-
lished in 1821 by Carl Friedrich Gauss and published in 1912 by the Russian probabilist
Andrei A. Markov. Generalized least squares was introduced by the New Zealand mathe-
matician/statistician A. C. Aitken (1935), and the model with general covariance structure
is often called the Aitken model.

EXERCISES

2.1 For independent observations y1,… , yn from a probability distribution with
mean 𝜇, show that the least squares estimate of 𝜇 is ȳ.

2.2 In the linear model y = X𝜷 + 𝝐, suppose 𝜖i has the Laplace density, f (𝜖) =
(1∕2b) exp(−|𝜖|∕b). Show that the ML estimate minimizes

∑
i |yi − 𝜇i|.

2.3 Consider the least squares fit of the linear model E(yi) = 𝛽0 + 𝛽1xi.

a. Show that 𝛽1 = [
∑

i(xi − x̄)(yi − ȳ)]∕[
∑

i(xi − x̄)2].
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b. Derive var(𝛽1). State the estimated standard error of 𝛽1, and discuss how its
magnitude is affected by (i) n, (ii) the variability around the fitted line, (iii)
the sample variance of x. In experiments with control over setting values
of x, what does (iii) suggest about the optimal way to do this?

2.4 In the linear model E(yi) = 𝛽0 + 𝛽1xi, suppose that instead of observing xi we
observe x∗i = xi + ui, where ui is independent of xi for all i and var(ui) = 𝜎2

u .
Analyze the expected impact of this measurement error on 𝛽1 and r.

2.5 In the linear model E(yi) = 𝛽0 + 𝛽1xi, consider the fitted line that minimizes
the sum of squared perpendicular distances from the points to the line. Is this
fit invariant to the units of measurement of either variable? Show that such
invariance is a property of the usual least squares fit.

2.6 For the model in Section 2.3.4 for the two-way layout, construct a full-rank
model matrix. Show that the normal equations imply that the marginal row
and column sample totals for y equal the row and column totals of the fitted
values.

2.7 Refer to the analysis of covariance model 𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 for quanti-
tative x1 and binary x2 for two groups, with xi2 = 0 for group 1 and xi2 = 1 for
group 2. Denote the sample means on x1 and y by (x̄(1)

1 , ȳ(1)) for group 1 and

(x̄(2)
1 , ȳ(2)) for group 2. Show that the least squares fit corresponds to parallel

lines for the two groups, which pass through these points. (At the overall x̄1,
the fitted values 𝛽0 + 𝛽1x̄1 and 𝛽0 + 𝛽1x̄1 + 𝛽2 are called adjusted means of y.)

2.8 By the QR decomposition, X can be decomposed as X = QR, where Q consists
of the first p columns of a n × n orthogonal matrix and R is a p × p upper
triangular matrix. Show that the least squares estimate 𝜷 = R−1QTy.

2.9 In an ordinary linear model with two explanatory variables x1 and x2 having
sample corr(x∗1, x∗2) > 0, show that the estimated corr(𝛽1, 𝛽2) < 0.

2.10 For a projection matrix P, for any y in R
n show that Py and y − Py are

orthogonal vectors; that is, the projection is an orthogonal projection.

2.11 Prove that I − 1
n

1n1T
n is symmetric and idempotent (i.e., a projection matrix),

and identify the vector to which it projects an arbitrary y.

2.12 For a full-rank model matrix X, show that rank(H) = rank(X), where H =
X(XTX)−1XT.

2.13 From Exercise 1.17, if A is nonsingular and X∗ = XA (such as in using a
different parameterization for a factor), then C(X∗) = C(X). Show that the
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linear models with the model matrices X and X∗ have the same hat matrix and
the same fitted values.

2.14 For a linear model with full rank X and projection matrix PX, show that
PXX = X and that C(PX) = C(X).

2.15 Denote the hat matrix by P0 for the null model and H for any linear model that
contains an intercept term. Explain why P0H = HP0 = P0. Show this implies
that each row and each column of H sums to 1.

2.16 When X does not have full rank, let’s see why PX = X(XTX)−XT is invariant
to the choice of generalized inverse. Let G and H be two generalized inverses
of XTX. For an arbitrary v ∈ R

n, let v = v1 + v2 with v1 = Xb ∈ C(X) for
some b.

a. Show that vTXGXTX = vTX, so that XGXTX = X for any generalized
inverse.

b. Show that XGXTv = XHXTv, and thus XGXT is invariant to the choice of
generalized inverse.

2.17 When X has less than full rank and we use a generalized inverse to
estimate 𝜷, explain why the space of possible least squares solutions 𝜷
does not form a vector space. (For a solution, 𝜷, this space is the set of
�̃� = 𝜷 + 𝜸 for all 𝜸 ∈ N(X); such a shifted vector space is called an affine
space.)

2.18 In R
3, let W be the vector subspace spanned by (1, 0, 0), that is, the “x-

axis” in three-dimensional space. Specify its orthogonal complement. For any
y in R

3, show its orthogonal decomposition y = y1 + y2 with y1 ∈ W and
y2 ∈ W⟂.

2.19 Two vectors that are orthogonal or that have zero correlation are linearly inde-
pendent. However, orthogonal vectors need not be uncorrelated, and uncorre-
lated vectors need not be orthogonal.

a. Show this with two particular pairs of 4 × 1 vectors.

b. Suppose u and v have corr(u, v) = 0. Explain why the centered ver-
sions u∗ = (u − ū) and v∗ = (v − v̄) are orthogonal (where, e.g., ū denotes
the vector having the mean of the elements of u in each component).
Show that u and v themselves are orthogonal if and only if ū = 0, v̄ = 0,
or both.

c. If u and v are orthogonal, then explain why they also have corr(u, v) = 0 iff
ū = 0, v̄ = 0, or both. (From (b) and (c), orthogonality and zero correlation
are equivalent only when ū = 0 and/or v̄ = 0. Zero correlation means that
the centered vectors are perpendicular. Centering typically changes the
angle between the two vectors.)
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2.20 Suppose that all the parameters in a linear model are orthogonal (Section 2.2.4).

a. When the model contains an intercept term, show that orthogonality implies
that each column in X after the first (for the intercept) has mean 0; i.e.,
each explanatory variable is centered. Thus, based on the previous exercise,
explain why each pair of explanatory variables is uncorrelated.

b. When the explanatory variables for the model are all centered, explain why
the intercept estimate does not change as the variables are added to the
linear predictor. Show that that estimate equals ȳ in each case.

2.21 Using the normal equations for a linear model, show that SSE decomposes
into

(y − X𝜷)T(y − X𝜷) = yTy − 𝜷TXTy.

Thus, for nested M1 and M0, explain why

SSR(M1 ∣ M0) = 𝜷T
1 XT

1 y − 𝜷T
0 XT

0 y.

2.22 In Section 2.3.1 we showed the sum of squares decomposition for the null
model E(yi) = 𝛽, i = 1,… , n. Suppose you have n = 2 observations.

a. Specify the model space C(X) and its orthogonal complement, and find PX
and (I − PX).

b. Suppose y1 = 5 and y2 = 10. Find 𝛽 and �̂�. Show the sum of squares
decomposition, and find s. Sketch a graph that shows y, �̂�, C(X), and the
projection of y to �̂�.

2.23 In complete contrast to the null model is the saturated model, E(yi) = 𝛽i,
i = 1,… , n, which has a separate parameter for each observation. For this
model:

a. Specify X, the model space C(X), and its orthogonal complement, and find
PX and (I − PX).

b. Find 𝜷 and �̂� in terms of y. Find s, and explain why this model is not
sensible for practice.

2.24 Verify that the n × n identity matrix I is a projection matrix, and describe the
linear model to which it corresponds.

2.25 Section 1.4.2 stated “When X has full rank, 𝜷 is identifiable, and then all
linear combinations 𝓵T𝜷 are estimable.” Find a such that E(aTy) = 𝓵T𝜷 for
all 𝜷.

2.26 For a linear model with p explanatory variables, explain why sample multiple
correlation R = 0 is equivalent to sample corr(y, x∗j) = 0 for j = 1,… , p.

2.27 In Section 2.5.1 we noted that for linear models containing an intercept
term, corr(�̂�, e) = 0, and plotting e against �̂� helps detect violations of model
assumptions. However, it is not helpful to plot e against y. To see why not,
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using formula (2.5), show that (a) the regression of y on e has slope 1, (b) the

regression of e on y has slope 1 − R2, (c) corr(y, e) =
√

1 − R2.

2.28 Derive the hat matrix for the centered-data formulation of the linear model
with a single explanatory variable. Explain what factors cause an observation
to have a relatively large leverage.

2.29 Show that an observation in a one-way layout has the maximum possible
leverage if it is the only observation for its group.

2.30 Consider the leverages for a linear model with full-rank model matrix and p
parameters.

a. Prove that the leverages fall between 0 and 1 and have a mean of p∕n.

b. Show how expression (2.10) for hii simplifies when each pair of explanatory
variables is uncorrelated.

2.31 a. Give an example of actual variables y, x1, x2 for which you would expect
𝛽1 ≠ 0 in the model E(yi) = 𝛽0 + 𝛽1xi1 but 𝛽1 ≈ 0 in the model E(yi) =
𝛽0 + 𝛽1xi1 + 𝛽2xi2 (e.g., perhaps x2 is a “lurking variable,” such that the
association of x1 with y disappears when we adjust for x2).

b. Let r1 = corr(y, x∗1), r2 = corr(y, x∗2), and let R be the multiple correlation
with predictors x1 and x2. For the case described in (a), explain why you
would expect R to be close to |r2|.

c. For the case described in (a), which would you expect to be relatively near
SSR(x1, x2): SSR(x1) or SSR(x2)? Why?

2.32 In studying the model for the one-way layout in Section 2.3.2, we found the
projection matrices and sums of squares and constructed the ANOVA table.

a. We did the analysis for a non-full-rank model matrix X. Show that the
simple form for (XTX)− stated there is in fact a generalized inverse.

b. Verify the corresponding projection matrix PX specified there.

c. Verify that yT(I − PX)y is the within-groups sum of squares stated there.

2.33 Refer to the previous exercise. Conduct a similar analysis, but making param-
eters identifiable by setting 𝛽0 = 0. Specify X and find PX and yT(I − PX)y.

2.34 From the previous exercise, setting 𝛽0 = 0 results in {𝛽i = ȳi}. Explain why
imposing only this constraint is inadequate for models with multiple factors,
and a constraint such as 𝛽1 = 0 is more generalizable. Illustrate for the two-way
layout.

2.35 Consider the main-effects linear model for the two-way layout with one obser-
vation per cell. Section 2.3.4 stated the projection matrix Pr that generates the
treatment means. Find the projection matrix Pc that generates the block means.
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2.36 For the two-way r × c layout with one observation per cell, find the hat matrix.

2.37 In the model for the balanced one-way layout, E(yij) = 𝛽0 + 𝛽i with identi-
cal ni, show that {𝛽i} are orthogonal with 𝛽0 if we impose the constraint∑

i 𝛽i = 0.

2.38 Section 2.4.5 considered the “main effects” model for a balanced 2×2 layout,
showing there is orthogonality between each pair of parameters when we
constrain

∑
i 𝛽i =

∑
j 𝛾j = 0.

a. If you instead constrain 𝛽1 = 𝛾1 = 0, show that pairs of columns of X are
uncorrelated but not orthogonal.

b. Explain why 𝛽2 for the coding 𝛽1 = 0 in (a) is identical to 2𝛽2 for the
coding 𝛽1 + 𝛽2 = 0.

c. Explain how the results about constraints and orthogonality generalize if
the model also contains a term 𝛿ij to permit interaction between A and B in
their effects on y.

2.39 Extend results in Section 2.3.4 to the r × c factorial with n observations per
cell.

a. Express the orthogonal decomposition of yijk to include main effects, inter-
action, and residual error.

b. Show how Pr generalizes from the matrix given in Section 2.3.4.

c. Show the relevant sum of squares decomposition in an ANOVA table
that also shows the df values. (It may help you to refer to (b) and (c) in
Exercise 3.13.)

2.40 A genetic association study considers a large number of explanatory variables,
with nearly all expected to have no effect or a very minor effect on the
response. An alternative to the least squares estimator 𝜷 for the linear model
incorporating those explanatory variables is the null model and its estimator,
�̃� = 0 except for the intercept. Is �̃� unbiased? How does var(𝛽j) compare to

var(𝛽j)? Explain why
∑

j E(𝛽j − 𝛽j)
2 <

∑
j E(𝛽j − 𝛽j)

2 unless n is extremely
large.

2.41 The Gauss–Markov theorem shows the best way to form a linear unbiased
estimator in a linear model. Are unbiased estimators always sensible? Consider
a sequence of independent Bernoulli trials with parameter 𝜋.

a. Let y be the number of failures before the first success. Show that the
only unbiased estimator (and thus the best unbiased estimator) of 𝜋 is
T(y) = 1 if y = 0 and T(y) = 0 if y > 0. Show that the ML estimator of
𝜋 is �̂� = 1∕(1 + y). Although biased, is this a more efficient estimator?
Why?

b. For n trials, show there is no unbiased estimator of the logit, log[𝜋∕(1 − 𝜋)].
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2.42 In some applications, such as regressing annual income on the number of
years of education, the variance of y tends to be larger at higher values of x.
Consider the model E(yi) = 𝛽xi, assuming var(yi) = xi𝜎

2 for unknown 𝜎2.

a. Show that the generalized least squares estimator minimizes
∑

i(yi −
𝛽xi)

2∕xi (i.e., giving more weight to observations with smaller xi) and
has 𝛽GLS = ȳ∕x̄, with var(𝛽GLS) = 𝜎2∕(

∑
i xi).

b. Show that the ordinary least squares estimator is 𝛽 = (
∑

i xiyi)∕(
∑

i x2
i ) and

has var(𝛽) = 𝜎2(
∑

i x3
i )∕(

∑
i x2

i )2.

c. Show that var(𝛽) ≥ var(𝛽GLS).

2.43 Write a simple program to simulate data so that when you plot residuals against
x after fitting the bivariate linear model E(yi) = 𝛽0 + 𝛽1xi, the plot shows
inadequacy of (a) the linear predictor, (b) the constant variance assumption.

2.44 Exercise 1.21 concerned a study comparing forced expiratory volume (y =
fev1 in the data file FEV.dat at the text website) for three drugs, adjusting for
a baseline measurement. For the R output shown, using notation you define,
state the model that was fitted, and interpret all results shown.

---------------------------------------------------------------

> summary(lm(fev1 ~ base + factor(drug)))

Estimate Std. Error

(Intercept) 1.1139 0.2999

base 0.8900 0.1063

factor(drug)b 0.2181 0.1375

factor(drug)p -0.6448 0.1376

---

Residual standard error: 0.4764 on 68 degrees of freedom

Multiple R-squared: 0.6266, Adjusted R-squared: 0.6101

> anova(lm(fev1 ~ base + factor(drug)))

Analysis of Variance Table

Df Sum Sq Mean Sq

base 1 16.2343 16.2343

factor(drug) 2 9.6629 4.8315

Residuals 68 15.4323 0.2269

> quantile(rstandard(lm(fev1 ~ base + factor(drug))))

0% 25% 50% 75% 100%

-2.0139 -0.7312 -0.1870 0.6341 2.4772

---------------------------------------------------------------

2.45 A data set shown partly in Table 2.4 and fully available in the Optics.dat file
at the text website is taken from a math education graduate student research
project. For the optics module in a high school freshman physical science
class, the randomized study compared two instruction methods (1 = model
building inquiry, 0 = traditional scientific). The response variable was an
optics post-test score. Other explanatory variables were an optics pre-test
score, gender (1 = female, 0 = male), OAA (Ohio Achievement Assessment)
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reading score, OAA science score, attendance for optics module (number of
days), and individualized education program (IEP) for student with disabilities
(1 = yes, 0 = no).

a. Fit the linear model with instruction type, pre-test score, and attendance as
explanatory variables. Summarize and interpret the software output.

b. Find and interpret diagnostics, including residual plots and measures of
influence, for this model.

Table 2.4 Partial Optics Instruction Dataa for Exercise 2.45

ID Post Inst Pre Gender Reading Science Attend IEP

1 50 1 50 0 368 339 14 0
2 67 1 50 0 372 389 11 0
…
37 55 0 42 1 385 373 7 0

Source: Thanks to Harry Khamis, Wright State University, Statistical Consulting Center, for these data,
provided with client permission. Complete data (n = 37) are in the file Optics.dat at www.stat.ufl
.edu/~aa/glm/data.

2.46 Download from the text website the data file Crabs.dat introduced in Section
1.5.1. Fit the linear model with both weight and color as explanatory variables
for the number of satellites for each crab, without interaction, treating color
as qualitative. Summarize and interpret the software output, including the
prediction equation, error variance, R2, adjusted R2, and multiple correlation.
Plot the residuals against the fitted values for the model, and interpret. What
explains the lower nearly straight-line boundary? By contrast, what residual
pattern would you expect if the response variable is normal and the linear
model holds with constant variance?

2.47 The horseshoe crab dataset17 Crabs3.dat at www.stat.ufl.edu/~aa
/glm/data collects several variables for female horseshoe crabs that have
males attached during mating, over several years at Seahorse Key, Florida.
Use linear modeling to describe the relation between y = attached male’s
carapace width (AMCW) and x1 = female’s carapace width (FCW), x2 =
female’s color (Fcolor, where 1 = light, 3 = medium, 5 = dark), and x3 =
female’s surface condition (Fsurf, where lower scores represent better condi-
tion). Summarize and interpret the output, including the prediction equation,
error variance, R2, adjusted R2, multiple correlation, and model diagnostics.

2.48 Refer to the anorexia study in Exercise 1.24. For the model fitted there, interpret
the output relating to predictive power, and check the model using residuals
and influence measures. Summarize your findings.

17Thanks to Jane Brockmann for making these data available.

http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
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2.49 In later chapters, we use functions in the useful R package, VGAM. In that
package, the venice data set contains annual data between 1931 and 1981 on
the annual maximum sea level (variable r1) in Venice. Analyze the relation
between year and maximum sea level. Summarize results in a two-page report,
with software output as an appendix. (An alternative to least squares uses
ML with a distribution suitable for modeling extremes, as in Davison (2003,
p. 475).)



C H A P T E R 3

Normal Linear Models: Statistical
Inference

Chapter 2 introduced least squares fitting of ordinary linear models. For n independent
observations y = ( y1,… , yn)T, with 𝝁 = (𝜇1,… ,𝜇n)T for 𝜇i = E( yi) and a model
matrix X and parameter vector 𝜷, this model states that

𝝁 = X𝜷 with V = var(y) = 𝜎2I.

We now add to this model the assumption that {yi} have normal distributions. The
model is then the normal linear model. This chapter presents the foundations of
statistical inference about the parameters of the normal linear model.

We begin this chapter by reviewing relevant distribution theory for normal linear
models. Quadratic forms incorporating normally distributed response variables and
projection matrices generate chi-squared distributions. One such result, Cochran’s
theorem, is the basis of significance tests about 𝜷 in the normal linear model. Section
3.2 shows how the tests use the chi-squared quadratic forms to construct test statistics
having F distributions. A useful general result about comparing two nested models
is also derived as a likelihood-ratio test. Section 3.3 presents confidence intervals
for elements of 𝜷 and expected responses as well as prediction intervals for future
observations. Following an example in Section 3.4, Section 3.5 presents methods for
making multiple inferences with a fixed overall error rate, such as multiple comparison
methods for constructing simultaneous confidence intervals for differences between
all pairs of a set of means. Without the normality assumption, the exact inference
methods of this chapter apply to the ordinary linear model in an approximate manner
for large n.

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

80



DISTRIBUTION THEORY FOR NORMAL VARIATES 81

3.1 DISTRIBUTION THEORY FOR NORMAL VARIATES

Statistical inference for normal linear models uses sampling distributions derived
from quadratic forms with multivariate normal random variables. We now review the
multivariate normal distribution and related sampling distributions.

3.1.1 Multivariate Normal Distribution

Let N(𝝁, V) denote the multivariate normal distribution with mean 𝝁 and covariance
matrix V. If y = ( y1,… , yn)T has this distribution and V is positive definite, then the
probability density function (pdf) is

f ( y) = (2𝜋)−
n
2 |V|− 1

2 exp
[
−1

2
( y − 𝝁)TV−1( y − 𝝁)

]
,

where |V| denotes the determinant of V. Here are a few properties, when y ∼ N(𝝁, V).

� If x = Ay + b, then x ∼ N(A𝝁 + b, AVAT).
� Suppose that y partitions as

y =
(

y1

y2

)
, with 𝝁 =

(
𝝁1

𝝁2

)
and V =

(
V11 V12

V21 V22

)
.

The marginal distribution of ya is N(𝝁a, Vaa), a = 1, 2. The conditional distri-
bution

( y1 ∣ y2) ∼ N
[
𝝁1 + V12V−1

22 ( y2 − 𝝁2), V11 − V12V−1
22 V21

]
.

In addition, y1 and y2 are independent if and only if V12 = 0.
� From the previous property, if V = 𝜎2I, then yi ∼ N(𝜇i, 𝜎

2) and {yi} are inde-
pendent.

The normal linear model assumes that y ∼ N(𝝁, V) with V = 𝜎2I. The least squares
estimator 𝜷 and the residuals e also have multivariate normal distributions, since they
are linear functions of y, but their elements are typically correlated. This estimator 𝜷
is also the maximum likelihood (ML) estimator under the normality assumption (as
we showed in Section 2.1).

3.1.2 Chi-Squared, F, and t Distributions

Let 𝜒2
p denote a chi-squared distribution with p degrees of freedom (df ). A chi-

squared random variable is nonnegative with mean = df and variance = 2(df ). Its
distribution1 is skewed to the right but becomes more bell-shaped as df increases.

1The pdf is the special case of the gamma distribution pdf (4.29) with shape parameter k = df∕2.
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Recall that when y1,… , yp are independent standard normal random variables,∑p
i=1 y2

i ∼ 𝜒2
p . In particular, if y ∼ N(0, 1), then y2 ∼ 𝜒2

1 . More generally

� If a p-dimensional random variable y ∼ N(𝝁, V) with V nonsingular of rank p,
then

x = (y − 𝝁)TV−1(y − 𝝁) ∼ 𝜒2
p .

Exercise 3.1 outlines a proof.

� If z ∼ N(0, 1) and x ∼ 𝜒2
p , with x and z independent, then

z√
x∕p

∼ tp,

the t distribution with df = p.

The t distribution is symmetric around 0 with variance = df∕(df − 2) when df > 2.
The term x∕p in the denominator is a mean of p independent squared N(0, 1) random
variables, so as p → ∞ it converges in probability to their expected value of 1.
Therefore, the t distribution converges to a N(0, 1) distribution as df increases.

Here is a classic way the t distribution occurs for independent responses y1,… , yn
from a N(𝜇, 𝜎2) distribution with sample mean ȳ and sample variance s2: For testing
H0: 𝜇 = 𝜇0, the test statistic z =

√
n(ȳ − 𝜇0)∕𝜎 has the N(0, 1) null distribution.

Also, s2∕𝜎2 is a 𝜒2
n−1 variate x = (n − 1)s2∕𝜎2 divided by its df . Since ȳ and s2 are

independent for independent observations from a normal distribution, under H0

t = z√
x∕(n − 1)

=
ȳ − 𝜇0

s∕
√

n
∼ tn−1.

Larger values of |t| provide stronger evidence against H0.

� If x ∼ 𝜒2
p and y ∼ 𝜒2

q , with x and y independent, then

x∕p

y∕q
∼ Fp,q,

the F distribution with df1 = p and df2 = q.

An F random variable takes nonnegative values. When df2 > 2, it has mean =
df2∕(df2 − 2), approximately 1 for large df2. We shall use this distribution for testing
hypotheses in ANOVA and regression by taking a ratio of independent mean squares.
For a t random variable, t2 has the F distribution with df1 = 1 and df2 equal to the df
for that t.
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3.1.3 Noncentral Distributions

In significance testing, to analyze the behavior of test statistics when null hypotheses
are false, we use noncentral sampling distributions that occur under parameter values
from the alternative hypothesis. Such distributions determine the power of a test
(i.e., the probability of rejecting H0), which can be analyzed as a function of the
actual parameter value. When observations have a multivariate normal distribution,
sampling distributions in such non-null cases contain the ones just summarized as
special cases.

Let 𝜒2
p,𝜆 denote a noncentral chi-squared distribution with df = p and with non-

centrality parameter 𝜆. This is the distribution of x =
∑p

i=1 y2
i in which {yi} are

independent with yi ∼ N(𝜇i, 1) and 𝜆 =
∑p

i=1 𝜇
2
i . For this distribution2, E(x) = p + 𝜆

and var(x) = 2(p + 2𝜆). The ordinary (central) chi-squared distribution is the special
case with 𝜆 = 0.

� If a p-dimensional random variable y ∼ N(𝝁, V) with V nonsingular of rank p,
then

x = yTV−1y ∼ 𝜒2
p,𝜆 with 𝜆 = 𝝁TV−1𝝁.

The construction of the noncentral chi-squared from a sum of squared independent
N(𝜇i, 1) random variables results when V = I.

� If z ∼ N(𝜇, 1) and x ∼ 𝜒2
p , with x and z independent, then

t = z√
x∕p

∼ tp,𝜇,

the noncentral t distribution with df = p and noncentrality 𝜇.

The noncentral t distribution is unimodal, but skewed in the direction of the sign
of 𝜇 = E(z). When p > 1 and 𝜇 ≠ 0, its mean E(t) ≈ [1 − 3∕(4p − 1)]−1𝜇, which
is near 𝜇 but slightly larger in absolute value. For large p, the distribution of t is
approximately the N(𝜇, 1) distribution.

� If x ∼ 𝜒2
p,𝜆 and y ∼ 𝜒2

q , with x and y independent, then

x∕p

y∕q
∼ Fp,q,𝜆,

the noncentral F distribution with df1 = p, df2 = q, and noncentrality 𝜆.

2Here is an alternative way to define noncentrality: Let z ∼ Poisson(𝜙) and (x ∣ z) ∼ 𝜒2
p+2z. Then

unconditionally x ∼ 𝜒2
p,𝜙. This noncentrality 𝜙 relates to the noncentrality 𝜆we defined by 𝜙 = 𝜆∕2.
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For large df2, the noncentral F has mean approximately 1 + 𝜆∕df1, which increases
in 𝜆 from the approximate mean of 1 for the central case.

As reality deviates farther from a particular null hypothesis, the noncentrality 𝜆
increases. The noncentral chi-squared and noncentral F distributions are stochasti-
cally increasing in 𝜆. That is, evaluated at any positive value, the cumulative distri-
bution function (cdf) decreases as 𝜆 increases, so values of the statistic tend to be
larger.

3.1.4 Normal Quadratic Forms with Projection Matrices Are Chi-Squared

Two results about quadratic forms involving normal random variables are espe-
cially useful for statistical inference with normal linear models. The first generalizes
the above quadratic form result for the noncentral chi-squared, which follows with
A = V−1.

� Suppose y ∼ N(𝝁, V) and A is a symmetric matrix. Then,

yTAy ∼ 𝜒2
r,𝝁TA𝝁

⇔ AV is idempotent of rank r.

For the normal linear model, the n independent observations y ∼ N(𝝁, 𝜎2I) with
𝝁 = X𝜷, and so y∕𝜎 ∼ N(𝝁∕𝜎, I). By this result, if P is a projection matrix (which is
symmetric and idempotent) with rank r, then yTPy∕𝜎2 ∼ 𝜒2

r,𝝁TP𝝁∕𝜎2
. Applying the

result with the standardized normal variables (y − 𝝁)∕𝜎 ∼ N(0, I), we have

Normal quadratic form with projection matrix and chi-squared: Suppose
y ∼ N(𝝁, 𝜎2I) and P is symmetric. Then,

1
𝜎2

(y − 𝝁)TP(y − 𝝁) ∼ 𝜒2
r ⇔ P is a projection matrix of rank r.

Cochran (1934) showed3 this result, which also provides an interpretation for degrees
of freedom.

� Since the df for the chi-squared distribution of a quadratic form with a normal
linear model equals the rank of P, degrees of freedom represent the dimension
of the vector subspace to which P projects.

The following key result also follows from Cochran (1934), building on the first
result.

3From Cochran’s result I, since a symmetric matrix whose eigenvalues are 0 and 1 is idempotent.
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Cochran’s theorem: Suppose n observations y ∼ N(𝝁, 𝜎2I) and P1,… , Pk
are projection matrices having

∑
i Pi = I. Then, {yTPiy} are independent and( 1

𝜎2

)
yTPiy ∼ 𝜒2

ri,𝜆i
where ri = rank(Pi) and 𝜆i =

1
𝜎2𝝁

TPi𝝁, i = 1,… , k, with∑
i ri = n.

If we replace y by (y − 𝝁) in the quadratic forms, we obtain central chi-squared
distributions (𝜆i = 0). This result is the basis of significance tests for parameters in
normal linear models. The proof of the independence result shows that all pairs of
projection matrices in this decomposition satisfy PiPj = 0.

3.1.5 Proof of Cochran’s Theorem

We next show a proof4 of Cochran’s theorem. You may wish to skip these techni-
cal details for now and go to the next section, which uses this result to construct
significance tests for the normal linear model.

We first show that if y ∼ N(𝝁, 𝜎2I) and P is a projection matrix having rank r, then( 1
𝜎2

)
yTPy ∼ 𝜒2

r,𝜆 with 𝜆 = 1
𝜎2𝝁

TP𝝁. Since P is symmetric and idempotent with rank
r, its eigenvalues are 1 (r times) and 0 (n − r times). By the spectral decomposition
of a symmetric matrix, we can express P = Q𝚲QT, where 𝚲 is a diagonal matrix
of (1, 1,… , 1, 0,… , 0), the eigenvalues of P, and Q is an orthogonal matrix with
columns that are the eigenvectors of P. Let z = QTy∕𝜎. Then, z ∼ N(QT𝝁∕𝜎, I),
and

( 1
𝜎2

)
yTPy = zT𝚲z =

∑r
i=1 z2

i . Since each zi is normal with standard deviation

1,
∑r

i=1 z2
i has a noncentral chi-squared distribution with df = r and noncentrality

parameter

r∑
i=1

[E(zi)]
2 = [E(𝚲z)]T[E(𝚲z)] =

( 1
𝜎2

)
[𝚲QT𝝁]T[𝚲QT𝝁]

=
( 1
𝜎2

)
𝝁TQ𝚲QT𝝁 =

( 1
𝜎2

)
𝝁TP𝝁.

Now we consider k quadratic forms with k projection matrices that are a decom-
position of I, the n × n identity matrix. The rank of a projection matrix is its trace, so∑

i ri =
∑

itrace(Pi) = trace(
∑

i Pi) = trace(I) = n. We apply the spectral decompo-
sition to each projection matrix, with Pi = Qi𝚲iQ

T
i , where 𝚲i is a diagonal matrix of

(1, 1,… , 1, 0,… , 0) with ri entries that are 1. By the form of 𝚲i, this is identical to

Pi = Q̃iIri
Q̃T

i = Q̃iQ̃
T
i , where Q̃i is a n × ri matrix of the first ri columns of Qi. Note

that Q̃T
i Q̃i = Iri

. We stack the {Q̃i} together as

Q = [Q̃1 : Q̃2 : ⋯ : Q̃k],

4This proof is based on one in Monahan (2008, pp. 113–114).



86 NORMAL LINEAR MODELS: STATISTICAL INFERENCE

for which

QQT = Q̃1Q̃T
1 +⋯ + Q̃kQ̃T

k = P1 +⋯ + Pk = In.

Thus, Q is an orthogonal n × n matrix and also QTQ = In and Q̃T
i Q̃j = 0 for i ≠ j. So

QTy ∼ N(QT𝝁, 𝜎2I), and its components {Q̃
T
i y} are independent, as are {‖Q̃

T
i y‖2 =

yTQ̃iQ̃
T
i y = yTPiy}. Note5 also that for i ≠ j, PiPj = Q̃iQ̃

T
i Q̃jQ̃

T
j = 0.

3.2 SIGNIFICANCE TESTS FOR NORMAL LINEAR MODELS

We now use Cochran’s theorem to derive fundamental significance tests for the normal
linear model. We first revisit the one-way layout and then present inference for the
more general context of comparing two nested normal linear models.

3.2.1 Example: ANOVA for the One-Way Layout

For the one-way layout (introduced in Sections 1.3.3 and 2.3.2), let yij denote obser-
vation j in group i, for i = 1,… , c and j = 1,… , ni, with n =

∑
i ni. The observations

are assumed to be independent. The linear predictor for 𝜇i = E( yij) is

E( yij) = 𝛽0 + 𝛽i,

with a constraint such as 𝛽1 = 0. We construct a significance test of H0: 𝜇1 = ⋯ = 𝜇c,
assuming that {yij ∼ N(𝜇i, 𝜎

2)}. Under H0, which is equivalently H0: 𝛽1 = ⋯ = 𝛽c,
the model simplifies to the null model, E( yij) = 𝛽0 for all i and j.

The projection matrix PX for this model is a block-diagonal matrix with compo-
nents 1

ni
1ni

1T
ni

, shown in Equation 2.6 of Section 2.3.2. Let P0 = 1
n
1n1T

n denote the

projection matrix for the null model. We use the decomposition

I = P0 + (PX − P0) + (I − PX).

Each of the three components is a projection matrix, so we can apply Cochran’s
theorem with P1 = P0, P2 = PX − P0, and P3 = I − PX. The ranks of the components,
which equal their traces, are 1, c − 1, and n − c.

From Section 2.3.3, the corrected total sum of squares (TSS) decomposes into two
parts,

yT(PX − P0)y =
c∑

i=1

ni(ȳi − ȳ)2, yT(I − PX)y =
c∑

i=1

ni∑
j=1

( yij − ȳi)
2,

5The result that PiPj = 0 is also a special case of the stronger result about the decomposition of
projection matrices stated at the end of Section 2.1.1.
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the “between-groups” and “within-groups” sums of squares. By Cochran’s theorem,

1
𝜎2

c∑
i=1

ni(ȳi − ȳ)2 ∼ 𝜒2
c−1,𝜆, with 𝜆 = 1

𝜎2
𝝁T(PX − P0)𝝁,

1
𝜎2

[
c∑

i=1

ni∑
j=1

( yij − ȳi)
2

]
∼ 𝜒2

n−c,

and the quadratic forms are independent. The second one has noncentrality 0 because
𝝁T(I − PX)𝝁 = 𝝁T(𝝁 − PX𝝁) = 𝝁T0 = 0. As a consequence, the test statistic

F =
∑c

i=1 ni(ȳi − ȳ)2∕(c − 1)∑c
i=1

∑ni
j=1( yij − ȳi)2∕(n − c)

∼ Fc−1,n−c,𝜆.

Using the expressions for P0 and PX, you can verify that 𝝁TPX𝝁 =
∑c

i=1 ni𝜇
2
i

and 𝝁TP0𝝁 = n�̄�2, where �̄� =
∑

i ni𝜇i∕n. Thus, the noncentrality simplifies to 𝜆 =
1
𝜎2

∑c
i=1 ni(𝜇i − �̄�)2. Under H0, 𝜆 = 0, and the F test statistic has an F distribution

with df1 = c − 1 and df2 = n − c. Larger F values are more contradictory to H0, so
the P-value is the right-tail probability from that distribution above the observed test
statistic value, Fobs. When H0 is false, 𝜆 and the power of the test increase as {ni}
increase and as the variability in {𝜇i} increases.

This significance test for the one-way layout is known as (one-way) analysis
of variance, due to R. A. Fisher (1925). To complete the ANOVA table shown in
Table 2.1, we include mean squares, which are ratios of the two SS values to their
df values, and the F statistic as the ratio of those mean squares. The table has the
form shown in Table 3.1, and would also include the P-value, PH0

(F > Fobs). The
first line refers to the null model, which specifies a common mean for all groups.
Often, the ANOVA table does not show this line, essentially assuming the intercept
is in the model. The table then shows the total sum of squares after subtracting
nȳ2, giving the corrected total sum of squares, TSS =

∑
i
∑

j( yij − ȳ)2 based on
df = n − 1.

Table 3.1 Complete ANOVA Table for the Normal Linear Model for the One-Way
Layout

Source df Sum of Squares Mean Square Fobs

Mean 1 nȳ2

Group c − 1
∑

i ni(ȳi − ȳ)2
∑

i ni(ȳi−ȳ)2

c−1

∑
i ni(ȳi−ȳ)2∕(c−1)∑

i
∑

j( yij−ȳi)2∕(n−c)

Error n − c
∑

i

∑
j( yij − ȳi)

2
∑

i
∑

j( yij−ȳi)
2

n−c

Total n
∑c

i=1

∑ni
j=1 y2

ij
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3.2.2 Comparing Two Nested Normal Linear Models

The model-building process often deals with comparing a model to a more complex
one that has additional parameters or to a simpler one that has fewer parameters. An
example of the first type is analyzing whether to add interaction terms to a model
containing only main effects. An example of the second type is testing whether
sufficiently strong evidence exists to keep a term in the model. Denote the simpler
model by M0 and the more complex model by M1. Denote the numbers of parameters
by p0 for M0 and p1 for M1, when both model matrices have full rank. We now
construct a test of the null hypothesis that M0 holds against the alternative hypothesis
that M1 holds.

Denote the projection matrices for the two models by P0 and P1. The decomposi-
tion using projection matrices

I = P0 + (P1 − P0) + (I − P1)

corresponds to the orthogonal decomposition of the data as

y = P0y + (P1 − P0)y + (I − P1)y.

Here P0y = �̂�0 and P1y = �̂�1 are the fitted values for the two models. The corre-
sponding sum-of-squares decomposition is

yTy = yTP0y + yT(P1 − P0)y + yT(I − P1)y.

From Sections 2.4.1 and 2.4.2, yT(I − P1)y = yT(I − P1)T(I − P1)y =
∑

i( yi − �̂�i1)2

is the residual sum of squares for M1, which we denote by SSE1. Likewise,

yT(P1 − P0)y = yT(I − P0)y − yT(I − P1)y

=
∑

i

( yi − �̂�i0)2 −
∑

i

( yi − �̂�i1)2 = SSE0 − SSE1.

Since (P1 − P0) is a projection matrix, this difference also equals

yT(P1 − P0)y = yT(P1 − P0)T(P1 − P0)y = (�̂�1 − �̂�0)T(�̂�1 − �̂�0).

So SSE0 − SSE1 =
∑

i(�̂�i1 − �̂�i0)2 = SSR(M1 ∣ M0), the difference between the
regression SS values for M1 and M0.

Now I − P1 has rank n − p1, since trace(I − P1) = trace(I) − trace(P1) and P1 has
full rank p1. Likewise, P1 − P0 has rank p1 − p0. Under H0, by Cochran’s theorem,

SSE0 − SSE1

𝜎2
∼ 𝜒2

p1−p0
and

SSE1

𝜎2
∼ 𝜒2

n−p1
,
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and these are independent. Here, under H0, the noncentralities of the two chi-squared
variates are

𝝁T(P1 − P0)𝝁 = 0, 𝝁T(I − P1)𝝁 = 0

since for 𝝁 satisfying M0, P1𝝁 = P0𝝁 = 𝝁. It follows that, under H0, the test statistic

F =
(SSE0 − SSE1)∕(p1 − p0)

SSE1∕(n − p1)
(3.1)

has an F distribution with df1 = p1 − p0 and df2 = n − p1. The denominator
SSE1∕(n − p1) is the error mean square, which is the s2 estimator of 𝜎2 for M1.
Larger differences in SSE values, and larger values of the F test statistic, provide
stronger evidence against H0. The P-value is PH0

(F > Fobs).

3.2.3 Likelihood-Ratio Test Comparing Models

The test comparing two nested normal linear models can also be derived as a
likelihood-ratio test6. For the normal linear model with model matrix X, the like-
lihood function is

𝓁(𝜷, 𝜎) =

(
1

𝜎
√

2𝜋

)n

exp
[
−(1∕2𝜎2)(y − X𝜷)T(y − X𝜷)

]
.

The log-likelihood function is

L(𝜷, 𝜎) = −(n∕2) log(2𝜋) − n log(𝜎) − (y − X𝜷)T(y − X𝜷)∕2𝜎2.

From Section 2.1.1, differentiating with respect to 𝜷 yields the normal equations and
the least squares estimate, 𝜷. Differentiating with respect to 𝜎 yields

𝜕L(𝜷, 𝜎)∕𝜕𝜎 = − n
𝜎
+

(y − X𝜷)T(y − X𝜷)

𝜎3
.

Setting this equal to 0 and solving yields the ML estimator

�̂�2 =
(y − X𝜷)T(y − X𝜷)

n
= SSE

n
.

This estimator is the multiple (n − p)∕n of the unbiased estimator, which is s2 =[∑
i( yi − �̂�i)

2
]
∕(n − p). The maximized likelihood function simplifies to

𝓁(𝜷, �̂�) =

(
1

�̂�
√

2𝜋

)n

e−n∕2.

6The likelihood-ratio test is introduced in a more general context, for GLMs, in Section 4.3.1.
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Now, for testing M0 against M1, let �̂�2
0 and �̂�2

1 denote the two ML variance
estimates. The ratio of the maximized likelihood functions is

supM0
𝓁(𝜷, 𝜎)

supM1
𝓁(𝜷, 𝜎)

=

(
�̂�2

1

�̂�2
0

)n∕2

=
(

SSE1

SSE0

)n∕2

=
(

1 +
SSE0 − SSE1

SSE1

)−n∕2

=
(

1 +
p1 − p0

n − p1
F

)−n∕2

for the F test statistic (3.1) derived above. A small value of the likelihood ratio, and
thus strong evidence against H0, corresponds to a large value of the F statistic.

3.2.4 Example: Test That All Effects in a Normal Linear Model Equal Zero

In an important special case of the test comparing two nested normal linear models,
the simpler model M0 is the null model, E( yi) = 𝛽0, and M1 has a set of explanatory
variables7,

E( yi) = 𝛽0 + 𝛽1xi1 +⋯ + 𝛽p−1xi,p−1.

Comparing the models corresponds to testing the global null hypothesis H0: 𝛽1 =
⋯ = 𝛽p−1 = 0.

The projection matrix for M0 is P0 = 1
n

11T. The sum-of-squares decomposition
corresponding to the orthogonal decomposition

y = P0y + (P1 − P0)y + (I − P1)y

yields the ANOVA table shown in Table 3.2, where {�̂�i} are the fitted values for the
full model. The F test statistic, which is the ratio of the mean squares, has df1 = p − 1
and df2 = n − p.

Table 3.2 ANOVA Table for Testing That All Effects in a Normal Linear Model Equal
Zero

Source Projection Matrix df Sum of Squares Mean Square

Intercept P0 = 1

n
11T 1 yTP0y = nȳ2

Regression P1 − P0 p − 1 yT(P1 − P0)y =
∑

i(�̂�i − ȳ)2
∑

i(�̂�i−ȳ)2

p−1

Error I − P1 n − p yT(I − P1)y =
∑

i( yi − �̂�i)
2

∑
i( yi−�̂�i)

2

n−p

Total I n
∑n

i=1 y2
i

7We use p − 1 for the highest index, so p is, as usual, the number of model parameters.
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The one-way ANOVA test for c means constructed in Section 3.2.1 results when
p = c and the explanatory variables are indicator variables for c − 1 of the c groups.
Testing H0: 𝛽1 = ⋯ = 𝛽c−1 = 0 is then equivalent to testing H0: 𝜇1 = ⋯ = 𝜇c. The
fitted value �̂�ij is then ȳi.

3.2.5 Non-null Behavior of F Statistic Comparing Nested Models

The numerator of the F test statistic for comparing two models summarizes the
sample information about how much better M1 fits than M0. A relatively large value
for SSE0 − SSE1 = ‖�̂�1 − �̂�0‖2 yields a large F value. If M1 holds but M0 does not,
how large can we expect ‖�̂�1 − �̂�0‖2 and the F test statistic to be?

When M1 holds, E(y) = 𝝁1. Since (P1 − P0) is symmetric and idempotent,

E‖�̂�1 − �̂�0‖2 = E‖(P1 − P0)y‖2 = E[yT(P1 − P0)y].

Using the result (2.7) shown in Section 2.4.1 for V = var(y) and a matrix A that
E(yTAy) = trace(AV) + 𝝁TA𝝁, we have (with V = 𝜎2I)

E[yT(P1 − P0)y] = trace[(P1 − P0)𝜎2I] + 𝝁T
1 (P1 − P0)𝝁1

= 𝜎2[rank(P1) − rank(P0)] + 𝝁T
1 (P1 − P0)T(P1 − P0)𝝁1.

Let 𝝁0 = P0𝝁1 denote the projection of the true mean vector onto the model space
for M0. Then, with full-rank model matrices, the numerator of the F test statistic has
expected value

E

[‖�̂�1 − �̂�0‖2

p1 − p0

]
= 𝜎2 +

‖𝝁1 − 𝝁0‖2

p1 − p0
.

The chi-squared component of the numerator of the F statistic is

‖�̂�1 − �̂�0‖2

𝜎2
∼ 𝜒2

p1−p0,𝜆

with noncentrality 𝜆 = ‖𝝁1 − 𝝁0‖2∕𝜎2.
Next, for this non-null case, consider the denominator of the F statistic, which is

the estimate of the error variance 𝜎2 for model M1. Since

E‖y − �̂�1‖2 = E[yT(I − P1)y] = trace[(I − P1)𝜎2I] + 𝝁T
1 (I − P1)𝝁1

and since (I − P1)𝝁1 = 0, this expected sum of squares equals (n − p1)𝜎2. Thus,
regardless of whether H0 is true, the F denominator has

E

[‖y − �̂�1‖2

n − p1

]
= 𝜎2.
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Under H0 for testing M0 against M1, 𝝁1 = 𝝁0 and the expected value of the
numerator mean square is also 𝜎2. Then the F test statistic is a ratio of two unbiased
estimators of 𝜎2. The ratio of expectations equals 1, and when n − p1 (and hence df2)
is large, this is also the approximate expected value of the F test statistic itself. That is,
under H0 we expect to observe F values near 1, within limits of sampling variability.
Under the alternative, the ratio of the expected value of the numerator to the expected
value of the denominator is 1 + ‖𝝁1 − 𝝁0‖2∕(p1 − p0)𝜎2. The noncentrality of the
F test is the noncentrality of the numerator chi-squared, 𝜆 = ‖𝝁1 − 𝝁0‖2∕𝜎2. The
power of the F test increases as n increases, since then 𝝁0 and 𝝁1 contain more
elements that contribute to the numerator sum of squares in 𝜆.

3.2.6 Expected Mean Squares and Power for One-Way ANOVA

To illustrate expected non-null behavior, consider the one-way ANOVA F test for c
groups, derived in Section 3.2.1. For it, the expected value of the numerator mean
square is

E

[‖�̂�1 − �̂�0‖2

p1 − p0

]
= E

[∑c
i=1 ni(ȳi − ȳ)2

c − 1

]
= 𝜎2 +

∑c
i=1 ni(𝜇i − �̄�)2

c − 1
.

Suppose the ANOVA compares c = 3 groups with ni = 10 observations per group.
The F test statistic for H0: 𝜇1 = 𝜇2 = 𝜇3 has df1 = 2 and df2 = n − 3 = 27. Let Fq,a,b
denote the q quantile of the central F distribution with df1 = a and df2 = b. Consider
the relatively large effects 𝜇1 − 𝜇2 = 𝜇2 − 𝜇3 = 𝜎. The noncentrality (derived in
Section 3.2.1) of 𝜆 = 1

𝜎2

∑
i ni(𝜇i − �̄�)2 then equals 20. The power of the F test with

size𝛼 = 0.05 is the probability that a noncentral F random variable with df1 = 2, df2 =
27, and 𝜆 = 20 exceeds F0.95,2,27. Using R, we find that the power is quite high, 0.973:

---------------------------------------------------------------------

> qf(0.95, 2, 27) # 0.95 quantile of F dist. with df1 = 2, df2 = 27

[1] 3.354131

> 1 - pf(3.354131, 2, 27, 20) # right-tail prob. for noncentral F

[1] 0.9732551

---------------------------------------------------------------------

In planning a study, it is sensible to find the power for various n for a variety of
plausible effect sizes.

3.2.7 Testing a General Linear Hypothesis

In practice, nearly all hypotheses tested about effects in linear models can be expressed
as H0: 𝚲𝜷 = 0 for a 𝓁 × p matrix of constants 𝚲 and a vector of estimable quanti-
ties 𝚲𝜷. A special case is the example just considered of H0: 𝛽1 = ⋯ = 𝛽p−1 = 0
for comparing a full model to the null model. Another example is a test for a
contrast or set of contrasts, such as H0: 𝛽j − 𝛽k = 0 for comparing means j and k in a
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one-way layout (see Section 3.4.5). The form H0: 𝚲𝜷 = 0 is called the general linear
hypothesis.

Suppose X and 𝚲 are full rank, so the hypotheses contain no redundancies. That
is, H0 imposes 𝓁 independent constraints on an identifiable 𝜷. The estimator 𝚲𝜷 of
𝚲𝜷 is the BLUE, and it is maximum likelihood under the assumption of normality
for y. As a vector of 𝓁 linear transformations of 𝜷, 𝚲𝜷 has a N[𝚲𝜷,𝚲(XTX)−1𝚲T𝜎2]
distribution. The quadratic form

(𝚲𝜷 − 0)T [
𝚲(XTX)−1𝚲T𝜎2]−1

(𝚲𝜷 − 0)

compares the estimate 𝚲𝜷 of 𝚲𝜷 to its H0 value of 0, relative to the inverse covari-
ance matrix of 𝚲𝜷. Under H0, it has a chi-squared distribution with df = 𝓁. By the
orthogonality of the model space and the error space, we can form an F test statistic
(with df1 = 𝓁 and df2 = n − p) from the ratio of chi-squared variates divided by their
df values,

F =
(𝚲𝜷)T

[
𝚲(XTX)−1𝚲T]−1 𝚲𝜷∕𝓁

SSE∕(n − p)
,

where 𝜎2 has canceled from the numerator and denominator.
The restriction 𝚲𝜷 = 0 implies a new model that is a special case M0 of the

original model. In fact, the F statistic just derived is identical to the F statistic
(3.1) for comparing the full model to the special case M0. So, how can we express
the original model and the constraints 𝚲𝜷 = 0 as an equivalent model M0? It is
the model having model matrix X0 found as follows. Let U be a matrix such that
C(U) is the orthogonal complement of C(𝚲T ). That is, 𝜷 is such that 𝚲𝜷 = 0 if and
only if 𝜷 ∈ C(U). Then 𝜷 = U𝜸 for some vector 𝜸. But under this restriction the
original model E(y) = X𝜷 simplifies to E(y) = XU𝜸 = X0𝜸 for X0 = XU. Also, M0
is a simpler model than the original model, with C(X0) contained in C(X), since
any vector that is a linear combination of columns of X0 (e.g., X0𝜸) is also a linear
combination of columns of X (e.g., X𝜷 with 𝜷 = U𝜸).

In the F statistic for comparing the two models, it can be shown8 that

SSE0 − SSE1 = (𝚲𝜷)T [
𝚲(XTX)−1𝚲T]−1 𝚲𝜷.

When we developed the F test for comparing nested models in Section 3.2.2, we
observed that SSE0 − SSE1 was merely yT(P1 − P0)y based on the projection matrices
for the two models. For the general linear hypothesis, what is the difference (P1 − P0)
projection matrix? Using the least squares solution for 𝜷,

SSE0 − SSE1 = (𝚲𝜷)T
[
𝚲(XTX)−1𝚲T]−1 𝚲𝜷

= yTX(XTX)−1𝚲T [
𝚲(XTX)−1𝚲T]−1 𝚲(XTX)−1XTy

= yTA(ATA)−1ATy,

8See Christensen (2011, Section 3.3) or Monahan (2008, Section 6.3–6.5).
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where A = X(XTX)−1𝚲T (Doss 2010). The projection matrix (P1 − P0) is
A(ATA)−1AT for A as just defined.

A yet more general form of the general linear hypothesis is H0: 𝚲𝜷 = c for
constants c. In the F test statistic, we then merely replace (𝚲𝜷 − 0) by (𝚲𝜷 − c).
This more general H0 is useful for inverting significance tests to construct confidence
regions (Exercise 3.18). Another useful application is noninferiority testing in drug
research, which analyzes whether the effect of a new drug falls within some acceptable
margin c of the effect for an established drug.

3.2.8 Example: Testing That a Single Model Parameter Equals Zero

A common inference in linear modeling is testing H0: 𝛽j = 0 that a single explanatory
variable in the model can be dropped. This is the special case of H0: 𝚲𝜷 = 0 that
substitutes for 𝚲 a row vector 𝝀 with a multiple 1 of 𝛽j and 0 elsewhere. Since the
denominator of the F test statistic for comparing two nested models is s2 (the error
mean square) for the full model, the F test statistic then simplifies to

F =
(SSE0 − SSE1)∕1

SSE1∕(n − p)
=

(𝝀𝜷)T
[
𝝀(XTX)−1𝝀T]−1

𝝀𝜷

s2
=

𝛽2
j

(SEj)2
,

where SEj denotes the standard error of 𝛽j, the square of which is s2 times the element

from the corresponding row and column of (XTX)−1. This test statistic has df1 = 1
and df2 = n − p.

In the first ratio in this expression, (SSE0−SSE1) is the partial sum of squares
explained by adding term j to the linear predictor, once the other terms are already
there. The last ratio is F = t2, where t = 𝛽j∕(SEj). The null distribution of this t
statistic is the t distribution with df = n − p.

3.2.9 Testing Terms in an Unbalanced Factorial ANOVA

In Section 3.2.1 (Table 3.1) we showed sum-of-squares formulas for the sources in
the one-way layout. Analogous relatively simple formulas occur in factorial ANOVA
with two or more factors, in the balanced case of equal sample sizes in the cells (e.g.,
Exercise 3.13). Unbalanced cases do not yield such formulas.

Consider, for example, the two-way layout in which yijk is observation k in the cell
for level i of factor A and level j of factor B, for i = 1,… , r, j = 1,… , c, k = 1,… , nij,
where nij varies with i and j. The model with linear predictor

E( yijk) = 𝛽0 + 𝛽i + 𝛾j + 𝛿ij

permits interaction between A and B in their effects on y. To achieve identifiability, we
can express this as a linear model in which r − 1 of {𝛽i} are coefficients of indicator
variables for all except one level of A, c − 1 of {𝛾j} are coefficients of indicator
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variables for all except one level of B, and (r − 1)(c − 1) of {𝛿ij} are coefficients of
products of the r − 1 indicator variables for A with the c − 1 indicator variables for
B. With unbalanced data, a simple formula no longer occurs for the partial sum of
squares explained by the interaction terms, or when those terms are not in the model,
by the main effects. However, it is straightforward to fit the full model, fit a reduced
model such as with {𝛿ij = 0}, and then conduct the F test to compare these two nested
models.

More complex models have several factors as well as higher-order interactions.
Moreover, some combinations of the factors may have no observations, or the levels of
some factors may be nested in levels of other factors, and the model may also contain
quantitative explanatory variables. It may not even be obvious how to constrain
parameters to achieve identifiability. Good software properly determines this, when
we enter the terms as predictors in the linear model. Then we can test whether we
need high-order terms in the model by fitting the model with and without those terms
and using the F test for nested models to evaluate whether the partial SS explained
by those terms is statistically significant. That test is a very general and useful one.

3.3 CONFIDENCE INTERVALS AND PREDICTION INTERVALS
FOR NORMAL LINEAR MODELS

We learn more from constructing confidence intervals for parameter values than from
significance testing. A confidence interval shows us the entire range of plausible
values for a parameter, rather than focusing merely on whether a particular value is
plausible.

3.3.1 Confidence Interval for a Parameter of a Normal Linear Model

To construct a confidence interval for a parameter 𝛽j in a normal linear model, we
construct and then invert a t test of H0: 𝛽j = 𝛽j0 about potential values for 𝛽j. The test
statistic is

t =
𝛽j − 𝛽j0

SEj
,

the number of standard errors that 𝛽j falls from 𝛽j0. Recall that SEj is the square root

of the element in row j and column j of the estimated covariance matrix s2(XTX)−1

of 𝜷, where s2 is the error mean square. Just as the residuals are orthogonal to the
model space, the residuals are uncorrelated with 𝜷. Specifically, the p × n covariance
matrix

cov(𝜷, y − �̂�) = cov
[
(XTX)−1XTy, (I − H)y

]
= (XTX)−1XT𝜎2I(I − H)T,

and this is 0 because HX = X(XTX)−1XTX = X. Being linear functions of y, 𝜷 and
(y − �̂�) are jointly normally distributed, so uncorrelatedness implies independence.
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Since s2 is a function of the residuals, 𝜷 and s2 are independent, and so are the
numerator and denominator of the t statistic, as is required to obtain a t distribution.

The 100(1 − 𝛼)% confidence interval for 𝛽j is the set of all 𝛽j0 values for which
the test has P-value > 𝛼, that is, for which |t| < t𝛼∕2,n−p, the 1 − 𝛼∕2 quantile of the
t distribution having df = n − p. For example, the 95% confidence interval is

𝛽j ± t0.025,n−p(SEj).

3.3.2 Confidence Interval for E( y) = x0𝜷

At a fixed setting x0 (a row vector) for the explanatory variables, we can construct a
confidence interval for E( y) = x0𝜷. We do this by constructing and then inverting a
t test about values for that linear predictor.

Let �̂� = x0𝜷. Now

var(�̂�) = var(x0𝜷) = x0var(𝜷)xT
0 = 𝜎2x0(XTX)−1xT

0 .

Since x0𝜷 is a linear function of y, it has a normal distribution. Thus,

z =
x0𝜷 − x0𝜷

𝜎

√
x0(XTX)−1xT

0

∼ N(0, 1),

and

t =
x0𝜷 − x0𝜷

s
√

x0(XTX)−1xT
0

=
x0𝜷 − x0𝜷

𝜎

√
x0(XTX)−1xT

0

/√
s2

𝜎2
∼ tn−p.

This last result follows because (n − p)s2∕𝜎2 has a 𝜒2
n−p distribution for a normal

linear model, by Cochran’s theorem, so the t statistic is a N(0, 1) variate divided by
the square root of the ratio of a 𝜒2

n−p variate to its df value. Also, since s2 and 𝜷 are
independent, so are the numerator and denominator of the t statistic. It follows that a
100(1 − 𝛼)% confidence interval for E( y) = x0𝜷 is

x0𝜷 ± t𝛼∕2,n−ps
√

x0(XTX)−1xT
0 . (3.2)

When x0 is the explanatory variable value xi for a particular observation, the term
under the square root is the leverage hii from the model’s hat matrix.

The construction for this interval extends directly to confidence intervals for linear
combinations 𝓵𝜷. An example is a contrast of the parameters, such as 𝛽j − 𝛽k for a
pair of levels of a factor.

3.3.3 Prediction Interval for a Future y

At a particular value x0, how can we form an interval that is very likely to contain a
future observation y at that value? This is more challenging than forming a confidence



CONFIDENCE INTERVALS AND PREDICTION INTERVALS 97

interval for the expected response. With lots of data, we can make precise inference
about the mean but not precise prediction about a single future observation.

The normal linear model states that a future value y satisfies

y = x0𝜷 + 𝜖, where 𝜖 ∼ N(0, 𝜎2).

From the fit of the model, the prediction of the future y value is �̂� = x0𝜷. Now the
future y also satisfies

y = x0𝜷 + e, where e = y − �̂�

is the residual for that observation. Since the future y is independent of the observa-
tions y1,… , yn used to determine 𝜷 and then �̂�,

var(e) = var( y − �̂�) = var( y) + var(�̂�) = 𝜎2[1 + x0(XTX)−1xT
0 ].

It follows that

y − �̂�

𝜎

√
1 + x0(XTX)−1xT

0

∼ N(0, 1) and
y − �̂�

s
√

1 + x0(XTX)−1xT
0

∼ tn−p.

Inverting this yields a 100(1 − 𝛼)% prediction interval for the future y observation,

�̂� ± t𝛼∕2,n−ps
√

1 + x0(XTX)−1xT
0 . (3.3)

3.3.4 Example: Confidence Interval and Prediction Interval for Simple
Linear Regression

We illustrate the confidence interval for the mean and the prediction interval for a
future observation with the bivariate linear model,

E( yi) = 𝛽0 + 𝛽1xi.

It is simpler to use the explanatory variable in centered form x∗i = xi − x̄, which (from
Section 2.1.3) results in uncorrelated 𝛽0 and 𝛽1. For the centered predictor values,
𝛽0 changes value to ȳ, but 𝛽1 and var(𝛽1) = 𝜎2∕[

∑
i(xi − x̄)2] do not change. So, at a

particular value x0 for x,

var(�̂�) = var[𝛽0 + 𝛽1(x0 − x̄)]

= var(ȳ) + (x0 − x̄)2var(𝛽1) = 𝜎2

[
1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

]
.

For a future observation y and its independent prediction �̂�,

var( y − �̂�) = 𝜎2

[
1 + 1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

]
.
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The variances are smallest at x0 = x̄ and increase in a symmetric quadratic manner
as x0 moves away from x̄. At x0 = x̄, we see that var(�̂�) = var(ȳ) = 𝜎2∕n, whereas
var( y − �̂�) = 𝜎2(1 + 1∕n). As n increases, var(�̂�) decreases toward 0, but var( y − �̂�)
has 𝜎2 as its lower bound. Even if we can estimate nearly perfectly the regression
line, we are limited in how accurately we can predict any future observation.

Figure 3.1 sketches the confidence interval and prediction interval, as a function of
x0. As n increases, the width of a confidence interval for the mean at any x0 decreases
toward 0, but the width of the 95% prediction interval decreases toward 2(1.96)𝜎.

Prediction interval

for y

y

x
x0x

Confidence interval
for μ

μ = β0 + β1 x

Figure 3.1 Portrayal of confidence intervals for the mean, E( y) = 𝛽0 + 𝛽1x0, and prediction
intervals for a future observation y, at various x0 values.

3.3.5 Interpretation and Limitations of Prediction Intervals

Interpreting a prediction interval is awkward. With 𝛼 = 0.05, we would like to say
that conditional on the observed data and the model fit, we have 95% confidence
that the future y will fall in the interval; that is, close to 95% of a large number of
future observations would fall in the interval. However, the probability distributions
in the derivation of Section 3.3.3 treat �̂� as well as the future y as random, whereas
in practice we use the interval after observing the data and hence �̂�. The conditional
probability that the prediction interval captures a future y, given �̂�, is not 0.95. From
the reasoning that led to Equation 3.3, before collecting any data, for the �̂� (and s) to
be found and then the future y,

P

[|y − �̂�|∕s
√

1 + x0(XTX)−1xT
0 ≤ t0.025,n−p

]
= 0.95.

Once we observe the data and find �̂� and s, this probability (with y as the only random
part) does not equal 0.95. It depends on where �̂� happened to fall. It need not be
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close to 0.95 unless var(�̂�) is negligible compared to var( y). The 95% confidence for a
prediction interval means the following: If we repeatedly used this method with many
such datasets of independent observations satisfying the model (i.e., to construct both
the fitted equation and this interval) and each time made a future observation, in the
long run 95% of the time the interval formed would contain the future observation.

To this interpretation, we add the vital qualifier, if the model truly holds. In
practice, we should have considerable faith in the model before forming prediction
intervals. Even if we do not truly believe the model (the usual situation in practice),
a confidence interval for E( y) = x0𝜷 at various x0 values is useful for describing the
fit of the model in the population of interest. However, if the model fails, either in
its description of the population mean as a function of the explanatory variables or
in its assumptions of normality with constant variance, then the actual percentage of
many future observations that fall within the limits of 95% prediction intervals may
be quite different from 95%.

3.4 EXAMPLE: NORMAL LINEAR MODEL INFERENCE

What affects the selling price of a house? Table 3.3 shows observations on recent
home sales in Gainesville, Florida. This table shows data for 8 houses from a data file
for 100 home sales at the text website. Variables listed are selling price (in thousands
of dollars), size of house (in square feet), annual property tax bill (in dollars), number
of bedrooms, number of bathrooms, and whether the house is new. Since these 100
observations are from one city alone, we cannot use them to make inferences about
the relationships in general. But for illustrative purposes, we treat them as a random
sample of a conceptual population of home sales in this market and analyze how
selling price seems to relate to these characteristics. We suggest that you download
the data from the text website, so you can construct graphics not shown here and fit
various models that seem sensible.

Table 3.3 Selling Prices and Related Characteristics for a Sample of Home Sales in
Gainesville, Florida

Home Selling Price Size Taxes Bedrooms Bathrooms New

1 279.9 2048 3104 4 2 No
2 146.5 912 1173 2 1 No
3 237.7 1654 3076 4 2 No
4 200.0 2068 1608 3 2 No
5 159.9 1477 1454 3 3 No
6 499.9 3153 2997 3 2 Yes
7 265.5 1355 4054 3 2 No
8 289.9 2075 3002 3 2 Yes

Complete file for 100 homes is file Houses.dat at www.stat.ufl.edu/~aa/glm/data.

http://www.stat.ufl.edu/~aa/glm/data
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3.4.1 Inference for Modeling House Selling Prices

For modeling, we take y = selling price. Section 4.6 discusses issues in selecting
explanatory variables for a model. For now, for simplicity we use only x1 = size of
house and x2 = whether the house is new (1 = yes, 0 = no). We refer to these as
“size” and “new.” To begin, let us look at the data.

---------------------------------------------------------------------

> Houses # complete data at www.stat.ufl.edu/~aa/glm/data

case taxes beds baths new price size

1 1 3104 4 2 0 279.9 2048

2 2 1173 2 1 0 146.5 912

...

> cbind(mean(price), sd(price), mean(size), sd(size))

[,1] [,2] [,3] [,4]

[1,] 155.33 101.26 1629.28 666.94

> table(new)

new

0 1

89 11

> pch.list <- rep(0, 100)

> pch.list[new==”0”] <- 1; pch.list[new==”1”] <- 4 # pick symbols

> plot(size, price, pch=(pch.list)) # plot with symbols for new=0,1

---------------------------------------------------------------------

Figure 3.2 shows roughly an increasing linear trend for selling price as a function of
size. An exception is a relatively low selling price for a very large dwelling that was
not new (observation 64 in the data file). Only 11 houses in the sample were new, so
the impact of that variable is rather unclear.

We next fit the model E( yi) = 𝛽0 + 𝛽1xi1 + 𝛽2xi2, having additive effects of these
explanatory variables. The least squares fit is �̂�i = −40.231 + 0.116xi1 + 57.736xi2.
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Figure 3.2 Scatterplot of selling price (in thousands of dollars) versus size of house (in
square feet), labeled by whether new (× symbol for “yes” and o symbol for “no”).

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data
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Adjusting for house size, the estimated mean selling price is $57,736 higher for new
homes. Because only 11 houses in the sample were new, this estimate is imprecise.
For new or older houses, the estimated mean selling price increases by $116 for each
additional square foot of size. The sample R2 value is large (0.72).

---------------------------------------------------------------------

> fit <- lm(price ~ size + new)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -40.2309 14.6961 -2.738 0.00737

size 0.1161 0.0088 13.204 < 2e-16

new 57.7363 18.6530 3.095 0.00257

---

Residual standard error: 53.88 on 97 degrees of freedom # This is s

Multiple R-squared: 0.7226, Adjusted R-squared: 0.7169

F-statistic: 126.3 on 2 and 97 DF, p-value: < 2.2e-16

> plot(fit)

---------------------------------------------------------------------

Consider H0: 𝛽1 = 𝛽2 = 0, stating that neither size nor new has an effect on selling
price. The global F test statistic equals 126.3, with df1 = 2 (since there are two effect
parameters) and df2 = 100 − 3 = 97. The P-value is 0 to many decimal places. This is
no surprise. With this global test, H0 states that none of the explanatory variables are
truly correlated with the response. We usually expect a small P-value, and of greater
interest is whether each explanatory variable has an effect, adjusting for the other
explanatory variables in the model. The t statistic for testing the effect of whether the
house is new, adjusting for size, is t = 3.095 (df = 97), highly significant (P = 0.003).
Likewise, size has a highly significant partial effect, which again is no surprise.

Next we find a 95% confidence interval for the mean selling price of new homes
at the mean size of the new homes, 2354.73 square feet. If the model truly holds,
Equation 3.2 implies 95% confidence that the conceptual population mean selling
price falls between $258,721 and $323,207. Equation 3.3 predicts that a selling price
for another new house of that size will fall between $179,270 and $402,658.

---------------------------------------------------------------------

> predict(fit,data.frame(size=2354.73, new=1), interval=”confidence”)

fit lwr upr # 95% confidence is default

1 290.964 258.7207 323.2072

> predict(fit,data.frame(size=2354.73, new=1), interval=”prediction”)

fit lwr upr

1 290.964 179.2701 402.6579

---------------------------------------------------------------------

3.4.2 Model Checking

We next check the adequacy of the normal linear model and highlight influential
observations. When the model holds, the standardized residuals have approximately
a N(0, 1) distribution. Let us look at a histogram and a Q–Q plot. The latter plots the
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standardized residual values against expected values of order statistics from a N(0, 1)
distribution (so-called normal scores). When a normal linear model holds, the points
should lie roughly on a line through the origin with slope 1. Severe departures
from that line indicate substantial non-normality in the conditional distribution of
y. However, be cautious in interpreting such plots when n is not large, as they are
affected by ordinary sampling variability.

---------------------------------------------------------------------

> hist(rstandard(fit)) # use rstudent instead for Studentized residuals

> qqnorm(rstandard(fit)) # Q-Q plot of standardized residuals

---------------------------------------------------------------------

For these data, the histogram in Figure 3.3 suggests that the conditional distribution
of y is mound shaped, but possibly skewed to the right. Also, observation 64 has
a relatively large negative standardized residual of −4.2. The Q–Q plot also shows
evidence of skew to the right, because large positive theoretical quantiles have sample
quantiles that are larger in absolute value whereas large negative theoretical quantiles
have sample quantiles that are smaller in absolute value (except for the outlier).
However, it is difficult to judge shape well unless n is quite large, and the actual
error rate for two-sided statistical inference about 𝛽j parameters in the linear model is
robust to violations of the normality assumption. Inadequacy of statistical inference
and consequent substantive conclusions are usually affected more by an inappropriate
linear predictor (e.g., lacking an important interaction) and by practical sampling
problems (e.g., missing data, errors of measurement) than by non-normality of the
response. With clearly non-normal residuals, one can transform y to improve the
normality. But the linear predictor may then more poorly describe the relationship,
and effects on E[g( y)] are of less interest than effects on E( y). So, we recommend
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Figure 3.3 Histogram and Q–Q plot of standardized residuals, for normal linear model
predicting selling price using size and new as explanatory variables.
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Figure 3.4 Plot of standardized residuals versus fitted values, for linear model predicting
selling price using size and new as explanatory variables.

such plots mainly to help detect unusual observations that could influence substantive
conclusions.

To investigate the adequacy of the linear predictor, we plot the residuals against
the fitted values (Figure 3.4) and against size.

---------------------------------------------------------------------

> plot(fitted(fit), rstandard(fit))

> plot(size, rstandard(fit))

---------------------------------------------------------------------

If the normal linear model holds, a plot of the residuals against fitted values or
values of explanatory variables should show a random pattern about 0 with relatively
constant variability (Section 2.5.2). Figure 3.4 also highlights the unusual observation
64, but generally does not indicate lack of fit. There is a suggestion that residuals
may tend to be larger in absolute value at higher values of the response. Rather than
constant variance, it seems plausible that the variance may be larger at higher mean
selling prices. We address this when we revisit the data in the next chapter.

The next table shows some standardized residuals and values of Cook’s dis-
tance, including results for observation 64, which has the only Cook’s distance
exceeding 1.

---------------------------------------------------------------------

> cooks.distance(fit)

> plot(cooks.distance(fit))

> cbind(case,size,new,price,fitted(fit),rstandard(fit),cooks.distance(fit))

case size new price

1 1 2048 0 279.9 197.607 1.541 1.462e-02
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2 2 912 0 146.5 65.681 1.517 1.703e-02

...

64 64 4050 0 225.0 430.102 -4.202 1.284e+00

...

---------------------------------------------------------------------

To check whether observation 64 is influential, we refit the model without it.

---------------------------------------------------------------------

> fit2 <- lm(price ~ size + new, subset(Houses, case != 64))

> summary(fit2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -63.1545 14.2519 -4.431 2.49e-05

size 0.1328 0.0088 15.138 < 2e-16

new 41.3062 17.3269 2.384 0.0191

---

Residual standard error: 48.99 on 96 degrees of freedom

Multiple R-squared: 0.772, Adjusted R-squared: 0.7672

---------------------------------------------------------------------

The effect of a house being new has diminished from $57,736 to $41,306, the effect
of size has increased some, and R2 has increased considerably. This observation
clearly is influential. We will see that it is not influential or even unusual when we
consider an alternative model in Section 4.7.3 that allows the variability to grow with
the mean.

There is no assurance that the effects of these two explanatory variables are truly
additive. Perhaps the effect of size is different for new houses than for others. We can
check by adding an interaction term, which we do for the dataset without the highly
influential observation 64:

---------------------------------------------------------------------

> fit3 <- lm(price ~ size + new + size:new, subset(Houses, case != 64))

> summary(fit3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -48.2431 15.6864 -3.075 0.00274

size 0.1230 0.0098 12.536 < 2e-16

new -52.5122 47.6303 -1.102 0.27303

size:new 0.0434 0.0206 2.109 0.03757

---

Residual standard error: 48.13 on 95 degrees of freedom

Multiple R-squared: 0.7822, Adjusted R-squared: 0.7753

---------------------------------------------------------------------

Adjusted R2 increases only from 0.767 to 0.775. The SSE values, not reported
here (but available in R by requesting deviance(fit2) and deviance(fit3)),
are 230,358 and 220,055. The F test comparing the two models has test statistic
F = t2 = 2.1092 = 4.45 with df1 = 1 and df2 = 95, giving a P-value = 0.038. This
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model estimates that the effect of size is 0.123 for older houses and 0.123 + 0.043 =
0.166 for newer houses. The statistically significant improved fit at the 0.05 level must
be weighed against a practically insignificant increase in R2 and a relatively wide
confidence interval for the true difference in size effects for new and older houses.

3.4.3 Conditional versus Marginal Effects: Simpson’s Paradox

Alternatively, we could continue with the complete dataset of 100 observations and
check whether an improved fit occurs from fitting other models. We might expect
that the number of bedrooms is an important predictor of selling price, yet it was not
included in the above model. Does it help to include “beds” in the model?

---------------------------------------------------------------------

> cor(beds, price)

[1] 0.3940

> summary(lm(price ~ beds))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.41 44.30 -0.641 0.523

beds 61.25 14.43 4.243 5.01e-05

---

> fit4 <- lm(price ~ size + new + beds)

> summary(fit4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.1998 25.6022 -0.984 0.32745

size 0.1205 0.0107 11.229 < 2e-16

new 54.8996 19.1128 2.872 0.00501

beds -7.2927 10.1588 -0.718 0.47458

---

Residual standard error: 54.02 on 96 degrees of freedom

Multiple R-squared: 0.7241, Adjusted R-squared: 0.7155

---------------------------------------------------------------------

Although the number of bedrooms has correlation 0.394 with selling price and is
highly significant on its own, it has a P-value of 0.47 for its partial effect. Moreover,
the adjusted R2 = 0.7155 is smaller than the value 0.7169 without beds in the model.
Apparently once size and new are explanatory variables in the model, it does not help
to add beds.

Although the marginal effect of beds is positive, as described by the moderate
positive correlation, the estimated partial effect of beds is negative! This illustrates
Simpson’s paradox9: An effect of a variable can change direction after adjusting for
other variables. Figure 3.5 is a simplistic illustration of how this can happen.

9The name refers to Simpson (1951), but the result had been shown by Yule (1903).
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Figure 3.5 Portrayal of Simpson’s paradox: The effect of x1 on y is positive marginally but
negative after adjusting for x2.

3.4.4 Partial Correlation

The partial correlation between selling price and beds while adjusting for size and
new is obtained by (1) finding the residuals for predicting selling price using size and
new, (2) finding the residuals for predicting beds using size and new, and then (3)
finding the ordinary correlation between these two sets of residuals:

---------------------------------------------------------------------

> cor(resid(lm(price ~ size + new)), resid(lm(beds ~ size + new)))

[1] -0.07307201 # partial correlation between selling price and beds

> summary(lm(resid(lm(price ~ size+new)) ~ resid(lm(beds ~ size+new))))

Coefficients: # this yields partial effect of beds on selling price

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.019e-14 5.346e+00 0.000 1.00

resid(lm(beds ~ size + new)) -7.293e+00 1.005e+01 -0.725 0.47

> plot(resid(lm(beds ~ size + new)), resid(lm(price ~ size + new)))

---------------------------------------------------------------------

The partial correlation value of −0.073 is weak. When a true partial correlation is 0,
the standard error of a sample partial correlation r for a normal linear model with p
parameters is

√
(1 − r2)∕(n − p), about 0.1 in this case.

Using the fact that the multiple correlation R = corr(y, �̂�), we use the formula at
the end of Section 2.5.7 to find the squared partial correlation:

---------------------------------------------------------------------

> (cor(price,fitted(fit4))ˆ2 - cor(price,fitted(fit))ˆ2)/

+ (1 - cor(price,fitted(fit))ˆ2)

[1] 0.005339518

---------------------------------------------------------------------

The proportion of the variation in selling price unexplained by size and new that is
explained by adding beds to the model is only (−0.073)2 = 0.0053. Again, you can
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check that effects change substantially if you refit the model without observation 64
(e.g., the partial correlation changes to −0.240).

3.4.5 Testing Contrasts as a General Linear Hypothesis

For a factor in a model, we can test whether particular parameters are equal by
expressing the null hypothesis as a set of contrasts. Such a hypothesis has the form
of the general linear hypothesis H0: 𝚲𝜷 = 0. To illustrate, the analysis that suggested
a lack of effect for beds, adjusting for size and new, investigated the linear effect. We
could instead treat beds as a factor, with levels (2,3,4,5), to allow a nonlinear impact.
Testing whether 3, 4, and 5 bedrooms have the same effect has a null hypothesis
consisting of two contrasts and yields a F statistic with df1 = 2 and df2 = 94. The
following code shows the contrasts expressed by equating the parameters for 3 bed-
rooms and 5 bedrooms and equating the parameters for 4 bedrooms and 5 bedrooms,
for R constraints that set the parameter for 2 bedrooms equal to 0.

---------------------------------------------------------------------

> fit5 <-lm(price ~ size + new + factor(beds))

> Lambda <- matrix(c(0,0,0,0,0,0,1,0,0,1,-1,-1), nrow=2)

> Lambda

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 1 0 -1 # betas for intercept, size, new,

[2,] 0 0 0 0 1 -1 # beds=3, beds=4, beds=5

> library(car)

> linearHypothesis(fit5, Lambda, test=c(”F”))

Hypothesis:

factor(beds)3 - factor(beds)5 = 0

factor(beds)4 - factor(beds)5 = 0

Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 275849

2 94 273722 2 2127.4 0.3653 0.695

---------------------------------------------------------------------

3.4.6 Selecting or Building a Model

This chapter has presented inferences for normal linear models but has not discussed
how to select a model or build a model from a set of potential explanatory variables.
These issues are relevant for all generalized linear models (GLMs), and we discuss
them in the next chapter (Section 4.6).

3.5 MULTIPLE COMPARISONS: BONFERRONI, TUKEY, AND FDR
METHODS

Using a model to compare many groups or to evaluate the significance of many
potential explanatory variables in a model can entail a very large number of inferences.
For example, in a one-way layout, comparing each pair of c groups involves c(c − 1)∕2
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inferences, which is considerable when c itself is large. Even if each inference has a
small error probability, the probability may be substantial that at least one inference
is in error. In such cases, we can construct the inferences so that the error probability
applies to the entire family of inferences rather than to each individual one. For
example, in constructing confidence intervals for pairwise comparisons of means, we
can provide 95% family-wise confidence that the entire set of intervals simultaneously
contains the true differences.

3.5.1 Bonferroni Method for Multiple Inferences

A popular way to conduct multiple inferences while controlling the overall error
rate is based on a simple inequality shown by the British mathematician George
Boole (1854), in an impressive treatise of which several chapters presented laws of
probability.

Boole’s inequality: Let E1, E2,… , Et be t events in a sample space. Then, the
probability that at least one of these events occurs has the upper bound

P(∪jEj) ≤
t∑

j=1

P(Ej).

The proof of this is simple. We suggest that you construct a Venn diagram to
illustrate. Let

B1 = E1, B2 = Ec
1 ∩ E2, B3 = Ec

1 ∩ Ec
2 ∩ E3,… .

Then, ∪jBj = ∪jEj and Bj ⊂ Ej, but the {Bj} are disjoint and so P(∪jBj) =
∑

j P(Bj).
Thus,

P(∪jEj) = P(∪jBj) =
t∑

j=1

P(Bj) ≤
t∑

j=1

P(Ej).

In the context of multiple confidence intervals, let Ej (for j = 1,… , t) denote the
event that interval j is in error, not containing the relevant parameter value. If each
interval has confidence coefficient (1 − 𝛼∕t), then the (a priori) probability that at
least one of the t intervals is in error is bounded above by t(𝛼∕t) = 𝛼. So, the family-
wise confidence coefficient for the set of the t intervals is bounded below by 1 − 𝛼.
For example, for the one-way layout with c = 5 means, if we use confidence level
99% for each of the 10 pairwise comparisons, the overall confidence level is at least
90%. This method for constructing simultaneous confidence intervals is called the
Bonferroni method. It relies merely on Boole’s inequality, but the name refers to the
Italian probabilist/mathematician Carlo Bonferroni, who in 1936 extended Boole’s
inequality in various ways.

An advantage of the Bonferroni method is its generality. It applies for any
probability-based inferences for any distribution, not just confidence intervals for
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a normal linear model. A disadvantage is that the method is conservative: If we want
overall 90% confidence (say), the method ensures that the actual confidence level is
at least that high. As a consequence, the intervals are wider than ones that would
produce exactly that confidence level. The next method discussed is more limited,
being designed specifically for comparing means in balanced normal linear models,
but it does not have this disadvantage.

3.5.2 Tukey Method of Multiple Comparisons

In 1953 the great statistician John Tukey proposed a method for simultaneously
comparing means of several normal distributions. Using a probability distribution for
the range of observations from a normal distribution, it applies to balanced designs
such as one-way and two-way layouts with equal sample sizes.

Definition. Suppose {yi} are independent, with yi ∼ N(𝜇, 𝜎2), i = 1,… , c. Let s2

be an independent estimate of 𝜎2 with 𝜈s2∕𝜎2 ∼ 𝜒2
𝜈

. Then,

Q =
maxi yi − mini yi

s

has the Studentized range distribution with parameters c and 𝜈. We denote the distri-
bution by Qc,𝜈 and its 1 − 𝛼 quantile by Q1−𝛼,c,𝜈 .

To illustrate how Tukey’s method uses the Studentized range distribution, we
consider the balanced one-way layout for the normal linear model. The sam-
ple means ȳ1,… , ȳc each have sample size ni = n. Let N =

∑
i ni = cn. Let s2 =∑c

i=1

∑n
j=1( yij − ȳi)

2∕(N − c) denote the pooled variance estimate from the one-way

ANOVA (i.e., the error mean square in Section 3.2.1). Then each
√

n(ȳi − 𝜇i) has a
N(0, 𝜎2) distribution, and so

√
n[maxi(ȳi − 𝜇i) − mini(ȳi − 𝜇i)]∕s ∼ Qc,N−c.

A priori, the probability is (1 − 𝛼) that this statistic is less than Q1−𝛼,c,N−c. When the
statistic is bounded above by Q1−𝛼,c,N−c, then

all |(ȳi − 𝜇i) − (ȳj − 𝜇j)| < Q1−𝛼,c,N−c(s∕
√

n)

and thus (𝜇i − 𝜇j) falls within Q1−𝛼,c,N−c(s∕
√

n) of (ȳi − ȳj) for all pairs. So, we can
construct family-wise confidence intervals for the pairs {𝜇i − 𝜇j} using simultane-
ously for all i and j,

(ȳi − ȳj) ± Q1−𝛼,c,N−c

(
s√
n

)
.
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The confidence coefficient for the family of all t = c(c − 1)∕2 such comparisons
equals 1 − 𝛼. A difference |ȳi − ȳj| that exceeds Q1−𝛼,c,N−c(s∕

√
n) is considered sta-

tistically significant, as the interval for (𝜇i − 𝜇j) does not contain 0. The corresponding

margin of error using the Bonferroni method is t𝛼∕c(c−1),N−cs
√

2∕n.
To illustrate, suppose we plan to construct family-wise 95% confidence intervals

for the 45 pairs of means for c = 10 groups, and we have n = 20 observations
from each group and a standard deviation estimate of s = 15. The margin of error

for each comparison is Q0.95,10,190(15∕
√

20) = 15.19 for the Tukey method and

t0.05∕2(45),190(15
√

2∕20) = 15.71 for the Bonferroni method. The Q and t quantiles
used here are easily obtained with software:

---------------------------------------------------------------------

> qtukey(0.95, 10, 190); qt(1 - 0.05/(2*45), 190)

[1] 4.527912

[1] 3.311379

---------------------------------------------------------------------

The Tukey method applies exactly to this balanced case, for which the sample
means have equal variances. A generalized version applies in a slightly conservative
manner for unbalanced cases (see Note 3.5).

3.5.3 Controlling the False Discovery Rate

As the number of inferences (t) increases in multiple comparison methods designed
to have fixed family-wise error rate 𝛼, the margin of error for each inference increases.
When t is enormous, as in detecting differential expression in thousands of genes, there
may be very low power for establishing significance with any individual inference. It
can be difficult to discover any effects that truly exist, especially if those effects are
weak. But, in the absence of a multiplicity adjustment, most significant results found
could be Type I errors, especially when the number of true non-null effects is small.
Some multiple inference methods attempt to address this issue. Especially popular
are methods that control the false discovery rate (FDR). In the context of significance
testing, this is the expected proportion of the rejected null hypotheses (“discoveries”)
that are erroneously rejected (i.e., that are actually true—“false discoveries”).

Benjamini and Hochberg (1995) proposed a simple algorithm for ensuring
FDR ≤ 𝛼 for a desired 𝛼. It applies with t independent10 tests. Let P(1) ≤ P(2) ≤

⋯ ≤ P(t) denote the ordered P-values for the t tests. We reject hypotheses (1),… ,
(j∗), where j∗ is the maximum j for which P(j) ≤ j𝛼∕t. The actual FDR for this method
is bounded above by 𝛼 times the proportion of rejected hypotheses that are actually
true. This bound is 𝛼 when the null hypothesis is always true.

Here is intuition for comparing P(j) to j𝛼∕t in this method: Suppose t0 of the t
hypotheses tested are actually true. Since P-values based on continuous test statistics

10Benjamini and Yekutieli (2001) showed that the method also works with tests that are positively
dependent in a certain sense.



CHAPTER NOTES 111

have a uniform distribution when H0 is true, conditional on P(j) being the cutoff for
rejection, a priori we expect to reject about t0P(j) of the t0 true hypotheses. Of the j
observed tests actually having P-value ≤ P(j), this is a proportion of expected false
rejections of t0P(j)∕j. In practice t0 is unknown, but since t0 ≤ t, if tP(j)∕j ≤ 𝛼 then
this ensures t0P(j)∕j ≤ 𝛼. Therefore, rejecting H0 whenever P(j) ≤ j𝛼∕t ensures this.

With this method, the most significant test compares P(1) to 𝛼∕t and has the
same decision as in the ordinary Bonferroni method, but then the other tests have
less conservative requirements. When some hypotheses are false, the FDR method
tends to reject more of them than the Bonferroni method, which focuses solely on
controlling the family-wise error rate. Benjamini and Hochberg illustrated the FDR
for a study about myocardial infarction. For the 15 hypotheses tested, the ordered
P-values were

0.0001, 0.0004, 0.0019, 0.0095, 0.020, 0.028, 0.030,
0.034, 0.046, 0.32, 0.43, 0.57, 0.65, 0.76, 1.00.

With 𝛼 = 0.05, these are compared with j(0.05)∕15, starting with j = 15. The maxi-
mum j for which P(j) ≤ j(0.0033) is j = 4, for which P(4) = 0.0095 < 4(0.0033). So
the hypotheses with the four smallest P-values are rejected. By contrast, the Bonfer-
roni approach with family-wise error rate 0.05 compares each P-value to 0.05/15 =
0.0033 and rejects only three of these hypotheses.

CHAPTER NOTES

Section 3.1: Distribution Theory for Normal Variates

3.1 Cochran’s theorem: Results on quadratic forms in normal variates were shown by the
Scottish statistician William Cochran in 1934 when he was a 24-year old graduate student
at the University of Cambridge, studying under the supervision of John Wishart. He left
Cambridge without completing his Ph.D. degree to work at Rothamsted Experimental
Station, recruited by Frank Yates after R. A. Fisher left to take a professorship at Univer-
sity College, London. In the 1934 article, Cochran showed that if x1,… , xn are iid N(0, 1)
and

∑
i x2

i = Q1 +⋯ + Qk for quadratic forms having ranks r1,… , rk, then Q1,… , Qk

are independent chi-squared with df values r1,… , rk if and only if r1 +⋯ + rk = n.
3.2 Independent normal quadratic forms: The Cochran’s theorem implication that {yTPiy}

are independent when PiPj = 0 extends to this result (Searle 1997, Chapter 2): When
y ∼ N(𝝁, V), yTAy and yTBy are independent if and only if AVB = 0.

Section 3.2: Significance Tests for Normal Linear Models

3.3 Fisher and ANOVA: Application of ANOVA was stimulated by the 1925 publication of
R. A. Fisher’s classic text, Statistical Methods for Research Workers. Later contributions
include Scheffé (1959) and Hoaglin et al. (1991).

3.4 General linear hypothesis: For further details about tests for the general linear hypothe-
sis and in particular for one-way and two-way layouts, see Lehmann and Romano (2005,
Chapter 7) and Scheffé (1959, Chapters 2–4).
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Section 3.5: Multiple Comparisons: Bonferroni, Tukey, FDR Methods

3.5 Boole, Bonferroni, Tukey, Scheffé: Seneta (1992) surveyed probability inequalities
presented by Boole and Bonferroni and related results of Fréchet. For an overview of
Tukey’s contributions to multiple comparisons, see Benjamini and Braun (2002) and
Tukey (1994). With unbalanced data, Kramer (1956) suggested replacing s∕

√
n in the

Tukey interval by s
√

1

2

[
(1∕na) + (1∕nb)

]
for groups a and b. Hayter (1984) showed this

is slightly conservative. For the normal linear model, Scheffé (1959) proposed a method
that applies simultaneously to all contrasts of c means. For estimating a contrast

∑
i ai𝜇i

in the one-way layout (possibly unbalanced), it multiplies the usual estimated standard

error s
√∑

i(a
2
i ∕ni) for

∑
i aiȳi by

√
(c − 1)F1−𝛼,c−1,n−c to obtain the margin of error. For

simple differences between means, these are wider than the Tukey intervals, because
they apply to a much larger family of contrasts. Hochberg and Tamhane (1987) and Hsu
(1996) surveyed multiple comparison methods.

3.6 False discovery rate: For surveys of FDR methods and issues in large-scale multiple
hypothesis testing, see Benjamini (2010), Dudoit et al. (2003), and Farcomeni (2008).

EXERCISES

3.1 Suppose y ∼ N(𝝁, V) with V nonsingular of rank p. Show that (y − 𝝁)TV−1(y −
𝝁) ∼ 𝜒2

p by letting z = V−1∕2(y − 𝝁) and finding the distribution of z and zTz.

3.2 If T has a t distribution with df = p, then using the construction of t and F
random variables, explain why T2 has the F distribution with df1 = 1 and
df2 = p.

3.3 Suppose z = x + y where z ∼ 𝜒2
p and x ∼ 𝜒2

q . Show how to find the distribution
of y.

3.4 Applying the SS decomposition with the projection matrix for the null model
(Section 2.3.1), use Cochran’s theorem to show that for y1,… , yn independent
from N(𝜇, 𝜎2), ȳ and s2 are independent (Cochran 1934).

3.5 For y1,… , yn independent from N(𝜇, 𝜎2), apply Cochran’s theorem to con-
struct a F test of H0: 𝜇 = 𝜇0 against H1: 𝜇 ≠ 𝜇0 by applying the SS decom-
position with the projection matrix for the null model shown in Section
2.3.1 to the adjusted observations {yi − 𝜇0}. State the null and alterna-
tive distributions of the test statistic. Show how to construct an equivalent
t test.

3.6 Consider the normal linear model for the one-way layout (Section 3.2.1).

a. Explain why the F statistic used to test H0: 𝜇1 = ⋯ = 𝜇c has, under H0,
an F distribution.

b. Why is the test is called analysis of variance when H0 deals with means?
(Hint: See Section 3.2.5.)
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3.7 A one-way ANOVA uses ni observations from group i, i = 1,… , c.

a. Verify the noncentrality parameter for the scaled between-groups sum of
squares.

b. Suppose c = 3, with 𝜇1 − 𝜇2 = 𝜇2 − 𝜇3 = 𝜎∕2. Evaluate the noncentrality,
and use it to find the power of a F test with size 𝛼 = 0.05 for a common
sample size n, when (i) n = 10, (ii) n = 30, (iii) n = 50.

c. Now suppose 𝜇1 − 𝜇2 = 𝜇2 − 𝜇3 = Δ𝜎. Evaluate the noncentrality when
each ni = 10, and use it to find the power of a F test with size 𝛼 = 0.05
when Δ = 0, 0.5, 1.0.

3.8 Based on the formula s2(XTX)−1 for the estimated var(𝜷), explain why the
standard errors of {𝛽j} tend to decrease as n increases.

3.9 Using principles from this chapter, inferentially compare 𝜇1 and 𝜇2 from
N(𝜇1, 𝜎2) and N(𝜇2, 𝜎2) populations, based on independent random samples
of sizes n1 and n2.

a. Put the analysis in a normal linear model context, showing a model matrix
and explaining how to interpret the model parameters.

b. Find the projection matrix for the model space, and find SSR and SSE.

c. Construct a F test statistic for testing H0: 𝜇1 = 𝜇2 against Ha: 𝜇1 ≠ 𝜇2.
Using Cochran’s theorem, specify a null distribution for this statistic.

d. Relate the F test statistic in (c) to the t statistic for this test,

t =
ȳ1 − ȳ2

s
√

1
n1

+ 1
n2

where s2 is the pooled variance estimate from the two samples.

3.10 Refer to the previous exercise. Based on inverting significance tests with
nonzero null values, show how to construct a confidence interval for 𝜇1 − 𝜇2.

3.11 Section 2.3.4 considered the projection matrices and ANOVA table for the
two-way layout with one observation per cell. For testing each main effect in
that model, show how to construct test statistics and explain how to obtain
their null distributions, based on theory in this chapter.

3.12 For the balanced two-way r × c layout with n observations {yijk} in each cell,
denote the sample means by {ȳij.} in the cells, ȳi.. in level i of A, ȳ.j. in level
j of B, and ȳ overall for all N = nrc observations. Consider the model that
assumes a lack of interaction.

a. Construct the ANOVA table, including SS and df values, showing how to
construct F statistics for testing the main effects.

b. Show that the expected value of the numerator mean square for the test of

the A factor effect is 𝜎2 +
(

cn
r−1

)∑r
i=1(𝜇i.. − �̄�)2.
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3.13 Refer to the previous exercise. Now consider the model permitting interaction.
Table 3.4 shows the resulting ANOVA table.

a. Argue intuitively and in analogy with results for one-way ANOVA that the
SS values for factor A, factor B, and residual are as shown in the ANOVA
table.

b. Based on the results in (a) and what you know about the total of the SS
values, show that the SS for interaction is as shown in the ANOVA table.

c. In the ANOVA table, show the df values for each source. Show the mean
squares, and show how to construct test statistics for testing no interaction
and for testing each main effect. Specify the null distribution for each test
statistic.

Table 3.4 ANOVA Table for Normal Linear Model with Two-Way Layout

Source df Sum of Squares Mean Square Fobs

Mean 1 Nȳ2

A (rows) — cn
∑

i(ȳi.. − ȳ)2 — —

B (columns) — rn
∑

j(ȳ.j. − ȳ)2 — —

Interaction — n
∑

i

∑
j(ȳij. − ȳi.. − ȳ.j. + ȳ)2 — —

Residual (error) —
∑

i

∑
j

∑
k( yijk − ȳij.)

2 —

Total N
∑r

i=1

∑c
j=1

∑n
k=1 y2

ijk

3.14 a. Show that the F statistic in Section 3.2.4 for testing that all effects equal 0
has expression in terms of the R2 value as

F =
R2∕(p − 1)

(1 − R2)∕(n − p)

b. Show that the F statistic (3.1) for comparing nested models has expression
in terms of the R2 values for the models as

F =
(R2

1 − R2
0)∕(p1 − p0)

(1 − R2
1)∕(n − p1)

.

3.15 Using the F formula for comparing models in the previous exercise, show that
adjusted R2 being larger for the more complex model is equivalent to F > 1.

3.16 For the linear model E( yij) = 𝛽0 + 𝛽i for the one-way layout, explain how H0:
𝛽1 = ⋯ = 𝛽c is a special case of the general linear hypothesis.

3.17 For a normal linear model with p parameters and n observations, explain how
to test H0: 𝛽j = 𝛽k in the context of the (a) general linear hypothesis and (b)
F test comparing two nested linear models.
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3.18 Explain how to use the F test for the general linear hypothesis H0: 𝚲𝜷 = c
to invert a test of H0: 𝜷 = 𝜷0 to form a confidence ellipsoid for 𝜷. For p = 2,
describe how this could give you information beyond what you would learn
from separate intervals for 𝛽1 and 𝛽2.

3.19 Suppose a one-way layout has ordered levels for the c groups, such as dose
levels in a dose–response assessment. The model E( yij) = 𝛽0 + 𝛽i treats the
groups as a qualitative factor. The model E( yij) = 𝛽0 + 𝛽xi has a quantitative
predictor that assumes monotone group scores {xi}.

a. Explain why the quantitative-predictor model is a special case of the
qualitative-predictor model. Given the qualitative-predictor model, show
how the null hypothesis that the quantitative-predictor model is adequate
is a special case of the general linear hypothesis. Illustrate by showing 𝚲
for the case c = 5 with {xi = i}.

b. Explain how to use an F test to compare the models, specifying the df
values.

c. Describe an advantage and disadvantage of each way of handling ordered
categories.

3.20 Mimicking the derivation in Section 3.3.2, derive a confidence interval for the
linear combination 𝓵𝜷. Explain how it simplifies for the case 𝛽j − 𝛽k.

3.21 When there are no explanatory variables, show how the confidence interval in
Section 3.3.2 simplifies to a confidence interval for the marginal E( y).

3.22 Consider the null model, for simplicity with known 𝜎2. After estimating 𝜇 =
E(y) by ȳ, you plan to predict a future y from the N(𝜇, 𝜎2) distribution. State
the formula for a 95% prediction interval for this model. Suppose, unknown to
you, ȳ = 𝜇 + zo𝜎∕

√
n for some particular zo value. Find an expression for the

actual probability, conditional on ȳ, that the prediction interval contains the
future y. Explain why this is not equal to 0.95 (e.g., what happens if zo = 0?)
but converges to it as n → ∞.

3.23 Based on the expression for a squared partial correlation in Section 3.4.4,
show how it relates to a partial SS for the full model and SSE for the model
without that predictor.

3.24 For the normal linear model for the r × c two-way layout with n observations
per cell, explain how to use the Tukey method for family-wise comparisons
of all pairs of the r row means with confidence level 95%.

3.25 An analyst plans to construct family-wise confidence intervals for normal lin-
ear model parameters {𝛽(1),… , 𝛽(g)} in estimating an effect as part of a meta-
analysis with g independent studies. Explain why constructing each interval
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with confidence level (1 − 𝛼)1∕g provides exactly the family-wise confidence
level (1 − 𝛼). Prove that such intervals are narrower than Bonferroni intervals.

3.26 In the one-way layout with c groups and a fixed common sample size n, con-
sider simultaneous confidence intervals for pairwise comparisons of means,
using family-wise error probability 𝛼 = 0.05. Using software such as R, ana-
lyze how the ratio of margins of error for the Tukey method to the Bonferroni
method behaves as c increases for fixed n and as n increases for fixed c. Show
that this ratio converges to 1 as 𝛼 approaches 0 (i.e., the Bonferroni method is
only very slightly conservative when applied with very small 𝛼).

3.27 Selection bias: Suppose the normal linear model 𝜇i = 𝛽0 + 𝛽1xi holds with
𝛽1 > 0, but the responses are truncated and we observe yi only when yi > L
(or perhaps only when yi < L) for some threshold L.

a. Describe a practical scenario for which this could happen. How would you
expect the truncation to affect 𝛽1 and s? Illustrate by sketching a graph.
(You could check this with data, such as by fitting the model in Section
3.4.1 only to house sales having yi > 150.)

b. Construct a likelihood function with the conditional distribution of y, to
enable consistent estimation of 𝜷. (See Amemiya (1984) for a survey
of modeling with truncated or censored data. In R, see the truncreg
package.)

3.28 In the previous exercise, suppose truncation instead occurs on x. Would you
expect this to affect (a) E(𝛽1)? (b) inference about 𝛽1? Why?

3.29 Construct a Q–Q plot for the model for the house selling prices that uses size,
new, and their interaction as the predictors, and interpret. To get a sense of
how such a plot with a finite sample size may differ from its expected pattern
when the model holds, randomly generate 100 standard normal variates a few
times and form a Q-Q plot each time.

3.30 Suppose the relationship between y = college GPA and x = high school GPA
satisfies yi ∼ N(1.80 + 0.40xi, 0.302). Simulate and construct a scatterplot for
n = 1000 independent observations taken from this model when xi has a
uniform distribution (a) over (2.0, 4.0), (b) over (3.5, 4.0). In each case, find
R2. How do R2 and corr(x, y) depend on the range sampled for {xi}? Use the
formula for R2 to explain why this happens.

3.31 Refer to Exercise 1.21 on a study comparing forced expiratory volume (y =
fev1 in the data file) for three drugs (x2), adjusting for a baseline measurement
(x1).

a. Fit the normal linear model using both x1 and x2 and their interaction.
Interpret model parameter estimates.
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b. Test to see whether the interaction terms are needed. Interpret using confi-
dence intervals for parameters in your chosen model.

3.32 For the horseshoe crab dataset Crabs.dat at the text website, analyze infer-
entially the effect of color on the mean number of satellites, treating the data
as a random sample from a conceptual population of female crabs. Fit the nor-
mal one-way ANOVA model using color as a qualitative factor. Report results
of the significance test for the color effect, and interpret. Provide evidence
that the inferential assumption of a normal response with constant variance is
badly violated. (Section 7.5 considers more appropriate models.)

3.33 Refer to Exercise 2.47 on carapace width of attached male horseshoe crabs.
Extend your analysis of that exercise by conducting statistical inference, and
interpret.

3.34 Section 3.4.1 used x1 = size of house and x2 = whether new to predict
y = selling price. Suppose we instead use a GLM, log(𝜇i) = 𝛽0 + 𝛽1 log(xi1) +
𝛽2xi2.

a. For this GLM, interpret 𝛽1 and 𝛽2. (Hint: Adjusting for the other variable,
find multiplicative effects on𝜇i of (i) changing xi2 from 0 to 1, (ii) increasing
xi1 by 1%.)

b. Fit the GLM, assuming normality for {yi}, and interpret. Compare the
predictive power of this model with the linear model of Section 3.4.1 by
finding R = corr(y, �̂�) for each model.

c. For this GLM or the corresponding LM for E[log( yi)], refit the model
without the most influential observation and summarize. Also, determine
whether the fit improves significantly by permitting interaction between
log(xi1) and xi2.

3.35 For the house selling price data of Section 3.4, when we include size, new,
and taxes as explanatory variables, we obtain

---------------------------------------------------------------

> summary(lm(price ~ size + new + taxes))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.3538 13.3115 -1.604 0.11196

size 0.0617 0.0125 4.937 3.35e-06

new 46.3737 16.4590 2.818 0.00588

taxes 0.0372 0.0067 5.528 2.78e-07

---

Residual standard error: 47.17 on 96 degrees of freedom

Multiple R-squared: 0.7896, Adjusted R-squared: 0.783

F-statistic: 120.1 on 3 and 96 DF, p-value: < 2.2e-16

> anova(lm(price ~ size + new + taxes)) # sequential SS, size first

Analysis of Variance Table

Response: price

Df Sum Sq Mean Sq F value Pr(>F)
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size 1 705729 705729 317.165 < 2.2e-16

new 1 27814 27814 12.500 0.0006283

taxes 1 67995 67995 30.558 2.782e-07

Residuals 96 213611 2225

---------------------------------------------------------------

a. Report and interpret results of the global test of the hypothesis that none
of the explanatory variables has an effect.

b. Report and interpret significance tests for the individual partial effects,
adjusting for the other variables in the model.

c. What is the conceptual difference between the test of the size effect in the
coefficients table and in the ANOVA table?

3.36 Using the house selling price data at the text website, describe the predictive
power of various models by finding adjusted R2 when (i) size is the sole
predictor, (ii) size and new are main-effect predictors, (iii) size, new, and taxes
are main-effect predictors, (iv) case (iii) with the addition of the three two-
way interaction terms. Of these four, which is the simplest model that seems
adequate? Why?

3.37 For the house selling price data, fit the model with size of home as the sole
explanatory variable. Find a 95% confidence interval for E( y) and a 95%
prediction interval for y, at the sample mean size. Interpret.

3.38 In a study11 at Iowa State University, a large field was partitioned into 20
equal-size plots. Each plot was planted with the same amount of seed corn,
using a fixed spacing pattern between the seeds. The goal was to study how the
yield of corn later harvested from the plots depended on the levels of use of
nitrogen-based fertilizer (low = 45 kg per hectare, high = 135 kg per hectare)
and manure (low = 84 kg per hectare, high = 168 kg per hectare). The corn
yields (in metric tons) for this completely randomized two-factor study are
shown in the table:

Fertilizer Manure Observations, by Plot

High High 13.7 15.8 13.9 16.6 15.5
High Low 16.4 12.5 14.1 14.4 12.2
Low High 15.0 15.1 12.0 15.7 12.2
Low Low 12.4 10.6 13.7 8.7 10.9

a. Conduct a two-way ANOVA, assuming a lack of interaction between fer-
tilizer level and manure level in their effects on crop yield. Report the
ANOVA table. Summarize the main effect tests, and interpret the P-values.

11Thanks to Dan Nettleton, Iowa State University, for data on which this exercise is based.
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b. If yield were instead measured in some other units, such as pounds or tons,
then in your ANOVA table, what will change and what will stay the same?

c. Follow up the main-effect tests in (a) by forming 95% Bonferroni confi-
dence intervals for the two main-effect comparisons of means. Interpret.

d. Now allow for interaction, and show results of the F test of the hypothesis
of a lack of interaction. Interpret.

3.39 Refer to the study for comparing instruction methods mentioned in Exercise
2.45. Write a short report summarizing inference for the model fitted there,
interpreting results and attaching edited software output as an appendix.

3.40 For the Student survey.dat data file at the text website, model how polit-
ical ideology relates to number of times per week of newspaper reading and
religiosity. Prepare a report, posing a research question, and then summariz-
ing your graphical analyses, models and interpretations, inferences, checks of
assumptions, and overall summary of the relationships.

3.41 For the anorexia study of Exercise 1.24, write a report in which you pose
a research question and then summarize your analyses, including graphical
description, interpretation of a model fit and its inferences, and checks of
assumptions.



C H A P T E R 4

Generalized Linear Models:
Model Fitting and Inference

We now extend our scope from the linear model to the generalized linear model
(GLM). This extension encompasses (1) non-normal response distributions and (2)
link functions of the mean equated to the linear predictor. Section 1.1.5 introduced
examples of GLMs: Loglinear models using the log-link function for a Poisson
(count) response and logistic models using the logit-link function for a binomial
(binary) response.

Section 4.1 provides more details about exponential family distributions for the
random component of a GLM. In Section 4.2 we derive likelihood equations for
the maximum likelihood (ML) estimators of model parameters and show their large-
sample normal distribution. Section 4.3 summarizes the likelihood ratio, score, and
Wald inference methods for the model parameters. Then in Section 4.4 we introduce
the deviance, a generalization of the residual sum of squares used in inference, such
as to compare nested GLMs. That section also presents residuals for GLMs and
ways of checking the model. Section 4.5 presents two standard methods, Newton–
Raphson and Fisher scoring, for solving the likelihood equations to fit GLMs. Section
4.6 discusses the selection of explanatory variables for a model, followed by an
example. A chapter appendix shows that fundamental results for linear models about
orthogonality of fitted values and residuals do not hold exactly for GLMs, but analogs
hold for an adjusted, weighted version of the response variable that satisfies a linear
model with approximately constant variance.

4.1 EXPONENTIAL DISPERSION FAMILY DISTRIBUTIONS
FOR A GLM

In Section 1.1 we introduced the three components of a GLM: (1) random compo-
nent, (2) linear predictor, (3) link function. We now take a closer look at the random

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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component, showing an exponential family form that encompasses standard distribu-
tions such as the normal, Poisson, and binomial and that has general expressions for
moments and for likelihood equations.

4.1.1 Exponential Dispersion Family for a Random Component

The random component of a GLM consists of a response variable y with indepen-
dent observations (y1,… , yn) from a distribution having probability density or mass
function for yi of the form

f (yi; 𝜃i,𝜙) = exp{[yi𝜃i − b(𝜃i)]∕a(𝜙) + c(yi,𝜙)}. (4.1)

This is called the exponential dispersion family. The parameter 𝜃i is called the natural
parameter, and 𝜙 is called the dispersion parameter. Often a(𝜙) = 1 and c(yi,𝜙) =
c(yi), giving the natural exponential family of the form f (yi; 𝜃i) = h(yi) exp[yi𝜃i −
b(𝜃i)]. Otherwise, usually a(𝜙) has the form a(𝜙) = 𝜙 or a(𝜙) = 𝜙∕𝜔i for𝜙 > 0 and a
known weight𝜔i. For instance, when yi is a mean of ni independent readings,𝜔i = ni.
Various choices for the functions b(⋅) and a(⋅) give rise to different distributions.

Expressions for E(yi) and var(yi) use quantities in (4.1). Let Li = log f (yi; 𝜃i,𝜙)
denote the contribution of yi to the log-likelihood function, L =

∑
i Li. Since

Li = [yi𝜃i − b(𝜃i)]∕a(𝜙) + c(yi,𝜙), (4.2)

𝜕Li∕𝜕𝜃i =
[
yi − b′(𝜃i)

]
∕a(𝜙), 𝜕2Li∕𝜕𝜃2

i = −b′′(𝜃i)∕a(𝜙),

where b′(𝜃i) and b′′(𝜃i) denote the first two derivatives of b(⋅) evaluated at 𝜃i. We
now apply the general likelihood results

E
(
𝜕L
𝜕𝜃

)
= 0 and −E

(
𝜕2L
𝜕𝜃2

)
= E

(
𝜕L
𝜕𝜃

)2
,

which hold under regularity conditions satisfied by the exponential dispersion family.
From the first formula applied with a single observation,

E
[
yi − b′(𝜃i)

]
∕a(𝜙) = 0, so that 𝜇i = E(yi) = b′(𝜃i). (4.3)

From the second formula,

b′′(𝜃i)∕a(𝜙) = E
[
(yi − b′(𝜃i))∕a(𝜙)

]2 = var(yi)∕[a(𝜙)]2,

so that

var(yi) = b′′(𝜃i)a(𝜙). (4.4)
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In summary, the function b(⋅) in (4.1) determines moments of yi. This function
is called the cumulant function, because when a(𝜙) = 1 its derivatives yield the
cumulants1 of the distribution.

4.1.2 Poisson, Binomial, and Normal in Exponential Dispersion Family

We illustrate the exponential dispersion family by showing its representations for
Poisson, binomial, and normal distributions. We then evaluate the mean and variance
expressions for these cases.

When yi has a Poisson distribution, the probability mass function is

f (yi;𝜇i) =
e−𝜇i𝜇

yi
i

yi!
= exp[yi log𝜇i − 𝜇i − log(yi!)]

= exp[yi𝜃i − exp(𝜃i) − log(yi!)], yi = 0, 1, 2,… , (4.5)

where the natural parameter 𝜃i = log𝜇i. This has exponential dispersion form (4.1)
with b(𝜃i) = exp(𝜃i), a(𝜙) = 1, and c(yi,𝜙) = − log(yi!). By (4.3) and (4.4),

E(yi) = b′(𝜃i) = exp(𝜃i) = 𝜇i,

var(yi) = b′′(𝜃i) = exp(𝜃i) = 𝜇i.

Next, suppose that niyi has a bin(ni,𝜋i) distribution; that is, here yi is the sample
proportion (rather than number) of successes, so E(yi) = 𝜋i does not depend on ni. Let
𝜃i = log[𝜋i∕(1 − 𝜋i)]. Then 𝜋i = exp(𝜃i)∕[1 + exp(𝜃i)] and log(1 − 𝜋i) = − log[1 +
exp(𝜃i)]. We can express

f (yi;𝜋i, ni) =
(

ni
niyi

)
𝜋

niyi
i (1 − 𝜋i)

ni−niyi , yi = 0,
1
ni

,
2
ni

,… , 1,

= exp
[

yi𝜃i − log[1 + exp(𝜃i)]

1∕ni
+ log

(
ni

niyi

)]
. (4.6)

This has exponential dispersion form (4.1) with b(𝜃i) = log[1 + exp(𝜃i)], a(𝜙) = 1∕ni,

and c(yi,𝜙) = log
(

ni
niyi

)
. The natural parameter is 𝜃i = log[𝜋i∕(1 − 𝜋i)], the logit.

By (4.3) and (4.4),

E(yi) = b′(𝜃i) = exp(𝜃i)∕[1 + exp(𝜃i)] = 𝜋i,

var(yi) = b′′(𝜃i)a(𝜙) = exp(𝜃i)∕{[1 + exp(𝜃i)]
2ni} = 𝜋i(1 − 𝜋i)∕ni.

1Recall that cumulants {𝜅n} are coefficients in a power series expansion of the log mgf, log[E(ety)] =∑∞
n=1 𝜅ntn∕n!. The moments determine the cumulants, and vice versa.
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For the normal distribution, observation i has probability density function

f (yi;𝜇, 𝜎2) = 1√
2𝜋𝜎

exp
[
−

(yi − 𝜇i)
2

2𝜎2

]

= exp

[
yi𝜇i −

1
2
𝜇2

i

𝜎2
− 1

2
log(2𝜋𝜎2) −

y2
i

2𝜎2

]
.

This satisfies the exponential dispersion family (4.1) with natural parameter 𝜃i = 𝜇i
and

b(𝜃i) =
1
2
𝜇2

i = 1
2
𝜃2

i , a(𝜙) = 𝜎2, c(yi;𝜙) = −1
2
log(2𝜋𝜎2) −

y2
i

2𝜎2
.

Then

E(yi) = b′(𝜃i) = 𝜃i = 𝜇i and var
(
yi

)
= b′′(𝜃i)a(𝜙) = 𝜎2.

4.1.3 The Canonical Link Function of a Generalized Linear Model

The link function of a GLM connects the random component and the linear predictor.
That is, a GLM states that a linear predictor 𝜂i =

∑p
j=1 𝛽jxij relates to 𝜇i by 𝜂i = g(𝜇i),

for a link function g. Equivalently, the response function g−1 maps linear predictor
values to the mean.

The link function g that transforms the mean 𝜇i to the natural parameter 𝜃i in (4.1)
is called the canonical link. For it, the direct relationship

𝜃i =
p∑

j=1

𝛽jxij

equates the natural parameter to the linear predictor. From the exponential dispersion
family expressions just derived, the canonical link functions are the log link for the
Poisson distribution, the logit link for the binomial distribution, and the identity link
for the normal distribution. Section 4.5.5 shows special results that apply for GLMs
that use the canonical link function.

4.2 LIKELIHOOD AND ASYMPTOTIC DISTRIBUTIONS FOR GLMS

We next obtain general expressions for likelihood equations and asymptotic distribu-
tions of ML parameter estimators for GLMs. For n independent observations, from
(4.2) the log likelihood is

L(𝜷) =
n∑

i=1

Li =
n∑

i=1

log f (yi; 𝜃i,𝜙) =
n∑

i=1

yi𝜃i − b(𝜃i)

a(𝜙)
+

n∑
i=1

c(yi,𝜙). (4.7)
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The notation L(𝜷) reflects the dependence of 𝜽 on the model parameters 𝜷. For the
canonical link function, 𝜃i =

∑
j 𝛽jxij, so when a(𝜙) is a fixed constant, the part of the

log likelihood involving both the data and the model parameters is

n∑
i=1

yi

(
p∑

j=1

𝛽jxij

)
=

p∑
j=1

𝛽j

(
n∑

i=1

yixij

)
.

Then the sufficient statistics for {𝛽j} are {
∑n

i=1 yixij, j = 1,… , p}.

4.2.1 Likelihood Equations for a GLM

For a GLM 𝜂i =
∑

j 𝛽jxij = g(𝜇i) with link function g, the likelihood equations are

𝜕L(𝜷)∕𝜕𝛽j =
n∑

i=1

𝜕Li∕𝜕𝛽j = 0, for all j.

To differentiate the log likelihood (4.7), we use the chain rule,

𝜕Li

𝜕𝛽j
=
𝜕Li

𝜕𝜃i

𝜕𝜃i

𝜕𝜇i

𝜕𝜇i

𝜕𝜂i

𝜕𝜂i

𝜕𝛽j
. (4.8)

Since 𝜕Li∕𝜕𝜃i = [yi − b′(𝜃i)]∕a(𝜙), and since 𝜇i = b′(𝜃i) and var(yi) = b′′(𝜃i)a(𝜙)
from (4.3) and (4.4),

𝜕Li∕𝜕𝜃i = (yi − 𝜇i)∕a(𝜙), 𝜕𝜇i∕𝜕𝜃i = b′′(𝜃i) = var(yi)∕a(𝜙).

Also, since 𝜂i =
∑p

j=1 𝛽jxij, 𝜕𝜂i∕𝜕𝛽j = xij. Finally, since 𝜂i = g(𝜇i), 𝜕𝜇i∕𝜕𝜂i depends
on the link function for the model. In summary, substituting into (4.8) gives us

𝜕Li

𝜕𝛽j
=
𝜕Li

𝜕𝜃i

𝜕𝜃i

𝜕𝜇i

𝜕𝜇i

𝜕𝜂i

𝜕𝜂i

𝜕𝛽j

=
(yi − 𝜇i)

a(𝜙)
a(𝜙)

var(yi)

𝜕𝜇i

𝜕𝜂i
xij =

(yi − 𝜇i)xij

var(yi)

𝜕𝜇i

𝜕𝜂i
. (4.9)

Summing over the n observations yields the likelihood equations.

Likelihood equations for a GLM:

𝜕L(𝜷)
𝜕𝛽j

=
n∑

i=1

(yi − 𝜇i)xij

var(yi)

𝜕𝜇i

𝜕𝜂i
= 0, j = 1, 2,… , p, (4.10)

where 𝜂i =
∑p

j=1 𝛽jxij = g(𝜇i) for link function g.
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Let V denote the diagonal matrix of variances of the observations, and let D denote
the diagonal matrix with elements 𝜕𝜇i∕𝜕𝜂i. For the GLM expression 𝜼 = X𝜷 with a
model matrix X, these likelihood equations have the form

XTDV−1(y − 𝝁) = 0. (4.11)

Although 𝜷 does not appear in these equations, it is there implicitly through 𝝁, since
𝜇i = g−1

(∑p
j=1 𝛽jxij

)
. Different link functions yield different sets of equations. The

likelihood equations are nonlinear functions of 𝜷 that must be solved iteratively. We
defer details to Section 4.5.

4.2.2 Likelihood Equations for Poisson Loglinear Model

For count data, one possible GLM assumes a Poisson random component and uses
the log-link function. The Poisson loglinear model is log(𝜇i) =

∑p
j=1 𝛽jxij. For the

log link, 𝜂i = log𝜇i, so 𝜇i = exp(𝜂i) and 𝜕𝜇i∕𝜕𝜂i = exp(𝜂i) = 𝜇i. Since var(yi) = 𝜇i,
the likelihood equations (4.10) simplify to

n∑
i=1

(yi − 𝜇i)xij = 0, j = 1, 2,… , p. (4.12)

These equate the sufficient statistics {
∑

i yixij} for 𝜷 to their expected values. Section
4.5.5 shows that these equations occur for GLMs that use the canonical link function.

4.2.3 The Key Role of the Mean–Variance Relation

Interestingly, the likelihood equations (4.10) depend on the distribution of yi only
through 𝜇i and var(yi). The variance itself depends on the mean through a functional
form2

var(yi) = v(𝜇i),

for some function v. For example, v(𝜇i) = 𝜇i for the Poisson, v(𝜇i) = 𝜇i(1 − 𝜇i)∕ni
for the binomial proportion, and v(𝜇i) = 𝜎2 (i.e., constant) for the normal.

When the distribution of yi is in the exponential dispersion family, the relation
between the mean and the variance characterizes3 the distribution. For instance, if yi
has distribution in the exponential dispersion family and if v(𝜇i) = 𝜇i, then necessarily
yi has the Poisson distribution.

4.2.4 Large-Sample Normal Distribution of Model Parameter Estimators

From a fundamental property of maximum likelihood, under standard regularity
conditions4, for large n the ML estimator 𝜷 of 𝜷 for a GLM is efficient and has an

2We express the variance of y as v(𝜇) to emphasize that it is a function of the mean.
3See Jørgensen (1987), Tweedie (1947), and Wedderburn (1974).
4See Cox and Hinkley (1974, p. 281). Mainly, 𝜷 falls in the interior of the parameter space and p is
fixed as n increases.
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approximate normal distribution. We next use the log-likelihood function for a GLM
to find the covariance matrix of that distribution. The covariance matrix is the inverse
of the information matrix  , which has elements E[−𝜕2L(𝜷)∕𝜕𝛽h 𝜕𝛽j]. The estimator

𝜷 is more precise when the log-likelihood function has greater curvature at 𝜷. To find
the covariance matrix, for the contribution Li to the log likelihood we use the helpful
result

E

(
−𝜕2Li

𝜕𝛽h 𝜕𝛽j

)
= E

[(
𝜕Li

𝜕𝛽h

)(
𝜕Li

𝜕𝛽j

)]
,

which holds for distributions in the exponential dispersion family. Thus, using (4.9),

E

(
−𝜕2Li

𝜕𝛽h 𝜕𝛽j

)
= E

[
(yi − 𝜇i)xih

var(yi)

𝜕𝜇i

𝜕𝜂i

(yi − 𝜇i)xij

var(yi)

𝜕𝜇i

𝜕𝜂i

]

=
xihxij

var(yi)

(
𝜕𝜇i

𝜕𝜂i

)2

.

Since L(𝜷) =
∑n

i=1 Li,

E

(
−
𝜕2L(𝜷)
𝜕𝛽h 𝜕𝛽j

)
=

n∑
i=1

xihxij

var(yi)

(
𝜕𝜇i

𝜕𝜂i

)2

.

Let W be the diagonal matrix with main-diagonal elements

wi =
(𝜕𝜇i∕𝜕𝜂i)

2

var(yi)
.

Then, generalizing from the typical element of the information matrix to the entire
matrix, with the model matrix X,

 = XTWX. (4.13)

The form of W, and hence  , depends on the link function g, since 𝜕𝜂i∕𝜕𝜇i = g′(𝜇i).
In summary,

Asymptotic distribution of 𝜷 for GLM 𝜼 = X𝜷:

𝜷 has an approximate N[𝜷, (XTWX)−1] distribution, (4.14)

where W is the diagonal matrix with elements wi = (𝜕𝜇i∕𝜕𝜂i)
2∕var(yi).
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The asymptotic covariance matrix is estimated by v̂ar(𝜷) = (XTŴX)−1, where Ŵ is
W evaluated at 𝜷.

For example, the Poisson loglinear model has the GLM form

log𝝁 = X𝜷.

For this case, 𝜂i = log(𝜇i), so 𝜕𝜂i∕𝜕𝜇i = 1∕𝜇i. Thus,wi = (𝜕𝜇i∕𝜕𝜂i)
2∕var(yi) = 𝜇i,

and in the asymptotic covariance matrix (4.14) of 𝜷, W is the diagonal matrix with
the elements of 𝝁 on the main diagonal.

For some GLMs, the parameter vector partitions into the parameters𝜷 for the linear
predictor and other parameters 𝝓 (such as a dispersion parameter) needed to specify
the model completely. Sometimes5, E(𝜕2L∕𝜕𝛽j𝜕𝜙k) = 0 for each j and k. Similarly,
the inverse of the expected information matrix has 0 elements connecting each 𝛽j

with each 𝜙k. Because this inverse is the asymptotic covariance matrix, 𝜷 and �̂� are
then asymptotically independent. The parameters 𝜷 and 𝝓 are said to be orthogonal.
This is the generalization to GLMs of the notion of orthogonal parameters for linear
models (Cox and Reid 1987). For the exponential dispersion family (4.1), 𝜃 and 𝜙
are orthogonal parameters.

4.2.5 Delta Method Yields Covariance Matrix for Fitted Values

The estimated linear predictor relates to 𝜷 by �̂� = X𝜷. Thus, for large samples, its
covariance matrix

var(�̂�) = Xvar(𝜷)XT ≈ X(XTWX)−1XT.

We can obtain the asymptotic var(�̂�) from var(�̂�) by the delta method, which
gives approximate variances using linearizations from a Taylor-series expansion.
For example, in the univariate case with a smooth function h, the linearization
h(y) − h(𝜇) ≈ (y − 𝜇)h′(𝜇), which holds for y near 𝜇, implies that var[h(y)] ≈
[h′(𝜇)]2var(y) when var(y) is small. For a vector y with covariance matrix V and
a vector h(y) = (h1(y),… , hn(y))T, let (𝜕h∕𝜕𝝁) denote the Jacobian matrix with entry
in row i and column j equal to 𝜕hi(y)∕𝜕yj evaluated at y = 𝝁. Then the delta method
yields var[h(y)] ≈ (𝜕h∕𝜕𝝁)V(𝜕h∕𝜕𝝁)T. So, by the delta method, using the diagonal
matrix D with elements 𝜕𝜇i∕𝜕𝜂i, for large samples the covariance matrix of the fitted
values

var(�̂�) ≈ Dvar(�̂�)D ≈ DX(XTWX)−1XTD.

However, to obtain a confidence interval for 𝜇i when g is not the identity link, it is
preferable to construct one for 𝜂i and then apply the response function g−1 to the
endpoints, thus avoiding the further delta method approximation.

5An example is the negative binomial GLM for counts in Section 7.3.3.
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These results for �̂� and �̂� are based on those for 𝜷, for which the asymptotics refer
to n → ∞. However, �̂� and �̂� have length n. Asymptotics make more sense for them
when n is fixed and each component is based on an increasing number of subunits, such
that the observations themselves become approximately normal. One such example
is a fixed number of binomial observations, in which the asymptotics refer to each
binomial sample size ni → ∞. In another example, each observation is a Poisson cell
count in a contingency table with fixed dimensions, and the asymptotics refer to each
expected cell count growing. Such cases can be expressed as exponential dispersion
families in which the dispersion parameter a(𝜙) = 𝜙∕𝜔i has weight 𝜔i growing.
This component-specific large-sample theory is called small-dispersion asymptotics
(Jørgensen 1987). The covariance matrix formulas are also used in an approximate
sense in the more standard asymptotic cases with large n.

4.2.6 Model Misspecification: Robustness of GLMs with Correct Mean

Like other ML estimators of a fixed-length parameter vector, 𝜷 is consistent (i.e.,

𝜷
p
−→ 𝜷 as n → ∞). As n increases, X has more rows, the diagonal elements of the

asymptotic covariance matrix (XTWX)−1 of 𝜷 tend to be smaller, and 𝜷 tends to fall
closer to 𝜷.

But what if we have misspecified the probability distribution for y? Models, such
as GLMs, that assume a response distribution from an exponential family have a
certain robustness property. If the model for the mean is correct, that is, if we have
specified the link function and linear predictor correctly, then 𝜷 is still consistent6 for
𝜷. However, if the assumed variance function is incorrect (which is likely when the
assumed distribution for y is incorrect), then so is the formula for var(𝜷). Moreover,
not knowing the actual distribution for y, we would not know the correct expression
for var(𝜷). Section 8.3 discusses model misspecification issues and ways of dealing
with it, including using the sample variability to help obtain a consistent estimator of
the appropriate covariance matrix.

4.3 LIKELIHOOD-RATIO/WALD/SCORE METHODS OF INFERENCE
FOR GLM PARAMETERS

Inference about GLMs has three standard ways to use the likelihood function. For
a generic scalar model parameter 𝛽, we focus on tests7 of H0: 𝛽 = 𝛽0 against H1:
𝛽 ≠ 𝛽0. We then explain how to construct confidence intervals using those tests.

4.3.1 Likelihood-Ratio Tests

A general purpose significance test method uses the likelihood function through the
ratio of (1) its value 𝓁0 at 𝛽0, and (2) its maximum 𝓁1 over 𝛽 values permitting H0

6Gourieroux et al. (1984) proved this and showed the key role of the natural exponential family and
a generalization that includes the exponential dispersion family.
7Here, 𝛽0 denotes a particular null value, typically 0, not the intercept parameter.
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or H1 to be true. The ratio Λ = 𝓁0∕𝓁1 ≤ 1, since 𝓁0 results from maximizing at a
restricted 𝛽 value. The likelihood-ratio test statistic is8

−2 logΛ = −2 log(𝓁0∕𝓁1) = −2(L0 − L1),

where L0 and L1 denote the maximized log-likelihood functions. Under regularity
conditions, it has a limiting null chi-squared distribution as n → ∞, with df = 1. The
P-value is the chi-squared probability above the observed test statistic value.

This test extends directly to multiple parameters. For instance, for 𝜷 = (𝜷0,𝜷1),
consider H0: 𝜷0 = 0. Then 𝓁1 is the likelihood function calculated at the 𝜷 value
for which the data would have been most likely, and 𝓁0 is the likelihood function
calculated at the𝜷1 value for which the data would have been most likely when𝜷0 = 0.
The chi-squared df equal the difference in the dimensions of the parameter spaces
under H0 ∪ H1 and under H0, which is dim(𝜷0) when the model is parameterized
to achieve identifiability. The test also extends to the general linear hypothesis H0:
𝚲𝜷 = 0, since the linear constraints imply a new model that is a special case of the
original one.

4.3.2 Wald Tests

Standard errors obtained from the inverse of the information matrix depend on the
unknown parameter values. When we substitute the unrestricted ML estimates (i.e.,
not assuming the null hypothesis), we obtain an estimated standard error (SE) of 𝛽.
For H0: 𝛽 = 𝛽0, the test statistic using this non-null estimated standard error,

z = (𝛽 − 𝛽0)∕SE,

is called9 a Wald statistic. It has an approximate standard normal distribution when
𝛽 = 𝛽0, and z2 has an approximate chi-squared distribution with df = 1.

For multiple parameters 𝜷 = (𝜷0,𝜷1), to test H0: 𝜷0 = 0, the Wald chi-squared
statistic is

𝜷T
0 [v̂ar(𝜷0)]−1𝜷0,

where 𝜷0 is the unrestricted ML estimate of 𝜷0 and v̂ar(𝜷0) is a block of the unre-
stricted estimated covariance matrix of 𝜷.

4.3.3 Score Tests

A third inference method uses the score statistic. The score test, referred to in some
literature as the Lagrange multiplier test, uses the slope (i.e., the score function) and

8The general form was proposed by Samuel S. Wilks in 1938; see Cox and Hinkley (1974, pp. 313,
314, 322, 323) for a derivation of the chi-squared limit.
9The general form was proposed by Abraham Wald in 1943.
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expected curvature of the log-likelihood function, evaluated at the null value 𝛽0. The
chi-squared form10 of the score statistic is

[𝜕L(𝛽)∕𝜕𝛽0]2

−E[𝜕2L(𝛽)∕𝜕𝛽2
0 ]

,

where the notation reflects derivatives with respect to 𝛽 that are evaluated at 𝛽0. In
the multiparameter case, the score statistic is a quadratic form based on the vector
of partial derivatives of the log likelihood and the inverse information matrix, both
evaluated at the H0 estimates.

4.3.4 Illustrating the Likelihood-Ratio, Wald, and Score Tests

Figure 4.1 plots a generic log-likelihood function L(𝛽) and illustrates the three tests
of H0: 𝛽 = 𝛽0, at 𝛽0 = 0. The Wald test uses L(𝛽) at the ML estimate 𝛽, having
chi-squared form (𝛽∕SE)2 with SE of 𝛽 based on the curvature of L(𝛽) at 𝛽. The score
test uses the slope and curvature of L(𝛽) at 𝛽0 = 0. The likelihood-ratio test combines
information about L(𝛽) at 𝛽 and at 𝛽0 = 0. In Figure 4.1, this statistic is twice the
vertical distance between values of L(𝛽) at 𝛽 = 𝛽 and at 𝛽 = 0.

To illustrate, consider a binomial parameter 𝜋 and testing H0: 𝜋 = 𝜋0. With sample
proportion �̂� = y for n observations, you can show that the chi-squared forms of the

L1

0

L(β)

β
β

L0

Figure 4.1 Log-likelihood function and information used in likelihood-ratio, score, and Wald
tests of H0: 𝛽 = 0.

10The general form was proposed by C. R. Rao in 1948.
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test statistics are

Likelihood-ratio: − 2(L0 − L1) = −2 log

[
𝜋

ny
0 (1 − 𝜋0)n(1−y)

yny(1 − y)n(1−y)

]
;

Wald: z2 =
(y − 𝜋0)2

[y(1 − y)∕n]
;

Score: z2 =
(y − 𝜋0)2

[𝜋0(1 − 𝜋0)∕n]
.

As n → ∞, the three tests have certain asymptotic equivalences11. For the best-
known GLM, the normal linear model, the three types of inference provide identical
results. Unlike the other methods, though, we show in Section 5.3.3 that the results
of the Wald test depend on the scale for the parameterization. Also, Wald inference
is useless when an estimate or H0 value is on the boundary of the parameter space.
Examples are �̂� = 0 for a binomial and 𝛽 = ∞ in a GLM (not unusual in logistic
regression).

4.3.5 Constructing Confidence Intervals by Inverting Tests

For any of the three test methods, we can construct a confidence interval by inverting
the test. For instance, in the single-parameter case a 95% confidence interval for 𝛽 is
the set of 𝛽0 for which the test of H0: 𝛽 = 𝛽0 has P-value exceeding 0.05.

Let za denote the (1 − a) quantile of the standard normal distribution. A 100(1 −
𝛼)% confidence interval based on asymptotic normality uses z𝛼∕2, for instance, z

0.025
=

1.96 for 95% confidence. The Wald confidence interval is the set of 𝛽0 for which|𝛽 − 𝛽0|∕SE < z𝛼∕2. This gives the interval 𝛽 ± z𝛼∕2(SE). The score-test-based confi-

dence interval often simplifies to the set of 𝛽0 for which |𝛽 − 𝛽0|∕SE0 < z𝛼∕2, where
SE0 is the standard error estimated under the restriction that 𝛽 = 𝛽0. Let 𝜒2

d (a) denote
the (1 − a) quantile of the chi-squared distribution with df = d. The likelihood-ratio-
based confidence interval is the set of 𝛽0 for which −2[L(𝛽0) − L(𝛽)] < 𝜒2

1 (𝛼). [Note
that 𝜒2

1 (𝛼) = z2
𝛼∕2

.]

When 𝛽 has a normal distribution, the log-likelihood function is a second-degree
polynomial and thus has a parabolic shape. For small samples of highly non-normal
data or when 𝛽 falls near the boundary of the parameter space, 𝛽 may have distribution
far from normality, and the log-likelihood function can be far from a symmetric,
parabolic curve. A marked divergence in the results of Wald and likelihood-ratio
inference indicates that the distribution of 𝛽 may not be close to normality. It is then
preferable to use the likelihood-ratio inference or higher order asymptotic methods12.

11See, for example, Cox and Hinkley (1974, Section 9.3).
12For an introduction to higher-order asymptotics, see Brazzale et al. (2007).
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4.3.6 Profile Likelihood Confidence Intervals

For confidence intervals for multiparameter models, especially useful is the profile
likelihood approach. It is based on inverting likelihood-ratio tests for the various
possible null values of 𝛽, regarding the other parameters 𝝍 in the model as nuisance
parameters. In inverting a likelihood-ratio test of H0: 𝛽 = 𝛽0 to check whether 𝛽0
belongs in the confidence interval, the ML estimate �̂�(𝛽0) of 𝝍 that maximizes
the likelihood under the null varies as 𝛽0 does. The profile log-likelihood function is
L(𝛽0, �̂�(𝛽0)), viewed as a function of 𝛽0. For each 𝛽0 this function gives the maximum
of the ordinary log-likelihood subject to the constraint 𝛽 = 𝛽0. Evaluated at 𝛽0 = 𝛽,
this is the maximized log likelihood L(𝛽, �̂�), which occurs at the unrestricted ML
estimates. The profile likelihood confidence interval for 𝛽 is the set of 𝛽0 for which

−2[L(𝛽0, �̂�(𝛽0)) − L(𝛽, �̂�)] < 𝜒2
1 (𝛼).

The interval contains all 𝛽0 not rejected in likelihood-ratio tests of nominal size 𝛼.
The profile likelihood interval is more complex to calculate than the Wald interval,
but it is available in software13.

4.4 DEVIANCE OF A GLM, MODEL COMPARISON, AND
MODEL CHECKING

For a particular GLM with observations y = (y1,… , yn), let L(𝝁; y) denote the log-
likelihood function expressed in terms of the means 𝝁 = (𝜇1,… ,𝜇n). Let L(�̂�; y)
denote the maximum of the log likelihood for the model. Considered for all possible
models, the maximum achievable log likelihood is L(y; y). This occurs for the most
general model, having a separate parameter for each observation and the perfect fit
�̂� = y. This model is called the saturated model. It explains all variation by the linear
predictor of the model. A perfect fit sounds good, but the saturated model is not a
helpful one. It does not smooth the data or have the advantages that a simpler model
has because of its parsimony, such as better estimation of the true relation. However,
it often serves as a baseline for comparison with other model fits, such as for checking
goodness of fit.

4.4.1 Deviance Compares Chosen Model with Saturated Model

For a chosen model, for all i denote the ML estimate of the natural parameter 𝜃i by
�̂�i, corresponding to the estimated mean �̂�i. Let 𝜃i denote the estimate of 𝜃i for the
saturated model, with corresponding �̃�i = yi. For maximized log likelihoods L(�̂�; y)
for the chosen model and L(y; y) for the saturated model,

−2 log
[ maximum likelihood for model

maximum likelihood for saturated model

]
= −2[L(�̂�; y) − L(y; y)]

13Examples are the confint function and ProfileLikelihood and cond packages in R.
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is the likelihood-ratio statistic for testing H0 that the model holds against H1 that a
more general model holds. It describes lack of fit. From (4.7),

−2[L(�̂�; y) − L(y; y)]

= 2
∑

i

[yi 𝜃i − b(𝜃i)]∕a(𝜙) − 2
∑

i

[yi�̂�i − b(�̂�i)]∕a(𝜙).

Usually a(𝜙) = 𝜙∕𝜔i, in which case this difference equals

2
∑

i

𝜔i[yi(𝜃i − �̂�i) − b(𝜃i) + b(�̂�i)]∕𝜙 = D(y; �̂�)∕𝜙, (4.15)

called the scaled deviance. The statistic D(y; �̂�) is called the deviance.
Since L(�̂�; y) ≤ L(y; y), D(y; �̂�) ≥ 0. The greater the deviance, the poorer the fit.

For some GLMs, such as binomial and Poisson GLMs under small-dispersion asymp-
totics in which the number of observations n is fixed and the individual observations
converge to normality, the scaled deviance has an approximate chi-squared distribu-
tion. The df equal the difference between the numbers of parameters in the saturated
model and in the chosen model. When 𝜙 is known, we use the scaled deviance
for model checking. The main use of the deviance is for inferential comparisons of
models (Section 4.4.3).

4.4.2 The Deviance for Poisson GLMs and Normal GLMs

For Poisson GLMs, from Section 4.1.2, �̂�i = log �̂�i and b(�̂�i) = exp(�̂�i) = �̂�i. Simi-
larly, 𝜃i = log yi and b(𝜃i) = yi for the saturated model. Also a(𝜙) = 1, so the deviance
and scaled deviance (4.15) equal

D(y; �̂�) = 2
∑

i

[yi log(yi∕�̂�i) − yi + �̂�i].

When a model with log link contains an intercept term, the likelihood equation (4.12)
implied by that parameter is

∑
i yi =

∑
i �̂�i. Then the deviance simplifies to

D(y; �̂�) = 2
∑

i

yi log(yi∕�̂�i). (4.16)

For some applications with Poisson GLMs, such as modeling cell counts in con-
tingency tables, the number n of counts is fixed. With p model parameters, as the
expected counts grow the deviance converges in distribution to chi-squared with
df = n − p. Chapter 7 shows that the deviance then provides a test of model fit.

For normal GLMs, by Section 4.1.2, �̂�i = �̂�i and b(�̂�i) = �̂�2
i ∕2. Similarly, 𝜃i = yi

and b(𝜃i) = y2
i ∕2 for the saturated model. So the deviance equals

D(y; �̂�) = 2
∑

i

[
yi(yi − �̂�i) −

y2
i

2
+
�̂�2

i

2

]
=
∑

i

(yi − �̂�i)
2.
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For linear models, this is the residual sum of squares, which we have denoted by SSE.
Also 𝜙 = 𝜎2, so the scaled deviance is [

∑
i(yi − �̂�i)

2]∕𝜎2. When the model holds, we
have seen (Section 3.2.2, by Cochran’s theorem) that this has a 𝜒2

n−p distribution.
For a particular GLM, maximizing the likelihood corresponds to minimizing the

deviance. Using least squares to minimize SSE for a linear model generalizes to using
ML to minimize a deviance for a GLM.

4.4.3 Likelihood-Ratio Model Comparison Uses Deviance Difference

Methods for comparing deviances generalize methods for normal linear models that
compare residual sums of squares. When 𝜙 = 1, such as for a Poisson or binomial
model, the deviance (4.15) equals

D(y; �̂�) = −2[L(�̂�; y) − L(y; y)].

Consider two nested models, M0 with p0 parameters and fitted values �̂�0 and M1
with p1 parameters and fitted values �̂�1, with M0 a special case of M1. Section 3.2.2
showed how to compare nested linear models. Since the parameter space for M0
is contained in that for M1, L(�̂�0; y) ≤ L(�̂�1; y). Since L(y; y) is identical for each
model,

D(y; �̂�1) ≤ D(y; �̂�0).

Simpler models have larger deviances.
Assuming that model M1 holds, the likelihood-ratio test of the hypothesis that M0

holds uses the test statistic

−2[L(�̂�0; y) − L(�̂�1; y)] = −2[L(�̂�0; y) − L(y; y)] − {−2[L(�̂�1; y) − L(y; y)]}

= D(y; �̂�0) − D(y; �̂�1),

when 𝜙 = 1. This statistic is large when M0 fits poorly compared with M1. In expres-
sion (4.15) for the deviance, since the terms involving the saturated model cancel,

D(y; �̂�0) − D(y; �̂�1) = 2
∑

i

𝜔i[yi(�̂�1i − �̂�0i) − b(�̂�1i) + b(�̂�0i)].

This also has the form of the deviance. Under standard regularity conditions for which
likelihood-ratio statistics have large-sample chi-squared distributions, this difference
has approximately a chi-squared null distribution with df = p1 − p0.

For example, for a Poisson loglinear model with an intercept term, from expression
(4.16) for the deviance, the difference in deviances uses the observed counts and the
two sets of fitted values in the form

D(y; �̂�0) − D(y; �̂�1) = 2
∑

i

yi log(�̂�1i∕�̂�0i).

We denote the likelihood-ratio statistic for comparing nested models by G2(M0 ∣ M1).
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4.4.4 Score Tests and Pearson Statistics for Model Comparison

For GLMs having variance function var(yi) = v(𝜇i) with 𝜙 = 1, the score statistic for
comparing a chosen model with the saturated model is14

X2 =
∑

i

(yi − �̂�i)
2

v(�̂�i)
. (4.17)

For Poisson yi, for which v(�̂�i) = �̂�i, this has the form

∑
(observed − fitted)2∕fitted.

This is known as the Pearson chi-squared statistic, because Karl Pearson introduced
it in 1900 for testing various hypotheses using the chi-squared distribution, such as
the hypothesis of independence in a two-way contingency table (Section 7.2.2). The
generalized Pearson statistic (4.17) is an alternative to the deviance for testing the fit
of certain GLMs.

For two nested models, a generalized Pearson statistic for comparing nested models
is

X2(M0 ∣ M1) =
∑

i

(�̂�1i − �̂�0i)
2∕v(�̂�0i). (4.18)

This is a quadratic approximation for G2(M0 ∣ M1), with the same null asymptotic
behavior. However, this is not the score statistic for comparing the models, which is
more complex. See Note 4.4.

4.4.5 Residuals and Fitted Values Asymptotically Uncorrelated

Examining residuals helps us find where the fit of a GLM is poor or where unusual
observations occur. As in ordinary linear models, we would like to exploit the decom-
position

y = �̂� + (y − �̂�) (i.e., data = fit + residuals).

With GLMs, however, �̂� and (y − �̂�) are not orthogonal when we leave the simple
linear model case of identity link with constant variance. Pythagoras’s theorem does
not apply, because maximizing the likelihood does not correspond to minimizing‖y − �̂�‖. With a nonlinear link function, although the space of linear predictor values
𝜼 that satisfy a particular GLM is a linear vector space, the corresponding set of 𝝁 =
g−1(𝜼) values is not. Fundamental results for ordinary linear models about projections
and orthogonality of fitted values and residuals do not hold exactly for GLMs.

14See Lovison (2005, 2014), Pregibon (1982), and Smyth (2003).
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We next obtain an asymptotic covariance matrix for the residuals. From Section
4.2.4, W = diag{(𝜕𝜇i∕𝜕𝜂i)

2∕var(yi)} and D = diag{𝜕𝜇i∕𝜕𝜂i}, so we can express the
diagonal matrix V = var(y) as V = DW−1D. For large n, if �̂� is approximately uncor-
related with (y − �̂�), then V ≈ var(�̂�) + var(y − �̂�). Then, using the approximate
expression for var(�̂�) from Section 4.2.5 and V1∕2 = DW−1∕2,

var(y − �̂�) ≈ V − var(�̂�) ≈ DW−1D − DX(XTWX)−1XTD

= DW−1∕2[I − W1∕2X(XTWX)−1XTW1∕2]W−1∕2D.

This has the form V1∕2[I − H
W

]V1∕2, where I is the identity matrix and

H
W
= W1∕2X(XTWX)−1XTW1∕2. (4.19)

You can verify that H
W

is a projection matrix by showing it is symmetric and
idempotent. McCullagh and Nelder (1989, p. 397) noted that it is approximately a
hat matrix for standardized units of y, with

H
W

V−1∕2(y − 𝝁) ≈ V−1∕2(�̂� − 𝝁).

The chapter appendix shows that the estimate of H
W

is also a type of hat matrix,
applying to weighted versions of the response and the linear predictor.

So why is (y − �̂�) asymptotically uncorrelated with �̂�, thus generalizing the exact
orthogonal decomposition for linear models? Lovison (2014) gave an argument that
seems relevant for small-dispersion asymptotic cases in which “large samples” refer
to the individual components, such as binomial indices. If (y − �̂�) and �̂� were not
approximately uncorrelated, one could construct an asymptotically unbiased estima-
tor of 𝝁 that is asymptotically more efficient than �̂� using �̂�∗ = [�̂� + L(y − �̂�)] for a
matrix of constants L. But this would contradict the ML estimator �̂� being asymptot-
ically efficient. Such an argument is an asymptotic version for ML estimators of the
one in the Gauss–Markov theorem (Section 2.7.1) that unbiased estimators other than
the least squares estimator have difference from that estimator that is uncorrelated
with it. The small-dispersion asymptotic setting applies for the discrete-data models
we will present in the next three chapters for situations in which residuals are mainly
useful, in which individual yi have approximate normal distributions. Then (y − 𝝁)
and (�̂� − 𝝁) jointly have an approximate normal distribution, as does their difference.

4.4.6 Pearson, Deviance, and Standardized Residuals for GLMs

For a particular model with variance function v(𝜇), the Pearson residual for observa-
tion yi and its fitted value �̂�i is

Pearson residual: ei =
yi − �̂�i√

v(�̂�i)
. (4.20)
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Their squared values sum to the generalized Pearson statistic (4.17). For instance,
consider a Poisson GLM. The Pearson residual is

ei = (yi − �̂�i)∕
√
�̂�i,

and when {𝜇i} are large and the model holds, ei has an approximate normal distribu-
tion and X2 =

∑
i e2

i has an approximate chi-squared distribution (Chapter 7). For a
binomial GLM in which niyi has a bin(ni,𝜋i) distribution, the Pearson residual is

ei = (yi − �̂�i)∕
√
�̂�i(1 − �̂�i)∕ni,

and when {ni} are large, X2 =
∑

i e2
i also has an approximate chi-squared distribution

(Chapter 5). In these cases, such statistics are used in model goodness-of-fit tests.
In expression (4.15) for the deviance, let D(y; �̂�) =

∑
i di, where

di = 2𝜔i[yi(𝜃i − �̂�i) − b(𝜃i) + b(�̂�i)].

The deviance residual is

Deviance residual:
√

di × sign(yi − �̂�i). (4.21)

The sum of squares of these residuals equals the deviance.
To judge when a residual is “large” it is helpful to have residual values that,

when the model holds, have means of 0 and variances of 1. However, Pearson and
deviance residuals tend to have variance less than 1 because they compare yi with
the fitted mean �̂�i rather than the true mean 𝜇i. For example, the denominator of the
Pearson residual estimates [v(𝜇i)]

1∕2 = [var(yi − 𝜇i)]
1∕2 rather than [var(yi − �̂�i)]

1∕2.
The standardized residual divides each raw residual (yi − �̂�i) by its standard error.
From Section 4.4.5, var(yi − �̂�i) ≈ v(𝜇i)(1 − hii), where hii is the diagonal element
of the generalized hat matrix H

W
for observation i, its leverage. Let ĥii denote the

estimate of hii. Then, standardizing by dividing yi − �̂�i by its estimated SE yields

Standardized residual: ri =
yi − �̂�i√

v(�̂�i)(1 − ĥii)
=

ei√
1 − ĥii

. (4.22)

For Poisson GLMs, for instance, ri = (yi − �̂�i)∕
√
�̂�i(1 − ĥii). Likewise, deviance

residuals have standardized versions. They are most useful for small-dispersion
asymptotic cases, such as for relatively large Poisson means and relatively large
binomial indices. In such cases their model-based distribution is approximately stan-
dard normal.

To detect a model’s lack of fit, any particular type of residual can be plotted against
the component fitted values in �̂� and against each explanatory variable. As with the
linear model, the fit could be quite different when we delete an observation that has a
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large standardized residual and a large leverage. The estimated leverages fall between
0 and 1 and sum to p. Unlike in ordinary linear models, the generalized hat matrix
depends on the fit as well as on the model matrix, and points that have extreme
values for the explanatory variables need not have high estimated leverage. To gauge
influence, an analog of Cook’s distance (2.11) uses both the standardized residuals
and the estimated leverages, by r2

i [ĥii∕p(1 − ĥii)].

4.5 FITTING GENERALIZED LINEAR MODELS

How do we find the ML estimator 𝜷 of GLM parameters? The likelihood equations
(4.10) are usually nonlinear in 𝜷. We next describe a general purpose iterative method
for solving nonlinear equations and apply it in two ways to determine the maximum
of the likelihood function.

4.5.1 Newton–Raphson Method

The Newton–Raphson method iteratively solves nonlinear equations, for example, to
determine the point at which a function takes its maximum. It begins with an initial
approximation for the solution. It obtains a second approximation by approximating
the function in a neighborhood of the initial approximation by a second-degree
polynomial and then finding the location of that polynomial’s maximum value. It
then repeats this step to generate a sequence of approximations. These converge
to the location of the maximum when the function is suitable and/or the initial
approximation is good.

Mathematically, here is how the Newton–Raphson method determines the value
𝜷 at which a function L(𝜷) is maximized. Let

u =
(
𝜕L(𝜷)
𝜕𝛽1

,
𝜕L(𝜷)
𝜕𝛽2

,… ,
𝜕L(𝜷)
𝜕𝛽p

)T

.

Let H denote15 the matrix having entries hab = 𝜕2L(𝜷)∕𝜕𝛽a𝜕𝛽b, called the Hessian
matrix. Let u(t) and H(t) be u and H evaluated at 𝜷(t), approximation t for 𝜷. Step t in
the iterative process (t = 0, 1, 2,…) approximates L(𝜷) near 𝜷(t) by the terms up to
the second order in its Taylor series expansion,

L(𝜷) ≈ L(𝜷(t)) + u(t)T (𝜷 − 𝜷(t)) +
(

1
2

)
(𝜷 − 𝜷(t))TH(t)(𝜷 − 𝜷 (t)).

Solving 𝜕L(𝜷)∕𝜕𝜷 ≈ u(t) + H(t)(𝜷 − 𝜷(t)) = 0 for 𝜷 yields the next approximation,

𝜷(t+1) = 𝜷(t) − (H(t))−1u(t), (4.23)

assuming that H(t) is nonsingular.

15Here, H is not the hat matrix; it is conventional to use H for a Hessian matrix.
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Iterations proceed until changes in L(𝜷(t)) between successive cycles are suffi-
ciently small. The ML estimator is the limit of 𝜷(t) as t → ∞; however, this need not
happen if L(𝜷) has other local maxima at which u(𝜷) = 0. In that case, a good initial
approximation is crucial. Figure 4.2 illustrates a cycle of the method, showing the
parabolic (second-order) approximation at a given step.

L

L(β)

β (t+1)β (t)β

Quadratic
approximation

β

Figure 4.2 Illustration of a cycle of the Newton–Raphson method.

For many GLMs, including Poisson loglinear models and binomial logistic models,
with full-rank model matrix the Hessian is negative definite, and the log likelihood
is a strictly concave function. Then ML estimates of model parameters exist and
are unique under quite general conditions16. The convergence of 𝜷(t) to 𝜷 in the
neighborhood of 𝜷 is then usually fast.

4.5.2 Fisher Scoring Method

Fisher scoring is an alternative iterative method for solving likelihood equations. The
difference from Newton–Raphson is in the way it uses the Hessian matrix. Fisher scor-
ing uses the expected value of this matrix, called the expected information, whereas
Newton–Raphson uses the Hessian matrix itself, called the observed information.

Let  (t) denote approximation t for the ML estimate of the expected information
matrix; that is,  (t) has elements −E (𝜕2L(𝜷)∕𝜕𝛽a 𝜕𝛽b), evaluated at 𝜷(t). The formula
for Fisher scoring is

𝜷(t+1) = 𝜷(t) + ( (t))−1u(t), or  (t)𝜷(t+1) =  (t)𝜷(t) + u(t). (4.24)

Formula (4.13) showed that  = XTWX, where W is diagonal with elements
wi = (𝜕𝜇i∕𝜕𝜂i)

2∕var(yi). Similarly,  (t) = XTW(t)X, where W(t) is W evaluated at
𝜷 (t). The estimated asymptotic covariance matrix  −1 of 𝜷 [see (4.14)] occurs as

16See, for example, Wedderburn (1976).
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a by-product of this algorithm as ( (t))−1 for t at which convergence is adequate.
For GLMs with a canonical link function, Section 4.5.5 shows that the observed and
expected information are the same.

A simple way to begin either iterative process takes the initial estimate of 𝝁 to be
the data y, smoothed to avoid boundary values. This determines the initial estimate
of the weight matrix W and hence the initial approximation for 𝜷.

4.5.3 Newton–Raphson and Fisher Scoring for a Binomial Parameter

In the next three chapters we use the Newton–Raphson and Fisher scoring methods
for models for categorical data and count data. We illustrate them here with a simpler
problem for which we know the answer, maximizing the log likelihood with a sample
proportion y from a bin(n,𝜋) distribution. The log likelihood to be maximized is then
L(𝜋) = log[𝜋ny(1 − 𝜋)n−ny] = ny log 𝜋 + (n − ny) log(1 − 𝜋).

The first two derivatives of L(𝜋) are

u = (ny − n𝜋)∕𝜋(1 − 𝜋), H = −[ny∕𝜋2 + (n − ny)∕(1 − 𝜋)2].

Each Newton–Raphson step has the form

𝜋(t+1) = 𝜋(t) +
[

ny

(𝜋(t))2
+

n − ny

(1 − 𝜋(t))2

]−1 ny − n𝜋(t)

𝜋(t)(1 − 𝜋(t))
.

This adjusts 𝜋(t) up if y > 𝜋(t) and down if y < 𝜋(t). For instance, with 𝜋(0) = 1
2

, you

can check that 𝜋(1) = y. When 𝜋(t) = y, no adjustment occurs and 𝜋(t+1) = y, which
is the correct answer for �̂�. From the expectation of H above, the information is
n∕[𝜋(1 − 𝜋)]. A step of Fisher scoring gives

𝜋(t+1) = 𝜋(t) +
[

n
𝜋(t)(1 − 𝜋(t))

]−1 ny − n𝜋(t)

𝜋(t)(1 − 𝜋(t))

= 𝜋(t) + (y − 𝜋(t)) = y.

This gives the correct answer for �̂� after a single iteration and stays at that value for
successive iterations.

4.5.4 ML as Iteratively Reweighted Least Squares

A relation exists between using Fisher scoring to find ML estimates and weighted
least squares estimation. We refer here to the general linear model

z = X𝜷 + 𝝐.
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When the covariance matrix of 𝝐 is V, from Section 2.7.2 the generalized least squares
estimator of 𝜷 is

(XTV−1X)−1XTV−1z.

When V is diagonal, this is referred to as a weighted least squares estimator.
From (4.11), the score vector for a GLM is XTDV−1(y − 𝝁). Since D =

diag{𝜕𝜇i∕𝜕𝜂i} and W = diag{(𝜕𝜇i∕𝜕𝜂i)
2∕var(yi)}, we have DV−1 = WD−1 and we

can express the score function as

u = XTWD−1(y − 𝝁).

Since  = XTWX, it follows that in the Fisher scoring formula (4.24),

 (t)𝜷 (t) + u(t) = (XTW(t)X)𝜷(t) + XTW(t)(D(t))−1(y − 𝝁(t))

= XTW(t)[X𝜷(t) + (D(t))−1(y − 𝝁(t))] = XTW(t)z(t),

where z(t) has elements

z(t)
i =

∑
j

xij 𝛽
(t)
j +

(
yi − 𝜇(t)

i

) 𝜕𝜂(t)
i

𝜕𝜇
(t)
i

= 𝜂(t)
i +

(
yi − 𝜇(t)

i

) 𝜕𝜂(t)
i

𝜕𝜇
(t)
i

.

The Fisher scoring equations then have the form

(XTW(t)X)𝜷(t+1) = XTW(t)z(t).

These are the normal equations for using weighted least squares to fit a linear model
for a response variable z(t), when the model matrix is X and the inverse of the
covariance matrix is W(t). The equations have the solution

𝜷(t+1) = (XTW(t)X)−1XTW(t)z(t).

The vector z(t) in this formulation is an estimated linearized form of the link
function g, evaluated at y,

g(yi) ≈ g
(
𝜇(t)

i

)
+
(
yi − 𝜇(t)

i

)
g′
(
𝜇(t)

i

)
= 𝜂(t)

i +
(
yi − 𝜇(t)

i

) 𝜕𝜂(t)
i

𝜕𝜇
(t)
i

= z(t)
i . (4.25)

The adjusted response variable z has element i approximated by z(t)
i for cycle t of the

iterative scheme. That cycle regresses z(t) on X with weight (i.e., inverse covariance)
W(t) to obtain a new approximation 𝜷(t+1). This estimate yields a new linear predictor
value 𝜼(t+1) = X𝜷(t+1) and a new approximation z(t+1) for the adjusted response for
the next cycle. The ML estimator results from iterative use of weighted least squares,
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in which the weight matrix changes at each cycle. The process is called iteratively
reweighted least squares (IRLS). The weight matrixW used in var(𝜷) ≈ (XTWX)−1,
in the generalized hat matrix (4.19), and in Fisher scoring is the inverse covariance
matrix of the linearized form z = X𝜷 + D−1(y − 𝝁) of g(y). At convergence,

𝜷 = (XTŴX)−1XTŴẑ,

for the estimated adjusted response ẑ = X𝜷 + D̂
−1

(y − �̂�).

4.5.5 Simplifications for Canonical Link Functions

Certain simplifications result for GLMs that use the canonical link function. For that
link,

𝜂i = 𝜃i =
p∑

j=1

𝛽jxij,

and

𝜕𝜇i∕𝜕𝜂i = 𝜕𝜇i∕𝜕𝜃i = 𝜕b′(𝜃i)∕𝜕𝜃i = b′′(𝜃i).

Since var(yi) = b′′(𝜃i)a(𝜙), the contribution (4.9) to the likelihood equation for 𝛽j
simplifies to

𝜕Li

𝜕𝛽j
=

(yi − 𝜇i)

var(yi)
b′′(𝜃i)xij =

(yi − 𝜇i)xij

a(𝜙)
. (4.26)

Often a(𝜙) is identical for all observations, such as for Poisson GLMs [a(𝜙) = 1]
and for binomial GLMs with each ni = 1 [for which a(𝜙) = 1]. Then, the likelihood
equations are

n∑
i=1

xijyi =
n∑

i=1

xij𝜇i, j = 1, 2,… , p. (4.27)

We noted at the beginning of Section 4.2 that {
∑n

i=1 xijyi} are the sufficient statistics
for {𝛽j}. So equation (4.27) illustrates a fundamental result:

� For GLMs with canonical link function, the likelihood equations equate the
sufficient statistics for the model parameters to their expected values.

For a normal distribution with identity link, these are the normal equations. We
obtained them for Poisson loglinear models in (4.12).
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From expression (4.26) for 𝜕Li∕𝜕𝛽j, with the canonical link function the second
partial derivatives of the log likelihood are

𝜕2Li

𝜕𝛽h𝜕𝛽j
= −

xij

a(𝜙)

(
𝜕𝜇i

𝜕𝛽h

)
.

This does not depend on yi, so

𝜕2L(𝜷)∕𝜕𝛽h𝜕𝛽j = E[𝜕2L(𝜷)∕𝜕𝛽h𝜕𝛽j].

That is, H = − , so the Newton–Raphson and Fisher scoring algorithms are identical
for GLMs that use the canonical link function (Nelder and Wedderburn 1972).

Finally, in the canonical link case the log likelihood is necessarily a concave
function, because the log likelihood for an exponential family distribution is concave
in the natural parameter. In using iterative methods to find the ML estimates, we do
not need to worry about the possibility of multiple maxima for the log likelihood.

4.6 SELECTING EXPLANATORY VARIABLES FOR A GLM

Model selection for GLMs faces the same issues as for ordinary linear models. The
selection process becomes more difficult as the number of explanatory variables
increases, because of the rapid increase in possible effects and interactions. The
selection process has two competing goals. The model should be complex enough to
fit the data well. On the other hand, it should smooth rather than overfit the data and
ideally be relatively simple to interpret.

Most research studies are designed to answer certain questions. Those questions
guide the choice of model terms. Confirmatory analyses then use a restricted set of
models. For instance, a study hypothesis about an effect may be tested by comparing
models with and without that effect. For studies that are exploratory rather than
confirmatory, a search among possible models may provide clues about the structure
of effects and raise questions for future research. In either case, it is helpful first to
study the marginal effect of each predictor by itself with descriptive statistics and a
scatterplot matrix, to get a feel for those effects.

This section discusses some model-selection procedures and issues that affect the
selection process. Section 4.7 presents an example and illustrates that the variables
selected, and the influence of individual observations, can be highly sensitive to the
assumed distribution for y.

4.6.1 Stepwise Procedures: Forward Selection and Backward Elimination

With p explanatory variables, the number of potential models is 2p, as each variable
either is or is not in the chosen model. The best subset selection identifies the model
that performs best according to a criterion such as maximizing the adjusted R2 value.
This is computationally intensive when p is large. Alternative algorithmic methods
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can search among the models. In exploratory studies, such methods can be informative
if we use the results cautiously.

Forward selection adds terms sequentially. At each stage it selects the term giving
the greatest improvement in fit. A point of diminishing returns occurs in adding
explanatory variables when new ones added are themselves so well predicted by
ones already used that they do not provide a substantive improvement in R2. The
process stops when further additions do not improve the fit, according to statistical
significance or a criterion for judging the model fit (such as the AIC, introduced
below in Section 4.6.3). A stepwise variation of this procedure rechecks, at each
stage, whether terms added at previous stages are still needed. Backward elimination
begins with a complex model and sequentially removes terms. At each stage, it selects
the term whose removal has the least damaging effect on the model, such as the largest
P-value in a test of its significance or the least deterioration in a criterion for judging
the model fit. The process stops when any further deletion leads to a poorer fit.

With either approach, an interaction term should not be in a model without its
component main effects. Also, for qualitative predictors with more than two cate-
gories, the process should consider the entire variable at any stage rather than just
individual indicator variables. Add or drop the entire variable rather than only one of
its indicators. Otherwise, the result depends on the choice of reference category for
the indicator coding.

Some statisticians prefer backward elimination over forward selection, feeling it
safer to delete terms from an overly complex model than to add terms to an overly
simple one. Forward selection based on significance testing can stop prematurely
because a particular test in the sequence has low power. It also has the theoretical
disadvantage that in early stages both models being compared are likely to be inad-
equate, making the basis for a significance test dubious. Neither strategy necessarily
yields a meaningful model. When you evaluate many terms, some that are not truly
important may seem so merely because of chance. For instance, when all the true
effects are weak, the largest sample effect is likely to overestimate substantially its
true effect. Also, the use of standard significance tests in the process lacks theoretical
justification, because the distribution of the minimum or maximum P-value evaluated
over a set of explanatory variables is not the same as that of a P-value for a preselected
variable. Use variable-selection algorithms in an informal manner and with caution.
Backward and forward selection procedures yielding quite different models is an
indication that such results are of dubious value.

For any method, since statistical significance is not the same as practical signif-
icance, a significance test should not be the sole criterion for including a term in
a model. It is sensible to include a variable that is central to the purposes of the
study and report its estimated effect even if it is not statistically significant. Keeping
it in the model may make it possible to compare results with other studies where
the effect is significant, perhaps because of a larger sample size. If the variable is a
potential confounder, including it in the model may help to reduce bias in estimating
relevant effects of key explanatory variables. But also a variable should not be kept
merely because it is statistically significant. For example, if a selection method results
in a model having adjusted R2 = 0.39 but a simpler model without the interaction
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terms has adjusted R2 = 0.38, for ease of interpretation it may be preferable to drop
the interaction terms. Algorithmic selection procedures are no substitute for careful
thought in guiding the formulation of models.

Some variable-selection methods adapt stepwise procedures to take such issues
into account. For example, Hosmer et al. (2013, Chapter 4) recommended a purpose-
ful selection model-building process that also pays attention to potential confounding
variables. In outline, they suggest constructing an initial main-effects model by (1)
choosing a set of explanatory variables that include the known clinically important
variables and others that show any evidence of being relevant predictors in a univari-
able analysis (e.g., having P-value <0.25), (2) conducting backward elimination with
the full set from (1), keeping a variable if it is either significant at a somewhat more
stringent level or shows evidence of being a relevant confounder, in the sense that the
estimated effect of a key variable changes by at least 20% when it is removed, (3)
checking whether any variables not included in (1) are significant when adjusting for
the variables in the model after Step (2). One then checks for plausible interactions
among variables in the model after Step (3), using significance tests at conventional
levels such as 0.05, followed by the usual diagnostic investigations presented in
Section 4.4.

4.6.2 Model Selection: The Bias–Variance Tradeoff

In selecting a model from a set of candidates, we are mistaken if we think that there is
a “correct” one. Any model is a simplification of reality. For instance, an explanatory
variable will not have exactly a linear effect, no matter which link function we use.
And it is not always a good idea to choose a more complex model in order to obtain a
better fit. A simple model that fits adequately has the advantages of model parsimony,
including a tendency to provide more accurate estimates of the quantities of interest.
The choice of how complex a model to use is at the heart of the basic statistical
tradeoff between the variance of an estimator and its bias. Here, bias occurs when the
true {E(yi)} values differ from the values {𝜇Mi} corresponding to fitting model M to
the population. Using a simpler model has the disadvantage of increasing the bias;
that is, the differences {|𝜇Mi − E(yi)|} between the model-based means and the true
means tend to be larger. But a simpler model has the advantage that the decrease in
the number of model parameters results in decreased variance in the estimators. This
can result in overall lower mean squared error17 in estimating characteristics such as
the true {E(yi)} values.

In practice, many models can be consistent with the data. If not one of them is
“correct,” it is logically inconsistent to choose one model based on its fitting the
data well and then make subsequent inferences as if the model had been chosen
before seeing the data. Although this is common practice, it results in a tendency to
underestimate uncertainty and to exaggerate significance. Keep in mind the selection
uncertainty in making inferences based on a model, because those inferences use
the same data that helped you to select the model. Although selection procedures are

17Recall that MSE = variance + (bias)2.
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helpful tools, results of an exploratory study are highly tentative and useful mainly for
suggesting effects and hypotheses to analyze in future studies. The model-building
process should also be based on theory and common sense.

Other criteria besides significance tests comparing models can help you to select
a sensible model. We next introduce the best known of such criteria.

4.6.3 AIC: Minimizing Distance of the Fit from the Truth

The Akaike information criterion (AIC) judges a model by how close we can expect
its sample fit to be to the true model fit. In the population of interest, even though
a simple model is farther from the true relationship than is a more complex model,
for a sample it may tend to provide a closer fit because of the advantages of model
parsimony. In a set of potential models, the optimal model is the one that tends to
have sample fit closest to the true model fit.

Here “closeness” is defined in terms of the Kullback–Leibler divergence of a model
M from the unknown true model. Let p(y) denote the density (or probability, in the
discrete case) of the data under the true model, and let pM(y;𝜷M) be the density under
model M with parameters 𝜷M . For a given value of the ML estimator 𝜷M of 𝜷M and
for a future sample y∗ from p(⋅), the Kullback–Leibler divergence between the true
and fitted distributions is

KL[p, pM(𝜷M)] = E

[
log

p(y∗)

pM(y∗; 𝜷M)

]
,

where the expectation is taken relative to the true distribution p(⋅). The goal of AIC is to
choose the model to minimize E[KL(p, pM(𝜷M))] for a set of potential models, where
this expectation also is taken relative to p(⋅), now with 𝜷M as the random variable for
another sample. To do this, it is sufficient to minimize E{−E log[pM(y∗; 𝜷M)]} over
the set of models. The true distribution p(⋅) needed to evaluate this expectation is
unknown, but the expectation can be estimated consistently. Akaike (1973) showed
that when M is reasonably close to the true model, the maximized log likelihood
L(𝜷M) for M is a biased estimator of E{E log[pM(y∗; 𝜷M)]}, and for large sample
sizes the bias is reduced by subtracting the number of parameters in M. This implies
that out of a set of reasonably fitting models, the optimal model minimizes18

AIC = −2
[
L(𝜷M) − number of parameters in M

]
.

Although the role of subtracting the number of parameters in M is to adjust for
bias, the AIC essentially penalizes a model for having many parameters. With many
potential explanatory variables, using AIC can aid in variable selection. Out of a set
of candidate models, we identify the one with smallest AIC or identify parsimonious

18Akaike introduced the multiple of 2 merely for convenience, to link the AIC formula with
likelihood-ratio chi-squared statistics.



SELECTING EXPLANATORY VARIABLES FOR A GLM 147

models that have AIC near the minimum value. The candidate models need not be
nested or even based on the same family of distributions for the random component.

An alternative to AIC, a Bayesian information criterion (BIC), penalizes more
severely for the number of model parameters. It replaces 2 by log(n) as its multiple.
Compared with AIC, BIC gravitates less quickly toward more complex models as
n increases. It is based on a Bayesian argument for determining which of a set
of models has highest posterior probability (Schwarz 1978). Because of selection
bias, however, model-selection criteria such as minimizing AIC or minimizing BIC
can result in inclusion of irrelevant variables (George 2000). This can be especially
problematic when p is large and few variables truly have an effect19.

4.6.4 Summarizing Predictive Power: R-Squared and Other Measures

In ordinary linear models, R2 and the multiple correlation R describe how well the
explanatory variables predict the sample response values, with R = 1 for perfect
prediction. For any GLM, the correlation between the fitted values {�̂�i} and the
observed responses {yi} measures predictive power. It is also useful for comparing
fits of different models for the same data. For the ordinary linear model, corr(y, �̂�)
is the multiple correlation. An advantage of the correlation, relative to its square,
is the appeal of working on the original scale and its approximate proportionality
to effect size: For a small effect with a single explanatory variable, doubling the
slope corresponds approximately to doubling the correlation. For GLMs, unlike
linear models, corr(y, �̂�) need not be nondecreasing as the model gets more complex,
although it usually is.

Other measures of predictive power directly use the likelihood function. Denote
the maximized log likelihood by LM for a given model, LS for the saturated model,
and L0 for the null model containing only an intercept term. Then, L0 ≤ LM ≤ LS,
and

LM − L0

LS − L0
(4.28)

falls between 0 and 1. It equals 0 when the model provides no improvement in fit over
the null model, and it equals 1 when the model fits as well as the saturated model.
A weakness is that the scale for the log likelihood may not be as easy to interpret as
the scale for the response variable itself. The measure is mainly useful for comparing
models.

With any such measure, with many explanatory variables, the sample estimators
can be biased upward in estimating the true population value. It can be misleading to
compare sample values for models with quite different numbers of parameters. Bias
corrections are possible, for example, by using cross-validation (Stone 1974) or the
jackknife (Zheng and Agresti 2000).

19For example, when no variables truly have an effect, for t tests of the individual partial effects,
E(t2

max) ≈ 2 log p (George 2000).
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4.6.5 Effects of Collinearity

In an observational study with many explanatory variables, relations among them
may suggest that not one variable is important when all the others are in the model.
A variable may have little partial effect because it is predicted well by the others.
Deleting a nearly redundant predictor can be helpful, for instance, to reduce standard
errors of other estimated effects.

In a linear model, the variance of 𝛽j is

var(𝛽j) =
1

1 − R2
j

[
𝜎2∑

i(xij − x̄j)2

]
,

where R2
j denotes the value of R2 for predicting xj as a response using the other

explanatory variables in the model. One can derive this formula from an expression
of 𝛽j for a regression using two sets of residuals, as in Section 2.5.6 (e.g., see Greene
2011, p. 90). The ratio VIFj = 1∕(1 − R2

j ) is called the variance inflation factor for
predictor xj. It is the multiple by which the variance increases because the other

predictors are correlated with xj. As R2
j increases, var(𝛽j) increases. If R2

j = 1, there
is extrinsic aliasing (Section 1.3.2): The model matrix has less than full rank, and
there are infinitely many solutions for 𝜷. When R2

j is near 1, 𝛽j can be unstable. When

R2
j = 0, 𝛽j and its variance are identical to their values when xj is the sole explanatory

variable in the model.
To illustrate, for the horseshoe crab data (Section 1.5.1), the width of the carapace

shell is highly statistically significant as a predictor of a female crab’s number of
satellites. What happens if we add the crab’s weight as a predictor? Here is the result
of fitting Poisson loglinear models:

---------------------------------------------------------------------

> attach(Crabs) # y is number of satellites

> summary(glm(y ~ width, family=poisson(link=log)))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.30476 0.54224 -6.095 1.1e-09

width 0.16405 0.01997 8.216 < 2e-16

----

> summary(glm(y ~ weight + width, family=poisson(link=log)))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.29521 0.89890 -1.441 0.14962

weight 0.44697 0.15862 2.818 0.00483

width 0.04608 0.04675 0.986 0.32433

----

> cor(weight, width)

[1] 0.8868715

---------------------------------------------------------------------

Width loses its significance. The loss also happens with normal linear models and
with a more appropriate two-parameter distribution for count data that Chapter 7



EXAMPLE: BUILDING A GLM 149

uses. The dramatic reduction in the significance of the crab’s shell width when its
weight is added to the model reflects the correlation of 0.887 between weight and
width. The variance inflation factor for the effect of either predictor in a linear model
is 1∕[1 − (0.887)2] = 4.685. The SE for the effect of width more than doubles when
weight is added to the model, and the estimate itself is much smaller, reflecting also
the strong correlation.

This example illustrates a general phenomenon in modeling. When an explana-
tory variable xj is highly correlated with a linear combination of other explanatory
variables in the model, the relation is said to exhibit20 collinearity (also referred to
as multicollinearity).

When collinearity exists, one approach chooses a subset of the explanatory vari-
ables, removing those variables that explain a small portion of the remaining unex-
plained variation in y. When several predictors are highly correlated and are indicators
of a common feature, another approach constructs a summary index by combining
responses on those variables. Also, methods such as principal components analysis
create artificial variables from the original ones in such a way that the new vari-
ables are uncorrelated. In most applications, though, it is more advisable from an
interpretive standpoint to use a subset of the variables or create some new variables
directly. The effect of interaction terms on collinearity is diminished if we center the
explanatory variables before entering them in the model. Section 11.1.2 introduces
alternative methods, such as ridge regression, that produce estimates that are biased
but less severely affected by collinearity.

Collinearity does not adversely affect all aspects of regression. Although collinear-
ity makes it difficult to assess partial effects of explanatory variables, it does not hinder
the assessment of their joint effects. If newly added explanatory variables overlap
substantially with ones already in the model, R2 will not increase much, but the
presence of collinearity has little effect on the global test of significance.

4.7 EXAMPLE: BUILDING A GLM

Section 3.4 introduced a dataset on home selling prices. The response variable is
selling price in thousands of dollars. The explanatory variables are size of the home
in square feet, whether it is new (1 = yes, 0 = no), annual tax bill in dollars, number of
bedrooms, and number of bathrooms. A scatterplot matrix has limited use for highly
discrete variables such as new, beds, and baths, but Figure 4.3 does reveal the strong
positive correlation for each pair of price, size, and taxes.

-------------------------------------------------------------------------

> attach(Houses) # data at www.stat.ufl.edu/~aa/glm/data

> pairs(cbind(price,size,taxes)) # scatterplot matrix for pairs of var’s

20Technically, collinearity refers to an exact linear dependence, but the term is used in practice when
there is a near dependence.

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data
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Figure 4.3 Scatterplot matrix for price, size, and taxes in dataset on house selling prices.

> cor(cbind(price,size,taxes,beds,baths)) # correlation matrix

price size taxes beds baths

price 1.0000 0.8338 0.8420 0.3940 0.5583

size 0.8338 1.0000 0.8188 0.5448 0.6582

taxes 0.8420 0.8188 1.0000 0.4739 0.5949

beds 0.3940 0.5448 0.4739 1.0000 0.4922

baths 0.5583 0.6582 0.5949 0.4922 1.0000

-------------------------------------------------------------------------

4.7.1 Backward Elimination with House Selling Price Data

We illustrate a backward elimination process for selecting a model, using all the
variables except taxes. (A chapter exercise uses all the variables.) Rather than relying
solely on significance tests, we combine a backward process with judgments about
practical significance.

To gauge how complex a model may be needed, we begin by comparing models
containing the main effects only, also the second-order interactions, and also the
third-order interactions. The anova function in R executes the F test comparing
nested normal linear models (Section 3.2.2).

---------------------------------------------------------------------

> fit1 <- lm(price ~ size + new + baths + beds)

> fit2 <- lm(price ~ (size + new + baths + beds)ˆ2)
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> fit3 <- lm(price ~ (size + new + baths + beds)ˆ3)

> anova(fit1, fit2)

Analysis of Variance Table

Model 1: price ~ size + new + baths + beds

Model 2: price ~ (size + new + baths + beds)ˆ2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 95 279624

2 89 217916 6 61708 4.2004 0.0009128

---------------------------------------------------------------------

A statistically significant improvement results from adding six pairwise interac-
tions to the main effects model, with a drop in SSE of 61,708. A similar analysis
(not shown here) indicates that we do not need three-way interactions. The R2 values
for the three models are 0.724, 0.785, and 0.804. In this process we compare models
with quite different numbers of parameters, so we instead focus on the adjusted R2

values: 0.713, 0.761, and 0.771. So we search for a model that fits adequately but is
simpler than the model with all the two-way interactions.

In fit2 (not shown), the least significant two-way interaction is baths × beds.
Removing that interaction yields fit4 with adjusted R2 = 0.764. Then the least signifi-
cant remaining two-way interaction is size × baths. With fit5 we remove it, obtaining
adjusted R2 = 0.766. At that stage, the new × beds interaction is least significant, and
we remove it, yielding adjusted R2 = 0.769. The result is fit6:

---------------------------------------------------------------------

> summary(fit6)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 135.6459 54.1902 2.503 0.0141

size -0.0032 0.0323 -0.098 0.9219

new 90.7242 77.5413 1.170 0.2450

baths 12.2813 12.1814 1.008 0.3160

beds -55.0541 17.6201 -3.125 0.0024

size:new 0.1040 0.0286 3.630 0.0005

size:beds 0.0309 0.0091 3.406 0.0010

new:baths -111.5444 45.3086 -2.462 0.0157

---

Multiple R-squared: 0.7851, Adjusted R-squared: 0.7688

---------------------------------------------------------------------

The three remaining two-way interactions are statistically significant at the 0.02
level. However, the P-values are only rough guidelines, and dropping the new ×
baths interaction (fit7, not shown) has only a slight effect, adjusted R2 dropping to
0.756. At this stage we could drop baths from the model, as it is not in the remaining
interaction terms and its t = 0.40.

---------------------------------------------------------------------

> fit8 <- update(fit7, .~. - baths)

> summary(fit8)
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 143.47098 54.1412 2.650 0.0094

size 0.00684 0.0326 0.210 0.8345

new -56.68578 49.3006 -1.150 0.2531

beds -53.63734 17.9848 -2.982 0.0036

size:new 0.05441 0.0210 2.588 0.0112

size:beds 0.03002 0.0092 3.254 0.0016

---

Multiple R-squared: 0.7706, Adjusted R-squared: 0.7584

---

> plot(fit8)

---------------------------------------------------------------------

Both interactions are highly statistically significant, and adjusted R2 drops to 0.716
if we drop them both. Viewing this as a provisional model, let us interpret the effects
in fit8:

� For an older two-bedroom home, the effect on the predicted selling price of a
100 square foot increase in size is 100[0.00684 + 2(0.03002), or $6688. For an
older three-bedroom home, it is 100[0.00684 + 3(0.03002)], or $9690, and for
an older four-bedroom home, it is 100[0.00684 + 4(0.03002)], or $12,692. For
a new home, $5441 is added to each of these three effects.

� Adjusted for the number of bedrooms, the effect on the predicted selling price of
a home’s being new (instead of older) is −56.686 + 1000(0.0544), or −$2277,
for a 1000-square-foot home, −56.686 + 2000(0.0544), or $52,132, for a 2000-
square-foot home, and−56.686 + 3000(0.0544), or $106,541 for a 3000-square-
foot home.

� Adjusted for whether a house is new, the effect on the predicted selling price of
an extra bedroom is −53.637 + 1000(0.0300), or −$23, 616, for a 1000-square-
foot home, −53.637 + 2000(0.0300), or $6405, for a 2000-square-foot home,
and −53.637 + 3000(0.0300), or $36,426, for a 3000-square-foot home.

For many purposes in an exploratory study, a simple model is adequate. We obtain
a reasonably effective fit by removing the beds effects from fit8, yielding adjusted R2

= 0.736 and very simple interpretations from the fit �̂� = −22.228 + 0.1044(size) −
78.5275(new) + 0.0619(size × new). For example, the estimated effect of a 100
square-foot increase in size is $10,440 for an older home and $16,630 for a new
home. In fact, this is the model having minimum BIC. The model having minimum
AIC is21 slightly more complex, the same as fit6 above.

-------------------------------------------------------------------------

> step(lm(price ~ (size + new + beds + baths)ˆ2))

Start: AIC=790.67 # AIC for initial model with two-factor interactions

...

21The AIC value reported by the step and extractAIC functions in R ignores certain constants,
which the AIC function in R includes.
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Step: AIC=784.78 # lowest AIC for special cases of starting model

price ~ size + new + beds + baths + size:new + size:beds + new:baths

> AIC(lm(price ~ size+new+beds+baths+size:new+size:beds+new:baths))

[1] 1070.565 # correct value using AIC formula for normal linear model

> BIC(lm(price ~ size+new+size:new)) # this is model with lowest BIC

[1] 1092.973

-------------------------------------------------------------------------

4.7.2 Gamma GLM Has Standard Deviation Proportional to Mean

We ignored an important detail in the above model selection process. Section 3.4.2
noted that observation 64 in the dataset is an outlier that is highly influential in
least squares fitting. Repeating the backward elimination process without it yields a
different final model. This makes any conclusions even more highly tentative.

Section 3.4 noted some evidence of greater variability when mean selling prices
are greater. This seems plausible and often happens for positive-valued response
variables. At settings of explanatory variables for which E(y) is low, we would not
expect much variability in y (partly because y cannot be < 0), whereas when E(y) is
high, we would expect considerable variability. In each case, we would also expect
some skew to the right in the response distribution, which could partly account for
relatively large values. For such data, ordinary least squares is not optimal. One
approach instead uses weighted least squares, by weighting observations according
to how the variance depends on the mean. An alternative GLM approach assumes a
distribution for y for which the variance increases as the mean increases. The family
of gamma distributions has this property.

The two-parameter gamma probability density function for y, parameterized in
terms of its mean 𝜇 and the shape parameter k > 0, is

f (y; k,𝜇) =
(k∕𝜇)k

Γ(k)
e−ky∕𝜇yk−1, y ≥ 0, (4.29)

for which E(y) = 𝜇, var(y) = 𝜇2∕k.

Gamma GLMs usually assume k to be constant but unknown, like 𝜎2 in ordinary

linear models. Then the coefficient of variation,
√

var(y)∕𝜇 = 1∕
√

k, is constant as 𝜇
varies, and the standard deviation increases proportionally with the mean. The density

is skewed to the right, but the degree of skewness (which equals 2∕
√

k) decreases
as k increases. The mode is 0 when k ≤ 1 and 𝜇(k − 1)∕k when k > 1 , with k = 1
giving the exponential distribution. The chi-squared distribution is the special case
with 𝜇 = df and k = df∕2.

The gamma distribution is in the exponential dispersion family with natural param-
eter 𝜃 = −1∕𝜇, b(𝜃) = − log(−𝜃), and dispersion parameter 𝜙 = 1∕k. The scaled
deviance for a gamma GLM has approximately a chi-squared distribution. However,
the dispersion parameter is usually treated as unknown. We can mimic how we elimi-
nate it in ordinary linear models by constructing an F statistic. For example, consider
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testing M0 against M1 for nested GLMs M0 and M1 with p0 < p1 parameters. Using
the model deviances, the test statistic

[D(M0) − D(M1)]∕(p1 − p0)

D(M1)∕(n − p1)
,

has an approximate Fp
1
−p

0
,n−p

1
distribution, if the numerator and denominator are

approximately independent22. Or, we can explicitly estimate 𝜙 for the more complex
model and use the approximation

[D(M0) − D(M1)]∕(p1 − p0)

�̂�
∼ Fp

1
−p

0
,n−p

1
.

Some software (e.g., SAS) uses ML to estimate 𝜙. However, the ML estimator is
inconsistent if the variance function is correct but the distribution is not truly the
assumed one (McCullagh and Nelder 1989, p. 295). Other software (e.g., R) uses23

the scaling �̂� = X2∕(n − p) of the Pearson statistic (4.17), which is based on equating
the average squared Pearson residual to 1, adjusted by using the dimension of the
error space n − p instead of n in the denominator (Wedderburn 1974). It is consistent
when 𝜷 is. In the gamma context, this estimate is

�̂� = 1
n − p

n∑
i=1

(yi − �̂�i)
2

�̂�2
i

.

When k is large, a gamma variate y has distribution close to normal. However, the
gamma GLM fit is more appropriate than the least squares fit because the standard
deviation increases as the mean does. Sometimes the identity link function is inad-
equate, because y must be nonnegative. It is then more common to use the log link.
With that link, results are similar to least squares with a log-normal assumption for
the response, that is, applying least squares to a linear model expressed in terms of
log(y) (Exercise 4.27).

4.7.3 Gamma GLMs for House Selling Price Data

For the house selling price data, perhaps observation 64 is not especially unusual if
we assume a gamma distribution for price. Using the same linear predictor as in the
model (with fit8) interpreted in Section 4.7.1, we obtain:

---------------------------------------------------------------------

> fit.gamma <- glm(price ~ size + new + beds + size:new + size:beds,

family = Gamma(link = identity))

> summary(fit.gamma)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.3759 48.5978 0.9131 0.3635

22This holds when the dispersion parameter is small, so the gamma distribution is approximately
normal. See Jørgensen (1987) for the general case using the F.
23But ML is available in R with the gamma.dispersion function in the MASS package.
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size 0.0740 0.0400 1.8495 0.0675

new -60.0290 65.7655 -0.9128 0.3637

beds -22.7131 17.6312 -1.2882 0.2008

size:new 0.0538 0.0376 1.4325 0.1553

size:beds 0.0100 0.0126 0.7962 0.4279

---------------------------------------------------------------------

Now, neither interaction is significant! This also happens if we fit the model without
observation 64. Including that observation, its standardized residual is now only
−1.63, not at all unusual, because this model expects more variability in the data
when the mean is larger. In fact, we may not need any interaction terms:

--------------------------------------------------------------------------

> fit.g1 <- glm(price ~ size+new+baths+beds, family=Gamma(link=identity))

> fit.g2 <- glm(price~(size+new+baths+beds)ˆ2,family=Gamma(link=identity))

> anova(fit.g1, fit.g2, test="F")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 95 10.4417

2 89 9.8728 6 0.5689 0.8438 0.5396

-------------------------------------------------------------------------

Further investigation using various model-building strategies reveals that according
to AIC the model with size alone does well (AIC = 1050.7), as does the model with
size and beds (AIC = 1048.3) and the model with size and new (AIC = 1049.5), with
a slight improvement from adding the size × new interaction (AIC = 1047.9). Here is
the output for the latter gamma model and for the corresponding normal linear model
that we summarized near the end of Section 4.7.1:

-------------------------------------------------------------------------

> summary(glm(price ~ size+new+size:new, family=Gamma(link=identity)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.4522 12.9738 -0.574 0.5670

size 0.0945 0.0100 9.396 2.95e-15

new -77.9033 64.5827 -1.206 0.2307

size:new 0.0649 0.0367 1.769 0.0801 .

---

(Dispersion parameter for Gamma family taken to be 0.11021)

Residual deviance: 10.563 on 96 degrees of freedom

AIC: 1047.9

> plot(glm(price ~ size + new + size:new, family=Gamma(link=identity)))

> summary(lm(price ~ size + new + size:new))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -22.2278 15.5211 -1.432 0.1554

size 0.1044 0.0094 11.082 < 2e-16

new -78.5275 51.0076 -1.540 0.1270

size:new 0.0619 0.0217 2.855 0.0053

---

Residual standard error: 52 on 96 degrees of freedom

Multiple R-squared: 0.7443, Adjusted R-squared: 0.7363

------------------------------------------------------------------------
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Effects are similar, but the interaction term in the gamma model has larger SE. For
this gamma model, �̂� = 0.11021, so the estimated shape parameter is k̂ = 1∕�̂� =
9.07, which corresponds to a bell shape with some skew to the right. The estimated
standard deviation �̂� of the conditional distribution of y relates to the estimated mean
�̂� by

�̂� =
√
�̂��̂� = �̂�∕

√
k̂ = 0.33197�̂�.

For example, at predictor values having estimated mean selling price �̂� = $100,000,
the estimated standard deviation is $33,197, whereas at �̂� = $400,000, �̂� is four times
as large.

The reported AIC value of 1047.9 for this gamma model is much better than the
AIC for the normal linear model with the same explanatory variables, or for the
normal linear model (fit6) in Section 4.7.1 that minimized AIC, of the models with
main effects and two-way interactions.

-------------------------------------------------------------------------

> AIC(lm(price ~ size + new + size:new))

[1] 1079.9

> AIC(lm(price ~ size +new +beds +baths +size:new +size:beds +new:baths))

[1] 1070.6

-------------------------------------------------------------------------

We learn an important lesson from this example:

� In modeling, it is not sufficient to focus on how E(yi) depends on xi for all i. The
assumption about how var(yi) depends on E(yi) can have a significant impact
on conclusions about the effects.

Other approaches, such as using the log link instead of the identity link, yield
other plausible models. Analyses that are beyond our scope here (such as Q–Q plots)
indicate that selling prices may have a somewhat longer right tail than gamma and
log-normal models permit. An alternative response distribution having this property
is the inverse Gaussian, which has variance proportional to 𝜇3 (Seshadri 1994).

APPENDIX: GLM ANALOGS OF ORTHOGONALITY RESULTS
FOR LINEAR MODELS

This appendix presents approximate analogs of linear model orthogonality results.
Lovison (2014) showed that a weighted version of the estimated adjusted responses
that has approximately constant variance has the same orthogonality of fitted values
and residuals as occurs in ordinary linear models.
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Recall that D = diag{𝜕𝜇i∕𝜕𝜂i} and W = diag{(𝜕𝜇i∕𝜕𝜂i)
2∕var(yi)}. From Section

4.5.4, the IRLS fitting process is naturally expressed in terms of the estimate ẑ =
X𝜷 + D̂

−1
(y − �̂�) of an adjusted response variable z = X𝜷 + D−1(y − 𝝁). Since

�̂� = X𝜷 = X(XTŴX)−1XTŴẑ

for the fitted linear predictor values, X(XTŴX)−1XTŴ = Ŵ
−1∕2

Ĥ
W

Ŵ
1∕2

is a sort of
asymmetric projection adaptation of the estimate of the generalized hat matrix (4.19),
namely,

Ĥ
W
= Ŵ

1∕2
X(XTŴX)−1XTŴ

1∕2
.

Consider the weighted adjusted responses and linear predictor, z0 = W1∕2z and
𝜼0 = W1∕2𝜼. For V = var(y), W = DV−1D and W−1 = D−1VD−1. Since var(z) =
D−1VD−1 = W−1, it follows that var(z0) = I. Likewise, let ẑ0 = Ŵ

1∕2
ẑ and �̂�0 =

Ŵ
1∕2
�̂�. Then

�̂�0 = Ŵ
1∕2

X𝜷 = Ŵ
1∕2

X(XTŴX)−1XTŴẑ = Ĥ
W

ẑ0.

So the weighted fitted linear predictor values are the orthogonal projection of the
estimated weighted adjusted response variable onto the vector space spanned by the

columns of the weighted model matrix Ŵ
1∕2

X. The estimated generalized hat matrix

Ĥ
W

equals X0(XT
0 X0)−1XT

0 for the weighted model matrix X0 = Ŵ
1∕2

X.
For the estimated weighted adjusted response, the raw residual is

e0 = ẑ0 − �̂�0 = (I − Ĥ
W

)ẑ0,

so these residuals are orthogonal to the weighted fitted linear predictor values. Also,
these residuals equal

e0 = Ŵ
1∕2

(ẑ − �̂�) = Ŵ
1∕2

D̂
−1

(y − �̂�) = V̂
−1∕2

(y − �̂�),

which are the Pearson residuals defined in (4.20).
A corresponding approximate version of Pythagoras’s theorem states that

‖ẑ0 − 𝜼0‖2 ≈ ‖ẑ0 − �̂�0‖2 + ‖�̂�0 − 𝜼0‖2 = ‖e0‖2 + ‖�̂�0 − 𝜼0‖2.

The relation is not exact, because 𝜼0 = W1∕2X𝜷 lies in C(W1∕2X), not C(Ŵ
1∕2

X).
Likewise, other decompositions for linear models occur only in an approximate
manner for GLMs. For example, Firth (1991) noted that orthogonality of columns of
X does not imply orthogonality of corresponding model parameters, except when the
link function is such that W is a constant multiple of the identity matrix.
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CHAPTER NOTES

Section 4.1: Exponential Dispersion Family Distributions for a GLM

4.1 Exponential dispersion: Jørgensen (1987, 1997) developed properties of the exponen-
tial dispersion family, including showing a convolution result and approximate normal-
ity for small values of the dispersion parameter. Davison (2003, Section 5.2), Morris
(1982, 1983a), and Pace and Salvan (1997, Chapters 5 and 6) surveyed properties of
exponential family models and their extensions.

4.2 GLMs: For more on GLMs, see Davison (2003), Fahrmeir and Tutz (2001), Faraway
(2006), Firth (1991), Hastie and Pregibon (1991), Lee et al. (2006), Lovison (2014),
Madsen and Thyregod (2011), McCullagh and Nelder (1989), McCulloch et al. (2008),
and Nelder and Wedderburn (1972). For asymptotic theory, including conditions for
consistency of 𝜷, see Fahrmeir and Kaufmann (1985).

Section 4.4: Deviance of a GLM, Model Comparison, and Model Checking

4.3 Diagnostics: Cox and Snell (1968) generalized residuals from ordinary linear models,
including standardizations. Haberman (1974, Chapter 4) proposed standardized resid-
uals for Poisson models, and Gilchrist (1981) proposed them for GLMs. For other
justification for them, see Davison and Snell (1991). Pierce and Schafer (1986) and
Williams (1984) evaluated residuals and presented standardized deviance residuals.
Lovison (2014) proposed other adjusted residuals and showed their relations with test
statistics for comparing nested models. See also Fahrmeir and Tutz (2001, pp. 147–148)
and Tutz (2011, Section 3.10). Atkinson and Riani (2000), Davison and Tsai (1992), and
Williams (1987) proposed other diagnostic measures for GLMs. Since residuals have
limited usefulness for assessing GLMs, Cook and Weisberg (1997) proposed marginal
model plots that compare nonparametric smoothings of the data to the model fit, both
plotted as a function of characteristics such as individual predictors and the linear
predictor values.

4.4 Score statistics: For comparing nested models M0 and M1, let X be the model matrix
for M1 and let V(�̂�0) be the estimated variances of y under M0. With the canonical link,
Lovison (2005) showed that the score statistic is

(�̂�1 − �̂�0)TX[XTV(�̂�0)X]−1XT(�̂�1 − �̂�0)

and this statistic bounds below the X2(M0 ∣ M1) statistic in (4.18). Pregibon (1982)
showed that the score statistic equals X2(M0) − X2(M1) when X2(M1) uses a one-step
approximation to �̂�1. Pregibon (1982) and Williams (1984) showed that the squared
standardized residual is a score statistic for testing whether the observation is an outlier.

Section 4.5: Fitting Generalized Linear Models

4.5 IRLS: For more on iteratively reweighted least squares and ML, see Bradley (1973),
Green (1984), and Jørgensen (1983). Wood (2006, Chapter 2) illustrated the geometry
of GLMs and IRLS.

4.6 Observed versus expected information: Fisher scoring has the advantages that it
produces the asymptotic covariance matrix as a by-product, the expected information
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is necessarily nonnegative-definite, and the method relates to weighted least squares
for ordinary linear models. For complex models, the observed information is often
simpler to calculate. Efron and Hinkley (1978) argued that observed information has
variance estimates that better approximate a relevant conditional variance (conditional
on ancillary statistics not relevant to the parameter being estimated), it is “close to the
data” rather than averaged over data that could have occurred but did not, and it tends
to agree more closely with variances from Bayesian analyses.

Section 4.6: Selecting Explanatory Variables for a GLM

4.7 Bias–variance tradeoff: See Davison (2003, p. 405) and James et al. (2013, Section
2.2) for informative discussions of the bias–variance tradeoff.

4.8 AIC and BIC: Burnham and Anderson (2010) and Davison (2003, Sections 4.7 and 8.7)
justified and illustrated the use of AIC for model comparison and suggested adjustments
when n∕p is not large. Raftery (1995) showed that differences between BIC values for
two models relate to a Bayes factor comparing them. George (2000) presented a brief
survey of variable selection methods and cautioned against using a criterion such as
minimizing AIC or BIC to select a model.

4.9 Collinearity: Other measures besides VIF summarize the severity of collinearity and
detect the variables involved. A condition number is the ratio of largest to smallest
eigenvalues of X, with large values (e.g., above 30) being problematic. See Belsley
et al. (1980) and Rawlings et al. (1998, Chapter 13) for details.

EXERCISES

4.1 Suppose that yi has a N(𝜇i, 𝜎
2) distribution, i = 1,… , n. Formulate the normal

linear model as a GLM, specifying the random component, linear predictor,
and link function.

4.2 Show the exponential dispersion family representation for the gamma distri-
bution (4.29). When do you expect it to be a useful distribution for GLMs?

4.3 Show that the t distribution is not in the exponential dispersion family.
(Although GLM theory works out neatly for family (4.1), in practice it is
sometimes useful to use other distributions, such as the Cauchy special case
of the t.)

4.4 Show that an alternative expression for the GLM likelihood equations is

n∑
i=1

(yi − 𝜇i)

var(yi)

𝜕𝜇i

𝜕𝛽j
= 0, j = 1, 2,… , p.

Show that these equations result from the generalized least squares problem of
minimizing

∑
i[(yi − 𝜇i)

2∕var(yi)], treating the variances as known constants.

4.5 For a GLM with canonical link function, explain how the likelihood equations
imply that the residual vector e = (y − �̂�) is orthogonal with C(X).
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4.6 Suppose yi has a Poisson distribution with g(𝜇i) = 𝛽0 + 𝛽1xi, where xi = 1 for
i = 1,… , nA from group A and xi = 0 for i = nA + 1, ..., nA + nB from group
B, and with all observations being independent. Show that for the log-link
function, the GLM likelihood equations imply that the fitted means �̂�A and �̂�B
equal the sample means.

4.7 Refer to the previous exercise. Using the likelihood equations, show that the
same result holds for (a) any link function for this Poisson model, (b) any
GLM of the form g(𝜇i) = 𝛽0 + 𝛽1xi with a binary indicator predictor.

4.8 For the two-way layout with one observation per cell, consider the model
whereby yij ∼ N(𝜇ij, 𝜎

2) with

𝜇ij = 𝛽0 + 𝛽i + 𝛾j + 𝜆𝛽i𝛾j.

For independent observations, is this a GLM? Why or why not? (Tukey (1949)
proposed a test of H0: 𝜆 = 0 as a way of testing for interaction; in this setting,
after we form the usual interaction SS, the residual SS is 0, so the ordinary
test that applies with multiple observations degenerates.)

4.9 Consider the expression for the weight matrix W in var(𝜷) = (X
T
WX)−1 for

a GLM. Find W for the ordinary normal linear model, and show how var(𝜷)
follows from the GLM formula.

4.10 For the normal bivariate linear model, the asymptotic variance of the cor-
relation r is (1 − 𝜌2)2∕n. Using the delta method, show that the transform
1
2
log[(1 + r)∕(1 − r)] is variance stabilizing. (Fisher (1921) noted this, show-

ing that 1∕(n − 3) is an improved variance for the transform.) Explain how to
use this result to construct a confidence interval for 𝜌.

4.11 For a binomial random variable ny with parameter 𝜋, consider the null model.

a. Explain how to invert the Wald, likelihood-ratio, and score tests of H0:
𝜋 = 𝜋0 against H1: 𝜋 ≠ 𝜋0 to obtain 95% confidence intervals for 𝜋.

b. In teaching an introductory statistics class, one year I collected data from
the students to use for lecture examples. One question in the survey asked
whether the student was a vegetarian. Of 25 students, 0 said “yes.” Treating
this as a random sample from some population, find the 95% confidence
interval for 𝜋 using each method in (a).

c. Do you trust the Wald interval in (b)? (Your answer may depend on whether
you regard the standard error estimate for the interval to be credible.)
Explain why the Wald method may behave poorly when a parameter takes
value near the parameter space boundary.

4.12 For the normal linear model, Section 3.3.2 showed how to construct a confi-
dence interval for E(y) at a fixed x0. Explain how to do this for a GLM.
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4.13 For a GLM assuming yi ∼ N(𝜇i, 𝜎
2), show that the Pearson chi-squared statis-

tic is the same as the deviance. Find the form of the difference between the
deviances for nested models M0 and M1.

4.14 In a GLM that uses a noncanonical link function, explain why it need not
be true that

∑
i �̂�i =

∑
i yi. Hence, the residuals need not have a mean of 0.

Explain why a canonical link GLM needs an intercept term in order to ensure
that this happens.

4.15 For a binomial GLM, explain why the Pearson residual for observation i,
ei = (yi − �̂�i)∕

√
�̂�i(1 − �̂�i)∕ni, does not have an approximate standard normal

distribution, even for a large ni.

4.16 Find the form of the deviance residual (4.21) for an observation in (a) a
binomial GLM, (b) a Poisson GLM.

4.17 Suppose x is uniformly distributed between 0 and 100, and y is binary
with log[𝜋i∕(1 − 𝜋i)] = −2.0 + 0.04xi. Randomly generate n = 25 indepen-
dent observations from this model. Fit the model, and find corr(y − �̂�, �̂�). Do
the same for n = 100, n = 1000, and n = 10, 000, and summarize how the
correlation seems to depend on n.

4.18 Derive the formula var(𝛽j) = 𝜎2∕{(1 − R2
j )[

∑
i(xij − x̄j)

2]}.

4.19 Consider the value 𝛽 that maximizes a function L(𝛽). This exercise motivates
the Newton–Raphson method by focusing on the single-parameter case.

a. Using L′(𝛽) = L′(𝛽(0)) + (𝛽 − 𝛽(0))L′′(𝛽(0)) +⋯, argue that for an ini-
tial approximation 𝛽(0) close to 𝛽, approximately 0 = L′(𝛽(0)) + (𝛽 −
𝛽(0))L′′(𝛽(0)). Solve this equation to obtain an approximation 𝛽(1) for 𝛽.

b. Let 𝛽(t) denote approximation t for 𝛽, t = 0, 1, 2,…. Justify that the next
approximation is

𝛽(t+1) = 𝛽(t) − L′(𝛽(t))∕L′′(𝛽(t)).

4.20 For n independent observations from a Poisson distribution with parameter
𝜇, show that Fisher scoring gives 𝜇(t+1) = ȳ for all t > 0. By contrast, what
happens with the Newton–Raphson method?

4.21 For an observation y from a Poisson distribution, write a short computer
program to use the Newton–Raphson method to maximize the likelihood. With
y = 0, summarize the effects of the starting value on speed of convergence.

4.22 For noncanonical link functions in a GLM, show that the observed information
matrix may depend on the data and hence differs from the expected information
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matrix. Thus, the Newton–Raphson method and Fisher scoring may provide
different standard errors.

4.23 The bias–variance tradeoff: Before an election, a polling agency randomly
samples n = 100 people to estimate 𝜋 = population proportion who prefer
candidate A over candidate B. You estimate 𝜋 by the sample proportion �̂�. I
estimate it by 1

2
�̂� + 1

2
(0.50). Which estimator is biased? Which estimator has

smaller variance? For what range of 𝜋 values does my estimator have smaller
mean squared error?

4.24 In selecting explanatory variables for a linear model, what is inadequate about
the strategy of selecting the model with largest R2 value?

4.25 For discrete probability distributions of {pj} for the “true” model and {pMj} for
a model M, prove that the Kullback–Leibler divergence E{log[p(y)∕pM(y)]}≥
0.

4.26 For a normal linear model M1 with p + 1 parameters, namely, {𝛽j} and 𝜎2,
which has ML estimator �̂�2 = [

∑n
i=1(yi − �̂�i)

2]∕n, show that

AIC = n[log(2𝜋�̂�2) + 1] + 2(p + 1).

Using this, when M2 has q additional terms, show that M2 has smaller AIC
value if SSE2∕SSE1 < e−2q∕n.

4.27 Section 4.7.2 mentioned that using a gamma GLM with log-link function gives
similar results to applying a normal linear model to log(y).

a. Use the delta method to show that when y has standard deviation 𝜎 propor-
tional to 𝜇 (as does the gamma GLM), log(y) has approximately constant
variance for small 𝜎.

b. The gamma GLM with log link refers to log[E(yi)], whereas the ordinary
linear model for the transformed response refers to E[log(yi)]. Show that if
log(yi) ∼ N(𝜇i, 𝜎

2), then log[E(yi)] = E[log(yi)] + 𝜎2∕2.

c. For the lognormal fitted mean Li for the linear model for log(yi), explain
why exp(Li) is the fitted median for the conditional distribution of yi.
Explain why the fitted median would often be more relevant than the fitted
mean of that distribution.

4.28 Download the Houses.dat data file from www.stat.ufl.edu/~aa/glm/
data. Summarize the data with descriptive statistics and plots. Using a forward
selection procedure with all five predictors together with judgments about
practical significance, select and interpret a linear model for selling price.
Check whether results depend on any influential observations.

http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
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4.29 Refer to the previous exercise. Use backward elimination to select a model.

a. Use an initial model containing the two-factor interactions. When you reach
the stage at which all terms are statistically significant, adjusted R2 should
still be about 0.87. See whether you can simplify further without serious
loss of practical significance. Interpret your final model.

b. A simple model for these data has only main effects for size, new, and
taxes. Compare your model with this model in terms of adjusted R2, AIC,
and the summaries of effects.

c. If any observations seem to be influential, redo the analyses to analyze their
impact.

4.30 Refer to the previous two exercises. Conduct a model-selection process assum-
ing a gamma distribution for y, using (a) identity link, (b) log link. For each,
interpret the final model.

4.31 For the Scottish races data of Section 2.6, the Bens of Jura Fell Race was an
outlier for an ordinary linear model with main effects of climb and distance in
predicting record times. Alternatively the residual plots might merely suggest
increasing variability at higher record times. Fit this model and the corre-
sponding interaction model, assuming a gamma response instead of normal.
Interpret results. According to AIC, what is your preferred model for these
data?

4.32 Exercise 1.21 presented a study comparing forced expiratory volume after
1 hour of treatment for three drugs (a, b, and p = placebo), adjusting for a
baseline measurement x1. Table 4.1 shows the results of fitting some normal
GLMs (with identity link, except one with log link) and a GLM assuming a
gamma response. Interpret results.

Table 4.1 Results of Fitting GLMs for Exercise 4.32

Explanatory Variables R2 AIC Fitted Linear Predictor

base 0.393 134.4 0.95 + .90x1

drug 0.242 152.4 3.49 + .20b − .67p
base + drug 0.627 103.4 1.11 + .89x1 + .22b − .64p
base + drug (gamma) 0.626 106.2 0.93 + .97x1 + .20b − .66p
base + drug (log link) 0.609 106.8 0.55 + .25x1 + .06b − .20p
base + drug + base:drug 0.628 107.1 1.33 + .81x1 − .17b − .91p + .15x1b + .10x1p

4.33 Refer to Exercise 2.45 and the study for comparing instruction methods. Write
a report summarizing a model-building process. Include instruction type in
the chosen model, because of the study goals and the small n, which results
in little power for finding significance for that effect. Check and interpret the
final model.
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4.34 The horseshoe crab dataset Crabs2.dat at the text website comes from a
study of factors that affect sperm traits of males. One response variable is
ejaculate size, measured as the log of the amount of ejaculate (microliters)
measured after 10 seconds of stimulation. Explanatory variables are the loca-
tion of the observation, carapace width (centimeters), mass (grams), color
(1 = dark, 2 = medium, 3 = light), the operational sex ratio (OSR, the number
of males per females on the beach), and a subjective condition number that
takes into account mucus, pitting on the prosoma, and eye condition (the higher
the better). Prepare a report (maximum 4 pages) describing a model-building
process for these data. Attach edited software output as an appendix to your
report.

4.35 The MASS package of R contains the Boston data file, which has several
predictors of the median value of owner-occupied homes, for 506 neighbor-
hoods in the suburbs near Boston. Describe a model-building process for these
data, using the first 253 observations. Fit your chosen model to the other 253
observations. Compare how well the model fits in the two cases. Attach edited
software output in your report.

4.36 For x between 0 and 100, suppose the normal linear model holds with

E(y) = 45 + 0.1x + 0.0005x2 + 0.0000005x3 + 0.0000000005x4

+ 0.0000000000005x5

and 𝜎 = 10.0. Randomly generate 25 observations from the model, with
x having a uniform distribution between 0 and 100. Fit the simple model
E(y) = 𝛽0 + 𝛽1x and the “correct” model E(y) = 𝛽0 + 𝛽1x +⋯ + 𝛽5x5. Con-
struct plots, showing the data, the true relationship, and the model fits. For each
model, summarize the quality of the fit by the mean of |�̂�i − 𝜇i|. Summarize,
and explain what this exercise illustrates about model parsimony.

4.37 What does the fit of the “correct” model in the previous exercise illustrate
about collinearity?

4.38 Randomly generate 100 observations (xi, yi) that are independent uniform
random variables over [0, 100]. Fit a sequence of successively more complex
polynomial models for using x to predict y, of degree 1, 2, 3,… . In principle,
even though the true model is E(y) = 50 with population R2 = 0, you should
be able to fit a polynomial of degree 99 to the data and achieve R2 = 1. Note
that when you get to p ≈ 15, (XTX) is effectively singular and effects of
collinearity appear. As p increases, monitor R2, adjusted R2, and the P-value
for testing significance of the intercept term. Summarize your results.



C H A P T E R 5

Models for Binary Data

For binary responses, analysts usually assume a binomial distribution for the random
component of a generalized linear model (GLM). From its exponential dispersion
representation (4.6) in Section 4.1.2, the binomial natural parameter is the log odds,
the so-called logit. The canonical link function for binomial GLMs is the logit, for
which the model itself is referred to as logistic regression. This is the most important
model for binary response data and has been used for a wide variety of applications.
Early uses were in biomedical studies, for instance to model the effects of smoking,
cholesterol, and blood pressure on the presence or absence of heart disease. The past
25 years have seen of substantial use in social science research for modeling opinions
(e.g., favor or oppose legalization of same-sex marriage) and behaviors, in marketing
applications for modeling consumer decisions (e.g., a choice between two products),
and in finance for modeling credit-related outcomes (e.g., whether a credit card bill
is paid on time).

In this chapter we focus on logistic regression and other models for binary response
data. Section 5.1 presents some link functions and a latent variable model that moti-
vates particular cases. Section 5.2 shows properties of logistic regression models and
interprets its parameters. In Section 5.3 we apply GLM methods to specify likelihood
equations and then conduct inference based on the logistic regression model. Sec-
tion 5.4 covers model fitting. In Section 5.5 we find the deviance for binomial GLMs
and discuss ways of checking the model fit. In Section 5.6 we present alternatives to
logistic regression, such as the model using the probit link. Section 5.7 illustrates the
models with two examples.

5.1 LINK FUNCTIONS FOR BINARY DATA

In this chapter, we distinguish between two sample size measures: a measure ni for
the number of Bernoulli trials that constitute a particular binomial observation, and
a measure N for the number of binomial observations. We assume that y1,… , yN are

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
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independent binomial proportions, with niyi ∼ bin(ni,𝜋i). That is, yi is the proportion
of “successes” out of ni independent Bernoulli trials, and E(yi) = 𝜋i does not depend
on ni. Let n = (n1,… , nN) denote the binomial sample sizes. The overall number of
binary observations is n =

∑N
i=1 ni.

5.1.1 Ungrouped versus Grouped Binary Data

Data files for binary data have two possible formats. For ungrouped data, n =
(1,… , 1). The data file takes this form when each observation yi results from a
single Bernoulli trial, and thus equals 0 or 1. Large-sample methods for statistical
inference then apply as N → ∞.

For grouped data, sets of observations have the same value for each explanatory
variable. Most commonly this happens when all explanatory variables are categorical.
Then, ni refers to the number of observations at setting i of the explanatory variables,
i = 1,… , N. For example, in a dose–response study of the effect of various dosages
of a drug on the probability of an adverse outcome, {ni} record the number of
observations at the various dosages. For grouped data, the number N of combinations
of the categorical predictors is fixed, and large-sample methods for inference and
model checking apply as each ni → ∞. Under such small-dispersion asymptotics, as
we obtain more data, the variance for each binomial observation decreases.

A grouped-data file for binary data can be converted to ungrouped form. The same
maximum likelihood (ML) estimates 𝜷 and standard errors occur, with the same
large-sample normal distributions; however, other summary measures of fit, such as
the deviance, change. We will see that the grouped-data format is useful for checking
model fit. An ungrouped-data file can be converted to grouped-data form only when
multiple subjects share the same values for explanatory variables.

5.1.2 Latent Variable Threshold Model for Binary GLMs

A latent variable model called a threshold model provides motivation for families of
GLMs. We express this model in terms of ungrouped data. The model assumes (1)
there is an unobserved continuous response y∗i for subject i satisfying y∗i =

∑
j 𝛽jxij +

𝜖i, where {𝜖i} are independent from a distribution with mean 0 and having cdf F, and
(2) there is a threshold 𝜏 such that we observe yi = 0 if y∗i ≤ 𝜏 and yi = 1 if y∗i > 𝜏.
See Figure 5.1. Then

P(yi = 1) = P(y∗i > 𝜏) = P

(
p∑

j=1

𝛽jxij + 𝜖i > 𝜏

)

= 1 − P

(
𝜖i ≤ 𝜏 −

p∑
j=1

𝛽jxij

)
= 1 − F

(
𝜏 −

p∑
j=1

𝛽jxij

)
.

The data contain no information about 𝜏, so without loss of generality we take 𝜏 = 0.
Likewise, an equivalent model results if we multiply all parameters by any positive
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y*

yi = 1
P(yi = 1)

E(yi *) =    0 +   1 xi1ββ

x

yi = 0

τ

Figure 5.1 Threshold latent variable model, for which we observe yi = 1 when underlying
latent variable y∗i > 𝜏.

constant, so we can take F to have a standard form with fixed variance, such as the
standard normal cdf.

For the most common models, F corresponds to a pdf that is symmetric around 0,
so F(z) = 1 − F(−z) and

P(yi = 1) = F

(
p∑

j=1

𝛽jxij

)
, and F−1[P(yi = 1)] =

p∑
j=1

𝛽jxij. (5.1)

That is, models for binary data naturally take the link function to be the inverse of
the standard cdf for a family of continuous distributions for a latent variable.

5.1.3 Probit, Logistic, and Linear Probability Models

When F is the standard normal cdf, the link function F−1 is called the probit link and
model (5.1) is called the probit model. We discuss probit models in Section 5.6. A
model that has a similar fit but a simpler form of link function uses the standard cdf
of the logistic distribution,

F(z) = ez∕(1 + ez).

Like the standard normal, the standard logistic distribution is defined over the entire
real line and has a bell-shaped density function with mean 0. The model (5.1) is then
the logistic regression model. Its link function F−1 is the logit.

Occasionally the identity link function is used, corresponding to F−1 for a uniform
cdf. The model for the binomial parameter 𝜋i for observation i,

𝜋i =
p∑

j=1

𝛽jxij,
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is called the linear probability model. This model has the awkward aspect that the
linear predictor must fall between 0 and 1 for the model to generate legitimate
probability values. Because of this and because in practice an S-shaped curve for
which 𝜋i very gradually approaches 0 and 1 is more plausible, linear probability
models are not commonly used.

5.2 LOGISTIC REGRESSION: PROPERTIES AND INTERPRETATIONS

Next we present properties and interpretations of model parameters for logistic regres-
sion. The model has two formulations.

Logistic regression model formulas:

𝜋i =
exp

(∑p
j=1 𝛽jxij

)
1 + exp

(∑p
j=1 𝛽jxij

) or logit(𝜋i) = log
(

𝜋i

1 − 𝜋i

)
=

p∑
j=1

𝛽jxij. (5.2)

5.2.1 Interpreting 𝜷: Effects on Probabilities and on Odds

For a single quantitative x with 𝛽 > 0, the curve for 𝜋i has the shape of the cdf
of a logistic distribution. Since the logistic density is symmetric, as xi changes,
𝜋i approaches 1 at the same rate that it approaches 0. With multiple explanatory
variables, since 1 − 𝜋i = [1 + exp(

∑
j 𝛽jxij)]

−1, 𝜋i is monotone in each explanatory
variable according to the sign of its coefficient. The rate of climb or descent increases
as |𝛽j| increases. When 𝛽j = 0, y is conditionally independent of xj, given the other
explanatory variables.

How do we interpret the magnitude of 𝛽j? For a quantitative explanatory vari-
able, a straight line drawn tangent to the curve at any particular value describes the
instantaneous rate of change in 𝜋i at that point. Specifically,

𝜕𝜋i

𝜕xij
= 𝛽j

exp
(∑

j 𝛽jxij

)
[
1 + exp

(∑
j 𝛽jxij

)]2
= 𝛽j𝜋i(1 − 𝜋i).

The slope is steepest (and equals 𝛽j∕4) at a value of xij for which 𝜋i = 1∕2, and the
slope decreases toward 0 as 𝜋i moves toward 0 or 1.

How do we interpret 𝛽j for a qualitative explanatory variable? Consider first a
single binary indicator x. The model, logit(𝜋i) = 𝛽0 + 𝛽1xi, then describes a 2 × 2
contingency table. For it,

logit[P(y = 1 ∣ x = 1)] − logit[P(y = 1 ∣ x = 0)] = [𝛽0 + 𝛽1(1)] − [𝛽0 + 𝛽1(0)] = 𝛽1.
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It follows that e𝛽1 is the odds ratio (Yule 1900, 1912),

e𝛽1 =
P(y = 1 ∣ x = 1)∕[1 − P(y = 1 ∣ x = 1)]
P(y = 1 ∣ x = 0)∕[1 − P(y = 1 ∣ x = 0)]

.

With multiple explanatory variables, exponentiating both sides of the equation for
the logit shows that the odds 𝜋i∕(1 − 𝜋i) are an exponential function of xj. The odds

multiply by e𝛽j per unit increase in xj, adjusting for the other explanatory variables

in the model. For example, e𝛽j is a conditional odds ratio—the odds at xj = u + 1
divided by the odds at xj = u, adjusting for the other {xk}.

It is simpler to understand the effects presented on a probability scale than as
odds ratios. To summarize the effect of a quantitative explanatory variable, we could
compare P(y = 1) at extreme values of that variable, with other explanatory variables
set at their means. This type of summary is sensible when the distribution of the data
indicate that such extreme values can occur at mean values for the other explanatory
variables. With a continuous variable, however, this summary can be sensitive to an
outlier. So the comparison could instead use its quartiles, thus showing the change
in P(y = 1) over the middle half of the explanatory variable’s range of observations.
The data can more commonly support such a comparison.

5.2.2 Logistic Regression with Case-Control Studies

In case-control studies, y is known, and researchers look into the past to observe x
as the random variable. For example, for cases of a particular type of cancer (y = 1)
and disease-free controls (y = 0), a study might observe x = whether the person has
been a significant smoker. For 2 × 2 tables, we just observed that e𝛽 is the odds ratio
with y as the response. But, from Bayes’ theorem,

e𝛽 =
P(y = 1 ∣ x = 1)∕P(y = 0 ∣ x = 1)
P(y = 1 ∣ x = 0)∕P(y = 0 ∣ x = 0)

=
P(x = 1 ∣ y = 1)∕P(x = 0 ∣ y = 1)

P(x = 1 ∣ y = 0)∕P(x = 0 ∣ y = 0)
.

So it is possible to estimate the odds ratio in retrospective studies that sample x, for
given y. More generally, with logistic regression we can estimate effects in studies for
which the research design reverses the roles of x and y as response and explanatory,
and the effect parameters still have interpretations as log odds ratios.

Here is a formal justification: let z indicate whether a subject is sampled (1 =
yes, 0 = no). Even though the conditional distribution of y given x is not sampled, we
need a model for P(y = 1 ∣ z = 1, x), assuming that P(y = 1 ∣ x) follows the logistic
model. By Bayes’ theorem,

P(y = 1 ∣ z = 1, x) =
P(z = 1 ∣ y = 1, x)P(y = 1 ∣ x)∑1

j=0[P(z = 1 ∣ y = j, x)P(y = j ∣ x)]
. (5.3)
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Now, suppose that P(z = 1 ∣ y, x) = P(z = 1 ∣ y) for y = 0 and 1; that is, for each y, the
sampling probabilities do not depend on x. For instance, for cases and for controls,
the probability of being sampled is the same for smokers and nonsmokers. Under this
assumption, substituting 𝜌1 = P(z = 1 ∣ y = 1) and 𝜌0 = P(z = 1 ∣ y = 0) in Equation
(5.3) and dividing the numerator and denominator by P(y = 0 ∣ x),

P(y = 1 ∣ z = 1, x) =
𝜌1 exp

(∑
j 𝛽jxj

)
𝜌0 + 𝜌1 exp

(∑
j 𝛽jxj

) .
Then, letting 𝛽∗0 = 𝛽0 + log(𝜌1∕𝜌0),

logit[P(y = 1 ∣ z = 1, x)] = 𝛽∗0 + 𝛽1x1 +⋯ .

The logistic regression model holds with the same effect parameters as in the model
for P(y = 1 ∣ x). With a case-control study we can estimate those effects but we
cannot estimate the intercept term, because the data do not supply information about
the relative numbers of y = 1 and y = 0 observations.

5.2.3 Logistic Regression is Implied by Normal Explanatory Variables

Regardless of the sampling design, suppose the explanatory variables are continuous
and have a normal distribution, for each response outcome. Specifically, given y,
suppose x has an N(𝝁y, V) distribution, y = 0, 1. Then, by Bayes’ theorem, P(y =
1 ∣ x) satisfies the logistic regression model with 𝜷 = V−1(𝝁1 − 𝝁0) (Warner 1963).

For example, in a health study of senior citizens, suppose y = whether a person
has ever had a heart attack and x = cholesterol level. Suppose those who have had a
heart attack have an approximately normal distribution on x and those who have not
had one also have an approximately normal distribution on x, with similar variance.
Then, the logistic regression function approximates well the curve for P(y = 1 ∣ x).
The effect is greater when the groups’ mean cholesterol levels are farther apart. If the
distributions are normal but with different variances, the logistic model applies, but
having a quadratic term (Exercise 5.1).

5.2.4 Summarizing Predictive Power: Classification Tables and ROC Curves

A classification table cross-classifies the binary response y with a prediction ŷ of
whether y = 0 or 1 (see Table 5.1). For a model fit to ungrouped data, the prediction
for observation i is ŷi = 1 when �̂�i > 𝜋0 and ŷi = 0 when �̂�i ≤ 𝜋0, for a selected cutoff
𝜋0. Common cutoffs are (1) 𝜋0 = 0.50, (2) the sample proportion of y = 1 outcomes,
which each �̂�i equals for the model containing only an intercept term. Rather than
using �̂�i from the model fitted to the dataset that includes yi, it is better to make the
prediction with the “leave-one-out” cross-validation approach, which bases �̂�i on the
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Table 5.1 A Classification Table

Prediction ŷ

y 0 1

0
1

Cell counts in such tables yield estimates of sensitivity =
P(ŷ = 1 ∣ y = 1) and specificity = P(ŷ = 0 ∣ y = 0).

model fitted to the other n − 1 observations. For a particular cutoff, summaries of the
predictive power from the classification table are estimates of

sensitivity = P(ŷ = 1 ∣ y = 1) and specificity = P(ŷ = 0 ∣ y = 0).

A disadvantage of a classification table is that its cell entries depend strongly on
the cutoff 𝜋0 for predictions. A more informative approach considers the estimated
sensitivity and specificity for all the possible 𝜋0. The sensitivity is the true positive
rate (tpr), and P(ŷ = 1 ∣ y = 0) = (1 − specificity) is the false positive rate (fpr). A
plot of the true positive rate as a function of the false positive rate as 𝜋0 decreases
from 1 to 0 is called a receiver operating characteristic (ROC) curve. When 𝜋0 is
near 1, almost all predictions are ŷi = 0; then, the point (fpr, tpr) ≈ (0, 0). When
𝜋0 is near 0, almost all predictions are ŷi = 1; then, (fpr, tpr) ≈ (1, 1). For a given
specificity, better predictive power corresponds to higher sensitivity. So, the better
the predictive power, the higher the ROC curve and the greater the area under it. A
ROC curve usually has a concave shape connecting the points (0, 0) and (1, 1), as
illustrated by Figure 5.2.

1

0
1

Poor

P( ŷ = 1|y = 0)

P(   = 1|y = 1)

Good

ŷ

Figure 5.2 ROC curves for a binary GLM having good predictive power and for a binary
GLM having poor predictive power.
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The area under a ROC curve equals a measure of predictive power called the
concordance index (Hanley and McNeil 1982). Consider all pairs of observations
(i, j) for which yi = 1 and yj = 0. The concordance index c is the proportion of the
pairwise predictions that are concordant with the outcomes, having �̂�i > �̂�j. A pair

having �̂�i = �̂�j contributes 1
2

to the count of such pairs. The “no effect” value of
c = 0.50 occurs when the ROC curve is a straight line connecting the points (0, 0)
and (1, 1).

5.2.5 Summarizing Predictive Power: Correlation Measures

An alternative measure of predictive power is the correlation between the observed
responses {yi} and the model’s fitted values {�̂�i}. This generalization of the multiple
correlation for linear models is applicable for any GLM (Section 4.6.4). In logistic
regression with ungrouped data, corr(y, �̂�) is the correlation between the N binary
{yi} observations (1 or 0 for each) and the estimated probabilities. The highly discrete
nature of y constrains the range of possible correlation values. A related measure esti-
mates corr(y∗, �̂�) for the latent continuous variable for the underlying latent variable
model. The square of this measure is an R2 analog (McKelvey and Zavoina 1975)
that divides the estimated variance of ŷ∗ by the estimated variance of y∗, where
ŷ∗i =

∑
j 𝛽jxij is the same as the estimated linear predictor. The estimated variance

of y∗ equals the estimated variance of ŷ∗ plus the variance of 𝜖 in the latent vari-
able model. For the probit latent model with standard normal error, var(𝜖) = 1. For
the corresponding logistic model, var(𝜖) = 𝜋2∕3 = 3.29, the variance of the standard
logistic distribution.

Such correlation measures are useful for comparing fits of different models for
the same data. They can distinguish between models when the concordance index
does not. For instance, with a single explanatory variable, c takes the same value for
every link function that gives a monotone relationship of the same sign between x
and �̂�.

5.3 INFERENCE ABOUT PARAMETERS OF LOGISTIC
REGRESSION MODELS

The mechanics of ML estimation and model fitting for logistic regression are special
cases of the GLM fitting results of Sections 4.1 and 4.5. From (4.10), the likelihood
equations for a GLM are

N∑
i=1

(yi − 𝜇i)xij

var(yi)

𝜕𝜇i

𝜕𝜂i
= 0, j = 1, 2,… , p.

For a GLM for binary data, niyi ∼ bin(ni,𝜋i) with 𝜋i = 𝜇i = F(
∑

j 𝛽jxij) = F(𝜂i) for
some standard cdf F. Thus, 𝜕𝜇i∕𝜕𝜂i = f (𝜂i) where f is the pdf corresponding to F.
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Since the binomial proportion yi has var(yi) = 𝜋i(1 − 𝜋i)∕ni, the likelihood equations
are

N∑
i=1

ni(yi − 𝜋i)xij

𝜋i(1 − 𝜋i)
f (𝜂i) = 0, j = 1, 2,… , p.

That is, in terms of 𝜷,

N∑
i=1

ni

[
yi − F

(∑
j 𝛽jxij

)]
xijf

(∑
j 𝛽jxij

)
F
(∑

j 𝛽jxij

) [
1 − F

(∑
j 𝛽jxij

)] = 0, j = 1, 2,… , p. (5.4)

5.3.1 Logistic Regression Likelihood Equations

For logistic regression models for binary data,

F(z) = ez

1 + ez
, f (z) = ez

(1 + ez)2
= F(z)[1 − F(z)].

The likelihood equations then simplify to

N∑
i=1

ni(yi − 𝜋i)xij = 0, j = 1,… , p. (5.5)

Let X denote the N × p model matrix of values of {xij}. Let s denote the binomial
vector of “success” totals with elements si = niyi. The likelihood equations (5.5) have
the form

XTs = XTE(s).

This equation illustrates the fundamental result for GLMs with canonical link func-
tion, shown in Equation 4.27, that the likelihood equations equate the sufficient
statistics to their expected values.

5.3.2 Covariance Matrix of Logistic Parameter Estimators

The ML estimator �̂� has a large-sample normal distribution around 𝜷 with covariance
matrix equal to the inverse of the information matrix. From (4.13), the information
matrix for a GLM has the form  = XTWX, where W is the diagonal matrix with
elements

wi = (𝜕𝜇i∕𝜕𝜂i)
2∕var(yi).
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For binomial observations, 𝜇i = 𝜋i and var(yi) = 𝜋i(1 − 𝜋i)∕ni. For the logistic
regression model, 𝜂i = log[𝜋i∕(1 − 𝜋i)], so that 𝜕𝜂i∕𝜕𝜋i = 1∕[𝜋i(1 − 𝜋i)]. Thus,
wi = ni𝜋i(1 − 𝜋i), and for large samples, the estimated covariance matrix of �̂� is

v̂ar(�̂�) = {XTŴX}−1 = {XTDiag[ni�̂�i(1 − �̂�i)]X}−1, (5.6)

where Ŵ = Diag[ni�̂�i(1 − �̂�i)] denotes the N × N diagonal matrix having {ni�̂�i(1 −
�̂�i)} on the main diagonal. “Large samples” here means a large number of Bernoulli
trials, that is, large N for ungrouped data and large n =

∑
i ni for grouped data, in

each case with p fixed. The square roots of the main diagonal elements of Equation
(5.6) are estimated standard errors of �̂�.

5.3.3 Statistical Inference: Wald Method is Suboptimal

For statistical inference for logistic regression models, we can use the Wald,
likelihood-ratio, or score methods introduced in Section 4.3. For example, to test
H0: 𝛽j = 0, the Wald chi-squared (df = 1) uses (𝛽j∕SEj)

2, whereas the likelihood-
ratio chi-squared uses the difference between the deviances for the simpler model
with 𝛽j = 0 and the full model.

These methods usually give similar results for large sample sizes. However,
the Wald method has two disadvantages. First, its results depend on the scale for
parameterization. To illustrate, for the null model, logit(𝜋) = 𝛽0, consider testing
H0: 𝛽0 = 0 (i.e., 𝜋 = 0.50) when ny has a bin(n,𝜋) distribution. From the delta
method, the asymptotic variance of 𝛽0 = logit(y) is [n𝜋(1 − 𝜋)]−1. The Wald chi-
squared test statistic, which uses the ML estimate of the asymptotic variance, is
(𝛽0∕SE)2 = [logit(y)]2[ny(1 − y)]. On the proportion scale, the Wald test statistic is
(y − 0.50)2∕[y(1 − y)∕n]. These are not the same. Evaluations reveal that the logit-
scale statistic is too conservative1 and the proportion-scale statistic is too liberal.
A second disadvantage is that when a true effect in a binary regression model is
very large, the Wald test is less powerful than the other methods and can show aber-
rant behavior. For this single-binomial example, suppose n = 25. Then, y = 24∕25 is
stronger evidence against H0: 𝜋 = 0.50 than y = 23∕25, yet the logit Wald statistic
equals 9.7 when y = 24∕25 and 11.0 when y = 23∕25. For comparison, the likelihood-
ratio statistics are 26.3 and 20.7. As the true effect in a binary regression model
increases, for a given sample size the information decreases so quickly that the stan-
dard error grows faster than the effect.2 The Wald method fails completely when
𝛽j = ±∞, a case we discuss in Section 5.4.2.

5.3.4 Conditional Logistic Regression to Eliminate Nuisance Parameters

The total number of binary observations is n =
∑N

i=1 ni for grouped data and n = N
for ungrouped data. ML estimators of the p parameters of the logistic regression

1When H0 is true, the probability a test of nominal size 𝛼 rejects H0 is less than 𝛼.
2See Davison (2003, p. 489), Hauck and Donner (1977), and Exercise 5.7.
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model and standard methods of inference perform well when n is large compared
with p. Sometimes n is small. Sometimes p grows as n grows, as in highly stratified
data in which each stratum has its own model parameter. In either case, improved
inference results from using conditional maximum likelihood. This method reduces
the parameter space, eliminating nuisance parameters from the likelihood function
by conditioning on their sufficient statistics. Inference based on the conditional like-
lihood can use large-sample asymptotics or small-sample distributions.

We illustrate with a simple case: logistic regression with a single binary explana-
tory variable x and small n. For subject i in an ungrouped data file,

logit[P(yi = 1)] = 𝛽0 + 𝛽1xi, i = 1,… , N, (5.7)

where xi = 1 or xi = 0. Usually the log odds ratio 𝛽1 is the parameter of interest, and
𝛽0 is a nuisance parameter. For the exponential dispersion family (4.1) with a(𝜙) = 1,
the kernel of the log-likelihood function is

∑
i yi𝜃i. For the logistic model, this is

N∑
i=1

yi𝜃i =
N∑

i=1

yi(𝛽0 + 𝛽1xi) = 𝛽0

N∑
i=1

yi + 𝛽1

N∑
i=1

xiyi.

The sufficient statistics are
∑

i yi for 𝛽0 and
∑

i xiyi for 𝛽1. The grouped form of
the data is summarized with a 2 × 2 contingency table. Denote the two independent
binomial “success” totals in the table by s1 and s2, having bin(n1,𝜋1) and bin(n2,𝜋2)
distributions, as Table 5.2 shows. To conduct conditional inference about 𝛽1 while
eliminating 𝛽0, we use the distribution of

∑
i xiyi = s1, conditional on

∑
i yi = s1 + s2.

Consider testing H0: 𝛽1 = 0, which corresponds to H0: 𝜋1 = 𝜋2. Under H0, let
𝜋 = e𝛽0∕(1 + e𝛽0 ) denote the common value. We eliminate 𝛽0 by finding P(s1 =
t ∣ s1 + s2 = v). By the independence of the binomial variates and the fact that their
sum is also binomial, under H0

P(s1 = t, s2 = u) =
(

n1

t

)
𝜋t(1 − 𝜋)n1−t

(
n2

u

)
𝜋u(1 − 𝜋)n2−u, t = 0,… , n1, u = 0,… , n2

P(s1 + s2 = v) =
(

n1 + n2

v

)
𝜋v(1 − 𝜋)n1+n2−v, v = 0, 1,… , n1 + n2.

Table 5.2 A 2 × 2 Table for Binary Response and
Explanatory Variables

y

x 1 0 Total

1 s1 n1 − s1 n1

0 s2 n2 − s2 n2
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So the conditional probability is

P(s1 = t ∣ s1 + s2 = v) =

(n1
t

)
𝜋t(1 − 𝜋)n1−t

( n2
v−t

)
𝜋v−t(1 − 𝜋)n2−(v−t)(n1+n2

v

)
𝜋v(1 − 𝜋)n1+n2−v

=

(n1
t

)( n2
v−t

)
(n1+n2

v

) , max(0, v − n2) ≤ t ≤ min(n1, v).

This is the hypergeometric distribution. To test H0: 𝛽1 = 0 against H1: 𝛽1 > 0, the
P-value is P(s1 ≥ t ∣ s1 + s2), for observed value t for s1. This probability does not
depend on 𝛽0. We can find it exactly rather than rely on a large-sample approximation.
This test was proposed by R. A. Fisher (1935) and is called Fisher’s exact test (see
Exercise 5.31).

The conditional approach has the limitation of requiring sufficient statistics for the
nuisance parameters. Reduced sufficient statistics exist only with GLMs that use the
canonical link. Thus, the conditional approach works for the logistic model but not
for binary GLMs that use other link functions. Another limitation is that when some
explanatory variables are continuous, the {yi} values may be completely determined
by the given sufficient statistics, making the conditional distribution degenerate.

5.4 LOGISTIC REGRESSION MODEL FITTING

We can use standard iterative methods to solve the logistic regression likelihood
equations (5.5). In certain cases, however, some or all ML estimates may be infinite
or may not even exist.

5.4.1 Iterative Fitting of Logistic Regression Models

The Newton–Raphson iterative method (Section 4.5.1) is equivalent to Fisher scoring,
because the logit link is the canonical link. Using expressions (4.8) and the inverse
of Equation (5.6), in terms of the binomial “success” counts {si = niyi}, let

u(t)
j =

𝜕L(𝜷)
𝜕𝛽j

||||𝛽(t)
=
∑

i

(si − ni𝜋
(t)
i )xij

h(t)
ab

=
𝜕2L(𝜷)
𝜕𝛽a 𝜕𝛽b

||||𝛽(t)
= −

∑
i

xiaxibni𝜋
(t)
i (1 − 𝜋(t)

i ).

Here 𝝅(t), approximation t for �̂�, is obtained from 𝜷(t) through

𝜋(t)
i =

exp
(∑p

j=1 𝛽
(t)
j xij

)
1 + exp

(∑p
j=1 𝛽

(t)
j xij

) . (5.8)
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We use u(t) and H(t) with formula (4.23) to obtain the next value, 𝜷(t+1), which in this
context is

𝜷(t+1) = 𝜷(t) +
{

XTDiag
[
ni𝜋

(t)
i (1 − 𝜋(t)

i )
]

X
}−1

XT(s − 𝝁(t)), (5.9)

where 𝜇(t)
i = ni𝜋

(t)
i . This is used to obtain 𝝅(t+1), and so forth.

With an initial guess 𝜷 (0), Equation (5.8) yields 𝝅(0), and for t > 0 the iterations
proceed as just described using Equations (5.9) and (5.8). In the limit, 𝝅(t) and 𝜷(t)

converge to the ML estimates �̂� and �̂�, except for certain data configurations for
which at least one estimate is infinite or does not exist (Section 5.4.2). The H(t)

matrices converge to Ĥ = −XTDiag[ni�̂�i(1 − �̂�i)]X. By Equation (5.6) the estimated

asymptotic covariance matrix of �̂� is a by-product of the model fitting, namely −Ĥ
−1

.
From Section 4.5.4, 𝜷(t+1) has the iteratively reweighted least squares form

(XTV−1
t X)−1XTV−1

t z(t), where z(t) has elements

z(t)
i = log

𝜋
(t)
i

1 − 𝜋(t)
i

+
si − ni𝜋

(t)
i

ni𝜋
(t)
i

(
1 − 𝜋(t)

i

) ,

and where Vt = (W(t))−1 is a diagonal matrix with elements {1∕[ni𝜋
(t)
i (1 − 𝜋(t)

i )]}. In
this expression, z(t) is the linearized form of the logit link function for the sample data,
evaluated at 𝝅(t) (see (4.25)). The limit V̂ of Vt has diagonal elements that estimate
the variances of the approximate normal distributions3 of the sample logits for large
{ni}, by the delta method.

5.4.2 Infinite Parameter Estimates in Logistic Regression

The Hessian matrix for logistic regression models is negative-definite, and the log-
likelihood function is concave. ML estimates exist and are finite except when a
hyperplane separates the set of explanatory variable values having y = 0 from the set
having y = 1 (Albert and Anderson 1984).

For example, with a single explanatory variable and six observations, suppose
y = 1 at x = 1, 2, 3 and y = 0 at x = 4, 5, 6 (see Figure 5.3). For the model logit(𝜋i) =
𝛽0 + 𝛽1xi with observations in increasing order on x, the likelihood equations (5.5)
are

∑
i �̂�i =

∑
i yi and

∑
i xi�̂�i =

∑
i xiyi, or

6∑
i=1

�̂�i = 3 and
6∑

i=1

i�̂�i = (1 + 2 + 3)1 + (4 + 5 + 6)0 = 6.

A solution is �̂�i = 1 for i = 1, 2, 3 and �̂�i = 0 for i = 4, 5, 6. Any other set of {�̂�i}
having

∑
i �̂�i = 3 would have

∑
i i�̂�i > 6, so this is the unique solution. By letting

𝛽1 → −∞ and, for fixed 𝛽1, letting 𝛽0 = −3.5𝛽1 so that �̂� = 0.50 at x = 3.5, we can

3The actual variance does not exist, because with positive probability the sample proportion yi = 1
or 0 and the sample logit = ±∞.
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654321
x

y

0
1

Figure 5.3 Complete separation of explanatory variable values, such as y = 1 when x < 3.5
and y = 0 when x > 3.5, causes an infinite ML effect estimate.

generate a sequence with ever-increasing value of the likelihood function that comes
successively closer to satisfying these equations and giving a perfect fit.

In practice, software may fail to recognize when an ML estimate is actually
infinite. After a certain number of cycles of iterative fitting, the log-likelihood looks
flat at the working estimate, because the log-likelihood approaches a limiting value
as the parameter value grows unboundedly. So, convergence criteria are satisfied,
and software reports estimated. Because the log-likelihood is so flat and because the
variance of 𝛽j comes from its curvature as described by the negative inverse of the
matrix of second partial derivatives, software typically reports huge standard errors.

-----------------------------------------------------------------------

> x <- c(1,2,3,4,5,6); y <- c(1,1,1,0,0,0) # complete separation

> fit <- glm(y ~ x, family = binomial(link = logit))

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 165.32 407521.43 0 1 # x estimate is

x -47.23 115264.41 0 1 # actually -infinity

Number of Fisher Scoring iterations: 25 # unusually large

> logLik(fit)

’log Lik.’ -1.107576e-10 (df=2) # maximized log-likelihood = 0

-----------------------------------------------------------------------

The space of explanatory variable values is said to have complete separation when
a hyperplane can pass through that space such that on one side of that hyperplane
yi = 0 for all observations, whereas on the other side yi = 1 always, as in Figure 5.3.
There is then perfect discrimination, as we can predict the sample outcomes perfectly
by knowing the explanatory variable values. In practice, we have an indication of com-
plete separation when the fitted prediction equation perfectly predicts the response
outcome for the entire dataset; that is, �̂�i = 1.0 (to many decimal places) whenever
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yi = 1 and �̂�i = 0.0 whenever yi = 0. A related indication is that the reported maxi-
mized log-likelihood value is 0 to many decimal places. Another warning signal is
standard errors that seem unnaturally large.

A weaker condition that causes at least one estimate to be infinite, called quasi-
complete separation, occurs when a hyperplane separates explanatory variable values
with yi = 1 and with yi = 0, but cases exist with both outcomes on that hyper-
plane. For example, this toy example of six observations has quasi-complete sep-
aration if we add two observations at x = 3.5, one with y = 1 and one with y = 0.
Quasi-complete separation is more likely to happen with qualitative predictors than
with quantitative predictors. If any category of a qualitative predictor has either no
cases with y = 0 or no cases with y = 1, quasi-complete separation occurs when
that variable is entered as a factor in the model (i.e., using an indicator variable
for that category). With quasi-complete separation, there is not perfect discrimina-
tion for all observations. The maximized log-likelihood is then strictly less than 0.
However, a warning signal is again reported standard errors that seem unnaturally
large.

What inference can you conduct when the data have complete or quasi-complete
separation? With an infinite estimate, you can still compute likelihood-ratio tests.
The log-likelihood has a maximized value at the infinite estimate for a parameter, so
you can compare it with the value when the parameter is equated to some fixed value
such as zero. Likewise, you can invert the test to construct a confidence interval.
If 𝛽 = ∞, for example, a 95% profile likelihood confidence interval has the form
(L,∞), where L is such that the likelihood-ratio test of H0: 𝛽 = L has P-value = 0.05.
With quasi-complete separation, some parameter estimates and SE values may be
unaffected, and even Wald inference methods are available with them.

Alternatively, you can make some adjustment so that all estimates are finite.
Some approaches smooth the data, thus producing finite estimates. The Bayesian
approach is one way to do that (Section 10.3). A related way maximizes a penalized
likelihood function. This adds a term to the ordinary log-likelihood function such that
maximizing the amended function smooths the estimates by shrinking them toward
0 (Section 11.1.7).

5.5 DEVIANCE AND GOODNESS OF FIT FOR BINARY GLMS

For grouped or ungrouped binary data, one way to detect lack of fit uses a likelihood-
ratio test to compare the model with more complex ones. If more complex models
do not fit better, this provides some assurance that the model chosen is reasonable.
Other approaches to detecting lack of fit search for any way that the model fails,
using global statistics such as the deviance or Pearson statistics.

5.5.1 Deviance and Pearson Goodness-of-Fit Statistics

From Section 4.4.3, for binomial GLMs the deviance is the likelihood-ratio statistic
comparing the model to the unrestricted (saturated model) alternative. The saturated
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model has the perfect fit �̃�i = yi. The likelihood-ratio statistic comparing this to the
ML model fit �̂�i for all i is

−2 log

{[
N∏

i=1

�̂�
niyi
i (1 − �̂�i)

ni−niyi

]/[
N∏

i=1

�̃�
niyi
i (1 − �̃�i)

ni−niyi

]}

= 2
∑

i

niyi log
niyi

ni�̂�i
+ 2

∑
i

(ni − niyi) log
ni − niyi

ni − ni�̂�i
.

At setting i of the explanatory variables, niyi is the number of successes and (ni − niyi)
is the number of failures, i = 1,… , N. Thus, the deviance is a sum over the 2N success
and failure totals at the N settings, having the form

D(y; �̂�) = 2
∑

observed × log(observed∕fitted).

This has the same form as the deviance (4.16) for Poisson loglinear models with
intercept term. In either case, we denote it by G2.

For naturally grouped data (e.g., solely categorical explanatory variables), the data
file can be expressed in grouped or in ungrouped form. The deviance differs4 in the
two cases. For grouped data, the saturated model has a parameter at each setting for
the explanatory variables. For ungrouped data, by contrast, it has a parameter for each
subject.

For grouped data, a Pearson statistic also summarizes goodness of fit. It is the sum
over the 2N cells of successes and failures,

X2 =
∑ (observed − fitted)2

fitted

=
N∑

i=1

(niyi − ni�̂�i)
2

ni�̂�i
+

N∑
i=1

[(ni − niyi) − (ni − ni�̂�i)]
2

ni(1 − �̂�i)

=
N∑

i=1

(niyi − ni�̂�i)
2

ni�̂�i(1 − �̂�i)
=

N∑
i=1

(yi − �̂�i)
2

�̂�i(1 − �̂�i)∕ni
. (5.10)

In the form of Equation (5.10), this statistic is a special case of the score statistic for
GLMs introduced in (4.17), having variance function in the denominator.

5.5.2 Chi-Squared Tests of Fit and Model Comparisons

When the data are grouped, the deviance G2 and Pearson X2 are goodness-of-fit test
statistics for testing H0 that the model truly holds. Under H0, they have limiting
chi-squared distributions as the overall sample size n increases, by {ni} increasing

4Exercise 5.17 shows a numerical example.
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(i.e., small-dispersion asymptotics). Grouped data have a fixed number of settings N
of the explanatory variables and hence a fixed number of parameters for the saturated
model, so the df for the chi-squared distribution is the difference between the numbers
of parameters in the two models, df = N − p. The X2 statistic results5 from summing
the terms up to second-order in a Taylor series expansion of G2, and (X2 − G2)
converges in probability to 0 under H0. As n increases, the X2 statistic converges to
chi-squared more quickly than G2 and has a more trustworthy P-value when some
expected success or failure totals are less than about five.

The chi-squared limiting distribution does not occur for ungrouped data. In fact,
G2 and X2 can be uninformative about lack of fit (Exercises 5.14 and 5.16). The
chi-squared approximation is also poor with grouped data having a large N with
relatively few observations at each setting, such as when there are many explanatory
variables or one of them is nearly continuous in measurement (e.g., a person’s age).
For ungrouped data, G2 and X2 can be applied in an approximate manner to grouped
observed and fitted values for a partition of the space of x values (Tsiatis 1980) or for
a partition of the estimated probabilities of success (Hosmer and Lemeshow 1980).
However, a large value of any global fit statistic merely indicates some lack of fit
but provides no insight about its nature. The approach of comparing the working
model with a more complex one is more useful from a scientific perspective, since it
investigates lack of fit of a particular type.

Although the deviance is not useful for testing model fit when the data are
ungrouped or nearly so, it remains useful for comparing models. For either grouped or
ungrouped data, we can compare two nested models using the difference of deviances
(Section 4.4.3). Suppose model M0 has p0 parameters and the more complex model
M1 has p1 > p0 parameters. Then the difference of deviances is the likelihood-ratio
test statistic for comparing the models. If model M0 holds, this difference has an
approximate chi-squared distribution with df = p1 − p0. One can also compare the
models using the Pearson comparison statistic (4.18).

5.5.3 Residuals: Pearson, Deviance, and Standardized

After a preliminary choice of model, such as with a global goodness-of-fit test or by
comparing pairs of models, we obtain further insight by switching to a microscopic
mode of analysis. With grouped data, it is useful to form residuals to compare observed
and fitted proportions.

For observation i with sample proportion yi and model fitted proportion �̂�i, the
Pearson residual (4.20) is

ei =
yi − �̂�i√
v̂ar(yi)

=
yi − �̂�i√

�̂�i(1 − �̂�i)∕ni

.

Equivalently, this divides the raw residual (niyi − ni�̂�i) comparing the observed and
fitted number of successes by the estimated binomial standard deviation of niyi. From

5For details, see Agresti (2013, p. 597).
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Equation (5.10) these residuals satisfy

X2 =
N∑

i=1

e2
i ,

for the Pearson statistic for testing the model fit. An alternative deviance residual,
introduced for GLMs in (4.21), uses components of the deviance.

As explained in Section 4.4.6, the Pearson residuals have standard deviations less
than 1. The standardized residual divides (yi − �̂�i) by its estimated standard error.
This uses the leverage ĥii from the diagonal of the GLM estimated hat matrix

ĤW = Ŵ
1∕2

X(XTŴX)−1XTŴ
1∕2

,

in which the weight matrix Ŵ is diagonal with element ŵii = ni�̂�i(1 − �̂�i). For obser-
vation i, the standardized residual is

ri =
ei√

1 − ĥii

=
yi − �̂�i√

[�̂�i(1 − �̂�i)(1 − ĥii)]∕ni

.

Compared with the Pearson and deviance residuals, it has the advantages of
having an approximate N(0, 1) distribution when the model holds (with large ni) and
appropriately recognizing redundancies in the data (Exercise 5.12). Absolute values
larger than about 2 or 3 provide evidence of lack of fit.

Plots of residuals against explanatory variables or linear predictor values help to
highlight certain types of lack of fit. When fitted success or failure totals are very
small; however, just as X2 and G2 lose relevance, so do residuals. As an extreme
case, for ungrouped data, ni = 1 at each setting. Then yi can equal only 0 or 1, and
a residual can take only two values. One must then be cautious about regarding
either outcome as extreme, and a single residual is essentially uninformative. When
�̂�i is near 1, for example, residuals are necessarily either small and positive or large
and negative. Plots of residuals also then have limited use. For example, suppose an
explanatory variable x has a strong positive effect. Then, necessarily for small values
of x, an observation with yi = 1 will have a relatively large positive residual, whereas
for large x an observation with yi = 0 will have a relatively large negative residual.
When raw residuals are plotted against fitted values, the plot consists merely of two
nearly parallel lines of points. (Why?) When explanatory variables are categorical,
so data can have grouped or ungrouped form, it is better to compute residuals and the
deviance for the grouped data.

5.5.4 Influence Diagnostics for Logistic Regression

Other regression diagnostic tools also help in assessing fit. These include analyses
that describe an observation’s influence on parameter estimates and fit statistics.
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However, a single observation can have a much greater influence in ordinary least
squares regression than in logistic regression, because ordinary regression has no
bound on the distance of yi from its expected value. Also, the estimated hat matrix
ĤW for a binary GLM depends on the fit as well as the model matrix X. Points that
have extreme predictor values need not have high leverage. In fact, the leverage can
be relatively small if �̂�i is close to 0 or 1.

Several measures describe the effect of removing an observation from the dataset
(Pregibon 1981; Williams 1987). These include the change in X2 or G2 goodness-
of-fit statistics and analogs of influence measures for ordinary linear models, such as
Cook’s distance (r2

i [ĥii∕p(1 − ĥii)]) using the leverage and standardized residual.

5.6 PROBIT AND COMPLEMENTARY LOG–LOG MODELS

In this section we present two alternatives to the logistic regression model for binary
responses. Instead of using the logistic distribution for the cdf inverted to get the link
function, one uses the normal distribution and the other uses a skewed distribution.

5.6.1 Probit Models: Interpreting Effects

The binary-response model that takes the link function to be the inverse of the standard
normal cdfΦ is called the probit model. For the binomial parameter 𝜋i for observation
i, the model is

Φ−1(𝜋i) =
p∑

j=1

𝛽jxij, or 𝜋i = Φ

(
p∑

j=1

𝛽jxij

)
.

For the probit model, the instantaneous rate of change in 𝜋i as predictor j changes,
adjusting for the other predictors, is 𝜕𝜋i∕𝜕xij = 𝛽j𝜙(

∑
j 𝛽jxij), where 𝜙(⋅) is the stan-

dard normal density function. The rate is highest when
∑

j 𝛽jxij = 0, at which 𝜋i =
1
2

and the rate equals 0.40𝛽j. As a function of predictor j, the probit response curve
for 𝜋i (or for 1 − 𝜋i, when 𝛽j < 0) has the appearance of a normal cdf with stan-
dard deviation 1∕|𝛽j|. By comparison, in logistic regression the rate of change at

𝜋i =
1
2

is 0.25𝛽j, and the logistic curve for 𝜋i as a function of predictor j has standard

deviation 𝜋∕|𝛽j|√3 (for 𝜋 = 3.14…). The rates of change at 𝜋i =
1
2

are the same
for the cdf’s corresponding to the probit and logistic curves when the logistic 𝛽j is
0.40∕0.25 = 1.60 times the probit 𝛽j. The standard deviations for the response curves

are the same when the logistic 𝛽j is 𝜋∕
√

3 = 1.81 times the probit 𝛽j. When both
models fit well, ML parameter estimates in logistic regression are about 1.6–1.8 times
those in probit models. Although probit model parameters are on a different scale
than logistic model parameters, the probability summaries of effects are similar.

Another way to interpret parameters in probit models uses effects in the latent
variable threshold model of Section 5.1.2. Since y∗i =

∑
j 𝛽jxij + 𝜖i where 𝜖i ∼ N(0, 1)



184 MODELS FOR BINARY DATA

has cdf Φ, a 1-unit increase in xij corresponds to a change of 𝛽j in E(y∗i ), adjusted
for the other explanatory variables. We interpret the magnitude of 𝛽j in terms of the
conditional standard deviation of 1 for y∗i , so 𝛽j represents a fraction or multiple
of a standard deviation increase. Summary measures of model predictive power
include the area under the ROC curve and corr(y, �̂�), as described in Sections 5.2.4
and 5.2.5.

5.6.2 Probit Model Fitting

The likelihood equations for a probit model substituteΦ and𝜙 in the general equations
(5.4) for GLMs for binary data. The estimated large-sample covariance matrix of �̂�
has the GLM form (4.14),

v̂ar(�̂�) = (XTŴX)−1,

where Ŵ is the diagonal matrix with estimates of wi = (𝜕𝜇i∕𝜕𝜂i)
2∕var(yi). Since

𝜇i = 𝜋i = Φ(𝜂i) = Φ(
∑

j 𝛽jxij),

ŵi = ni

[
𝜙

(
p∑

j=1

𝛽jxij

)]2 /{
Φ

(
p∑

j=1

𝛽jxij

)[
1 − Φ

(
p∑

j=1

𝛽jxij

)]}
.

We can solve the likelihood equations using the Fisher scoring algorithm for
GLMs or the Newton–Raphson algorithm. They both yield the ML estimates but
the Newton–Raphson algorithm gives slightly different standard errors because it
inverts the observed information matrix to estimate the covariance matrix, whereas
Fisher scoring uses expected information. These differ for link functions other than
the canonical link.

5.6.3 Log–Log and Complementary Log–Log Link Models

The logit and probit links are symmetric about 0.50, in the sense that

link(𝜋i) = −link(1 − 𝜋i).

To illustrate,

logit(𝜋i) = log[𝜋i∕(1 − 𝜋i)] = − log[(1 − 𝜋i)∕𝜋i] = −logit(1 − 𝜋i).

This means that the response curve for 𝜋i has a symmetric appearance about the point
where 𝜋i = 0.50. Logistic models and probit models are inappropriate when this is
badly violated.
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Figure 5.4 GLM for binary data using complementary log–log link function.

A different shape of response curve is given by the model

𝜋i = 1 − exp

[
−exp

(
p∑

j=1

𝛽jxij

)]
. (5.11)

With a single explanatory variable, this has the shape shown in Figure 5.4. The curve
is asymmetric, 𝜋i approaching 0 slowly but approaching 1 rather sharply. For this
model,

log[− log(1 − 𝜋i)] =
p∑

j=1

𝛽jxij.

The link function for this GLM is called the complementary log–log link, since the
log–log link applies to the complement of 𝜋i.

A related model to Equation (5.11) is

𝜋i = exp

[
−exp

(
−

p∑
j=1

𝛽jxij

)]
.

In GLM form it uses the log–log link function.

− log[− log(𝜋i)] =
p∑

j=1

𝛽jxij.

For it, 𝜋i approaches 0 sharply but approaches 1 slowly. When the log–log model
holds for the probability of a success, the complementary log–log model holds for
the probability of a failure, but with a reversal in sign of {𝛽j}.

The log–log link is a special case of an inverse cdf link using the cdf of the Type I
extreme-value distribution (also called the Gumbel distribution). The cdf equals

F(x) = exp{−exp[−(x − a)∕b]}
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for parameters b > 0 and −∞ < a < ∞. The distribution has mode a, mean a +
0.577b, and standard deviation 1.283b, and is highly skewed to the right. The term
extreme value refers to its being the limit distribution of the maximum of a sequence
of independent and identically distributed continuous random variables.

Models with log–log link can be fitted by using the Fisher scoring algorithm for
GLMs. How do we interpret effects in such models? Consider the complementary
log–log link model (5.11) with a single explanatory variable x. As x increases, the
curve is monotone increasing when 𝛽 > 0. The complement probability at x + 1
equals the complement probability at x raised to the exp(𝛽) power. We illustrate in
the following example.

How can we evaluate the suitability of various possible link functions for a dataset?
Measures such as the deviance and AIC provide some information. It is challenging
to provide graphical portrayals of relations, especially for ungrouped data, since
only y = 1 and y = 0 values appear on the graph. Plotting response proportions for
grouped data can be helpful, as illustrated in the following example. Smoothing
methods presented in Section 11.3 are also helpful for portraying the effects.

5.7 EXAMPLES: BINARY DATA MODELING

In this section we analyze two datasets. The first illustrates a logistic regression
analysis for which one parameter has an infinite ML estimate. The second is a classic
dose–response example from Bliss (1935), the first article to use ML fitting of a probit
model.

5.7.1 Example: Risk Factors for Endometrial Cancer Grade

Heinze and Schemper (2002) described a study about endometrial cancer that ana-
lyzed how y = histology of 79 cases (0 = low grade for 30 patients, 1 = high grade
for 49 patients) relates to three risk factors: x1 = neovasculation (1 = present for 13
patients, 0 = absent for 66 patients), x2 = pulsatility index of arteria uterina (ranging
from 0 to 49), and x3 = endometrium height (ranging from 0.27 to 3.61). Table 5.3
shows some of the data.

For these data, consider the main effects model

logit[P(yi = 1)] = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3.

Table 5.3 Part of Endometrial Cancer Dataseta

HG NV PI EH HG NV PI EH HG NV PI EH

0 0 13 1.64 0 0 16 2.26 0 0 8 3.14
...
1 1 21 0.98 1 0 5 0.35 1 1 19 1.02

Source: Data courtesy of Ella Asseryanis, Georg Heinze, and Michael Schemper. Complete data (n = 79)
are in the file Endometrial.dat at www.stat.ufl.edu/~aa/glm/data.
aHG = histology grade, NV = neovasculation, PI = pulsatility index, EH = endometrium height.

http://www.stat.ufl.edu/~aa/glm/data
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When xi1 = 0 both response outcomes occur, but for all 13 patients having xi1 = 1 the
outcome is yi = 1, so there is quasi-complete separation. The ML estimate 𝛽1 = ∞.

-----------------------------------------------------------------------

> Endometrial

NV PI EH HG

1 0 13 1.64 0

2 0 16 2.26 0

...

79 1 19 1.02 1

> attach(Endometrial)

> table(NV,HG) # quasi-complete separation: When NV=1, no HG=0 cases

HG

NV 0 1

0 49 17

1 0 13

> fit <- glm(HG ~ NV + PI + EH, family=binomial) # logit default link

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.305 1.637 2.629 0.0086

NV 18.186 1715.751 0.011 0.9915 # 18.186 and 1715.751

PI -0.042 0.044 -0.952 0.3413 # should be infinity

EH -2.903 0.846 -3.433 0.0006

---

Null deviance: 104.903 on 78 degrees of freedom

Residual deviance: 55.393 on 75 degrees of freedom

> logLik(fit) # not exactly 0 because separation is quasi, not complete

’log Lik.’ -27.69663 (df=4)

-----------------------------------------------------------------------

Despite 𝛽1 = ∞, inference is possible6 about 𝛽1. The likelihood-ratio statistic
for H0: 𝛽1 = 0 equals 9.36 with df = 1 and has P-value = 0.002. The 95% profile
likelihood confidence interval for 𝛽1 is (1.28, ∞).

-----------------------------------------------------------------------

> deviance(glm(HG ~ PI + EH, family=binomial)) - deviance(fit)

[1] 9.357643 # likelihood-ratio (LR) stat. with df=1 for H0: beta1 = 0

> library(ProfileLikelihood)

> xx <- profilelike.glm(HG~1+PI+EH,data=Endometrial,family=binomial,

+ profile.theta="NV",method="ML",lo.theta=-5,hi.theta=10,length=500,

+ round=3)

> profilelike.plot(theta=xx$theta, profile.lik.norm=xx$profile.lik.norm,

+ round=2)

> profilelike.summary(k=6.82,theta=xx$theta,

+ profile.lik.norm=xx$profile.lik.norm)

$LI.norm # LR = 6.82 gives 2log(6.82)=3.84 = 95 chi-sq percentile

[1] 1.283 10.000 # 10 was initial upper bound, correct upper limit

# is infinity but numerical instability occurs for beta1 values above 10

-----------------------------------------------------------------------

6We present other inferences for 𝛽1 using Bayesian methods in Section 10.3.2 and using penalized
likelihood methods in Section 11.1.8.
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Figure 5.5 Normalized profile log-likelihood function L(𝛽1) − L(𝛽1) for NV effect in main-
effects logistic model. Double the log-likelihood increases by 9.36 between 𝛽1 = 0 and 𝛽1 = ∞
and by 3.84 between 𝛽1 = 1.28 and 𝛽1 = ∞ (the 95% profile likelihood confidence interval).
Figure constructed by Alessandra Brazzale with cond R package for higher-order likelihood-
based conditional inference for logistic models.

We can conclude that 𝛽1 > 0 (despite what the Wald P-value shows on the R
output!) and that the effect is substantial. Figure 5.5 shows the normalized profile
log-likelihood function for 𝛽1.

The other ML estimates are not affected by the quasi-complete separation. Most
of the predictive power is provided by the EH predictor: corr(y, �̂�) = 0.745 for the
full model and 0.692 for the model with EH as the sole predictor; the areas under
the ROC curves are 0.907 and 0.895. More complex models (not shown here) do not
provide an improved fit.

5.7.2 Example: Dose–Response Study

From a dose–response study, Table 5.4 reports, in grouped-data form, the number of
adult flour beetles that died after 5 hours of exposure to gaseous carbon disulfide at
various dosages. Figure 5.6 plots the proportion killed against x = log10(dose). The
proportion jumps up at about x = 1.81, and it is close to 1 above there.

To let the response curve take the shape of a normal cdf, Bliss (1935) used the
probit model. The ML fit is

Φ−1(�̂�i) = −34.96 + 19.74xi, i = 1,… , 8.

Now �̂� = 0.50 when 𝛽0 + 𝛽1x = 0, which for this fit is at x = 34.96∕19.74 = 1.77.
The fit corresponds to a normal cdf with𝜇 = 1.77 and 𝜎 = 1∕19.74 = 0.05. Figure 5.6
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Table 5.4 Beetles Killed after Exposure to Carbon Disulfide

Fitted Number Dead

Log Dosage Number of Beetles Number Dead Comp. Log–Log Probit Logit

1.691 59 6 5.6 3.4 3.5
1.724 60 13 11.3 10.7 9.8
1.755 62 18 21.0 23.5 22.5
1.784 56 28 30.4 33.8 33.9
1.811 63 52 47.8 49.6 50.1
1.837 59 53 54.1 53.3 53.3
1.861 62 61 61.1 59.7 59.2
1.884 60 60 59.9 59.2 58.7

Source: Data file Beetles2.dat at text website, reprinted from Bliss (1935) with permission of John
Wiley & Sons, Inc.

shows the fit. As x increases from 1.691 to 1.884, �̂� increases from 0.058 to 0.987.
For a 0.10-unit increase in x, such as from 1.70 to 1.80, the estimated conditional
distribution of the latent variable y∗ shifts up by 0.10(19.74) ≈ 2 standard deviations.
The following R code enters the data in grouped-data form:

-----------------------------------------------------------------------

> logdose <- c(1.691, 1.724, 1.755, 1.784, 1.811, 1.837, 1.861, 1.884)

> dead <- c(6, 13, 18, 28, 52, 53, 61, 60) # numbers dead

> n <- c(59, 60, 62, 56, 63, 59, 62, 60) # binomial sample sizes

> alive <- n - dead # numbers not dead

> data <- matrix(append(dead,alive),ncol=2) # matrix of binomial counts

> fit.probit <- glm(data ~ logdose, family=binomial(link=probit))

> summary(fit.probit)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -34.956 2.649 -13.20 <2e-16
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Figure 5.6 Proportion of dead beetles versus log dosage of gaseous carbon disulfide, with
fits of probit and complementary log–log models.
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logdose 19.741 1.488 13.27 <2e-16

---

Null deviance: 284.202 on 7 degrees of freedom

Residual deviance: 9.987 on 6 degrees of freedom # (df = N-p = 8-2)

AIC: 40.185

> sum(resid(fit.probit, type="pearson")ˆ2) # Pearson chi-squared, df=6

[1] 9.368992

> 1 - pchisq(9.368992, 6) # P-value for Pearson goodness-of-fit test

[1] 0.1538649

-----------------------------------------------------------------------

The deviance G2 = 9.99 and Pearson X2 = 9.37 (the sum of the squared Pearson
residuals) have df = 8 − 2 = 6 and show slight evidence of lack of fit (P-value =
0.15 for X2). The ML estimates are the same for grouped and ungrouped data, but
the goodness-of-fit statistics apply only for the grouped data. The following R code
shows the fit for the ungrouped data (file Beetles.dat at the text website).

-----------------------------------------------------------------------

Beetles <- read.table("Beetles.dat",header=TRUE)

> Beetles # ungrouped data at www.stat.ufl.edu/~aa/glm/data/Beetles.dat

x y # y=1 for dead, y=0 for alive

1 1.691 1

2 1.691 1

...

481 1.884 1

> attach(Beetles)

> fit.probit2 <- glm(y ~ x, family=binomial(link=probit))

> summary(fit.probit2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -34.956 2.649 -13.20 <2e-16

x 19.741 1.488 13.27 <2e-16

---

Null deviance: 645.44 on 480 degrees of freedom # very different

Residual deviance: 371.23 on 479 degrees of freedom # from grouped data

-----------------------------------------------------------------------

To summarize predictive power, for the ungrouped data corr(y, �̂�) = 0.696. The
following code shows this and shows how to use an R package to construct the ROC
curve for the model fit. For that curve, shown in Figure 5.7, the estimated concordance
index c = 0.901.

------------------------------------------------------------------

> cor(y, fitted(fit.probit2))

[1] 0.696391

> library(ROCR) # to construct ROC curve

> pred <- prediction(fitted(fit.probit2), y)

> perf <- performance(pred, "tpr", "fpr")

> plot(perf)

> performance(pred, "auc")

[1] 0.9010852 # concordance index = area under ROC curve (auc)

------------------------------------------------------------------

http://www.stat.ufl.edu/~aa/glm/data/Beetles.dat
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Figure 5.7 ROC curve for probit model fitted to beetle mortality data.

For comparison, we fit the corresponding logistic model. The ratio of 𝛽1 estimates
for logit/probit is 34.29∕19.74 = 1.74. At dosage xi with ni beetles, ni�̂�i is the fitted
death count. Table 5.4 reports the fitted values for the grouped data. The logistic and
probit models fit similarly.

------------------------------------------------------------------

> fit.logit <- glm(data ~ logdose, family = binomial(link=logit))

> summary(fit.logit) # grouped data

Estimate Std. Error z value Pr(>|z|)

(Intercept) -60.740 5.182 -11.72 <2e-16

logdose 34.286 2.913 11.77 <2e-16

---

Null deviance: 284.202 on 7 degrees of freedom

Residual deviance: 11.116 on 6 degrees of freedom

AIC: 41.314

------------------------------------------------------------------

The model with complementary log–log link has log[− log(1 − �̂�i)] = −39.52 +
22.015xi. At dosage x = 1.70, the fitted probability of survival is exp{−exp[−39.52 +
22.015(1.70)]} = 0.885, whereas at x = 1.80 it is 0.330 and at x = 1.90 it is 4 × 10−5.
The probability of survival at dosage x + 0.10 equals the probability of survival at
dosage x raised to the e0.10(22.015) = 9.04 power. For instance, 0.330 = (0.885)9.04.
Table 5.4 shows the fitted values for the grouped data, and Figure 5.6 shows the fit,
which seems adequate (deviance G2 = 3.51, df = 6). The code also shows the use
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of the confint function for obtaining profile-likelihood confidence intervals for the
model parameters.

-----------------------------------------------------------------------

> fit.cloglog <- glm(data ~ logdose, family = binomial(link=cloglog))

> summary(fit.cloglog) # grouped data

Estimate Std. Error z value Pr(>|z|)

(Intercept) -39.522 3.236 -12.21 <2e-16

logdose 22.015 1.797 12.25 <2e-16

---

Null deviance: 284.2024 on 7 degrees of freedom

Residual deviance: 3.5143 on 6 degrees of freedom

AIC: 33.712

> sum(resid(fit.cloglog, type="pearson")ˆ2) # Pearson chi-squared stat.

[1] 3.35924

> confint(fit.cloglog) # profile likelihood confidence intervals

2.5 % 97.5 %

(Intercept) -46.140 -33.499

logdose 18.669 25.689

-----------------------------------------------------------------------

By contrast, the log–log link yields a very poor fit. To use − log[− log(𝜋i)]
instead of log[− log(𝜋i)] as the link function, corresponding to the inverse of the
extreme-value cdf, we take the negative of the estimates reported here in the output
for the model object called fit.loglog.

-----------------------------------------------------------------------

> data2 <- matrix(append(alive,dead),ncol=2) # reverse for log-log link

> fit.loglog <- glm(data2 ~ logdose, family=binomial(link=cloglog))

> summary(fit.loglog) # much poorer fit than complementary log-log link

Estimate Std. Error z value Pr(>|z|)

(Intercept) 37.661 2.949 12.77 <2e-16

logdose -21.583 1.680 -12.85 <2e-16

---

Null deviance: 284.202 on 7 degrees of freedom

Residual deviance: 27.573 on 6 degrees of freedom # grouped data

AIC: 57.771

-----------------------------------------------------------------------

The models with different link functions are not nested, so we cannot compare
them with likelihood-ratio tests. The AIC values for the grouped data are 41.3 for the
logit link, 40.2 for the probit model, 33.7 for the complementary log–log link, and
57.8 for the log–log link, showing a clear preference for the complementary log–log
link. By contrast, the ROC curve is identical for the four link functions. The corr(y, �̂�)
values for the ungrouped data are 0.684 for the log–log link, 0.696 for the probit link,
0.697 for the logit link, and 0.701 for the complementary log–log link.

Next, we perform a residual analysis for the complementary log–log link model
applied to the grouped data. According to the standardized residuals, no observation
exhibits lack of fit. Finally, Figure 5.8 plots the sample proportions dead, the fitted
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Figure 5.8 Plot of sample proportions, fitted complementary log–log model, and model-
based confidence intervals for probability of death as function of log dosage.

values for the model, and 95% pointwise confidence bands for the true probabilities
(assuming the model).

-----------------------------------------------------------------------

> pearson.res <- resid(fit.cloglog, type="pearson") # Pearson residuals

> std.res <- rstandard(fit.cloglog, type="pearson") # standardized res.

> cbind(logdose, dead/n, fitted(fit.cloglog), pearson.res, std.res)

logdose pearson.res std.res # grouped data

1 1.691 0.102 0.096 0.153 0.177

2 1.724 0.217 0.188 0.568 0.669

3 1.755 0.290 0.338 -0.790 -0.922

4 1.784 0.500 0.542 -0.627 -0.704

5 1.811 0.825 0.757 1.268 1.486

6 1.837 0.898 0.918 -0.565 -0.702

7 1.861 0.984 0.986 -0.125 -0.149

8 1.884 1.000 0.999 0.228 0.237

> plot(logdose, dead/n)

> lines(logdose, fitted(fit.cloglog))

> fv <- predict(fit.cloglog, se.fit = TRUE)

> U <- fv$fit + 1.96*fv$se.fit; L <- fv$fit - 1.96*fv$se.fit

> lines(logdose, 1 - exp(-exp(U))); lines(logdose, 1 - exp(-exp(L)))

-----------------------------------------------------------------------

CHAPTER NOTES

Section 5.1: Link Functions for Binary Data

5.1 Other link functions: Other link functions for binary data include the inverse cdf of
a t distribution (the probit being the limit as df → ∞); a log-gamma link (Genter and
Farewell 1985), for which probit, complementary log–log and log–log are special cases; a
family of link functions that includes the logit (Pregibon 1980); and extensions with shape
parameters that modify the logistic curve in extreme probability regions (Aranda-Ordaz
1981; Stukel 1988).
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Section 5.3: Inference about Parameters of Logistic Regression Models

5.2 Conditional logistic: For more details about case-control studies and conditional logistic
regression, see Breslow and Day (1980, Chapter 7). For more on “exact” inference using
conditional distributions with logistic models, see Mehta and Patel (1995). Fisher’s exact
test extends to r × c tables and to stratified tables (Agresti 1992).

5.3 Propensity scores: Rosenbaum and Rubin (1983) proposed methods of comparing E(y)
for two groups in observational studies while adjusting for possibly confounding variables
x. They defined the propensity as the probability of being in one group, as a function of
x. They used logistic regression to estimate how propensity depends on x. Their method
takes into account differing distributions of the groups on x by using the estimated
propensity to match samples from the groups or to subclassify subjects into intervals of
propensity scores or to adjust directly by entering the propensity in the model.

Section 5.6: Probit and Complementary Log–Log Models

5.4 Binary GLM history: The probit model was presented by Bliss (1935) and popularized
in three editions of Finney (1971). Logistic regression was proposed by Berkson (1944)
as a model that has similar fit as a probit model but has closed form for the link function.
Yates (1955) proposed the complementary log–log link. The logistic model became more
popular following publication of an influential article (1958) and text (1970) by D. R.
Cox, because of its direct interpretation in terms of odds ratios, validity in case-control
studies, and availability of the conditional approach to eliminate nuisance parameters.

EXERCISES

5.1 For the population having value y on a binary response, suppose x has an
N(𝜇y, 𝜎2) distribution, y = 0, 1.

a. Using Bayes’ theorem, show that P(y = 1 ∣ x) satisfies the logistic regres-
sion model with 𝛽1 = (𝜇1 − 𝜇0)∕𝜎2.

b. Suppose that (x ∣ y) ∼ N(𝜇y, 𝜎2
y ) with 𝜎0 ≠ 𝜎1. Show that the logistic model

holds with a quadratic term (Anderson 1975).

c. Suppose that (x ∣ y) has natural exponential family density

f (x; 𝜃y) = h(x) exp[x𝜃y − b(𝜃y)].

Show that P(y = 1 ∣ x) satisfies the logistic model with 𝛽1 = (𝜃1 − 𝜃0).

5.2 Refer to Note 1.5. For a logistic model, show that the average estimated rate
of change in the response probability as a function of explanatory variable j,
adjusting for the others, satisfies 1

n

∑
i(𝜕�̂�i∕𝜕xij) = 𝛽j

1
n

∑
i[�̂�i(1 − �̂�i)].

5.3 Construct the ROC curves for (a) the toy example in Section 5.4.2 with
complete separation and (b) the dataset (n = 8) that adds two observations
at x = 3.5, one with y = 1 and one with y = 0. In each case, report the area
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under the curve and summarize predictive power. For contrast, construct a toy
dataset with n = 8 for which the area under the ROC curve equals 0.50.

5.4 From the likelihood equation (5.5) for a logistic regression intercept parameter,
show that the overall sample proportion of successes equals the sample mean
of the fitted success probabilities. Is this true for other binary GLMs?

5.5 Suppose that niyi has a bin(ni,𝜋i) distribution. Consider a binary GLM 𝜋i =
F(
∑

j 𝛽jxij) with F the standard cdf of some family of continuous distributions.

Find wi in wi = (𝜕𝜇i∕𝜕𝜂i)
2∕var(yi) and hence var(𝜷).

5.6 Explain how expression (5.6) for v̂ar(�̂�) in logistic regression suggests that
the standard errors of {𝛽j} tend to be smaller as you obtain more data. Answer
this for (a) grouped data with {ni} increasing, (b) ungrouped data with N
increasing.

5.7 Assuming the model logit[P(yi = 1)] = 𝛽xi, you take all n observations at x0.
Find 𝛽 and the large-sample var(𝛽). For the Wald test, explain why the chi-
squared noncentrality is 𝛽2∕var(𝛽), and evaluate it as 𝛽 → ∞. Explain how
this illustrates that the Wald test in logistic regression has poor behavior when
the effect is strong.

5.8 For a 2 × 2 × 𝓁 contingency table that cross classifies y with a binary treatment
variable x and an adjustment factor z, specify a logistic model with a lack of
interaction between x and z. Construct the likelihood function, and explain
the conditioning required to generate an exact conditional test for the effect
of x. Explain how you would form a P-value for a one-sided alternative of a
positive effect of x.

5.9 To use conditional logistic regression to test H0: 𝛽1 = 0 against H1: 𝛽1 < 0 for
the toy example in Section 5.4.2, find the conditional distribution of

∑
i xiyi,

given
∑

i yi. Find the exact small-sample P-value.

5.10 The calibration problem is that of estimating x0 at which P(y = 1) = 𝜋0 for
some fixed 𝜋0 such as 0.50. For the logistic model with a single explanatory
variable, explain why a confidence interval for x0 is the set of x values for
which

|𝛽0 + 𝛽1x − logit(𝜋0)|∕[var(𝛽0) + x2var(𝛽1) + 2x cov(𝛽0, 𝛽1)]1∕2 < z𝛼∕2.

How could you invert a likelihood-ratio test to form an interval?

5.11 Construct the log-likelihood function for the model logit(𝜋i) = 𝛽0 + 𝛽1xi with
independent binomial proportions of y1 successes in n1 trials at x1 = 0 and y2
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successes in n2 trials at x2 = 1. Derive the likelihood equations, and show that
𝛽1 is the sample log odds ratio.

5.12 Refer to the previous exercise. Denote the cell counts in the 2 × 2 table by
{nij}. For the case 𝛽1 = 0 (the independence model), the fitted values in the
cells of that table are {�̂�ij = ni+n+j∕n}. These have a common value for the
four |nij − �̂�ij|.
a. Construct the Pearson residuals. Explain why all four may differ in absolute

value.

b. The standardized residuals in this case are

rij = (nij − �̂�ij)∕
√
�̂�ij[1 − (ni+∕n)][1 − (n+j∕n)].

Show that all four are identical in absolute value, thus appropriately recog-
nizing that residual df = 1 for the independence model.

5.13 Suppose the logistic model holds in which x is uniformly distributed between 0
and 100, and logit(𝜋i) = −2.0 + 0.04xi. Randomly generate 100 independent
observations from this model. Plot the residuals against x and against the fitted
values. Why do residual plots for binary data have this appearance?

5.14 Let niyi be a bin(ni,𝜋i) variate for group i, i = 1,… , N, with {yi} inde-
pendent. Consider the null model, for which 𝜋1 = ⋯ = 𝜋N . Show that
�̂� = (

∑
i niyi)∕(

∑
i ni). When all ni = 1, for testing goodness of fit of the null

model in the N × 2 table, show that X2 = N.

5.15 Let yi be a bin(1, 𝜋i) variate, i = 1,… , N. For the model logit(𝜋i) = 𝛽0 + 𝛽1xi,
show that the deviance depends on �̂�i but not yi. Hence, it is not useful for
checking model fit. (This exercise and the previous one show that goodness-
of-fit statistics are uninformative for ungrouped data.)

5.16 A study has ni independent binary observations {yi1,… , yini
} at xi, i =

1,… , N, with n =
∑

i ni. Consider the model logit(𝜋i) = 𝛽0 + 𝛽1xi, where
𝜋i = P(yij = 1).

a. Show that the kernel of the likelihood function is the same if treating the
data as n Bernoulli observations or N binomial observations.

b. For the saturated model, explain why the likelihood function is different for
these two data forms. Hence, the deviance reported by software depends
on the form of data entry.

c. Explain why the difference between deviances for two unsaturated models
does not depend on the form of data entry.

5.17 Use the following toy data to illustrate comments in Section 5.5 about grouped
versus ungrouped binary data in the effect on the deviance:
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---------------------------------------------------------

x Number of trials Number of successes

0 4 1

1 4 2

2 4 4

---------------------------------------------------------

Denote by M0 the null model logit(𝜋i) = 𝛽0 and by M1 the model logit(𝜋i) =
𝛽0 + 𝛽1xi.

a. Create a data file in two ways, entering the data as (i) ungrouped data:
ni = 1, i = 1,… , 12, (ii) grouped data: ni = 4, i = 1, 2, 3. Fit M0 and M1
for each data file. Show that the deviances for M0 and M1 differ for the two
forms of data entry. Why is this?

b. Show that the difference between the deviances for M0 and M1 is the same
for each form of data entry. Why is this? (Thus, the data file format does
not matter for inference, but it does matter for goodness-of-fit testing.)

5.18 Refer to the deviance comparison statistic G2(M0 ∣ M1) introduced in Sec-
tion 4.4.3. For a sequence of s nested binary response models M1,… , Ms,
model Ms is the most complex. Let v denote the difference in residual df
between M1 and Ms.

a. Explain why for j < k, G2(Mj ∣ Mk) ≤ G2(Mj ∣ Ms).

b. Assume model Mj, so that Mk also holds when k > j. For all k > j, as
n → ∞, explain why P[G2(Mj ∣ Mk) > 𝜒2

v (𝛼)] ≤ 𝛼.

c. Gabriel (1966) suggested a simultaneous testing procedure in which, for
each pair of models, the critical value for differences between G2 values
is 𝜒2

v (𝛼). The final model accepted must be more complex than any model
rejected in a pairwise comparison. Since part (b) is true for all j < k, argue
that Gabriel’s procedure has type I error probability no greater than 𝛼.

5.19 In a football league, for matches involving teams a and b, let 𝜋ab be the
probability that a defeats b. Suppose 𝜋ab + 𝜋ba = 1 (i.e., ties cannot occur).
Bradley and Terry (1952) proposed the model

log(𝜋ab∕𝜋ba) = 𝛽a − 𝛽b.

For a < b, let Nab denote the number of matches between teams a and b, with
team a winning nab times and team b winning nba times.

a. Find the log-likelihood, treating nab as a binomial variate for Nab trials.
Show that sufficient statistics are {na+}, so that “victory totals” determine
the estimated ranking of teams.

b. Generalize the model to allow a “home-team advantage,” with a team’s
chance of winning possibly increasing when it plays at its home city.
Interpret parameters.
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5.20 Let yi, i = 1,… , N, denote N independent binary random variables.

a. Derive the log-likelihood for the probit model Φ−1[𝜋(xi)] =
∑

j 𝛽jxij.

b. Show that the likelihood equations for the logistic and probit regression
models are

N∑
i=1

(yi − �̂�i)zixij = 0, j = 1,… , p,

where zi = 1 for the logistic case and zi = 𝜙(
∑

j 𝛽jxij)∕�̂�i(1 − �̂�i) for the
probit case.

5.21 An alternative latent variable model results from early applications of binary
response models to toxicology studies (such as Table 5.4) of the effect of
dosage of a toxin on whether a subject dies, with an unobserved tolerance
distribution. For a randomly selected subject, let xi denote the dosage level
and let yi = 1 if the subject dies. Suppose that the subject has a latent tolerance
threshold Ti for the dosage, with (yi = 1) equivalent to (Ti ≤ xi). Let F(t) =
P(T ≤ t).

a. For fixed dosage xi, explain why P(yi = 1 ∣ xi) = F(xi).

b. Suppose F belongs to the normal parametric family, for some 𝜇 and 𝜎.
Explain why the model has the form

Φ−1(𝜋i) = 𝛽0 + 𝛽1xi

and relate 𝛽0 and 𝛽1 to 𝜇 and 𝜎.

5.22 Consider the choice between two options, such as two product brands. Let
Uy denote the utility of outcome y, for y = 0 and y = 1. Suppose Uy = 𝛽y0 +
𝛽y1x + 𝜖y, using a scale such that 𝜖y has some standardized distribution. A
subject selects y = 1 if U1 > U0 for that subject.

a. If 𝜖0 and 𝜖1 are independent N(0, 1) random variables, show that P(y = 1)
satisfies the probit model.

b. If 𝜖y are independent extreme-value random variables, with cdf F(𝜖) =
exp[−exp(−𝜖)], show that P(y = 1) satisfies the logistic regression model
(McFadden 1974).

5.23 When Φ−1(𝜋i) = 𝛽0 + 𝛽1xi, explain why the response curve for 𝜋i [or for
1 − 𝜋i, when 𝛽1 < 0] has the appearance of a normal cdf with mean 𝜇 =
−𝛽0∕𝛽1 and standard deviation 𝜎 = 1∕|𝛽1|. By comparison, explain why the
logistic regression curve for 𝜋i has mean 𝜇 = −𝛽0∕𝛽1 and standard deviation

𝜋∕|𝛽1|√3. What does this suggest about relative magnitudes of estimates in
logistic and probit models?

5.24 Consider binary GLM F−1(𝜋i) = 𝛽0 + 𝛽1xi, where F is a cdf corresponding
to a pdf f that is symmetric around 0. Show that xi at which 𝜋i = 0.50 is
xi = −𝛽0∕𝛽1. Show that the rate of change in 𝜋i when 𝜋i = 0.50 is 𝛽1f (0), and
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find this for the logit and probit links. What does this suggest about relative
magnitudes of estimates in logistic and probit models?

5.25 For the model log[− log(1 − 𝜋i)] = 𝛽0 + 𝛽1xi, find xi at which 𝜋i =
1
2
. Show

that the greatest rate of change of 𝜋 occurs at x = −𝛽0∕𝛽1, and find 𝜋 at that
point. Give the corresponding result for the model with log–log link, and
compare with the logistic and probit models.

5.26 In a study of the presence of tumors in animals, suppose {yi} are independent
counts that satisfy a Poisson loglinear model, log(𝜇i) =

∑
j 𝛽jxij. However, the

observed response merely indicates whether each yi is positive, zi = I(yi >

0), for the indicator function I. Show that {zi} satisfy a binary GLM with
complementary log–log link (Dunson and Herring 2005).

5.27 Suppose y = 0 at x = 10, 20, 30, 40 and y = 1 at x = 60, 70, 80, 90. Using soft-
ware, what do you get for estimates and standard errors when you fit the
logistic regression model (a) to these data? (b) to these eight observations and
two observations at x = 50, one with y = 1 and one with y = 0? (c) to these
eight observations and observations at x = 49.9 with y = 1 and at x = 50.1 with
y = 0? In cases (a) and (b), explain why actually the ML estimate 𝛽 = ∞. Why
does software report such a large SE for 𝛽? In case (a), what is the reported
maximized log-likelihood value. Why?

5.28 For the logistic model (5.7) for a 2 × 2 table, give an example of cell counts
corresponding to (a) complete separation and 𝛽1 = ∞, (b) quasi-complete
separation and 𝛽1 = ∞, (c) non-existence of 𝛽1.

5.29 You plan to study the relation between x = age and y= whether belong to a
social network such as Facebook (1 = yes). A priori, you predict that P(y = 1)
is currently between about 0.80 and 0.90 at x = 18 and between about 0.20
and 0.30 at x = 65. If the logistic regression model describes this relation well,
what is a plausible range of values for the effect 𝛽1 of x in the model?

5.30 In one of the first studies of the link between lung cancer and smoking7,
Richard Doll and Austin Bradford Hill collected data from 20 hospitals in
London, England. Each patient admitted with lung cancer in the preceding
year was queried about their smoking behavior. For each of the 709 patients
admitted, they recorded the smoking behavior of a noncancer patient at the
same hospital of the same gender and within the same 5-year grouping on
age. A smoker was defined as a person who had smoked at least one cigarette
a day for at least a year. Of the 709 cases having lung cancer, 688 reported
being smokers. Of the 709 controls, 650 reported being smokers. Specify a
relevant logistic regression model, explain what can be estimated and what
cannot (and why), and conduct a statistical analysis.

7See British Med. J., Sept. 30, 1950, pp. 739–748.
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5.31 To illustrate Fisher’s exact test, Fisher (1935) described the following experi-
ment: a colleague of his claimed that, when drinking tea, she could distinguish
whether milk or tea was added to the cup first (she preferred milk first). To test
her claim, Fisher asked her to taste eight cups of tea, four of which had milk
added first and four of which had tea added first. She knew there were four
cups of each type and had to predict which four had the milk added first. The
order of presenting the cups to her was randomized. For the 2 × 2 table relating
what was actually poured first to the guess of what was poured first, explain
how to use Fisher’s exact test to evaluate whether her ability to distinguish the
order of pouring was better than with random guessing. Find the P-value if
she guesses correctly for three of the four cups that had milk poured first.

5.32 For the horseshoe crab dataset (Crabs.dat at the text website) introduced in
Section 4.4.3, let y = 1 if a female crab has at least one satellite, and let y = 0
if a female crab does not have any satellites. Fit a main-effects logistic model
using color and weight as explanatory variables. Interpret and show how to
conduct inference about the color and weight effects. Next, allow interaction
between color and weight in their effects on y, and test whether this model
provides a significantly better fit.

5.33 The dataset Crabs2.dat at the text website collects several variables that
may be associated with y = whether a female horseshoe crab is monandrous
(eggs fertilized by a single male crab) or polyandrous (eggs fertilized by
multiple males). A probit model that uses as explanatory variables Fcolor =
the female crab’s color (1 = dark, 3 = medium, 5 = light) and Fsurf = her
surface condition (values 1, 2, 3, 4, 5 with lower values representing worse)
has the output shown. Interpret the parameter estimates and the inferential
results. Approximately what values would you expect for the ML estimate of
the Fsurf effect and its SE if you fitted the corresponding logistic model?

---------------------------------------------------------

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3378 0.1217 -2.775 0.005522

factor(Fcolor)3 0.4797 0.1065 4.504 6.66e-06

factor(Fcolor)5 0.1651 0.1158 1.426 0.153902

Fsurf -0.1360 0.0376 -3.619 0.000296

---

Null deviance: 1633.8 on 1344 degrees of freedom

Residual deviance: 1587.8 on 1341 degrees of freedom

---------------------------------------------------------

5.34 Refer to the previous exercise. Download the file from the text website.
Using year of observation, Fcolor, Fsurf, FCW = female’s carapace width,
AMCW = attached male’s carapace width, AMcolor = attached male’s color,
and AMsurf = attached male’s surface condition, conduct a logistic model-
building process, including descriptive and inferential analyses. Prepare a
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report summarizing this process (with edited software output as an appendix),
also interpreting results for your chosen model.

5.35 The New York Times reported results of a study on the effects of AZT in
slowing the development of AIDS symptoms (February 15, 1991). Veterans
whose immune symptoms were beginning to falter after infection with HIV
were randomly assigned to receive AZT immediately or wait until their T
cells showed severe immune weakness. During the 3-year study, of those who
received AZT, 11 of 63 black subjects and 14 of 107 white subjects developed
AIDS symptoms. Of those who did not receive AZT, 12 of 55 black subjects
and 32 of 113 white subjects developed AIDS symptoms. Use model building,
including checking fit and interpreting effects and inference, to analyze these
data.

5.36 Download the data for the example in Section 5.7.1. Fit the main effects model.
What does your software report for 𝛽1 and its SE? How could you surmise
from the output that actually 𝛽1 = ∞?

5.37 Refer to the previous exercise. For these data, what, if anything, can you learn
about potential interactions for pairs of the explanatory variables? Conduct
the likelihood-ratio test of the hypothesis that all three interaction terms are 0.

5.38 Table 5.5 shows data, the file SoreThroat.dat at the text website, from a
study about y = whether a patient having surgery experienced a sore throat
on waking (1 = yes, 0 = no) as a function of d = duration of the surgery (in
minutes) and t = type of device used to secure the airway (1 = tracheal tube,
0 = laryngeal mask airway). Use a model-building strategy to select a GLM
for binary data. Interpret parameter estimates and conduct inference about the
effects.

Table 5.5 Data for Exercise 5.38 on Surgery and Sore Throats

Patient d t y Patient d t y Patient d t y

1 45 0 0 13 50 1 0 25 20 1 0
2 15 0 0 14 75 1 1 26 45 0 1
3 40 0 1 15 30 0 0 27 15 1 0
4 83 1 1 16 25 0 1 28 25 0 1
5 90 1 1 17 20 1 0 29 15 1 0
6 25 1 1 18 60 1 1 30 30 0 1
7 35 0 1 19 70 1 1 31 40 0 1
8 65 0 1 20 30 0 1 32 15 1 0
9 95 0 1 21 60 0 1 33 135 1 1

10 35 0 1 22 61 0 0 34 20 1 0
11 75 0 1 23 65 0 1 35 40 1 0
12 45 1 1 24 15 1 0

Source: Data from Collett (2005) with permission of John Wiley & Sons, Inc.
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Multinomial Response Models

In Chapter 5 we presented generalized linear models (GLMs) for binary response vari-
ables that assume a binomial random component. GLMs for multicategory response
variables assume a multinomial random component. In this chapter we present gener-
alizations of logistic regression for multinomial response variables. Separate models
are available for nominal response variables and for ordinal response variables.

In Section 6.1 we present a model for nominal response variables. It uses a
separate binary logistic equation for each pair of response categories. An important
type of application analyzes effects of explanatory variables on a person’s choice
from a discrete set of options, such as a choice of product brand to buy. In Section
6.2 we present a model for ordinal response variables. It applies the logit or some
other link simultaneously to all the cumulative response probabilities, such as to
model whether the importance of religion to a person is below or above some point
on a scale (unimportant, slightly important, moderately important, very important).
A parsimonious version of the model uses the same effect parameters for each
logit. Section 6.3 presents examples and discusses model selection for multicategory
responses.

We denote the number of response categories by c. For subject i, let 𝜋ij denote the
probability of response in category j, with

∑c
j=1 𝜋ij = 1. The category choice is the

result of a single multinomial trial. Let yi = (yi1,… , yic) represent the multinomial
trial for subject i, i = 1,… , N, where yij = 1 when the response is in category j and
yij = 0 otherwise. Then

∑
j yij = 1, and the multinomial probability distribution for

that subject is

p(yi1,… , yic) = 𝜋
yi1
i1 ⋯𝜋

yic
ic .

In this chapter we express models in terms of such ungrouped data. As with
binary data, however, with discrete explanatory variables it is better to group the N
observations according to their multicategory trial indices {ni} before forming the
deviance and other goodness-of-fit statistics and residuals.

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

202



NOMINAL RESPONSES: BASELINE-CATEGORY LOGIT MODELS 203

6.1 NOMINAL RESPONSES: BASELINE-CATEGORY LOGIT MODELS

For nominal-scale response variables having c categories, multicategory logistic mod-
els simultaneously describe the log odds for all c(c − 1)∕2 pairs of categories. Given
a certain choice of c − 1 of these, the rest are redundant.

6.1.1 Baseline-Category Logits

We construct a multinomial logistic model by pairing each response category with a
baseline category, such as category c, using

log
𝜋i1

𝜋ic
, log

𝜋i2

𝜋ic
,… , log

𝜋i,c−1

𝜋ic
.

The jth baseline-category logit, log(𝜋ij∕𝜋ic), is the logit of a conditional probability,

logit[P(yij = 1 ∣ yij = 1 or yic = 1)]

= log
[ P(yij = 1 ∣ yij = 1 or yic = 1)

1 − P(yij = 1 ∣ yij = 1 or yic = 1)

]
= log

𝜋ij

𝜋ic
.

Let xi = (xi1,… , xip) denote explanatory variable values for subject i, and let 𝜷j =
(𝛽j1,… , 𝛽jp)T denote parameters for the jth logit.

Baseline-category logit model:

log
𝜋ij

𝜋ic
= xi𝜷 j =

p∑
k=1

𝛽jkxik, j = 1,… , c − 1. (6.1)

This model, also often called the multinomial logit model, simultaneously describes
the effects of x on the c − 1 logits. The effects vary according to the response paired
with the baseline.

These c − 1 equations determine equations for logits with other pairs of response
categories, since

log
𝜋ia

𝜋ib
= log

𝜋ia

𝜋ic
− log

𝜋ib

𝜋ic
= xi(𝜷a − 𝜷b).

As in other models, typically xi1 = 1 for the coefficient of an intercept term, which
also differs for each logit. The model treats the response variable as nominal scale,
in the following sense: if the model holds and the outcome categories are permuted
in any way, the model still holds with the corresponding permutation of the effects.
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We can express baseline-category logit models directly in terms of response prob-
abilities {𝜋ij} by

𝜋ij =
exp(xi𝜷 j)

1 +
∑c−1

h=1 exp(xi𝜷h)
(6.2)

with 𝜷c = 0. (The parameters also equal zero for a baseline category for identifiability
reasons; see Exercise 6.2.) The numerators in Equation (6.2) for various j sum to the
denominator, so

∑c
j=1 𝜋ij = 1 for each i. For c = 2, this formula simplifies to the

binary logistic regression probability formula (5.2).
Interpretation of effects overall rather than conditional on response in category j

or c is not simple, because Equation (6.2) shows that all {𝜷h} contribute to 𝜋ij. The
relation 𝜕𝜋i∕𝜕xik = 𝛽k𝜋i(1 − 𝜋i) for binary logistic regression generalizes to

𝜕𝜋ij

𝜕xik
= 𝜋ij

(
𝛽jk −

∑
j′
𝜋ij′𝛽j′k

)
. (6.3)

In particular, this rate of change need not have the same sign as 𝛽jk, and the curve
for 𝜋ij as a function of xik may change direction as the value of xik increases (see
Exercise 6.4).

6.1.2 Baseline-Category Logit Model is a Multivariate GLM

The GLM g(𝜇i) = xi𝜷 for a univariate response variable extends to a multivariate
generalized linear model. The model applies to random components that have distri-
bution in a multivariate generalization of the exponential dispersion family,

f (yi;𝜽i,𝜙) = exp
{[

yT
i 𝜽i − b(𝜽i)

]
∕a(𝜙) + c(yi,𝜙)

}
,

where 𝜽i is the natural parameter. For response vector yi for subject i, with 𝝁i = E(yi),
let g be a vector of link functions. The multivariate GLM has the form

g(𝝁i) = Xi𝜷, i = 1,… , N, (6.4)

where row j of the model matrix Xi for observation i contains values of explanatory
variables for response component yij.

The multinomial distribution is a member of the multivariate exponential disper-
sion family. The baseline-category logit model is a multivariate GLM. For this repre-
sentation, we let yi = (yi1,… , yi,c−1)T, since yic = 1 − (yi1 +⋯ + yi,c−1) is redundant,
𝝁i = (𝜋i1,… ,𝜋i,c−1)T, and

gj(𝝁i) = log{𝜇ij∕[1 − (𝜇i1 +⋯ + 𝜇i,c−1)]}.
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With (c − 1) × (c − 1)p model matrix Xi for observation i,

Xi𝜷 =
⎛⎜⎜⎜⎝

xi 0 ⋯ 0
0 xi ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ xi

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝜷1
𝜷2
⋮
𝜷c−1

⎞⎟⎟⎟⎠
,

where 0 is a 1 × p vector of 0 elements.

6.1.3 Fitting Baseline-Category Logit Models

Maximum likelihood (ML) fitting of baseline-category logit models maximizes the
multinomial likelihood subject to {𝜋ij} simultaneously satisfying the c − 1 equations
that specify the model. The contribution to the log-likelihood from subject i is

log

(
c∏

j=1

𝜋
yij

ij

)
=

c−1∑
j=1

yij log𝜋ij +

(
1 −

c−1∑
j=1

yij

)
log𝜋ic

=
c−1∑
j=1

yij log
𝜋ij

𝜋ic
+ log𝜋ic.

Thus, the baseline-category logits are the natural parameters for the multinomial
distribution. They are the canonical link functions for multinomial GLMs.

Next we construct the likelihood equations for N independent observations. In the
last expression above, we substitute xi𝜷 j for log(𝜋ij∕𝜋ic) and

𝜋ic = 1

/[
1 +

c−1∑
j=1

exp(xi𝜷 j)

]
.

Then the log-likelihood function is

L(𝜷; y) = log

[
N∏

i=1

(
c∏

j=1

𝜋
yij

ij

)]

=
N∑

i=1

{
c−1∑
j=1

yij(xi𝜷 j) − log

[
1 +

c−1∑
j=1

exp(xi𝜷 j)

]}

=
c−1∑
j=1

[
p∑

k=1

𝛽jk

(
N∑

i=1

xikyij

)]
−

N∑
i=1

log

[
1 +

c−1∑
j=1

exp(xi𝜷 j)

]
.
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The sufficient statistic for 𝛽jk is
∑

i xikyij. When all xi1 = 1 for an intercept term, the
sufficient statistic for 𝛽j1 is

∑
i xi1yij =

∑
i yij, which is the total number of observa-

tions in category j. Since

𝜕L(𝜷, y)
𝜕𝛽jk

=
N∑

i=1

xikyij −
N∑

i=1

[
xik exp(xi𝜷 j)

1 +
∑c−1

𝓁=1 exp(xi𝜷𝓁)

]
=

N∑
i=1

xik(yij − 𝜋ij),

the likelihood equations are

N∑
i=1

xikyij =
N∑

i=1

xik𝜋ij,

with 𝜋ij as expressed in Equation (6.2). As with canonical link functions for univariate
GLMs, the likelihood equations equate the sufficient statistics to their expected values.

Differentiating again, you can check that

𝜕2L(𝜷, y)
𝜕𝛽jk𝜕𝛽jk′

= −
N∑

i=1

xikxik′𝜋ij(1 − 𝜋ij),

and for j ≠ j′,

𝜕2L(𝜷, y)
𝜕𝛽jk𝜕𝛽j′k′

=
N∑

i=1

xikxik′𝜋ij𝜋ij′ .

The information matrix consists of (c − 1)2 blocks of size p × p,

−
𝜕2L(𝜷, y)

𝜕𝜷 j𝜕𝜷
T
j′

=
N∑

i=1

𝜋ij[I(j = j′) − 𝜋ij′ ]x
T
i xi,

where I(⋅) is the indicator function. The Hessian is negative-definite, so the log-
likelihood function is concave and has a unique maximum. The observed and expected
information are identical, so the Newton–Raphson method is equivalent to Fisher
scoring for finding the ML parameter estimates, a consequence of the link function
being the canonical one. Convergence is usually fast unless at least one estimate is
infinite or does not exist (see Note 6.2).

6.1.4 Deviance and Inference for Multinomial Models

For baseline-category logit models, the ML estimator 𝜷 has a large-sample normal
distribution. As usual, standard errors are square roots of diagonal elements of the
inverse information matrix. The {𝜷 j} are correlated. The estimate (𝜷a − 𝜷b) of the
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effects in the linear predictor for log(𝜋ia∕𝜋ib) does not depend on which category is
the baseline.

Statistical inference can use likelihood-ratio, Wald, and score inference methods
for GLMs. For example, the likelihood-ratio test for the effect of explanatory vari-
able k tests H0: 𝛽1k = 𝛽2k = ⋯ = 𝛽c−1,k = 0 by treating double the change in the
maximized log-likelihood from adding that variable to the model as having a null
chi-squared distribution with df = c − 1. The likelihood-ratio test statistic equals the
difference in the deviance values for comparing the models.

The derivation of the deviance shown in Section 5.5.1 for binomial GLMs general-
izes directly to multinomial GLMs. For grouped data with ni trials for the observations
at setting i of the explanatory variables, let yij now denote the proportion of obser-
vations in category j. The deviance is the likelihood-ratio statistic comparing double
the log of the multinomial likelihood

∏
i

(∏
j 𝜋

niyij

ij

)
evaluated for the model fitted

probabilities {�̂�ij} and the unrestricted (saturated model) alternative {�̃�ij = yij}. The
deviance and the Pearson statistic equal

G2 = 2
N∑

i=1

c∑
j=1

niyij log
niyij

ni�̂�ij
, X2 =

N∑
i=1

c∑
j=1

(niyij − ni�̂�ij)
2

ni�̂�ij
. (6.5)

These have the form seen in Section 4.4.4 for Poisson GLMs and in Section 5.5.1 for
binomial GLMs of

G2 = 2
∑

observed log
(observed

fitted

)
, X2 =

∑ (observed − fitted)2

fitted
,

with sums taken over all observed counts {niyij} and fitted counts {ni�̂�ij}.
As in the binary case, with categorical explanatory variables and the grouped

form of the data, G2 and X2 are goodness-of-fit statistics that provide a global model
check. They have approximate chi-squared null distributions when the expected cell
counts mostly exceed about 5. The df equal the number of multinomial probabilities
modeled, which is N(c − 1), minus the number of model parameters. The residuals
of Section 5.5.3 are useful for follow-up information about poorly fitting models. For
ungrouped data (i.e., all {ni = 1}), such as when at least one explanatory variable
is continuous, formula (6.5) for G2 remains valid and is used to compare nested
unsaturated models.

6.1.5 Discrete-Choice Models

Some applications of multinomial logit models relate to determining effects of
explanatory variables on a subject’s choice from a discrete set of options—for
instance, transportation system to take to work (driving alone, carpooling, bus, sub-
way, walk, bicycle), housing (house, condominium, rental, other), primary shopping
location (downtown, mall, catalogs, internet), or product brand. Models for response
variables consisting of a discrete set of choices are called discrete-choice models.
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In most discrete-choice applications, some explanatory variables take different
values for different response choices. As predictors of choice of transportation system,
the cost and time to reach the destination take different values for each option. As
a predictor of choice of product brand, the price varies according to the option.
Explanatory variables of this type are called characteristics of the choices. They differ
from the usual ones, for which values remain constant across the choice set. Such
characteristics of the chooser include demographic and socioeconomic variables such
as gender, race, annual income, and educational attainment.

We introduce the discrete-choice model for the case that the p explanatory variables
are all characteristics of the choices. For subject i and response choice j, let xij =
(xij1,… , xijp) denote the values of those variables. The discrete choice model for the
probability of selecting option j is

𝜋ij =
exp(xij𝜷)∑c

h=1 exp(xih𝜷)
. (6.6)

For each pair of choices a and b, this model has the logit form for conditional
probabilities,

log(𝜋ia∕𝜋ib) = (xia − xib)𝜷. (6.7)

Conditional on the choice being a or b, a variable’s influence depends on the distance
between the subject’s values of that variable for those choices. If the values are the
same, the model asserts that the variable has no influence on the choice between a
and b. The effects 𝜷 are identical for each pair of choices.

From Equation (6.7), the odds of choosing a over b do not depend on the other
alternatives in the choice set or on their values of the explanatory variables. This
property is referred to as independence from irrelevant alternatives. For this to be
at all realistic, the model should be used only when the alternatives are distinct and
regarded separately by the person making the choice.

A more general version of the model permits the choice set to vary among subjects.
For instance, in a study of the choice of transportation system to take to work, some
people may not have the subway as an option. In the denominator of Equation (6.6),
the sum is then taken over the choice set for subject i.

6.1.6 Baseline-Category Logit Model as a Discrete-Choice Model

Discrete-choice models can also include characteristics of the chooser. A baseline-
category logit model (6.2) with such explanatory variables can be expressed in the
discrete-choice form (6.6) when we replace each explanatory variable by c artificial
variables. The jth is the product of the explanatory variable with an indicator variable
that equals 1 when the response choice is j. For instance, for a single explanatory
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variable with value xi for subject i and linear predictor 𝛽0j + 𝛽1jxi for the jth logit, we
form the 1 × 2c vectors

zi1 = (1, 0,… , 0, xi, 0,… , 0),… , zic = (0, 0,… , 1, 0, 0,… , xi).

Let 𝜷 = (𝛽01,… , 𝛽0c, 𝛽11,… , 𝛽1c)T. Then zij𝜷 = 𝛽0j + 𝛽1jxi, and Equation (6.2) is
(with 𝛽0c = 𝛽1c = 0 for identifiability)

𝜋ij =
exp(𝛽0j + 𝛽1jxi)

exp(𝛽01 + 𝛽11xi) +⋯ + exp(𝛽0c + 𝛽1cxi)

=
exp(zij𝜷)

exp(zi1𝜷) +⋯ + exp(zic𝜷)
.

This has the discrete-choice model form (6.6).
This model extends directly to having multiple explanatory variables of each

type. With this approach, the discrete-choice model is very general. The ordinary
baseline-category logit model is a special case.

6.2 ORDINAL RESPONSES: CUMULATIVE LOGIT AND
PROBIT MODELS

For ordinal response variables, models have terms that reflect ordinal characteristics
such as a monotone trend, whereby responses tend to fall in higher (or lower)
categories as the value of an explanatory variable increases. Such models are more
parsimonious than models for nominal responses, because potentially they have
many fewer parameters. In this section we introduce logistic and probit models for
ordinal responses.

6.2.1 Cumulative Logit Models: Proportional Odds

Let yi denote the response outcome category for subject i. That is, yi = j means that
yij = 1 and yik = 0 for k ≠ j, for the c multinomial indicators. To use the category
ordering, we express models in terms of the cumulative probabilities,

P(yi ≤ j) = 𝜋i1 +⋯ + 𝜋ij, j = 1,… , c.

The cumulative logits are logits of these cumulative probabilities,

logit[P(yi ≤ j)] = log
P(yi ≤ j)

1 − P(yi ≤ j)

= log
𝜋i1 +⋯ + 𝜋ij

𝜋i,j+1 +⋯ + 𝜋ic
, j = 1,… , c − 1.

Each cumulative logit uses all c response categories.
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A model for logit[P(yi ≤ j)] alone is an ordinary logistic model for a binary
response in which categories 1 to j represent “success” and categories j + 1 to c
represent “failure.” Here is a parsimonious model that simultaneously uses all (c − 1)
cumulative logits:

Cumulative logit model:

logit[P(yi ≤ j)] = 𝛼j + xi𝜷, j = 1,… , c − 1. (6.8)

Each cumulative logit has its own intercept. The {𝛼j} are increasing in j, because
P(yi ≤ j) increases in j at any fixed xi, and the logit is an increasing function of
P(yi ≤ j). We use separate notation 𝛼j and show the intercept terms by themselves in
the linear predictor, because they depend on j but the other effects do not. This model
states that the effects 𝜷 of the explanatory variables are the same for each cumulative
logit. For a single continuous explanatory variable x, Figure 6.1 depicts the model
when c = 4. The curves for j = 1, 2, and 3 have exactly the same shape and do not
cross.

This model treats the response variable as ordinal scale, in the following sense: if
the model holds and the order of the outcome categories is reversed, the model still
holds with a change in the sign of 𝜷; however, the model need not hold if the outcome
categories are permuted in any other way.

The cumulative logit model (6.8) satisfies

logit[P(yi ≤ j ∣ xi = u)] − logit[P(yi ≤ j ∣ xi = v)]

= log
P(yi ≤ j ∣ xi = u)∕P(yi > j ∣ xi = u)

P(yi ≤ j ∣ xi = v)∕P(yi > j ∣ xi = v)
= (u − v)𝜷.

The odds that the response ≤ j at xi = u are exp[(u − v)𝜷] times the odds at xi = v.
An odds ratio of cumulative probabilities is called a cumulative odds ratio. The log
cumulative odds ratio is proportional to the distance between u and v. For each j,
the odds that yi ≤ j multiply by exp(𝛽k) per 1-unit increase in xik, adjusting for the
other explanatory variables. The same proportionality constant applies to all c − 1

1

0

P(y ≤ j)
P(y ≤ 3)

P(y ≤ 2)

P(y ≤ 1)

x

Figure 6.1 Cumulative logit model with the same effect of x on each of three cumulative
probabilities, for an ordinal response variable with c = 4 categories.
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cumulative logits; that is, the effect is 𝛽k, not 𝛽jk. This property of a common effect
for all the cumulative probabilities is referred to as proportional odds.

6.2.2 Latent Variable Motivation for Proportional Odds Structure

A linear model for a latent continuous variable assumed to underlie y motivates the
common effect 𝜷 for different j in the proportional odds form of the cumulative logit
model. Let y∗i denote this underlying latent variable for subject i. Suppose it has cdf
G(y∗i − 𝜇i), where values of y∗ vary around a mean that depends on x through𝜇i = xi𝜷.
Suppose that the continuous scale has cutpoints −∞ = 𝛼0 < 𝛼1 < ⋯ < 𝛼c = ∞ such
that we observe

yi = j if 𝛼j−1 < y∗i ≤ 𝛼j.

That is, yi falls in category j when the latent variable falls in the jth interval of values,
as Figure 6.2 depicts. Then

P(yi ≤ j) = P
(
y∗i ≤ 𝛼j

)
= G(𝛼j − 𝜇i) = G(𝛼j − xi𝜷).

The model for y implies that the link function G−1, the inverse of the cdf for y∗, applies
to P(yi ≤ j). If y∗i = xi𝜷 + 𝜖i, where the cdf G of 𝜖i is the standard logistic (Section
5.1.3), then G−1 is the logit link, and the cumulative logit model with proportional
odds structure results. Normality for 𝜖i implies a probit link (Section 6.2.3) for the
cumulative probabilities.

Using a cdf of the form G(y∗i − 𝜇i) for the latent variable results in the linear
predictor 𝛼j − xi𝜷 rather than 𝛼j + xi𝜷. With this alternate parameterization, when
𝛽k > 0, as xik increases, each cumulative logit decreases, so each cumulative proba-
bility decreases and relatively less probability mass falls at the low end of the y scale.
Thus, yi tends to be larger at higher values of xik. Then the sign of 𝛽k has the usual

x1

y* y

4

3

2

1

P(y = 4|x1)
P(y = 4|x2)

x2

α1

α2

α3

Figure 6.2 Ordinal measurement and underlying linear model for a latent variable.
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meaning of a positive or negative effect. When you use software to fit the model, you
should check whether it parameterizes the linear predictor as 𝛼j + xi𝜷 or as 𝛼j − xi𝜷,
as signs of estimated effects differ accordingly.

In the latent variable derivation, the same parameters 𝜷 occur for the effects
regardless of how the cutpoints {𝛼j} chop up the scale for y∗ and regardless of the
number of categories. The effect parameters are invariant to the choice of categories
for y. This feature makes it possible to compare 𝜷 from studies using different
response scales.

6.2.3 Cumulative Probit and Other Cumulative Link Models

As in binary GLMs, other link functions are possible for the cumulative probabilities.
Let G−1 denote a link function that is the inverse of the continuous cdf G. The
cumulative link model

G−1[P(yi ≤ j)] = 𝛼j + xi𝜷 (6.9)

links the cumulative probabilities to the linear predictor. As in the cumulative logit
model with proportional odds form (6.8), effects are the same for each cumulative
probability. This assumption holds when a latent variable y∗ satisfies a linear model
with standard cdf G for the error term. Thus, we can regard cumulative link models
as linear models that use a linear predictor xi𝜷 to describe effects of explanatory
variables on a crude ordinal measurement yi of y∗i .

The cumulative probit model is the cumulative link model that uses the stan-
dard normal cdf Φ for G. This generalizes the binary probit model (Section 5.6)
to ordinal responses. Cumulative probit models provide fits similar to cumulative
logit models. They have smaller estimates and standard errors because the standard
normal distribution has standard deviation 1.0 compared with 1.81 for the standard
logistic. When we expect an underlying latent variable to be highly skewed, such as
an extreme-value distribution, we can generalize the binary model with log–log or
complementary log–log link (Section 5.6.3) to ordinal responses.

Effects in cumulative link models can be interpreted in terms of the underlying
latent variable model. The cumulative probit model is appropriate when the latent
variable model holds with a normal conditional distribution for y∗. Consider the
parameterizationΦ−1[P(yi ≤ j)] = 𝛼j − xi𝜷. From Section 6.2.2, y∗i = xi𝜷 + 𝜖i where
𝜖i ∼ N(0, 1) has cdf Φ. A 1-unit increase in xik corresponds to a 𝛽k increase (and thus
an increase of 𝛽k standard deviations) in E(y∗i ), adjusting for the other explanatory
variables.

To describe predictive power, an analog of the multiple correlation for linear
models is the correlation between the latent variable y∗ and the fitted linear predictor
values. This directly generalizes the measure for binary data presented in Section
5.2.5. Its square is an R2 analog (McKelvey and Zavoina 1975). This R2 measure
equals the estimated variance of ŷ∗ divided by the estimated variance of y∗. Here,
ŷ∗i =

∑
j 𝛽jxij is the same as the estimated linear predictor without the intercept term,
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and the estimated variance of y∗ equals this plus the variance of 𝜖 in the latent
variable model (1 for the probit link and 𝜋2∕3 = 3.29 for the logit link). It is also
helpful to summarize the effect of an explanatory variable in terms of the change
in the probability of the highest (or the lowest) category of the ordinal scale over
the range or interquartile range of that variable, at mean values of other explanatory
variables.

6.2.4 Fitting and Checking Cumulative Link Models

For multicategory indicator (yi1,… , yic) of the response for subject i, the multinomial
likelihood function for the cumulative link model G−1[P(yi ≤ j)] = 𝛼j + xi𝜷 is

N∏
i=1

(
c∏

j=1

𝜋
yij

ij

)
=

N∏
i=1

{
c∏

j=1

[P(yi ≤ j) − P(yi ≤ j − 1)]yij

}

viewed as a function of ({𝛼j},𝜷), where P(yi ≤ 0) = 0. The log-likelihood
function is

L(𝜶,𝜷) =
N∑

i=1

c∑
j=1

yij log[G(𝛼j + xi𝜷) − G(𝛼j−1 + xi𝜷)].

Let g denote the derivative of G, that is, the pdf corresponding to the cdf G, and
let 𝛿jk denote the Kronecker delta, 𝛿jk = 1 if j = k and 𝛿jk = 0 otherwise. Then the
likelihood equations are

𝜕L
𝜕𝛽k

=
N∑

i=1

c∑
j=1

yijxik

g(𝛼j + xi𝜷) − g(𝛼j−1 + xi𝜷)

G(𝛼j + xi𝜷) − G(𝛼j−1 + xi𝜷)
= 0,

and

𝜕L
𝜕𝛼k

=
N∑

i=1

c∑
j=1

yij

𝛿jkg(𝛼j + xi𝜷) − 𝛿j−1,kg(𝛼j−1 + xi𝜷)

G(𝛼j + xi𝜷) − G(𝛼j−1 + xi𝜷)
= 0.

The Hessian matrix is rather messy1 and not shown here. The likelihood equations
can be solved using Fisher scoring or the Newton–Raphson method. The SE values
differ somewhat for the two methods, because the expected and observed information
matrices are not the same for this noncanonical link model.

Since the latent variable model on which the cumulative link model is based
describes location effects while assuming constant variability, settings of the
explanatory variables are stochastically ordered on the response: for the observed

1This is because 𝜶 and 𝜷 are not orthogonal. See Agresti (2010, Section 5.1.2).
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response with any pair u and v of potential explanatory variable values, either P(yi ≤

j ∣ xi = u) ≤ P(yi ≤ j ∣ xi = v) for all j or P(yi ≤ j ∣ xi = u) ≥ P(yi ≤ j ∣ xi = v) for all
j. When this is violated and such models fit poorly, often it is because the response
variability also varies with x. For example, with c = 4 and response probabilities (0.3,
0.2, 0.2, 0.3) at u and (0.1, 0.4, 0.4, 0.1) at v, P(yi ≤ 1 ∣ xi = u) > P(yi ≤ 1 ∣ xi = v)
but P(yi ≤ 3 ∣ xi = u) < P(yi ≤ 3 ∣ xi = v). At u the responses concentrate more in
the extreme categories than at v.

An advantage of the simple structure of the same effects 𝜷 for different cumulative
probabilities is that effects are simple to summarize and are parsimonious, requir-
ing only a single parameter for each explanatory variable. The models generalize
to include separate effects, replacing 𝜷 in Equation (6.9) by 𝜷 j. This implies non-
parallelism of curves for different cumulative probabilities. Curves may then cross
for some x values, violating the proper order among the cumulative probabilities
(Exercise 6.13).

When we can fit the more general model with effects {𝜷 j}, a likelihood-ratio test
checks whether that model fits significantly better. Often though, convergence fails in
fitting the model, because the cumulative probabilities are out of order. We can then
use a score test of whether the {𝜷 j} takes a common value, because the score test uses
the likelihood function only at the null (i.e., where common 𝜷 holds). Some software
for the model provides this score test. It is often labelled as a “test of the proportional
odds assumption,” because that is the name for the simple structure when we use the
logit link. When there is strong evidence against the common 𝜷, the simpler model is
still often useful for describing overall effects, with the fit of the more general model
pointing out ways to fine-tune the description of effects. With categorical predictors
and grouped data with most expected cell counts exceeding about 5, the deviance and
Pearson statistics in Equation (6.5) provide global chi-squared goodness-of-fit tests.

The log-likelihood function is concave for many cumulative link models, including
the logit and probit. Iterative algorithms such as Fisher scoring usually converge
rapidly to the ML estimates.

6.2.5 Why not Use OLS Regression to Model Ordinal Responses?

Many methodologists analyze ordinal response data by ignoring the categorical nature
of y and assigning numerical scores to the ordered categories and using ordinary least
squares (OLS) methods such as linear regression and ANOVA. That approach can
identify variables that clearly affect y and provide simple description, but it has
limitations. First, usually there is no clear-cut choice for the scores. How would you
assign scores to categories such as (never, rarely, sometimes, always)? Second, a
particular ordinal outcome is consistent with a range of values for some underlying
latent variable. Ordinary linear modeling does not allow for the measurement error
that results from replacing such a range by a single numerical value. Third, the
approach does not yield estimated probabilities for the ordinal categories at fixed
settings of the explanatory variables. Fourth, the approach ignores that the variability
of y is naturally nonconstant for categorical data: an ordinal response has little
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variability at explanatory variable values for which observations fall mainly in the
highest category (or mainly in the lowest category), but considerable variability at
values for which observations are spread among the categories.

Related to the second and fourth limitations, the ordinary linear modeling approach
does not account for “ceiling effects” and “floor effects” that occur because of the
upper and lower limits for y. Such effects can cause ordinary linear modeling to give
misleading2 results. To illustrate, we apply a normal linear model to simulated data
with an ordinal response variable y based on an underlying normal latent variable
y∗. We generated 100 observations as follows: xi values were independent uniform
variates between 0 and 100, zi values were independent with P(zi = 0) = P(zi = 1) =
0.50, and the latent y∗i was a normal variate with mean

E
(
y∗i
)
= 20.0 + 0.6xi − 40.0zi

and standard deviation 10. The first scatterplot in Figure 6.3 shows the 100 observa-
tions on y∗i and xi, each data point labelled by the category for zi. The plot also shows
the OLS fit for this model.
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Figure 6.3 Ordinal data (in second panel) for which ordinary linear modeling suggests
interaction, because of a floor effect, but ordinal modeling does not. The data were generated
(in first panel) from a normal linear model with continuous (x) and binary (z) explanatory
variables. When the continuous y∗ is categorized and y is measured as (1, 2, 3, 4, 5), the
observations labeled “1” for the category of z have a linear x effect with only half the slope of
the observations labeled “0.”

2These effects also result in substantial correlation between the values of residuals and the values of
quantitative explanatory variables.
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We then categorized the 100 generated values on y∗ into five categories to create
observations for an ordinal variable y, as follows:

yi = 1 if y∗i ≤ 20, yi = 2 if 20 < y∗i ≤ 40, yi = 3 if 40 < y∗i ≤ 60,

yi = 4 if 60 < y∗i ≤ 80, yi = 5 if y∗i > 80.

The second scatterplot in Figure 6.3 shows the data as they would actually be observed.
Using OLS with scores (1, 2, 3, 4, 5) for y suggests a better fit when the model
has an interaction term, allowing different slopes relating E(yi) to xi when zi = 0
and when zi = 1. The second scatterplot shows the OLS fit of the linear model
E(yi) = 𝛽0 + 𝛽1xi + 𝛽2zi + 𝛽3(xi × zi). The slope of the line is about twice as high
when zi = 0 as when zi = 1. This interaction effect is caused by the observations
when zi = 1 tending to fall in category yi = 1 whenever xi takes a relatively low
value. As xi gets lower, the underlying value y∗i can continue to tend to get lower,
but yi cannot fall below 1. So at low xi values there is a floor effect, particularly for
observations with zi = 1.

Standard ordinal models such as the cumulative logit model with proportional
odds structure fit these data well without the need for an interaction term. In fact, by
the latent variable model of Section 6.2.2, the true structure is that of a cumulative
probit model with common 𝜷. Such models allow for underlying values of y∗ when
z = 1 to be below those when z = 0 even if x is so low that y is very likely to be in
the first category at both levels of z.

6.3 EXAMPLES: NOMINAL AND ORDINAL RESPONSES

In this chapter we have presented the most popular models for multinomial response
variables. End-of-chapter exercises briefly introduce other models for nominal and
ordinal responses that are beyond our scope.

6.3.1 Issues in Selecting Multinomial Models

With a nominal-scale response variable, the baseline category logit form of model
is usually the default choice. It is not sensible to force similar effects for different
logits, so the model will necessarily contain a large number of parameters unless c
and p are small.

With ordinal response variables, the choice is not so clear, because we can treat y
as nominal when cumulative link models that assume a common value 𝜷 for {𝜷j} fit
poorly. Especially with large samples, it is not surprising to obtain a small P-value
in comparing a model with common 𝜷 to one with separate {𝜷 j}. However, it is poor
practice to be guided merely by statistical significance in selecting a model. Even if
a more complex model fits significantly better, for reasons of parsimony the simpler
model might be preferable when {𝜷j} are not substantially different in practical terms.
It is helpful to check whether the violation of the common 𝜷 property is substantively
important, by comparing 𝜷 to {𝜷 j} obtained from fitting the more general model
(when possible) or from separate fits to the binary collapsings of the response.
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Although effect estimators using the simpler model are biased, because of the bias–
variance tradeoff (Section 4.6.2) they may have smaller overall mean squared error
for estimating the category probabilities. This is especially true when c is large, as the
difference is then quite large between the numbers of parameters in the two models.

If a model with common 𝜷 fits poorly in practical terms, alternative strategies
exist. For example, you can report {𝜷 j} from the more general model, to investigate
the nature of the lack of fit and to describe effects separately for each cumulative
probability. Or, you could use an alternative ordinal logit model for which the more
complex nonproportional odds form is also valid3. Or you can fit baseline-category
logit models and use the ordinality in an informal way in interpreting the associations.

6.3.2 Example: Baseline-Category Logit Model for Alligator Food Choice

Table 6.1 comes from a study of factors influencing the primary food choice of
alligators. The study captured 219 alligators in four Florida lakes. The nominal-scale
response variable is the primary food type, in volume, found in an alligator’s stomach.
Table 6.1 classifies the primary food choice according to the lake of capture and the
size of the alligator. Here, size is binary, distinguishing between nonadult (length ≤

2.3 meters) and adult alligators.
We use baseline-category logit models to investigate the effects of size and lake on

the primary food choice. Fish was the most frequent primary food choice, and we use
it as the baseline category. We estimate the effects on the odds that alligators select
other primary food types instead of fish. Let s = 1 for alligator size ≤ 2.3 meters and
0 otherwise, and let zH , zO, zT, and zG be indicator variables for the lakes (z = 1 for
alligators in that lake and 0 otherwise). The model with main effects is

log(𝜋ij∕𝜋i1) = 𝛽j0 + 𝛽j1si + 𝛽j2zO
i + 𝛽j3zT

i + 𝛽j4zG
i , for j = 2, 3, 4, 5.

In R the vglm function in the VGAM package can fit this model4.

Table 6.1 Primary Food Choice of Alligators, by Lake and Size of the Alligator

Primary Food Choice
Size

Lake (meters) Fish Invertebrate Reptile Bird Other

Hancock ≤ 2.3 23 4 2 2 8
> 2.3 7 0 1 3 5

Ocklawaha ≤ 2.3 5 11 1 0 3
> 2.3 13 8 6 1 0

Trafford ≤ 2.3 5 11 2 1 5
> 2.3 8 7 6 3 5

George ≤ 2.3 16 19 1 2 3
> 2.3 17 1 0 1 3

Source: Data courtesy of Mike Delany and Clint Moore. For details, see Delany et al. (1999).

3See Exercise 6.8 and Agresti (2010, Chapter 4).
4The multinom function in the nnet R package also fits it. The VGAM package fits many models
for discrete data. See www.stat.auckland.ac.nz/~yee/VGAM/doc/VGAM.pdf.

http://www.stat.auckland.ac.nz/~yee/VGAM/doc/VGAM.pdf
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-------------------------------------------------------------------------

> Alligators # file Alligators.dat at www.stat.ufl.edu/~aa/glm/data

lake size y1 y2 y3 y4 y5

1 1 1 23 4 2 2 8

2 1 0 7 0 1 3 5

...

8 4 0 17 1 0 1 3

> attach(Alligators)

> library(VGAM)

> fit <- vglm(formula = cbind(y2,y3,y4,y5,y1) ~ size + factor(lake),

+ family=multinomial, data=Alligators) # fish=1 is baseline category

> summary(fit)

Estimate Std. Error z value

(Intercept):1 -3.2074 0.6387 -5.0215

(Intercept):2 -2.0718 0.7067 -2.9315

(Intercept):3 -1.3980 0.6085 -2.2973

(Intercept):4 -1.0781 0.4709 -2.2893

size:1 1.4582 0.3959 3.6828

size:2 -0.3513 0.5800 -0.6056

size:3 -0.6307 0.6425 -0.9816

size:4 0.3315 0.4482 0.7397

factor(lake)2:1 2.5956 0.6597 3.9344

factor(lake)2:2 1.2161 0.7860 1.5472

factor(lake)2:3 -1.3483 1.1635 -1.1588

factor(lake)2:4 -0.8205 0.7296 -1.1247

factor(lake)3:1 2.7803 0.6712 4.1422

factor(lake)3:2 1.6925 0.7804 2.1686

factor(lake)3:3 0.3926 0.7818 0.5023

factor(lake)3:4 0.6902 0.5597 1.2332

factor(lake)4:1 1.6584 0.6129 2.7059

factor(lake)4:2 -1.2428 1.1854 -1.0484

factor(lake)4:3 -0.6951 0.7813 -0.8897

factor(lake)4:4 -0.8262 0.5575 -1.4819

---

Residual deviance: 17.0798 on 12 degrees of freedom

Log-likelihood: -47.5138 on 12 degrees of freedom

> 1 - pchisq(17.0798, df=12)

[1] 0.146619 # P-value for deviance goodness-of-fit test

-------------------------------------------------------------------------

The data are a bit sparse, but the deviance of 17.08 (df = 12) does not give much
evidence against the main-effects model. The df value reflects that we have modeled
32 multinomial probabilities (4 at each combination of size and lake) using 20
parameters (5 for each logit). The more complex model allowing interaction between
size and lake has 12 more parameters and is the saturated model. Removing size or
lake from the main-effects model results in a significantly poorer fit: the deviance
increases by 21.09 (df = 4) in removing size and 49.13 (df = 12) in removing lake.

The equations shown for fish as the baseline determine those for other primary
food choice pairs. Viewing all these, we see that size has its greatest impact on

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data
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whether invertebrates rather than fish are the primary food choice. The prediction
equation for the log odds of selecting invertebrates instead of fish is

log(�̂�i2∕�̂�i1) = −3.207 + 1.458si + 2.596zO
i + 2.780zT

i + 1.658zG
i .

For a given lake, for small alligators the estimated odds that primary food choice was
invertebrates instead of fish are exp(1.458) = 4.30 times the estimated odds for large
alligators. The estimated effect is imprecise, as the Wald 95% confidence interval is
exp[1.458 ± 1.96(0.396)] = (1.98, 9.34). The lake effects indicate that the estimated
odds that the primary food choice was invertebrates instead of fish are relatively
higher at lakes Ocklawaha, Trafford and George than they are at Lake Hancock.

The model parameter estimates yield fitted probabilities. For example, the esti-
mated probability that a large alligator in Lake George has invertebrates as the primary
food choice is

�̂�i2 = e−3.207+1.658

1 + e−3.207+1.658 + e−2.072−1.243 + e−1.398−0.695 + e−1.078−0.826
= 0.14.

The estimated probabilities of (invertebrates, reptiles, birds, other, fish) for large
alligators in that lake are (0.14, 0.02, 0.08, 0.10, 0.66).

---------------------------------------------------------------------

> fitted(fit)

y2 y3 y4 y5 y1

1 0.0931 0.0475 0.0704 0.2537 0.5353

2 0.0231 0.0718 0.1409 0.1940 0.5702

...

8 0.1397 0.0239 0.0811 0.0979 0.6574

---------------------------------------------------------------------

6.3.3 Example: Cumulative Link Models for Mental Impairment

The data in Table 6.2 are based on a study of mental health for a random sample of adult
residents of Alachua County, Florida5. Mental impairment is ordinal, with categories
(1 = well, 2 = mild symptom formation, 3 = moderate symptom formation, 4 =
impaired). The study related y = mental impairment to several explanatory variables,
two of which are used here. The life events index x1 is a composite measure of the
number and severity of important life events that occurred to the subject within the
past 3 years, such as the birth of a child, a new job, a divorce, or a death in the family.
In this sample, x1 has a mean of 4.3 and standard deviation of 2.7. Socioeconomic
status (x2 = SES) is measured here as binary (1 = high, 0 = low).

The cumulative logit model of the proportional odds form with main effects has
ML fit

logit[P̂(yi ≤ j)] = �̂�j − 0.319xi1 + 1.111xi2.

5Thanks to Charles Holzer for the background for this study; the 40 observations analyzed here are
merely reflective of patterns found with his much larger sample.
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Table 6.2 Mental Impairment, Life Events Index, and Socioeconomic Status (SES), for
40 Adults in Alachua County, Florida

Subject
Mental

Impairment
Life

Events SES Subject
Mental
Impairment Life Events SES

1 Well 1 1 21 Mild 9 1
2 Well 9 1 22 Mild 3 0
3 Well 4 1 23 Mild 3 1
4 Well 3 1 24 Mild 1 1
5 Well 2 0 25 Moderate 0 0
6 Well 0 1 26 Moderate 4 1
7 Well 1 0 27 Moderate 3 0
8 Well 3 1 28 Moderate 9 0
9 Well 3 1 29 Moderate 6 1
10 Well 7 1 30 Moderate 4 0
11 Well 1 0 31 Moderate 3 0
12 Well 2 0 32 Impaired 8 1
13 Mild 5 1 33 Impaired 2 1
14 Mild 6 0 34 Impaired 7 1
15 Mild 3 1 35 Impaired 5 0
16 Mild 1 0 36 Impaired 4 0
17 Mild 8 1 37 Impaired 4 0
18 Mild 2 1 38 Impaired 8 1
19 Mild 5 0 39 Impaired 8 0
20 Mild 5 1 40 Impaired 9 0

The estimated cumulative probability, starting at the “well” end of the mental impair-
ment scale, decreases as life events increases and is higher at the higher level of SES,
adjusted for the other variable. Given the life events score, at the high SES level the
estimated odds of mental impairment below any fixed level are e1.111 = 3.0 times
the estimated odds at the low SES level. The 95% Wald confidence interval6 for this
effect is exp[1.111 ± 1.96(0.614)] = (0.91, 10.12). A null SES effect is plausible, but
the SES effect could also be very strong. The Wald test shows strong evidence of a
life events effect.

-------------------------------------------------------------------------

> Mental # file Mental.dat at www.stat.ufl.edu/~aa/glm/data

impair life ses # impair has well=1, ... , impaired=4

1 1 1 1

2 1 9 1

...

40 4 9 0

> attach(Mental)

> library(VGAM) # Alternative is polr function in MASS package

> fit <- vglm(impair ~ life + ses, family=cumulative(parallel=TRUE),

6The ProfileLikelihood package in R has a function for profile likelihood intervals for this model.

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data
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+ data=Mental) # parallel=TRUE imposes proportional odds structure

> summary(fit)

Estimate Std. Error z value

(Intercept):1 -0.2818 0.6230 -0.4522 # c-1 = 3 intercepts for

(Intercept):2 1.2129 0.6512 1.8626 # c=4 response categories

(Intercept):3 2.2095 0.7172 3.0807

life -0.3189 0.1194 -2.6697

ses 1.1111 0.6143 1.8088

Residual deviance: 99.0979 on 115 degrees of freedom

Log-likelihood: -49.54895 on 115 degrees of freedom

-------------------------------------------------------------------------

To help us interpret the effects, we can estimate response category probabilities.
First, consider the SES effect. At the mean life events of 4.3, P̂(y = 1) = 0.37 at
high SES (i.e., x2 = 1) and P̂(y = 1) = 0.16 at low SES (x2 = 0). Next, consider the
life events effect. For high SES, P̂(y = 1) changes from 0.70 to 0.12 between the
sample minimum of 0 and maximum of 9 life events; for low SES, it changes from
0.43 to 0.04. Comparing 0.70 to 0.43 at the minimum life events and 0.12 to 0.04
at the maximum provides a further description of the SES effect. The sample effect
is substantial for each predictor. The following output shows estimated response
category probabilities for a few subjects in the sample. Subjects (such as subject
40) having low SES and relatively high life events have a relatively high estimated
probability of being mentally impaired.

-------------------------------------------------------------------------

> fitted(fit)

1 2 3 4

1 0.6249 0.2564 0.0713 0.0473 # (for life=1, ses=1)

2 0.1150 0.2518 0.2440 0.3892 # (for life=9, ses=1)

...

40 0.0410 0.1191 0.1805 0.6593 # (for life=9, ses=0)

-------------------------------------------------------------------------

To check the proportional odds structure, we can fit a more-complex model that
permits effects to vary for the three cumulative logits. The fit is not significantly
better, the likelihood-ratio test having P-value = 0.67. Estimated effects are similar
for each cumulative logit, taking into account sampling error, with positive effects
for SES and negative effects for life events.

-------------------------------------------------------------------------

> fit.nonpo <- vglm(impair ~ life + ses, family=cumulative, data=Mental)

> summary(fit.nonpo) # not using parallel=true option for propor. odds

Estimate Std. Error z value

(Intercept):1 -0.1929 0.7387 -0.2611 # first cumulative logit

(Intercept):2 0.8281 0.7037 1.1768 # second cumulative logit

(Intercept):3 2.8037 0.9615 2.9160 # third cumulative logit

life:1 -0.3182 0.1597 -1.9928

life:2 -0.2740 0.1372 -1.9972

life:3 -0.3962 0.1592 -2.4883
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ses:1 0.9732 0.7720 1.2605

ses:2 1.4960 0.7460 2.0055

ses:3 0.7522 0.8358 0.8999

Residual deviance: 96.7486 on 111 degrees of freedom

Log-likelihood: -48.3743 on 111 degrees of freedom

> 1 - pchisq(2*(logLik(fit.nonpo)-logLik(fit)),

+ df=df.residual(fit)-df.residual(fit.nonpo))

[1] 0.6718083 # P-value comparing to model assuming proportional odds

-------------------------------------------------------------------------

When we add an interaction term with the proportional odds structure, the fit
suggests that the life events effect may be weaker at higher SES. However, the fit is
not significantly better (P-value = 0.44).

-------------------------------------------------------------------------

> fit.interaction <- vglm(impair ~ life + ses + life:ses,

+ family=cumulative(parallel=TRUE), data=Mental)

> summary(fit.interaction)

Estimate Std. Error z value

(Intercept):1 0.0981 0.8110 0.1209

(Intercept):2 1.5925 0.8372 1.9022

(Intercept):3 2.6066 0.9097 2.8655

life -0.4204 0.1903 -2.2093

ses 0.3709 1.1302 0.3282

life:ses 0.1813 0.2361 0.7679

Residual deviance: 98.5044 on 114 degrees of freedom

Log-likelihood: -49.2522 on 114 degrees of freedom

> 1 - pchisq(2*(logLik(fit.interaction)-logLik(fit)),

+ df=df.residual(fit)-df.residual(fit.interaction))

[1] 0.44108 # P-value for LR test comparing to model without interaction

-------------------------------------------------------------------------

We obtain similar substantive results with a cumulative probit model. In the
underlying latent variable model, we estimate the difference between mean mental
impairment at low and high levels of SES to be 0.68 standard deviations, adjusting for
life events. The estimated multiple correlation for the underlying latent variable model
equals 0.513. With the addition of an interaction term (not shown), this increases only
to 0.531.

-------------------------------------------------------------------------

> fit.probit <- vglm(impair ~ life + ses,

+ family=cumulative(link=probit,parallel=TRUE),data=Mental)

> summary(fit.probit) # cumulative probit model

Estimate Std. Error z value

(Intercept):1 -0.1612 0.3755 -0.4293

(Intercept):2 0.7456 0.3864 1.9299

(Intercept):3 1.3392 0.4123 3.2484

life -0.1953 0.0692 -2.8236

ses 0.6834 0.3627 1.8843

Residual deviance: 98.8397 on 115 degrees of freedom
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Log-likelihood: -49.4198 on 115 degrees of freedom

> lp <- -0.1953*life + 0.6834*ses # linear predictor for latent model

> sqrt(var(lp)/(var(lp) + 1)) # corr(y*, fitted) for latent variable

[1] 0.513

-------------------------------------------------------------------------

CHAPTER NOTES

Section 6.1: Nominal Responses: Baseline-Category Logit Models

6.1 BCL and multivariate GLM: After Mantel (1966), early development and application
of baseline-category logit models were primarily in the econometrics literature (e.g.,
Theil 1969). For details about multivariate GLMs, see Fahrmeir and Tutz (2001).

6.2 Infinite estimates: When a choice of baseline category causes complete or quasi-
complete separation (Section 5.4.2) to occur for each logit when paired with that category,
some ML estimates and SE values are infinite or do not exist. Approaches to produce
finite estimates include the Bayesian (Note 10.7) and a generalization of a penalized
likelihood approach (Kosmidis and Firth 2011) presented in Section 11.1.7 for binary
data.

6.3 Discrete choice: Daniel McFadden (1974) proposed the discrete-choice model, incor-
porating explanatory variables that are characteristics of the choices. In 2000, McFadden
won the Nobel Prize in Economic Sciences, partly for this work. Greene (2011, Chapter
17–18) and Train (2009) surveyed many generalizations of the model since then, such
as to handle nested choice structure.

Section 6.2: Ordinal Responses: Cumulative Logit and Probit Models

6.4 Proportional odds: Although not the first to use the proportional odds form of cumu-
lative logit model, the landmark article on modeling ordinal data by McCullagh (1980)
popularized it. Peterson and Harrell (1990) proposed a partial proportional odds model
in which a subset of the explanatory variables have that structure7. McKelvey and
Zavoina (1975) presented the latent variable motivation for the cumulative probit model.
Agresti (2010) reviewed ways of modeling ordinal responses.

6.5 Infinite estimates: When at least some ML estimates are infinite in an ordinal model,
approaches to produce finite estimates include the Bayesian (Note 10.7) and a reduced-
bias solution that corresponds to a parameter-dependent adjustment of the multinomial
counts (Kosmidis 2014).

EXERCISES

6.1 Show that the multinomial variate y = (y1,… , yc−1)T (with yj = 1 if outcome
j occurred and 0 otherwise) for a single trial with parameters (𝜋1,… ,𝜋c−1)

7This model can be fitted with the vglm function in the VGAM R package.
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has distribution in the (c − 1)-parameter exponential dispersion family, with
baseline-category logits as natural parameters.

6.2 For the baseline-category logit model without constraints on parameters,

𝜋ij =
exp(xi𝜷 j)∑c

h=1 exp(xi𝜷h)
,

show that dividing numerator and denominator by exp(xi𝜷c) yields new param-
eters 𝜷∗j = 𝜷 j − 𝜷c that satisfy 𝜷∗c = 0. Thus, without loss of generality, we
can take 𝜷c = 0.

6.3 Derive Equation (6.3) for the rate of change. Show how the equation for binary
models is a special case.

6.4 With three outcome categories and a single explanatory variable, suppose

𝜋ij = exp(𝛽j0 + 𝛽jxi)∕[1 + exp(𝛽10 + 𝛽1xi) + exp(𝛽20 + 𝛽2xi)],

j = 1, 2. Show that𝜋i3 is (a) decreasing in xi if 𝛽1 > 0 and 𝛽2 > 0, (b) increasing
in xi if 𝛽1 < 0 and 𝛽2 < 0, and (c) nonmonotone when 𝛽1 and 𝛽2 have opposite
signs.

6.5 Derive the deviance expression in Equation (6.5) by deriving the corresponding
likelihood-ratio test.

6.6 For a multinomial response, let uij denote the utility of response outcome j for
subject i. Suppose that

uij = xi𝜷 j + 𝜖ij,

and the response outcome for subject i is the value of j having maximum
utility. When {𝜖ij} are assumed to be iid standard normal, this model is the
simplest form of the multinomial probit model (Aitchison and Bennett 1970).

a. Explain why (𝛽ak − 𝛽bk) describes the effect of a 1-unit increase in explana-
tory variable k on the difference in mean utilities, as measured in terms of
the number of standard deviations of the utility distribution.

b. For observation i, explain why the probability of outcome in category j is

𝜋ij = ∫
𝜙(uij − xi𝜷 j)

∏
k≠j

Φ(uij − xi𝜷k)duij,

for the standard normal pdf𝜙 and cdfΦ. Explain how to form the likelihood
function.
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6.7 Derive the likelihood equations and the information matrix for the discrete-
choice model (6.6).

6.8 Consider the baseline-category logit model (6.1).

a. Suppose we impose the structure 𝜷 j = j𝜷, for j = 1,… , c − 1. Does this
model treat the response as ordinal or nominal? Explain.

b. Show that the model in (a) has proportional odds structure when the c − 1
logits are formed using pairs of adjacent categories.

6.9 Section 5.3.4 introduced Fisher’s exact test for 2 × 2 contingency tables. For
testing independence in a r × c table in which the data are c independent multi-
nomials, derive a conditional distribution that does not depend on unknown
parameters. Explain a way to use it to conduct a small-sample exact test.

6.10 Does it make sense to use the cumulative logit model of proportional odds
form with a nominal-scale response variable? Why or why not? Is the model
a special case of a baseline-category logit model? Explain.

6.11 Show how to express the cumulative logit model of proportional odds form as
a multivariate GLM (6.4).

6.12 For a binary explanatory variable, explain why the cumulative logit model with
proportional odds structure is unlikely to fit well if, for an underlying latent
response, the two groups have similar location but very different dispersion.

6.13 Consider the cumulative logit model, logit[P(yi ≤ j)] = 𝛼j + 𝛽jxi.

a. With continuous xi taking values over the real line, show that the model is
improper, in that cumulative probabilities are misordered for a range of xi
values.

b. When xi is a binary indicator, explain why the model is proper but requires
constraints on (𝛼j + 𝛽j) (as well as the usual ordering constraint on {𝛼j})
and is then equivalent to the saturated model.

6.14 For the cumulative link model, G−1[P(yi ≤ j)] = 𝛼j + xi𝜷, show that for
1 ≤ j < k ≤ c − 1, P(yi ≤ k) equals P(yi ≤ j) at x∗, where x∗ is obtained by
increasing component h of xi by (𝛼k − 𝛼j)∕𝛽h for each h. Interpret.

6.15 For an ordinal multinomial response with c categories, let

𝜔ij = P(yi = j ∣ yi ≥ j) =
𝜋ij

𝜋ij +⋯ + 𝜋ic
, j = 1,… , c − 1.

The continuation-ratio logit model is

logit(𝜔ij) = 𝛼j + xi𝜷 j. j = 1,… , c − 1.
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a. Interpret (i)𝜷 j, (ii)𝜷 for the simpler model with proportional odds structure.
Describe a survival application for which such sequential formation of
logits might be natural.

b. Express the multinomial probability for (yi1,… , yic) in the form
p(yi1)p(yi2 ∣ yi1)⋯ p(yic ∣ yi1,… , yi,c−1). Using this, explain why the {𝜷 j}
are independent and how it is possible to fit the model using binary logistic
GLMs.

6.16 Consider the null multinomial model, having the same probabilities {𝜋j}
for every observation. Let 𝛾 =

∑
j bj𝜋j, and suppose that 𝜋j = fj(𝜃) > 0, j =

1,… , c. For sample proportions {pj = nj∕N}, let S =
∑

j bjpj. Let T =
∑

j bj�̂�j,

where �̂�j = fj(�̂�), for the ML estimator �̂� of 𝜃.

a. Show that var(S) = [
∑

j b2
j 𝜋j − (

∑
j bj𝜋j)

2]∕N.

b. Using the delta method, show var(T) ≈ [var(�̂�)][
∑

j bjf
′
j (𝜃)]2.

c. By computing the information for L(𝜃) =
∑

j nj log[fj(𝜃)], show that var(�̂�)

is approximately [N
∑

j(f
′
j (𝜃))2∕fj(𝜃)]−1.

d. Asymptotically, show that a consequence of model parsimony is that
var[

√
N(T − 𝛾)] ≤ var[

√
N(S − 𝛾)].

6.17 A response scale has the categories (strongly agree, mildly agree, mildly
disagree, strongly disagree, do not know). A two-part model uses a logistic
regression model for the probability of a don’t know response and a separate
ordinal model for the ordered categories conditional on response in one of
those categories. Explain how to construct a likelihood function to fit the two
parts simultaneously.

6.18 The file Alligators2.dat at the text website is an expanded version of
Table 6.1 that also includes the alligator’s gender. Using all the explana-
tory variables, use model-building methods to select a model for predict-
ing primary food choice. Conduct inference and interpret effects in that
model.

6.19 For 63 alligators caught in Lake George, Florida, the file Alligators3.dat
at the text website classifies primary food choice as (fish, invertebrate, other)
and shows alligator length in meters. Analyze these data.

6.20 The following R output shows output from fitting a cumulative logit model to
data from the US 2008 General Social Survey. For subject i let yi = belief in
existence of heaven (1 = yes, 2 = unsure, 3 = no), xi1 = gender (1 = female,
0 = male) and xi2 = race (1 = black, 0 = white). State the model fitted here,
and interpret the race and gender effects. Test goodness-of-fit and construct
confidence intervals for the effects.
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-------------------------------------------------------------------------

> cbind(race, gender, y1, y2, y3)

race gender y1 y2 y3

[1,] 1 1 88 16 2

[2,] 1 0 54 7 5

[3,] 0 1 397 141 24

[4,] 0 0 235 189 39

> summary(vglm(cbind(y1,y2,y3)~gender+race,family=cumulative(parallel=T)))

Estimate Std. Error z value

(Intercept):1 0.0763 0.0896 0.8515

(Intercept):2 2.3224 0.1352 17.1749

gender 0.7696 0.1225 6.2808

race 1.0165 0.2106 4.8266

Residual deviance: 9.2542 on 4 degrees of freedom

Log-likelihood: -23.3814 on 4 degrees of freedom

-------------------------------------------------------------------------

6.21 Refer to the previous exercise. Consider the model

log(𝜋ij∕𝜋i3) = 𝛼j + 𝛽G
j xi1 + 𝛽R

j xi2, j = 1, 2.

a. Fit the model and report prediction equations for log(𝜋i1∕𝜋i3), log(𝜋i2∕𝜋i3),
and log(𝜋i1∕𝜋i2).

b. Using the “yes”and “no” response categories, interpret the conditional
gender effect using a 95% confidence interval for an odds ratio.

c. Conduct a likelihood-ratio test of the hypothesis that opinion is independent
of gender, given race. Interpret.

6.22 Refer to Exercise 5.33. The color of the female crab is a surrogate for age, with
older crabs being darker. Analyze whether any characteristics or combinations
of characteristics of the attached male crab can help to predict a female crab’s
color. Prepare a short report that summarizes your analyses and findings.

6.23 A 1976 article by M. Madsen (Scand. J. Stat. 3: 97–106) showed a
4 × 2 × 3 × 3 contingency table (the file Satisfaction.dat at the text web-
site) that cross classifies a sample of residents of Copenhagen on the type
of housing, degree of contact with other residents, feeling of influence on
apartment management, and satisfaction with housing conditions. Treating
satisfaction as the response variable, analyze these data.

6.24 At the website sda.berkeley.edu/GSS for the General Social Survey,
download a contingency table relating the variable GRNTAXES (about paying
higher taxes to help the environment) to two other variables, using the survey
results from 2010 by specifying year(2010) in the “Selection Filter.” Model
the data, and summarize your analysis and interpretations.

http://sda.berkeley.edu/GSS
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Models for Count Data

Many response variables have counts as their possible outcomes. Examples are
the number of alcoholic drinks you had in the previous week, and the number of
devices you own that can access the internet (laptops, smart cell phones, tablets,
etc.). Counts also occur as entries in cells of contingency tables that cross-classify
categorical variables, such as the number of people in a survey who are female,
college educated, and agree that humans are responsible for climate change. In
this chapter we introduce generalized linear models (GLMs) for count response
variables.

Section 7.1 presents models that assume a Poisson distribution for a count response
variable. The loglinear model, using a log link to connect the mean with the linear
predictor, is most common. The model can be adapted to model a rate when the
count is based on an index such as space or time. Section 7.2 shows how to use
Poisson and related multinomial models for contingency tables to analyze condi-
tional independence and association structure for a multivariate categorical response
variable. For the Poisson distribution, the variance must equal the mean, and data
often exhibit greater variability than this. Section 7.3 introduces GLMs that assume a
negative binomial distribution, which handles such overdispersion in a natural way.
Many datasets show greater frequencies of zero counts than standard models allow,
often because some subjects can have a zero outcome by chance but some subjects
necessarily have a zero outcome. Section 7.4 introduces models that handle such
zero-inflated data, which we might expect for a variable such as the frequency of
alcohol drinking. Three examples illustrate models—one for rate data (Section 7.1.7),
one for associations in contingency tables (Section 7.2.6), and one for zero-inflated
count data (Section 7.5).

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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7.1 POISSON GLMS FOR COUNTS AND RATES

The simplest distribution for count data, placing its mass on the set of nonnegative
integer values, is the Poisson. Its probabilities depend on a single parameter, the mean
𝜇 > 0.

7.1.1 The Poisson Distribution

In equation (4.5) we observed that the Poisson probability mass function, p(y;𝜇) =
e−𝜇𝜇y∕y! for y = 0, 1, 2,…, is in the exponential dispersion family with E(y) =
var(y) = 𝜇. The Poisson distribution is unimodal with mode equal to the integer part
of 𝜇. Its skewness is described by E(y − 𝜇)3∕𝜎3 = 1∕

√
𝜇. As 𝜇 increases, the Poisson

distribution is less skewed and approaches normality, the approximation being fairly
good when 𝜇 > 10.

The Poisson distribution is often used for counts of events1 that occur randomly
over time or space at a particular rate, when outcomes in disjoint time periods or
regions are independent. For example, a manufacturer of cell phones might find
that the Poisson describes reasonably well the number of warranty claims received
each week. The Poisson also applies as an approximation for the binomial when
the number of trials n is large and 𝜋 is very small, with 𝜇 = n𝜋. For the binomial, if
n → ∞ and 𝜋 → 0 such that n𝜋 = 𝜇 is fixed, then the binomial distribution converges
to the Poisson. If a manufacturer has sold 5000 cell phones of a particular type, and
each independently has probability 0.001 of having a warranty claim in a given week,
then the number of such claims per week has approximately a Poisson distribution
with mean 5000(0.001) = 5.

7.1.2 Variance Stabilization and Least Squares with Count Data

Let y1,… , yn denote independent observations from Poisson distributions, with
𝜇i = E(yi). In modeling count data, we could transform the counts so that, at
least approximately, the variance is constant and ordinary least squares methods
are valid. By the delta method, the linearization g(y) − g(𝜇) ≈ (y − 𝜇)g′(𝜇) implies
that var[g(y)] ≈ [g′(𝜇)]2var(y). If y has a Poisson distribution, then

√
y has

var(
√

y) ≈

(
1

2
√
𝜇

)2

𝜇 = 1
4
.

The approximation holds better for larger 𝜇, for which
√

y is more closely linear in
a neighborhood of 𝜇.

Since
√

y has approximately constant variance, we could model
√

yi, i = 1,… , n,
using linear models fitted by ordinary least squares. However, the model is then linear

1See Karlin and Taylor (1975, pp. 23–25) for precise conditions and a derivation of the Poisson
formula.
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in E(
√

yi), not E(yi). Also, a linear relation with the linear predictor may hold more

poorly for E(
√

yi) than for E(yi), E[log(yi)], or some other transformation. It is more
appealing to use GLM methods, which apply a link function to the mean response
rather than the mean to a function of the response.

7.1.3 Poisson GLMs and Loglinear Models

We now present the GLM approach for Poisson response data. Since var(yi) = 𝜇i,
the GLM likelihood equations (4.10) for n independent observations simplify for a
Poisson response with linear predictor 𝜂i = g(𝜇i) =

∑
j 𝛽jxij having link function g to

n∑
i=1

(yi − 𝜇i)xij

var(yi)

(
𝜕𝜇i

𝜕𝜂i

)
=

n∑
i=1

(yi − 𝜇i)xij

𝜇i

(
𝜕𝜇i

𝜕𝜂i

)
= 0.

Although a GLM can model a positive mean using the identity link, it is more common
to model the log of the mean. Like the linear predictor, the log mean can take any
real value. From Section 4.1.2, the log mean is the natural parameter for the Poisson
distribution, and the log link is the canonical link for a Poisson GLM. The Poisson
loglinear model is

log𝜇i =
p∑

j=1

𝛽jxij, or log𝝁 = X𝜷

in terms of a model matrix and model parameters. For 𝜂i = log𝜇i, 𝜕𝜇i∕𝜕𝜂i = 𝜇i, so
the likelihood equations are ∑

i

(yi − 𝜇i)xij = 0, (7.1)

as we found in Section 4.2.2.
For a Poisson loglinear model, the mean satisfies the exponential relation

𝜇i = exp

(
p∑

j=1

𝛽jxij

)
= (e𝛽1 )x

i1 ⋯ (e𝛽p )
x

ip .

A 1-unit increase in xij has a multiplicative impact of e𝛽j : the mean at xij + 1 equals

the mean at xij multiplied by e𝛽j , adjusting for the other explanatory variables.

7.1.4 Model Fitting and Goodness of Fit

Except for simple models such as for the one-way layout or balanced two-way layout,
the likelihood equations have no closed-form solution. However, the log-likelihood
function is concave, and the Newton–Raphson method (which is equivalent to Fisher
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scoring for the canonical log link) yields fitted values and estimates of correspond-
ing model parameters. From Section 4.2.4, the estimated covariance matrix (4.14)
of 𝜷 is

v̂ar(𝜷) = (XTŴX)−1,

where with the log link W is the diagonal matrix with elements wi = (𝜕𝜇i∕𝜕𝜂i)
2∕

var(yi) = 𝜇i.
From Section 4.4.2, the deviance of a Poisson GLM is

D(y, �̂�) = 2
n∑

i=1

[
yi log

(
yi

�̂�i

)
− yi + �̂�i

]
. (7.2)

When a model with log link has an intercept, its likelihood equation implies that∑
i �̂�i =

∑
i yi, and so D(y, �̂�) = 2

∑
i[yi log(yi∕�̂�i)]. This is often denoted by G2. The

corresponding Pearson statistic (Section 4.4.4) is

X2 =
n∑

i=1

(yi − �̂�i)
2

�̂�i
.

In some cases we can use these statistics to test goodness of fit. Asymptotic chi-
squared distributions result when the number n of Poisson observations is fixed and
their means increase unboundedly. The standard case where this holds reasonably
well is contingency tables with a fixed number of cells and large overall sample size,
as we explain in Section 7.2.2. But such a test, having a global alternative, does not
reveal how a model fails. It is more informative to check a model by comparing it with
more-complex models (e.g., with interaction terms) and by investigating particular
aspects of lack of fit. For example, we can check that the variance truly has the
same order of magnitude as the mean by comparing the model with a more-complex
model that does not assume this, such as the negative binomial model presented in
Section 7.3.

We can also search for unusual observations or patterns in the residuals. In Section
4.4.6 we presented the Pearson and standardized residuals for Poisson GLMs. Like
yi, these have skewed distributions, less so as 𝜇i increases. Finally, an informal way
to assess the Poisson assumption is to compare the overall sample proportion of
(0, 1, 2, …) observations to the average of the fitted response distributions for the
n observations. Often this shows that a Poisson model does not permit sufficient
variability, underpredicting 0 outcomes and relatively high outcomes.

7.1.5 Example: One-Way Layout Comparing Poisson Means

For the one-way layout for a count response, let yij be observation j of a count
variable for group i, i = 1,… , c, j = 1,… , ni, with n =

∑
i ni. Suppose that {yij} are

independent Poisson with E(yij) = 𝜇ij. The model log(𝜇ij) = 𝛽0 + 𝛽i has a common
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mean within groups. For group means {𝜇i}, exp(𝛽h − 𝛽i) = 𝜇h∕𝜇i. With 𝛽0 = 0 for
identifiability, the model has the form log𝝁 = X𝜷 with

𝝁 =

⎛⎜⎜⎜⎜⎝

𝜇11n1

𝜇21n2

⋮

𝜇c1nc

⎞⎟⎟⎟⎟⎠
, X𝜷 =

⎛⎜⎜⎜⎜⎝

1n1
0n1

⋯ 0n1

0n2
1n2

⋯ 0n2

⋮ ⋮ ⋱ ⋮

0nc
0nc

⋯ 1nc

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

𝛽1

𝛽2

⋮

𝛽c

⎞⎟⎟⎟⎟⎠
.

The likelihood equation induced by parameter 𝛽i for group i is

ni∑
j=1

(yij − 𝜇i) = 0,

so �̂�i = ȳi = (
∑

j yij)∕ni and 𝛽i = log ȳi. In fact, the same likelihood equations and
fitted means occur with any link function, or if we use baseline-category constraints
(as we would for higher-way layouts) such as 𝛽1 = 0. For the log link, Ŵ has the
sample means on the main diagonal. For the model matrix shown above, v̂ar(𝜷) =
(XTŴX)−1 is a diagonal matrix with v̂ar(𝛽 i) = 1∕niȳi. It follows that for large {ni𝜇i}
a Wald 95% confidence interval for 𝜇h∕𝜇i is

exp[(𝛽h − 𝛽 i) ± 1.96
√

(nhȳh)−1 + (niȳi)−1].

Analogous to the one-way ANOVA for a normal response, we can test H0:
𝜇1 = ⋯ = 𝜇c. By direct construction or by applying the result in Section 4.4.3 about
using the difference of deviances to compare the null model with the model for the
one-way layout, we can construct the likelihood-ratio statistic. It equals

2
c∑

i=1

niȳi log(ȳi∕ȳ),

where ȳ is the grand mean of all n =
∑

i ni observations. As {ni} grow for fixed c,
{ȳi} have approximate normal distributions, and this statistic has null distribution
converging to chi-squared with df = (c − 1).

These inferences assume validity of the Poisson model. They are not robust to
violation of the Poisson assumption. If the data have greater than Poisson variability,
the large-sample var(𝛽 i) will exceed 1∕ni𝜇i. It is sensible to compare results with
those for analogous inferences using a model that permits greater dispersion, such as
the negative binomial model introduced in Section 7.3.

The deviance (7.2) and the Pearson statistic for the Poisson model for the one-way
layout simplify to

G2 = 2
c∑

i=1

ni∑
j=1

yij log
(yij

ȳi

)
, X2 =

c∑
i=1

ni∑
j=1

(yij − ȳi)
2

ȳi
.
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For testing goodness of fit of this model with relatively large {ȳi}, G2 and X2 have
approximate chi-squared distributions with df =

∑
i(ni − 1) (Fisher 1970, p. 58). For

a single group, Cochran (1954) referred to [
∑

j(y1j − ȳ1)2]∕ȳ1 as the variance test for
the fit of a Poisson distribution, since it compares the sample variance of the data
with the estimated Poisson variance ȳ1. This asymptotic theory applies, however, as
{𝜇i} grow for fixed {ni}, which is not realistic in most applications. For checking fit,
chi-squared asymptotics usually apply better for comparing the model with a more
complex model and for comparing the model with the null model as just described.

7.1.6 Modeling Rates: Including an Offset in the Model

Often the expected value of a response count yi is proportional to an index ti. For
instance, ti might be an amount of time and/or a population size, such as in modeling
crime counts for various cities. Or, it might be a spatial area, such as in modeling
counts of a particular animal or plant species. Then the sample rate is yi∕ti, with
expected value 𝜇i∕ti. With explanatory variables, a loglinear model for the expected
rate has the form

log(𝜇i∕ti) =
p∑

j=1

𝛽jxij.

Because log(𝜇i∕ti) = log𝜇i − log ti, the model makes the adjustment − log ti to the
log link of the mean. This adjustment term is called an offset. The fit corresponds to
using log ti as an explanatory variable in the linear predictor for log(𝜇i) and forcing
its coefficient to equal 1.

For this model, the expected response count satisfies

𝜇i = ti exp

(
p∑

j=1

𝛽jxij

)
.

The mean has a proportionality constant for ti that depends on the values of the
explanatory variables. The identity link is also occasionally useful, such as with a
sole qualitative explanatory variable. The model with identity link is

𝜇i∕ti =
p∑

j=1

𝛽jxij, or 𝜇i =
p∑

j=1

𝛽jxijti.

This corresponds to an ordinary Poisson GLM using the identity link with no inter-
cept and with explanatory variables xi1ti, … , xipti. It provides additive, rather than
multiplicative, effects of explanatory variables.

7.1.7 Example: Lung Cancer Survival

Table 7.1, from Holford (1980), shows survival and death for 539 males diagnosed
with lung cancer. The prognostic factors are histology and stage of disease, with
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Table 7.1 Number of Deaths from Lung Cancer, by Histology, Stage of Disease, and
Follow-up Time Intervala

Histology

I II IIIFollow-up
Time Interval Disease
(months) Stage: 1 2 3 1 2 3 1 2 3

0–2 9 12 42 5 4 28 1 1 19
(157 134 212 77 71 130 21 22 101)

2–4 2 7 26 2 3 19 1 1 11
(139 110 136 68 63 72 17 18 63)

4–6 9 5 12 3 5 10 1 3 7
(126 96 90 63 58 42 14 14 43)

6–8 10 10 10 2 4 5 1 1 6
(102 86 64 55 42 21 12 10 32)

8–10 1 4 5 2 2 0 0 0 3
(88 66 47 50 35 14 10 8 21)

10–12 3 3 4 2 1 3 1 0 3
(82 59 39 45 32 13 8 8 14)

12+ 1 4 1 2 4 2 0 2 3
(76 51 29 42 28 7 6 6 10)

aValues in parentheses represent total follow-up months at risk.
Source: Reprinted from Holford (1980) with permission of John Wiley & Sons, Inc.

observations grouped into 2-month intervals of follow-up after the diagnosis. For
each cell specifying a particular length of follow-up, histology, and stage of disease,
the table shows the number of deaths and the number of months of observations of
subjects still alive during that follow-up interval. We treat2 the death counts in the
table as independent Poisson variates.

Let 𝜇ijk denote the expected number of deaths and tijk the total time at risk for
histology i and stage of disease j, in follow-up time interval k. The Poisson GLM for
the death rate,

log(𝜇ijk∕tijk) = 𝛽0 + 𝛽H
i + 𝛽S

j + 𝛽T
k ,

treats each explanatory variable as a qualitative factor, where the superscript notation
shows the classification labels. It has residual deviance G2 = 43.92 (df = 52). Models
that assume a lack of interaction between follow-up interval and either prognostic
factor are called proportional hazards models. They have the same effects of histology
and stage of disease in each time interval. Then a ratio of hazards for two groups is
the same at all times. Further investigation reveals that, although the stage of disease
is an important prognostic factor, histology did not contribute significant additional

2This corresponds to a survival modeling approach that assumes piecewise exponential densities for
survival times, yielding a constant hazard function in each two-month interval.
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information. Adding interaction terms between stage and time does not significantly
improve the fit (change in deviance = 14.86 with df = 12).

----------------------------------------------------------------------

> Cancer # file Cancer.dat at www.stat.ufl.edu/~aa/glm/data

time histology stage count risktime

1 1 1 1 9 157

2 1 2 1 5 77

...

63 7 3 3 3 10

> attach(Cancer)

> logrisktime = log(risktime)

> fit <- glm(count ~ factor(histology) + factor(stage) + factor(time),

+ family = poisson(link = log), offset = logrisktime)

> summary(fit)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0093 0.1665 -18.073 <2e-16

factor(histology)2 0.1624 0.1219 1.332 0.1828

factor(histology)3 0.1075 0.1474 0.729 0.4658

factor(stage)2 0.4700 0.1744 2.694 0.0070

factor(stage)3 1.3243 0.1520 8.709 <2e-16

factor(time)2 -0.1274 0.1491 -0.855 0.3926

...

factor(time)7 -0.1752 0.2498 -0.701 0.4832

---

Null deviance: 175.718 on 62 degrees of freedom

Residual deviance: 43.923 on 52 degrees of freedom

----------------------------------------------------------------------

The estimated stage-of-disease effects show the progressively worsening death
rate as the stage advances. The estimated death rate at the third stage of disease
is exp(1.324) = 3.76 times that at the first stage, adjusting for follow-up time
and histology, with Wald 95% confidence interval exp[1.324 ± 1.96(0.152)], or
(2.79, 5.06).

7.2 POISSON/MULTINOMIAL MODELS FOR CONTINGENCY TABLES

Chapters 5 and 6 introduced binomial and multinomial models for categorical
response variables. For multivariate categorical responses, we can apply such models
marginally to each response, as Section 9.6 shows. Alternatively, we can formulate
multinomial models for their joint distribution, to investigate potential independence,
association, and interaction structure. Many such multinomial models are equivalent
to models for independent Poisson counts in cells of a contingency table. The Poisson
model generates the multinomial model after we condition on an overall sample size.
We illustrate in this section.

http://www.stat.ufl.edu/~aa/glm/data
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7.2.1 Connection Between Poisson and Multinomial Distributions

For independent Poisson random variables (y1,… , yc) with means (𝜇1,… ,𝜇c), the
joint probability mass function for {yi} is the product of the mass functions of form
(4.5). The total n =

∑
i yi also has a Poisson distribution, with parameter

∑
i 𝜇i.

Conditional on n, {yi} no longer have Poisson distributions, because each yi cannot
exceed n, and {yi} are also no longer independent, because the value of one affects
the possible range for the others.

The conditional probability of a set of counts {yi} satisfying
∑

j yj = n is

P

[
(y1 = n1, y2 = n2,… , yc = nc) ∣

c∑
j=1

yj = n

]

=
P(y1 = n1, y2 = n2,… , yc = nc)

P
(∑

j yj = n
)

=
∏

i(e
−𝜇i𝜇

ni
i ∕ni!)

exp(−
∑

j 𝜇j)(
∑

j 𝜇j)n∕n!
=

(
n!∏
i ni!

) c∏
i=1

𝜋
ni
i ,

where {𝜋i = 𝜇i∕(
∑

j 𝜇j)}. This is the multinomial distribution characterized by the
sample size n and the probabilities {𝜋i}.

Because of this relation, many Poisson models for independent counts in c fixed
categories have corresponding multinomial models that treat the total count as fixed. In
the multinomial model, the sample size is the total count and the category probabilities
are proportional to the Poisson means.

7.2.2 GLM of Independence in Two-Way Contingency Tables

To illustrate Poisson loglinear models for counts in contingency tables, we first
consider r × c tables that cross-classify two categorical response variables, which we
denote by A and B. Suppose {yij} are independent counts having Poisson distributions
with means {𝜇ij} that satisfy

𝜇ij = 𝜇𝜙i𝜓j,

where {𝜙i} and {𝜓j} are positive constants satisfying
∑

i 𝜙i =
∑

j 𝜓j = 1. This model
is multiplicative, but the log link yields a GLM for {𝜇ij} whose linear predictor has
the structure

log𝜇ij = 𝛽0 + 𝛽A
i + 𝛽B

j . (7.3)

This Poisson loglinear model has additive main effects of the two classifications but
no interaction. Identifiability requires a constraint on {𝛽A

i } and on {𝛽B
j }.
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Because {yij} are independent, the total sample size
∑

i
∑

j yij has a Poisson distri-
bution with mean

∑
i
∑

j 𝜇ij = 𝜇. Conditional on
∑

i
∑

j yij = n, the cell counts have a
multinomial distribution with joint cell probabilities {𝜋ij = 𝜇ij∕𝜇 = 𝜙i𝜓j}. Because∑

i 𝜙i = 1 and
∑

j 𝜓j = 1, we have3 𝜙i = 𝜋i+, 𝜓j = 𝜋+j, and {𝜋ij = 𝜋i+𝜋+j}. This
is the expression of the multinomial joint distribution for independence between
the categorical response variables. When we express the Poisson loglinear model
(7.3) in multiplicative multinomial form by exponentiating both sides and divid-
ing by 𝜇, the intercept parameter 𝛽0 cancels. That is, the Poisson model has
[1 + (r − 1) + (c − 1)] parameters, whereas the multinomial model has [(r − 1) +
(c − 1)] parameters.

As in the two-way layout for a linear model with main effects only, the model
matrix X for the Poisson loglinear model has a simple form containing indicator
variables that are the coefficients of the parameters for the row and column factors.
For example, for a 2 × 2 table with constraints 𝛽A

1 = 𝛽B
1 = 0, the model is

log𝝁 =

⎡⎢⎢⎢⎢⎣

log 𝜇11

log 𝜇12

log 𝜇21

log 𝜇22

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

1 0 0

1 0 1

1 1 0

1 1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝛽0

𝛽A
2

𝛽B
2

⎤⎥⎥⎥⎦
= X𝜷.

From such a model matrix for the independence model, you can verify that the
likelihood equations (7.1) simplify to �̂�i+ = yi+ and �̂�+j = y+j, for all i and j. These
equate the fitted and sample marginal distributions. Or we can easily derive these
directly from the model. The joint Poisson probability of cell counts {yij} is

r∏
i=1

c∏
j=1

e−𝜇ij𝜇
yij

ij

yij!
,

from which the kernel of the log-likelihood is

L(𝝁) =
r∑

i=1

c∑
j=1

yij log𝜇ij −
r∑

i=1

c∑
j=1

𝜇ij.

Substituting the model formula (7.3) for log𝜇ij, we have

L
(
𝛽0,𝜷A,𝜷B)

= n𝛽0 +
r∑

i=1

yi+𝛽
A
i +

c∑
j=1

y+j𝛽
B
j −

r∑
i=1

c∑
j=1

exp
(
𝛽0 + 𝛽A

i + 𝛽B
j

)
.

3A + subscript denotes summing over that index.
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The log-likelihood derivatives

𝜕L
𝜕𝛽A

i

= yi+ −
c∑

j=1

exp
(
𝛽0 + 𝛽A

i + 𝛽B
j

)
= yi+ − 𝜇i+ and

𝜕L

𝜕𝛽B
j

= y+j −
r∑

i=1

exp
(
𝛽0 + 𝛽A

i + 𝛽B
j

)
= y+j − 𝜇+j

yield these likelihood equations, when equated to 0. The solution of these equations
that satisfies the model is the set of maximum likelihood (ML) fitted values, {�̂�ij =
yi+y+j∕n}. The same fit results if we condition on n =

∑
i
∑

j yij and maximize the

corresponding multinomial likelihood
∏

i
∏

j 𝜋
yij

ij , for which the kernel of the log-

likelihood,
∑

i
∑

j yij log𝜋ij, is the same as the Poisson kernel except for the intercept
parameter. The fitted joint multinomial probability �̂�ij is the product of the sample
marginal proportions, �̂�i+ = yi+∕n and �̂�+j = y+j∕n.

The Pearson statistic for testing the independence-model goodness of fit,

X2 =
r∑

i=1

c∑
j=1

(yij − �̂�ij)
2

�̂�ij
,

was proposed by Karl Pearson in 1900. When the model holds, the large-sample
distributions of X2 and the corresponding deviance G2 are chi-squared, the approxi-
mation being reasonably good if most cell means exceed about 5. The Poisson model
has rc observations described by [1 + (r − 1) + (c − 1)] parameters. Equivalently,
the multinomial model has rc − 1 counts described by (r − 1) + (c − 1) parameters.
So the residual df for the chi-squared test are df = rc − (r + c − 1) = (r − 1)(c − 1).
Pearson mistakenly concluded that df = rc − 1, as would be the case if H0 specified
particular values for {𝜋ij}. The correct df were not proven until an article by R. A.
Fisher in 1922. This correction engendered a lifelong enmity4 in which each of these
giants of the Statistics community treated the other disparagingly.

7.2.3 Loglinear Association Parameters Relate to Odds Ratios

To allow association between the two classification variables, we add a two-factor
interaction term to loglinear model (7.3), yielding

log𝜇ij = 𝛽0 + 𝛽A
i + 𝛽B

j + 𝛾AB
ij .

We can specify the model so that {𝛾AB
ij } are coefficients of cross-products of r − 1

indicator variables for the rows with c − 1 indicator variables for the columns. With

4For details, see Agresti (2013, Section 17.2) and R. A. Fisher: The Life of a Scientist by Joan Fisher
Box (Wiley 1978).
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appropriate constraints for identifiability, such as 𝛾AB
1j = 𝛾AB

i1 = 0 for all i and j, this
adds an additional (r − 1)(c − 1) parameters, so the model is saturated.

The {𝛾AB
ij } association parameters pertain to odds ratios. We illustrate for r = c =

2. For the multinomial {𝜋ij} or the Poisson {𝜇ij}, the log odds ratio is

log
𝜋11𝜋22

𝜋12𝜋21
= log

𝜇11𝜇22

𝜇12𝜇21
= log𝜇11 + log𝜇22 − log𝜇12 − log𝜇21

=
(
𝛽0 + 𝛽A

1 + 𝛽B
1 + 𝛾AB

11

)
+

(
𝛽0 + 𝛽A

2 + 𝛽B
2 + 𝛾AB

22

)
−

(
𝛽0 + 𝛽A

1 + 𝛽B
2 + 𝛾AB

12

)
−

(
𝛽0 + 𝛽A

2 + 𝛽B
1 + 𝛾AB

21

)
= 𝛾AB

11 + 𝛾AB
22 − 𝛾AB

12 − 𝛾AB
21 .

Under the constraints just stated, the odds ratio simplifies to exp(𝛾AB
22 ).

7.2.4 Poisson/Multinomial Loglinear Models for Multiway
Contingency Tables

Loglinear models for multidimensional contingency tables describe independence,
association, and interaction patterns. We illustrate for r × c × 𝓁 cross-classifications
of three categorical response variables, which we denote by A, B, and C. The models
apply to Poisson sampling with independent cell counts {yijk} having means {𝜇ijk}.
They also apply to a multinomial distribution with cell probabilities {𝜋ijk} having∑

i
∑

j
∑

k 𝜋ijk = 1.0.

Mutual independence: Three categorical response variables are mutually inde-
pendent when the cell probabilities satisfy, for all i, j, and k,

P(A = i, B = j, C = k) = P(A = i)P(B = j)P(C = k).

That is, all 𝜋ijk = 𝜋i++𝜋+j+𝜋++k. For expected frequencies {𝜇ijk}, mutual indepen-
dence has the loglinear structural form

log𝜇ijk = 𝛽0 + 𝛽A
i + 𝛽B

j + 𝛽C
k . (7.4)

Joint independence: A is jointly independent of B and C when for all i, j, and k,

P(A = i, B = j, C = k) = P(A = i)P(B = j, C = k).
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That is, all 𝜋ijk = 𝜋i++𝜋+jk. This is ordinary independence for the two-way contin-
gency table that cross-classifies A with a variable composed of the c𝓁 combinations
of levels of B and C. The corresponding loglinear model is

log𝜇ijk = 𝛽0 + 𝛽A
i + 𝛽B

j + 𝛽C
k + 𝛾BC

jk . (7.5)

We use the hierarchical structure by which the presence of a two-factor term implies
inclusion of the lower order (single-factor) terms.

Conditional independence: A and B are conditionally independent, given C,
when for all i, j, and k,

P(A = i, B = j ∣ C = k) = P(A = i ∣ C = k)P(B = j ∣ C = k).

That is, independence holds for the r × c partial table relating A and B at each fixed
category of C. Equivalently, by expressing each conditional probability in terms of
the joint probabilities {𝜋ijk} and their marginals,

𝜋ijk = 𝜋i+k𝜋+jk∕𝜋++k.

Conditional independence of A and B, given C, has loglinear model form

log 𝜇ijk = 𝛽0 + 𝛽A
i + 𝛽B

j + 𝛽C
k + 𝛾AC

ik + 𝛾BC
jk . (7.6)

A model that permits all three pairs of variables to be conditionally dependent is

log𝜇ijk = 𝛽0 + 𝛽A
i + 𝛽B

j + 𝛽C
k + 𝛾AB

ij + 𝛾AC
ik + 𝛾BC

jk . (7.7)

From exponentiating both sides, the cell probabilities have the form

𝜋ijk = 𝜙ij𝜓ik𝜔jk.

No closed-form expression exists for the three components in terms of margins of
{𝜋ijk} except in certain special cases. All these loglinear models have constraints
on parameters to satisfy identifiability. For example, for any conditional association
term, we can take 𝛾1j = 𝛾i1 = 0 for all i and j, as R software does by default.

Interpretations of loglinear model parameters use their highest-order terms. The
two-factor terms describe conditional association as measured by log odds ratios.
At a fixed level k of C, the conditional association between A and B is specified by
(r − 1)(c − 1) odds ratios, such as

𝜃ij(k) =
𝜇ijk𝜇rck

𝜇ick𝜇rjk
, 1 ≤ i ≤ r − 1, 1 ≤ j ≤ c − 1.
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For example, when r = c = 2, substituting model (7.7) into log 𝜃11(k) yields

log 𝜃11(k) = log
𝜇11k𝜇22k

𝜇12k𝜇21k
= 𝛾AB

11 + 𝛾AB
22 − 𝛾AB

12 − 𝛾AB
21 .

Thus, 𝜃11(k) simplifies to exp(𝛾AB
22 ) under constraints such as R software imposes.

Analogous expressions occur with arbitrary r and c. In such expressions, because
the right-hand side is the same for all k, an absence of three-factor interaction is
equivalent to

𝜃ij(1) = 𝜃ij(2) = ⋯ = 𝜃ij(𝓁) for all i and j.

Because of this property, model (7.7) is called a loglinear model of homogeneous
association. Any loglinear model not having the three-factor interaction term has a
homogeneous conditional association for each pair of variables.

The general Poisson loglinear model for a three-way contingency table is

log𝜇ijk = 𝛽0 + 𝛽A
i + 𝛽B

j + 𝛽C
k + 𝛾AB

ij + 𝛾AC
ik + 𝛾BC

jk + 𝛾ABC
ijk .

With indicator variables for each factor, 𝛾ABC
ijk is the coefficient of the product of the

ith indicator variable for A, jth indicator variable for B, and kth indicator variable for
C. The total number of nonredundant parameters is

1 + (r − 1) + (c − 1) + (𝓁 − 1) + (r − 1)(c − 1) + (r − 1)(𝓁 − 1)

+ (c − 1)(𝓁 − 1) + (r − 1)(c − 1)(𝓁 − 1) = rc𝓁,

which is the total number of cell counts. This model has as many parameters as
Poisson observations and is saturated. It describes all possible {𝜇ijk > 0}.

Table 7.2 summarizes unsaturated loglinear models for three-way contingency
tables. For all such Poisson models, corresponding multinomial models have one
fewer parameter (the 𝛽0 intercept in the Poisson models) after conditioning on
the total count. The common parameters contribute in the same way to Poisson or

Table 7.2 Loglinear Models for Three-Way Contingency Tables, for Poisson Means or
Multinomial Probabilities {𝝅ijk}

Model Probability Association Terms
Formula Form for 𝜋ijk in Loglinear Model Interpretation

(7.4) 𝜋i++𝜋+j+𝜋++k None A, B, C mutually independent
(7.5) 𝜋i++𝜋+jk 𝛾BC

jk A jointly independent of B and C
(7.6) 𝜋i+k𝜋+jk∕𝜋++k 𝛾AC

ik + 𝛾BC
jk A, B conditionally indep., given C

(7.7) 𝜙ij𝜓ik𝜔jk 𝛾AB
ij + 𝛾AC

ik + 𝛾BC
jk Homogeneous association
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multinomial likelihoods and have the same ML estimates and SE values. The fit and
the X2 and G2 goodness-of-fit statistics are identical for the Poisson and multinomial
formulations.

Because the model matrices for these loglinear models contain indicator variables
and their products, the likelihood equations (7.1) take the simple form of equating
the observed counts to the fitted values in the margins of the contingency table
that correspond to the highest-order terms in the model. For example, the mutual
independence model (7.4) has likelihood equations, for all i, j, and k,

yi++ = �̂�i++, y+j+ = �̂�+j+, y++k = �̂�++k,

whereas the homogeneous association model (7.7) has likelihood equations

yij+ = �̂�ij+, yi+k = �̂�i+k, y+jk = �̂�+jk.

It is straightforward to derive these, much as we did for the independence model in
Section 7.2.2. For many models having some independence structure, closed-form
solutions exist. In all cases the Newton–Raphson method, which is equivalent to Fisher
scoring for these canonical-link models, yields fitted values and corresponding model
parameter estimates. When cell means mostly exceed about 5, X2 and G2 statistics
have approximate chi-squared null distributions for testing the model goodness of fit.
Standardized residuals can detect particular cells for which the fit is poor.

7.2.5 Connections Between Logistic and Loglinear Models

Loglinear models for contingency tables treat all categorical classifications symmet-
rically and regard the cell count as the response. They are useful for modeling the
joint distribution of categorical variables. By contrast, logistic models distinguish
between response and explanatory classifications. Although different in purpose, the
two types of models are connected.

We illustrate with the homogeneous association loglinear model (7.7). Suppose
we treat A as a response variable and B and C as explanatory, conditioning on {n+jk}.
For the binary case r = 2, we are then modeling c𝓁 binomial distributions on A. When
we construct the logit for each binomial distribution of A, we obtain

log
P(A = 1 ∣ B = j, C = k)
P(A = 2 ∣ B = j, C = k)

= log
𝜇1jk

𝜇2jk
= log𝜇1jk − log𝜇2jk

=
(
𝛽0 + 𝛽A

1 + 𝛽B
j + 𝛽C

k + 𝛾AB
1j + 𝛾AC

1k + 𝛾BC
jk

)
−

(
𝛽0 + 𝛽A

2 + 𝛽B
j + 𝛽C

k + 𝛾AB
2j + 𝛾AC

2k + 𝛾BC
jk

)
=

(
𝛽A

1 − 𝛽A
2

)
+

(
𝛾AB

1j − 𝛾AB
2j

)
+

(
𝛾AC

1k − 𝛾AC
2k

)
.
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The first parenthetical term is a constant, not depending on j or k. The second
parenthetical term depends on the category j of B. The third parenthetical term
depends on the category k of C. This logit has the additive form

logit[P(A = 1 ∣ B = j, C = k)] = 𝜆 + 𝛿B
j + 𝛿C

k .

In fact, the Poisson loglinear model and the binomial logistic model have the same
likelihood equations and the same fit. An analogous correspondence holds when A
has several categories, using a multinomial baseline-category logit model for A in
terms of additive factor effects for B and C.

The loglinear model that has the same fit as a logistic model with factors as
explanatory variables contains a general interaction term for relations among those
explanatory variables. The logistic model does not assume anything about relations
among explanatory variables, so it allows an arbitrary interaction pattern for them.
For example, for a main-effects logistic model that predicts A using factors B, C, and
D, the corresponding loglinear model has pairwise associations between A and B,
A and C, and A and D, as well as the BCD three-factor interaction term and all its
lower-order relatives.

7.2.6 Example: Loglinear Models for Student Substance Use

Table 7.3 refers to a survey by Wright State University that asked 2276 students in
their final year of high school in a rural area near Dayton, Ohio whether they had ever
used alcohol, cigarettes, or marijuana. Denote the variables in this 2 × 2 × 2 table by
A, C, and M.

Table 7.4 shows results of testing fit for four loglinear models. Models that lack
any association term fit poorly. The homogeneous association model fits well. It is
suggested by other criteria also, such as minimizing AIC.

The following output shows some results from fitting the homogeneous association
model. The AC fitted conditional odds ratios at each level of M equal exp(�̂�AC

11 + �̂�AC
22 −

�̂�AC
12 − �̂�AC

21 ), which is exp(�̂�AC
22 ) = e2.0545 = 7.80 for the R constraints. For those who

have used cigarettes, the odds of having used alcohol are estimated to be 7.80 times the
odds of having used alcohol for those who have not used cigarettes, and this applies

Table 7.3 Alcohol, Cigarette, and Marijuana Use Among High
School Seniors

Marijuana Use (M)
Alcohol Cigarette
Use (A) Use (C) Yes No

Yes Yes 911 538
No 44 456

No Yes 3 43
No 2 279

Source: Data courtesy of Harry Khamis, Wright State University.
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Table 7.4 Goodness-of-Fit Tests for Loglinear Models Fitted to the Data in Table 7.3

Loglinear Associations Deviance G2 Pearson X2 df P-valuea AIC

𝛾AC
ij + 𝛾AM

ik 497.37 443.76 2 < 0.001 558.4
𝛾AC

ij + 𝛾CM
jk 92.02 80.81 2 < 0.001 153.1

𝛾AM
ik + 𝛾CM

jk 187.75 177.61 2 < 0.001 248.8
𝛾AC

ij + 𝛾AM
ik + 𝛾CM

jk 0.37 0.40 1 0.54 63.4

aP-value for G2 statistic.

both for those who have used marijuana and those who have not. The corresponding
Wald 95% confidence interval is exp[2.0545 ± 1.96(0.1741)], or (5.5, 11.0).

----------------------------------------------------------------------

> Drugs # file Drugs.dat at www.stat.ufl.edu/~aa/glm/data

A C M count

1 yes yes yes 911

2 yes yes no 538

...

8 no no no 279

> attach(Drugs)

> alc <- factor(A); cig <- factor(C); mar <- factor(M)

> mutual.indep <- glm(count ~ alc + cig + mar, family=poisson(link=log))

> homo.assoc <- update(mutual.indep, .~. + alc:cig + alc:mar + cig:mar)

> summary(homo.assoc)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.8139 0.0331 205.699 < 2e-16

alc2 -5.5283 0.4522 -12.225 < 2e-16

cig2 -3.0157 0.1516 -19.891 < 2e-16

mar2 -0.5249 0.0543 -9.669 < 2e-16

alc2:cig2 2.0545 0.1741 11.803 < 2e-16 # odds ratio 7.8

alc2:mar2 2.9860 0.4647 6.426 1.31e-10 # odds ratio 19.8

cig2:mar2 2.8479 0.1638 17.382 < 2e-16 # odds ratio 17.3

---

Residual deviance: 0.3740 on 1 degrees of freedom

AIC: 63.417

----------------------------------------------------------------------

For a loglinear model with residual df = 1, each standardized residual has the same
absolute value and has square equal to the Pearson X2 statistic for testing goodness
of fit. The Pearson residuals are less appealing: they have eight separate values, even
though |yijk − �̂�ijk| is identical for each cell (because the likelihood equations imply
that the two-way observed and fitted marginal tables are identical) and the residual
df = 1.

----------------------------------------------------------------------

> pearson.resid <- resid(homo.assoc, type="pearson")

> std.resid <- rstandard(homo.assoc, type="pearson")

> sum(pearson.residˆ2) # Pearson chi-squared statistic

[1] 0.4011006

http://www.stat.ufl.edu/~aa/glm/data
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> cbind(count, fitted(homo.assoc), pearson.resid, std.resid)

count fitted(homo.assoc) pearson.resid std.resid

1 911 910.383 0.020 0.633

2 538 538.617 -0.027 -0.633

3 44 44.617 -0.092 -0.633

4 456 455.383 0.029 0.633

5 3 3.617 -0.324 -0.633

6 43 42.383 0.095 0.633

7 2 1.383 0.524 0.633

8 279 279.617 -0.037 -0.633

----------------------------------------------------------------------

Using a logistic model, we find the same results for the association between marijuana
use and each of alcohol use and cigarette use (i.e., estimated log odds ratios of 2.99 and
2.85). We model the logit of the probability of using marijuana with additive effects
for alcohol use and cigarette use, treating the data as four binomial observations
instead of eight Poisson observations.

-----------------------------------------------------------------------

> Drugs2 # file Drugs2.dat at www.stat.ufl.edu/~aa/glm/data

A C M_yes M_no n # data entered as 4 binomials

1 yes yes 911 538 1449

2 yes no 44 456 500

3 no yes 3 43 46

4 no no 2 279 281

> attach(Drugs2)

> alc <- factor(A); cig <- factor(C)

> fit.logistic <- glm(M_yes/n ~ alc + cig, weights=n, # specify weights

family = binomial(link = logit)) # when enter proportion responses

> summary(fit.logistic)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.3090 0.4752 -11.172 < 2e-16

alcyes 2.9860 0.4647 6.426 1.31e-10 # odds ratio 19.8

cigyes 2.8479 0.1638 17.382 < 2e-16 # odds ratio 17.3

---

Null deviance: 843.8266 on 3 degrees of freedom

Residual deviance: 0.3740 on 1 degrees of freedom

-----------------------------------------------------------------------

The null logistic model in this case is equivalent to the loglinear model by which
marijuana use is jointly independent of alcohol use and cigarette use.

7.2.7 Graphical Loglinear Models:
Portraying Conditional Independence Structure

Many loglinear models have graphical portrayals of the conditional independence
structure among the responses. This representation also helps to reveal implications
of models, such as when an association is unchanged when a variable is dropped
from an analysis.

http://www.stat.ufl.edu/~aa/glm/data
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From graph theory, an undirected graph consists of a set of vertices and a set of
edges connecting some vertices. In a probabilistic conditional independence graph,
each vertex represents a variable, and the absence of an edge connecting two variables
represents conditional independence between them. For instance, Figure 7.1 portrays
the conditional independence graph for categorical response variables A, B, C, and D
and the loglinear model that assumes independence between A and C and between A
and D, conditional on the other two variables. The four variables form the vertices,
and the four edges represent pairwise conditional associations. Edges do not connect
A and C or connect A and D, the conditionally independent pairs.

A B

C

D

Figure 7.1 Conditional independence graph for the loglinear model that assumes conditional
independence between A and C and between A and D.

Darroch et al. (1980) used undirected graphs to represent graphical models, which
are essentially loglinear models for contingency tables that have a conditional inde-
pendence structure. The graphical model corresponding to Figure 7.1 is the loglinear
model having the three-factor BCD interaction and the two-factor AB association and
their lower-order relatives, namely,

log𝜇hijk = 𝛽0 + 𝛽A
h + 𝛽B

i + 𝛽C
j + 𝛽D

k + 𝛾AB
hi + 𝛾BC

ij + 𝛾BD
ik + 𝛾CD

jk + 𝛾BCD
ijk .

A path in a conditional independence graph is a sequence of edges between one
variable and another. Two variables A and C are said to be separated by a subset
of variables if all paths connecting A and C intersect that subset. For instance, in
Figure 7.1, B separates A and C. The subset {B, D} also separates A and C. Markov
properties that pertain to paths and separation allow us to deduce from the graph the
conditional independence structure between variables and groups of variables. One
such property, the global Markov property, states that two variables are conditionally
independent given any subset of variables that separates them in the graph. Thus,
in Figure 7.1, not only are A and C conditionally independent given B and D, but
also given B alone. Similarly, A and D are conditionally independent given B alone.
This property is equivalent to a local Markov property, according to which a variable
is conditionally independent of all other variables, given the adjacent neighbors to
which it is connected by an edge.

Conditional associations usually differ5 from marginal associations. Under cer-
tain collapsibility conditions, however, they are the same. For loglinear and logistic
models, the association parameters pertain to odds ratios, so such conditions relate to

5Recall, for example, Section 3.4.3 and Simpson’s paradox.
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equality of conditional and marginal odds ratios. Bishop et al. (1975, p. 47) provided
a parametric collapsibility condition for multiway contingency tables:

Suppose that a model for a multiway contingency table partitions variables into three
mutually exclusive subsets, {S1, S2, S3}, such that S2 separates S1 and S3. After collapsing
the table over the variables in S3, parameters relating variables in S1 and parameters relating
variables in S1 to variables in S2 are unchanged.

For the graphical model corresponding to Figure 7.1, let S1 = {A}, S2 = {B}, and
S3 = {C, D}. Since the AC and AD terms do not appear in the model, all parameters
linking set S1 with set S3 equal zero, and S2 separates S1 and S3. If we collapse over
C and D, the AB association is unchanged. Next, identify S1 = {C, D}, S2 = {B},
S3 = {A}. Then conditional associations among B, C, and D remain the same after
collapsing over A. By contrast, the homogeneous loglinear model that provides a
good fit for the student substance use data of Table 7.3 does not satisfy collapsibility
conditions. The fitted (AC, AM, CM) conditional odds ratios of (7.8, 19.8, 17.3)
obtained by exponentiating the log odds ratio estimates from the R output differ from
the corresponding two-way marginal odds ratios, (17.7, 61.9, 25.1).

7.3 NEGATIVE BINOMIAL GLMS

For the Poisson distribution, the variance equals the mean. In practice, count obser-
vations often exhibit variability exceeding that predicted by the Poisson. This phe-
nomenon is called overdispersion.

7.3.1 Overdispersion for a Poisson GLM

A common reason for overdispersion is heterogeneity: at fixed levels of the explana-
tory variables, the mean varies according to values of unobserved variables. For
example, for the horseshoe crab dataset introduced in Section 1.5.1 that we analyze
further in Section 7.5, suppose that a female crab’s carapace width, weight, color,
and spine condition are the four explanatory variables that affect her number of male
satellites. Suppose that y has a Poisson distribution at each fixed combination of
those variables, but we use the model that has weight alone as an explanatory vari-
able. Crabs having a certain weight are then a mixture of crabs of various widths,
colors, and spine conditions. Thus, the population of crabs having that weight is a
mixture of several Poisson populations, each having its own mean for the response.
This heterogeneity results in an overall response distribution at that weight having
greater variation than the Poisson. If the variance equals the mean when all relevant
explanatory variables are included, it exceeds the mean when only some are included.
Another severe limitation of Poisson GLMs is that, because the variance of y must
equal the mean, at a fixed mean the variance cannot decrease as additional explanatory
variables enter the model.

Overdispersion is not an issue in ordinary linear models that assume normally
distributed y, because that distribution has a separate variance parameter to describe
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variability. For Poisson and binomial distributions, however, the variance is a function
of the mean. Overdispersion is common in the modeling of counts. Suppose the model
for the mean has the correct link function and linear predictor, but the true response
distribution has more variability than the Poisson. Then the ML estimators of model
parameters assuming a Poisson response are still consistent, converging in probability
to the parameter values, but standard errors are too small. Extensions of the Poisson
GLM that have an extra parameter account better for overdispersion. We present one
such extension here, and Sections 7.4, 8.1, and 9.4 present others.

7.3.2 Negative Binomial as a Gamma Mixture of Poissons

A mixture model is a flexible way to account for overdispersion. At a fixed setting of
the explanatory variables actually observed, given the mean𝜆, suppose the distribution
of y is Poisson(𝜆), but 𝜆 itself varies because of unmeasured covariates. Let 𝜇 = E(𝜆).
Then unconditionally,

E(y) = E[E(y ∣ 𝜆)] = E(𝜆) = 𝜇,

var(y) = E[var(y ∣ 𝜆)] + var[E(y ∣ 𝜆)] = E(𝜆) + var(𝜆) = 𝜇 + var(𝜆) > 𝜇.

Here is an important example of a mixture model for count data: suppose that
(1) given 𝜆, y has a Poisson(𝜆) distribution, and (2) 𝜆 has the gamma distribution
(4.29). Recall that the gamma distribution has E(𝜆) = 𝜇 and var(𝜆) = 𝜇2∕k for a shape
parameter k > 0, so the standard deviation is proportional to the mean. Marginally, the
gamma mixture of the Poisson distributions yields the negative binomial distribution
for y. Its probability mass function is

p(y;𝜇, k) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
𝜇

𝜇 + k

)y (
k

𝜇 + k

)k

, y = 0, 1, 2,… . (7.8)

With k fixed, this is a member of an exponential dispersion family appropriate for
discrete variables (Exercise 7.23), with natural parameter log[𝜇∕(𝜇 + k)].

In the two-parameter negative binomial family, let 𝛾 = 1∕k. Then y has

E(y) = 𝜇, var(y) = 𝜇 + 𝛾𝜇2.

The index 𝛾 > 0 is a type of dispersion parameter. The greater the value of 𝛾 , the
greater the overdispersion relative to the Poisson. As 𝛾 → 0, var(y) → 𝜇 and the
negative binomial distribution converges6 to the Poisson.

The negative binomial distribution has much greater scope than the Poisson. For
example, the Poisson mode is the integer part of the mean and equals 0 only when
𝜇 < 1. The negative binomial is also unimodal, but the mode is 0 when 𝛾 ≥ 1 and
otherwise it is the integer part of 𝜇(1 − 𝛾). The mode can be 0 for any 𝜇.

6For a proof, see Cameron and Trivedi (2013, p. 85).
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7.3.3 Negative Binomial GLMs

Negative binomial GLMs commonly use the log link, as in Poisson loglinear models,
rather than the canonical link. For simplicity, we let the dispersion parameter 𝛾 be the
same constant for all n observations but treat it as unknown, much like the variance in
normal models. This corresponds to a constant coefficient of variation in the gamma
mixing distribution,

√
var(𝜆)∕E(𝜆) =

√
𝛾 .

From Equation (7.8) expressed in terms of the dispersion parameter 𝛾 , the log-
likelihood function for a negative binomial GLM with n independent observations
is

L(𝜷, 𝛾; y) =
n∑

i=1

[
log Γ

(
yi +

1
𝛾

)
− log Γ

(
1
𝛾

)
− log Γ(yi + 1)

]

+
n∑

i=1

[
yi log

(
𝛾𝜇i

1 + 𝛾𝜇i

)
−

(
1
𝛾

)
log(1 + 𝛾𝜇i)

]
,

where 𝜇i is a function of 𝜷 through 𝜂i = g(𝜇i) =
∑

j 𝛽jxij with the link function g. The
likelihood equations obtained by differentiating L(𝜷, 𝛾; y) with respect to 𝜷 have the
usual form (4.10) for a GLM,

n∑
i=1

(yi − 𝜇i)xij

var(yi)

(
𝜕𝜇i

𝜕𝜂i

)
=

∑
i

(yi − 𝜇i)xij

𝜇i + 𝛾𝜇2
i

(
𝜕𝜇i

𝜕𝜂i

)
= 0, j = 1, 2,… , p.

The log-likelihood yields a Hessian matrix that has

𝜕2L(𝜷, 𝛾; y)
𝜕𝛽j𝜕𝛾

= −
∑

i

(yi − 𝜇i)xij

(1 + 𝛾𝜇i)2

(
𝜕𝜇i

𝜕𝜂i

)
.

Thus, E(𝜕2L∕𝜕𝛽j𝜕𝛾) = 0 for each j, and 𝜷 and 𝛾 are orthogonal parameters (Recall

Section 4.2.4). So 𝜷 and �̂� are asymptotically independent, and the large-sample SE
for 𝛽j is the same whether 𝛾 is known or estimated.

The iteratively reweighted least squares algorithm for Fisher scoring applies for
ML model fitting. The estimated covariance matrix of 𝜷 is

v̂ar(𝜷) = (XTŴX)−1,

where, with log link, W is the diagonal matrix with wi = (𝜕𝜇i∕𝜕𝜂i)
2∕var(yi) =

𝜇i∕(1 + 𝛾𝜇i). The deviance for a negative binomial GLM is

D(y, �̂�) = 2
∑

i

[
yi log

(
yi

�̂�i

)
−

(
yi +

1
�̂�

)
log

(
1 + �̂�yi

1 + �̂� �̂�i

)]
.

This is close to the Poisson GLM deviance (7.2) when �̂� is near 0.
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7.3.4 Comparing Poisson and Negative Binomial GLMs

How can we compare Poisson and negative binomial GLMs that have the same
explanatory variables, to determine whether the negative binomial model gives a better
fit? An informal comparison can be based on AIC values. For a formal significance
test, we can test H0: 𝛾 = 0, because the Poisson is the limiting case of the negative
binomial as 𝛾 ↓ 0.

Since 𝛾 is positive, 𝛾 = 0 on the boundary of the parameter space. Thus, the
likelihood-ratio statistic does not have an asymptotic null chi-squared distribution.
Rather, it is an equal mixture of a single-point distribution at 0 (which occurs when
�̂� = 0) and chi-squared with df = 1. The P-value is half that from treating the statistic
as chi-squared with df = 1 (Self and Liang 1987).

7.3.5 Negative Binomial Model with Variance Proportional to Mean

An alternative negative binomial parameterization results from writing the gamma
density formula with k𝜇 as the shape parameter,

f (𝜆; k,𝜇) = kk𝜇

Γ(k𝜇)
exp(−k𝜆)𝜆k𝜇−1 𝜆 ≥ 0,

so E(𝜆) = 𝜇 and var(𝜆) = 𝜇∕k. For this parameterization, the gamma mixture of
Poisson distributions yields a negative binomial distribution with

E(y) = 𝜇, var(y) = 𝜇(1 + k)∕k.

The variance is now linear rather than quadratic in 𝜇. It corresponds to an inflation
of the Poisson variance, converging to it as k → ∞.

The two parameterizations of the negative binomial are sometimes denoted by
NB1 (linear) and NB2 (quadratic). Only the NB2 falls within the traditional GLM
framework, being expressible as an exponential dispersion family distribution, and
it is much more commonly used. Unlike the NB2 model, for an NB1 model 𝜷 and
k are not orthogonal parameters, and 𝜷 is not a consistent estimator when the model
for the mean holds but the true distribution is not negative binomial (Cameron and
Trivedi 2013, Section 3.3). Lee and Nelder (1996) presented ML model fitting for
NB1 models.

7.4 MODELS FOR ZERO-INFLATED DATA

In practice, the frequency of 0 outcomes is often larger than expected under standard
discrete models. In particular, because the mode of a Poisson distribution is the
integer part of the mean, a Poisson GLM is inadequate when means can be relatively
large but the modal response is 0. Such data, which are zero-inflated relative to data
expected for a Poisson GLM, are common when many subjects have a 0 response
and many also have much larger responses, so the overall mean is not near 0. An
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example of a variable that might be zero-inflated is the number of times in the past
week that individuals report exercising, such as by going to a gym. Some would do so
frequently, some would do it occasionally but not in the past week (a random 0), and
a substantial percentage would never do so, causing zero inflation. Other examples
are counts of activities for which many subjects would necessarily report 0, such as
the number of times during some period of having an alcoholic drink, or smoking
marijuana, or having sexual intercourse.

Zero-inflation is less problematic for negative binomial GLMs, because that distri-
bution can have a mode of 0 regardless of the value of the mean. However, a negative
binomial model fits poorly when the data are strongly bimodal, with a mode at zero
and a separate mode around some considerably higher value. This could occur for
the frequency of an activity in which many subjects never participate but many others
quite often do. Then a substantial fraction of the population necessarily has a zero
outcome, and the remaining fraction follows some distribution that may have small
probability of a zero outcome.

7.4.1 Zero-Inflated Poisson and Negative Binomial Models

The representation just mentioned, of one set of observations that necessarily are zero
and another set that may be zero according to a random event, leads naturally to a
mixture model in which two types of zeros can occur. The relevant distribution is a
mixture of an ordinary count model such as the Poisson or negative binomial with
one that places all its mass at zero.

The zero-inflated Poisson (ZIP) model (Lambert 1992) assumes that

yi ∼
{

0 with probability 1 − 𝜙i

Poisson(𝜆i) with probability 𝜙i.

The unconditional probability distribution has

P(yi = 0) = (1 − 𝜙i) + 𝜙ie
−𝜆i ,

P(yi = j) = 𝜙i
e−𝜆i𝜆

j
i

j!
, j = 1, 2,… .

Explanatory variables affecting 𝜙i need not be the same as those affecting 𝜆i. The
parameters could be modeled by

logit(𝜙i) = x1i𝜷1 and log(𝜆i) = x2i𝜷2.

A latent class construction that yields this model posits an unobserved binary
variable zi. When zi = 0, yi = 0, and when zi = 1, yi is a Poisson(𝜆i) variate. For this
mixture distribution,

E(yi) = E[E(yi ∣ zi)] = (1 − 𝜙i)0 + 𝜙i(𝜆i) = 𝜙i𝜆i.
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Also, because E[var(yi ∣ zi)] = (1 − 𝜙i)0 + 𝜙i(𝜆i) = 𝜙i𝜆i and var[E(yi ∣ zi)] = (1 −
𝜙i)(0 − 𝜙i𝜆i)

2 + 𝜙i(𝜆i − 𝜙i𝜆i)
2 = 𝜆2

i 𝜙i(1 − 𝜙i),

var(yi) = E[var(yi ∣ zi)] + var[E(yi ∣ zi)] = 𝜙i𝜆i[1 + (1 − 𝜙i)𝜆i].

Since var(yi) > E(yi), overdispersion occurs relative to a Poisson model.
When 𝜆i and 𝜙i are not functionally related, the joint log-likelihood function for

the two parts of the model is

L(𝜷1,𝜷2) =
∑
yi=0

log[1 + ex1i𝜷1 exp(−ex2i𝜷2 )] −
n∑

i=1

log(1 + ex1i𝜷1 )

+
∑
yi>0

[x1i𝜷1 + yix2i𝜷2 − ex2i𝜷2 − log(yi!)].

Lambert (1992) expressed the log-likelihood in terms of the latent variables {zi}.
She used the EM algorithm for ML fitting, treating each zi as a missing value.
Alternatively, the Newton–Raphson method can be used.

A disadvantage of the ZIP model is the larger number of parameters compared with
ordinary Poisson or negative binomial models. Sometimes the explanatory variables
in the two parts of the model are the same, and their effects have similar relative
size. For such cases, Lambert proposed a simpler model in which x1i = x2i and
𝜷2 = 𝜏𝜷1 for a shape parameter 𝜏. Another disadvantage of the general ZIP model
is that the parameters do not directly describe the effects of explanatory variables on
E(yi) = 𝜙i𝜆i, because 𝜷1 pertains to effects on 𝜙i and 𝜷2 pertains to effects on 𝜆i.
In addition, when x1i and x2i are the same or overlap substantially, the correlation
between them could cause further problems with interpretation. A simpler alternative
fits only an intercept in the model for 𝜙i. In that case E(yi) is proportional to 𝜆i.

In practice, overdispersion often occurs even when we condition on the response
being positive or when we condition on zi = 1 in the latent formulation of the ZIP
model. The equality of mean and variance assumed by the ZIP model, conditional on
zi = 1, may not be realistic. When we use a ZIP model but there is overdispersion,
standard error estimates can be badly biased downward. A zero-inflated negative
binomial (ZINB) model is then more appropriate. For it, with probability 1 − 𝜙i,
yi = 0, and with probability 𝜙i, yi has a negative binomial distribution with mean 𝜆i
and dispersion parameter 𝛾 .

7.4.2 Hurdle Models: Handling Zeroes Separately

An alternative approach to modeling zero-inflation uses a two-part model called a
hurdle model. One part is a binary model such as a logistic or probit model for whether
the response outcome is zero or positive. If the outcome is positive, the “hurdle is
crossed.” Conditional on a positive outcome, to analyze its level, the second part uses
a truncated model that modifies an ordinary distribution by conditioning on a positive
outcome. The hurdle model can handle both zero inflation and zero deflation.
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Suppose that the first part of the process is governed by probabilities P(yi > 0) = 𝜋i
and P(yi = 0) = 1 − 𝜋i and that {yi ∣ yi > 0} follows a truncated-at-zero probability
mass function f (yi;𝜇i), such as a truncated Poisson. The complete distribution is

P(yi = 0) = 1 − 𝜋i,

P(yi = j) = 𝜋i
f (j;𝜇i)

1 − f (0;𝜇i)
, j = 1, 2,… .

With explanatory variables, we could use a logistic regression model for 𝜋i and a
loglinear model for the mean 𝜇i of the untruncated f distribution,

logit(𝜋i) = x1i𝜷1 and log(𝜇i) = x2i𝜷2.

The joint likelihood function for the two-part hurdle model is

𝓁(𝜷1,𝜷2) =
n∏

i=1

(1 − 𝜋i)
I(yi=0)

[
𝜋i

f (yi;𝜇i)

1 − f
(
0;𝜇i

)
]1−I(yi = 0)

,

where I(⋅) is the indicator function. If (1 − 𝜋i) > f (0;𝜇i) for every i, the model
represents zero inflation. The log-likelihood separates into two terms, L(𝜷1,𝜷2) =
L1(𝜷1) + L2(𝜷2), where

L1(𝜷1) =
∑

yi = 0

[
log

(
1 − 𝜋i

)]
+

∑
yi>0

log
(
𝜋i

)

=
∑
yi>0

x1i𝜷1 −
n∑

i= 1

log(1 + ex1i𝜷1 )

is the log-likelihood function for the binary process and

L2(𝜷2) =
∑
yi>0

{
log f

(
yi; exp(x2i𝜷2)

)
− log

[
1 − f (0; exp(x2i𝜷2))

]}

is the log-likelihood function for the truncated model. With a truncated Poisson model
for the positive outcome,

L2(𝜷2) =
∑
yi>0

{yix2i𝜷2 − ex2i𝜷2 − log[1 − exp(−ex2i𝜷2 )]} −
∑
yi>0

log(yi!)

is the log-likelihood function for the truncated model. When overdispersion occurs,
using a truncated negative binomial for the positive outcome performs better. We
obtain ML estimates by separately maximizing L1 and L2.
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Zero-inflated models are more natural than the hurdle model when the population
is naturally regarded as a mixture, with one set of subjects that necessarily has a 0
response. However, the hurdle model is also suitable when, at some settings, the data
have fewer zeros than are expected under standard distributional assumptions.

7.4.3 Truncated Discrete Models for Positive Count Data

The part of the hurdle model that applies to the positive counts uses a truncation
of a discrete distribution. Such a truncated distribution is of use in its own right
in applications in which a count of 0 is not possible. Examples of such response
variables are the number of people in a household, the number of occupants of a car,
and the number of days a patient admitted to a hospital stays there.

If yi has a truncated Poisson distribution with parameter 𝜆i, then

E(yi) =
𝜆i

1 − e−𝜆i
, var(yi) =

𝜆i

1 − e−𝜆i
−

𝜆2
i e−𝜆i

(1 − e−𝜆i )2
.

Conditional on a Poisson variate being positive, the variance is smaller than the mean.
When this is substantially violated, more flexibility is provided by the zero-truncated
negative binomial distribution. It can be derived as a gamma mixture of zero-truncated
Poisson distributions. Software is available for fitting zero-truncated distributions7.

7.5 EXAMPLE: MODELING COUNT DATA

We illustrate models for discrete data using the horseshoe crab dataset introduced
in Section 1.5.1 The response variable for the n = 173 mating female crabs is y =
number of “satellites”—male crabs that group around the female and may fertilize
her eggs. Explanatory variables are the female crab’s color, spine condition, weight,
and carapace width.

7.5.1 Fits to Marginal Distribution of Satellite Counts

To illustrate the Poisson, negative binomial, ZIP, and ZINB distributions introduced
in this chapter, we first investigate the marginal distribution of satellite counts. From
Section 1.5.1, the mean of 2.919 and variance of 9.912 suggest overdispersion relative
to the Poisson.

----------------------------------------------------------------------

> attach(Crabs) # file Crabs.dat at www.stat.ufl.edu/~aa/glm/data

> hist(y, breaks=c(0:16)-0.5) # Histogram display with sufficient bins

----------------------------------------------------------------------

7Examples are the pospois and posnegbinom functions in the VGAM package of R.

http://www.stat.ufl.edu/~aa/glm/data
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Figure 7.2 Histogram for sample distribution of y = number of horseshoe crab satellites.

The histogram (Figure 7.2) shows a strong mode at 0 but slightly elevated frequen-
cies for satellite counts of 3 through 6 before decreasing substantially. Because the
distribution may not be unimodal, the negative binomial may not fit as well as a
zero-inflated distribution.

We fit the Poisson distribution and negative binomial distribution with quadratic
variance (NB2) by fitting GLMs having only an intercept.

----------------------------------------------------------------------

> summary(glm(y ~ 1, family=poisson, data=Crabs)) # default link is log

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0713 0.0445 24.07 <2e-16 # exp(1.0713) = 2.919

---

> logLik(glm(y ~ 1, family=poisson, data=Crabs))

'log Lik.' -494.045

> library(MASS)

> summary(glm.nb(y ~ 1, data=Crabs)) # default link is log

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0713 0.0980 10.93 <2e-16

---

Theta: 0.758, Std. Err.: 0.126

> logLik(glm.nb(y ~ 1, data=Crabs))

'log Lik.' -383.705

----------------------------------------------------------------------

The estimated NB2 dispersion parameter8 is �̂� = 1∕0.758 = 1.32. This estimate,
the much larger SE (0.0980 vs. 0.0445) for the log mean estimate of log(2.919) =

8SAS (PROC GENMOD) reports �̂� as having SE = 0.22.
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1.071, and the much larger log-likelihood also suggest that the Poisson distribution
is inadequate.

Next, we consider zero-inflated models9.

----------------------------------------------------------------------

> library(pscl) # pscl package can fit zero-inflated distributions

> summary(zeroinfl(y ~ 1)) # uses log link

Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.50385 0.04567 32.93 <2e-16

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6139 0.1619 -3.791 0.00015

---

Log-likelihood: -381.615 on 2 Df # 2 is model df, not residual df

----------------------------------------------------------------------

The fitted ZIP distribution is a mixture with probability e−0.6139∕[1 + e−0.6139] =
0.351 for the degenerate distribution at 0 and probability 1 − 0.351 = 0.649 for a Pois-
son with mean e1.50385 = 4.499. The fitted value of 173[0.351 + 0.649e−4.499] = 62.0
for the 0 count reproduces the observed value of 62. The fitted value for the ordinary
Poisson model is only 173e−2.919 = 9.3. The log-likelihood increases substantially
when we fit a zero-inflated negative binomial (ZINB) model.

----------------------------------------------------------------------

> summary(zeroinfl(y ~ 1, dist="negbin")) # uses log link in pscl lib.

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.46527 0.06834 21.440 < 2e-16

Log(theta) 1.49525 0.34916 4.282 1.85e-05

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7279 0.1832 -3.973 7.1e-05

---

Theta = 4.4605 Log-likelihood: -369.352 on 3 Df

----------------------------------------------------------------------

This distribution is a mixture with probability e−0.7279∕[1 + e−0.7279] = 0.326 for the
degenerate distribution at 0 and probability 0.674 for a negative binomial with mean
e1.465 = 4.33 and dispersion parameter estimate �̂� = 1∕4.4605 = 0.22.

To further investigate lack of fit, we grouped the counts into 10 categories, using
a separate category for each count from 0 to 8 and then combining counts of 9 and

9Such models can also be fitted with the vglm function in the VGAM package.
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above into a single category. Comparing these with the ZINB fitted distribution of the
173 observations into these 10 categories, we obtained X2 = 7.7 for df = 10 − 3 = 7
(since the model has three parameters), an adequate fit. For the other fits, X2 = 522.3
for the Poisson model, 33.6 for the ordinary negative binomial model, and 31.3 for
the ZIP model. Here are the fitted counts for the four models:

----------------------------------------------------------------------

count observed fit.p fit.nb fit.zip fit.zinb

0 62 9.34 52.27 62.00 62.00

1 16 27.26 31.45 5.62 12.44

2 9 39.79 21.94 12.63 16.73

3 19 38.72 16.01 18.94 17.74

4 19 28.25 11.94 21.31 16.30

5 15 16.50 9.02 19.17 13.58

6 13 8.03 6.87 14.38 10.55

7 4 3.35 5.27 9.24 7.76

8 6 1.22 4.06 5.20 5.48

9 or more 10 0.55 14.16 4.51 10.43

----------------------------------------------------------------------

The ZIP model tends to be not dispersed enough, having fitted value that is too small
for the counts of 1 and ≥ 9.

7.5.2 GLMs for Crab Satellite Numbers

We now consider zero-inflated negative binomial models with the explanatory vari-
ables from Table 1.3. Weight and carapace width have a correlation of 0.887, and
we shall use only weight to avoid issues with collinearity. Darker-colored crabs tend
to be older. Most crabs have both spines worn or broken (category 3). When we
fit the ZINB main-effects model using weight, color, and spine condition for each
component, with color and spine condition as qualitative factors, we find that weight
is significant in each component but neither of color or spine condition are. Adding
interaction terms does not yield an improved fit. Analyses using color in a quantita-
tive manner with category scores {ci = i} gives relatively strong evidence that darker
crabs tend to have more 0 counts. If we use weight wi in both components of the
model but quantitative color only in the zero-component, we obtain:

----------------------------------------------------------------------

> summary(zeroinfl(y ~ weight | weight + color, dist="negbin"))

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8961 0.3070 2.919 0.0035

weight 0.2169 0.1125 1.928 0.0538

Log(theta) 1.5802 0.3574 4.422 9.79e-06
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Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.8662 1.2415 1.503 0.133

weight -1.7531 0.4429 -3.958 7.55e-05

color 0.5985 0.2572 2.326 0.020

---

Theta = 4.8558 Log-likelihood: -349.865 on 6 Df

----------------------------------------------------------------------

The fitted distribution is a mixture with probability �̂�i of a negative binomial having
mean �̂�i satisfying

log �̂�i = 0.896 + 0.217wi

with dispersion parameter estimate �̂� = 1∕4.8558 = 0.21, and a probability mass
1 − �̂�i at 0 satisfying

logit(1 − �̂�i) = 1.866 − 1.753wi + 0.598ci.

The overall fitted mean response at a particular weight and color equals

Ê(yi) = �̂�iÊ(yi ∣ zi = 1) =
(

1
1 + e1.866−1.753wi+0.598ci

)
e0.896+0.217wi .

As weight increases for a particular color, the fitted probability mass at the 0 outcome
decreases, and the fitted negative binomial mean increases. Figure 7.3 plots the overall
fitted mean as a function of weight for the dark crabs (color 4) and as a function of
color at the median weight of 2.35 kg.

If we drop color completely and exclude weight from the NB2 component of the
model, the log-likelihood decreases to −354.7 but we obtain the simple expression
for the overall fitted mean of exp(1.47094)∕[1 + exp(3.927 − 1.985wi)]. This has a
logistic shape for the increase in the fitted mean as a function of weight.

If we ignore the zero inflation and fit an ordinary NB2 model with weight and
quantitative color predictors, we obtain:

----------------------------------------------------------------------

> summary(glm.nb(y ~ weight + color))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3220 0.5540 -0.581 0.561

weight 0.7072 0.1612 4.387 1.15e-05

color -0.1734 0.1199 -1.445 0.148

---

Theta: 0.956 2 x log-likelihood: -746.452 # L = -373.226

----------------------------------------------------------------------

This describes the tendency of the overall mean response to increase with weight
and decrease with color (but not significantly). In not having a separate component
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Figure 7.3 Fitted mean number of horseshoe crab satellites for zero-inflated negative bino-
mial model, plotted as a function of weight for dark crabs and as a function of color for
median-weight crabs.

to handle the zero count, the NB2 model has dispersion parameter estimate �̂� =
1∕0.956 = 1.05 that is much greater than �̂� for the NB2 component of ZINB models.
The fit is similar to that of the geometric distribution, which is NB2 with 𝛾 = 1.
But its log-likelihood of −373.2 is considerably worse than values obtained for
ZINB models.

Unless previous research or theory suggests more-complex models, it seems ade-
quate to use a zero-inflated NB2 model with weight as the primary predictor, adding
color as a predictor of the mass at 0. In these analyses, however, we have ignored
that the dataset contains an outlier—an exceptionally heavy crab weighing 5.2 kg
of medium color that had 7 satellites. As exercise, you can fit models without that
observation to investigate how the results change.

CHAPTER NOTES

Section 7.1: Poisson GLMs for Counts and Rates

7.1 Poisson GLMs: See Cameron and Trivedi (2013) for details about Poisson and other
models for count data and an extensive bibliography.

Section 7.2: Poisson/Multinomial Models for Contingency Tables

7.2 Loglinear models: For more details about loglinear models for contingency tables, see
Agresti (2013, Chapters 9, 10) and Bishop et al. (1975).
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7.3 Graphical models: For more on conditional independence graphs, see Darroch et al.
(1980), Lauritzen (1996), and Madigan and York (1995). More general probabilistic
contexts include directed graphs, which are natural for hierarchical Bayesian models,
and explanatory variables (e.g., Jordan 2004).

Section 7.3: Negative Binomial GLMs

7.4 NB modeling: Greenwood and Yule (1920) derived the negative binomial as a gamma
mixture of Poisson distributions. Johnson et al. (2005, Chapter 5) summarized properties
of the distribution. Cameron and Trivedi (2013, Section 3.3) discussed NB modeling
and presented an asymptotic variance expression for �̂� . They also presented moment
estimators for 𝛾 and studied robustness properties (Section 3.3) and discussed analogs
of R-squared for count data models (Section 5.3.3). See also Anscombe (1950), Hilbe
(2011), Hinde and Demétrio (1998), and Lawless (1987). Alternatives to the gamma for
mixing Poisson distributions include the log-normal and inverse-Gaussian distributions.
See Cameron and Trivedi (2013, Section 4.2).

Section 7.4: Models for Zero-Inflated Data

7.5 Hurdle model, and ZIP versus ZINB: Mullahy (1986) proposed the hurdle model using
the truncated Poisson or geometric distribution. Ridout et al. (2001) provided a score
test of the ZIP model against the ZINB alternative. Estimators for the ZIP model can be
unstable compared to the hurdle model (e.g., for estimating a predictor effect in the logit
component of the model) when zero deflation occurs at some predictor settings. See Min
and Agresti (2005) for discussion, more references, and extensions to handling repeated
measurements with zero-inflated data. See also Cameron and Trivedi (2013, Chapter 4)
and Hilbe (2011, Chapter 11) for zero-inflated models, hurdle models, truncated models,
and other generalized count regression models.

7.6 Zero-truncated models: Models for zero-truncated data have a long history. See
Amemiya (1984), Cameron and Trivedi (2013, Section 4.3), Johnson et al. (2005, Section
4.10, 5.11), and Meng (1997).

EXERCISES

7.1 Suppose {yi} are independent Poisson observations from a single group. Find
the likelihood equation for estimating 𝜇 = E(yi). Show that �̂� = ȳ regardless
of the link function.

7.2 Suppose {yi} are independent Poisson variates, with 𝜇 = E(yi), i = 1,… , n.
For testing H0: 𝜇 = 𝜇0, show that the likelihood-ratio statistic simplifies to

−2(L0 − L1) = 2[n(𝜇0 − ȳ) + nȳ log(ȳ∕𝜇0)].

Explain how to use this to obtain a large-sample confidence interval for 𝜇.
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7.3 Refer to the previous exercise. Explain why, alternatively, for large samples
you can test H0 using the standard normal test statistic z =

√
n(ȳ − 𝜇0)∕

√
𝜇0.

Explain how to invert this test to obtain a confidence interval. (These are the
score test and score-test based confidence interval.)

7.4 When y1 and y2 are independent Poisson with means 𝜇1 and 𝜇2, find the
likelihood-ratio statistic for testing H0: 𝜇1 = 𝜇2. Specify its asymptotic null
distribution, and describe the condition under which the asymptotics apply.

7.5 For the one-way layout for Poisson counts (Section 7.1.5), using the identity
link function, show how to obtain a large-samples confidence interval for
𝜇h − 𝜇i. If there is overdispersion, explain why it is better to use a formula

(ȳh − ȳi) ± z𝛼∕2

√
(s2

h∕nh) + (s2
i ∕ni) based only on the central limit theorem.

7.6 For the one-way layout for Poisson counts, derive the likelihood-ratio statistic
for testing H0: 𝜇1 = ⋯ = 𝜇c.

7.7 For the one-way layout for Poisson counts, derive a test of H0: 𝜇1 = ⋯ = 𝜇c
by applying a Pearson chi-squared goodness-of-fit test (with df = c − 1) for
a multinomial distribution that compares sample proportions in c categories
against H0 values of multinomial probabilities, (a) when n1 = ⋯ = nc, (b) for
arbitrary {ni}, with n =

∑
i ni.

7.8 In a balanced two-way layout for a count response, let yijk be observa-
tion k at level i of factor A and level j of factor B, k = 1,… , n. Formu-
late a Poisson loglinear main-effects model for {𝜇ijk = E(yijk)}. Find the
likelihood equations, and show that {𝜇ij+ =

∑
k E(yijk)} have fitted values

{�̂�ij+ = (yi++y+j+)∕y+++}.

7.9 Refer to Note 1.5. For a Poisson loglinear model containing an intercept,
show that the average estimated rate of change in the mean as a function of
explanatory variable j satisfies 1

n

∑
i(𝜕�̂�i∕𝜕xij) = 𝛽jȳ.

7.10 A method for negative exponential modeling of survival times relates to the
Poisson loglinear model for rates (Aitkin and Clayton 1980). Let T denote the
time to some event, with pdf f and cdf F. For subject i, let wi = 1 for death
and 0 for censoring, and let t =

∑
i ti and w =

∑
i wi.

a. Explain why the survival-time log-likelihood for n independent observa-
tions is10

L(𝜆) =
∑

i

wi log[f (ti)] +
∑

i

(1 − wi) log[1 − F(ti)].

10This actually applies only for noninformative censoring mechanisms.
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Assuming f (t) = 𝜆 exp(−𝜆t), show that �̂� = w∕t. Conditional on t, explain
why w has a Poisson distribution with mean t𝜆. Using the Poisson likeli-
hood, show that �̂� = w∕t.

b. With 𝜆 replaced by 𝜆 exp(x𝜷) and with 𝜇i = ti𝜆 exp(xi𝜷), show that L
simplifies to

L(𝜆, 𝜷) =
∑

i

wi log 𝜇i −
∑

i

𝜇i −
∑

i

wi log ti.

Explain why maximizing L(𝜆, 𝜷) is equivalent to maximizing the likelihood
for the Poisson loglinear model

log𝜇i − log ti = log 𝜆 + xi𝜷

with offset log(ti), using “observations” {wi}.

c. When we sum terms in L for subjects having a common value of x, explain
why the observed data are the numbers of deaths (

∑
i wi) at each setting of

x, and the offset is log(
∑

i ti) at each setting.

7.11 Consider the loglinear model of conditional independence between A and B,
given C, in a r × c × 𝓁 contingency table. Derive the likelihood equations,
and interpret. Give the solution of fitted values that satisfies the model and the
equations. (From Birch (1963), it follows that only one solution exists, namely
the ML fit.) Explain the connection with the fitted values for the independence
model for a two-way table. Find the residual df for testing fit.

7.12 Two balanced coins are flipped, independently. Let A = whether the first flip
resulted in a head (yes, no), B = whether the second flip resulted in a head,
and C = whether both flips had the same result. Using this example, show that
marginal independence for each pair of three variables does not imply that the
variables are mutually independent.

7.13 For three categorical variables A, B, and C:

a. When C is jointly independent of A and B, show that A and C are condi-
tionally independent, given B.

b. Prove that mutual independence of A, B, and C implies that A and B are (i)
marginally independent and (ii) conditionally independent, given C.

c. Suppose that A is independent of B and that B is independent of C. Does
this imply that A is independent of C? Explain.

7.14 Express the loglinear model of mutual independence for a 2 × 2 × 2 table in the
form log𝝁 = X𝜷. Show that the likelihood equations equate {yijk} and {�̂�ijk} in
the one-dimensional margins, and their solution is {�̂�ijk = yi++y+j+y++k∕n2}.
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7.15 For a 2 × c × 𝓁 table, consider the loglinear model by which A is jointly
independent of B and C. Treat A as a response variable and B and C as
explanatory, conditioning on {n+jk}. Construct the logit for the conditional
distribution of A, and identify the corresponding logistic model.

7.16 For the homogeneous association loglinear model (7.7) for a r × c × 𝓁 con-
tingency table, treating A as a response variable, find the equivalent baseline-
category logit model.

7.17 For a four-way contingency table, consider the loglinear model having AB,
BC, and CD two-factor terms and no three-factor interaction terms. Explain
why A and D are independent given B alone or given C alone or given both B
and C. When are A and C conditionally independent?

7.18 Suppose the loglinear model (7.7) of homogeneous association holds for a
three-way contingency table. Find log𝜇ij+ and explain why marginal associ-
ations need not equal conditional associations for this model.

7.19 Consider the loglinear model for a four-way table having AB, AC, and AD
two-factor terms and no three-factor interaction term. What is the impact
of collapsing over B on the other associations? Contrast that with what the
collapsibility condition in Section 7.2.7 suggests, treating group S3 = {B}, (i)
if S1 = {C} and S2 = {A, C}, (ii) if S1 = {C, D} and S2 = {A}. This shows
that different groupings for that condition can give different information.

7.20 A county’s highway department keeps records of the number of automobile
accidents reported each working day on a superhighway that runs through the
county. Describe factors that are likely to cause the distribution of this count
over time to show overdispersion relative to the Poisson distribution.

7.21 Show that a gamma mixture of Poisson distributions yields the negative bino-
mial distribution.

7.22 Given u, y is Poisson with E(y ∣ u) = u𝜇, where u is a positive random vari-
able with E(u) = 1 and var(u) = 𝜏. Show that E(y) = 𝜇 and var(y) = 𝜇 + 𝜏𝜇2.
Explain how you can formulate the negative binomial distribution and a neg-
ative binomial GLM using this construction.

7.23 For discrete distributions, Jørgensen (1987) showed that it is natural to define
the exponential dispersion family as

f (yi; 𝜃i,𝜙) = exp[yi𝜃i − b(𝜃i)∕a(𝜙) + c(yi,𝜙)].

a. For fixed k, show that the negative binomial distribution (7.8) has this form
with 𝜃i = log[𝜇i∕(𝜇i + k)], b(𝜃i) = − log(1 − e𝜃i), and a(𝜙) = 1∕k.
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b. For this version, show that xi = yia(𝜙) has the usual exponential dispersion
family form (4.1).

7.24 For a sequence of independent Bernoulli trials, let y = the number of successes
before the kth failure. Show that y has the negative binomial distribution,

f (y;𝜋, k) =
Γ(y + k)

Γ(k)Γ(y + 1)
𝜋y(1 − 𝜋)k, y = 0, 1, 2,… .

(The geometric distribution is the special case k = 1.) Relate 𝜋 to the param-
eters 𝜇 and k in the parameterization (7.8).

7.25 With independent negative binomial observations from a single group, find
the likelihood equation and show that �̂� = ȳ. (ML estimation for 𝛾 requires
iterative methods, as R. A. Fisher showed in an appendix to Bliss (1953). See
also Anscombe (1950).) How does this generalize to the one-way layout?

7.26 For the ZIP null model (i.e., without explanatory variables), show from the
likelihood equations that the ML-fitted 0 count equals the observed 0 count.

7.27 The text website contains an expanded version (file Drugs3.dat) of the
student substance use data of Table 7.3 that also has each subject’s G = gender
(1 = female, 2 = male) and R = race (1 = white, 2 = other). It is sensible
to treat G and R as explanatory variables. Explain why any loglinear model
for the data should include the GR two-factor term. Use a model-building
process to select a model for these data. Interpret the estimated conditional
associations.

7.28 Other than a formal goodness-of-fit test, one analysis that provides a sense
of whether a particular GLM is plausible is the following: Suppose the ML
fitted equation were the true equation. At the observed x values for the n
observations, randomly generate n variates with distributions specified by the
fitted GLM. Construct scatterplots. Do they look like the scatterplots that were
actually observed? Do this for a Poisson loglinear model for the horseshoe
crab data, with y = number of satellites and x = width. Does the variability
about the fit resemble that in the actual data, including a similar number of
0’s and large values? Repeat this a few times to get a better sense of how the
scatterplot observed differs from what you would observe if the Poisson GLM
truly held.

7.29 Another model (Dobbie and Welsh 2001) for zero-inflated count data uses
the Neyman type A distribution, which is a compound Poisson–Poisson mix-
ture. For observation i, let zi denote a Poisson variate with expected value
𝜆i. Conditional on zi, let wij (j = 1,… , zi) denote independent Poisson(𝜙i)
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observations. The model expresses yi using the decomposition yi =
∑zi

j=0 wij,
i = 1, 2,… , n. Find E(yi). Relating 𝜆i and 𝜙i to explanatory variables through
log(𝜆i) = x1i𝜷1 and log(𝜙i) = x2i𝜷2, show the model for E(yi) and interpret
its parameters.

7.30 A headline in The Gainesville Sun (February 17, 2014) proclaimed a worri-
some spike in shark attacks in the previous 2 years. The reported total number
of shark attacks in Florida per year from 2001 to 2013 were 33, 29, 29, 12, 17,
21, 31, 28, 19, 14, 11, 26, 23. Are these counts consistent with a null Poisson
model or a null negative binomial model? Test the Poisson model against the
negative binomial alternative. Analyze the evidence of a positive linear trend
over time.

7.31 Table 7.5, also available at www.stat.ufl.edu/~aa/glm/data, summa-
rizes responses of 1308 subjects to the question: within the past 12 months,
how many people have you known personally that were victims of homicide?
The table shows responses by race, for those who identified their race as white
or as black.

a. Let yi denote the response for subject i and let xi = 1 for blacks and xi = 0
for whites. Fit the Poisson GLM log𝜇i = 𝛽0 + 𝛽xi and interpret 𝛽.

b. Describe factors of heterogeneity such that a Poisson GLM may be inade-
quate. Fit the corresponding negative binomial GLM, and estimate how the
variance depends on the mean. What evidence does this model fit provide
that the Poisson GLM had overdispersion? (Table 7.5 also shows the fits
for these two models.)

c. Show that the Wald 95% confidence interval for the ratio of means
for blacks and whites is (4.2, 7.5) for the Poisson GLM but (3.5, 9.0)
for the negative binomial GLM. Which do you think is more reliable?
Why?

Table 7.5 Number of Victims of Murder Known in the Past Year, by Race, with Fit of
Poisson and Negative Binomial Models

Data Poisson GLM Negative Binomial GLM

Response Black White Black White Black White

0 119 1070 94.3 1047.7 122.8 1064.9
1 16 60 49.2 96.7 17.9 67.5
2 12 14 12.9 4.5 7.8 12.7
3 7 4 2.2 0.1 4.1 2.9
4 3 0 0.3 0.0 2.4 0.7
5 2 0 0.0 0.0 1.4 0.2
6 0 1 0.0 0.0 0.9 0.1

Source: 1990 General Social Survey, file Homicide.dat at www.stat.ufl.edu/~aa/glm/

data.

http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
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7.32 For the horseshoe crab data, the negative binomial modeling shown in the R
output first treats color as nominal-scale and then in a quantitative manner,
with the category numbers as scores. Interpret the result of the likelihood-
ratio test comparing the two models. For the simpler model, interpret the color
effect and interpret results of the likelihood-ratio test of the null hypothesis of
no color effect.

-------------------------------------------------------------------

> fit.nb.color <- glm.nb(y ~ factor(color)) # Using Crabs.dat file

> summary(fit.nb.color)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.4069 0.3526 3.990 6.61e-05

factor(color)2 -0.2146 0.3750 -0.572 0.567

factor(color)3 -0.6061 0.4036 -1.502 0.133

factor(color)4 -0.6913 0.4508 -1.533 0.125

---

> fit.nb.color2 <- glm.nb(y ~ color) # using color scores (1,2,3,4)

> summary(fit.nb.color2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7045 0.3095 5.507 3.66e-08

color -0.2689 0.1225 -2.194 0.0282

---

> anova(fit.nb.color2, fit.nb.color)

Likelihood ratio tests of Negative Binomial Models

Response: y

Model theta Res.df 2 x log-lik. Test df LR stat. Pr(Chi)

1 0.7986 171 -762.6794

2 0.8019 169 -762.2960 1 vs. 2 2 0.3834 0.8256

---

> 1 - pchisq(767.409-762.679, df=172-171) # LR test vs. null model

[1] 0.0296

-------------------------------------------------------------------

7.33 For the horseshoe crab data, the following output shows a zero-inflated nega-
tive binomial model using quantitative color for the zero component. Interpret
results, and compare with the NB2 model fitted in the previous exercise with
quantitative color. Can you conduct a likelihood-ratio test comparing them?
Why or why not?

---------------------------------------------------------------------

> summary(zeroinfl(y ~ 1 | color, dist = "negbin")) # Using Crabs.dat

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.4632 0.0689 21.231 < 2e-16

Log(theta) 1.4800 0.3511 4.215 2.5e-05

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7520 0.6658 -4.133 3.58e-05

color 0.8023 0.2389 3.358 0.000785

---

Theta = 4.3928 Log-likelihood:-362.997 on 4 Df

---------------------------------------------------------------------
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7.34 Refer to Section 7.5.2. Redo the zero-inflated NB2 model building, deleting
the outlier crab weighing 5.2 kg. Compare results against analyses that used
this observation and summarize conclusions.

7.35 A question in a GSS asked subjects how many times they had sexual inter-
course in the preceding month. The sample means were 5.9 for males and
4.3 for females; the sample variances were 54.8 and 34.4. The mode for each
gender was 0. Specify a GLM that would be inappropriate for these data,
explaining why. Specify a model that may be appropriate.

7.36 Table 7.6 is based on a study involving British doctors.

Table 7.6 Data for Exercise 7.36 on Coronary Death Rates

Person-Years Coronary Deaths

Age Nonsmokers Smokers Nonsmokers Smokers

35–44 18,793 52,407 2 32
45–54 10,673 43,248 12 104
55–64 5710 28,612 28 206
65–74 2585 12,663 28 186
75–84 1462 5317 31 102

Source: Doll R. and A. Bradford Hill. 1966. Natl. Cancer Inst. Monogr. 19: 205–268.

a. Fit a main-effects model for the log rates using age and smoking as factors.
In discussing lack of fit, show that this model assumes a constant ratio of
nonsmokers’ to smokers’ coronary death rates over age, and evaluate how
the sample ratio depends on age.

b. Explain why it is sensible to add a quantitative interaction of age and
smoking. For this model, show that the log ratio of coronary death rates
changes linearly with age. Assign scores to age, fit the model, and interpret.
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Quasi-Likelihood Methods

For a GLM 𝜂i = g(𝜇i) =
∑

j 𝛽jxij, the likelihood equations

n∑
i=1

(yi − 𝜇i)xij

v(𝜇i)

(
𝜕𝜇i

𝜕𝜂i

)
= 0, j = 1,… , p, (8.1)

depend on the assumed probability distribution for yi only through 𝜇i and the variance
function, v(𝜇i) = var(yi). The choice of distribution for yi determines the relation v(𝜇i)
between the variance and the mean. Higher moments such as the skewness can affect
properties of the model, such as how fast �̂� converges to normality, but they have no
impact on the value of �̂� and its large-sample covariance matrix.

An alternative approach, quasi-likelihood estimation, specifies a link function and
linear predictor g(𝜇i) =

∑
j 𝛽jxij like a generalized linear model (GLM), but it does

not assume a particular probability distribution for yi. This approach estimates {𝛽j}
by solving equations that resemble the likelihood equations (8.1) for GLMs, but it
assumes only a mean–variance relation for the distribution of yi. The estimates are the
solution of Equation (8.1) with v(𝜇i) replaced by whatever variance function seems
appropriate in a particular situation, with a corresponding adjustment for standard
errors. To illustrate, a standard modeling approach for counts assumes that {yi}
are independent Poisson variates, for which v(𝜇i) = 𝜇i. However, in the previous
chapter we noted that overdispersion often occurs, perhaps because of unmodeled
heterogeneity among subjects. To allow for this, we could set v(𝜇i) = 𝜙𝜇i for some
unknown constant 𝜙.

In Section 8.1, we present a simple quasi-likelihood (QL) approach for overdis-
persed Poisson and binomial response variables that merely assumes an inflation of
the variance from a standard model. For binary data, Section 8.2 presents alternative
approaches that imply overdispersion because of positively correlated Bernoulli trials
or because the success probability satisfies a mixture model. In Section 8.3, we show

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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how to adjust for misspecification of the variance function in finding standard errors
of parameter estimates.

8.1 VARIANCE INFLATION FOR OVERDISPERSED POISSON AND
BINOMIAL GLMS

This section introduces a simple quasi-likelihood way of adjusting for overdispersion
in Poisson and binomial models. This method uses the same estimates as an ordinary
GLM but inflates standard errors by taking into account the empirical variability.

8.1.1 Quasi-Likelihood Approach of Variance Inflation

Suppose a standard model specifies a function v∗(𝜇i) for the variance as a function
of the mean, but we believe that the actual variance may differ from v∗(𝜇i). To allow
for this, we might instead assume that

var(yi) = 𝜙v∗(𝜇i)

for some constant 𝜙. The value 𝜙 > 1 represents overdispersion.
When we substitute v(𝜇i) = 𝜙v∗(𝜇i) in Equation (8.1), 𝜙 drops out. The equations

are identical to the likelihood equations for the GLM with variance function v∗(𝜇i),
and estimates of model parameters are also identical. With the generalized variance
function,

wi = (𝜕𝜇i∕𝜕𝜂i)
2∕var(yi) = (𝜕𝜇i∕𝜕𝜂i)

2∕𝜙v∗(𝜇i),

so the asymptotic var(𝜷) = (XTWX)−1 is 𝜙 times that for the ordinary GLM.
When a variance function has the form v(𝜇i) = 𝜙v∗(𝜇i), usually𝜙 is also unknown.

Let

X2 =
n∑

i=1

(yi − �̂�i)
2

v∗(�̂�i)

be the generalized Pearson statistic (4.17) for the simpler model with 𝜙 = 1. When
X2∕𝜙 is approximately chi-squared, then with p parameters in the linear predictor,
E(X2∕𝜙) ≈ n − p. Hence, E[X2∕(n − p)] ≈ 𝜙. Using the motivation of estimation by
matching moments, �̂� = X2∕(n − p) is an estimated multiplier to apply to the ordinary
estimated covariance matrix.

In summary, this quasi-likelihood approach is simple: fit the ordinary GLM and
use its p maximum likelihood (ML) parameter estimates 𝜷. Multiply the ordinary
standard error estimates by

√
X2∕(n − p). This method is appropriate; however, only

if the model chosen describes well the structural relation between E(yi) and the
explanatory variables. If a large X2 statistic is due to some other type of lack of fit,
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such as failing to include a relevant interaction term, adjusting for overdispersion will
not address the inadequacy.

8.1.2 Overdispersed Poisson and Binomial GLMs

We illustrate the quasi-likelihood variance-inflation approach with the alternative to
a Poisson GLM in which the mean–variance relation has the form

v(𝜇i) = 𝜙𝜇i.

The QL parameter estimates are identical to the ML estimates under the Poisson
GLM assumption. With the canonical log link, the adjusted covariance matrix is
(XTWX)−1 with wi = (𝜕𝜇i∕𝜕𝜂i)

2∕var(yi) = (𝜇i)
2∕𝜙𝜇i = 𝜇i∕𝜙. Regardless of the link

function, the Pearson statistic is

X2 =
∑

i

(yi − �̂�i)
2

�̂�i
,

and �̂� = X2∕(n − p) is the variance-inflation estimate.
An alternative approach uses a parametric model that permits extra variability,

such as a negative binomial GLM (Section 7.3). An advantage of that approach is
that it is an actual model with a likelihood function.

Overdispersion also can occur for counts from grouped binary data. Suppose yi
is the proportion of successes in ni Bernoulli trials with parameter 𝜋i for each trial,
i = 1,… , n. The {yi} may exhibit more variability than the binomial allows. This can
happen in two common ways. One way involves heterogeneity, with observations
at a particular setting of explanatory variables having success probabilities that vary
according to values of unobserved variables. To deal with this, we could use a
hierarchical mixture model that lets 𝜋i itself have a distribution, such as a beta
distribution. Alternatively, extra variability could occur because the Bernoulli trials
at each i are positively correlated. We present models that reflect these possibilities
in Section 8.2. Here we consider the simpler variance-inflation approach.

To adjust supposedly binomial sampling (i.e., independent, identical Bernoulli
trials), the inflated-variance QL approach uses variance function

v(𝜋i) = 𝜙𝜋i(1 − 𝜋i)∕ni

for the proportion yi. The QL estimates are the same as ML estimates for the binomial
model, and the asymptotic covariance matrix multiplies by𝜙. The X2∕(n − p) estimate
of 𝜙 uses the X2 fit statistic for the ordinary binomial model with p parameters, which
from Equation (5.10) is

X2 =
∑

i

(yi − �̂�i)
2

[�̂�i(1 − �̂�i)]∕ni
.
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Although this QL approach with v(𝜋i) = 𝜙𝜋i(1 − 𝜋i)∕ni has the advantage of
simplicity, it is inappropriate when ni = 1: then P(yi = 1) = 𝜋i = 1 − P(yi = 0), and
necessarily E(y2

i ) = E(yi) = 𝜋i and var(yi) = 𝜋i(1 − 𝜋i). For ungrouped binary data,
necessarily var(yi) = 𝜋i(1 − 𝜋i), and only𝜙 = 1 makes sense. This structural problem
does not occur for mixture models or for a QL approach having variance function
corresponding to a mixture model (Section 8.2).

8.1.3 Example: Quasi-Likelihood for Horseshoe Crab Counts

The horseshoe crab satellite counts analyzed in Section 7.5 display overdispersion for
Poisson GLMs. For example, using the female crab’s weight to predict the number
of male satellites, the Poisson loglinear fit is log �̂�i = −0.428 + 0.589xi, with SE =
0.065 for 𝛽1 = 0.589. Comparing the observed counts and fitted values for the n = 173
crabs, Pearson X2 = 535.9 with df = 173 − 2 = 171. With the QL inflated-variance
approach, �̂� = X2∕(n − p) = 535.9∕(173 − 2) = 3.13. Thus, SE =

√
3.13(0.065) =

0.115 is a more plausible standard error for 𝛽1 in this prediction equation.

-----------------------------------------------------------------------

> attach(Crabs)

> fit.pois <- glm(y ~ weight, family=poisson) # ML Poisson loglinear

> summary(fit.pois)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4284 0.1789 -2.394 0.0167

weight 0.5893 0.0650 9.064 <2e-16

> (X2 <- sum(residuals(fit.pois, type="pearson")ˆ2))

[1] 535.90 # Pearson statistic is sum of squared Pearson residuals

> (phi <- X2/(173 - 2))

[1] 3.13

# quasi family can use QL inflated Poisson variance directly:

> summary(glm(y ~ weight, family=quasi(link="log",variance="mu")))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.4284 0.3168 -1.352 0.178

weight 0.5893 0.1151 5.120 8.17e-07

(Dispersion parameter for quasi family taken to be 3.134)

-----------------------------------------------------------------------

The QL approach with an inflated quadratic variance function yields larger 𝛽1 and
SE values, similar to what we obtain with a negative binomial (NB2) model.

-----------------------------------------------------------------------

> summary(glm(y ~ weight, family=quasi(link="log",variance="muˆ2")))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.0122 0.3863 -2.621 0.00957

weight 0.8184 0.1542 5.306 3.44e-07

(Dispersion parameter for quasi family taken to be 1.362496)

> library(MASS)
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> summary(glm.nb(y ~ weight)) # negative binomial (NB2) model

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8647 0.4048 -2.136 0.0327

weight 0.7603 0.1578 4.817 1.45e-06

---

Theta: 0.931 2 x log-likelihood: -748.644 # -916.164 for Poisson fit

-----------------------------------------------------------------------

8.2 BETA-BINOMIAL MODELS AND QUASI-LIKELIHOOD
ALTERNATIVES

We next describe ways to handle binomial overdispersion that are more satisfying than
the variance-inflation approach. We first present a QL method based on correlated
Bernoulli trials and then a mixture model that lets success probabilities vary according
to values of unobserved variables.

8.2.1 Overdispersion Caused by Correlated Bernoulli Trials

Denote the ni Bernoulli trials for observation i by yi1, yi2,… , yini
. That is, P(yij = 1) =

𝜋i = 1 − P(yij = 0), and yi =
∑

j yij∕ni is the sample proportion. For independent
trials, niyi ∼ bin(ni,𝜋i), with var(yi) = v(𝜋i) = 𝜋i(1 − 𝜋i)∕ni.

Instead of independent trials, suppose that yi1 is random but then yij = yi1 for
j = 2,… , ni. For instance, in an election, perhaps in each household the head of the
household decides how to vote, and then everyone else in the household votes the same
way. Then the sample proportion in household i voting for a particular candidate has

P(yi = 1) = 𝜋i, P(yi = 0) = 1 − 𝜋i.

That is, yi can take only its extreme possible values. Then var(yi) = 𝜋i(1 − 𝜋i) >
𝜋i(1 − 𝜋i)∕ni, and there is overdispersion relative to the binomial. By contrast,
suppose that the observations occur sequentially, and

yij ∣ yi1,… , yi,j−1 equals 1 − yi,j−1.

That is, trial j for observation i necessarily has the opposite result of trial j − 1.
Then when ni is an even number, P(yi = 1∕2) = 1, so var(yi) = 0 and there is
underdispersion.

In practice, a more likely scenario than one trial being completely dependent on
another one is exchangeability of trials, with a common correlation 𝜌 between each
pair of {yi1, yi2,… , yini

}, as is often assumed in cluster sampling. When corr(yis, yit) =
𝜌 for s ≠ t, then var(yit) = 𝜋i(1 − 𝜋i), cov(yis, yit) = 𝜌𝜋i(1 − 𝜋i), and

var(yi) = var

(∑ni
t=1 yit

ni

)
= 1

n2
i

[ ni∑
t=1

var(yit) + 2
∑∑

s<t

cov(yis, yit)

]

= 1
n2

i

[
ni𝜋i(1 − 𝜋i) + ni(ni − 1)𝜌𝜋i(1 − 𝜋i)

]
= [1 + 𝜌(ni − 1)]

𝜋i(1 − 𝜋i)

ni
.
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The ordinary variance for a binomial sample proportion results when 𝜌 = 0. Overdis-
persion occurs when 𝜌 > 0.

The inflated binomial variance is not a special case of this variance function,
unless all ni are identical. When ni = 1, it is not possible to have overdispersion or
underdispersion, and this variance formula is still valid, unlike the inflated binomial
variance.

8.2.2 QL with Variance Function for Correlated Bernoulli Trials

For binary count data, a quasi-likelihood approach can use a variance function moti-
vated by the one just found with correlated Bernoulli trials,

v(𝜋i) = [1 + 𝜌(ni − 1)]𝜋i(1 − 𝜋i)∕ni

with |𝜌| ≤ 1. The estimates using it differ from ML estimates for an ordinary binomial
model, because the multiple of the binomial variance does not drop out of the quasi-
likelihood equations (8.1).

For this QL approach, Williams (1982) proposed an iterative routine for estimating
𝜷 and the overdispersion parameter 𝜌. He let �̂� be such that the resulting generalized
Pearson X2 statistic (4.17) equals the residual df = (n − p) for the model. This requires
an iterative two-step process of (1) solving the quasi-likelihood equations for 𝜷 for a
given �̂�, and then (2) using the updated 𝜷, solving for �̂� in the equation that equates

X2 =
n∑

i=1

(yi − �̂�i)
2

[1 + �̂�(ni − 1)]�̂�i(1 − �̂�i)∕ni
= n − p.

8.2.3 Models Using the Beta-Binomial Distribution

The beta-binomial model is a parametric mixture model that is an alternative to quasi-
likelihood generalizations of binomial GLMs. As with other mixture models that
assume a binomial distribution at a fixed parameter value, the marginal distribution
permits more variation than the binomial. We will see that the variance function
for the beta-binomial model has the same form as the one resulting from correlated
Bernoulli trials.

The beta-binomial distribution results from a beta distribution mixture of binomi-
als. Suppose that (1) given 𝜋, s has a binomial distribution, bin(n,𝜋), and (2) 𝜋 has a
beta distribution. The beta pdf is

f (𝜋; 𝛼1, 𝛼2) =
Γ(𝛼1 + 𝛼2)

Γ(𝛼1)Γ(𝛼2)
𝜋𝛼1−1(1 − 𝜋)𝛼2−1, 0 ≤ 𝜋 ≤ 1,

with parameters 𝛼1 > 0 and 𝛼2 > 0, and Γ(⋅) denotes the gamma function. The
beta family provides a wide variety of pdf shapes over (0, 1), including uniform
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(𝛼1 = 𝛼2 = 1), unimodal symmetric (𝛼1 = 𝛼2 > 1), unimodal skewed left (𝛼1 > 𝛼2 >

1) or skewed right (𝛼2 > 𝛼1 > 1), and U-shaped (𝛼1 < 1, 𝛼2 < 1). Let

𝜇 =
𝛼1

𝛼1 + 𝛼2
, 𝜃 = 1∕(𝛼1 + 𝛼2).

The beta distribution for 𝜋 has mean and variance

E(𝜋) = 𝜇, var(𝜋) = 𝜇(1 − 𝜇)𝜃∕(1 + 𝜃).

Marginally, averaging over the beta distribution for 𝜋, s has the beta-binomial distri-
bution. Its probability mass function is

p(s; n,𝜇, 𝜃) =
(

n
s

) [∏s−1
k=0(𝜇 + k𝜃)

] [∏n−s−1
k=0 (1 − 𝜇 + k𝜃)

]
∏n−1

k=0(1 + k𝜃)
, s = 0, 1,… , n.

As 𝜃 → 0, var(𝜋) → 0, and the beta distribution for 𝜋 converges to a degener-
ate distribution at 𝜇. Then var(s) → n𝜇(1 − 𝜇), and the beta-binomial distribution
converges to the bin(n,𝜇). But the beta-binomial can look1 quite different from the
binomial. For example, when 𝜇 = 1∕2, it is uniform over the integers 0 to n when
𝜃 = 1∕2 (i.e., when 𝛼1 = 𝛼2 = 1 and the beta distribution is uniform), and it is bimodal
at 0 and n when 𝜃 > 1∕2. For the beta-binomial proportion y = s∕n,

E(y) = 𝜇, var(y) = [1 + (n − 1)𝜃∕(1 + 𝜃)]𝜇(1 − 𝜇)∕n.

In fact, 𝜌 = 𝜃∕(1 + 𝜃) is the correlation between each pair of the individual Bernoulli
random variables that sum to s. The variance function in the beta-binomial and in
the QL approach of Section 8.2.2 also results merely from assuming that 𝜋 has a
distribution with var(𝜋) = 𝜌𝜇(1 − 𝜇).

Models using the beta-binomial distribution usually let 𝜃 be the same unknown
constant for all observations. Models can use any link function for binary data, but
the logit is most common. For observation i with ni trials, assuming that niyi has a
beta-binomial distribution with index ni and parameters (𝜇i, 𝜃), the model links 𝜇i to
explanatory variables by

logit(𝜇i) = xi𝜷, i = 1,… , n.

Model fitting can employ a variety of methods, including the Newton–Raphson
method. See Note 8.4. The beta-binomial distribution is not in the exponential disper-
sion family, even for known 𝜃. When the linear predictor is correct, the beta-binomial
ML estimator �̂� is not consistent if the actual distribution is not beta-binomial. Quasi-
likelihood methods have greater robustness (Liang and Hanfelt 1994).

1distributome.org/V3/calc/BetaBinomialCalculator.html displays shapes as a function of
n, 𝛼1, and 𝛼2.

http://distributome.org/V3/calc/BetaBinomialCalculator.html
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8.2.4 Example: Modeling Overdispersion in a Teratology Study

Teratology is the study of abnormalities of physiological development. Some tera-
tology experiments investigate effects of dietary regimens or chemical agents on the
fetal development of rats in a laboratory setting. Table 8.1 shows results from one
such study. Female rats on iron-deficient diets were assigned to four groups. Rats in
group 1 were given placebo injections, and rats in other groups were given injections
of an iron supplement. This was done on days 7 and 10 in group 2, on days 0 and 7
in group 3, and weekly in group 4. The 58 rats were made pregnant, sacrificed after
3 weeks, and then the total number of dead fetuses was counted in each litter, as was
the mother’s hemoglobin level. The overall sample proportions of deaths for the four
groups were = 0.758 (placebo), 0.102, 0.034, and 0.048. Because of unmeasured
covariates and genetic variability, the probability of death may vary among litters
within a particular treatment group and hemoglobin level.

Table 8.1 Response Proportions y = s∕n Dead in Teratology Study for n Fetuses in Rat
Litter in Group i with Mother’s Hemoglobin Level h

i h y i h y i h y i h y

1 4.1 1/10 2 8.6 1/10 3 11.2 0/8 4 16.6 0/3
1 3.2 4/11 2 11.1 1/3 3 11.5 1/11 4 14.5 0/13
1 4.7 9/12 2 7.2 1/13 3 12.6 0/14 4 15.4 2/9
...

Source: From Moore and Tsiatis (1991), reproduced with permission of John Wiley & Sons, Inc. Complete
data for 58 rats are in the file Rats.dat at text website.

Let yij denote the dead proportion of the nij fetuses in litter j in treatment group i. Let
𝜋ij denote the probability of death for a fetus in that litter. Moore and Tsiatis modeled
𝜋ij using only the hemoglobin level or only group indicators as the explanatory
variable. Here, we will use hemoglobin level and whether the litter is in the placebo
group, to judge whether the death rate differs between the placebo group and the
other groups after adjusting for the hemoglobin level.

Let zi denote an indicator for the placebo group (z1 = 1, z2 = z3 = z4 = 0) and
let hij denote the hemoglobin level for litter j in group i. We present four fits for the
model

logit(𝜋ij) = 𝛽0 + 𝛽1zi + 𝛽2hij.

We first treat nijyij as a bin(nij,𝜋ij) variate and find ML estimates.

-------------------------------------------------------------------------

> Rats # data in file Rats.dat at www.stat.ufl.edu/~aa/glm/data.html

litter group h n s # s dead of n fetuses with hemoglobin h

1 1 1 4.1 10 1

2 2 1 3.2 11 4

...

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data.html
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58 58 4 12.4 17 0

> attach(Rats)

> placebo <- ifelse(group==1, 1, 0)

> fit.ML <- glm(s/n ~ placebo + h, weights=n, data=Rats, family=binomial)

> summary(fit.ML) # ML, assuming independent binomials

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6239 0.7900 -0.790 0.4296

placebo 2.6509 0.4824 5.495 3.9e-08

h -0.1871 0.0743 -2.519 0.0118

---

> logLik(fit.ML)

'log Lik.' -121.0219

-------------------------------------------------------------------------

Summing the squared Pearson residuals for the n = 58 litters, we obtain X2 = 159.815
with df = 58 − 3 = 55, considerable evidence of overdispersion. With the QL
inflated-variance approach, �̂� = 159.815∕55 = 2.906, so standard errors multiply
by �̂�1∕2 = 1.70. Even with this adjustment for overdispersion and for the hemoglobin
level, strong evidence remains that the probability of death is substantially higher for
the placebo group.

-----------------------------------------------------------------------

> summary(glm(s/n ~ placebo + h, weights=n, data=Rats,

+ family=quasi(link = "logit", variance="mu(1-mu)")))

Coefficients: # QL inflated-variance approach

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6239 1.3466 -0.463 0.64495

placebo 2.6509 0.8223 3.224 0.00213

h -0.1871 0.1266 -1.478 0.14514

---

(Dispersion parameter for quasi family taken to be 2.906)

-----------------------------------------------------------------------

Because of unmeasured covariates, it is natural to permit the probability of death
to vary among litters having particular values of zi and hij. For the beta-binomial

logistic model, �̂� = �̂�∕(1 + �̂�) = 0.237, so the fit treats

var(yij) = [1 + 0.237(nij − 1)]𝜇ij(1 − 𝜇ij)∕nij.

This corresponds roughly to a doubling of the variance relative to the binomial with a
litter size of 5 and a tripling with nij = 9. The log-likelihood shows great improvement
over the ordinary binomial GLM.

-----------------------------------------------------------------------

> library(VGAM) # beta-binomial model is available in VGAM package

> fit.bb <- vglm(cbind(s, n-s) ~ placebo + h,

+ betabinomial(zero=2,irho=.2), data=Rats)

# two parameters, mu and rho; zero=2 specifies 0 covariates for 2nd
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# parameter (rho); irho is initial guess for rho in beta-bin variance

Coefficients:

Estimate Std. Error z value

(Intercept):1 -0.5009 1.1907 -0.4207

(Intercept):2 -1.1676 0.3251 -3.5918

placebo 2.5601 0.7642 3.3501

h -0.1546 0.1085 -1.4243

Names of linear predictors: logit(mu), logit(rho)

Log-likelihood: -93.1849

> logit(-1.1676, inverse=T) # Inverse logit is a function in VGAM

[1] 0.2373 # Estimate of rho in beta-binomial variance

-----------------------------------------------------------------------

For the QL approach using beta-binomial-type variance, �̂� = 0.1985. It corre-
sponds to using v(𝜋ij) = [1 + 0.1985(nij − 1)]𝜇ij(1 − 𝜇ij)∕nij.

-----------------------------------------------------------------------

> library(aod)

# betabin fn. fits beta-bin., quasibin fn. fits QL with beta-bin. var.

> quasibin(cbind(s, n-s) ~ placebo + h, data=Rats)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7237 1.3785 -0.5250 0.5996

placebo 2.7573 0.8522 3.2355 0.0012

h -0.1758 0.1284 -1.3692 0.1709

Overdispersion parameter: phi 0.1985 # estimate of rho in our notation

-----------------------------------------------------------------------

Table 8.2 summarizes results for the four analyses. The QL approaches and the
beta-binomial model have similar standard errors, quite different from those for the
ordinary binomial ML estimates.

Liang and McCullagh (1993) showed several analyses using the inflated vari-
ance and beta-binomial-type variance. A plot of the standardized residuals for the
ordinary binomial model against the indices {ni} can provide insight about which
is more appropriate. When the residuals show an increasing trend in their spread
as ni increases, the beta-binomial-type variance function may be more appropriate.

Table 8.2 Parameter Estimates (with Standard Errors in Parentheses) for Four Fits of
a Model with Logit Link to Table 8.1

Type of Logistic Model Fita

Parameter Binomial ML QL(1) QL(2) Beta-Binomial ML

Intercept 0.62 (0.79) 0.62 (1.35) 0.72 (1.38) 0.50 (1.19)
Placebo 2.65 (0.48) 2.65 (0.82) 2.76 (0.85) 2.56 (0.76)
Hemoglobin −0.19 (0.07) −0.19 (0.13) −0.18 (0.13) −0.15 (0.11)

Overdispersion None �̂� = 2.906 �̂� = 0.1985 �̂�

1+�̂�
= 0.237

aQuasi-likelihood (QL) has (1) inflated binomial variance, (2) beta-binomial-type variance.
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Figure 8.1 plots these for the teratology data. The apparent increase in their variability
as litter size increases suggests that the beta-binomial variance function is plausible.
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Figure 8.1 Standardized residuals and litter size for binomial logistic model fitted to
Table 8.1.

8.3 QUASI-LIKELIHOOD AND MODEL MISSPECIFICATION

For the model 𝜂i = g(𝜇i) = xi𝜷, the quasi-likelihood parameter estimates 𝜷 are the
solutions of quasi-score equations

u(𝜷) =
n∑

i=1

(
𝜕𝜇i

𝜕𝜷

)T (yi − 𝜇i)

v(𝜇i)
= 0. (8.2)

These equations are the same as the likelihood equations (8.1) when we substitute

𝜕𝜇i

𝜕𝛽j
=
𝜕𝜇i

𝜕𝜂i

𝜕𝜂i

𝜕𝛽j
=
𝜕𝜇i

𝜕𝜂i
xij,

but it is more convenient to use Equation (8.2) for the covariance matrix expressions
introduced in this section. With the assumption that {yi} has distribution in the
exponential dispersion family, these equations are likelihood equations, in which
case v(𝜇i) characterizes the distribution. Our interest here, however, is still in variance
functions that take us outside that family.

8.3.1 Estimating Equations and Properties of Quasi-Likelihood

The quasi-score equations (8.2) that determine 𝜷 in the QL method are called estimat-
ing equations. The quasi-score function uj(𝜷) in Equation (8.2) is called an unbiased
estimating function; this term refers to any function h(y; 𝜷) of y and 𝜷 such that
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E[h(y; 𝜷)] = 0 for all 𝜷. For an unbiased estimating function, the estimating equa-
tion h(y; 𝜷) = 0 determines an estimator �̂� of 𝜷. The maximum likelihood estimator
is but one example of an estimator that results from estimating equations (namely,
likelihood equations) with an unbiased estimating function.

The QL method treats the quasi-score function u(𝜷) as the derivative of a quasi-
log-likelihood function. Although this need not be a proper log-likelihood function,
the QL estimators that maximize it have properties similar to those of ML estimators:
under the correct specification of 𝜇i and v(𝜇i), they are asymptotically efficient among
estimators that are locally linear in {yi}. This result generalizes the Gauss–Markov
theorem, although in an asymptotic rather than exact manner. The QL estimators 𝜷
are asymptotically normal with a model-based covariance matrix approximated by

V =

[
n∑

i=1

(
𝜕𝜇i

𝜕𝜷

)T

[v(𝜇i)]
−1

(
𝜕𝜇i

𝜕𝜷

)]−1

. (8.3)

This is equivalent to the formula for the large-sample covariance matrix of the ML
estimator in a GLM, namely (XTWX)−1 with wi = (𝜕𝜇i∕𝜕𝜂i)

2∕var(yi).
A key result is that the QL estimator 𝜷, like ML estimators for GLMs, is consistent

for 𝜷 even if v(𝜇i) is misspecified, as long as the specification is correct for the link
function and linear predictor. That is, assuming that the model form g(𝜇i) =

∑
j 𝛽jxij is

correct, the consistency of 𝜷 holds even if the true variance function is not v(𝜇i). Here
is a heuristic explanation: when truly 𝜇i = g−1(

∑
j 𝛽jxij), then from Equation (8.2),

E[uj(𝜷)] = 0 for all j. Also from Equation (8.2), u(𝜷)∕n is a vector of sample means.
By a law of large numbers, it converges in probability to its expected value of 0. But
the solution 𝜷 of the quasi-likelihood equations is the value of 𝜷 for which the sample
mean is exactly equal to 0. Since 𝜷 is a continuous function of these sample means,
it converges to 𝜷 by the continuous mapping theorem.

8.3.2 Sandwich Covariance Adjustment for Variance Misspecification

In practice, when we assume a particular variance function v(𝜇i), it is likely that the
true var(yi) ≠ v(𝜇i). Then the asymptotic covariance matrix of the QL estimator 𝜷 is
not V as given in Equation (8.3). To find the actual var(𝜷), we use a Taylor-series
expansion for the quasi-score function in Equation (8.2),

u(𝜷) ≈ u(𝜷) +
𝜕u(𝜷)
𝜕𝜷

(𝜷 − 𝜷).

Since u(𝜷) = 0,

(𝜷 − 𝜷) ≈ −
(
𝜕u(𝜷)
𝜕𝜷

)−1

u(𝜷),

so that var(𝜷) ≈
(
𝜕u(𝜷)
𝜕𝜷

)−1

var[u(𝜷)]

(
𝜕u(𝜷)
𝜕𝜷

)−1

.
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But [𝜕u(𝜷)∕𝜕𝜷] is the Hessian matrix for the quasi-log-likelihood. So−[𝜕u(𝜷)∕𝜕𝜷]−1

is the analog of an inverse observed information matrix for the specified model and
approximates the model-based covariance matrix V. Also,

var[u(𝜷)] = var

[
n∑

i=1

(
𝜕𝜇i

𝜕𝜷

)T (yi − 𝜇i)

v(𝜇i)

]
=

n∑
i=1

(
𝜕𝜇i

𝜕𝜷

)T var(yi)

[v(𝜇i)]2

(
𝜕𝜇i

𝜕𝜷

)
.

In summary, the actual asymptotic covariance matrix of 𝜷 is

var(𝜷) ≈ V

[
n∑

i=1

(
𝜕𝜇i

𝜕𝜷

)T var(yi)

[v(𝜇i)]2

(
𝜕𝜇i

𝜕𝜷

)]
V. (8.4)

This matrix simplifies to V if var(yi) = v(𝜇i).
In practice, the true variance function, var(yi), is unknown. With large n we can

estimate the asymptotic covariance matrix (8.4) by a sample analog, replacing 𝜇i by
�̂�i and var(yi) by (yi − �̂�i)

2. This estimator of the covariance matrix is valid regardless
of whether the model-based variance specification v(𝜇i) is correct, in the sense that
n times this estimator converges in probability to the asymptotic covariance matrix
of

√
n(�̂� − 𝜷). It is called a sandwich estimator, because the empirical evidence is

sandwiched between the model-based covariance matrices.
The purpose of the sandwich estimator is to use the data’s empirical evidence

about variation to adjust the standard errors, in case the true variance function differs
substantially from the variance function assumed in the modeling. Inference then uses
the asymptotic normality of the estimator 𝜷 together with the sandwich-estimated
covariance matrix.

8.3.3 Example: Robust Adjustment of Naı̈ve Standard Errors

To illustrate, suppose {yi} are counts and we assume that v(𝜇i) = 𝜇i, as in Poisson
GLMs, but actually var(yi) = 𝜇2

i . Consider the null model, 𝜇i = 𝛽, i = 1,… , n. Since
𝜕𝜇i∕𝜕𝛽 = 1, from Equation (8.2),

u(𝛽) =
n∑

i=1

(
𝜕𝜇i

𝜕𝛽

)
v(𝜇i)

−1(yi − 𝜇i) =
n∑

i=1

(yi − 𝜇i)

𝜇i
=

n∑
i=1

(yi − 𝛽)

𝛽
.

Setting this equal to 0 and solving, 𝛽 = (
∑

i yi)∕n = ȳ. The model-based variance
(8.3) simplifies to

V =

[
n∑

i=1

(
𝜕𝜇i

𝜕𝛽

)
[v(𝜇i)]

−1
(
𝜕𝜇i

𝜕𝛽

)]−1

=

[
n∑

i=1

𝜇−1
i

]−1

= 𝛽

n
.

If we truly believe that v(𝜇i) = 𝜇i, a sensible estimate of the variance of 𝛽 = ȳ is
V̂ = 𝛽∕n = ȳ∕n.
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The actual asymptotic variance (8.4) of 𝛽, which incorporates the true variance
function, var(yi) = 𝜇2

i , is

V

[
n∑

i=1

(
𝜕𝜇i

𝜕𝛽

)
var(yi)

[v(𝜇i)]2

(
𝜕𝜇i

𝜕𝛽

)]
V = 𝛽

n

[
n∑

i=1

𝜇2
i

(𝜇i)2

]
𝛽

n
= 𝛽2

n
.

This is considerably different from the naive model-based variance when 𝛽 is not
close to 1. In practice, not knowing the true variance function, we obtain a robust
estimator of this actual asymptotic variance by replacing var(yi) in Equation (8.4) by
(yi − ȳ)2. Then the sandwich estimator simplifies (using 𝜇i = 𝛽) to

∑
i(yi − ȳ)2∕n2,

which is a sensible estimator of var(ȳ) regardless of the model. Using this estimator
instead of V̂ = ȳ∕n protects against an incorrect choice of variance function.

In summary, even with an incorrect specification of the variance function, we can
consistently estimate 𝜷. We can also consistently estimate the asymptotic covariance
matrix of 𝜷 by the sandwich estimator of Equation (8.4). However, we lose some effi-
ciency in estimating 𝜷 when the chosen variance function v(𝜇i) is wildly inaccurate.
Also, n needs to be large for the sample sandwich estimator of Equation (8.4) to work
well; otherwise, the empirically based standard errors tend to underestimate the true
ones (Kauermann and Carroll 2001). If the assumed variance function is only slightly
wrong, the model-based standard errors are more reliable. Finally, in practice, keep
in mind that, just as the chosen variance function only approximates the true one, the
specification for the mean is also only approximate.

8.3.4 Example: Horseshoe Crabs Revisited

For the horseshoe crabs data, in Section 8.1.3 we used the variance-inflation approach
to adjust standard errors for overdispersion from using a Poisson loglinear model to
predict male satellite counts using the female crab weights. We obtain similar results
from the empirical sandwich adjustment for the standard error. In the next chapter
(Section 9.6), we will use a generalization of the sandwich covariance matrix as a way
of dealing with correlated observations for a multivariate response. The method solves
generalized estimating equations (GEE). Software for GEE can also perform the
analysis described in this section, using empirical variability to find robust standard
errors that adjust for variance misspecification. In the following R printout, the naive
standard error comes from the ordinary ML fit of the Poisson model.

-----------------------------------------------------------------------

> library(gee) # sandwich adjustment for generalized estimating equa's

> obs <- c(1:173) # labeling of observations needed for GEE method

> summary(gee(y ~ weight, id=obs, family=poisson, scale.fix=TRUE))

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.4284 0.1789 -2.3942 0.3083 -1.3896

weight 0.5893 0.0650 9.0638 0.1103 5.3418

-----------------------------------------------------------------------
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CHAPTER NOTES

Section 8.1: Variance Inflation for Overdispersed Poisson and Binomial GLMs

8.1 QL approach: Wedderburn (1974) proposed the quasi-likelihood approach with the
Pearson moment adjustment for estimating𝜙 in the variance inflation approach. Finney
(1947) had proposed this for binomial overdispersion. More generally, the QL approach
can model𝜙 in terms of explanatory variables, thus simultaneously modeling the mean
and the variability (McCullagh and Nelder 1989, Chapter 10; Lee et al. 2006, Chapter
3). McCullagh (1983) and Godambe and Heyde (1987) analyzed properties of QL
estimators.

8.2 Poisson overdispersion: For other QL approaches for Poisson overdispersion, see
Cameron and Trivedi (2013, Section 3.2) and Hinde and Demétrio (1998).

Section 8.2: Beta-Binomial Models and Quasi-Likelihood Alternatives

8.3 Correlated trials: For extensions of the binomial that permit correlated Bernoulli
trials, see Altham (1978) and Ochi and Prentice (1984).

8.4 Beta-binomial: Skellam (1948) introduced the beta-binomial distribution. More gen-
eral beta-binomial models let 𝜃 depend on covariates, such as by allowing a different 𝜃
for each group of interest (Prentice 1986). For other modeling using this distribution or
related QL approaches, see Capanu and Presnell (2008), Crowder (1978), Hinde and
Demétrio (1998), Lee et al. (2006), Liang and Hanfelt (1994), Liang and McCullagh
(1993), Lindsey and Altham (1998), and Williams (1982).

8.5 Dirichlet-multinomial: The beta-binomial generalizes to a Dirichlet-multinomial
(Mosimann 1962): conditional on the probabilities, the distribution is multinomial, and
the probabilities themselves have a Dirichlet distribution. For modeling, see Guimarães
and Lindrooth (2007).

Section 8.3: Quasi-Likelihood and Model Misspecification

8.6 Estimating equations: Extending Fisher’s work, in 1960 Godambe showed that
of solutions for unbiased estimating functions, ML estimators are optimal. See
Godambe and Heyde (1987), who reviewed the theory of QL estimating equations, and
McCullagh (1983).

8.7 Sandwich: The sandwich covariance matrix and related results about adjustments
for model misspecification using moment-based models evolved from literature in
statistics (Huber 1967; Fahrmeir 1990), econometrics (Gourieroux et al. 1984; Hansen
1982; White 1980, 1982), and biostatistics (Liang and Zeger 1986). Cameron and
Trivedi (2013, Chapter 2) and Royall (1986) presented motivation and examples.

EXERCISES

8.1 Does the inflated-variance QL approach make sense as a way to generalize
the ordinary normal linear model with v(𝜇i) = 𝜎2? Why or why not?

8.2 Using E(y) = E[E(y|x)] and var(y) = E[var(y|x)] + var[E(y|x)], derive the
mean and variance of the beta-binomial distribution.
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8.3 Let y1 and y2 be independent negative binomial variates with common disper-
sion parameter 𝛾 .

a. Show that y1 + y2 is negative binomial with dispersion parameter 𝛾∕2.

b. Conditional on y1 + y2, show that y1 has a beta-binomial distribution.

c. State the multicategory extension of (b) that yields a Dirichlet-multinomial
distribution. Explain the analogy with the Poisson-multinomial result in
Section 7.2.1.

8.4 Altham (1978) introduced the discrete distribution

f (x;𝜋, 𝜃) = c(𝜋, 𝜃)

(
n
x

)
𝜋x(1 − 𝜋)n−x𝜃x(n−x), x = 0, 1,… , n,

where c(𝜋, 𝜃) is a normalizing constant. Show that this is in the two-parameter
exponential family and that the binomial occurs when 𝜃 = 1. (Altham noted
that overdispersion occurs when 𝜃 < 1. Lindsey and Altham (1998) used this
as the basis of an alternative model to the beta-binomial.)

8.5 Sometimes sample proportions are continuous rather than of the binomial
form (number of successes)/(number of trials). Each observation is any real
number between 0 and 1, such as the proportion of a tooth surface that is
covered with plaque. For independent responses {yi}, Bartlett (1937) modeled
logit(yi) ∼ N(xi𝜷, 𝜎2). Then yi itself has a logit-normal distribution.

a. Expressing a N(xi𝜷, 𝜎2) variate as xi𝜷 + 𝜎z, where z is a standard normal
variate, show that yi = exp(xi𝜷 + 𝜎z)∕[1 + exp(xi𝜷 + 𝜎z)] and for small 𝜎,

yi =
exi𝜷

1 + exi𝜷
+ exi𝜷

1 + exi𝜷

1
1 + exi𝜷

𝜎z + exi𝜷 (1 − exi𝜷 )

2(1 + exi𝜷 )3
𝜎2z2 +⋯ .

b. Letting 𝜇i = exi𝜷∕(1 + exi𝜷 ), when 𝜎 is close to 0 show that

E(yi) ≈ 𝜇i, var(yi) ≈ [𝜇i(1 − 𝜇i)]
2𝜎2.

c. The approximate moments for the logit-normal motivate a QL approach
with v(𝜇i) = 𝜙[𝜇i(1 − 𝜇i)]

2 for unknown 𝜙. Explain why this approach
provides similar results as fitting an ordinary linear model to the sample
logits, assuming constant variance. (The QL approach has the advantage
of not requiring adjustment of 0 or 1 observations, for which sample logits
do not exist. Papke and Wooldridge (1996) proposed an alternative QL
approach using a sandwich covariance adjustment.)

d. Wedderburn (1974) used QL to model the proportion of a leaf showing
a type of blotch. Envision an approximation of binomial form based on
cutting each leaf into a very large number of tiny regions of the same size



284 QUASI-LIKELIHOOD METHODS

and observing for each region whether it is covered with blotch. Explain
why this suggests using v(𝜇i) = 𝜙𝜇i(1 − 𝜇i). What violation of the binomial
assumptions might make this questionable? (Recall that the parametric
family of beta distributions has variance function of this form.)

8.6 Motivation for the quasi-score equations (8.2): suppose we replace v(𝜇i) by
known variance vi. Show that the equations result from the weighted least
squares approach of minimizing

∑
i[(yi − 𝜇i)

2∕vi].

8.7 Before R. A. Fisher introduced the method of maximum likelihood in 1922,
Karl Pearson had proposed the method of moments as a general-purpose
method for statistical estimation2. Explain how this method can be formu-
lated as having estimating equations with an unbiased estimating function.

8.8 Ordinary linear models assume that v(𝜇i) = 𝜎2 is constant. Suppose instead
that actually var(yi) = 𝜇i. Using the QL approach for the null model 𝜇i = 𝛽,
i = 1,… , n, show that u(𝛽) = (1∕𝜎2)

∑
i(yi − 𝛽), so 𝛽 = ȳ and V = 𝜎2∕n. Find

the model-based estimate of var(𝛽), the actual variance, and the robust estimate
of that variance that adjusts for misspecification of the variance.

8.9 Suppose we assume v(𝜇i) = 𝜇i but actually var(yi) = 𝜎2. For the null model
𝜇i = 𝛽, find the model-based var(𝛽), the actual var(𝛽), and the robust estimate
of that variance.

8.10 Suppose we assume v(𝜇i) = 𝜇i but actually var(yi) = v(𝜇i) for some unspec-
ified function v. For the null model 𝜇i = 𝛽, find the model-based var(𝛽), the
actual var(𝛽), and the robust estimate of that variance.

8.11 Consider the null model 𝜇i = 𝛽 when the observations are independent counts.
Of the Poisson-model-based and robust estimators of the variance of 𝛽 = ȳ
presented in Section 8.3.3, which would you expect to be better (a) if the
Poisson model truly holds, (b) if there is severe overdispersion? Explain your
reasoning.

8.12 Let yij denote the response to a question about belief in life after death (1 =
yes, 0 = no) for person j in household i, j = 1,… , ni, i = 1,… , n. In modeling
P(yij = 1) with explanatory variables, describe a scenario in which you would
expect binomial overdispersion. Specify your preferred method for dealing
with it, presenting your reasoning for that choice.

8.13 Use QL methods to construct a model for the horseshoe crab satellite counts,
using weight, color, and spine condition as explanatory variables. Compare
results with those obtained with zero-inflated GLMs in Section 7.5.

2J. Aldrich in Statistical Science (12: 162–176, 1997) gave a historical overview.
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8.14 Use QL methods to analyze Table 7.5 on counts of homicide victims. Interpret,
and compare results with Poisson and negative binomial GLMs.

8.15 Refer to Exercise 7.35 on the frequency of sexual intercourse. Use QL methods
to obtain a confidence interval for the (a) difference, (b) ratio of means for
males and females.

8.16 For the teratology study analyzed in Section 8.2.4, analyze the data using
only the group indicators as explanatory variables (i.e., ignoring hemoglobin).
Interpret results. Is it sufficient to use the simpler model having only the
placebo indicator for the explanatory variable?

8.17 Table 8.3 shows the three-point shooting, by game, of Ray Allen of the Boston
Celtics during the 2010 NBA (basketball) playoffs (e.g., he made 0 of 4 shots in
game 1). Commentators remarked that his shooting varied dramatically from
game to game. In game i, suppose that niyi = number of three-point shots
made out of ni attempts is a bin(ni,𝜋i) variate and the {yi} are independent.

Table 8.3 Data for Exercise 8.17 on Three-Point Shooting in Basketball

Game yi Game yi Game yi Game yi Game yi

1 0/4 6 2/7 11 0/5 16 1/3 21 0/4
2 7/9 7 3/7 12 2/5 17 3/7 22 0/4
3 4/11 8 0/1 13 0/5 18 0/2 23 2/5
4 3/6 9 1/8 14 2/4 19 8/11 24 2/7
5 5/6 10 6/9 15 5/7 20 0/8

Source: http://boston.stats.com/nba. Data at file Basketball.dat at text website.

a. Fit the model, 𝜋i = 𝛽0. Find and interpret 𝛽0 and its standard error.

b. Describe a factor that could cause overdispersion. Adjust the standard
error for overdispersion. Using the original SE and its correction, find and
compare 95% confidence intervals for 𝛽0. Interpret.

http://boston.stats.com/nba
http://boston.stats.com/nba


C H A P T E R 9

Modeling Correlated Responses

Many studies have multivariate response variables. For example, a social survey might
ask a subject’s opinion about whether government spending should decrease, stay the
same, or increase in each of several areas (defense, health, education, environment, ...).
A clinical trial studying patients taking a new drug might measure whether each of
several side effects (e.g., headaches, nausea) occurs, and its severity. Longitudinal1

studies observe a response variable repeatedly for each subject, at several times. A
clinical trial comparing treatments for some malady, for example, might randomize
patients to take either a new drug or a placebo and then observe them after 1 month,
3 months, and 6 months to evaluate whether the treatment response is positive.

In this chapter, we present models for a d-dimensional response variable y =
(y1, y2,… , yd). Each subject has a cluster of d observations. In a longitudinal study,
for example, a cluster consists of the observations over time for a particular subject.
Often d varies by cluster, such as when some subjects drop out of the study and
are missing some observations. For multivariate data, observations within a cluster
are typically correlated, and models need to account for that correlation. Section 9.1
presents two primary types of models for multivariate responses. One type, a marginal
model, simultaneously models only each marginal distribution, but takes into account
the correlation structure in finding valid standard errors. The other type models
the clusters of correlated responses, generating a multivariate distribution for y by
including in the linear predictor an unobserved random variable for each cluster,
called a random effect. The extension of the generalized linear model (GLM) to
include random effects in addition to the usual fixed effects is called a generalized
linear mixed model (GLMM).

We present normal linear mixed models in Section 9.2 and their fitting in Sec-
tion 9.3. We introduce GLMMs in Section 9.4, focusing on binomial and Poisson
cases, and Section 9.5 presents fitting methods. Section 9.6 then summarizes the

1Panel data is an alternate name for longitudinal data.

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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marginal modeling approach. For non-normal responses, it uses a multivariate exten-
sion of quasi-likelihood methods. Section 9.7 presents an example illustrating and
comparing the two types of models.

9.1 MARGINAL MODELS AND MODELS WITH RANDOM EFFECTS

For cluster i, denote the observations on the d components of the multivariate response
vector by yi = (yi1,… , yid)T, i = 1,… , n. Let xij denote the row vector of p explana-
tory variable values for observation yij, with 𝜇ij = E(yij). Values of the explanatory
variables may vary for the observations in a cluster, as would happen for variables
such as weight, blood pressure readings, and total cholesterol level in a longitudinal
study about heart disease.

9.1.1 Effect of Correlation on Within-Subject and Between-Subject Effects

Models for multivariate response data can analyze effects of two types. For an
explanatory variable with constant value for observations in a cluster, we can compare
clusters that differ in values of the variable. This effect is “between-cluster,” also
known as between-subject when each cluster is an individual. An example is a
demographic variable, such as the gender of an individual, where the effect is a
comparison of females with males. For an explanatory variable that varies among
observations in a cluster, we can analyze the effect of change in its value within a
cluster. This effect is “within-cluster” (within-subject). For example, in a longitudinal
study that regularly observes the weights of anorexic girls, we might analyze the
within-subject effect of daily calorie intake.

Analyses that ignore the correlations among observations within a cluster have
invalid standard errors. To illustrate, consider a 2 × 2 design with treatments A and B
having independent sets of n individuals who are observed at d = 2 times. Treatment
is a between-subjects factor and the time of observation is a within-subjects factor. For
i = 1,… , n, let (yA

i1, yA
i2) be the observations at the two times for subject i in treatment

A, and let (yB
i1, yB

i2) be the observations at the two times for subject i in treatment B.
Suppose that corr(yA

i1, yA
i2) = corr(yB

i1, yB
i2) = 𝜌 for all i and corr(yA

it , yB
ju) = 0 for all i

and j and for t, u = 1, 2, with all var(yA
it) = var(yB

it) = 𝜎2. Let

ȳA
t =

(
n∑

i=1

yA
it

)/
n and ȳB

t =

(
n∑

i=1

yB
it

)/
n, t = 1, 2.

For a linear model that assumes an absence of interaction between the treatment and
time factors, the estimated between-subjects effect is

b =
[(

ȳA
1 + ȳA

2

)
∕2
]
−
[(

ȳB
1 + ȳB

2

)
∕2
]

,
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which compares the treatment means. The estimated within-subjects effect is

w =
[(

ȳA
1 + ȳB

1

)
∕2
]
−
[(

ȳA
2 + ȳB

2

)
∕2
]

,

which compares the means at the two times. You can verify that

var(b) = 𝜎2(1 + 𝜌)
n

, var(w) = 𝜎2(1 − 𝜌)
n

. (9.1)

For each effect, if all observations had been independent, we would have variance
𝜎2∕n for comparing two groups of 2n observations each. But the correlation between
observations within a cluster is typically positive. So the variance is then smaller
for inference about within-cluster effects but larger for inference about between-
cluster effects. If we mistakenly treat observations within a cluster as independent,
the SE values we report will be too large for within-cluster effects and too small for
between-cluster effects.

9.1.2 Two Types of Multivariate Models

Marginal model: A marginal model for y, with link function g, has the form

g(𝜇ij) = xij𝜷, i = 1,… , n, j = 1,… , d. (9.2)

The model refers to the marginal distribution at each j rather than the joint distribution.
For example, in a battery of achievement exams, let yij denote the score on exam j
for student i, who has grade-point average (GPA) xi. For the model 𝜇ij = 𝛽0j + 𝛽1jxi,
each exam score has a separate linear relation with GPA. This has the form (9.2)
with 𝜷 = (𝛽01, 𝛽11,… , 𝛽0d, 𝛽1d)T and xij = (0, 0,… , 1, xi,… 0, 0) having zero entries
except for the coefficients of 𝛽0j and 𝛽1j.

A marginal model has the usual GLM structure for each component in the mul-
tivariate vector. To complete the model, we assume a parametric joint distribution
for (yi1,… , yid). Then, with independent observations for i = 1,… , n, we can fit the
model by maximum likelihood (ML). In an important case, yi has a multivariate nor-
mal distribution, and g is the identity link function (Section 9.6.1). Discrete responses,
however, do not have multivariate distributions for yi that account in a simple manner
for correlation among responses. Because of this, ML is often not viable for marginal
models. In Section 9.6.4 we fit the model by assuming a parametric distribution only
for each marginal component, using a quasi-likelihood method to produce estimates
and a sandwich covariance matrix to find valid standard errors.
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GLMM: A generalized linear mixed model (GLMM) for y has the form

g[E(yij ∣ ui)] = xij𝜷 + zijui, i = 1,… , n, j = 1,… , d, (9.3)

where the parameters 𝜷 are fixed effects of the explanatory variables and {ui} are
random effects assumed to have a particular probability distribution.

Here zij, like xij, is a row vector of known values of explanatory variables. The ran-
dom effects {ui} are usually assumed to be independent from a N(0,𝚺u) distribution
specified by unknown variance and correlation parameters. Their shared common
value for all j connects the d dimensions of the model. When we assume a condi-
tional distribution for (yi1,… , yid) given ui, model (9.3) determines a multivariate
distribution for y.

The adjective mixed in generalized linear mixed model refers to the presence of
both fixed effects (i.e., parameters) and random effects (i.e., random variables) in the
linear predictor. GLMs extend ordinary regression by allowing non-normal responses
and a link function of the mean. The GLMM is the further extension that permits
random effects ui as well as fixed effects 𝜷 in the linear predictor. Fixed effects apply
to all values or categories of interest for a variable, such as genders, education levels,
or age groups. By contrast, random effects usually apply to a sample, with ui referring
to cluster i in the sample. With large n, if we treated {ui} as fixed effects, including
them in the model would increase greatly the number of parameters. With a random
effects approach, we instead treat these as a random sample from the population of
interest. We then have only the additional variance and correlation parameters for the
N(0,𝚺u) distribution of {ui} in that population. We will find that estimation of effects
in any particular cluster is strengthened by “borrowing from the whole,” using data
from all the clusters.

Often, the random effect in a GLMM is one-dimensional with coefficient 1, and
zijui = ui merely adds a random term to the linear predictor for each subject. For
modeling yij = score for student i on achievement exam j with xi = GPA, a possible
GLMM is

E(yij ∣ ui) = 𝛽0j + 𝛽1jxi + ui = (𝛽0j + ui) + 𝛽1xj.

Here, ui is unobserved and perhaps summarizes characteristics such as ability,
achievement motivation, and parental encouragement for student i. For students of a
given GPA, those with relatively higher ui tend to perform better on any particular
exam. The second expression for the linear predictor shows that the model has a
separate intercept for each subject. This type of GLMM is called a random-intercept
model.

The variability of {ui} in a GLMM might represent that different subjects at
common explanatory variable values are heterogeneous in their distributions on the
response variable, perhaps because the linear predictor did not include some relevant
explanatory variables. In a random-intercept model with ui replaced by u∗i 𝜎u, where
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{u∗i } are N(0, 1), the linear predictor xij𝜷 + u∗i 𝜎u has the form of one for an ordinary
GLM with unobserved values {u∗i } of a covariate. Random effects also sometimes
represent random measurement error in the explanatory variables. In either case, they
provide a mechanism for handling overdispersion relative to a standard model. We
will also find that random effects having greater variability induce stronger correlation
between pairs of responses within clusters of observations.

9.1.3 GLMMs Imply Marginal Models

For the GLMM, by inverting the link function,

E(yij ∣ ui) = g−1(xij𝜷 + zijui).

Marginally, averaging over the random effects, the mean is

𝜇ij = E(yij) = E[E(yij ∣ ui)] = ∫
g−1(xij𝜷 + zijui)f (ui;𝚺u)dui,

where f (u;𝚺u) is the N(0,𝚺u) density function for the random effects. This is the
marginal model implied by the GLMM.

For the identity link function,

𝜇ij = ∫
(xij𝜷 + zijui)f (ui;𝚺u)dui = xij𝜷.

The marginal model has the same link function and fixed effects 𝜷 as the GLMM. This
is not generally true for other link functions. The following example and Section 9.4
illustrate.

9.1.4 Example: Bivariate Models for Binary Matched-Pairs Data

To illustrate the distinction between marginal models and GLMMs, we present two
simple models for binary matched-pairs data. Let (yi1, yi2) denote the pair of observa-
tions for subject (matched pair) i, where 1 = success and 0 = failure. For example, in
a crossover study for comparing two drugs on a chronic condition (such as migraine
headaches), yij may refer to whether subject i has a successful outcome with drug j,
j = 1, 2. To compare drugs, we compare P(yi1 = 1) with P(yi2 = 1). Cross-classifying
yi1 by yi2 for the n observations yields a 2 × 2 contingency table with cell counts {nab}
as shown in Table 9.1.

A possible marginal model for the paired binary responses is

logit[P(yij = 1)] = 𝛽0 + 𝛽1xj, (9.4)
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Table 9.1 Contingency Table Representation
of n Observations for Binary Matched Pairs

Observation 2 (yi2)

Observation 1 (yi1) Success Failure Total

Success n11 n12 n1+
Failure n21 n22 n2+
Total n+1 n+2 n

where x1 = 0 and x2 = 1. Then logit[P(yi1 = 1)] = 𝛽0 and logit[P(yi2 = 1)] = 𝛽0 +
𝛽1, so 𝛽1 is a log odds ratio describing the difference between the column and row
marginal distributions for the population analog of Table 9.1.

By contrast, the GLMM approach focuses on a 2 × 2 table for each subject, as
shown in Table 9.2. The random-intercept model

logit[P(yij = 1 ∣ ui)] = 𝛽0 + 𝛽1xj + ui (9.5)

for these n tables, where {ui} are independent from a N(0, 𝜎2
u) distribution, allows

success probabilities to vary by subject.

Table 9.2 Representation of Pair i of
Observations for Binary Matched-Pairs Data

Response

Observation Success Failure Total

1 yi1 1 − yi1 1
2 yi2 1 − yi2 1

The sample has n “partial tables” of this form, one for each
subject.

In the random-intercept model (9.5), the effect 𝛽1 pertains at the cluster level and
is called subject-specific. Defined conditional on the subject, it describes conditional
association for the 2 × 2 × n table with subject-specific partial tables of the form of
Table 9.2. The model2 implies that the odds ratio for the underlying probabilities
in each of the n partial tables equals exp(𝛽1). By contrast, the effect in marginal
model (9.4) is population-averaged, because it results from averaging over the entire
population. Its sample version is the odds ratio for the single 2 × 2 table obtained by
adding together the n partial tables. That summary table has rows that are the margins
of Table 9.1.

2More generally, Section 9.2.4 shows that a GLMM can also have a random slope, so this effect
itself varies among clusters.
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If we replace the logit link by the identity link function in these models, the
population-averaged and subject-specific effects are identical. For instance, for the
random-intercept model

P(yij = 1 ∣ ui) = 𝛽0 + 𝛽1xj + ui,

the effect 𝛽1 = P(yi2 = 1 ∣ ui) − P(yi1 = 1 ∣ ui) for all i. Averaging this over subjects
in the population equates 𝛽1 to the parameter in the marginal model using an identity
link, namely P(yij = 1) = 𝛽0 + 𝛽1xj. For nonlinear link functions, however, the effects
differ. If we begin with the logistic random-intercept model (9.5), equivalently

P(yij = 1 ∣ ui) = exp(𝛽0 + 𝛽1xj + ui)∕[1 + exp(𝛽0 + 𝛽1xj + ui)],

and average over the distribution of ui to obtain the implied marginal model for the
population, that model does not have the logistic form

P(yij = 1) = exp(𝛽0 + 𝛽1xj)∕[1 + exp(𝛽0 + 𝛽1xj)]

corresponding to the marginal model (9.4). So the two models describe different
effects. It is beyond our scope to derive this here, but the ML estimate of 𝛽1 for the
marginal model and, when the sample log odds ratio in Table 9.1 is nonnegative, the
ML estimate of 𝛽1 for the random-intercept model are

Marginal model : 𝛽1 = log
(n+1∕n+2)

(n1+∕n2+)
, GLMM : 𝛽1 = log

n21

n12
.

The estimate for the marginal model is the log odds ratio of the marginal counts. The
two estimates can be quite different in magnitude. We discuss the difference further
in Section 9.4.1.

Incidentally, if we instead treat {ui} in logistic model (9.5) as fixed effects, the
ML estimator of 𝛽1 is poor because the number of {ui} equals the sample size n. The
analysis then violates the regularity condition for asymptotic optimality of ML that the
number of parameters is fixed as n increases. ML estimators need not be consistent3

when the number of parameters grows with the sample size, and in fact, 𝛽1 then
converges to 2𝛽1 as n → ∞ (Exercise 9.20). The remedy of conditional ML treats
{ui} as nuisance parameters and maximizes the likelihood function for a conditional
distribution that eliminates them (Exercise 9.19). This yields 𝛽1 = log(n21∕n12), the
same estimate that usually occurs with the GLMM approach (Lindsay et al. 1991).

With the random-intercept model, averaged over the unobserved {ui}, Sec-
tion 9.4.1 shows that the responses are nonnegatively correlated. A subject with
a large positive ui has a relatively high P(yij = 1 ∣ ui) for each j and is likely to have a
success at any particular time; a subject with a large negative ui has low P(yij = 1 ∣ ui)

3This result is often referred to as the Neyman–Scott phenomenon, recognizing a 1948 Econometrica
article by Jerzy Neyman and Elizabeth Scott.
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for each j and is likely to have a failure at any particular time. The greater the vari-
ability in {ui}, the greater the overall positive association between responses. The
positive association reflects the shared value of ui for each observation in a cluster.

9.1.5 Choice of Marginal Model versus GLMM

As explained in Section 9.1.1, clustered data have two types of effects, between-
cluster and within-cluster. GLMMs explicitly include the cluster in the model, so
they naturally describe within-cluster effects. By contrast, effects in marginal models
are averaged over clusters (i.e., population-averaged), so those effects do not refer to
a comparison at a fixed value of a random effect. The GLMM approach is preferable
when we want to estimate cluster-specific effects, estimate their variability, specify a
mechanism for generating nonnegative association among clustered observations, or
model the joint distribution. Latent variable constructions that motivate model forms
(e.g., for binary data, the threshold model of Section 5.1.2) apply more naturally at
the cluster level than at the marginal level.

Many surveys and epidemiological studies have the goal of comparing distinct
groups, such as smokers and non-smokers, on a mean response or the relative fre-
quency of some outcome. Then quantities of primary interest include between-group
comparisons of marginal means or probabilities for the groups. That is, the effects of
interest are between-cluster rather than within-cluster. When between-cluster effects
are the main focus, it can be simpler to model them directly using marginal models. A
between-cluster fixed effect for two groups in a GLMM applies only when the random
effect takes the same value in each group, such as a smoker and a non-smoker with
the same random effect values, adjusting for the other explanatory variables in the
model. In this sense, GLMMs are cluster-specific models, as both within-cluster and
between-cluster effects apply conditional on the random effect. Modeling the joint
distribution that generates those marginal effects, as a GLMM does, provides greater
opportunity for misspecification, and the subsequent estimates of between-cluster
effects can be more sensitive to violations of assumptions.

Although a GLMM does not naturally describe between-cluster effects, we can
recover information about such effects by integrating out the random effects, as we
showed in Section 9.1.3. But often this integration does not generate a closed form for
the implied marginal model. By contrast, although marginal models naturally describe
between-subjects effects, they are less general than GLMMs, in that a marginal model
does not imply4 a GLMM.

9.1.6 Transition Models and Other Multivariate Models

Marginal models and GLMMs are the primary types of model for multivariate
responses. However, they are not the only models.

4However, Diggle et al. (2002, Section 11.3) showed that marginal model structure can be imbedded
in GLMMs.
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For contingency tables that cross-classify several categorical response variables,
Poisson loglinear models and the corresponding multinomial models (Section 7.2)
are multivariate models. Rather than modeling marginal distributions, such models
focus on the joint distribution, such as to analyze whether a certain pair of variables
is conditionally independent or has homogeneous conditional association or a more
complex interaction structure. By contrast, marginal models regard the joint distri-
bution as a nuisance, and use it merely to find valid SE values for estimates of model
parameters.

A quite different type of multivariate model, called a transition model, has the
form

g[E(yij ∣ yi,j−1, yi,j−2,…)] = xij𝜷 + 𝛾1yi,j−1 + 𝛾2yi,j−2 +⋯ .

Unlike other models, this model takes into account the sequence of the observations in
a cluster, rather than treating them as exchangeable. With time series data, we can use
transition models to predict a response at the next time using past observations as well
as explanatory variables. In this model, 𝜷 describes effects of explanatory variables
after adjusting for past responses. A linear predictor that contains yi,j−1 but not earlier
observations treats yij as conditionally independent of the earlier observations, given
yi,j−1. This is a first-order Markov model. The Markov model and other transition
models are beyond the scope of this text.

9.2 NORMAL LINEAR MIXED MODELS

The linear mixed model for yij is

E(yij ∣ ui) = xij𝜷 + zijui, or yij = xij𝜷 + zijui + 𝜖ij,

where 𝜷 is a p × 1 vector of fixed effects and ui ∼ N(0,𝚺u) is a q × 1 vector of
random effects. Usually we assume that 𝜖ij ∼ N(0, 𝜎2

𝜖
), yielding the normal linear

mixed model. The basic model assumes that {ui} and {𝜖ij} are independent between
clusters (i.e., over i) and of each other. To begin, we also assume that {𝜖ij} are
independent within clusters (i.e., over j for each i).

The model for yij decomposes into a term xij𝜷 for the mean, a term zijui for
between-cluster variability, and a term 𝜖ij for within-cluster variability. For yi =
(yi1,… , yid)T, the model has the form

yi = Xi𝜷 + Ziui + 𝝐i (9.6)

(Laird and Ware 1982), where Xi is the d × p model matrix for observation i that has
xij in row j, Zi is a d × q model matrix for the random effects that has zij in row j, and
𝝐i ∼ N(0, 𝜎2

𝜖
I). Conditional on the random effects, the model E(yi ∣ ui) = Xi𝜷 + Ziui
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looks like an ordinary linear model with Ziui as an offset term. With both sources of
random variability, marginally

var(yi) = Zi𝚺uZT
i + 𝜎2

𝜖
I. (9.7)

Here, Zi𝚺uZT
i describes the between-cluster variability and 𝜎2

𝜖
I describes the within-

cluster variability.

9.2.1 The Random-Intercept Linear Mixed Model

An important special case of a linear mixed model has ui = ui, Zi = 1, and var(ui) =
𝜎2

u , that is,

yi = Xi𝜷 + ui1 + 𝝐i. (9.8)

For this random-intercept model, marginally

var(yi) = 𝜎2
u11T + 𝜎2

𝜖
I.

The two variances in this expression are referred to as variance components.
This model has the exchangeable correlation structure, for j ≠ k,

corr(yij, yik) =
𝜎2

u

𝜎2
u + 𝜎2

𝜖

,

called compound symmetry. Having ui in the model, shared among clusters, implies
that corr(yij, yik) ≥ 0 marginally. Greater within-cluster correlation occurs as 𝜎2

u
increases. This type of correlation, using within-cluster association to summarize
the effect of clustering, is referred to as an intraclass (or intracluster) correlation.
The correlation summarizes the proportion of the response variability due to the
clustering.

Compound symmetry structure also occurs in traditional repeated-measures
ANOVA methods for comparing groups with repeated-measurement data (Diggle
et al. 2002, Section 6.4). Analyses based on a linear mixed model have advantages
compared with those ANOVA methods. Especially important is that the linear mixed
modeling analysis can use subjects who have different numbers of observations, such
as when some observations are missing. For instance, in the clinical trials exam-
ple in Section 9.2.4 below, complete results for all five times were available for
only 211 of the 627 subjects. Using only the available data in linear mixed mod-
eling does not introduce bias as long as the data are missing at random; that is,
what caused the data to be missing can depend on the observed data but not on
the data that are missing. This is true, for example, if whether someone drops out
of the study may depend on values observed prior to the drop-out but not on the
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later unobserved values. Other advantages of linear mixed models over repeated-
measures ANOVA are that the models generalize to accommodate common charac-
teristics of longitudinal studies, such as irregularly spaced observations, time-varying
explanatory variables, increased variability over time, and correlated errors within
clusters.

9.2.2 Hierarchical Modeling: Multilevel Models

In some research studies the data structure is hierarchical, with sampled units nested
in clusters that are themselves nested in other clusters. Hierarchical models are
natural when subjects and institutions form clusters, such as educational studies of
students within schools or medical studies of doctors within hospitals. GLMMs for
hierarchically structured data are called multilevel models. Such models enable us to
study the effects of the relevant explanatory variables at each level. Also, the total
error variability decomposes into variance components attributable to each level.
Standard error estimators can be badly biased if we ignore the clustering and the
consequent within-cluster correlations.

Suppose that a study of characteristics that affect student performance on a battery
of exams samples students from a sample of schools. The model should take into
account the student and the school (or school district). Just as observations on the
same students tend to be more alike than observations on different students, students
in the same school tend to be more alike than students from different schools. Random
effects can enter the model at each level of the hierarchy, for students at level 1 and
for schools at level 2. Let yist denote the score for student i in school s on test t in the
battery of exams. A multilevel model with fixed effects 𝜷 for explanatory variables
and random effects {us} for schools and {vis} for students has the form

yist = xist𝜷 + us + vis + 𝜖ist.

The explanatory variables x might include student demographic characteristics and
past performance such as scores from other exams, as well as school-level variables.
We assume that the random effects us and vis and the errors 𝜖ist are independent with
distributions N(0, 𝜎2

u ), N(0, 𝜎2
v ), and N(0, 𝜎2

𝜖
) having unknown variances. The level 1

random effects {vis} account for variability among students in characteristics that are
not fully captured in x, such as perhaps their ability and achievement motivation. The
level 2 random effects {us} account for variability among schools from unmeasured
variables, such as perhaps the quality of the teachers. The model could even have
additional levels, such as if classrooms are selected within schools or if sampled
schools come from a sample of counties.

Although here the random effects enter at two levels, the linear predictor shows
that the model actually has three levels: a particular observation is affected (beyond
the influence of the explanatory variables) by random variability among schools,
among students within the school, and among exams taken by the student. The total
variability, having three variance components, is 𝜎2

u + 𝜎2
v + 𝜎2

𝜖
. You can verify that

the intraclass correlation between scores on different exams for a student and the
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intraclass correlation between scores on a particular exam for pairs of students in the
same school are

corr(yist, yist′) =
𝜎2

u + 𝜎2
v

𝜎2
u + 𝜎2

v + 𝜎2
𝜖

, corr(yist, yi′st) =
𝜎2

u

𝜎2
u + 𝜎2

v + 𝜎2
𝜖

.

The correlations increase as the variability 𝜎2
u among schools increases. If this vari-

ability is much less than the variability 𝜎2
v among students, then the within-student

correlation is much larger than the within-school correlation.

9.2.3 Example: Smoking Prevention and Cessation Study

Hedeker and Gibbons (2006, p. 9) analyzed data from a study5 of the efficacy of
two programs for discouraging young people from starting or continuing to smoke.
The study compared four groups, defined by a 2×2 factorial design according to
whether a student was exposed to a school-based curriculum (SC; 1 = yes, 0 = no)
and a television-based prevention program (TV; 1 = yes, 0 = no). The subjects were
1600 seventh-grade students from 135 classrooms in 28 Los Angeles schools. The
schools were randomly assigned to the four intervention conditions. The response
variable was a tobacco and health knowledge (THK) scale, measured at the end of the
study. This variable was also observed at the beginning of the study, and that measure
(PTHK = Pre-THK) was used as a covariate. THK took values between 0 and 7, with
ȳ = 2.66 and sy = 1.38. The data, shown partly in Table 9.3, are available in the file
Smoking.dat at the text website.

Table 9.3 Part of Smoking Prevention and Cessation Data File

School Class SC TV PTHK THK

403 403101 1 0 2 3
403 403101 1 0 4 4
...
515 515113 0 0 3 3

Complete data (file Smoking.dat), courtesy of Don Hedeker, are at www.stat.ufl

.edu/~aa/glm/data.

Let yics denote the follow-up THK score for student i within classroom c in school
s. We fitted the multilevel model

yics = 𝛽0 + 𝛽1PTHKics + 𝛽2SCics + 𝛽3TVics + us + vcs + 𝜖ics,

where us ∼ N(0, 𝜎2
u ), vcs ∼ N(0, 𝜎2

v ), and 𝜖ics ∼ N(0, 𝜎2
𝜖
). The estimated fixed effects

do not exhibit a significant TV effect. The SC effect (0.47) is highly statistically

5See also the articles by D. Hedeker et al. (1994) J. Consult. Clin. Psychol. 62: 757–765, and by
B. R. Flay et al. (1995), Prev. Med. 24: 29–40.

http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
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significant but not large in practical terms. Adding an interaction between SC and
TV does not improve the fit.

---------------------------------------------------------------------

> library(lme4) # Doug Bates’s linear mixed models package

> attach(Smoking)

> Smoking # data in file Smoking.dat at www.stat.ufl.edu/~aa/glm/data

school class SC TV PTHK y

1 403 403101 1 0 2 3

2 403 403101 1 0 4 4

...

1600 515 515113 0 0 3 3

> fit <- lmer(y ~ PTHK + SC + TV + (1|school) + (1|class))

> summary(fit) # school and classroom random intercepts

Random effects: # These are "REML" variance estimates; see Sec. 9.3.3

Groups Name Variance Std.Dev.

class (Intercept) 0.0685 0.2618

school (Intercept) 0.0393 0.1981

Residual 1.6011 1.2653

Number of obs: 1600, groups: class, 135; school, 28

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.7849 0.1129 15.803

PTHK 0.3052 0.0259 11.786

SC 0.4715 0.1133 4.161

TV 0.0196 0.1133 0.173

# use ranef(fit) to predict random effects at levels of school, class

# use predict(fit) to get predicted values for the observations

---------------------------------------------------------------------

The residual standard deviation �̂�𝜖 = 1.265 is not much less than the marginal
response standard deviation (1.383), partly reflecting that the correlation is not strong
(0.289) between pre-THK and the follow-up THK. The variance component estimates
indicate more variability among classrooms within schools than among schools.
The estimated intraclass correlation between responses of two students in the same
classroom,

�̂�2
u + �̂�2

v

�̂�2
u + �̂�2

v + �̂�2
𝜖

= 0.039 + 0.069
0.039 + 0.069 + 1.601

= 0.063,

and the estimated intraclass correlation between responses of two students in the
same school but different classrooms,

�̂�2
u

�̂�2
u + �̂�2

v + �̂�2
𝜖

= 0.039
0.039 + 0.069 + 1.601

= 0.023

are quite modest.

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data
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Suppose we ignored the clustering of observations in classrooms and schools and
treated the 1600 observations as independent by fitting the ordinary normal linear
model

yics = 𝛽0 + 𝛽1PTHKics + 𝛽2SCics + 𝛽3TVics + 𝜖ics.

The estimated fixed effects are similar to those in the multilevel model, but the
SE values are quite dramatically underestimated for the between-subjects effects
(SC and TV). This might seem surprising, given the small within-classroom and
within-school correlations. However, the relative sizes of the SE values are also
affected by the cluster sizes, with the difference tending to increase as the cluster
sizes increase.

---------------------------------------------------------------------

> summary(lm(y ~ PTHK + SC + TV))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7373 0.0787 22.088 < 2e-16

PTHK 0.3252 0.0259 12.561 < 2e-16

SC 0.4799 0.0653 7.350 3.15e-13

TV 0.0453 0.0652 0.696 0.487

---

Residual standard error: 1.303 on 1596 degrees of freedom # This is s

---------------------------------------------------------------------

9.2.4 Linear Models with Random Intercept and Random Slope

Random-intercept models generalize to allow slopes also to be random. Longitudinal
studies often use such models to describe trajectories of change in a response over
time.

To illustrate, we describe a simplified version of models from Gueorguieva and
Krystal (2004), who analyzed data from a clinical trial for the effect of using a
drug (naltrexone) instead of placebo in treating 627 veterans suffering from chronic
alcohol dependence. The response variable was a financial satisfaction score, observed
initially and then after 4, 26, 52, and 78 weeks. Let yij be the response of subject i at
observation time j, and let xi be a treatment indicator of whether the veteran receives
the drug (1 = yes, 0 = no). Graphical inspection showed approximately a positive
linear trend of the response when plotted against tj = log(week number + 1), for each
group. A possible model is

yij = (𝛽0 + ui1) + (𝛽1 + ui2)tj + 𝛽2xi + 𝛽3tjxi + 𝜖ij.

For each i, E(yij ∣ ui) has a linear trend in the time metric. Considered for all i, the
intercepts vary around a mean intercept of 𝛽0 for the placebo group and (𝛽0 + 𝛽2)
for the drug group. The slopes of the linear trends vary around a mean of 𝛽1 for the
placebo group and (𝛽1 + 𝛽3) for the drug group. A bivariate normal distribution for
(ui1, ui2) can permit ui1 and ui2 to be correlated, with possibly different variances.
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The correlation could be negative, for example, if subjects who tend to have a high
response at the initial observation tend to increase more slowly. Figure 9.1 shows a
plot portraying the model.

x = 0

t

y

x = 1

Figure 9.1 Portrayal of linear growth curve model, with subject-specific intercepts and slopes
for each treatment group.

9.2.5 Models Generalize to Allow Correlated Errors

The normal linear mixed model yi = Xi𝜷 + Ziui + 𝝐i with 𝝐i ∼ N(0, 𝜎2
𝜖
I), assumes

that (yi1,… , yid) are conditionally independent, given ui. Linear mixed models can
allow more general structures for correlated observations. When subjects are observed
spatially or over time in a longitudinal study, it is often more realistic to permit
(𝜖i1, 𝜖i2,… , 𝜖id) to be correlated, replacing the covariance matrix 𝜎2

𝜖
I by a matrix R

that is non-diagonal. Then,

var(yi) = Zi𝚺uZT
i + R.

In the clinical trial analysis just mentioned, the authors fitted models that take
(𝜖i1,… , 𝜖i5) to have an autoregressive correlation structure6: corr(𝜖ij, 𝜖ik) = 𝜌|j−k|.
This is often sensible for observations over time, when one expects the correlation
to diminish with increasing time distance between observations. Substantial correla-
tion between errors within a cluster, given the random effect, affects SE values for
within-cluster effects.

To illustrate, we show two model fits for a dataset from a pharmaceutical clinical
trial analyzed by Littell et al. (2000). In the study, 24 patients were randomly assigned
to each of three treatment groups (drug A, drug B, placebo) and compared on a
measure of respiratory ability, FEV= forced expiratory volume in 1 second (in liters).
The study observed FEV for a baseline measurement and then for each of 8 hours

6One can replace the index j by an actual time tj in the autoregressive structure.
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Table 9.4 Part of FEV Clinical Trial Data File

Observation Patient Baseline Drug Hour fev

1 01 2.46 a 1 2.68
2 02 3.50 a 1 3.95
3 03 1.96 a 1 2.28
...
25 01 2.46 a 2 2.76
...
576 72 2.88 p 8 2.76

Complete data (file FEV2.dat), courtesy of Ramon Littell, are at
www.stat.ufl.edu/~aa/glm/data.

after the drug was administered. The data file has the form shown in Table 9.4, with
eight response observations per patient.

We show results here for a simple model with a linear trend effect of time after
administering the drug and no interaction between time and the drug; you can develop
better models in Exercise 9.34. For the FEV observation at hour j for subject i, we
assume that

yij = 𝛽0 + 𝛽1baselinei + 𝛽2bi + 𝛽3pi + 𝛽4j + ui + 𝜖ij,

where bi = 1 for drug B and 0 otherwise and pi = 1 for placebo and 0 otherwise. We fit
a model with independent within-patient errors and a model with autoregressive error
structure. The models have similar estimated fixed effects, but the SE values differ for
the within-patient explanatory variable (hour). Within-cluster SE values tend to be
too small under compound-symmetry assumptions (and likewise under more general
sphericity assumptions in repeated-measures ANOVA) when the assumption is badly
violated. The log-likelihood and AIC are substantially better for the model permitting
autocorrelated errors.

-------------------------------------------------------------------------

> library(nlme) # has lme function that can have error structure

> attach(FEV2)

> summary(lme(fev ~ baseline + factor(drug) + hour, random = ~1|patient))

AIC BIC logLik

388.91 419.35 -187.46

Random effects:

(Intercept) Residual

StdDev: 0.4527 0.2717 # random intercept estimated std.dev.=0.4527

Fixed effects: fev ~ baseline + factor(drug) + hour

Value Std.Error DF t-value p-value

(Intercept) 1.0492 0.2922 503 3.5911 0.0004

baseline 0.9029 0.1033 68 8.7417 0.0000

factor(drug)b 0.2259 0.1336 68 1.6907 0.0955 # relative to

http://www.stat.ufl.edu/~aa/glm/data
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factor(drug)p -0.2815 0.1336 68 -2.1065 0.0389 # drug a

hour -0.0746 0.0049 503 -15.0950 0.0000

> summary(lme(fev ~ baseline + factor(drug) + hour,

random =~1|patient, correlation = corAR1(form = ~1|patient)))

AIC BIC logLik

243.35 278.13 -113.67

Random effects:

(Intercept) Residual

StdDev: 0.4075 0.3355 # random intercept estimated std.dev.=0.4075

Correlation Structure: AR(1)

0.6481 # autoregressive correlation estimate for 8 within-patient errors

Fixed effects: fev ~ baseline + factor(drug) + hour

Value Std.Error DF t-value p-value

(Intercept) 1.0723 0.2914 503 3.680 0.0003

baseline 0.8918 0.1026 68 8.694 0.0000

factor(drug)b 0.2130 0.1327 68 1.605 0.1131

factor(drug)p -0.3142 0.1327 68 -2.367 0.0208

hour -0.0691 0.0077 503 -8.979 0.0000 # larger SE

-------------------------------------------------------------------------

Other correlation structures besides autoregressive are possible in var(𝝐i). Most
generally, an unstructured correlation form has

(d
2

)
unspecified correlations. When

d is large, however, this has many additional parameters. Yet, with increasing time
separation, correlations sometimes do not die out as quickly as the autoregressive
structure implies. An alternative, between these two in generality, is the Toeplitz
structure. It assumes corr(𝜖ij, 𝜖ik) = 𝜌|j−k|, permitting (d − 1) separate correlations.

Just as it can be helpful to allow more complex correlation structure than indepen-
dent within-cluster errors, it also can be helpful to allow different groups or times to
have different variances. Exercise 9.35 shows an example.

For a particular dataset, how does one decide whether a certain covariance struc-
ture R for var(𝝐i) is better than 𝜎2

𝜖
I? As usual, summary fit measures such as AIC are

useful for comparing models. It is also sensible to compare the model-fitted variances
and corr(yij, yik) for all (j, k) with the sample values. See Diggle et al. (2002, Chap-
ter 5), Littell et al. (2000), and Verbeke and Molenberghs (2000, Chapter 9, 10) for
examples.

9.3 FITTING AND PREDICTION FOR NORMAL LINEAR
MIXED MODELS

In this section we present model fitting and inference for normal linear mixed models.
Unless otherwise stated, we use the general error covariance structure 𝝐i ∼ N(0, R).
More generally, we could let R depend on i, to accommodate structure such as missing
data or autoregressive correlations with subjects observed at different times.
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9.3.1 Maximum Likelihood Model Fitting

We combine the n vectors of observations yi into an nd × 1 vector y and express the
linear mixed model (9.6) simultaneously for all n observations as

y = X𝜷 + Zu + 𝝐,

where

X =
⎛⎜⎜⎝

X1
⋮

Xn

⎞⎟⎟⎠ , Z =
⎛⎜⎜⎜⎝

Z1 0 ⋯ 0
0 Z2 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ Zn

⎞⎟⎟⎟⎠
, u =

⎛⎜⎜⎝
u1
⋮
un

⎞⎟⎟⎠ , 𝝐 =
⎛⎜⎜⎝
𝝐1
⋮
𝝐n

⎞⎟⎟⎠
and

𝚺u = var(u) =
⎛⎜⎜⎜⎝
𝚺u 0 ⋯ 0
0 𝚺u ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 𝚺u

⎞⎟⎟⎟⎠
, R𝝐 = var(𝝐) =

⎛⎜⎜⎜⎝
R 0 ⋯ 0
0 R ⋯ 0
0 0 ⋱ 0
0 0 ⋯ R

⎞⎟⎟⎟⎠
.

Marginally, assuming independent normal errors and random effects with 0 means,

y ∼ N(X𝜷, Z𝚺uZT + R𝝐). (9.9)

Let V = Z𝚺uZT + R𝝐 . Based on the multivariate normal pdf shown in Section 3.1.1
and ignoring the constant term, the log-likelihood function for the model is

L(𝜷, V) = −1
2
log |V| − 1

2
(y − X𝜷)TV−1(y − X𝜷).

If V is known, then maximizing L(𝜷, V) with respect to 𝜷 yields the generalized least
squares solution (2.7.2),

�̃� = �̃�(V) =
(
XTV−1X

)−1
XTV−1y. (9.10)

Now V has block-diagonal form with d × d blocks Vi = Zi𝚺uZT
i + R, so this esimator

has the form

�̃� =

(
n∑

i=1

XT
i V−1

i Xi

)−1 n∑
i=1

XT
i V−1

i yi.
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Since E(yi) = Xi𝜷, this estimator is unbiased. Since it is a linear function of y, it has
a normal distribution with

var(�̃�) =

(
n∑

i=1

XT
i V−1

i Xi

)−1

.

In practice, V is rarely known. We discuss its estimation in Section 9.3.3. Substi-
tuting an estimate V̂ in �̃� yields

�̂� = �̃�(V̂) =

(
n∑

i=1

XT
i V̂

−1

i Xi

)−1 n∑
i=1

XT
i V̂

−1

i yi.

Under regularity conditions, its asymptotic distribution is the same as the normal
distribution that applies when V is known. Inference about fixed effects can use the
usual methods, such as likelihood-ratio tests and Wald confidence intervals.

9.3.2 Best Linear Unbiased Prediction of Random Effects

After we have obtained �̂� and V̂, we can predict values of the random effects {ui}.
We say “predict” rather than “estimate” because ui is a random effect rather than a
parameter.

Prediction of random effects is useful in various sorts of applications. In multi-
level models of performance, they are used to rank institutions such as schools and
hospitals. For example, a study might predict school random effects {us} to evaluate
whether some schools are unusually high or unusually low in student achievement
exam scores, adjusted for the fixed covariates7. Prediction of random effects is also
useful in small-area estimation, which involves estimating characteristics for many
geographical areas when each has relatively few observations. Examples are county-
specific estimates of mean family income and of the proportion of unemployed adult
residents. In a national or statewide survey, many counties may have few, if any,
observations. Then sample means and sample proportions may poorly estimate the
true countywide values. Models with random effects that treat each county as a clus-
ter can provide improved estimates, because those estimates borrow from the whole,
using all the data rather than only the county-specific data.

How do we characterize a predictor ũi of a random effect ui? A predictor ũi is
called the best linear unbiased predictor (BLUP) of ui if ũi is linear in y, E(ũi) = 0
(the value for E(ui)), and for any linear combination aTui of the random effects,
E(aTũi − aTui)

2 is minimized, among all such linear unbiased predictors.

7Intervals are more informative than predictions, which may suggest differences between institutions
that merely reflect random variability. See Goldstein (2014) and Goldstein and Spiegelhalter (1996)
for issues in constructing and interpreting “league tables.”
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For the normal linear mixed model y = X𝜷 + Zu + 𝝐 with var(u) = 𝚺u and
var(𝝐) = R𝝐 , cov(y, u) = cov(Zu + 𝝐, u) = Z𝚺u, so

(
y
u

)
∼ N

[(
X𝜷
0

)
,

(
Z𝚺uZT + R𝝐 Z𝚺u

𝚺uZT 𝚺u

)]
.

To maximize the joint normal density of y and u with respect to 𝜷 and u, with
known variances, we differentiate the log-density with respect to 𝜷 and u to obtain
normal-like equations

(
XTR−1

𝝐
X XTR−1

𝝐
Z

ZTR−1
𝝐

X 𝚺−1
u + ZTR−1

𝝐
Z

)(
�̃�

ũ

)
=

(
XTR−1

𝝐
y

ZTR−1
𝝐

y

)
.

These equations are often referred to as Henderson’s mixed-model equations, because
they are due to the statistician Charles Henderson, who developed them and BLUP
for applications in animal breeding (see Henderson 1975). The solution ũ to these
equations is the BLUP of u and is the best linear unbiased estimator of E(u ∣ y),
the posterior mean given the data. These results are true even without the nor-
mality assumption. The solution �̃� is identical to the generalized least squares
solution (9.10).

Applying the expression in Section 3.1.1 for conditional distributions of multi-
variate normal variables to the expression just given for the joint distribution of y
and u,

E(u ∣ y) = 𝚺uZTV−1(y − X𝜷)

for V = Z𝚺uZT + R𝝐. With known variances, the BLUP ũ of u is therefore

ũ = 𝚺uZTV−1(y − X�̃�) = 𝚺uZTV−1[I − X(XTV−1X)−1XTV−1]y.

The fitting process uses data from all the clusters to estimate characteristics in any
given one. Bayesian approaches naturally do this, through the impact of the prior
distribution on Bayes estimates, as shown in an example in Section 10.4.3. The
prediction ũ is a weighted combination of 0 and the generalized least squares estimate
based on treating u as a fixed effect8.

We illustrate with the model for the balanced one-way layout,

yij = 𝛽0 + ui + 𝜖ij, i = 1,… , c, j = 1,… , n,

8See Laird and Ware (1982) and Robinson (1991), and the following example for the one-way
layout.
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treating the factor as random instead of fixed, and with var(𝝐i) = 𝜎2
𝜖
In. This model

has the form y = X𝜷 + Zu + 𝝐 with

X =
⎛⎜⎜⎝

1n
⋮
1n

⎞⎟⎟⎠ , 𝜷 = 𝛽0, Z =
⎛⎜⎜⎜⎝

1n 0 ⋯ 0
0 1n ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 1n

⎞⎟⎟⎟⎠
, u =

⎛⎜⎜⎝
u1
⋮
uc

⎞⎟⎟⎠ ,

with 𝚺u = var(u) = 𝜎2
uIc and R𝝐 = var(𝝐) = 𝜎2

𝜖
Inc. For this structure, you can verify

that 𝛽0 = ȳ and

ũi =
𝜎2

u

𝜎2
u + 𝜎2

𝜖
∕n

(ȳi − ȳ), 𝛽0 + ũi =

(
𝜎2

u

𝜎2
u + 𝜎2

𝜖
∕n

)
ȳi +

(
𝜎2
𝜖
∕n

𝜎2
u + 𝜎2

𝜖
∕n

)
ȳ.

The prediction ũi is a weighted average of 0 and the least squares estimate (ȳi − ȳ) from
treating u as a fixed effect, with the weight 𝜎2

u∕(𝜎2
u + 𝜎2

𝜖
∕n) for (ȳi − ȳ) increasing as

n increases. The estimated mean 𝛽0 + ũi for group i is a weighted average of ȳi and
ȳ, with greater weight for ȳi as n increases. The solution has a form we will obtain
with the Bayesian approach in Sections 10.2.3 and 10.4.2.

From Henderson (1975), �̃� and ũ are uncorrelated, and when X has full rank,

var

(
�̃� − 𝜷
ũ − u

)
=

(
XTR−1

𝝐
X XTR−1

𝝐
Z

ZTR−1
𝝐

X 𝚺−1
u + ZTR−1

𝝐
Z

)−1

.

In practice, we must estimate ũ and var(ũ) by substituting estimates for the unknown
variances, providing an empirical BLUP. We make similar substitutions to predict
linear combinations of fixed and random effects and to estimate standard errors of
the predictions.

9.3.3 Estimating Variance Components: REML

An alternative to ordinary ML for estimating covariance matrices and variance com-
ponents of random effects adjusts for estimating 𝜷 while estimating V. This yields
a residual ML (sometimes called restricted ML) estimate, abbreviated REML. Con-
sider the marginal representation (9.9) for the normal linear mixed model, for which
E(y) = X𝜷. The REML approach uses a linear transformation Ly of the data satisfy-
ing LX = 0 and so having E(Ly) = 0. Then Ly = L𝝐∗ with 𝝐∗ = (Zu + 𝝐) are error
contrasts whose distribution does not depend on the fixed effects 𝜷. The REML
estimates, which are obtained from maximizing the likelihood for the distribution of
Ly, do not depend on the value of 𝜷.

With projection matrix P
X

for the model space C(X), L = I − P
X

satisfies LX = 0.
Then the error contrasts are Ly = (I − P

X
)y = y − �̂�, the residuals. This is the reason

for the name “residual ML.”
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We illustrate with the null model having n independent observations from N(𝜇, 𝜎2).
Then Ly = (y − ȳ) has a multivariate normal distribution with mean 0 and covariance
matrix depending on 𝜎2 but not𝜇. For this distribution treated as a likelihood function,
the estimate of 𝜎2 that maximizes it is s2 = [

∑
i(yi − ȳ)2]∕(n − 1). More generally,

for a normal linear model with projection matrix P
X

of rank r, the REML estimator
of 𝜎2 is the unbiased estimator

s2 =
yT(I − P

X
)y

n − r
=
∑n

i=1(yi − �̂�i)
2

n − r

found in Section 2.4.1. The ordinary ML estimator has denominator n and is biased.
The REML estimates for more complex models are solutions of likelihood-like

equations, found using methods such as Newton–Raphson or Fisher scoring. See
Harville (1977) for details.

9.4 BINOMIAL AND POISSON GLMMS

To illustrate GLMMs with nonlinear link functions, we now present models for
clustered binary data and for clustered count data.

9.4.1 Logistic-Normal Models for a Binary Response

The binary matched-pairs model (9.5) with normally distributed random intercept
and logit link function is an example of a class of models for binary data called
logistic-normal models. The model form is

logit[P(yij = 1 ∣ ui)] = xij𝜷 + zijui, (9.11)

where {ui} are independent N(0,𝚺u) variates.
To illustrate, the random-intercept model (9.5) for binary matched pairs extends

to a model for d > 2 observations in each cluster,

logit[P(yij = 1 ∣ ui)] = 𝛽0 + 𝛽j + ui,

with an identifiability constraint such as 𝛽1 = 0. Early applications of this GLMM
were in psychometrics, for describing (correct, incorrect) outcomes for d questions
on an examination. The probability P(yij = 1 ∣ ui) that subject i makes the correct
response on question j depends on the overall ability of subject i, characterized by
ui, and on the easiness of question j, characterized by 𝛽j. Such models are called
item-response models. This particular model with logit link is called the Rasch model
(Rasch 1961). In estimating {𝛽j}, Rasch treated {ui} as fixed effects and used con-
ditional ML, as outlined in Exercise 9.19 for matched pairs. Later authors used the
normal random effects approach and often the probit link (Bock and Aitkin 1981).
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With that approach, the model assumes a latent variable u such that for each possible
sequence (a1,… , ad) of response outcomes and each value u∗ of u,

P(yi1 = a1,… , yid = ad ∣ ui = u∗) = P(yi1 = a1 ∣ ui = u∗)⋯P(yid = ad ∣ ui = u∗).

This model structure also applies with other types of latent variable. With a categorical
latent variable, the model is called a latent class model (Lazarsfeld and Henry 1968).
This model treats a 2d contingency table as a finite mixture of unobserved tables
generated under a conditional independence structure.

For the general binary random-intercept model in which the inverse link function is
an arbitrary cdf F, model-fitting usually treats yij and yik as conditionally independent,
given ui. Marginally, for j ≠ k,

cov(yij, yik) = E[cov(yij, yik ∣ ui)] + cov[E(yij ∣ ui), E(yik ∣ ui)]

= 0 + cov[F(xij𝜷 + ui), F(xik𝜷 + ui)].

The functions in the last covariance term are both monotone increasing in ui, and
hence are non-negatively correlated. Thus, the model implies that corr(yij, yik) ≥ 0.

Effects in binary random-effects models tend to be larger than those in corre-
sponding marginal models. To show this, we first consider the probit analog of the
random-intercept version of the logistic-normal model (9.11),

Φ−1[P(yij = 1 ∣ ui)] = xij𝜷 + ui.

Let z denote a standard normal variate, and let f (u; 𝜎2
u) denote the N(0, 𝜎2

u ) pdf of ui.
The corresponding marginal model satisfies

P(yij = 1) =
∫

P(yij = 1 ∣ ui)f
(
ui; 𝜎

2
u

)
dui = ∫

P(z − ui ≤ xij𝜷)f
(
ui; 𝜎

2
u

)
dui.

Since z − ui ∼ N(0, 1 + 𝜎2
u ), we have (z − ui)∕

√
1 + 𝜎2

u ∼ N(0, 1), and

P(yij = 1) = Φ
(

xij𝜷∕
√

1 + 𝜎2
u

)
.

The implied marginal model is also a probit model, but the effects equal those from

the GLMM divided by
√

1 + 𝜎2
u . The discrepancy increases as 𝜎u increases. With the

logistic-normal model, the implied marginal model is not exactly of logistic form. An
approximate relation exists, based on the similarity of the normal and logistic cdfs.
The marginal model is approximately a logistic model with effects 𝜷∕

√
1 + (𝜎u∕c)2

for c ≈ 1.7.
Figure 9.2 illustrates why the marginal effect is smaller than the subject-specific

effect in the binary GLMM. For a single explanatory variable x, the figure shows
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GLMM
Marginal model

0.0

1.0

P(y=1)

x

Figure 9.2 Logistic random-intercept GLMM, showing its subject-specific curves and the
population-averaged marginal curve obtained at each x by averaging the subject-specific prob-
abilities.

subject-specific curves for P(yij = 1 ∣ ui) for several subjects when considerable het-
erogeneity exists. This corresponds to a relatively large var(ui). At any fixed value of
x, variability occurs in the conditional means, E(yij ∣ ui) = P(yij = 1 ∣ ui). The aver-
age of these is the marginal mean, E(yij). These averages for various x values yield the
superimposed dashed curve. It has a shallower slope. An example in Section 9.7 illus-
trates that effects in a GLMM can be very different from effects in the corresponding
marginal model.

9.4.2 Poisson GLMM for Correlated Count Data

With count data, we have seen that mixture models provide a flexible way to account
for overdispersion. Mixing the Poisson distribution using the gamma distribution for
its mean yields the negative binomial distribution marginally. An alternative approach
mixes the Poisson log mean with a normal random effect. The GLMM structure with
the log link is

log[E(yij ∣ ui)] = xij𝜷 + zijui, (9.12)

where {ui} are independent N(0,𝚺u). Conditional on ui, yij has a Poisson distribution.
The identity link is also possible but has a structural problem: for a random intercept
with 𝜎u > 0, a positive probability exists that the linear predictor is negative. The
negative binomial model results when instead exp(ui) has a gamma distribution.
The Poisson GLMM with normal random effects has the advantage, relative to
the negative binomial GLM, of easily permitting multivariate random effects and
multilevel models.

The random-intercept version of Poisson GLMM (9.12) implies that the corre-
sponding marginal model has

E(yij) = E[E(yij ∣ ui)] = E[exij𝜷+ui ] = exij𝜷+𝜎2
u∕2
.
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Here, E[exp(ui)] = exp(𝜎2
u∕2) because a N(0, 𝜎2

u) variate ui has moment generating
function (mgf) E[exp(tui)] = exp(t2𝜎2

u∕2). So the log of the mean conditionally equals
xij𝜷 + ui and marginally equals xij𝜷 + 𝜎2

u∕2. A loglinear model still applies, and the
marginal effects of the explanatory variables are the same as the subject-specific
effects. Thus, the ratio of means at two settings of xij is the same conditionally and
marginally. The variance of the marginal distribution is

var(yij) = E[var(yij ∣ ui)] + var[E(yij ∣ ui)] = E[exij𝜷+ui] + e2xij𝜷var(eui )

= exij𝜷+𝜎2
u∕2 + e2xij𝜷

(
e2𝜎2

u − e𝜎
2
u

)
= E(yij) + [E(yij)]

2
(

e𝜎
2
u − 1
)
.

Here var(eui ) = E(e2ui ) − [E(eui )]2 = e2𝜎2
u − e𝜎

2
u by evaluating the mgf at t = 2 and

t = 1. As in the negative binomial model, the marginal variance is a quadratic function
of the marginal mean. The ordinary Poisson model results when 𝜎u = 0. When 𝜎u > 0,
the marginal distribution is not Poisson, and the extent to which the variance exceeds
the mean increases as 𝜎u increases. Marginally, observations within a cluster are
non-negatively correlated, as in the binary GLMM (Exercise 9.24).

9.4.3 Multilevel Modeling with a Discrete Response

Multilevel models can have discrete responses. For example, for the battery-of-exams
scenario introduced in Section 9.2.2, suppose the response yist for student i in school s
on test t is binary, with 1 = pass and 0 = fail. A multilevel model with random effects
{vis} for students and {us} for schools and fixed effects for explanatory variables has
the form

logit[P(yist = 1 ∣ us, vis)] = xist𝜷 + us + vis. (9.13)

As in Section 5.1.2, a latent variable model for a continuous response implies this
model. Let y∗ist denote the latent observation for student i in school s on exam t, such
that we observe yist = 1 if y∗ist falls above some threshold. The latent variable model
is

y∗ist = xist𝜷 + us + vis + 𝜖ist.

The assumption that {𝜖ist} come from a standard logistic distribution, for which
the inverse cdf is the logit link function, implies the logistic random-effects model.
For it, conditional on us and vis, the observed response satisfies the logistic model
(9.13). The assumption that 𝜖ist comes from a standard normal distribution implies a
corresponding probit random-effects model.

For the binary multilevel model, the total unexplained variability in this latent
variable model is (𝜎2

u + 𝜎2
v + 𝜎2

𝜖
). Of these, 𝜎2

𝜖
= 𝜋2∕3 = 3.29 for the logistic model

and 1.0 for the probit model, which are the variances of the standard logistic and
standard normal distributions. A large within-student correlation between scores on
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different exams again corresponds to a relatively large var(vis), and hence relatively
large ratio of (𝜎2

u + 𝜎2
v ) to (𝜎2

u + 𝜎2
v + 𝜎2

𝜖
).

9.4.4 Binary and Count Data Models with More Complex
Correlation Structure

In Section 9.2.5 we noted that linear mixed models that assume conditionally inde-
pendent responses in a cluster, given a random effect, are sometimes inadequate,
especially for longitudinal or spatial data. We can instead permit the error term 𝝐i for
a cluster to have correlated components.

GLMMs for binary data and count data are expressed in terms of E(yij ∣ ui) and
do not have a separate error term, unless we work with the latent variable version of
the model. However, the model of conditional independence, given ui, generalizes
by replacing ui by uij with correlated components. For example, the simple logistic-
normal random-intercept model, logit[P(yij = 1 ∣ ui)] = xij𝜷 + ui, generalizes to

logit[P(yij = 1 ∣ uij)] = xij𝜷 + uij,

where (ui1,… , uid) have a multivariate normal distribution with a certain correla-
tion structure (Coull and Agresti 2000). The autoregressive structure cov(uij, uik) =
𝜌|j−k|𝜎2 has only a single extra parameter. The simpler random-intercept model is
the special case 𝜌 = 1, implying a common random effect ui for each component
in cluster i. With large cluster sizes, the generalized model is challenging to fit
by ML.

9.5 GLMM FITTING, INFERENCE, AND PREDICTION

Model fitting is not simple for GLMMs, because the likelihood function does not
have a closed form. Numerical methods for approximating it can be computationally
intensive for models with multivariate random effects. In this section we present
methods for ML fitting and inference for GLMMs.

9.5.1 Marginal Likelihood and Maximum Likelihood Fitting

The GLMM is a two-stage model. At the first stage, conditional on the random
effects {ui}, observations are assumed to follow a GLM. That is, the observations
are independent, with yij in cluster i having distribution in the exponential dispersion
family with expected value linked to a linear predictor, g[E(yij ∣ ui)] = xij𝜷 + zijui.
At that first stage, zijui is a known offset. Then at the second stage, {ui} are assumed
independent from a N(0,𝚺u) distribution.

For observations y and random effects u, let f (y ∣ u; 𝜷) denote the conditional
probability mass or density function of y, given u. Let f (u;𝚺u) denote the normal
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pdf for u. The likelihood function 𝓁(𝜷,𝚺u; y) for a GLMM refers to the marginal
distribution of y after integrating out the random effects,

𝓁(𝜷,𝚺u; y) = f (y; 𝜷,𝚺u) =
∫

f (y ∣ u;𝜷)f (u;𝚺u) du. (9.14)

It is called a marginal likelihood. For example, the marginal likelihood function
𝓁(𝜷, 𝜎2

u ; y) for the logistic-normal random-intercept model is

n∏
i=1

{
∫

∞

−∞

d∏
j=1

[ exp(xij𝜷 + ui)

1 + exp(xij𝜷 + ui)

]yij [ 1
1 + exp(xij𝜷 + ui)

]1−yij

f
(
ui; 𝜎

2
u

)
dui

}
.

Many methods can approximate 𝓁(𝜷,𝚺u; y) numerically. We next briefly describe
a few of them.

9.5.2 Gauss–Hermite Quadrature Methods for ML Fitting

When the dimension of ui is small, as in the one-dimensional integral just shown for
the logistic-normal random-intercept model, standard numerical integration meth-
ods can approximate 𝓁(𝜷,𝚺u; y) well. Gauss–Hermite quadrature approximates the
integral of a function h(⋅) multiplied by a scaled normal density function. The approxi-
mation is a finite weighted sum that evaluates the function at certain points, essentially
approximating the area under a curve by a discrete histogram. For univariate normal
random effects, the approximation has the form

∫

∞

−∞
h(u) exp(−u2)du ≈

q∑
k=1

ckh(sk),

for tabulated weights {ck} and quadrature points {sk} that are the roots of Her-
mite polynomials. The specified {ck} and {sk} make the approximation exact for
polynomials of degree 2q − 1 or less. The approximation improves as q increases.
The approximated likelihood can be maximized with algorithms such as Newton–
Raphson. Inverting an approximation for the observed information matrix provides
standard errors. For complex models, second partial derivatives for the Hessian can
be computed numerically rather than analytically.

When the function h to be integrated is not centered at 0, many quadrature points
may fall outside the region where the variation in the function is concentrated. An
adaptive version of Gauss–Hermite quadrature (Liu and Pierce 1994) centers the
quadrature points with respect to the mode of the function being integrated and scales
them according to the estimated curvature at the mode. This improves efficiency,
dramatically reducing the number of quadrature points needed to approximate the
integral effectively.
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9.5.3 Other Fitting Methods: Monte Carlo, Laplace Approximation

With Gauss–Hermite quadrature, adequate approximation becomes computationally
more difficult as the dimension of ui increases much beyond bivariate, because
of the “curse of dimensionality.” Then Monte Carlo methods are more feasible.
Various approaches, including Markov chain Monte Carlo (MCMC), Monte Carlo
in combination with Newton–Raphson, Monte Carlo in combination with the EM
algorithm, and simulation, estimate the likelihood directly.

These likelihood approximations yield parameter estimates that converge to the
ML estimates as the number of quadrature points increases for Gauss–Hermite inte-
gration and as the Monte Carlo sample size increases for MC methods. This contrasts
with other methods, such as Laplace approximations and penalized quasi-likelihood,
that maximize an analytical approximation of the likelihood function but do not yield
exact ML estimates. Using the exponential family representation of each component
of the joint distribution of y and u, the integrand of (9.14) is an exponential function
of u. The Laplace approximation for that function uses a second-order Taylor series
expansion of its exponent around a point ũ at which the first-order term equals 0. That
point is ũ ≈ E(u ∣ y). The approximating function for the integrand is then exponen-
tial with quadratic exponent in (u − ũ) and has the form of a constant multiple of a
multivariate normal density. Thus, its integral has closed form.

9.5.4 Inference for GLMM Parameters and Prediction of Random Effects

After fitting the model, inference about fixed effects proceeds in the usual way. For
instance, likelihood-ratio tests can compare nested models. Inference about random
effects (e.g., their variance components) is more complex. Often one model is a
special case of another in which a variance component equals 0. The simpler model
then falls on the boundary of the parameter space relative to the more complex model,
so as we observed in comparing Poisson and negative binomial models in Section
7.3.4, ordinary likelihood-based inference does not apply. For the most common
situation, testing H0: 𝜎2

u = 0 against H1: 𝜎2
u > 0 for a model containing a random

intercept, the null asymptotic distribution of the likelihood-ratio statistic is an equal
mixture of degenerate at 0 (which occurs when �̂�u = 0) and 𝜒2

1 random variables.
When �̂�u > 0 and the observed test statistic equals t, the P-value for this large-sample
test is 1

2
P(𝜒2

1 > t).
Some effects, such as subject-specific means, involve linear combinations of fixed

and random effects. Given the data, the conditional distribution of (u ∣ y) contains
the information about u. As in Section 9.3.2 for the linear mixed model, the pre-
diction ũi for ui estimates E(ui ∣ y), and the standard error of ũi is the standard
deviation of the distribution of (ui ∣ y). Estimated effects, like those from an empir-
ical Bayes approach (Section 10.4), exhibit shrinkage relative to estimates using
only data in the specific cluster. Shrinkage estimators can be far superior to sam-
ple values when the sample size for estimating each effect is small, when there are
many effects to estimate, or when the true effect values are roughly equal. Estima-
tion of E(ui ∣ y) also uses numerical integration or Monte Carlo approximation. The
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expectation depends on 𝜷 and 𝚺u, so in practice we substitute �̂� and �̂�u in the
approximation.

9.5.5 Misspecification of Random Effects Distribution

In spite of its popularity and attractive features, the normality assumption for random
effects in ordinary GLMMs can rarely be closely checked. Distributions of predicted
values are highly dependent on their assumed distribution and are not reliable indi-
cators of the true random effects distribution. An obvious concern of this or any
parametric assumption for the random effects is possibly harmful effects of misspec-
ification. However, choosing an incorrect random effects distribution does not tend
to seriously bias estimators of those effects. Assuming different distributions for the
random effects can yield quite different predicted values yet have similar performance
in terms of overall accuracy of prediction (McCulloch and Neuhaus 2011).

Likewise, different assumptions for the random effects distribution usually provide
similar results for estimating the fixed effects, with similar efficiency. However,
when the variance of the random effects is assumed constant but actually depends
strongly on values of covariates, between-cluster effects may be more sensitive to
correct specification of the random effects distribution than within-cluster effects,
because of the attenuation in the effect when we integrate out the random effect to
estimate the between-cluster effect. Bias sensitivity to the random effects assumption
is greater for estimating fixed effects in GLMMs than estimating their counterparts
in corresponding marginal models. This is an advantage of using marginal models
to estimate between-cluster effects. See Heagerty and Zeger (2000) for discussion.
For the linear mixed model, a sandwich correction can better estimate standard errors
under misspecification, especially for variance components (Verbeke and Lesaffre
1998).

9.6 MARGINAL MODELING AND
GENERALIZED ESTIMATING EQUATIONS

In presenting the marginal modeling approach, we first show a multivariate extension
of the normal regression model. We illustrate with a model for the multivariate one-
way layout, which leads to a special case of multivariate ANOVA. When we allow
non-normal responses, ML fitting is often not feasible. We can then fit the model with
a multivariate quasi-likelihood method, for which the model parameter estimates are
solutions of generalized estimating equations (GEE) and standard errors come from
an estimated sandwich covariance matrix.

9.6.1 Multivariate Normal Regression Model

With an identity link function, the normal linear model for the marginal responses in
yi = (yi1,… , yid)T, i = 1,… , n, is

yij = xij𝜷 + 𝜖ij, j = 1,… , d,
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where 𝜖ij ∼ N(0, 𝜎2
𝜖
). Let 𝝐i = (𝜖i1,… , 𝜖id)T. The basic model takes {𝝐i}, and thus the

multivariate observations, as independent. However, we allow components of 𝝐i to be
correlated, since in most applications we expect corr(yij, yik) ≠ 0. Let var(𝝐i) = Vi.
As in Section 9.2.5, we can increase parsimony by providing structure for Vi.

Forming a d × p matrix Xi of coefficients of 𝜷, we express the model as yi =
Xi𝜷 + 𝝐i. To have a single equation for all n observations, we append {Xi} into a
dn × p matrix X and also stack the n vectors of observations yi and errors 𝝐i, yielding

y = X𝜷 + 𝝐.

Let V be the block-diagonal covariance matrix for y, with block i being the covariance
matrix Vi for yi. Then y ∼ N(X𝜷, V).

For this formulation, the ML estimator of 𝜷 is the generalized least squares
estimator,

�̂� =
(
XTV−1X

)−1
XTV−1y.

In practice, V is unknown, so ML fitting simultaneously estimates it (using ML or
REML) and �̂�, taking into account any assumed structure for V. See Diggle et al.
(2002, Sections 4.4, 4.5, 5.3.2) for details.

9.6.2 Multivariate Normal Linear Model for One-Way Layout

An extension of the one-way layout (Sections 1.3.3, 2.3.2, and 3.2.1) to multivariate
data provides structure for comparing the mean of a multivariate response y for c
groups. Let ygij denote the response for subject i in group g on response variable j, for
i = 1,… , ng and j = 1,… , d. Let ygi = (ygi1,… , ygid)T and 𝝁gi = E(ygi). A marginal
model with an identity link function for this setting assumes that ygi ∼ N(𝝁gi, V),
with

𝜇gij = 𝛽0j + 𝛽gj

for all g, i, and j. For identifiability, we need constraints such as 𝛽1j = 0 for each j.
For fixed j, this resembles the ordinary model for a one-way layout.

For this model, 𝝁gi = 𝝁g, all subjects in the same group having the same vector
of means. The hypothesis of identical response distributions for the c groups is
H0: 𝝁1 = ⋯ = 𝝁c. In the linear model, it corresponds to H0: 𝛽1j = ⋯ = 𝛽cj for j =
1,… , d, which is equivalent to the null model, 𝜇gij = 𝛽0j for all g and j. The test of
H0 is an example of a multivariate analysis of variance, abbreviated MANOVA. The
technical details are beyond our scope, but just as one-way ANOVA partitions the total
variability into between-group variability and within-group variability, MANOVA
does something analogous with covariance matrices. The likelihood-ratio test, due to
S. Wilks, is often referred to as Wilks’ lambda.
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With c = 2 groups, the test statistic simplifies considerably. Let ȳg = (
∑ng

i=1 ygi)∕ng
for g = 1, 2. Let S denote the pooled covariance matrix,

S =
∑n1

i=1(y1i − ȳ1)(y1i − ȳ1)T +
∑n2

i=1(y2i − ȳ2)(y2i − ȳ2)T

n1 + n2 − 2
.

Then testing H0: 𝝁1 = 𝝁2 using a likelihood-ratio statistic is equivalent to using
Hotelling’s T2 statistic (Hotelling 1931), which is

T2 =
n1n2

n1 + n2
(ȳ1 − ȳ2)TS−1(ȳ1 − ȳ2).

Under H0, the transformation [(n1 + n2 − d − 1)∕(n1 + n2 − 2)d]T2 has an F dis-
tribution with df1 = d and df2 = n1 + n2 − d − 1. See Johnson and Wichern (2007,
Section 6.3) for details. With only d = 1 response variable, T2 is the square of the
t statistic with df = n1 + n2 − 2 for comparing two groups under the assumption of
common variance (Exercise 3.9).

Over time, MANOVA methods have been losing popularity, relative to analyses
using normal linear mixed models and the method discussed next, because of their
restrictive structure for the data. MANOVA methods do not easily handle missing
data, and modeling the covariance structure has advantages of parsimony.

9.6.3 Method of Generalized Estimating Equations (GEE)

Extensions of the multivariate linear marginal model just considered to more complex
settings, such as factorial designs with interaction terms, are easily handled for mul-
tivariate normal distributions. Indeed many books are devoted entirely to analyzing
multivariate normal responses (e.g., Anderson 2003). For non-normal responses such
as binary data and count data, however, specifying multivariate GLMs that focus on
marginal modeling is more difficult. For discrete data, there is a lack of multivariate
families of distributions that can exhibit simple correlation structures, thus serving
as discrete analogs of the multivariate normal.

As with a univariate response, the quasi-likelihood method states a model for
𝜇ij = E(yij) and specifies a variance function v(𝜇ij). Now, though, that model applies
to the marginal distribution for each yij, but without the necessity of specifying a
full multivariate distribution. The method of generalized estimating equations (GEE)
instead merely specifies a pairwise “working correlation” pattern for (yi1, yi2,… , yid).
Common patterns are exchangeable (corr(yij, yik) = 𝛼), autoregressive (corr(yij, yik) =
𝛼|j−k|), independence (corr(yij, yik) = 0), and unstructured (corr(yij, yik) = 𝛼jk). The
choice for the working correlation matrix determines the GEE estimates of 𝜷 and
their model-based standard errors. For example, under the independence structure,
the estimates are identical to the ML estimates obtained by treating all observations
within and between clusters as independent.
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When the chosen link function and linear predictor truly describe how E(yij)
depends on the explanatory variables, GEE estimators of 𝜷 are consistent even if
the correlation structure is misspecified. In practice, a chosen model is never exactly
correct. This consistency result is useful, however, for suggesting that a misspecified
correlation structure need not adversely affect estimation of effects of interest, for
whatever model we use. Although the estimates of 𝜷 are usually fine whatever
working correlation structure we choose, their model-based standard errors are not.
More-appropriate standard errors result from an adjustment the GEE method makes
using the empirical covariation, generalizing the robust sandwich covariance matrix
for univariate responses presented in Section 8.3.2.

9.6.4 GEE and Sandwich Covariance Matrix

For cluster i with yi = (yi1,… , yid)T and 𝝁i = (𝜇i1,… ,𝜇id)T, the marginal model
with link function g is g(𝜇ij) = xij𝜷. Let Vi denote the working covariance matrix
for yi, depending on a parameter or parameters 𝜶 that determine the working cor-
relation matrix R(𝜶). If R(𝜶) is the true correlation matrix for yi, then Vi = var(yi).
Let Di = 𝜕𝝁i∕𝜕𝜷 be the d × p matrix with jk element 𝜕𝜇ij∕𝜕𝛽k. From Equation
(8.2), for univariate GLMs (d = 1) the quasi-likelihood estimating equations have
the form

n∑
i=1

(𝜕𝜇i∕𝜕𝜷)Tv(𝜇i)
−1(yi − 𝜇i) = 0,

where 𝜇i = g−1(xi𝜷). The analog of this for a multivariate response is the set
of generalized estimating equations

n∑
i=1

DT
i V−1

i (yi − 𝝁i) = 0. (9.15)

The GEE estimator �̂� is the solution of these equations.
The GEE estimates are computed by iterating between estimating 𝜷, given current

estimates of 𝜶 and any dispersion parameter or scaling factor 𝜙 for the variance
of the marginal distributions, and moment estimation of 𝜶 and 𝜙, given a current
estimate of 𝜷 (Liang and Zeger 1986). The estimation of 𝜷 uses a modified Fisher
scoring algorithm for solving the generalized estimating equations. Estimation of 𝜙
equates a Pearson statistic to the nominal df value, as in Section 8.1.1. Estimation
of 𝜶 combines information from the pairwise empirical correlations. Under certain
regularity conditions including appropriate consistency for estimates of 𝜶 and 𝜙,
Liang and Zeger showed that as n increases,

√
n(�̂� − 𝜷)

d
−→ N(0, VG).
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Here, generalizing the heuristic argument that motivated the formula (8.4) used in
quasi-likelihood to adjust for misspecified variance functions, they proved that VG∕n
is approximately

[
n∑

i=1

DT
i V−1

i Di

]−1 [ n∑
i=1

DT
i V−1

i var(yi)V
−1
i Di

][
n∑

i=1

DT
i V−1

i Di

]−1

. (9.16)

The estimated sandwich covariance matrix V̂G∕n of �̂� estimates this expression by
replacing 𝜷 with �̂�, 𝜙 with �̂�, 𝜶 with �̂�, and var(yi) with (yi − �̂�i)(yi − �̂�i)

T.
When the working covariance structure is the true one, so var(yi) = Vi, the approx-

imation (1∕n)VG for the asymptotic covariance matrix simplifies to the model-based

covariance matrix,
(∑

i DT
i V−1

i Di

)−1
. This is the relevant covariance matrix if we put

complete faith in our choice of that structure.
Advantages of the GEE approach include its computational simplicity compared

with ML, its not requiring specification of a joint distribution for (yi1, yi2,… , yid),
and the consistency of estimation even with misspecified correlation structure. How-
ever, it has limitations. Since the GEE approach does not completely specify the
joint distribution, it does not have a likelihood function. Likelihood-based methods
are not available for testing fit, comparing models, and conducting inference about
parameters. Also, with categorical responses, the correlation is not the most natural
way to characterize within-cluster association. An alternative approach uses the odds
ratio to characterize pairwise associations, and then uses the odds ratios together
with the marginal probabilities to generate working correlation matrices (Note 9.9).
Finally, when data are missing, the GEE method requires a stronger assumption about
the missing data than ML does in order for estimators to be consistent. For GEE,
the data must be “missing completely at random,” which means that the probability
an observation is missing is independent of that observation’s value and the values
of other variables in the entire data file. For ML, the data need only be “missing at
random,” with what caused the data to be missing not depending on their values.

9.6.5 Why Does ML Have Limited Feasibility for Marginal Models?

For fitting marginal models, why not use ML itself instead of quasi-likelihood meth-
ods? Sometimes this is possible, but once we move away from multivariate normal
models, it is limited. A difficulty is the lack of multivariate families (like the normal)
for which we can easily characterize the joint distribution in terms of a small set of
correlations and for which we can express the parameters of that distribution in terms
of parameters for marginal models.

To illustrate the difficulty, consider a d-dimensional binary response. Then yi is a
multinomial observation that falls in one of 2d cells of a d-dimensional contingency
table. For n observations, the multinomial likelihood results from the product of n
multinomial trials, each defined over the 2d cells at that setting for the explanatory
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variables. Let zij1⋯jd
= 1 if (yi1 = j1,… , yid = jd) and zij1⋯jd

= 0 otherwise. The
multinomial likelihood function is

𝓁(𝝅) =
n∏

i=1

[
2∏

j1=1

⋯
2∏

jd=1

P(yi1 = j1,… , yid = jd)zij1⋯jd

]
.

This pertains to probabilities in the joint distribution, whereas a marginal model

logit[P(yij = 1)] = xij𝜷, i = 1,… , n, j = 1,… , d,

describes the marginal probabilities. We cannot substitute the marginal model formula
into the multinomial likelihood function to obtain the function to maximize in terms
of 𝜷 to fit the model.

Methods exist for fitting marginal models with ML, such as applying a method9 for
maximizing a function subject to constraints (Lang and Agresti 1994). However, such
methods are infeasible when a study has many explanatory variables, especially if
some are continuous and have possibly different numbers of observations for different
clusters.

9.7 EXAMPLE: MODELING CORRELATED SURVEY RESPONSES

We illustrate marginal models and GLMMs for binary data using Table 9.5. The
respondents in a General Social Survey indicated whether they supported legalizing
abortion in each of d = 3 situations. Table 9.5 also classifies the subjects by gender.
Let yij denote the response for subject i in situation j, with yij = 1 representing support
of legalization.

We first fit the random-intercept GLMM

logit[P(yij = 1 ∣ ui)] = 𝛽0 + 𝛽j + 𝛾xi + ui, (9.17)

Table 9.5 Support for Legalized Abortion in Three Situations, by Gender

Sequence of Responses (1 = Yes, 0 = No) in Three Situations

Gender (1,1,1) (1,1,0) (0,1,1) (0,1,0) (1,0,1) (1,0,0) (0,0,1) (0,0,0)

Male 342 26 6 21 11 32 19 356
Female 440 25 14 18 14 47 22 457

Source: General Social Survey, available at http://sda.berkeley.edu/GSS. Situations are (1) if the
family has a very low income and cannot afford any more children, (2) when the woman is not married
and does not want to marry the man, and (3) when the woman wants it for any reason. Subject-specific
data table is in the file Abortion2.dat at text website.

9For some models, this is available with the hmmm R package. See cran.r-project.org/web/

packages/hmmm/hmmm.pdf and a 2014 article by Colombi et al. in J. Statist. Software.

http://sda.berkeley.edu/GSS
http://cran.r-project.org/web/packages/hmmm/hmmm.pdf
http://cran.r-project.org/web/packages/hmmm/hmmm.pdf
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where xi = 1 for females and 0 for males and {ui} are independent N(0, 𝜎2
u). The

situation effects {𝛽j} satisfy a constraint, 𝛽3 = 0 in the R output shown below. Here,
the gender effect 𝛾 is assumed to be identical for each situation. We need a large
number of quadrature points to achieve adequate approximation of the log-likelihood
function and its curvature.

---------------------------------------------------------------------

> Abortion # data file Abortion.dat at www.stat.ufl.edu/~aa/glm/data

case gender situation response

1 1 1 1 1

2 1 1 2 1

3 1 1 3 1

4 2 1 1 1

...

5550 1850 0 3 0

> z1 <- ifelse(Abortion$situation==1,1,0)

> z2 <- ifelse(Abortion$situation==2,1,0)

> library(glmmML) # ML fitting of GLMMs

# Alternative: glmer function in lme4 package, nAGQ quadrature pts.

> fit.glmm <- glmmML(response ~ gender + z1 + z2,

+ cluster=Abortion$case, family=binomial, data=Abortion,

+ method = "ghq", n.points=70, start.sigma=9) # uses adaptive GHQ

> summary(fit.glmm)

coef se(coef) z Pr(>|z|)

(Intercept) -0.6187 0.3777 -1.6384 1.01e-01

gender 0.0126 0.4888 0.0257 9.79e-01

z1 0.8347 0.1601 5.2135 1.85e-07

z2 0.2924 0.1567 1.8662 6.20e-02

Scale parameter in mixing distribution: 8.74 gaussian

Std. Error: 0.542

LR p-value for H_0: sigma = 0: 0

---------------------------------------------------------------------

The estimates of fixed effects have log-odds-ratio interpretations, within-subject
for situation effects and between-subject for the gender effect. For a given sub-
ject of either gender, for instance, the estimated odds of supporting legalized abor-
tion in situation 1 equals exp(0.835) = 2.30 times the estimated odds in situa-
tion 3. Since �̂� = 0.013, for each situation the estimated probability of support-
ing legalized abortion is similar for females and males having the same random
effect values.

The random effects have �̂�u = 8.74, so strong associations exist among responses
for the three situations. This is reflected by 1595 of the 1850 subjects making the
same response in all three situations. For this application, a normality assumption for
ui is suspect. A polarized population might suggest a bimodal distribution. However,
maximizing the likelihood with a two-point distribution for ui yields similar results
for the fixed effects estimates (Agresti et al. 2000).

Finding cell fitted values requires integrating over the estimated random effects
distribution to obtain estimated marginal probabilities of any particular sequence of
responses. For the ML parameter estimates, the probability of a particular sequence

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data
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of responses (yi1, yi2, yi3) for a given ui is the appropriate product of estimated con-
ditional probabilities,

∏
j P̂(yij ∣ ui). Integrating this product probability with respect

to ui for the N(0, �̂�2
u ) distribution (or simulating that integral) estimates the marginal

probability for a given cell. Multiplying this estimated marginal probability of a
given sequence by the gender sample size for that multinomial gives a fitted value.
For instance, of the 1037 females, 440 indicated support under all three circum-
stances (457 under none of the three), and the fitted value was 436.5 (459.3). Overall
chi-squared statistics comparing the 16 observed and fitted counts are G2 = 23.2 and
X2 = 27.8 (df = 9). Here df = 9 since we are modeling 14 multinomial parameters
(8 − 1 = 7 for each gender) using five GLMM parameters (𝛽0, 𝛽1, 𝛽2, 𝛾 , 𝜎u). These
statistics reflect some lack of fit. An analysis of residuals (not shown here) indicates
the lack of fit mainly reflects, for each gender, a tendency for fewer observed (1,0,1)
response sequences and more (0,0,1) response sequences than the model fit has. An
extended model that allows interaction between gender and situation has different
{𝛽j} for men and women, but it does not fit better. The likelihood-ratio statistic
comparing the models equals 1.0 (df = 2).

A marginal model analysis of the data focuses on the marginal distributions for the
three situations for each gender, treating the dependence as a nuisance. A marginal
model analog of (9.17) is

logit[P(yij = 1)] = 𝛽0 + 𝛽j + 𝛾xi. (9.18)

For the exchangeable working correlation structure, the GEE analysis estimates a
common correlation of 0.817 between pairs of responses. We also show results with
the independence working correlation structure. For it, the estimates are very similar,
but the model-based (“naive”) SE values are badly biased relative to the sandwich-
covariance-matrix-based (“robust”) SE values. The SE values are underestimated for
gender (the between-subject effect) and overestimated for the situations (the within-
subject effects).

------------------------------------------------------------------------

> library(gee)

> fit.gee <- gee(response ~ gender + z1 + z2, id=case, family=binomial,

+ corstr="exchangeable", data=Abortion)

> summary(fit.gee)

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.1253 0.0678 -1.8478 0.0676 -1.8544

gender 0.0034 0.0879 0.0391 0.0878 0.0391

z1 0.1493 0.0281 5.3066 0.0297 5.0220

z2 0.0520 0.0281 1.8478 0.0270 1.9232

Working Correlation

[,1] [,2] [,3]

[1,] 1.0000 0.8173 0.8173

[2,] 0.8173 1.0000 0.8173

[3,] 0.8173 0.8173 1.0000

> fit.gee2 <- gee(response ~ gender + z1 + z2, id=case, family=binomial,

+ corstr="independence", data=Abortion)
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> summary(fit.gee2) # same estimates as ML, assuming independence

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.1254 0.0556 -2.2547 0.0676 -1.8556

gender 0.0036 0.0542 0.0661 0.0878 0.0408

z1 0.1493 0.0658 2.2680 0.0297 5.0220

z2 0.0520 0.0659 0.7897 0.0270 1.9232

------------------------------------------------------------------------

Table 9.6 compares the estimates from the GLMM with the GEE estimates
from the corresponding marginal model. It also shows the ML estimates for the
marginal model, that is, ML that accounts for the actual dependence by treating each
observation as a multinomial trial over eight cells, rather than naive ML from the
GEE approach with independence estimating equations that treat the observation as
three independent binomial trials. That marginal model fits well, with G2 = 1.10.
Its df = 2, because the model describes six marginal probabilities (three for each
gender) using four parameters. The population-averaged {𝛽j} from the marginal

model fit are much smaller than the subject-specific {𝛽j} from the GLMM fit.
This reflects the very large GLMM heterogeneity (�̂�u = 8.74) and the correspond-
ing strong correlations among the three responses. Although the GLMM {𝛽j} are

about five to six times the marginal model {𝛽j}, so are the standard errors. The two
approaches provide similar substantive interpretations and conclusions. The contrasts
of {𝛽j} indicate greater support for legalized abortion in situation 1 than in the other
two situations.

Table 9.6 For Table 9.5, ML Estimates for GLMM (9.17) and ML and GEE Estimates
for Marginal Model (9.18)

GLMM ML Marginal GEE Marginal ML

Effect Parameter Estimate SE Estimate SE Estimate SE

Abortion 𝛽1 − 𝛽3 0.835 0.160 0.149 0.030 0.148 0.030
𝛽1 − 𝛽2 0.542 0.157 0.097 0.028 0.098 0.027
𝛽2 − 𝛽3 0.292 0.157 0.052 0.027 0.049 0.027

Gender 𝛾 0.013 0.489 0.003 0.088 0.005 0.088√
var(ui) 𝜎u 8.74 0.54

CHAPTER NOTES

Section 9.1: Marginal Models and Models with Random Effects

9.1 Longitudinal data: For overviews of GLMMs and marginal models, with emphasis
on modeling longitudinal data, see Diggle et al. (2002), Fitzmaurice et al. (2011),
and Hedeker and Gibbons (2006). Skrondal and Rabe-Hesketh (2004) presented latent
variable models. For discrete data, see Cameron and Trivedi (2013, Chapter 9) and
Molenberghs and Verbeke (2005). Regression models with time series data receive
much attention in texts having econometrics emphasis, such as Cameron and Trivedi
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(2013, Chapter 7) and Greene (2011). Fahrmeir and Tutz (2001) surveyed multivariate
GLMs, including models for time series data (Chapter 8). For transition models, see
Azzalini (1994) and Diggle et al. (2002, Chapter 10). Survival data are another form of
longitudinal data, models for which are beyond our scope. See McCullagh and Nelder
(1989, Chapter 13). For GLMMs for spatial data, see Fahrmeir and Tutz (2001, Section
8.5) and Stroup (2012, Chapter 15).

Section 9.2: Normal Linear Mixed Models

9.2 Covariance structures: For linear mixed models and related covariance structures, see
Demidenko (2013), Diggle et al. (2002, Chapter 5), Fahrmeir et al. (2013, Chapter 7),
Laird and Ware (1982), Littell et al. (2000), and Verbeke and Molenberghs (2000).
For diagnostics, such as the influence of individual observations, see Verbeke and
Molenberghs (2000, Chapter 11).

9.3 Multilevel models: For multilevel modeling, see Aitkin et al. (1981), Gelman and Hill
(2006), Goldstein (2010), Hedeker and Gibbons (2006, Chapter 13), Scott et al. (2013),
Skrondal and Rabe-Hesketh (2004), and Stroup (2012, Chapter 8).

Section 9.3: Fitting and Prediction for Normal Linear Mixed Models

9.4 BLUP: Robinson (1991) surveyed BLUP. See also the discussion of that article by T.
Speed. A Bayesian approach with uniform improper prior for 𝜷 and N(0,𝚺u) prior for
u results in a posterior density having mode that is the BLUP (Lindley and Smith 1972;
Robinson 1991). Morris (1983b) discussed prediction of random effects. Rao (2003)
presented methods for small-area estimation.

9.5 REML: For more about REML, see Harville (1977) and Patterson and Thompson
(1971). Laird and Ware (1982) gave a Bayesian interpretation, in which REML results
from the posterior for V after using a flat prior for 𝜷.

Section 9.4: Binomial and Poisson GLMMs

9.6 Discrete GLMM: For GLMMs for discrete data, see Agresti (2013, Chapter 13, 14),
Agresti et al. (2000), Cameron and Trivedi (2013, Chapter 9), Demidenko (2013),
Diggle et al. (2002), Hedeker and Gibbons (2006, Chapter 12), McCulloch et al. (2008),
Molenberghs and Verbeke (2005), Skrondal and Rabe-Hesketh (2004), Stroup (2012),
and Zeger and Karim (1991). For negative binomial loglinear models with random
effects, see Booth et al. (2003).

9.7 Multinomial GLMM: For nominal-response models with random effects, see Hartzel
et al. (2001) and Hedeker and Gibbons (2006, Chapter 11). For ordinal-response models
with random effects, see Hartzel et al. (2001), Hedeker and Gibbons (2006, Chapter
10), Skrondal and Rabe-Hesketh (2004), and Tutz and Hennevogl (1996).

Section 9.5: GLMM Fitting, Inference, and Prediction

9.8 PQL, Laplace, h-likelihood, REML: Breslow and Clayton (1993) presented a penal-
ized quasi-likelihood (PQL) method for fitting GLMs. Later literature dealt with
reducing the large bias that method can have when variance components are large.
For an overview of the Laplace approximation, see Davison (2003, Section 11.3.1).
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The h-likelihood approach essentially treats random effects like parameters and is also
computationally simpler (Lee and Nelder 1996; Lee et al. 2006), but its justification is
unclear (Meng 2009). For REML methods for GLMMs, see Schall (1991).

Section 9.6: Marginal Modeling and Generalized Estimating Equations

9.9 GEE methods: Liang and Zeger (1986) proposed the GEE method, generalizing
moment-based methods for model misspecification in the econometrics literature, such
as Gourieroux (1984), Hansen10 (1982), and White (1982). For categorical responses,
GEE methods can characterize pairwise associations using odds ratios. For binary data,
see Fitzmaurice et al. (1993), Lipsitz et al. (1991), and Carey et al. (1993). For nominal
and ordinal responses, see Touloumis et al. (2013).

9.10 Missing data: For ways of dealing with missing data in GLMs and GLMMs, see
Diggle et al. (2002, Chapter 13), Hedeker and Gibbons (2006, Chapter 14), Ibrahim
et al. (2005), Little and Rubin (2002), and Molenberghs and Verbeke (2005, Chapters
26–32).

9.11 Marginal models, copulas, and composite likelihood: For ML for marginal and
related models for contingency tables, see Bartolucci et al. (2007), Bergsma et al.
(2009), and Lang (2004, 2005). An alternative approach specifies a joint distribution
from the marginal distributions using a copula function. A parametric copula is merely
a formula, indexed by association parameters, that generates a multivariate distribution
from specified marginal distributions. Its theory is based on Sklar’s theorem, which
states that any multivariate cdf can be expressed as a function of the marginal cdfs.
See Trivedi and Zimmer (2007). Another approach, composite likelihood, is based on
contributions to the likelihood function for all pairs of observations. For an overview,
see Varin et al. (2011).

EXERCISES

9.1 Verify formula (9.1) for the effects of correlation on between-cluster and
within-cluster effects.

9.2 How does positive correlation affect the SE for between-cluster effects with
binary data? Let y11,… , y1d be Bernoulli trials with E(y1j) = 𝜋1 and let
y21,… , y2d be Bernoulli trials with E(y2j) = 𝜋2. Suppose corr(yij, yik) = 𝜌 for
i = 1, 2 and corr(y1j, y2k) = 0 for all j and k. Find the SE of �̂�1 − �̂�2. Show it
is larger when 𝜌 > 0 than when 𝜌 = 0.

9.3 Suppose y1,… yn have E(yi) = 𝜇, var(yi) = 𝜎2, and corr(yi, yj) = 𝜌 for i ≠ j.
Show that E(s2) = 𝜎2(1 − 𝜌).

9.4 Formulate a normal random-effects model that generates the within-cluster
and between-cluster effects described in Section 9.1.1.

10In 2013 Lars Peter Hansen won the Nobel Prize in Economic Sciences, partly for this work.
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9.5 In the analysis of covariance model, observation j in group i has 𝜇ij = 𝛽0 +
𝛽1xij + 𝛾i for a quantitative variable xij and qualitative {𝛾1,… , 𝛾c}. Describe
an application in which the qualitative variable would naturally be treated as a
random effect. Show then how to express the model as a normal linear mixed
model (9.6).

9.6 A crossover study comparing d = 2 drugs observes a continuous response
(yi1, yi2) for each subject for each drug. Let 𝜇1 = E(yi1) and 𝜇2 = E(yi2) and
consider H0: 𝜇1 = 𝜇2.

a. Construct the normal linear mixed model that generates a paired-difference
t test (with test statistic t =

√
nd̄∕s, using mean and standard deviation of

the differences {di = yi2 − yi1}) and the corresponding confidence interval
for 𝜇1 − 𝜇2.

b. Show the effect of the relative sizes of the variances of the random error
and random effect on corr(yi1, yi2). Based on this, to compare two means,
explain why it can be more efficient to use a design with dependent samples
than with independent samples.

9.7 For the normal linear mixed model (9.6), derive expression (9.7) for var(yi).

9.8 For the extension of the random-intercept linear mixed model (9.8) that
assumes cov(𝜖ij, 𝜖ik) = 𝜎2

𝜖
𝜌|j−k|, show that

corr(yij, yik) =
(
𝜎2

u + 𝜌|j−k|𝜎2
𝜖

)
∕
(
𝜎2

u + 𝜎2
𝜖

)
.

9.9 Consider the model discussed in Section 9.2.4 having a random intercept and
a random slope. Is the fit for subject i any different than using least squares to
fit a line using only the data for subject i? Explain.

9.10 For the linear mixed model, show that �̃� (for known {Vi}) is unbiased, and
derive its variance. Show how �̃� and var(�̃�) simplify when the model does not
contain random effects.

9.11 When Xi and Vi in the linear mixed model are the same for each subject, show
that the generalized least squares solution (9.10) can be expressed in terms of
ȳ = (1∕n)

∑
i yi.

9.12 For the balanced random-intercept linear mixed model (9.8) based on con-
ditional independence given the random effect (Section 9.2.1), show that

�̃� =
(
XTV−1X

)−1
XTV−1y simplifies to the ordinary least squares estima-

tor,
(
XTX
)−1

XTy; i.e., with compound symmetry, observations do not need
weights. (Diggle et al. (2002, p. 63) showed that ordinary least squares can
have poor efficiency; however, when a model instead has autoregressive error
structure with a time-varying explanatory variable.)
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9.13 Using the joint normal density of y and u, derive Henderson’s mixed-model
equations.

9.14 When R = 𝜎2
𝜖
I, show that as 𝚺−1

u tends to the zero matrix, the mixed model
equations for a linear mixed model tend to the ordinary normal equations that
treat both 𝜷 and u as fixed effects.

9.15 For the random-effects one-way layout model (Section 9.3.2), show that 𝛽0
and ũi are as stated there (i.e., with the known variances). Show that ũi is a
weighted average of 0 and the least squares estimate based on treating u as
fixed effects. Give an application for which you would prefer 𝛽0 + ũi to the
fixed-effect estimate ȳi.

9.16 BLUPs are unbiased. Explain why this does not imply that E(ũ ∣ u) = u. Illus-
trate by a simulation using a simple linear mixed model. For your simulation,
show how ũ tends to shrink toward 0 relative to u.

9.17 Show how fitting and prediction results of Section 9.3 for linear mixed models
simplify when var(𝝐i) = 𝜎2

𝜖
I instead of R.

9.18 For the REML approach for the normal null model described in Section 9.3.3,
find L, derive the distribution of Ly, and find the REML estimator of 𝜎2.

9.19 For the binary matched-pairs model (9.5), consider a strictly fixed effects
approach, replacing 𝛽0 + ui in the model by 𝛽0i. Assume independence of
responses between and within subjects.

a. Show that the joint probability mass function is proportional to

exp

[
n∑

i=1

𝛽0i(yi1 + yi2) + 𝛽1

(
n∑

i=1

yi2

)]
.

b. To eliminate {𝛽0i}, explain why we can condition on {si = yi1 + yi2}
(Recall Section 5.3.4). Find the conditional distribution.

c. Let {nab} denote the counts for the four possible sequences, as in Table 9.1.
For subjects having si = 1, explain why

∑
i yi1 = n12 and

∑
i yi2 = n21 and∑

i si = n∗ = n12 + n21. Explain why the conditional distribution of n21 is
bin(n∗, exp(𝛽1)∕[1 + exp(𝛽1)]). Show that the conditional ML estimator is

𝛽1 = log
(

n21

n12

)
, with SE =

√
1

n21
+ 1

n12
.
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d. For testing marginal homogeneity, the binomial parameter equals 1
2
.

Explain why the normal approximation to the binomial yields the test
statistic

z =
n21 − n12√
n12 + n21

.

(The chi-squared test using z2 is referred to as McNemar’s test. Note that
pairs in which yi1 = yi2 are irrelevant to inference about 𝛽1.)

9.20 Refer to the previous exercise. Unlike the conditional ML estimator of 𝛽1, the
unconditional ML estimator is inconsistent (Andersen 1980, pp. 244–245).

a. Averaging over the population, explain why

𝜋21 = E

[
1

1 + exp(𝛽0i)

exp(𝛽0i + 𝛽1)

1 + exp(𝛽0i + 𝛽1)

]
,

where the expectation refers to the distribution for {𝛽0i} and {𝜋ab} are the
probabilities for the population analog of Table 9.1. Similarly, state 𝜋12.

For a random sample of size n → ∞, explain why n21∕n12
p
−→ exp(𝛽1).

b. Find the log-likelihood. Show that the likelihood equations are
y+j =

∑
i P(yij = 1) and yi+ =

∑
j P(yij = 1). Substituting exp(𝛽0i)∕[1 +

exp(𝛽0i)] + exp(𝛽0i + 𝛽1)∕[1 + exp(𝛽0i + 𝛽1)] in the second likelihood
equation, show that 𝛽0i = −∞ for the n22 subjects with yi+ = 0, 𝛽0i = ∞ for
the n11 subjects with yi+ = 2, and 𝛽0i = −𝛽1∕2 for the n21 + n12 subjects
with yi+ = 1.

c. By breaking
∑

i P(yij = 1) into components for the sets of subjects having
yi+ = 0, yi+ = 2, and yi+ = 1, show that the first likelihood equation is, for
j = 1, y+1 = n22(0) + n11(1) + (n21 + n12) exp(−𝛽1∕2)∕[1 + exp(−𝛽1∕2)].
Explain why y+1 = n11 + n12, and solve the first likelihood equation to

show that 𝛽1 = 2 log(n21∕n12). Hence, as a result of (a), 𝛽1
p
−→ 2𝛽1.

9.21 A binary response yij = 1 or 0 for observation j on subject i, i = 1,… , n,
j = 1,… , d. Let ȳ.j =

∑
i yij∕n, ȳi. =

∑
j yij∕d, and ȳ =

∑
i
∑

j yij∕nd. Regard
{yi+} as fixed, and suppose each way to allocate the yi+ “successes” to the
d observations is equally likely. Show that E(yij) = ȳi., var(yij) = ȳi.(1 − ȳi.),
and cov(yij, yik) = −ȳi.(1 − ȳi.)∕(d − 1) for j ≠ k. For large n with indepen-
dent subjects, explain why (ȳ.1,… , ȳ.d) is approximately multivariate normal
with pairwise correlation 𝜌 = −1∕(d − 1). Conclude that Cochran’s Q statistic
(Cochran 1950)

Q =
n2(d − 1)

∑d
j=1(ȳ.j − ȳ)2

d
∑n

i=1 ȳi.(1 − ȳi.)
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has an approximate chi-squared distribution with df = (d − 1) for testing
homogeneity of the d marginal distributions. Show that Q is unaffected by
deleting all observations for which yi1 = ⋯ = yid.

9.22 For the GLMM for binary data using probit link function,

Φ−1[P(yij = 1 ∣ ui)] = xij𝜷 + zijui

show that the corresponding marginal model is Φ−1[P(yij = 1] = xij𝜷[1 +
zij𝚺uzT

ij]
−1∕2. Compare effects in the GLMM and marginal model.

9.23 From Exercise 7.25, with any link and a factor predictor in the one-way layout,
the negative binomial ML fitted means equal the sample means. Show this is
not true for the Poisson GLMM.

9.24 For the Poisson GLMM (9.12) with random intercept, use the normal mgf to
show that for j ≠ k,

cov(yij, yik) = exp[(xij + xik)𝜷]
[
exp
(
𝜎2

u

) (
exp
(
𝜎2

u

)
− 1
)]

Find corr(yij, yik). Explain why, as in binary GLMMs, corr(yij, yik) ≥ 0.

9.25 For recent US Presidential elections, in each state wealthier voters tend to be
more likely to vote Republican, yet states that are wealthier in an aggregate
sense are more likely to have more Democrat than Republican votes (Gelman
and Hill 2007, Section 14.2.). Sketch a plot that illustrates how this instance
of Simpson’s paradox could occur. Specify a GLMM with random effects
for states that could be used to analyze data for a sample of voters using
their state of residence, their household income, and their vote in an election.
Explain how the model could be generalized to allow the income effect to
vary by state, to reflect that Republican-leaning states tend to have stronger
associations between income and vote.

9.26 Construct a marginal model that is a multivariate analog of the normal linear
model for a balanced two-way layout, assuming an absence of interaction.
Show how to express the two main effect hypotheses for that model in terms
of model parameters.

9.27 For subject i, yi = (yi1,… , yid)T are d repeated measures on a response
variable. Consider a model by which yi ∼ N(𝝁,𝚺𝜖) with 𝜎1 = ⋯ = 𝜎d and
𝜌 = corr(yij, yik) for all j ≠ k. The hypothesis of interest is H0: 𝜇1 = ⋯ = 𝜇d.

a. Express this scenario as a marginal model for a multivariate response, and
show how to express H0 in terms of the model parameters.
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b. Construct a random-effects model for this scenario that would have the
specified correlation structure.

c. For d = 2, find a test statistic formula for H0: 𝜇1 = 𝜇2 (e.g., the paired-
difference t test of Exercise 9.6).

9.28 When y ∼ N(0,𝚺𝜖), in terms of elements kij from the concentration matrix
K = 𝚺−1

𝜖
, show that the pdf f for y has the form

log f (y) = constant − 1
2

∑
i

kiiy
2
i −
∑

i

∑
j

kijyiyj,

and the elements of K are natural parameters in the exponential family repre-
sentation. Explain why yi and yj are conditionally independent, given the other
elements of y, if kij = 0. (As in Section 7.2.7, one can construct a graphical
representation. A Gaussian graphical model, also called a covariance selec-
tion model, portrays the conditionally independent pairs by the absence of an
edge. See Dempster (1972) and Lauritzen (1996).)

9.29 For the GEE (9.15) with R(𝜶) = I, show that the equations simplify to

(1∕𝜙)
n∑

i=1

XT
i 𝚫i(yi − 𝝁i) = 0,

where 𝚫i is the diagonal matrix with elements 𝜕𝜃ij∕𝜕𝜂ij on the main diagonal
for j = 1,… , d, for natural parameter 𝜃ij and linear predictor 𝜂ij. Show that

�̂� is then the same as the ordinary ML estimator for a GLM with the cho-
sen link function and variance function, treating (yi1,… , yid) as independent
observations.

9.30 Generalizing the heuristic argument in Section 8.3.2, justify why formula
(9.16) is valid for the sandwich covariance matrix (Liang and Zeger 1986,
Appendix).

9.31 For both linear mixed models and marginal models, the generalized least

squares estimator �̂� =
(
XTV−1X

)−1
XTV−1y is useful. Suppose V is not the

true var(y) but we can consistently estimate var(y) empirically by S. Describe
a way to do this. Explain why it is then sensible to estimate var(�̂�) by

(
XTV̂

−1
X
)−1

XTV̂
−1

SV̂
−1

X
(
XTV̂

−1
X
)−1

.

9.32 For the smoking prevention and cessation study (Section 9.2.3), fit multilevel
models to analyze whether it helps to add any interaction terms. Interpret fixed
and random effects for the model that has a SC × TV interaction.
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9.33 Using the R output shown for the simple analyses of the FEV data in Sec-
tion 9.2.5, show that the estimated values of corr(yi1, yi2) and corr(yi1, yi8) are
0.74 for the random intercept model and 0.86 and 0.62 for the model that also
permits autoregressive within-patient errors.

9.34 Refer to Exercise 1.21 and the longitudinal analysis in Section 9.2.5. Analyze
the data in file FEV2.dat at www.stat.ufl.edu/~aa/glm/data , inves-
tigating the correlation structure for the eight FEV responses and modeling
how FEV depends on the hour and the drug, adjusting for the baseline obser-
vation. Take into account whether to treat hour as qualitative or quantitative,
whether you need interaction terms, whether to have random slopes or only
random intercepts, and whether to treat within-patient errors as correlated.
Interpret results for your final chosen model. (You may want to read Littell
et al. (2000). The book SAS for Mixed Models, 2nd ed., by Littell et al. (2006,
SAS Institute), uses SAS to fit various models to these data.)

9.35 A field study11 analyzed associations between a food web response measure
and plant invasion and tidal restriction in salt marsh habitats. The response,
observed in a species of small marsh fish (Fundulus heteroclitus) that swim
in and out of the salt marshes with the tides, was a stable carbon isotope
measure12 (𝛿13C). It is used as a tracer in food studies because its uptake
by plants and animals follows predictable patterns, and so it quantifies the
carbon basis in a diet. A salt marsh is called “tidally restricted” if the tidal
flow is restricted because of factors such as roads and dikes built across
the marsh for residential developments. Such marshes tend to be invaded by
non-native vegetation. A salt marsh is called “tidally restored” if it had been
tidally restricted but is now in a restored state, with less non-native vegetation.
It is called a “reference” marsh if it had never been restricted. The study
analyzed the extent to which a particular invasive plant (Phragmites australis)
contributes carbon to the food web in restricted marshes, relative to reference
marshes, and how that changes as the cover of the native plants increases
during restoration. The study’s experimental design used four tidally restored
and four tidally restricted marshes and eight control marshes downstream
from them. This resulted in 16 marshes and four marsh types: 1 = tidally
restricted marsh, 2 = tidally restored marsh, 3 = control marsh near a tidally
restricted marsh, 4 = control marsh near a tidally restored marsh. Half the
marshes of each type were in each of two locations—Long Island Sound and
the Gulf of Maine. Each marsh used three fixed locations for stations. These
16 marshes with 48 stations were visited in summer and fall of 2010 and 2011.
The researchers collected 10 fish at each station on every sample date and used

11Thanks to Penelope Pooler and Kimberly Dibble for these data. For details, see the article by K.
Dibble and L. A. Meyerson in Estuaries and Coasts, August 2013, pp. 1–15.
12For its definition, see en.wikipedia.org/wiki/Δ13C.

http://www.stat.ufl.edu/~aa/glm/data
http://en.wikipedia.org/wiki/%CE%9413C
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Table 9.7 Part of Data File from Salt Marsh Habitat Study

obs d13C Time Treatment Region Fishlength

1 −13.05 Fall 2010 control-restored LIS 69.20
2 −12.52 Fall 2010 control-restored LIS 68.90
...
192 −21.23 Summer 2011 tide-restricted GOM 65.00

Complete data (file Dibble.xlsx) are at www.stat.ufl.edu/~aa/glm/data.

the composited sample to measure the response variable. The data file has the
form shown in Table 9.7.

a. For the stable carbon isotope response (variable d13C in the data file) at
time t for station i, consider the model

yit = 𝛽0 + 𝛽1xit1 + 𝛽2xit2 +⋯ + 𝛽8xit8 + ui + 𝜖it,

where (xit1, xit2, xit3) are indicators for 3 of the 4 marsh types, xit4 is an
indicator for the region, (xit5, xit6, xit7) are indicators for 3 of the 4 time
periods, and xit8 is the mean length (in mm) from the 10 fish samples for
that observation. For this model and application, specify the components
and their dimensions in the model expression yi = Xi𝜷 + Ziui + 𝝐i.

b. Fit the model, assuming var(𝝐i) = 𝜎2
𝜖
I. Interpret results.

c. Conditional on a random-effect value ui, the authors expected observations
at the same location to be correlated because of ecological processes, but
less so with increasing time between them. So they used an autoregressive
correlation structure in var(𝝐i). Fit this model, analyze whether the fit is
much better than assuming var(𝝐i) = 𝜎2

𝜖
I.

d. Because the data variability itself varies substantially between summer
and fall and from year to year, the authors also permitted heterogeneous
variances. Show that

cov(yij, yik) = 𝜎2
u + 𝜎𝜖(j)𝜎𝜖(k)𝜌

|j−k|.
(The researchers also fitted more-complex models with interactions among
treatment, region, and time.)

9.36 For Table 7.5 on counts of victims of homicide, specify and fit a Poisson
GLMM. Interpret estimates. Show that the deviance decreases by 116.6 com-
pared with the Poisson GLM, and interpret.

9.37 The data file Maculatum.dat at the text website is from a study13 of sala-
mander embryo development. These data refer to the spotted salamander

13Data courtesy of Rebecca Hale, University of North Carolina Asheville.

http://www.stat.ufl.edu/~aa/glm/data
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(Ambystoma maculatum). One purpose of the study was to compare four rear-
ing environments (very humid air, and water with low, medium, and saturated
dissolved oxygen) on the age at hatching, for each of the embryos that sur-
vived to hatching. In the experiment, embryos from the same family were
divided into four groups for the four treatments, and each group was reared
together in the same jar. For the embryos that survived to hatching, use mul-
tilevel modeling to compare the mean ages for the four treatments. Compare
estimates and SE values to ones you would obtain with an ordinary linear
model with treatment as the explanatory variable, ignoring the dependence
due to embryos in the same jar being from the same family and due to the
same family of embryos being in four jars.

9.38 Refer to the previous exercise. For all the embryos, use a logistic GLMM to
model the probability of hatching in terms of the treatment. Interpret results,
and compare to those obtained with an ordinary logistic GLM that ignores the
clustering.

9.39 Download the file Rats.dat at the text website for the teratology study in
Table 8.1.

a. Use the GEE approach to fit the logistic model, assuming an exchangeable
working correlation structure for observations within a litter. Show how
the empirical sandwich adjustment increases the SE values compared with
naive binomial ML. Report the estimated within-litter correlation between
the binary responses, and compare with the value of 0.192 that yields the
quasi-likelihood results with beta-binomial variance function.

b. Fit the GLMM that adds a normal random intercept ui for litter i to the
binomial logistic model. Interpret the estimated effects, and explain why
they are larger than with the GEE approach.

9.40 Refer to Exercise 9.34. Analyze the FEV data with marginal models, and
compare results to those obtained with linear mixed models.

9.41 A crossover study analyzed by B. Jones and M. Kenward (1987, Stat. Med. 6:
555–564) compared three drugs on a binary outcome (success = 1, failure =
0). Counts for the eight possible response patterns for drugs (A, B, C) were 6
for 000, 9 for 001, 4 for 010, 45 for 011, 3 for 100, 7 for 101, 4 for 110, and
8 for 111. Compare the drugs using (a) a GLMM, (b) a marginal model. In
each case, state all assumptions, and interpret results.



C H A P T E R 1 0

Bayesian Linear and Generalized
Linear Modeling

This book has used the traditional, often referred to as frequentist, approach to sta-
tistical inference. That approach regards parameter values as fixed effects rather than
random variables. Probability statements apply to possible values for the data, given
the parameter values. Increasingly popular is the Bayesian alternative, which applies
probability distributions to parameters as well as to data. This yields inferences in
the form of probability statements about the parameters, given the data. For example,
after observing the data in a clinical trial, a researcher might evaluate and report the
probability that the population mean of the response variable is higher for the active
drug than for the placebo.

In this chapter we first review the Bayesian approach to statistical inference.
Section 10.2 presents a Bayesian analog of the normal linear model, and Section 10.3
presents Bayesian generalized linear models (GLMs). In each section we show how
to obtain essentially the same substantive results as with a frequentist approach, but
with Bayesian interpretations that make probability statements about the parameters.
The final section presents empirical Bayes and hierarchical Bayes approaches, which
make weaker assumptions about prior probability distributions for the parameters.

10.1 THE BAYESIAN APPROACH TO STATISTICAL INFERENCE

Let 𝜽 be a generic symbol for the parameters in a particular model, such as the 𝜷
effects in the linear predictor and variance components. Parametric models assume
a particular distribution for the data y, described by a probability density (or mass)
function f (y;𝜽). We now express that function as f (y ∣ 𝜽) to emphasize that it specifies
the distribution of the data, given a particular value for the parameters.

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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10.1.1 Prior and Posterior Distributions

The Bayesian approach involves two distributions for 𝜽. As their names indicate, the
prior distribution describes knowledge about 𝜽 before we see y, whereas the posterior
distribution combines that prior information with y to update our knowledge.

The prior distribution for 𝜽 is characterized by a probability density function (pdf)
h(𝜽) specified over the space 𝚯 of possible 𝜽 values. This probability distribution
may reflect subjective prior beliefs, perhaps based on results of other studies. Or it
may be relatively uninformative, so that inferential results are based almost entirely
on the data y. When h is a member of some parametric family, h(𝜽 ∣ 𝝀) is specified
by its own parameters 𝝀, referred to as hyperparameters.

The information that y provides combines with the prior distribution to generate
a posterior distribution for 𝜽. By Bayes’ theorem, the posterior pdf h of 𝜽, given y,
relates to the assumed pdf f for y, given 𝜽, and the prior pdf h(𝜽), by

h(𝜽 ∣ y) =
f (y ∣ 𝜽)h(𝜽)

f (y)
=

f (y ∣ 𝜽)h(𝜽)

∫𝚯 f (y ∣ 𝜻)h(𝜻)d𝜻
. (10.1)

When we observe y and view f (y ∣ 𝜽) as a function of 𝜽, 𝓁(𝜽) = f (y ∣ 𝜽) is the
likelihood function. The denominator f (y) in (10.1) is the marginal pdf for y. It is
constant with respect to 𝜽 and merely causes the posterior density to integrate to 1.
It is irrelevant for inference comparing different values for 𝜽. So the prior pdf for 𝜽
multiplied by the likelihood function determines the posterior pdf h(𝜽 ∣ y). That is,
for 𝜽, the key part of Bayes’ theorem is the numerator,

h(𝜽 ∣ y) ∝ f (y ∣ 𝜽)h(𝜽) = 𝓁(𝜽)h(𝜽).

Bayesian inference depends on the data only through the likelihood function. Statis-
tical inference for which this applies, such as maximum likelihood (ML) estimation
as well as Bayesian inference, is said to satisfy the likelihood principle.

For a future observation y∗, the posterior predictive distribution is the conditional
distribution of (y∗ ∣ y1,… , yn). We find this from

f (y∗ ∣ y) =
∫

f (y∗ ∣ y,𝜽)h(𝜽 ∣ y)d𝜽,

that is, taking the distribution for y∗ as if we know 𝜽 and then integrating out with
respect to its posterior pdf. This is a sort of mean distribution for y∗, averaged over
the posterior distribution.

10.1.2 Types of Prior Distributions

A subjective prior distribution reflects the researcher’s beliefs about the value for
𝜽. For GLM parameters, it may be unclear to a researcher how to formulate this,
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and a danger is being overly optimistic, making the prior distribution too narrow.
It is more common to use an objective prior, which is relatively uninformative,
having very little influence on the posterior results; that is, inferential statements
depend almost entirely on the data, through the likelihood function for the assumed
model.

An objective prior is flat relative to the likelihood function. The uniform density
over the parameter space satisfies this, but this depends on the parameterization. For a
binomial parameter𝜋, for example, uniformity for𝜋 over (0,1) differs from uniformity
over real-line values for logit(𝜋). And uniformity is not a proper distribution when
the parameter space has an infinite range, as it then integrates to ∞ rather than 1.
Such prior distributions are called improper. With an improper prior, the posterior
distribution need not be proper. Not as extreme is a diffuse proper prior spread out
over a large region of the parameter space, such as a normal prior with relatively
large 𝜎. Results for certain parameters, however, may depend critically on just how
diffuse the prior is, especially when the number of parameters p is large. One way
to implement this selects the prior distribution so that its impact on the posterior is
comparable to that of a single observation (Kass and Wasserman 1995).

The conjugate prior distribution is the family of probability distributions such that,
when combined with the likelihood function, the posterior distribution falls in the
same family. For example, when we combine a normal prior distribution for the mean
of a normal distribution with a normal likelihood function, the posterior distribution
is normal (Section 10.2). When we combine a beta prior distribution for a binomial
parameter with a binomial likelihood function, the posterior distribution is beta
(Section 10.1.3). When we combine a gamma prior distribution for a Poisson mean
parameter with a Poisson likelihood function, the posterior distribution is gamma
(Exercise 10.20). Conjugate prior distributions have the advantage of computational
simplicity for finding the posterior distribution, but they exist for relatively few
models beyond simple ones such as for a single mean or the one-way layout.

The Jeffreys prior distribution is proportional to the square root of the determinant
of the Fisher information matrix for the parameters of interest. It has the advantage of
being invariant to the parameterization. The prior distributions for different functions
of a parameter are equivalent (e.g., for the binomial parameter or its logit). For
single-parameter analyses, this is a reasonable way to construct an objective prior
in a straightforward way, but for models with a large p it can be cumbersome and
unappealing (Berger et al. 2013).

Another possibility is hierarchical in nature (Section 10.4): We assume a prob-
ability distribution for the prior hyperparameters 𝝀 instead of assigning them fixed
values. The prior distribution is then obtained by integrating h(𝜽|𝝀) with respect to
that distribution for 𝝀. Objectivity is enhanced by taking that second-stage prior to
be diffuse.

Just as we never completely believe any model, likewise we should be skeptical
about any particular choice of prior distribution. It is informative to check how
posterior results vary according to the choice. As n increases relative to the number
of parameters, the likelihood function has an increasingly dominant influence in
Bayes’ theorem, and results are less sensitive to the choice.
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10.1.3 Binomial Parameter: Beta Prior and Posterior Distributions

We illustrate prior distributions for a binomial parameter 𝜋. The simplest Bayesian
inference uses a beta distribution as the prior distribution. The beta(𝛼1, 𝛼2) family
(Section 8.2.3) has hyperparameter values 𝛼1 > 0 and 𝛼2 > 0 that provide a wide
variety of pdf shapes over (0, 1). The Jeffreys prior is the symmetric U-shaped beta
with 𝛼1 = 𝛼2 = 0.5.

For iid Bernoulli trials y1,… , yn with parameter 𝜋, let y = (
∑

i yi)∕n, so that
(ny ∣ 𝜋) ∼ bin(n,𝜋). The beta distribution is the conjugate prior distribution for infer-
ence about 𝜋. When we combine a beta(𝛼1, 𝛼2) prior distribution with a binomial
likelihood function, the posterior density h(𝜋 ∣ y) ∝ f (y ∣ 𝜋)h(𝜋), or

h(𝜋 ∣ y) ∝ 𝜋ny(1 − 𝜋)n−ny𝜋𝛼1−1(1 − 𝜋)𝛼2−1 = 𝜋ny+𝛼1−1(1 − 𝜋)n−ny+𝛼2−1

over (0, 1). So the posterior distribution is a beta(ny + 𝛼1, n − ny + 𝛼2) distribution.
The posterior mean

ny + 𝛼1

n + 𝛼1 + 𝛼2
=
(

n
n + 𝛼1 + 𝛼2

)
y +

(
𝛼1 + 𝛼2

n + 𝛼1 + 𝛼2

)
𝛼1

𝛼1 + 𝛼2

is a weighted average of the sample proportion y and the prior mean, y receiving greater
weight as n increases. We can interpret𝛼1 + 𝛼2 as the effective sample size represented
by the prior distribution, corresponding to 𝛼1 “successes” and 𝛼2 “failures.” The
posterior predictive distribution has

P(y∗ = 1 ∣ y) =
∫

1

0
P(y∗ = 1 ∣ y,𝜋)h(𝜋 ∣ y)d𝜋 =

∫

1

0
𝜋h(𝜋 ∣ y)d𝜋,

which is the posterior mean.

10.1.4 Markov Chain Monte Carlo (MCMC) Methods for Finding Posterior

For GLMs, usually the posterior distribution has no closed-form expression. The
difficulty is in evaluating the denominator integral that determines f (y), that is, deter-
mining the appropriate constant so that the posterior integrates to 1. Simulation
methods can approximate the posterior distribution. The primary method for doing
this is Markov chain Monte Carlo (MCMC). It is beyond our scope to present detailed
descriptions of MCMC algorithms (Note 10.2 has references). In brief, a stochastic
process of 𝜽 values having Markov-chain form is constructed so that its long-run sta-
tionary distribution is the posterior distribution of 𝜽. One or more such long Markov
chains provide a very large number of simulated values from the posterior distribution,
and the distribution of the simulated values approximates the posterior distribution.

Gelfand and Smith (1990) showed how to use MCMC methods to determine
Bayesian posterior distributions, and the literature on implementing Bayesian meth-
ods exploded soon after that. The two primary MCMC methods are Gibbs sampling
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and the Metropolis–Hastings algorithm. These each require only that we know a func-
tion that is proportional to the posterior distribution, which for Bayesian inference is
true once we multiply the prior distribution by the likelihood function.

The Metropolis–Hastings algorithm randomly generates a potential new value 𝜽∗

in the chain from a “proposal density,” conditional on the current value 𝜽(t) of the
chain. For symmetric proposal densities for which the density of 𝜽∗ given 𝜽(t) is
identical to the density of 𝜽(t) given 𝜽∗, the process is quite simple: The next iterate
𝜽(t+1) equals 𝜽∗ with probability

h(𝜽∗ ∣ y)∕h(𝜽(t) ∣ y),

taking the probability to be 1 if this ratio exceeds 1, and otherwise 𝜽(t+1) = 𝜽(t). In
this process, although we do not know h(⋅), we can calculate this ratio because the
unknown normalizing constant f (y) appears both in the numerator and denominator,
and hence cancels. Software that uses this algorithm incorporates a proposal density
from which it is easy to generate random numbers, acceptance probabilities are
relatively high, and successive 𝜽(t) have a relatively low autocorrelation.

The Gibbs sampling scheme approximates the posterior distribution for 𝜽 by
iteratively sampling each element of 𝜽 from its full conditional distribution, given the
other elements of 𝜽. That is, the new iterate 𝜃(t+1)

j is randomly generated from the
density

h(𝜃j ∣ 𝜃
(t+1)
1 ,… , 𝜃(t+1)

j−1 , 𝜃(t)
j+1,… , 𝜃(t)

p , y), j = 1, 2,… , p.

In many cases this conditional density is quite simple, with the unknown normalizing
constant canceling in the ratio of probabilities specified by this conditional density.
The samples generated of (𝜃(t)

1 ,… , 𝜃(t)
p ) for large t approximate the joint posterior

distribution of 𝜽. See Casella and George (1992) for details and insight for why this
works. Gibbs sampling is a special case of the Metropolis–Hastings algorithm in
which the conditional densities form the proposal density at each step of an iteration.

Both Gibbs sampling and the Metropolis–Hastings algorithm are designed to
ensure eventual convergence to the stationary distribution. Convergence can be slow,
however, because MCMC samplers yield dependent draws. When the process stops,
a Monte Carlo standard error indicates how close the final values are likely to be to
the actual ML estimates.

10.1.5 de Finetti’s Theorem: Independence and Exchangeability

Throughout this book, in univariate response modeling, a standard assumption is that
y1,… , yn are independent. But if we observe y1, that tells us something about the
model parameters, so does not that also give us information about what to expect for
y2,… , yn? In classical frequentist statistics, no, because the assumed independence of
{y1,… , yn} is conditional on the parameter values. For instance, in the normal linear
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model for the one-way layout, yi1,… , yini
are assumed to be independent, conditional

on the parameters (𝜇i, 𝜎
2) of their distribution.

In Bayesian inference, because parameters are random variables, it is more nat-
ural to treat observations at any particular setting of the explanatory variables as
exchangeable than as independent. That is, their probability distribution is identical
if we permute the observations in any way whatever. A generalization of a result
due to the Italian statistician Bruno de Finetti in 1937 states that the observations
are independent, conditional on the parameter value for a mixture distribution. This
motivates the way Bayesian models are constructed: For a particular parametric fam-
ily, observations are treated as independent, conditional on the parameter values; but
assuming a prior probability distribution for those parameters implies that marginally
the observations may be correlated but (at a fixed setting for explanatory variables)
are exchangeable. We represent the pdf for y as

f (y) =
∫𝚯

f (y ∣ 𝜽)h(𝜽)d𝜽 =
∫𝚯

[
n∏

i=1

f (yi ∣ 𝜽)

]
h(𝜽)d𝜽.

Bayesian hierarchical models also apply exchangeability to sets of parameter values.
As we’ll observe, Bayesian methods then “borrow from the whole” in using all the
data to estimate a parameter for any individual group.

10.1.6 Parallels Between Bayesian and Frequentist Inferences

Bayesian methods of statistical inference using the posterior distribution parallel
those for frequentist inference, with analogs of point estimates, confidence intervals,
and significance tests. The usual Bayes estimate of 𝜽 is the mean of its posterior
distribution. If we use a uniform prior h(𝜽) (possibly improper), then h(𝜽 ∣ y) is a
constant multiple of the likelihood function. That is, the posterior distribution (when
it exists) is a scaling of the likelihood function so that it integrates to 1. The mode of
h(𝜽 ∣ y) is then the ML estimate �̂�. With a proper prior density, when n is small or the
posterior distribution is quite skewed, the posterior mean can be quite different from
the posterior mode and thus from the ML estimate. It is then characteristic of Bayes
estimates that they shrink the ML estimate toward the prior mean. This chapter shows
numerous examples.

Analogous to the frequentist confidence interval is a posterior interval, also often
called a credible interval. We can construct this for 𝜃j using percentiles of h(𝜃j ∣ y),
with equal probabilities in the two tails. The 95% equal-tail posterior interval for 𝜃j
is the region between the 2.5 percentile and 97.5 percentile of h(𝜃j ∣ y). An alter-
native highest posterior density (HPD) region has higher posterior density for
every value inside the region than for every value outside it, subject to the poste-
rior probability over the region equaling the desired confidence level. For unimodal
posteriors this method produces an interval, the shortest possible one with the given
confidence level.



THE BAYESIAN APPROACH TO STATISTICAL INFERENCE 339

For Bayesian posterior intervals, the coverage probability applies after observ-
ing the data, whereas for frequentist inferences it applies before (i.e., based on
the distribution for the random data). For a Bayesian 95% posterior interval,
P(𝜃j ∈ interval ∣ y) = 0.95 based on h(𝜃j ∣ y); by contrast, for a frequentist 95% confi-
dence interval, P(interval contains 𝜃j ∣ 𝜽) = 0.95 based on random endpoints for that
interval constructed using y.

For significance tests about 𝜃j, a frequentist P-value is a tail probability of “more
extreme” results for the data, for a given 𝜃j value. For a Bayesian approach, in lieu
of P-values, useful summaries are posterior tail probabilities about 𝜃j, given the
data. Information about the direction of an effect is contained in P(𝜃j > 0 ∣ y) and
P(𝜃j < 0 ∣ y). With a prior distribution that is flat relative to the likelihood function,
P(𝜃j < 0 ∣ y) takes similar value as a frequentist P-value for a one-sided test with
H1: 𝜃j > 0.

The Bayesian analog of a two-sided test of H0: 𝜃j = 0 against H1: 𝜃j ≠ 0 is not
so obvious. For GLM parameters that take values over the entire real line or some
interval subset of it, it is common to use continuous prior distributions. Then the prior
P(𝜃j = 0) = 0, as is the posterior probability. To evaluate whether H0 is plausible, we
can evaluate the posterior probability of the region of values having smaller density
than at 𝜃j = 0. Or we could base this judgment on whether the posterior interval for
𝜃j of desired confidence level contains 0. Analogous approaches apply for testing the
general linear hypothesis H0: 𝚲𝜷 = 0.

For a continuous y, we can use the posterior predictive distribution f (y∗ ∣ y) to
find a prediction interval for a future response value. The interpretation for such an
interval is more natural than the rather tortuous one presented in Section 3.3.5 for
a frequentist prediction interval, because the posterior distribution naturally applies
conditional on y. We can state that a Bayesian 95% prediction interval has probability
0.95 of containing y∗ (assuming, of course, that the model is correct).

10.1.7 Bayesian Model Checking

Many Bayesian model-checking methods also parallel frequentist methods. For exam-
ple, sensitivity analyses investigate how posterior inferences change when alternative
reasonable models are used. Case-deletion diagnostics summarize the influence of
individual observations. If the model is adequate, new datasets generated randomly
from the model using the predictive distribution should look like the observed data.
Analogs of test statistics compare summaries of the observed data with the cor-
responding summaries of predictive simulations based on the model. Analogs of
P-values find the probability that replicated data are more extreme, in some sense,
than the observed data. See Gelman et al. (2013, Chapters 6 and 7) and Ntzoufras
(2009, Chapter 10) for details.

The Bayes factor comparing two models, which need not be nested, is the ratio
of their marginal densities, f1(y)∕f2(y). This can, however, be sensitive to the choice
of the prior distribution and may provide quite different results than frequentist
likelihood-ratio methods (O’Hagan and Forster 2004, pp. 177–183). A Bayesian
analog of the Akaike information criterion (AIC) is the Bayesian information criterion
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(BIC) introduced in Section 4.6.3 (Schwarz 1978), which adjusts the maximum log-
likelihood L for a model with p parameters:

BIC = −2L + [log(n)]p.

This does not depend on a prior distribution, but with large n, the difference between
the BIC values for two models is approximately twice the log of the Bayes factor. For
a set of reasonable candidate models, the model with the highest posterior probability
tends to be the one that minimizes BIC.

Rather than selecting a model and then ignoring the model uncertainty in mak-
ing inferences, a Bayesian model averaging approach provides a mechanism for
accounting for model uncertainty. See Raftery et al. (1997) and Hoeting et al. (1999)
for details. Note 10.4 lists additional references about model checking.

10.2 BAYESIAN LINEAR MODELS

Lindley and Smith (1972) presented the following Bayesian model for a normal linear
model with known covariance matrices:

Bayesian normal linear model:

For positive-definite 𝚺1 and 𝚺2, suppose

(y ∣ 𝜷1,𝚺1) ∼ N(X1𝜷1,𝚺1), where (𝜷1 ∣ 𝜷2,𝚺2) ∼ N(X2𝜷2,𝚺2). (10.2)

Then the posterior distribution of 𝜷1 is N(�̃�, �̃�), where

�̃� = �̃�
[
XT

1𝚺
−1
1 y + 𝚺−1

2 X2𝜷2
]

, �̃� =
(
XT

1𝚺
−1
1 X1 + 𝚺−1

2

)−1
. (10.3)

This result treats 𝜷2, 𝚺1, and 𝚺2 as known. In practice, a noninformative approach for
the prior hyperparameters takes 𝚺2 to be a diagonal matrix with very large elements
and takes 𝜷2 = 0. It is unrealistic that we would know 𝚺1, but this assumption
is sufficient for our illustration of basic ideas of Bayesian linear modeling. For
the ordinary linear model, 𝚺1 = 𝜎2I, and we extend the model to include a prior
distribution for 𝜎2 in Section 10.2.4. At any particular setting of the explanatory
variables, the prior and posterior distributions for 𝜷1 induce a corresponding prior
and posterior distribution for the expected response X1𝜷1.

10.2.1 Bayesian Estimation of a Normal Mean

To illustrate the Bayesian normal linear model, we first consider the simplest case:
The data is an observation y ∼ N(𝜇, 𝜎2

1) and the goal is to estimate 𝜇, which has
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a N(𝜆, 𝜎2
2) prior distribution. Slightly more generally, we could let y be the sample

mean of n observations and take 𝜎2
1 to be the variance of that sample mean.

The product of the likelihood function and the prior pdf is proportional to

e
− (y−𝜇)2

2𝜎2
1 e

− (𝜇−𝜆)2

2𝜎2
2 .

Combining terms in a common exponent, writing that term as quadratic in 𝜇 and then
completing the square, we find that this product is proportional to

e
− 1

2�̃�2 (𝜇−�̃�)2
with �̃� =

𝜎2
1y + 𝜎2

2𝜆

𝜎2
1 + 𝜎2

2

and �̃�2 =
(
𝜎−2

1 + 𝜎−2
2

)−1
.

This exponential function is a constant multiple of the N(�̃�, �̃�2) pdf, so that is the
posterior distribution of 𝜇. The posterior mean �̃� is a weighted average of y and
the prior mean 𝜆, shrinking the observation toward 𝜆. This is the same shrinkage
behavior as found for the binomial model in Section 10.1.3. In fact, substituting in
the Lindley and Smith formulation of the Bayesian normal linear model y = y, 𝜷1 =
𝜇, X1 = X2 = 1, 𝜷2 = 𝜆, 𝚺1 = 𝜎2

1 , and 𝚺2 = 𝜎2
2 yields this result for the posterior

distribution.
The reciprocal of a variance is a measure of information referred to as the precision.

We see that the precision of the posterior estimator of the mean equals the sum of the
precision of the sample observation and the precision of the prior mean.

10.2.2 A Bayesian Analog of the Normal Linear Model

From Chapter 3, the ordinary normal linear model for n independent observations
y = (y1,… , yn)T, with 𝝁 = (𝜇1,… ,𝜇n)T for 𝜇i = E(yi), states that

y ∼ N(X𝜷, 𝜎2I).

For a Bayesian analog, in the general Bayesian normal linear model (10.2), we take

(y ∣ 𝜷, 𝜎2) ∼ N(X𝜷, 𝜎2I), (𝜷 ∣ 𝜆, 𝜏2) ∼ N(𝜆1, 𝜏2I),

that is, independent observations for which the elements of 𝜷 have a common prior
mean 𝜆 (usually taken to be 0) and a common prior variance 𝜏2. For the common prior
variance to be sensible in this exchangeable treatment of the effects, we standardize
the explanatory variables so that the effects are comparable in their prior magnitude.

From (10.3), the posterior distribution of 𝜷 is N(�̃�, �̃�), with

�̃� = �̃�[XT𝜎−2y + 𝜏−2𝜆1], �̃� =
(
𝜎−2XTX + 𝜏−2I

)−1
. (10.4)
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The posterior mean �̃� is

�̃� =
(
𝜎−2XTX + 𝜏−2I

)−1
[𝜎−2(XTX)𝜷 + 𝜏−2𝜆1],

where 𝜷 =
(
XTX

)−1
XTy is the ordinary least squares estimate. The coefficients of 𝜷

and 𝜆1 sum to I, so �̃� is a weighted average of 𝜷 and the prior mean. The additivity of
precision mentioned above for Bayesian inference about a single mean generalizes:

The posterior �̃�−1 = (𝜎−2XTX + 𝜏−2I) is a sum of the inverse covariance matrix for
the least squares estimator and the inverse of the prior covariance matrix. As 𝜏 grows
unboundedly, so that the prior distribution is more diffuse, �̃� converges to 𝜷 and �̃�
converges to 𝜎2(XTX)−1, the covariance matrix of 𝜷.

Let us see how to obtain the posterior (10.4). By Bayes’ theorem,

h(𝜷 ∣ y) ∝ exp
{
−1

2

[
𝜎−2(y − X𝜷

)T(
y − X𝜷

)
+ 𝜏−2(𝜷 − 𝜆1

)T(
𝜷 − 𝜆1

)]}
.

We express this as e−
1
2

Q, where, collecting terms together that are quadratic and linear
in 𝜷,

Q = 𝜷T(𝜎−2XTX + 𝜏−2I
)
𝜷 − 2

(
𝜎−2XTy + 𝜏−2𝜆1

)T
𝜷 + c,

with c constant with respect to 𝜷. Completing the quadratic form in 𝜷 and taking �̃�
to be the expression in (10.4),

Q =
[
𝜷 − �̃�

(
𝜎−2XTy + 𝜏−2𝜆1

)]T�̃�−1[
𝜷 − �̃�

(
𝜎−2XTy + 𝜏−2𝜆1

)]
+ c′,

where c′ is another constant with respect to 𝜷. But, as a function of 𝜷, taking �̃� to be
the expression in (10.4) and ignoring the constant,

e−
1
2

Q = e−
1
2

[
(𝜷− ̃𝜷) ̃𝚺−1

(𝜷− ̃𝜷)
]
.

As a function of 𝜷, this is proportional to the N(�̃�, �̃�) density.

10.2.3 Bayesian Approach to Normal One-Way Layout

We illustrate the Bayesian normal linear model for the one-way layout, with ni
observations for group i having E(yij) = 𝜇i, i = 1,… , c. We use the structure just given
in which var(y) = 𝜎2I and the prior distribution has E(𝜷) = 𝜆1 and var(𝜷) = 𝜏2I. We
parameterize the model in X such that 𝛽i = 𝜇i by setting the usual intercept = 0. In
summary, then,(

yij ∣ 𝜇i, 𝜎
2
)
∼ N(𝜇i, 𝜎

2), independently for j = 1,… , ni,

with (𝜇i ∣ 𝜆, 𝜏2) ∼ N(𝜆, 𝜏2), independently for i = 1,… c.

The N(𝜇i, 𝜎
2) distribution describes the within-group variability, and the N(𝜆, 𝜏2)

distribution describes the between-group variability.
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With this structure, the posterior mean �̃� has elements

�̃�i = wȳi + (1 − w)𝜆

with w = 𝜏2∕
[𝜎2

ni
+ 𝜏2

]
. This is a weighted average of ȳi and the prior mean, with ȳi

receiving greater weight as ni increases. The Bayes estimator shrinks the ML (and
least squares) estimate ȳi toward𝜆. With fixed ni, less shrinkage occurs as 𝜏2 increases.
The ML sample mean estimates emerge in the limit as 𝜏2 increases unboundedly, so
that the prior distribution for {𝜇i} moves toward the improper uniform prior over ℝc.

The posterior �̃�−1
is a c × c diagonal matrix with precision entries { ni

𝜎2 + 1
𝜏2 }.

Using the posterior normal distributions, we can construct posterior intervals
for the 𝜇i − 𝜇j. Such differences themselves have a normal distribution, so it is
straightforward to find useful summaries such as P(𝜇i > 𝜇j ∣ y) = P(𝜇i − 𝜇j > 0 ∣ y).

10.2.4 Unknown Variance in Normal Linear Model

In practice, the error variance 𝜎2 in the ordinary normal linear model is unknown and
requires its own prior distribution. In the frequentist approach, with a full-rank n × p
model matrix X and error mean square

s2 = (y − X𝜷)T(y − X𝜷)∕(n − p),

by Cochran’s theorem, (n − p)s2∕𝜎2 has a chi-squared distribution with df = n − p.
That approach treats s2 as the random variable, for fixed 𝜎2. This suggests that in a
prior distribution for 𝜎2, we could choose hyperparameters 𝜈0 > 0 and 𝜎2

0 such that
𝜈0𝜎

2
0∕𝜎

2 has a chi-squared distribution with df = 𝜈0. Here 𝜎2
0 is a prior guess for

the value of 𝜎2, and 𝜈0 is a measure of the number of observations to which that
information corresponds. Then 𝜎2 itself has an inverse chi-squared distribution. Its
prior pdf

h(𝜎2) ∝ (𝜎2)−(𝜈0∕2+1) exp

(
−𝜈0𝜎

2
0

2𝜎2

)
, 𝜎2 > 0. (10.5)

This distribution, which is skewed to the right, is a special case of the inverse-
gamma distribution; that is, 1∕𝜎2 has the ordinary gamma distribution (4.29) with
(k, k∕𝜇) = (𝜈0∕2, 𝜈0𝜎

2
0∕2). A limiting version of the inverse chi-squared prior for 𝜎2

that results from letting 𝜈0 ↓ 0 is improper. For that limiting case, f (𝜎2) ∝ 1∕𝜎2. This
corresponds to an improper uniform prior distribution over the entire real line for
log(𝜎2).

We continue to assume that var(y) = 𝜎2I and that 𝜷 has prior distribution
N(𝜆1, 𝜏2I) and is independent of 𝜎2. The likelihood function for the normal lin-
ear model is

f (y ∣ 𝜷, 𝜎2) =

(
1√
2𝜋𝜎

)n

exp
[
− 1

2𝜎2
(y − X𝜷)T(y − X𝜷)

]
.
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Taking (y − X𝜷) = (y − X𝜷) + (X𝜷 − X𝜷)] for the least squares estimate 𝜷, we can
express the likelihood as

f (y ∣ 𝜷, 𝜎2) =

(
1√
2𝜋𝜎

)n

exp
[
− 1

2𝜎2
[(n − p)s2 + (𝜷 − 𝜷)T(XTX)(𝜷 − 𝜷)

]
.

Multiplying together the normal prior of 𝜷, the inverse chi-squared prior of 𝜎2, and
the likelihood function, and then completing the square, yields

h(𝜷, 𝜎2 ∣ y) ∝ (𝜎2)−[(𝜈0+n)∕2+1] exp

(
−

(𝜈0 + n)𝜎2
n

2𝜎2

)

× 𝜎−p exp
[
−1

2
(𝜷 − �̃�)T�̃�−1

(𝜷 − �̃�)
]

where �̃� and �̃� are as in (10.4) and

(𝜈0 + n)𝜎2
n = 𝜈0𝜎

2
0 + (n − p)s2 + (𝜆1 − �̃�)T(𝜆1 − �̃�)(𝜎2∕𝜏2) + (𝜷 − �̃�)TXTX(𝜷 − �̃�).

This posterior pdf factors as

h(𝜷, 𝜎2 ∣ y) = h(𝜎2 ∣ s2)h(𝜷 ∣ 𝜷, 𝜎2),

where h(𝜎2 ∣ s2) has inverse chi-squared form and h(𝜷 ∣ 𝜷, 𝜎2) is the same as the
normal distribution obtained in Section 10.2.2 by treating 𝜎2 as known. Integrating
𝜎2 from h(𝜷, 𝜎2 ∣ y) yields the marginal posterior h(𝜷 ∣ y), which has the form of
a multivariate t distribution (Seber and Lee 2003, pp. 74–76). We next present an
important special case of this.

10.2.5 Improper Priors and Equivalent Frequentist Inferences

When we use improper priors, with h(𝜎2) ∝ 1∕𝜎2 and an improper uniform prior
distribution for 𝜷 by taking 𝜏2 → ∞, we obtain posterior results that relate very
closely to standard frequentist inference. Then h(𝜷 ∣ 𝜷, 𝜎2) is a N[𝜷, (XTX)−1𝜎2)]
distribution. Recall that the frequentist distribution of 𝜷 is N[𝜷, (XTX)−1𝜎2], so
the two inferential approaches then merely interchange the roles of 𝜷 and 𝜷. Also,
h(𝜎2 ∣ s2) is inverse chi-squared, such that (n − p)s2∕𝜎2 has a chi-squared distribution
with df = n − p. This is identical to the distribution in the frequentist case, except
here it is the distribution of 𝜎2 given s2 instead of s2 given 𝜎2.

After integrating out 𝜎2, Box and Tiao (1973, Section 2.7.2) showed that

h(𝜷 ∣ y) ∝
[

1 +
(𝜷 − 𝜷)T(XTX)(𝜷 − 𝜷)

(n − p)s2

]−n∕2

.
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This distribution for 𝜷 is the multivariate t distribution with parameters df = n − p, 𝜷
(the mean of the distribution when df > 1), and s2(XTX)−1 (which is the covariance
matrix times (df − 2)∕df when df > 2). Let (XTX)−1

jj denote the element from row j

and column j of (XTX)−1. Then marginally for (𝛽j ∣ y),

t =
𝛽j − 𝛽j

s(XTX)−1
jj

has the univariate t distribution with df = n − p. Setting 𝛽j = 0 yields test statistic
having the same absolute value as the test statistic used in a frequentist significance
test of H0: 𝛽j = 0. Likewise, a posterior interval for 𝛽j is identical to the corresponding
frequentist confidence interval. In the Bayesian interpretation, the probability that the
posterior interval contains 𝛽j equals 0.95. With the frequentist approach, the “95%
confidence” relates to long-run performance of the method; in repeated hypothetical
sampling, 95% of the intervals contain 𝛽j.

By integrating out the parameters using their posterior distribution, we can con-
struct a posterior predictive distribution for a future observation y∗ at a particular
value x0 for the explanatory variables. For the improper prior structure, a prediction
interval for y∗ has the same formula as (3.3) presented for the frequentist approach
with the normal linear model.

10.2.6 Example: Normal Linear Model for Record Running Times

Section 2.6 introduced data on record times for Scottish hill races (in minutes), with
the distance of the race (in miles) and the cumulative climb (in thousands of feet)
as explanatory variables. There we found that a frequentist linear model with an
interaction term has good predictive power.

---------------------------------------------------------------------

> attach(ScotsRaces)

> summary(lm(time ~ climb + distance + climb:distance))

Coefficients: # ordinary least squares for linear model

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7672 3.9058 -0.196 0.84556

climb 3.7133 2.3647 1.570 0.12650

distance 4.9623 0.4742 10.464 1.07e-11

climb:distance 0.6598 0.1743 3.786 0.00066

---

Residual standard error: 7.338 on 31 degrees of freedom

Multiple R-squared: 0.9807, Adjusted R-squared: 0.9788

---------------------------------------------------------------------

We next show two Bayesian analyses in R that give essentially the same estimates
as the least squares estimates. The MCMCregress function in the MCMCpack package
can select improper uniform priors for 𝜷 by taking the normal prior to have precision
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1∕𝜏2 = 0. It does not allow an improper chi-squared prior for 1∕𝜎2, but the impact
of that prior can be approximated well by taking tiny values for the two parameters
of a gamma prior distribution (c0 and d0). With a huge number of MCMC iterations
for the Metropolis–Hastings algorithm (here 5,000,000), the standard errors for the
posterior mean estimates are very small.

-----------------------------------------------------------------------

> library(MCMCpack)

> fit.bayes <- MCMCregress(time ~ climb + distance + climb:distance,

+mcmc=5000000, b0=0, B0=0, c0=10ˆ(-10), d0=10ˆ(-10))

> summary(fit.bayes) # normal prior mean = b0, variance = 1/B0

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE

(Intercept) -0.7662 4.0376 1.806e-03

climb 3.7133 2.4443 1.093e-03

distance 4.9622 0.4902 2.192e-04

climb:distance 0.6598 0.1802 8.057e-05

sigma2 57.5774 15.6825 7.013e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) -8.7292 -3.4310 -0.7672 1.8996 7.196

climb -1.1110 2.0999 3.7135 5.3262 8.536

distance 3.9958 4.6384 4.9619 5.2859 5.928

climb:distance 0.3045 0.5409 0.6599 0.7788 1.015

sigma2 34.6010 46.5164 55.0384 65.7743 95.216 # error var.

-----------------------------------------------------------------------

The bayesglm function in the arm package, based on Gelman et al. (2008), uses
t distribution priors. It provides normal priors by taking df = ∞ for the t distribution,
and that prior becomes flat when the prior scale parameter is infinite. For model
fitting, rather than employing Gibbs sampling or the Metropolis–Hastings algorithm,
it provides a very fast calculation that approximates a posterior mode and SE by
incorporating an EM algorithm into the iteratively reweighted least squares algorithm.

-----------------------------------------------------------------------

> library(arm)

> fit.bayes <- bayesglm(time ~ climb + distance + climb:distance,

+ family=gaussian, prior.mean=0, prior.scale=Inf, prior.df=Inf)

> summary(fit.bayes)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7672 3.6758 -0.209 0.8359

climb 3.7133 2.2254 1.669 0.1041

distance 4.9623 0.4463 11.118 4.93e-13

climb:distance 0.6598 0.1640 4.023 0.0003

(Dispersion parameter for gaussian family taken to be 47.6967)

-----------------------------------------------------------------------
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The Bayesian estimates are essentially the same as the least squares estimates.
Interpretations can use Bayesian posterior probability statements. For example, the
probability is 0.95 that the interaction parameter falls between 0.30 and 1.01.

10.3 BAYESIAN GENERALIZED LINEAR MODELS

As in Bayesian normal linear models, Bayesian GLMs provide point estimators
that shrink ML estimators toward means of prior distributions. A simple nearly
noninformative prior distribution takes 𝜷 ∼ N(0, 𝜎2I) with a very large 𝜎. Again,
standardizing the explanatory variables makes the effects comparable. Alternatively,
as a default prior for GLMs, Gelman et al. (2008) proposed the t distribution, in
particular a Cauchy1 (the t with df = 1) as a conservative special case, with default
location = 0 and a fixed scale value. This prior is less informative than the normal,
being heavier in the tails.

We illustrate Bayesian inference for GLMs in this section by focusing on models
for binary data. For Bayesian modeling of multinomial data and count data, see Notes
10.7 and 10.8.

10.3.1 Prior Specifications for Binary GLMs

For GLMs for binary data, such as logistic and probit regression, it is usually not
advisable to use an improper uniform prior for 𝜷. It does not sufficiently shrink ML
estimates in cases that are problematic for ML estimation, such as when the data have
complete or quasi-complete separation in the space of x values and at least one ML
estimate is infinite.

When we use independent N(𝜇, 𝜎2) priors, the posterior Bayes estimate is well
defined, even if the data have complete separation (Gelman et al. 2008). With the
logit link, the corresponding normal prior for the linear predictor xi𝜷 induces a prior
distribution for

P(yi = 1) = exp(xi𝜷)∕[1 + exp(xi𝜷)]

that is a special case of the logit-normal (also called logistic-normal) distribution.
This two-parameter family of distributions over (0, 1) is an alternative to the beta
family. When 𝜇 = 0, the logit-normal density is symmetric2. It is then unimodal when
var(xi𝜷) ≤ 2 and bimodal otherwise. The modes are closer to 0 and 1 as 𝜎 increases.
Relatively noninformative (large 𝜎) priors imply priors on the probability scale that
are highly U-shaped, with about half the probability very close to 0 and half very
close to 1. Although seemingly rather informative, such priors usually have little

1The Cauchy pdf with location 0 and scale 𝛾 is h(𝛽) = 1∕𝜋𝛾[1 + (𝛽∕𝛾)2].
2See logitnorm.r-forge.r-project.org and the “Logit-normal distribution” entry in
wikipedia.org for figures illustrating the shapes described here.

http://logitnorm.r-forge.r-project.org
http://wikipedia.org
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influence, and the posterior distribution has much the same shape as the likelihood
function.

Data analysts who use a subjective approach may find it is easier to formulate
prior beliefs about probabilities than about logistic or probit 𝜷 that pertain to a
nonlinear function of the probabilities. When one constructs prior distributions for
P(y = 1) (such as the beta) at various settings of x, those prior distributions induce a
corresponding prior distribution for 𝜷. MCMC methods can then generate posterior
distributions. See Christensen et al. (2010, Section 8.4) for details.

10.3.2 Example: Risk Factors Revisited for Endometrial Cancer

Section 5.7.1 analyzed data from a study of y = histology of 79 cases of endometrial
cancer (0 = low grade, 1 = high grade) with three risk factors: x1 = neovasculation
(1 = present, 0 = absent), x2 = pulsatility index of arteria uterina, and x3 =
endometrium height. The data exhibit quasi-complete separation on x1, and the ML
fit of the main effects model

logit[P(yi = 1)] = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3

has 𝛽1 = ∞.

-------------------------------------------------------------------------

> Endometrial # file Endometrial.dat at www.stat.ufl.edu/~aa/glm/data

NV PI EH HG

1 0 13 1.64 0

2 0 16 2.26 0

...

> attach(Endometrial)

> PI2 <- (PI-mean(PI))/sd(PI); EH2 <- (EH-mean(EH))/sd(EH); NV2 <- NV-0.5

# standardize quantitative explanatory var’s, center indicator at 0

> fitML <- glm(HG ~ NV2 + PI2 + EH2, family=binomial)

> summary(fitML)

Coefficients: # actual ML estimate for NV2 effect is infinite

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.8411 857.8755 0.009 0.9927

NV2 18.1856 1715.7509 0.011 0.9915

PI2 -0.4217 0.4432 -0.952 0.3413

EH2 -1.9219 0.5599 -3.433 0.0006

-------------------------------------------------------------------------

For Bayesian analyses, we use independent N(0, 𝜎2) prior distributions for {𝛽j},
with standardized versions of x2 and x3. Instead of the usual (0, 1) coding for the
indicator variable x1, we assign values −0.5 and 0.5. The prior distribution is then
symmetric in the sense that the logits for each group have the same prior variability
as well as the same prior means, yet 𝛽1 retains its usual interpretation as a conditional
log odds ratio. For these data, because the log likelihood is relatively flat in the
𝛽1 dimension, posterior means for 𝛽1 can be highly sensitive to the choice of prior

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm/data
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distribution. To reflect a lack of information about the sizes of the effects, we first
used quite-diffuse prior distributions, with 𝜎 = 10.

-------------------------------------------------------------------------

> library(MCMCpack) # b0 = prior mean, B0 = prior precision = 1/variance

> fitBayes <- MCMClogit(HG ~ NV2+PI2+EH2, mcmc=10000000, b0=0, B0=0.01)

> summary(fitBayes)

1. Empirical mean and standard deviation:

Mean SD

(Intercept) 3.214 2.560

NV2 9.118 5.096

PI2 -0.473 0.454

EH2 -2.138 0.593

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) -0.343 1.270 2.721 4.686 9.344

NV2 2.107 5.233 8.126 12.047 21.336

PI2 -1.413 -0.767 -0.455 -0.159 0.366

EH2 -3.402 -2.515 -2.101 -1.722 -1.082

# Alternatively, bayesglm function in R arm package uses t priors

-------------------------------------------------------------------------

Table 10.1 shows posterior means and standard deviations and the 95% equal-tail
posterior interval for 𝛽1, based on an MCMC process with 10,000,000 iterations.
The table also shows the ML results, for comparison. With such a long process,
the Monte Carlo standard errors for the approximations to the Bayes estimates were
negligible—about 0.005 for the neovasculation effect and much less for the others.
The results yield the inference that 𝛽1 > 0, and the effect seems to be large. The
estimated size of the effect is imprecise, because of the flat log likelihood and the
relatively diffuse priors. Inferences about the model parameters were substantively
similar to those using the ML frequentist analysis.

Corresponding to the frequentist P-value for H1: 𝛽1 > 0, the Bayesian approach
provides P(𝛽1 < 0 ∣ y). This is 0.002; that is, 0.0 is the 0.002 quantile of the posterior
distribution. For this relatively flat prior distribution, this posterior tail probability is
similar to the P-value of 0.001 for the one-sided frequentist likelihood-ratio test of
H0: 𝛽1 = 0 against H1: 𝛽1 > 0. Each has very strong evidence that 𝛽1 > 0.

For comparison, we used a highly informative prior distribution. To reflect a prior
belief that the effects are not strong, we took 𝜎 = 1.0. Then nearly all the prior
probability for the conditional odds ratio exp(𝛽1) falls between exp(−3.0) = 0.05 and

Table 10.1 Results of Bayesian and Frequentist Fitting of Models to
the Endometrial Cancer Dataset of Table 5.3

Analysis 𝛽1 (SD) Intervala 𝛽2 (SD) 𝛽3 (SD)

ML ∞ (—) (1.3, ∞) −0.42 (0.44) −1.92 (0.56)
Bayes, 𝜎 = 10 9.12 (5.10) (2.1, 21.3) −0.47 (0.45) −2.14 (0.59)
Bayes, 𝜎 = 1 1.65 (0.69) (0.3, 3.0) −0.22 (0.33) −1.77 (0.43)

aProfile-likelihood interval for ML and equal-tail posterior interval for Bayes.
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exp(3.0) = 20. As Table 10.1 shows, results were quite different from the ML frequen-
tist analysis or the Bayesian analysis with 𝜎 = 10. Because yi = 1 for all 13 patients
having xi1 = 1, the frequentist approach tells us we cannot rule out any very large value
for 𝛽1. By contrast, if we had strong prior beliefs that |𝛽1| < 3, then even with these
sample results the Bayesian posterior inference has an upper bound of about 3 for 𝛽1.

10.3.3 Bayesian Fitting for Probit Models

For Bayesian model fitting of binary GLMs with normal priors, a simple analysis is
possible for the probit link. The probit model is simpler to handle than the logistic
model, because results apply directly from Bayesian normal linear models. Albert
and Chib (1993) exploited the normal-threshold latent variable model presented
in Section 5.1.2, assuming multivariate normal prior distributions for 𝜷 and the
independent normal latent variables. Then the posterior distribution of 𝜷, conditional
on y and the latent variables, is multivariate normal. Implementation of MCMC
methods is relatively simple because the Monte Carlo sampling is from normal
distributions.

Consider the data in ungrouped form, so that all ni = 1. For subject i, a latent
variable y∗i is assumed to relate to yi by yi = 1 if y∗i > 0 and yi = 0 if y∗i ≤ 0. Assuming
that y∗i has a N(xi𝜷, 1) distribution,

P(yi = 1) = P
(
y∗i > 0

)
= P(xi𝜷 + 𝜖i > 0),

where 𝜖i is a N(0, 1) random variable. The corresponding probit model is

Φ−1[P(yi = 1)] = xi𝜷.

If {y∗i } were observed and a multivariate normal prior were chosen for 𝜷, then the
posterior distribution for 𝜷 would result from ordinary normal linear model results.
Given the {yi} actually observed, however, {y∗i } are left- or right-truncated at 0.
Thus, their distributions are truncated normal. Nonetheless, it is still possible to
use MCMC (here, Gibbs sampling) to simulate the exact posterior distribution. The
likelihood function is expressed in terms of the model for y∗i . If y∗i were observed,
the contribution to the likelihood function would be 𝜙(y∗i − xi𝜷). With y∗i unknown
except for its sign, the contribution to the likelihood function is

[
I
(
y∗i > 0

)yi I
(
y∗i ≤ 0

)1−yi
]
𝜙
(
y∗i − xi𝜷

)
.

For n independent observations, the likelihood function is proportional to the product
of n such terms. Then for prior density function h(𝜷), the joint posterior density of 𝜷
and of {y∗i } given the data {yi} is proportional to

h(𝜷)
n∏

i=1

[
I
(
y∗i > 0

)yi I
(
y∗i ≤ 0

)1−yi
]
𝜙
(
y∗i − xi𝜷

)
.
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With the ML estimates as initial values, Albert and Chib used a Gibbs sampling
scheme that successively sampled from the density of y∗ = (y∗1,… , y∗n)T given 𝜷 and
of 𝜷 given y∗. With the conjugate normal prior, they noted that the posterior density of
𝜷 given y∗ is normal. Specifically, suppose that the prior distribution of 𝜷 is N(0, 𝜏2I),
and let X be the matrix with ith row xi, so the latent variable model is y∗ = X𝜷 + 𝝐.
Conditional on y∗, from (10.4) the distribution of 𝜷 is N(�̃�, �̃�) with

�̃� = (𝜏−2I + XTX)−1XTy∗, �̃� = (𝜏−2I + XTX)−1.

Conditional on 𝜷, the elements of y∗ are independent with the density of y∗i being
N(xi𝜷, 1) truncated at the left by 0 if yi = 1 and truncated at the right by 0 if yi = 0.

Albert and Chib (1993) also proposed using a link function corresponding to the
cdf of a t distribution, to investigate the sensitivity of results to the choice of link
function. This approach yields the Cauchy link when df = 1 and the probit link as
df → ∞. It also can provide close approximations to results for corresponding logistic
models, because a t variate with df = 8 divided by 0.63 is approximately a standard
logistic variate.

10.3.4 Extensions to Models for a Multivariate Response

The Bayesian approach is also possible for the models for a multivariate response
introduced in Chapter 9. Here we only briefly outline the normal case.

Models assuming multivariate normality with correlated components require a
parametric family for prior distributions for the covariance matrix. The Wishart
distribution is a multivariate generalization of the gamma distribution that generates
the inverse chi-squared distribution for a variance. If z1,… , z𝜈 are iid from a N(0,𝚺0)
distribution, then W =

∑
i ziz

T
i has a Wishart distribution with parameters (𝜈,𝚺0).

The mean of this distribution is 𝜈𝚺0. A Wishart distribution often serves as the
prior distribution for the precision matrix 𝚺−1 in multivariate normal linear models.
For a prior value 𝚺0 for the covariance matrix, one takes 𝚺−1 to have a Wishart
(𝜈,𝚺−1

0 ) distribution. The parameter 𝜈 is a sort of prior sample size that determines
the strength of prior beliefs, with smaller values being less informative. For details,
see Hoff (2009, Chapter 11).

10.4 EMPIRICAL BAYES AND HIERARCHICAL BAYES MODELING

Some methodologists who otherwise like the Bayesian approach find it unappealing
to have to select values for the hyperparameters in prior distributions. We next present
two alternative approaches: (1) an empirical Bayes approach uses the data to estimate
the hyperparameters; (2) in a hierarchical approach, the hyperparameters themselves
have prior distributions.
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10.4.1 Empirical Bayes Approach Estimates Hyperparameters

When the prior distribution has hyperparameters 𝝀, as it usually does, the marginal
pdf of y in the denominator of Bayes’ theorem (10.1) is actually

f (y ∣ 𝝀) =
∫𝚯

f (y ∣ 𝜽)h(𝜽 ∣ 𝝀)d𝜽,

itself depending on 𝝀. The empirical Bayes approach uses the value of 𝝀 that maxi-
mizes f (y ∣ 𝝀), given the observed data. That is, it uses marginal ML estimators of the
hyperparameters, the values under which the data would have highest density. Infer-
ence then uses the posterior distribution, h(𝜽 ∣ y, �̂�), generated by that empirically
estimated prior distribution.

The name “empirical Bayes” refers to this method’s use of the data to estimate the
hyperparameters. Parametric empirical Bayes uses a parametric form for the prior
distribution. The nonparametric empirical Bayes approach makes no assumption
about its form.

10.4.2 Parametric Empirical Bayes for One-Way Layout Models

In Section 10.2.3 we posed a Bayesian normal linear model for the one-way layout,
with N(𝜇i, 𝜎

2) distributions having 𝜇i ∼ N(𝜆, 𝜏2). For simplicity here in illustrating
the basic ideas, suppose 𝜎2 is known and n1 = ⋯ = nc. Let n denote that common
value. We can then summarize the data by independent observations ȳ1,… , ȳc with
common variance 𝜎2∕n. From Section 10.2.3, the posterior mean is

�̃�i =
(

𝜏2

𝜏2 + 𝜎2∕n

)
ȳi +

(
𝜎2∕n

𝜏2 + 𝜎2∕n

)
𝜆. (10.6)

We now adapt this estimate with the empirical Bayes approach for estimating the
hyperparameters 𝜆 and 𝜏.

For this normal/normal conjugate model, the marginal density of ȳi is

f (ȳi ∣ 𝜆, 𝜏) ∝
∫

e−n(ȳi−𝜇i)
2∕2𝜎2

e−(𝜇i−𝜆)2∕2𝜏2
d𝜇i.

After combining the terms in the exponent involving 𝜇i and completing the square,
we find that the terms in the integrand are a constant (relative to 𝜇i) times

exp
[
− 1

2(𝜏−2 + 𝜎−2n)−1
(𝜇i − �̃�i)

2
]
.

This integrand has the form of an integral of a normal density with respect to 𝜇i,
and equals 1.0 times another constant that (as a function of ȳi) has the form of the
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N(𝜆, 𝜏2 + 𝜎2∕n) density. That is, the marginal distribution for each ȳi is N(𝜆, 𝜏2 +
𝜎2∕n). Since {ȳi ∣ 𝜆, 𝜏} are independent, the joint marginal density of ȳ is

f (ȳ ∣ 𝜆, 𝜏) = [2𝜋(𝜏2 + 𝜎2∕n)]−c∕2 exp

{
−

[
c∑

i=1

(ȳi − 𝜆)2

]/
2(𝜏2 + 𝜎2∕n)

}
.

Maximizing this with respect to 𝜆, we obtain the marginal ML estimate �̂� = ȳ =
(
∑

i ȳi)∕c. So when we specify 𝜏2, the empirical Bayes estimate of 𝜇i is (10.6)
with 𝜆 replaced by ȳ. This estimate shrinks each sample mean toward the overall
sample mean. It is the same as obtained with a frequentist random-effects model in
Section 9.3.2. The shrinkage factor decreases as the common sample size n increases.

When we also treat 𝜏2 as unknown, the ML estimate of the marginal variance
(𝜏2 + 𝜎2∕n) is 1

c

∑
i(ȳi − ȳ)2. We are treating 𝜎2 as known, so the corresponding

marginal ML estimate of 𝜏2 is 𝜏2 = 1
c

∑
i(ȳi − ȳ)2 − 𝜎2∕n, unless this difference is

negative, in which case the estimate is 0. The estimated shrinkage proportion applied
to ȳi is then 𝜏2∕(𝜏2 + 𝜎2∕n). In practice, with 𝜎2 also unknown, we could substitute
the unbiased estimate s2 =

∑c
i=1

∑n
j=1(yij − ȳi)

2∕[c(n − 1)] from one-way ANOVA.
With binary data in the one-way layout, with a beta prior (the conjugate) for the

binomial parameters {𝜋i}, the marginal distribution of y resembles a beta-binomial
likelihood (Section 8.2). For fixed beta hyperparameters 𝛼1 and 𝛼2, �̃�i is a weighted
average of the sample proportion and the mean of the beta prior distribution (Exercise
10.14). When we estimate (𝛼1, 𝛼2) using the marginal beta-binomial distribution, we
obtain empirical Bayes estimates that shrink the sample proportions toward the overall
sample proportion.

With count data in the one-way layout, we could start with a Poisson model in
which {𝜇i} have a gamma distribution prior (the conjugate). Then the marginal distri-
bution of y resembles a negative binomial likelihood (Section 7.3.2). For fixed gamma
hyperparameters, �̃�i is a weighted average of ȳi and the mean of the gamma prior
distribution. When we estimate those hyperparameters using the marginal negative
binomial distribution, we obtain empirical Bayes estimates that shrink {ȳi} toward
the overall ȳ.

Regardless of the distribution for yij, the empirical Bayesian approach borrows
from the whole to estimate any one mean. The analysis need not use conjugate priors,
as the next example illustrates.

10.4.3 Example: Smoothing Election Poll Results

This example uses a simulated sample of 2000 people to mimic a poll taken before
the 2012 US presidential election, in which Barack Obama faced Mitt Romney. For ni
observations in state i (i = 1,… , 51, where i = 51 is District of Columbia), let yi be
the sample proportion favoring Obama in that election. Let 𝜋i be the corresponding
population proportion. Here, we take ni proportional to the number of people in state
i who voted in that election, subject to

∑
i ni = 2000. Table 10.2, available in the file

Election.dat at the text website, shows {ni}, {𝜋i}, and {yi}.
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Table 10.2 Empirical Bayes Estimates {�̂�i} and Hierarchical Bayes Estimates {�̂�h
i } of

Proportions of Vote {𝝅i} for Obama in 2012 US Presidential Election, for Sample Size ni

in State i with Sample Proportion yi

State ni 𝜋i yi �̂�i �̂�h
i State ni 𝜋i yi �̂�i �̂�h

i

AK 5 0.408 0.200 0.450 0.448 MT 7 0.417 0.714 0.538 0.540
AL 32 0.384 0.531 0.514 0.514 NC 66 0.483 0.288 0.351 0.347
AR 17 0.369 0.470 0.485 0.485 ND 5 0.387 0.200 0.450 0.447
AZ 35 0.444 0.514 0.505 0.506 NE 12 0.379 0.583 0.521 0.521
CA 207 0.603 0.652 0.633 0.637 NH 11 0.520 0.545 0.509 0.509
CO 37 0.515 0.486 0.490 0.490 NJ 59 0.582 0.593 0.561 0.563
CT 25 0.581 0.640 0.562 0.565 NM 13 0.529 0.462 0.484 0.483
DC 4 0.836 0.750 0.526 0.528 NV 15 0.524 0.267 0.416 0.413
DE 6 0.586 0.500 0.495 0.495 NY 114 0.626 0.667 0.632 0.636
FL 128 0.499 0.430 0.441 0.440 OH 87 0.507 0.448 0.460 0.459
GA 60 0.455 0.517 0.509 0.510 OK 22 0.332 0.409 0.457 0.456
HI 7 0.706 0.714 0.538 0.540 OR 28 0.542 0.464 0.479 0.479
IA 23 0.520 0.565 0.526 0.527 PA 92 0.520 0.576 0.557 0.558
ID 10 0.324 0.300 0.444 0.441 RI 7 0.627 0.428 0.481 0.480
IL 84 0.576 0.607 0.579 0.581 SC 29 0.441 0.448 0.471 0.470
IN 42 0.439 0.619 0.569 0.570 SD 6 0.399 0.167 0.437 0.434
KS 19 0.380 0.263 0.402 0.398 TN 40 0.391 0.475 0.483 0.482
KY 28 0.378 0.321 0.409 0.406 TX 123 0.414 0.382 0.403 0.401
LA 30 0.406 0.267 0.378 0.374 UT 15 0.247 0.267 0.416 0.413
MA 47 0.606 0.638 0.584 0.586 VA 57 0.512 0.509 0.504 0.504
MD 40 0.620 0.650 0.585 0.588 VT 5 0.666 0.200 0.450 0.447
ME 11 0.563 0.545 0.509 0.509 WA 46 0.562 0.522 0.511 0.512
MI 75 0.541 0.613 0.581 0.583 WI 45 0.528 0.600 0.559 0.560
MN 44 0.526 0.568 0.539 0.540 WV 11 0.355 0.454 0.483 0.483
MO 45 0.444 0.333 0.396 0.393 WY 4 0.278 0.500 0.495 0.494
MS 20 0.438 0.400 0.455 0.454

Let yij be the binary observation for subject j in state i, where “1” indicates a
preference for Obama. We consider the model for a one-way layout,

logit[P(yij = 1)] = 𝛽i, i = 1,… , 51. (10.7)

In the frequentist approach, the ML estimator of 𝜋i is the sample proportion yi, and 𝛽i
is the sample logit, log[yi∕(1 − yi)]. Many states have small ni, and better estimators
borrow from the whole.

A simple Bayesian approach treats {𝛽i} as independent N(𝜇, 𝜎2) variates. When we
combine the 51 independent binomial likelihood functions with the normal prior dis-
tributions, the resulting Bayes estimates shrink the sample logits toward 𝜇 (Exercise
10.24). We instead use an empirical Bayes approach, treating 𝜇 and 𝜎2 as unknown.
The marginal distribution that we maximize to find �̂� and �̂�2 is the same as the
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marginal likelihood in the frequentist approach for the random-effects model for the
one-way layout,

logit[P(yij = 1)] = ui, i = 1,… , 51, (10.8)

for independent ui ∼ N(𝜇, 𝜎2).
The marginal ML analysis provides hyperparameter estimates �̂� = −0.023 and

�̂� = 0.376. The posterior means {𝛽i} of {𝛽i} transform to the proportion estimates
{�̂�i = exp(𝛽i)∕[1 + exp(𝛽i)]} shown3 in Table 10.2. Because {ni} are mostly small
and �̂� is relatively small, these estimates shrink the sample proportions considerably.
The empirical Bayes model estimates tend to be closer than the sample proportions
to the true values. The root-mean-square error about the true proportions (weighted
by the per-state sample sizes) is 0.064 for the model-based estimates and 0.091 for
the sample proportions.

States with relatively few observations and sample proportions rather far from
the overall proportion, such as Alaska and DC, have empirical Bayes estimates
that tend to shrink more toward the overall proportion. In such cases, the posterior
interval benefits strongly from borrowing from the whole, being much shorter than
a confidence interval based on that state alone. For Alaska, for instance, the 95%
frequentist likelihood-ratio test-based confidence interval for 𝜋1 based on 1 Obama
supporter in n1 = 5 voters sampled is (0.01, 0.63), which is similar to a Bayesian
posterior interval using very flat priors for {𝛽i}. By contrast, the empirical Bayesian
equal-tail posterior interval4 of (−0.68, 0.40) for 𝛽1 translates to (0.34, 0.60) for 𝜋1.
Figure 10.1 compares this shrinkage effect with the effect for a state with a much
larger sample, California. It has frequentist interval (0.59, 0.71) for 𝜋5 shrinking only
to the empirical Bayes interval of (0.58, 0.68).

Alaska

0 0.25 0.50 0.75 1.0

Frequentist

Empirical bayes

California

0 0.25 0.50 0.75 1.0

Frequentist

Empirical bayes

Figure 10.1 Comparison of frequentist confidence intervals and empirical Bayesian posterior
intervals, for Alaska and California.

The empirical Bayes estimates of {𝛽i} in model (10.7) and the corresponding
best linear unbiased predictors (BLUPs) of {ui} in model (10.8) both exhibit strong

3These are not identical to the posterior means of {𝜋i}, because this is a nonlinear transformation.
4Obtained using MCMClogit in R, this is only approximate because of Monte Carlo error.
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shrinkage. With a standard Bayesian analysis, rather than use noninformative normal
priors with very large 𝜎, one could select a relatively small 𝜎 based on historical
information. For example, suppose past elections suggest that all (or nearly all) states
tend to have 𝜋i between about 0.25 and 0.75, for which logit(𝜋i) falls between −1.1
and +1.1. Then we could take the normal prior to have 𝜇 ± 3𝜎 equal to ±1.1, or
𝜎 ≈ 1.1∕3 = 0.37. This results in similar Bayesian estimates for {𝛽i} as obtained
with the empirical Bayesian and frequentist random-effects approaches.

10.4.4 Hierarchical Bayes Has Priors for Hyperparameters

A disadvantage of the empirical Bayesian approach is not accounting for the vari-
ability caused by substituting estimates for prior hyperparameters 𝝀. This method
uses y both to obtain the likelihood function and to estimate the prior distribution.
So posterior intervals tend to have actual coverage probabilities below the nominal
level. Supplementary methods, beyond our scope, can inflate the naive SE values
for parameter estimates and predicted values to account for estimating 𝝀 (Carlin and
Louis 2009, Section. 5.4).

An alternative approach quantifies the uncertainty about the hyperparameters 𝝀 by
using a hierarchical approach in which those hyperparameters have their own prior
distribution, h(𝝀). Integration with respect to that second-stage prior distribution then
yields the overall prior,

h(𝜽) =
∫𝝀

h(𝜽 ∣ 𝝀)h(𝝀)d𝝀,

which is used in the ordinary way for the Bayesian analysis. Using noninformative
distributions for the hyperparameters reduces the impact of the choice of prior distri-
bution. The analysis may then be more robust, with the subjectivity reduced because
posterior results are averaged over a family of prior distributions. When it is unclear
how to select a prior distribution in a Bayesian analysis, it is sensible to specify the
prior with a hierarchical structure, because the tail behavior of the prior has a large
impact on robustness and parameter shrinkage (Polson and Scott 2010).

To illustrate the hierarchical approach, we return to the Bayesian analysis in
Section 10.2.4 for the normal one-way layout. The observations from group i are
independent N(𝜇i, 𝜎

2), where {𝜇i} are, a priori, independent N(𝜆, 𝜏2), and 𝜎2 has an
inverse chi-squared prior distribution with hyperparameters 𝜈0 and 𝜎2

0 . The hierarchi-
cal approach assumes prior distributions for 𝜆 and 𝜏2. The usual ones are a N(𝜆0, 𝛾2

0 )
distribution for 𝜆 and an inverse chi-squared distribution for 𝜏2 with hyperparameters
𝜂0 and 𝜏2

0 . We could select 𝜆0, 𝜎2
0 , and 𝜏2

0 to reflect our prior beliefs about the mean
of the means, the variability of observations within groups, and the variability of the
means. To make the prior information relatively diffuse, we would choose a relatively
large value for 𝛾0 and relatively small values for 𝜈0 and 𝜂0, such as 1 each. Hoff (2009,
Section 8.3) described a Gibbs sampling scheme for approximating the joint posterior
distribution for ({𝜇i}, 𝜆, 𝜎2, 𝜏2), by iteratively sampling each parameter from its full
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conditional distribution, given the other parameters. As usual, the Bayesian estimate
of 𝜇i employs less shrinkage of ȳi as ni increases.

Another example is the logistic model logit[P(yij = 1)] = 𝛽i for the election poll
results in Section 10.4.3. There, we used an empirical Bayes approach for estimating
the hyperparameters in the N(𝜇, 𝜎2) prior distribution. With the hierarchical approach,
we use a diffuse inverse chi-squared prior distribution for 𝜎2. As Table 10.2 shows,
we obtain very similar posterior mean predictions with this approach, within the
limits of MCMC error.

-------------------------------------------------------------------------

> Election <- read.table("Election2.dat", header = TRUE)

y state # individual-level data file at www.stat.ufl.edu/~aa/glm

1 1 1

2 0 1

...

2000 0 51

> library(MCMCglmm)

> prior<-list(R=list(V=1, fix=1), G=list(G1=list(V=1, nu=0.002)))

# In G list, V and nu are sigmaˆ2 and nu_0 for inverse chi-squared

> fit.h <- MCMCglmm(fixed = y ~ 1, random = ~ state, family = "categorical",

+ prior=prior, data=Election, pr=TRUE, slice=TRUE, nitt=400000)

> fitted <- predict(fit.h, marginal=fit.h$random)

> fitted

[,1]

1 0.448

2 0.448

...

2000 0.494

-------------------------------------------------------------------------

CHAPTER NOTES

Section 10.1: The Bayesian Approach to Statistical Inference

10.1 Priors: Conjugate priors became popular following their introduction by Raiffa and
Schlaifer (1961), computational simplicity being crucial 50 years ago. Kass and
Wasserman (1996) reviewed the Jeffreys prior and rules for selecting priors that are
relatively noninformative. Much literature deals with defining classes of prior distri-
butions for objective Bayes analyses, such as Berger (2006) and Berger et al. (2013).
Ferguson (1973) introduced a class of Dirichlet process priors for a nonparametric
Bayesian approach. See Hjort et al. (2010) and Christensen et al. (2010, Chapter 13)
for recent advances.

10.2 MCMC: For introductory surveys of Bayesian computation, see Craiu and Rosenthal
(2014) and Davison (2003, Section 11.3). Gelfand and Smith (1990) and Casella
and George (1992) focused on Gibbs sampling. Hastings (1970) generalized the
Metropolis–Hastings algorithm for nonsymmetric proposal densities and justified the
appropriate convergence.

www.stat.ufl.edu/
www.stat.ufl.edu/
http://www.stat.ufl.edu/~aa/glm
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10.3 Exchangeability: Draper et al. (1993) discussed the role of exchangeability in data
analysis. Davison (2003, Chapter 11) provided an informative overview of this and
other key topics for Bayesian inference, such as the likelihood principle and contro-
versies over the choice of the prior.

10.4 Bayesian model checking: For Bayesian model checking and model selection, see
Carlin and Louis (2009, Chapter 4), Christensen et al. (2010, Section 8.3), Draper
(1995), Gelman et al. (2013, Chapter 6), Hoff (2009, Section 9.3), and Spiegelhalter
et al. (2002) and references therein. Kass and Raftery (1995) surveyed Bayes factors
and applications of their use. For comparing models, Spiegelhalter et al. (2002) pro-
posed a deviance information criterion (DIC), which adds double the effective number
of parameters to a mean posterior deviance for checking fit. See also Spiegelhalter
et al. (2014).

10.5 Experimental design: The Bayesian approach applies naturally to design issues.
Carlin and Louis (2009, Chapter 6) and Chaloner and Verdinelli (1995) presented
reviews, the latter focusing on issues of optimal design.

Section 10.2: Bayesian Linear Models

10.6 Modeling and variable selection: For Bayesian linear modeling, see Box and Tiao
(1973, Section 2.7, Chapters 5–7), Carlin and Louis (2009, Sections 2.4.1 and 4.1.1),
Gelman et al. (2013, Chapters 14 and 15), Hoff (2009, Chapter 9), Ntzoufras (2009,
Chapter 5), and O’Hagan and Forster (2004, Chapter 11). For variable selection, see
Brown et al. (1998), Carlin and Louis (2008, Chapter 4), George (2000), George
and McCulloch (1997), O’Hagan and Forster (2004, pp. 320–322), and Rǒcková and
George (2014).

Section 10.3: Bayesian Generalized Linear Models

10.7 Binary and multinomial GLMs: For Bayesian modeling of binary data, see Chris-
tensen et al. (2010, Chapter 8), Hosmer et al. (2013, Section 10.6), Gelman et al.
(2013, Chapter 16), Ntzoufras (2009, Sections 7.5 and 9.3), O’Hagan and Forster
(2004, Chapter 12), and Zellner and Rossi (1984). For Bayesian modeling of multino-
mial data including contingency tables, see Albert and Chib (1993), Congdon (2005,
Chapter 6), Leonard and Hsu (1994), and O’Hagan and Forster (2004, Chapter 12).
For ordinal models such as the cumulative logit, see Albert and Chib (1993) and Hoff
(2009, Chapter 12).

10.8 Count data GLMs: For Bayesian modeling of count data, see Cameron and Trivedi
(2013, Chapter 12), Christensen et al. (2010, Chapter 10), Gelman et al. (2013, Chapter
16), and Ntzoufras (2009, Sections 7.4, 8.3, and 9.3).

10.9 Multivariate GLMs: For extensions of normal linear models to multivariate
responses, see Box and Tiao (1973, Chapter 8), Brown et al. (1998), Christensen
et al. (2010, Chapter 10), and Hoff (2009, Chapters 7 and 11). For various GLMs
and multivariate generalizations of GLMs, see Dey et al. (2000) and Zeger and Karim
(1991). For Bayesian graphical models, see Madigan and York (1995).

Section 10.4: Empirical Bayes and Hierarchical Bayes Modeling

10.10 Empirical Bayes: For parametric empirical Bayes methodology, see Efron and Morris
(1975), Morris (1983b), and Carlin and Louis (2008, Chapter 5).
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10.11 Hierarchical Bayes: For the hierarchical Bayesian approach, see Carlin and Louis
(2008, Sections 2.4 and 4.1), Christensen et al. (2010, Section 4.12), Gelman et al.
(2013, Chapters 5, 15), Gelman and Hill (2006), Good (1965), Hoff (2009, Chapter 8),
and Lindley and Smith (1972).

EXERCISES

10.1 Suppose y1,… , yc are independent from a Poisson distribution with mean 𝜇.
Conditional on

∑
yi = n, are y1,… , yc exchangeable? Independent? Explain.

10.2 Independent observations y = (y1,… , yn) come from the N(𝜇, 𝜎2) distribu-
tion, with 𝜎2 known, and 𝜇 has a N(𝜆, 𝜏2) prior. Show that the posterior
predictive distribution for a future y∗ is normal with mean equal to the poste-
rior mean of 𝜇 and variance equal to the posterior variance plus 𝜎2. For large
n, show that this is approximately a N(ȳ, 𝜎2) distribution.

10.3 Find the posterior mean and variance for 𝜇 in the null model with a
N(𝜇, 𝜎2) response for unknown 𝜎2, using the improper-priors approach of
Section 10.2.5.

10.4 Suppose y1,… , yn are independent from a N(𝝁,𝚺) distribution, and 𝝁 has a
N(𝝁0,𝚺0) prior distribution. With 𝚺 known, derive the posterior distribution.
Explain how the posterior mean is a weighted average of the prior mean and
the sample mean and the posterior precision is the sum of the prior precision
and the data precision. Discuss their behavior as n increases.

10.5 For the Bayesian ordinary normal linear model, using a flat improper prior
for 𝜷 but a proper inverse-gamma distribution (10.5) for 𝜎2, find the posterior
Bayes estimate of 𝜎2 and express it as a weighted average of s2 and the prior
mean of 𝜎2.

10.6 Suppose we assume the Bayesian normal linear model for a one-way lay-
out, but the actual conditional distribution of y is highly skewed to the
right (e.g., y = annual income). For large {ni}, would you expect Bayesian
inference about {𝜇i} to be relatively robust? Would you expect Bayesian pre-
diction intervals based on the posterior predictive distribution to be robust?
Explain.

10.7 You regard m potential models, M1,… , Mm, to be (a priori) equally likely.
Use Bayes’ theorem to conduct Bayesian model averaging by finding an
expression for the posterior P(Mi ∣ y) in terms of the marginal {P(y ∣ Mj)}
for the models (integrating out the parameters). Extend the result to possibly
unequal prior probabilities {P(Mi)}.
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10.8 With a beta(𝛼1, 𝛼2) prior for the binomial parameter 𝜋 and sample proportion
y, if n is large relative to 𝛼1 + 𝛼2, show that the posterior distribution of 𝜋
has approximate mean y and approximate variance y(1 − y)∕n. Interpret.

10.9 With a beta prior for the binomial parameter 𝜋 having 𝜇 = 𝛼1∕(𝛼1 + 𝛼2)
and letting n∗ = 𝛼1 + 𝛼2, find E(�̃� − 𝜋)2 and express it as a weighted aver-
age of [𝜋(1 − 𝜋)]∕n and (𝜇 − 𝜋)2. Compare this with E(�̂� − 𝜋)2, for �̂� = y.
Evaluate when the Bayes estimator is better and when the ML estimator is
better.

10.10 A beta prior for the binomial parameter 𝜋 has 𝛼1 = 𝛼2 = 𝛼.

a. When y = 0, for what values of 𝛼 is the posterior density of 𝜋 monotone
decreasing and hence the HPD posterior interval of the form (0, U)? For
such 𝛼, report U as the quantile of a beta distribution.

b. Show that the improper case 𝛼 = 0 corresponds to an improper uniform
prior for log[𝜋∕(1 − 𝜋)]. With it, when y = 0 or 1, show that the posterior
distribution of 𝜋 is also improper.

c. Show that the uniform prior for 𝜋 corresponds to a logistic distribution
prior for the logit.

10.11 In Exercise 4.11 for the binomial probability 𝜋 of being a vegetarian, the
proportion y = 0 of n = 25 students were vegetarians.

a. Report the ML estimate. Find the 95% confidence interval based on
inverting the likelihood-ratio chi-squared test.

b. Using a uniform prior distribution for 𝜋, find the posterior mean, the
posterior 95% equal-tail interval, and the 95% HPD interval.

10.12 This exercise is based on an example in the keynote lecture by Carl Morris
(see www.youtube.com/watch?v=JOovvj_SKOg) at a symposium held in
his honor in October 2012. Before a Presidential election, polls are taken in
two states that are usually swing states. In State A, the proportion y1 = 0.590
of n1 = 100 sampled state a preference for the Democratic candidate. In State
B, the proportion y2 = 0.525 of n2 = 1000 sampled state a preference for the
Democratic candidate. Treat these as independent binomial samples with
population proportions 𝜋1 and 𝜋2. In which state is there greater evidence
supporting a Democratic victory (i.e., 𝜋i > 0.50)?

a. With a frequentist approach, show that the binomial P-values for testing
H0: 𝜋i = 0.50 against H1: 𝜋i > 0.50 are 0.044 for 𝜋1 and 0.061 for 𝜋2.

b. A Bayesian statistician interprets “swing state” to mean that 𝜋i is very
likely to be between 0.40 and 0.60 and nearly certain to be between 0.35
and 0.65. To recognize this, she uses a N(0, 𝜎2) prior for logit(𝜋i), with
𝜎 such that logit(0.35) and logit(0.65) are 3 standard deviations from the
prior mean of 0. Show that the posterior (mean, standard deviation) are
(0.183, 0.143) for logit(𝜋1) and (0.091, 0.060) for logit(𝜋2). Based on

http://www.youtube.com/watch?v=JOovvj_SKOg
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the posterior distributions, show that P(𝜋1 < 0.50 ∣ y1, n1) = 0.100 and
P(𝜋2 < 0.50 ∣ y2, n2) = 0.066. Explain why the Bayesian and frequentist
approaches give different answers to the question about which state has
greater evidence of victory. Summarize what causes this.

10.13 For a binomial distribution with beta prior, show that the marginal distribution
of s = ny is the beta-binomial. State its mean and variance.

10.14 For a binomial distribution with beta prior, show how to conduct Bayesian
estimation of {𝜋i} for c groups in the one-way layout.

10.15 In a diagnostic test for a disease, let D denote the event of having the
disease, and let + (−) denote a positive (negative) diagnosis by the test. Let
𝜋1 = P(+ ∣ D) (the sensitivity), 𝜋2 = P(+ ∣ Dc) (the false positive rate), and
𝜌 = P(D) (the prevalence). More relevant to a patient who has received a
positive diagnosis is P(D ∣ +), the positive predictive value.

a. Show that P(D ∣ +) = 𝜋1𝜌∕[𝜋1𝜌 + 𝜋2(1 − 𝜌)].

b. Suppose niyi ∼ bin(ni,𝜋i), i = 1, 2. When 𝜌 is known, explain how to
simulate in a simple manner to obtain a 95% posterior interval for
P(D ∣ +) based on independent uniform priors for 𝜋1 and 𝜋2. Illustrate
using n1 = n2 = 100, y1 = y2 = 0.95, and 𝜌 = 0.005. Explain the influ-
ence of 𝜌 on why P(D ∣ +) seems to be so small.

10.16 Consider independent binary observations from two groups with 𝜋i =
P(yi = 1) = 1 − P(yi = 0), and a binary predictor x. For the 2×2 contin-
gency table summarizing the two binomials, let logit(𝜋i) = 𝛽0 + 𝛽1xi, where
xi = 1 or xi = 0 according to a subject’s group classification. Also, express
logit(𝜋i) = 𝛽∗0 + 𝛽∗1 x∗i , where x∗i = 1 when xi = 0 and x∗i = 0 when xi = 1
(i.e., the classification when the group labels are reversed). Let 𝜃 = exp(𝛽1)
and 𝜃∗ = exp(𝛽∗1 ) denote the corresponding odds ratios. The ML estimates

satisfy 𝛽∗1 = −𝛽1 and �̂�∗ = 1∕�̂�. For a Bayesian solution, denote the means
of the posterior distributions of 𝛽1 and 𝛽∗1 by 𝛽1 and 𝛽∗1 and the means of the
posterior distributions of 𝜃 and 𝜃∗ by 𝜃 and 𝜃∗.

a. Explain why 𝛽∗1 = −𝛽1 but 𝜃∗ ≠ 1∕𝜃.

b. Let (L, U) denote the 95% HPD interval from the posterior distribution
of 𝜃. Explain why the 95% HPD interval from the posterior distribution
of 𝜃∗ is not (1∕U, 1∕L). Explain why such invariance does occur for the
equal-tail interval and for frequentist inference.

10.17 In the previous exercise, suppose �̂� = 0 and the HPD interval for 𝜃 is (0, U).
Is (1∕U,∞) the HPD interval or the equal-tail posterior interval for 𝜃∗?
Do you think it is a sensible interval? Explain, and give implications for
forming posterior intervals for parameters in logistic regression when there
is complete or quasi-complete separation.
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10.18 Re-do the analysis with prior 𝜎 = 1 for the example in Section 10.3.2, but
use (0, 1) coding for the indicator variable x1 instead of −0.5 and 0.5. Why
is the posterior mean for 𝛽1 so different?

10.19 For a Poisson random variable y with mean 𝜆, show that the Jeffreys prior
distribution for 𝜆 is improper. Using it, find the posterior distribution and
indicate whether it is improper.

10.20 For iid Poisson variates y1,… , yn with parameter 𝜆, suppose 𝜆 ∼ gamma(𝜇,
k) (Recall Section 4.7.2).

a. Show that the posterior distribution of 𝜆 is gamma (i.e., the prior is
conjugate), with posterior mean that is a weighted average of the sample
mean and the prior mean. Explain how the weights change as n increases.
When n is very large, show that the posterior distribution has approximate
mean ȳ and approximate variance ȳ∕n.

b. Find the posterior predictive distribution.

10.21 Show how the results in (a) in the previous exercise generalize to estimating
Poisson parameters for c groups in the one-way layout. For fixed gamma
hyperparameters, show that the estimate of 𝜇i for group i is a weighted
average of ȳi and the mean of the gamma prior distribution. When those
hyperparameters are estimated using the marginal negative binomial distri-
bution, show that empirical Bayes estimates shrink {ȳi} toward the overall ȳ.

10.22 Show how results in Section 10.1.3 generalize for n independent multinomial
trials and a Dirichlet prior for the multinomial probabilities. (Good (1965)
gave one of the first Bayesian analyses with this model, using empirical
Bayes and hierarchical approaches. See also Section 11.2.2.)

10.23 Two independent multinomial variates have ordered response categories.
Using independent Dirichlet priors, explain how to simulate to find the
posterior probability that those two distributions are stochastically ordered.
(Altham (1969) found an exact expression for this probability.)

10.24 Refer to the Presidential election data in Section 10.4.3.

a. Use a Bayesian approach to fit model (10.7), with independent N(0, 100)
priors for {𝛽i}. Find corresponding estimates of {𝜋i}, and evaluate their
performance by finding the MSE and comparing with the ordinary sample
proportions.

b. Use a Bayesian approach to fit model (10.7), taking the population per-
centage qi voting for Obama in the 2008 election (shown in the data file)
as prior information by using a N[logit(qi), 1] prior for 𝛽i in model (10.7).
Find corresponding estimates of {𝜋i}, and compare their MSE with the
values in (a).
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10.25 In the previous exercise, repeat (b), but using an empirical Bayes approach
for a N(logit(qi), 𝜎

2) prior distribution for 𝛽i.

10.26 Conduct Bayesian analogs of the frequentist modeling for the FEV clinical
trial data from Exercise 3.31. Compare Bayesian and frequentist results.

10.27 Conduct Bayesian modeling for the smoking prevention data of Section 9.2.3.
Compare results to the frequentist results presented there.

10.28 Refer to Exercise 5.34 on horseshoe crabs. Repeat this exercise using
Bayesian methods.

10.29 For the endometrial cancer example in Section 10.3.2, fit the logistic model
using a hierarchical Bayesian approach with a diffuse inverse chi-squared
distribution for the 𝜎2 hyperparameter. Interpret results.
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Extensions of Generalized
Linear Models

This final chapter introduces alternatives to maximum likelihood (ML) and Bayes for
fitting linear and generalized linear models (GLMs). We also present an extension
of the GLM that permits an additive predictor in place of the linear predictor. A
complete exposition of these topics is beyond the scope of this book. We aim here
merely to present a brief overview and give you references for further study.

Section 11.1 presents alternative ways to estimate model parameters. For the
linear model, M-estimation methods minimize a function of the residuals, the sum of
squared residuals being one special case. Some such estimates are more robust than
least squares, because they are less affected by severe outliers or by contamination of
the data. Regularization methods modify ML to give sensible answers in situations
that are unstable because of causes such as collinearity. For the GLM, the penalized
likelihood regularization method modifies the log-likelihood function by adding a
penalty term, resulting in estimates that tend to have smaller variance than ML
estimators.

Regularization methods are especially useful when the number p of model param-
eters is very large. Such datasets are common in genomics, biomedical imaging,
functional magnetic resonance imaging, tomography, signal processing, image anal-
ysis, market basket data, and portfolio allocation in finance. Sometimes p is even
larger than n. Section 11.2 discusses the fitting of GLMs with high-dimensional data,
focusing on identifying the usually small subset of the explanatory variables that are
truly relevant for modeling E(y).

Another extension of the ordinary GLM replaces the linear predictor by smooth
functions of the explanatory variables. Section 11.3 introduces generalizations of the
GLM that do this, such as the generalized additive model, or that have structure other
than modeling the mean response with a linear predictor, such as quantile regression

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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for modeling quantiles of the response distribution and nonlinear regression when
the response mean is a nonlinear function of parameters.

11.1 ROBUST REGRESSION AND REGULARIZATION METHODS
FOR FITTING MODELS

For an ordinary linear model with residuals {ei = yi − �̂�i}, the least squares method
minimizes

∑
i e2

i . The model fit can be severely affected by observations that have both
large leverage and a large residual (recall Section 2.5.5). So that such observations
have less influence, we could instead minimize a function that gives less weight to
large residuals.

11.1.1 M-Estimation for Robust Regression

An alternative function to minimize is
∑

i 𝜌(ei) for an objective function 𝜌(ei) that is
symmetric with a minimum at 0 but with possibly less than a quadratic increase. This
approach is called M-estimation. Like least squares, it does not require assuming a
distribution for y.

In M-estimation, the estimates �̂� of the parameters 𝜷 in the linear predictor are
the solutions to the equations

𝜕

𝜕𝛽j

[
n∑

i=1

𝜌(ei)

]
=

n∑
i=1

𝜕𝜌(ei)

𝜕ei

𝜕ei

𝜕𝛽j

= 0, j = 1,… , p.

For the linear model, 𝜕ei∕𝜕𝛽j = −xij. The function 𝜓(e) = 𝜕𝜌(e)∕𝜕e is called the
influence function, because it describes the influence of an observation’s residual on
�̂�. For least squares, the influence increases linearly with the size of the residual. A
more robust solution chooses 𝜌(e) so that 𝜓(e) is a bounded function.

Let 𝝆(𝜷) represent 𝜌 expressed in terms of the population residuals {𝜖i = yi − xi𝜷}
as [𝜌(y1 − x1𝜷),… , 𝜌(yn − xn𝜷)]T and satisfying E[𝜕𝝆(𝜷)∕𝜕𝜷] = 0. Choosing 𝜌(⋅) to
be strictly convex ensures that a unique estimate exists. A natural choice is the
absolute value metric, 𝜌(ei) = |ei|. For the null model, this produces the sample
median as the estimate of location. But 𝜌(ei) is not then strictly convex, the solution
may be indeterminate, and the estimator loses considerable efficiency relative to least
squares when the normal linear model is adequate. An alternative is 𝜌(e) = |e|p for
some 1 < p < 2, although then the influence function is not bounded.

A compromise approach, suggested by Peter Huber in the early literature on M-
estimation, takes 𝜌(e) = |e|2 for small |e| and takes 𝜌(e) to be a linear function of|e| beyond that point. A popular implementation takes 𝜌(e) quadratic for |e| ≤ k�̂�,
where k ≈ 1.5 (proposed by Huber) and �̂� is a robust estimate of

√
var(𝜖), such as the

median absolute residual for the least squares fit divided by 0.67. Smaller values for
k protect against a higher proportion of outlying observations, but at a greater loss of
efficiency when the normal linear model truly holds. The value k = 1.345 provides
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95% efficiency under the normal linear model. Other proposals for robust fitting
include one by John Tukey for which the influence function is 0 at large absolute
values. This completely removes the influence of large outliers.

For a weight function defined by w(e) = 𝜓(e)∕e, the estimating equations for the
M-estimates �̂� are

n∑
i=1

w(ei)eixij = 0, j = 1,… , p.

Finding the solution requires iterative methods, with initial values such as the least
squares estimates. At stage t of the iterative process, the estimating equations cor-
respond to those for the iteratively reweighted least squares solution for minimizing∑

i w(e(t)
i )e2

i . That is, for a model matrix X and with W(t) a diagonal matrix having

elements {w(e(t)
i )}, their solution is

�̂�
(t) =

[
XTW(t)X

]−1
XTW(t)y.

The asymptotic covariance matrix of the limit �̂� of this iterative process is

var(�̂�) =
(
XTX

)−1 E[𝜓(𝜖)]2

{E[𝜓 ′(𝜖)]}2
.

Substituting the sample analogs {
∑

i[𝜓(ei)]
2}∕n for E[𝜓(𝜖)]2 and [

∑
i 𝜓

′(ei)]∕n for
E[𝜓 ′(𝜖)] yields an estimated covariance matrix. Fitting is available in software1.

11.1.2 Penalized-Likelihood Methods

In fitting GLMs, regularization methods modify ML to give sensible answers in
unstable situations. A popular way to do this adds a term to the log-likelihood
function such that the solution of the modified likelihood equations smooths the
ordinary estimates. For a model with log-likelihood function L(𝜷), we maximize

L∗(𝜷) = L(𝜷) − s(𝜷),

where s(⋅) is a function such that s(𝜷) decreases as elements of 𝜷 are smoother in
some sense, such as uniformly closer to 0. This smoothing method, referred to as
penalized likelihood, shrinks the ML estimate toward 0. Among its positive features
are a reduction in prediction error and existence when the ML estimate is infinite or
badly affected by collinearity.

1For example, the rlm (robust linear modeling) function in the R MASS package
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A variety of penalized-likelihood methods use the Lq-norm smoothing function

s(𝜷) = 𝜆

p∑
j=1

|𝛽j|q
for some q ≥ 0 and 𝜆 ≥ 0. The explanatory variables should be standardized, as they
are treated the same way in the smoothing function, and the degree of smoothing
should not depend on the choice of scaling. The response variable should also be
standardized, or the intercept should be removed from the smoothing term, because
there is no reason to shrink a parameter whose estimate (for the ordinary linear model)
is merely the overall sample mean response. The constant 𝜆 is called a smoothing
parameter, because the degree of smoothing depends on it. The choice of 𝜆 reflects
the bias–variance tradeoff discussed in Section 4.6.2. Increasing 𝜆 results in greater
shrinkage toward 0 in {𝛽j} and smaller variance but greater bias.

How well a smoothing method works depends on 𝜆. This is usually chosen by
cross-validation. For each 𝜆 value in a chosen grid, we fit the model to part of the
data and then check the goodness of the predictions for y in the remaining data.
With k-fold cross-validation, we do this k times (for k typically about 10), each time
leaving out the fraction 1∕k of the data and predicting those y values using the model
fit from the rest of the data. The selected value of 𝜆 is the one having the lowest
sample mean prediction error for the k runs, for a measure of prediction error such as
squared difference between observed and predicted y. We then apply that value with
the penalized-likelihood method for all the data.

At each 𝜆, the sample mean prediction error is a random variable. An alternative
choice for 𝜆 uses a one standard error rule, in which the chosen 𝜆 has mean prediction
error that is one standard error above the minimum, in the direction of greater
regularization. Such a choice may be less likely to overfit the model.

Penalized-likelihood estimators have Bayesian connections. With prior pdf pro-
portional to exp[−s(𝜷)], the Bayesian posterior pdf is proportional to the penalized-
likelihood function. The mode of the posterior distribution then equals the penalized-
likelihood estimate.

11.1.3 L2-Norm Penalty: Ridge Regression

Regularization methods that penalize by a quadratic term, such as s(𝜷) = 𝜆
∑

j 𝛽
2
j ,

are called L2-norm penalty methods. For normal linear models, the best known such
method is ridge regression, which finds the value of 𝜷 that minimizes

n∑
i=1

(
yi −

p∑
j=1

𝛽jxij

)2

+ 𝜆
p∑

j=1

𝛽2
j .

Equivalently, this solution minimizes ‖y − X𝜷‖2 subject to
∑

j 𝛽
2
j ≤ 𝜆∗, where a 1–1

inverse correspondence holds between 𝜆 and 𝜆∗. The solution for the ridge regression
estimate is

�̃� =
(
XTX + 𝜆I

)−1
XTy,
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which adds a “ridge” to the main diagonal of XTX before inverting it. This modifica-
tion is helpful when the model matrix is ill-conditioned, such as under collinearity.
Adding the ridge makes the matrix invertible, even if X does not have full rank. Since
�̃� is a linear function of y, for the ordinary linear model

var(�̃�) = 𝜎2 (XTX + 𝜆I
)−1

XTX
(
XTX + 𝜆I

)−1
.

The least squares estimate is the limit of �̃� as 𝜆 → 0. As 𝜆 increases, the effect is to
shrink the least squares estimate toward 0. For example, when explanatory variables
are linearly transformed so that X is orthonormal (i.e., XTX = I), we see that �̃� relates
to the least squares estimate �̂� by �̃� = �̂�∕(1 + 𝜆). The ridge regression estimate �̃�
has the form of the Bayesian posterior mean for the normal linear model presented
in Section 10.2.2, when the prior mean for 𝜷 is 0 and 𝜆 here is identified with 𝜎2∕𝜏2

in that Bayesian formulation.

11.1.4 L1-Norm Penalty: The Lasso

Fitting using the L1-norm penalty, for which s(𝜷) = 𝜆
∑

j |𝛽j|, is referred to as the lasso
(“least absolute shrinkage and selection operator”) method (Tibshirani 1996). Equiva-
lently, it maximizes the likelihood function subject to the constraint that

∑
j |𝛽j| ≤ 𝜆∗

for a constant 𝜆∗ inversely related to 𝜆. The larger the value of 𝜆, the greater the
shrinkage of estimates toward 0. The shrinkage is by a fixed amount, rather than by
a fixed proportion as in ridge regression. For 𝜆 sufficiently large, this method shrinks
some 𝛽j completely to zero. In constraining

∑
j |𝛽j| ≤ 𝜆∗, the region of acceptable

{𝛽j} is a region around the origin that is square when p = 2. It intersects the contours
of the log likelihood, which are elliptical for normal linear models and approximately
so for large n with other GLMs, at axes rather than at the interior in which all 𝛽j ≠ 0.
Figure 11.1 illustrates. It is informative to plot the penalized estimates as a function

β̂

(a)

β̂

(b)

Figure 11.1 Elliptical (or near-elliptical) contours of a GLM log-likelihood function and
square contour of the constraint function for the lasso and circular contour of the constraint
function for ridge regression. The lasso estimates occur where an ellipse touches the square
constraint, often resulting in some 𝛽j = 0. Source: Hastie et al. (2009, p. 71, Figure 3.11), with
kind permission from Springer Science+Business Media B.V.
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of the permitted value 𝜆∗ for
∑

j |𝛽j|, to summarize how explanatory variables drop
out as 𝜆∗ decreases.

Why can shrinking {𝛽j} toward 0 be effective? In many settings having a large
number of explanatory variables, most of them have no effects or very minor effects.
An example is genetic association studies, which simultaneously consider each of
possibly thousands of genes for the association between the genetic expression levels
and the response of interest, such as whether a person has a particular disease. Unless
n is extremely large, because of sampling variability the ordinary ML estimates {𝛽j}
tend to be much larger in absolute value than the true values {𝛽j}. This tendency
is exacerbated when we keep only statistically significant variables in a model.
Shrinkage toward 0 tends to move {𝛽j} closer to {𝛽j}. This is yet another example of
the bias–variance tradeoff. Introducing a penalty function results in biased estimates
but benefits from reducing the variance.

Penalizing by absolute-value terms makes model fitting more difficult than ridge
regression. The estimate of 𝜷 is not linear in y, and we need an optimization method
to find it. One approach uses the LARS method, to be introduced in Section 11.2.1. A
faster method uses coordinate descent, optimizing each parameter separately while
holding all the others fixed, and cycling until the estimates stabilize. In a particular
cycle t, for explanatory variable xj, one regresses the residuals {yi −

∑
k≠j 𝛽

(t)
k xik} on

(x1j,… , xnj) to obtain a value which, when reduced in absolute value by an amount

dependent on 𝜆, yields the next approximation for 𝛽j. In practice, this is done for a
grid of 𝜆 values.

Likewise, finding an estimated covariance matrix for lasso estimators is challeng-
ing, especially for the parameters having lasso estimates of 0. Tibshirani (1996) noted
that the lasso estimate corresponds to a Bayesian posterior mode for the normal linear
model when the independent prior distribution for each 𝛽j is a double-exponential
(Laplace) distribution, which has pdf

g(𝜷 ∣ 𝜎2) =
p∏

j=1

𝜆

2
√
𝜎2

e−𝜆|𝛽j|∕√𝜎2
.

Each component of this prior distribution has a sharp peak at 𝛽j = 0. Park and Casella
(2007) and Hans (2009) used this result as a mechanism for point and interval
estimation of {𝛽j}.

11.1.5 Comparing Penalized Methods, and Generalizations

Ridge regression, the lasso, and other regularization methods are available in soft-
ware2. A disadvantage of ridge regression is that it requires a separate strategy for
finding a parsimonious model, because all explanatory variables remain in the model.
By contrast, with the lasso, when 𝜆 is large, some 𝛽j shrink to zero, which can help

2In R, the glmnet and ridge packages and the lm.ridge function in the MASS package provide ridge
regression, and the glmnet and lars packages provide lasso fits.
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with model selection. For a factor predictor, the ordinary lasso solution may select
individual indicators rather than entire factors, and the solution may depend on the
coding scheme, so an alternative grouped lasso should be used. A disadvantage of
the lasso is that {𝛽j} are not asymptotically normal and can be highly biased, making
inference difficult. Another disadvantage is that the lasso may overly penalize 𝛽j that
are truly large. Which of ridge regression and the lasso performs better in terms of
bias and variance for estimating the true {𝛽j} depends on their values. When p is
large but only a few {𝛽j} are practically different from 0, the lasso tends to perform
better, because many {𝛽j} may equal 0. When {𝛽j} do not vary dramatically in
substantive size, ridge regression tends to perform better.

L0-norm penalty regularization takes s(𝜷) to be proportional to the number of
nonzero 𝛽j. This approach has the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) as special cases. This sounds ideal, but opti-
mization for this criterion is impractical with large numbers of variables; for example,
the function minimized may not be convex. A compromise method, SCAD (smoothly
clipped absolute deviation), starts at the origin 𝜷 = 0 like an L1 penalty and then
gradually levels off (Fan and Lv 2010). An alternative elastic net uses a penalty
function that has both L1 and L2 terms (Zou and Hastie 2005). It has both ridge
regression and the lasso as special cases. Zou (2006) proposed an adaptive lasso that
can be better for satisfying an oracle property, by which asymptotically the method
recovers the correct model and has estimators converging to the parameter values at
the optimal rate. It uses an adaptive weighted penalty

∑
j wj|𝛽j| where wj = 1∕|𝛽j|𝛾

for a consistent estimator 𝛽j such as from least squares, and 𝛾 > 0. This has the effect
of reducing the penalty when an effect seems to be large.

11.1.6 Example: House Selling Prices Revisited

In Section 4.7.1 we modeled y = the selling price of a house (in thousands of
dollars), using as explanatory variables the size of the house, the property tax bill,
whether the home is new, the number of bedrooms, and the number of bathrooms. We
now illustrate methods of this section by comparing the least squares fit with other
methods, for the simple linear model having all the main effects but no interactions.
Adjusted for the other variables, the least squares fit shows strong evidence that the
mean selling price increases as the house size increases, as the tax bill increases, and
for new houses.

-----------------------------------------------------------------------

> attach(Houses) # File Houses.dat at www.stat.ufl.edu/~aa/glm/data

> summary(lm(price ~ size + taxes + new + beds + baths))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5258 24.4741 0.185 0.8537

size 0.0683 0.0139 4.904 3.92e-06

taxes 0.0381 0.0068 5.596 2.16e-07

new 41.7114 16.8872 2.470 0.0153

beds -11.2591 9.1150 -1.235 0.2198

baths -2.1144 11.4651 -0.184 0.8541

-----------------------------------------------------------------------

http://www.stat.ufl.edu/~aa/glm/data
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For a robust M-estimation fit, we use the Huber influence function mentioned in
Section 11.1.1 with k = 1.345 and a robust standard deviation estimate. Summaries
of effects are similar to least squares, a notable exception being the effect of new.
The least squares estimated difference of $41,711 between the mean selling prices of
new and older homes, adjusting for the other variables, decreases to $27,861.

-----------------------------------------------------------------------

> library(MASS)

> summary(rlm(price ~ size + taxes + new + beds + baths, psi=psi.huber))

Coefficients: # robust (Huber) fit of linear model

Value Std. Error t value

(Intercept) 11.6233 19.1847 0.6059

size 0.0705 0.0109 6.4533

taxes 0.0341 0.0053 6.3838

new 27.8610 13.2375 2.1047

beds -16.4034 7.1451 -2.2958

baths 3.9534 8.9873 0.4399

-----------------------------------------------------------------------

An alternative parametric check fits the model assuming a gamma distribution for
y, which naturally accounts for larger variability in selling prices when the mean is
larger. The estimated effect of a new home is also then considerably weaker. The
change in the new effect for these two fits, relative to least squares, is mainly caused
by observation 64 in the data file. This observation, which had a relatively low selling
price for a very large house that was not new, was an outlier and influential for least
squares but not unusual for the gamma model.

-----------------------------------------------------------------------

> summary(glm(price ~ size + taxes + new + beds + baths,

+ family = Gamma(link=identity)))

Coefficients: # fit of gamma GLM with identity link

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.1859 13.7759 1.393 0.1670

size 0.0617 0.0125 4.929 3.5e-06

taxes 0.0378 0.0051 7.475 4.0e-11

new 22.6704 19.3552 1.171 0.2444

beds -19.2618 6.3273 -3.044 0.0030

baths 9.5825 6.4775 1.479 0.1424

-----------------------------------------------------------------------

When we implemented the lasso in R with glmnet, which operates on the stan-
dardized variables, the smoothing parameter value 𝜆 = 8.3 gave the minimum value
of cross-validated mean squared error. This fit is not much different from the robust
fit but removes beds and baths, the two predictors that were not significant in the least
squares fit. For contrast, we show the coefficients obtained with the much larger value
of 𝜆 = 23.1 suggested by the one standard error rule. That fit also removes new and
has diminished effects of size and taxes. The first panel of Figure 11.2 shows how the
lasso estimates change as 𝜆 increases (on the log scale). The new estimate decreases
from the least squares value of 41.7, becoming 0 when log(𝜆) ≥ log(21.0) = 3.0. For
the scaling used, the size and taxes estimates (which are nonzero for much larger 𝜆
values) are too small to appear in the figure. To show this more clearly, the second
panel of Figure 11.2 shows the estimates for the standardized variables, for which
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Figure 11.2 Plot of lasso estimates for house selling price data, as function of smoothing
parameter log(𝜆). In the first panel, the least squares estimate of 41.7 for new decreases to 0 at
log(𝜆) = 3.0. The second panel shows estimates for the standardized variables, from which it
is clearer that size and taxes remain in the model the longest as 𝜆 increases. In that panel, the
least squares estimates for (size, taxes, new, beds, baths) are (0.45, 0.47, 0.13, −0.07, −0.01),
the values of the five curves at the left axis, where 𝜆 is essentially 0.

the least-squares estimated effects for (size, taxes, new, beds, baths) are (0.45, 0.47,
0.13, −0.07, −0.01).

-----------------------------------------------------------------------

> library(glmnet)

> x <- cbind(size, taxes, new, beds, baths)

> set.seed(1010) # random seed for cross-validation

> cv.glmnet(x,price,alpha=1) # alpha=1 specifies lasso for cross-valid.

$lambda.min # best lambda by 10-fold cross-validation

[1] 8.2883

$lambda.1se # lambda suggested by one standard error rule

[1] 23.06271

> coef(glmnet(x,price, alpha=1, lambda=8.2883))

(Intercept) -5.9947

size 0.0568

taxes 0.0344

new 28.0744

beds .

baths .

> coef(glmnet(x,price, alpha=1, lambda=23.0627))

(Intercept) 22.1646

size 0.0475

taxes 0.0293

new .

beds .

baths .

> fit.lasso <- glmnet(x, price, alpha=1)

> plot(fit.lasso, "lambda")

-----------------------------------------------------------------------
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For ridge regression, cross-validation suggested using𝜆 = 17.9. With it, results are not
much different from least squares. The fit slightly shrinks the least squares estimates,
except for the new effect. For 𝜆 = 95.3 from the one standard error rule, the effects
of beds and baths change sign from their least squares values. Keep in mind that
for ridge regression and the lasso, results depend greatly on the chosen smoothing
parameter 𝜆, and the value chosen for 𝜆 in cross-validation will vary considerably
according to the seed. One could also report the estimates and standard errors for the
standardized variables.

-----------------------------------------------------------------------

> cv.glmnet(x,price,alpha=0) # alpha=0 specifies ridge regression

$lambda.min $lambda.1se

[1] 17.85662 [1] 95.2954

> coef(glmnet(x, price, alpha=0, lambda=95.2954))

(Intercept) -4.4871

size 0.0377

taxes 0.0216

new 41.6077

beds 6.4325

baths 16.9838

-----------------------------------------------------------------------

11.1.7 Penalized Likelihood for Logistic Regression

Penalizing a log-likelihood function need not necessarily result in increased bias. One
version actually reduces bias of ML estimators. For most models, the ML estimator
�̂� has bias on the order of 1∕n. Firth (1993) penalized the log likelihood in a way
that introduces a small bias into the score function but reduces the bias of �̂� to order
1∕n2. For the canonical parameter of an exponential family model, Firth’s penalized
log-likelihood function uses the determinant of the information matrix  ,

L∗(𝜷) = L(𝜷) + 1
2
log | |.

The penalized likelihood is proportional to the Bayesian posterior distribution result-
ing from using the Jeffreys prior distribution. Thus, this penalized ML estimator
equals the mode of the posterior distribution induced by the Jeffreys prior.

For logistic regression, Firth noted that the ML estimator is biased away from 0,
and the bias correction shrinks the estimator toward 0. When the model matrix is of
full rank, log | | is strictly concave. Maximizing the penalized log likelihood yields
a maximum penalized-likelihood estimate that always exists and is unique. For the
null logistic model and a proportion y of successes in n independent Bernoulli trials,
it yields as estimate the empirical logit, log[(ny + 1

2
)∕(n − ny + 1

2
)]. This corresponds

to adding 1
2

to the success and failure counts. Firth’s method is especially appealing
for the analysis of data that exhibit complete or quasi-complete separation, because
then at least one ordinary ML estimate is infinite or does not exist (Section 5.4.2).
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11.1.8 Example: Risk Factors for Endometrial Cancer Revisited

Sections 5.7.1 and 10.3.2 described a study about endometrial cancer that analyzed
y = histology of 79 cases (0 = low grade, 1 = high grade), with the explanatory
variables x1 = neovasculation (1 = present, 0 = absent), x2 = pulsatility index of
arteria uterina, and x3 = endometrium height. For the main-effects model

logit[P(yi = 1)] = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3,

all 13 patients having xi1 = 1 had yi = 1. So quasi-complete separation occurs, and
the ML estimate 𝛽1 = ∞.

-----------------------------------------------------------------------

> Endometrial # File Endometrial.dat at www.stat.ufl.edu/~aa/glm/data

NV PI EH HG

1 0 13 1.64 0

2 0 16 2.26 0

...

79 0 33 0.85 1

> attach(Endometrial)

> PI2 <- (PI-mean(PI))/sd(PI); EH2 <- (EH-mean(EH))/sd(EH); NV2 <- NV-0.5

> fit.ML <- glm(HG ~ NV2 + PI2 + EH2, family=binomial)

> summary(fit.ML) # ML estimate of NV effect is actually infinite

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.8411 857.8755 0.009 0.9927

NV 18.1856 1715.7509 0.011 0.9915

PI2 -0.4217 0.4432 -0.952 0.3413

EH2 -1.9219 0.5599 -3.433 0.0006

-----------------------------------------------------------------------

Table 10.1 showed Bayes estimates, which with standardized x2 and x3 shrink
𝛽1 to 9.1 for quite diffuse normal priors (𝜎 = 10) and to 1.65 for very informative
priors (𝜎 = 1). The maximum penalized-likelihood estimate for 𝛽1 of 2.93 and the
95% profile penalized-likelihood confidence interval of (0.61, 7.85) shrink the ML
estimate 𝛽1 and the ordinary profile likelihood interval of (1.28, ∞) considerably
toward 0. Results for the other estimates do not change as much.

-----------------------------------------------------------------------

> library(logistf)

> fit.penalized <- logistf(HG ~ NV2 + PI2 + EH2, family=binomial)

> summary(fit.penalized)

Confidence intervals and p-values by Profile Likelihood

coef se(coef) lower 0.95 upper 0.95 Chisq p

(Intercept) 0.3080 0.8006 -0.9755 2.7888 0.169 6.810e-01

NV2 2.9293 1.5508 0.6097 7.8546 6.798 9.124e-03

PI2 -0.3474 0.3957 -1.2443 0.4045 0.747 3.875e-01

EH2 -1.7243 0.5138 -2.8903 -0.8162 17.759 2.507e-05

-----------------------------------------------------------------------

http://www.stat.ufl.edu/~aa/glm/data
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11.2 MODELING WITH LARGE P

High-dimensional data are not well handled by the traditional model-fitting methods
presented in this book. In genomics, such applications include classifying tumors by
using microarray gene expression or proteomics data or associating protein concen-
trations with expression of genes or predicting a clinical prognosis by using gene
expression data. Generalized linear modeling by ML can be overwhelmed when
it needs to detect effects for such applications as differential expression (change
between two or more conditions) in many thousands of genes or brain activity in
many thousands of locations. We now discuss issues in fitting linear models and
GLMs to high-dimensional data in which p is very large, sometimes even with p > n.
Certain issues are vital yet difficult, such as how to select explanatory variables from
an enormous set when nearly all of them are expected to have no effect or a very
small effect.

11.2.1 Issues in Variable Selection and Dimension Reduction

In modeling with a very large number of explanatory variables, removing variables
that have little if any relevance can ease interpretability and decrease prediction
errors. For example, in disease classification, very few of a large number of genes
may be associated with the disease. This is reflected by histograms of P-values for
testing those effects, which often have appearance similar to the uniform density
function that theoretically occurs when the null hypothesis is true. With large p and
huge n, ordinary ML fitting may not even be possible and alternative methods may be
needed (Toulis and Airoldi 2014). For a binary response, complete or quasi-complete
separation often occurs when the number of predictors exceeds a particular point,
resulting in some infinite estimates. Even when finite estimates exist, they may be
imprecise because of ill-conditioning of the covariance matrix. Moreover, choosing
a model that contains a large number of predictors runs the risk of overfitting the
data. Future predictions will then tend to be poorer than those obtained with a more
parsimonious model.

As in ordinary model selection using ML, variable selection algorithms such as
forward selection and backward elimination have pitfalls, especially when p is large.
For example, for the set of predictors having no true effect, the maximum sample cor-
relation with the response can be quite large. Also, there can be spurious collinearity
among the predictors or spurious correlation between an important predictor and a set
of unimportant predictors, because of the high dimensionality3. Other criteria exist
for identifying an optimal subset of explanatory variables, such as minimizing predic-
tion error or (with AIC) considering models with nearly minimum Kullback–Leibler
divergence of the fitted values from true conditional means. With large p, though, it
is not feasible to check a high percentage of the possible subsets of predictors, and
the danger remains of identifying an effect as important that is actually spurious.

3Figure 1 in Fan and Lv (2010) illustrates these issues.
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Ordinary variable selection methods such as stepwise procedures are highly dis-
crete: Any particular variable either is or is not selected. Penalized likelihood is more
continuous in nature, with some variables perhaps receiving little influence in the
resulting prediction equation but not being completely eliminated. Besides providing
shrinkage of parameter estimates, some of those methods (Lq-norm with 0 ≤ q ≤ 1)
also help with variable selection. With the lasso (q = 1), many explanatory variables
receive zero weight in the prediction equation, the number included depending on
the smoothing parameter. A variable can be eliminated, but in a more objective way
that does not depend on which variables were previously eliminated.

The variable selection methods for large p fall roughly into two types. One
approach adapts dimension-reduction methods, such as stepwise methods and penal-
ized likelihood and regularization using Lq-norm penalties for some q between 0
and 2 and compromise norms. A second approach attempts to identify the relevant
effects using standard significance tests but with an adjustment for multiplicity. A
fundamental assumption needed for methods to perform well with large p is sparse
structure, with relatively few elements in 𝜷 being nonzero (Bühlmann et al. 2014).

The first type of variable selection method includes stepwise methods that use
regularization procedures. The LARS (least-angle regression) procedure (Efron et al.
2004) for linear models is an adaptation of a forward selection method. Like forward
selection, it first adds the predictor having greatest absolute correlation with y, say
xj. This is the variable with the smallest angle between it and the response variable,
found for the vectors connecting the origin to the points y and xj in ℝn. The LARS
algorithm proceeds from the origin in the xj direction as long as the angle between
the point on that line and the residual between y and that point is smaller than the
angle between other predictors and the residual. When some other predictor, say xk,
has as much correlation with the current residual, instead of continuing along the
xj direction, LARS then proceeds in a direction equiangular between xj and xk. The
algorithm continues in this direction until a third variable x𝓁 earns its way into the
“most correlated” set. LARS then proceeds equiangularly between xj, xk, and x𝓁 (i.e,
along the “least angle direction”) until a fourth variable enters, and so on. It smoothly
blends in new variables rather than adding them discontinuously.

Advantages of the LARS method are that it is computationally fast and the lasso
can be generated in a modified special case. In the published discussion for the
Efron et al. article, D. Madigan and G. Ridgeway suggested an extension for logistic
regression, and S. Weisberg suggested caution, arguing that any automatic method
relying on correlations has potential pitfalls, especially under collinearity. In the
rejoinder, the authors discussed possible stopping rules for the algorithm.

An alternative approach that explicitly performs dimension reduction is principal
component analysis. This method4 replaces the p predictors by fewer linear combina-
tions of them (the “principal components”) that are uncorrelated. The first principal
component is the linear combination (using a unit vector) that has the largest pos-
sible variance. Each succeeding component has the largest possible variance under
the constraint that it is orthogonal to the preceding components. A small number of

4Proposed by K. Pearson in 1901 and developed by H. Hotelling in 1933.
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principal components often explains a high percentage of the original variability. The
components depend on the scaling of the original variables, so when they measure
inherently different characteristics they are standardized before beginning the pro-
cess. Disadvantages, especially with large p, are that it may be difficult to interpret
the principal components, and the data may be overfitted, with the derived principal
components not explaining variability in another dataset nearly as well. For details,
see references in Note 11.3.

The second type of approach searches for effects while adjusting for the number
of inferences conducted. This can reduce dramatically the data dimensionality by
eliminating the many predictors not having strong evidence of an effect. An approach
such as using the false discovery rate (FDR) introduced in Section 3.5.3 is espe-
cially useful in applications in which a very small proportion of the effects truly
are of substantive size. Because of its lessened conservatism and improved power
compared with family-wise inference methods such as the Bonferroni, controlling
FDR is a sensible strategy to employ in exploratory research involving large-scale
testing. A place remains for traditional family-wise inference methods in follow-up
validation studies involving the smaller numbers of effects found to be significant in
the exploratory studies. Dudoit et al. (2003) surveyed these issues in the context of
microarray experiments.

11.2.2 Effect of Large p on Bayesian Methods

Dealing with large p is also challenging for Bayesian inference, perhaps even more
so than for frequentist inference. The impact of forming prior distributions for a very
large number of parameters may differ from what you intuitively expect. For example,
even if you pick a very diffuse prior, the effect may depend strongly on which diffuse
prior you choose.

To illustrate, suppose the response distribution is multinomial with p outcome
categories and p is very large relative to n, as in a study of the frequency of use
of the p words in a language by an author writing in that language. In a particular
document, we might observe how many times each word occurs for the n words. Most
words would have a count of 0. As in Section 6.1.1, let yi = (yi1,… , yip) represent
the multinomial trial for observation i, i = 1,… , n, where yij = 1 when the response
is in category j and yij = 0 otherwise, so

∑
j yij = 1. Let 𝜋ij = P(yij = 1), and let

nj =
∑

i yij denote the total number of observations in category j. Here, for simplicity,
we discuss large-p challenges5 without any reference to explanatory variables, so
we will suppress the i subscript and replace 𝜋ij by 𝜋j. In practice, similar issues
arise when the number of multinomial categories is of any size but the number of
explanatory variables is large.

The beta distribution that serves as a conjugate prior distribution for a bino-
mial parameter extends to the Dirichlet distribution for multinomial parameters.
With hyperparameters {𝛼j}, the Dirichlet prior density function is proportional to∏p

j=1 𝜋
𝛼j−1

j . The posterior density is then also Dirichlet, with parameters {nj + 𝛼j}.

5Of course, here the actual number of parameters is p − 1.
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The posterior mean of 𝜋j is (nj + 𝛼j)∕(n +
∑

k 𝛼k). The impact of the prior is essen-
tially to add 𝛼j observations to category j for all j before forming a sample proportion.
Most applications use a common value 𝛼 for {𝛼j}, so the impact is to smooth in the
direction of the equi-probability model.

The Dirichlet prior with 𝛼 = 1 corresponds to a uniform prior distribution over the
probability simplex. This seems diffuse, but it corresponds to adding p observations
and then forming sample proportions. This is considerable when p is large relative
to n. For example, suppose n = 100 but p = 1000. The posterior mean of 𝜋j is
(nj + 1)∕(n + p) = (nj + 1)∕1100. When cell j contains one of the 100 observations,
the posterior mean estimate for that cell is 0.0018, shrinking the sample proportion
of 0.010 toward the equi-probability value of 0.001. This seems like a reasonable
estimate. But what if instead all 100 observations fall in cell j? The posterior mean
estimate is then 0.092. This shrinks much more from the sample proportion value
of 1.0 than we are likely to believe is sensible. Even though the prior distribution is
quite diffuse, it has quite a strong impact on the results. The Jeffreys prior, 𝛼 = 1∕2,
corresponds to a U-shaped beta density for the binomial case p = 2. The shrinkage
is then a bit less, but it still gives a posterior mean estimate for 𝜋j of (nj + 1∕2)∕(n +
p∕2) = (nj + 1∕2)∕600, or 0.1675 when nj = n = 100.

This simplistic example illustrates that the choice of the prior distribution is crucial
when p is very large, especially when we depart from the traditional setting in which
n is much larger than p. Berger et al. (2013) suggested that the prior distribution
should have marginal posterior distributions all close to a common posterior that
we’d obtain in the single-parameter case. For instance, we could aim for the posterior
distribution of 𝜋j to be approximately a beta distribution with parameters nj +

1
2

and
n − nj +

1
2

, which we’d obtain with a Jeffreys prior for the binomial distribution with
parameter 𝜋j. We can obtain this by using Dirichlet hyperparameters {𝛼j = 1∕p}
instead of {𝛼j = 1∕2}, which is much more diffuse when p is large. This yields a
posterior mean for 𝜋j of (nj + 1∕p)∕(n + 1). With n = 100 observations in p = 1000
cells, this is 0.0099 when nj = 1 and is 0.990 when nj = 100.

This approach seems sensible, but even with it, situations exist for which the results
may seem inappropriate. When p = 1000, suppose we have only n = 2 observations,
of which nj = 1. The posterior mean for 𝜋j is then 0.334. Would you want to use an
estimate that shrinks the sample proportion of 1/2 based on only two observations so
little toward the equi-probability value of 0.001? Which prior distribution would you
use for such sparse multinomial modeling?

11.3 SMOOTHING, GENERALIZED ADDITIVE MODELS, AND OTHER
GLM EXTENSIONS

The models in this text smooth the data rather severely, by producing fitted values
satisfying a predictor that is linear in the parameters. In this final section we present
frequentist ways of smoothing data that provide more flexibility than linear predictors
in GLMs. We also consider alternative models that are nonlinear in the parameters
or that describe quantiles instead of mean responses.
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11.3.1 Kernel Smoothing

Kernel smoothing, in its basic form, is completely non-model-based. To estimate a
mean at a particular point, it smooths the data by using primarily the data at nearby
points.

We illustrate with a method that smooths binary response data to portray graph-
ically the form of dependence of y on a quantitative explanatory variable x (Copas
1983). Let 𝜙(⋅) denote a symmetric unimodal kernel function, such as the stan-
dard normal or another bell-shaped pdf. At any x, the kernel-smoothed estimate of
P(y = 1 ∣ x) is

�̃�(x) =
∑n

i=1 yi𝜙[(x − xi)∕𝜆]∑n
i=1 𝜙[(x − xi)∕𝜆]

, (11.1)

where 𝜆 > 0 is a smoothing parameter. At any point x, the estimate �̃�(x) is a
weighted average of the {yi}. For the simple function 𝜙(u) = 1 when u = 0 and
𝜙(u) = 0 otherwise, �̃�(xk) simplifies to the sample proportion of successes at x = xk.
Then there is no smoothing. When 𝜙 is proportional to the standard normal pdf,
𝜙(u) = exp(−u2∕2), the smoothing approaches this as 𝜆→ 0. For very small 𝜆, only
points near x have much influence. Using mainly very local data produces little bias
but high variance. By contrast, as 𝜆 increases, data points farther from x also con-
tribute substantially to �̃�(x). As 𝜆 increases and very distant points receive more
weight, the smoothed estimate becomes more like the overall sample proportion. It
becomes more highly biased but has smaller variance. As 𝜆 grows unboundedly, the
smooth function �̃�(x) converges to a horizontal line at the level of the overall sample
proportion.

For this kernel smoother, the choice of 𝜆 is more important in determining �̃�(x)
than is the choice of 𝜙. Copas recommended selecting 𝜆 by plotting the result-
ing function for several values of 𝜆, varying around a value equal to 10 times the
average spacing of the x values. The kernel smoothing (11.1) generalizes to incor-
porate multiple predictors, with a multivariate kernel function such as a multivariate
normal pdf.

11.3.2 Nearest-Neighbors Smoothing

In more general contexts than binary regression, smoothers of the kernel type can
base estimation at a point on using nearby points. A very simple such method is
nearest-neighbors smoothing. It is often used for classification, such as by predicting
an observation for a subject based on a weighted average of observations for k subjects
who have similar values on the explanatory variables.

An advantage of this method is its simplicity, once we select a similarity measure
to determine the nearest neighbors. However, the choice of this measure may not
be obvious, especially when p is large with possibly some subsets of explanatory
variables being highly correlated and some of them being qualitative. More complex
smoothers generalize this idea by basing the prediction at a point on a weighted
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regression using nearby points, such as described next. Such methods have better
statistical properties, such as usually lower bias.

11.3.3 The Generalized Additive Model

The GLM generalizes the ordinary linear model by permitting non-normal dis-
tributions and modeling functions of the mean. The quasi-likelihood approach
(Chapter 8) generalizes GLMs, specifying how the variance depends on the mean
without assuming a particular distribution. Another generalization of the GLM
replaces the linear predictor by additive smooth functions of the explanatory variables.
The GLM structure g(𝜇i) =

∑
j 𝛽jxij generalizes to

g(𝜇i) =
p∑

j=1

sj(xij),

where sj(⋅) is an unspecified smooth function of predictor j. Like GLMs, this model
specifies a link function g and a distribution for y. The resulting model is called a
generalized additive model, symbolized by GAM (Hastie and Tibshirani 1990). The
GLM is the special case in which each sj is a linear function. Also possible is a
mixture of explanatory terms of various types: Some sj may be smooth functions,
others may be linear functions as in GLMs, and others may be indicator variables to
include qualitative factors.

A useful smooth function is the cubic spline. It has separate cubic polynomials
over sets of adjacent intervals for an explanatory variable, joined together smoothly at
boundaries of those intervals. The boundary points, called knots, can be set at evenly
spaced points for each predictor or selected according to a criterion involving both
smoothness and closeness of the spline to the data. A smoothing spline uses knots at
the observed predictor values but imposes a smoothing parameter that determines the
influence of the integrated squared second derivative of the smoothing function in
penalizing the log likelihood. For example, for the normal model with identity link,
the fit minimizes a penalized residual sum of squares,

n∑
i=1

[
yi −

p∑
j=1

sj(xij)

]2

+
p∑

j=1

𝜆j ∫

[
s
′′

j (x)
]2

dx.

Larger smoothing parameter values 𝜆j result in smoother functions (less “wiggling”
and change in the first derivative). In fact, this criterion results in a solution in which
each sj is a cubic spline.

One can select 𝜆j so that a term sj in the predictor has an effective df value, with
higher 𝜆j corresponding to lower effective df . For instance, a smooth function having
effective df = 3 is similar in overall complexity to a third-degree polynomial, and
df close to 1 is similar to a straight line. Choosing an effective df value or a value
for a smoothing parameter determines how smooth the resulting GAM fit looks. It is
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sensible to try various degrees of smoothing. The goal is not to smooth so much that
the fit suppresses interesting patterns yet smooth the data sufficiently so that the data
are not overfitted with a highly wiggly function. The smoothing may suggest that a
linear model is adequate with a particular link function, or it may suggest ways to
improve on linearity.

Using the effective df value for each sj in the additive predictor, we can conduct
approximate large-sample inference about those terms. For any model fit, there is a
deviance, which reflects the assumed distribution for y. As in comparing GLMs, we
can compare deviances for nested GAMs to test whether a particular model gives a
significantly better fit than a simpler model.

For fitting a GAM, the backfitting algorithm employs a generalization of the
Newton–Raphson method that uses local smoothing. The algorithm initializes {ŝj}
identically at 0. Then at a particular iteration, it updates the estimate ŝj by a smoothing
of partial residuals {yi −

∑
k≠j ŝk(xik)} that uses the other estimated smooth functions

at that iteration, in turn for j = 1,… , p.
An alternative way to smooth the data, without making a distributional assumption

for y, employs a type of regression that gives greater weight to nearby observations in
predicting the value at a given point; such locally weighted least squares regression
is often referred to as lowess (Cleveland 1979). We prefer GAMs to lowess, because
they recognize explicitly the form of the response variable. For instance, with a
binary response, lowess can give predicted values below 0 or above 1 at some
predictor settings. This cannot happen with a GAM that assumes a binomial random
component.

Smoothing methods such as GAMs have the advantage over GLMs of greater flex-
ibility. Using them, we may discover patterns we would miss with ordinary GLMs,
and we obtain potentially better predictions of future observations. The smoothness
of the function that works well is summarized by its effective df. A disadvantage
of GAMs (and other smoothing methods) compared with GLMs is the loss of inter-
pretability for describing the effect of an explanatory variable that has a smooth term
in the predictor. Likewise, it is unclear how to apply confidence intervals to effects
in a GAM. So it is more difficult to judge when an effect has substantial importance.
Thus, when suitable, GLMs are ideal for statistical inference. Also, because any
smoothing method has potentially a very large number of parameters, it can require
a large n to estimate the functional form accurately.

Even if you plan mainly to use GLMs, a GAM is helpful for exploratory analysis.
For instance, for binary responses, scatterplots are not very informative. Plotting the
fitted smooth function for a predictor may reveal a general trend without assuming a
particular functional relation, as we illustrate in Section 11.3.5.

11.3.4 How Much Smoothing? The Bias–Variance Tradeoff

Smoothing methods have a nonparametric flavor, because they base analyses on a
more general structure than a linear predictor. However, in some ways the demands are
greater: We need to choose among a potentially infinite number of forms relating the
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response variable to the explanatory variables, the number of parameters is potentially
much larger, and overfitting is a danger.

As discussed in Section 4.6.2, model selection is at the heart of the fundamental
statistical tradeoff between bias and variance. Using a particular model has the dis-
advantage of increasing the potential bias (e.g., a true mean differing from the value
corresponding to fitting the model to the population), but it has the advantage that
the parsimonious limitation of the parameter space results in decreased variance in
estimating characteristics of interest. The methods presented in this chapter provide a
compromise. A method typically starts with a model and its likelihood function, but
smooths results to adjust for ways an ordinary linear predictor may fail. All smoothing
methods require input from the methodologist to control the degree of smoothness
imposed on the data in order to deal with the bias–variance tradeoff, whether it be
determined by a smoothing parameter in a frequentist approach or a prior distribution
in a Bayesian approach.

11.3.5 Example: Smoothing to Portray Probability of Kyphosis

Hastie and Tibshirani (1990, p. 282) described a study to determine risk factors for
kyphosis, which is severe forward flexion of the spine following corrective spinal
surgery. Figure 11.3 shows this binary outcome y (1 = kyphosis present, 0 = absent)
plotted against the age in months at the time of the operation. For the youngest and
the oldest children, most observations have kyphosis absent.
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Figure 11.3 Kernel-smoothing estimate of probability of kyphosis as a function of x = age
(in months), using standard normal kernel function 𝜙 and smoothing parameter 𝜆 = 25 (solid
curve), 100 (dashed curve), 200 (dotted curve), in equation (11.1).

Figure 11.3 also shows the result of kernel smoothing of the data using the
smoother (11.1). The smoothing parameter value 𝜆 = 25 is too low, and the figure
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is more irregular than the data justify. The higher values of 𝜆 give evidence of
nonmonotonicity in the relation. In fact, adding a quadratic term to the standard
logistic regression model provides an improved fit.

-----------------------------------------------------------------------

> Kyphosis # File Kyphosis.dat at www.stat.ufl.edu/~aa/glm/data

x y

1 12 1

2 15 1

...

40 206 0

> attach(Kyposis)

> plot(x, y)

> k1 <- ksmooth(x, y, "normal", bandwidth=100)

> lines(k1)

> x2 <- x*x

> summary(glm(y ~ x + x2, family=binomial(link=logit)))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.046255 0.994348 -2.058 0.0396

x 0.060040 0.026781 2.242 0.0250

x2 -0.000328 0.000156 -2.097 0.0360

---

Residual deviance: 48.228 on 37 degrees of freedom

-----------------------------------------------------------------------

For fitting a GAM, we treat the data as binomial with a logit link. The default
smoothing obtained with the function for GAMs in the VGAM R library falls between
a quadratic and cubic in complexity (df = 2.6).

-----------------------------------------------------------------------

> library(VGAM)

> gam.fit <- vgam(y ~ s(x),family=binomialff(link=logit),data=Kyphosis)

> plot(x, fitted(gam.fit))

> summary(gam.fit)

Residual deviance: 47.948 on 35.358 degrees of freedom

DF for Terms and Approximate Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept) 1

s(x) 1 2.6 4.7442 0.1528

-----------------------------------------------------------------------

Figure 11.4 shows the fitted values for the 40 observations. This also suggests using
a logistic model with a quadratic term6. The figure also shows that fit, which is very
similar graphically and in the residual deviance.

We can also fit GAMs using the gam and mgcv libraries in R. We next fit models
that have successively linear, quadratic, and cubic complexity for the smooth function.

6Using a penalized-likelihood approach for GAMs, Eilers and Marx (2002) suggested instead a
bell-shaped response curve.

http://www.stat.ufl.edu/~aa/glm/data
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Figure 11.4 Estimates of probability of kyphosis as a function of x = age, using (1) a GAM
and (2) logistic regression with quadratic term.

Comparison of deviances shows that quadratic fits better than linear, but cubic is not
better than quadratic.

-----------------------------------------------------------------------

> library(gam) # R library by Trevor Hastie

> gam.fit1 <- gam(y ~ s(x,1), family=binomial, data=Kyphosis)

> gam.fit2 <- gam(y ~ s(x,2), family=binomial, data=Kyphosis)

> gam.fit3 <- gam(y ~ s(x,3), family=binomial, data=Kyphosis)

> anova(gam.fit1, gam.fit2, gam.fit3)

Analysis of Deviance Table

Model 1: y ~ s(x, 1) # linear complexity

Model 2: y ~ s(x, 2) # quadratic

Model 3: y ~ s(x, 3) # cubic

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 38 54.504

2 37 49.216 0.9999 5.2880 0.0215

3 36 48.231 1.0002 0.9852 0.3210

-----------------------------------------------------------------------

11.3.6 Quantile Regression

Models in this book describe the conditional mean of y as a function of explanatory
variables. Alternatively, we could model a quantile. For example, in modeling growth
over time for a sample of a biological organism, it might be of interest to estimate
the 10th percentile, median, and 90th percentile of the conditional distribution as
a function of time. Quantile regression models quantiles of a response variable as
a function of explanatory variables. M-estimation in regression using 𝜌(ei) = |ei|
corresponds to quantile regression for the median.

Like regression fitted by M-estimation, this method can be less severely affected by
outliers than is ordinary least squares. When the response conditional distributions are
highly skewed with possibly highly nonconstant variance, the method can describe the
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relationship better than a simple normal model with constant variance. For instance,
consider modeling of annual income as a function of the age of a person. We might
expect almost no effect at low quantiles, with the effect increasing as the quantile
increases, reflecting also increasing variability with age.

Quantile-regression model fitting minimizes a weighted sum of absolute residuals,
formulated as a linear programming problem. This is available in software7. Why not
always use it instead of least squares, since it is less affected by outliers? When the
normal linear model truly holds, the least squares estimators are much more efficient.

11.3.7 Nonlinear Regression

In this book, we’ve focused on predictors that are linear in the parameters. The GAM
is one generalization. Another is relevant for applications in which the predictor is
naturally nonlinear in parameters. For example, consider the model

E(yi) =
𝛽0

1 + exp[−(𝛽1 + 𝛽2xi)]
.

With 𝛽0 = 1, this is the logistic regression curve for a binary response probability
(Chapter 5). For other 𝛽0, it has a symmetric, sigmoidal shape with bounds of 0 and
𝛽0. This model can describe the growth of a tumor or population growth, when the
maximum possible size is also a parameter.

A nonlinear regression model has the form

E(yi) = f (xi; 𝜷),

where f is a known function of the explanatory variables and the parameters. With an
assumption about the distribution of yi, inference can use likelihood-based methods.
Assuming normality with constant variance 𝜎2, this again yields the least squares
criterion, with �̂� giving the minimum value of

∑
i[yi − f (xi; 𝜷)]2. The likelihood

equations are then

n∑
i=1

[yi − f (xi; 𝜷)]
𝜕f (xi; 𝜷)

𝜕𝛽j
= 0, j = 1,… , p.

Finding the estimates requires an iterative algorithm that starts at initial values 𝜷(0)

for �̂�. Let X denote the model matrix of {xij}, and let f (X; 𝜷) be the vector having
elements f (xi; 𝜷). The Gauss–Newton algorithm, which for a normal response is
equivalent to Fisher scoring, uses the linearization

f (X; 𝜷) = f (X; 𝜷(0)) + G(0)(𝜷 − 𝜷(0)),

7Such as the quantreg package in R.
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where the gradient matrix G(0) has elements 𝜕f (xi; 𝜷)∕𝜕𝛽j evaluated at 𝜷(0). For the
initial working residuals {e(0)

i = yi − f (xi; 𝜷
(0))}, the first iteration yields updated

estimate

𝜷(1) = 𝜷(0) + (G(0)TG(0))−1G(0)Te(0).

Each subsequent iteration t regresses the current working residuals e(t) on the current
gradient matrix G(t) to find the increment to the working estimate 𝜷(t). Modifications
of the method exist, such as taking smaller increments if needed to decrease the
residual sums of squares, or using numerical derivatives rather than computing the
gradient matrix. Many nonlinear models have the potential for multiple local maxima
of the log likelihood, so it is wise to use a grid of quite different initial values to
increase the chance of finding the true least squares estimate.

The linearization is also the basis of standard errors for �̂�. The asymptotic covari-
ance matrix of �̂� is

var(�̂�) = 𝜎2 (GTG
)−1

,

where the gradient matrix G has elements 𝜕f (xi; 𝜷)∕𝜕𝛽j evaluated at 𝜷. This has the
same form as var(�̂�) in formula (2.4) for the ordinary linear model, except that
the gradient matrix replaces the model matrix. In practice, we estimate the covariance
matrix by substituting �̂� for 𝜷 in G and by estimating 𝜎2 by the error mean square
s2 =

∑
i[yi − f (xi; �̂�)]2∕(n − p). Nonlinear regression fitting methods and subsequent

inference are available in software8.

CHAPTER NOTES

Section 11.1: Robust Regression and Regularization Methods for Fitting Models

11.1 Robust regression: M-estimation evolved out of research by Huber (1964) on robust
estimation of a location parameter. Huber and Ronchetti (2009, Chapter 7) presented
the regression context of this approach. Rousseeuw (1984) proposed another alternative
to least squares, finding the estimate that produces the smallest median of the squared
residuals, instead of their mean (equivalently, sum). Like M-estimation with 𝜌(ei) = |ei|,
this “least median of squares” method can have low efficiency when the ordinary normal
linear model nearly holds. Cantoni and Ronchetti (2001) proposed other robust estima-
tion methods for GLMs. Birkes and Dodge (1993) surveyed alternative fitting methods,
including least-absolute-deviations regression, M-estimation, and ridge regression.

11.2 Ridge regression and lasso: For more on ridge regression, see Hoerl and Kennard
(1970) and Hastie et al. (2009, Section 3.4.1). For the lasso, see Bühlmann and
van de Geer (2011, Chapters 2 and 3), Hastie et al. (2009, Section 3.4.2), Izenman
(2008), and Tibshirani (1996, and his website statweb.stanford.edu/~tibs/
lasso.html). James et al. (2013) gave a less technical introduction to such methods,

8such as the nls function in R.

http://statweb.stanford.edu/~tibs/lasso.html
http://statweb.stanford.edu/~tibs/lasso.html
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with extensive R examples. The bootstrap is another possible way to determine standard
errors for lasso estimates (Chatterjee and Lahiri 2011). Lockhart et al. (2014) proposed
a significance test for the lasso, based on how much of the covariance between y and
the model-fitted values can be attributed to a particular predictor when it enters the
model. Bühlmann et al. (2014) presented other inference methods, such as tests based
on multisample splitting of the data.

Section 11.2: Modeling with Large p

11.3 Penalized likelihood with large p: Fan and Lv (2010) and Tutz (2011) reviewed
penalized likelihood methods for variable selection in high dimensions. Fan and Lv
noted that the lasso has a tendency to include many false-positive variables when p
is large. For details about dimension-reduction methods such as principal component
analysis, see Hastie et al. (2009, Chapter 18), Izenman (2008), and James et al. (2013).
Bühlmann et al. (2014) presented a brief introductory survey of high-dimensional
methods. For multinomial modeling, see Taddy (2013).

11.4 Bayes with large p: For issues in selecting priors when p is large but n may not be, see
Berger et al. (2013), Griffin and Brown (2013), Kass and Wasserman (1996, Section
4.2.2), and Polson and Scott (2010). Carvalho et al. (2010) advocated a prior based on
multivariate normal scale mixtures. Gelman (2006) argued for using noninformative
priors (such as uniform) for variance parameters in hierarchical models. For variable
selection issues, see George and McCulloch (1997), George (2000), and Rǒcková and
George (2014). Hjort et al. (2010) surveyed nonparametric Bayesian approaches.

Section 11.3: Smoothing, Generalized Additive Models, and Other GLM Extensions

11.5 Smoothing: For smoothing methods, see Fahrmeir et al. (2013, Chapter 8), Fahrmeir
and Tutz (2001, Chapter 5), and Faraway (2006, Chapter 11). Green and Silverman
(1993), Hastie et al. (2009), Izenman (2008), James et al. (2013), Simonoff (1996),
Tutz (2011, Chapters 6 and 10), and Wakefield (2013, Chapters 10–12). For smoothing
spatial data , see Fahrmeir et al. (2013, Section 8.2). Albert (2010) presented Bayesian
smoothing methods.

11.6 GAMs and penalized-spline regularization: For generalized additive modeling, see
Fahrmeir et al. (2013, Chapter 9), Faraway (2006, Chapter 12), Hastie and Tibshirani
(1990), Wood (2006), and Yee and Wild (1996). The generalized additive mixed model
adds random effects to a GAM (Wood 2006, Chapter 6). Eilers and Marx (1996,
2002, 2010) introduced an alternative penalized likelihood approach for splines that
provides a way of fitting GAMs as well as a mechanism for regularization. Rather than
penalizing by the integrated squared derivative, it penalizes by differences of coefficients
of adjacent splines. See also Fahrmeir et al. (2013, Chapter 8).

11.7 Nonlinear and quantile regression: For nonlinear regression methods, see Bates and
Watts (1988) and Seber and Wild (1989). For a brief review, see Smyth (2002). For
quantile regression and examples, see Davino et al. (2013), Fahrmeir et al. (2013,
Chapter 10), and Koenker (2005).

11.8 Functions and images: Methods of this chapter extend to the analysis of more complex
types of data, such as functions and images. See, for example, Crainiceanu et al. (2009),
Ramsay and Silverman (2005), Di et al. (2009), and www.smart-stats.org and
the R package refund.

http://www.smart-stats.org
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EXERCISES

11.1 Show that M-estimation with 𝜌(ei) = |ei| gives the ML solution assuming a
Laplace distribution for the response.

11.2 The breakdown point of an estimator is the proportion of observations that
must be moved toward infinity in order for the estimator to also become
infinite. The higher the breakdown point, the more robust the estimator. For
estimating the center of a symmetric distribution, explain why the breakdown
point is 1∕n for the sample mean but 0.50 for the sample median. (However,
even robust regression methods, such as using 𝜌(ei) = |ei|, can have small
breakdown points or other unsatisfactory behavior; see Seber and Lee 2003,
Sections 3.13.2 and 3.13.3)

11.3 Refer to the equations solved to obtain �̂� for M-estimation and the expression
for var(�̂�). Show how they simplify for least squares.

11.4 In M-estimation, let 𝜌(x) = 2(
√

1 + x2∕2 − 1). Find the influence function,
and explain why this gives a compromise between least squares and 𝜌(x) =|x|, having a bounded influence function with a smooth derivative at 0.

11.5 Since the Gauss-Markov theorem says that least squares estimates are “best,”
are not estimates obtained using M-estimation necessarily poorer? Explain.

11.6 For the saturated model, E(yi) = 𝛽i, i = 1,… , n, find the ridge-regression
estimate of 𝛽i and interpret the impact of 𝜆.

11.7 For the normal linear model, explain how (a) the ridge-regression estimates
relate to Bayesian posterior means when {𝛽j} have independent N(0, 𝜎2)
distributions, (b) the lasso estimates relate to Bayesian posterior modes
when {𝛽j} have independent Laplace (double-exponential) distributions with
means 0 and common scale parameter.

11.8 Consider the linear model

yi = 𝛽1xi1 + 𝛽2xi2 +⋯ + 𝛽40xi,40 + 𝜖i

with 𝛽1 = 1 and 𝛽2 = ⋯ = 𝛽40 = 0, where xij = ui + vj with {ui}, {vj}, and
{𝜖i} being iid N(0, 1) random variables.

a. Find the correlation between y and x1, y and xj for j ≠ 1, and xj and xk for
j ≠ k, and the multiple correlation between y and the set of explanatory
variables.

b. Using this model, randomly generate n = 100 observations on the 41
variables. Use the lasso to select a model, for a variety of 𝜆 smoothing
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parameter values. Summarize results, and evaluate the effectiveness of
this method.

c. Specify alternative values for {𝛽j} for which you would not expect the
lasso to be effective. Re-generate y, and summarize results of using the
lasso.

11.9 Refer to the Dirichlet prior distribution introduced for multinomial parame-
ters in Section 11.2.2. Explain why a multivariate normal prior for multino-
mial logits provides greater flexibility.

11.10 Refer to Copas’s kernel smoother (11.1) for binary regression, with 𝜙(u) =
exp(−u2∕2).

a. To describe how close this estimator falls at a particular x value to a
corresponding smoothing in the population, use the delta method to show
that an estimated asymptotic variance is

�̃�(x)[1 − �̃�(x)]

∑
i 𝜙

[√
2(x − xi)∕𝜆

]
{∑

i 𝜙[(x − xi)∕𝜆]
}2
.

Explain why this decreases as 𝜆 increases, and explain the implication.

b. As 𝜆 increases unboundedly, explain intuitively to what �̃�(x) and this
estimated asymptotic variance converge.

11.11 When p > n, why is backward elimination not a potential method for selecting
a subset of explanatory variables?

11.12 Sometimes nonlinear regression models can be converted to ordinary GLMs
by employing a link function for the mean response and/or transforming
the explanatory variables. Explain how this could be done for the normal-
response models (a) E(yi) = 𝛽0 exp(𝛽1xi) (an exponential growth model),
(b) E(yi) = 1∕(𝛽0 + 𝛽1xi + 𝛽2x2

i ).

11.13 Refer to the form of iterations for the Gauss–Newton algorithm described in
Section 11.3.7. Show that an analogous formula

�̂� − 𝜷 = (XTX)−1XT𝝐

holds for the ordinary linear model, where 𝝐 = y − 𝝁 is a “true residual.”

11.14 Randomly generate nine observations satisfying a normal linear model by
taking xi ∼ N(50, 20) and yi = 45.0 + 0.1xi + 𝜖i with 𝜖i ∼ N(0, 1). Now add
to the dataset a contaminated outlying observation 10 having x10 = 100,
y10 = 100. Fit the normal linear model to the 10 observations using (a) least
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squares, (b) Huber’s M-estimation. Compare the model parameter estimates
and the estimate of 𝜎. Interpret.

11.15 For the data analyzed in Section 11.1.8 on risk factors for endometrial cancer,
compare the results shown there with those you obtain using the lasso.

11.16 For the horseshoe crab data introduced in Section 1.5.1 and modeled in Sec-
tion 7.5, suppose you use graphics to investigate how a female crab’s number
of male satellites depends on the width (in centimeters) of the carapace shell
of the crab. If you plot the response counts of satellites against width, the sub-
stantial variability makes it difficult to discern a clear trend. To get a clearer
picture, fit a generalized additive model, assuming a Poisson distribution and
using the log link. What does this suggest about potentially good predictors
and link functions for a GLM?

11.17 For the horseshoe crab dataset, Exercise 5.32 used logistic regression to
model the probability that a female crab has at least one male satellite. Plot
these binary response data against the crab’s carapace width. Also plot a
curve based on smoothing the data using a kernel smoother or a generalized
additive model, assuming a binomial response and logit link. (This curve
shows a roughly increasing trend and is more informative than viewing the
binary data alone.)

11.18 For the Housing.dat file analyzed in Sections 3.4 and 4.7, use methods of
this chapter to describe how the house selling price depends on its size.

11.19 Continue the previous exercise, now using all the explanatory variables.
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Supplemental Data Analysis Exercises

Note: One purpose of this appendix is to provide exercises for students that are not
tied to methodology of a particular text chapter.

1. Using an Internet search or viewing the datasets in the R MASS library (by
entering the R commands library(MASS) and data()), download a dataset
relating a quantitative response variable to at least two explanatory variables.
Fit a GLM (a) using one explanatory variable, and (b) using all the explanatory
variables in a model-building process. Interpret results.

2. The MASS library of R contains the Boston data file, which has several predic-
tors of the per capita crime rate, for 506 neighborhoods in suburbs near Boston.
Prepare a four-page report describing a model-building process for these data.
Attach edited software output as an appendix.

3. The horseshoe crab dataset Crabs2.dat at www.stat.ufl.edu/~aa/glm/
data comes from a study of factors that affect sperm traits of males. One
response variable is total sperm, measured as the log of the number of sperm in
an ejaculate. Explanatory variables are the location of the observation, carapace
width (centimeters), mass (grams), color (1 = dark, 2 = medium, 3 = light),
the operational sex ratio (OSR, the number of males per females on the beach),
and a subjective condition number that takes into account mucus, pitting on the
prosoma, and eye condition (the higher the better). Prepare a report describing
a model-building process for these data. Attach edited software output as an
appendix.

4. The Student survey.dat file at the text website, a small part of which is
shown in Table A.1, shows survey responses of graduate students enrolled in a
statistics course in a recent term at the University of Florida. The variables are
GE = gender, AG = age in years, HI = high school grade-point average (GPA),
CO = college GPA, DH = distance (in miles) of the campus from your home
town, DR = distance (in miles) of the classroom from your current residence,
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TV = average number of hours per week that you watch TV, SP = average
number of hours per week that you participate in sports or have other physical
exercise, NE = number of times a week you read a newspaper, AH = number of
people you know who have died from AIDS or who are HIV+, VE = whether you
are a vegetarian (yes, no), PA = political party affiliation (D = Democrat, R =
Republican, I= independent), PI= political ideology (1= very liberal, 2= liberal,
3 = slightly liberal, 4 = moderate, 5 = slightly conservative, 6 = conservative,
7 = very conservative), RE = how often you attend religious services (0 = never,
1 = occasionally, 2 = most weeks, 3 = every week), AB = opinion about whether
abortion should be legal in the first 3 months of pregnancy (yes, no), AA =
support affirmative action (yes, no), LD = belief in life after death (yes, no).
Model how political ideology relates to the other variables. Prepare a report,
posing a research question and summarizing your graphical analyses, models
and interpretations, inferences, checks of assumptions, and overall summary of
the relationships.

Table A.1 Part of Data File for Exercise 4

SUBJ GE AG HI CO DH DR TV SP NE … LD

1 m 32 2.2 3.5 0 5.0 3 5 0 … y
2 f 23 2.1 3.5 1200 0.3 15 7 5 … u

...
60 f 22 3.4 3.0 650 4 8 6 7 … y

5. Repeat the previous exercise using college GPA as the response variable.

6. Repeat Exercise 4 using opinion about whether abortion should be legal as the
response variable.

7. Repeat Exercise 4 using political party affiliation as the response variable.

8. Refer to Exercise 4. Find an appropriate model for belief in life after death as the
response variable, with potential explanatory variables opinion about whether
abortion should be legal, how often you attend religious services, political party
affiliation, and political ideology.

9. For the Statewide crime.dat file at the text website from a Statistical
Abstract of the United States, a small part of which is in Table A.2, model
the statewide violent crime rate with predictors poverty rate, the percent living
in metropolitan areas, and percent of high school graduates. Prepare a report in

Table A.2 Part of Data File for Exercise 9

State Violent Murder Metro High School Poverty

AK 593 6 65.6 90.2 8.0
AL 430 7 55.4 82.4 13.7
...
DC 1608 44 100.0 86.4 18.5
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which you state a research question you could answer with these data, conduct
descriptive and inferential analyses, and provide interpretations and summarize
your conclusions.

10. Repeat the previous exercise with the statewide murder rates as the response
variable.

11. The Houses2.dat file at the text website shows selling prices of homes in
Gainesville, Florida in 1996. Write a report describing your model-building
analysis, using size, numbers of bathrooms and bedrooms, and whether the house
is new as potential explanatory variables.

12. The file Credit.dat at the text website, part of which is shown in Table A.3,
refers to a sample of subjects randomly selected for an Italian study on the relation
between income in millions of lira (the Italian currency at the time of the study)
and whether one possesses a travel credit card. Analyze these data.

Table A.3 Part of Data File for Exercise 12

Income
Number
sampled

Number with
credit card

24 1 0
34 7 1
...
68 3 3

13. The credit-scoring data file at www.statistik.lmu.de/service/datenarc
hiv/kredit/kredit_e.html includes 20 covariates for 1000 observations.
Build a model for credit-worthiness, using as potential predictors: running
account, duration of credit, payment of previous credits, intended use, gender,
and marital status.

14. According to the Independent newspaper (London, March 8, 1994), the
Metropolitan Police in London reported 30,475 people as missing in the year
ending March 1993. For those of age 13 or less, 33 of 3271 missing males and
38 of 2486 missing females were still missing a year later. For ages 14 to 18, the
values were 63 of 7256 males and 108 of 8877 females; for ages 19 and above,
the values were 157 of 5065 males and 159 of 3520 females. Analyze by building
a model, and interpret. (Thanks to Pat Altham for showing me these data.)

15. The file Happiness.dat at the text website shows responses of 18–22 year-
olds from a General Social Survey on happiness (categories 1 = very happy,
2 = pretty happy, 3 = not too happy), the total number of traumatic events
that happened to the respondent and his/her relatives in the last year, and race
(1 = black, 0 = white). Use models to analyze these data.

16. In 2002 the General Social Survey asked “How many people at your work place
are close friends?” The 756 responses had a mean of 2.76, standard deviation of
3.65, and a mode of 0. If you plan to build a generalized linear model (GLM)

http://www.statistik.lmu.de/service/datenarchiv/kredit/kredit_e.html
http://www.statistik.lmu.de/service/datenarchiv/kredit/kredit_e.html
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using some explanatory variables for this response, which distribution might be
sensible? Why?

17. The file1 Fish.dat at the text website, part of which is shown in Table A.4,
reports the results of a study of fish hatching under three environments. Eggs from
seven clutches were randomly assigned to three treatments, and the response was
whether an egg hatched by day 10. The three treatments were (1) carbon dioxide
and oxygen removed, (2) carbon dioxide only removed, and (3) neither removed.
Model the probability of hatching for an egg from clutch i in treatment t, allowing
for potential overdispersion. Summarize your analyses.

Table A.4 Part of Data File for Exercise 17

clutch treatment hatched n

1 1 0 6
1 2 3 6
...
7 3 4 20

18. The file2 Education.dat at the text website, shown partly in Table A.5, contains
scores on standardized qualitative (reading) and quantitative (math) exams for
890 students taught by 47 teachers working in 14 schools. The goal of the study
was to study the effects of the school and of the student’s socioeconomic status
(1 = high, 0 = low) on the standardized exam scores. Analyze these data.

Table A.5 Part of Data File for Exercise 18

school teacher student ses test score

10 10664 271 0 qual 50
10 10664 271 0 quan 31
10 10664 272 0 qual 53
...
50 50666 1260 1 quan 38

19. Refer to Exercise 9.35 about a salt marsh habitat study. Analyze the data for
the 2011 observations alone. Prepare a report describing your analyses. Attach
edited software output as an appendix.

20. Refer to Exercise 9.37. The data file3 Opacum.dat at the text website shows data
for the marbled salamander (Ambystoma opacum). For the embryos that survived
to hatching, taking account of the nesting of embryos within jars and jars within
families, fit an appropriate model to compare the four rearing environments on
the age at hatching. Interpret results.

1Data courtesy of Rebecca Hale, University of North Carolina, Asheville.
2Data courtesy of Ramon Littell.
3Data courtesy of Rebecca Hale, University of North Carolina, Asheville.
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21. Refer to the previous exercise. Combining this data file with the data file Macu-
latum.dat, simultaneously model treatment effects on the age of hatching for
both species of salamander, and evaluate how the treatment effects differ for the
two species.

22. Refer to the previous exercise. For all the embryos of the two species, model the
probability of hatching in terms of the treatment and species. Evaluate how the
treatment effects differ for the two species.

23. Conduct a Bayesian analysis for one of the exercises assigned for frequentist
methods in Chapters 1–9. (Your instructor may assign a particular exercise.)

24. Go to a site with large data files, such as the UCI Machine Learning Repository
(archive.ics.uci.edu/ml). Find a dataset of interest to you. Use modeling
methods to learn something about the data. Summarize your analyses in a report,
attaching an appendix showing your use of software.

http://archive.ics.uci.edu/ml
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Solution Outlines for
Selected Exercises

Note: This appendix contains brief outlines of solutions and hints of solutions for at
least a few exercises from each chapter. Many of these are extracts of solutions that
were kindly prepared by Jon Hennessy for Statistics 244 at Harvard University in
2013.

Chapter 1

1.1 In the random component, set 𝜃i = 𝜇i, b(𝜃i) = 𝜃2
i ∕2, 𝜙 = 𝜎2, a(𝜙) = 𝜙, and

c(yi,𝜙) = −y2
i ∕2𝜙 − log(2𝜋𝜙). Use the identity link function.

1.2 b. Hint: What is the range for a linear predictor, and what is the range of the
identity link applied to a binomial probability or to a Poisson mean?

1.5 The predicted number of standard deviation change in y for a standard deviation
change in xi, adjusting for the other explanatory variables.

1.11 Taking 𝜷 = (𝛽0, 𝛽1,… , 𝛽c−1)T,

X =

⎛⎜⎜⎜⎜⎜⎝

1n1
1n1

0n1
⋯ 0n1

1n2
0n2

1n2
⋯ 0n2

⋮ ⋮ ⋮ ⋱ ⋮
1nr−1

0nr−1
0nr−1

⋯ 1nr−1

1nr
−1nr

−1nr
⋯ −1nr

⎞⎟⎟⎟⎟⎟⎠
1.18 b. Let G = X1(XT

c Xc)−1XT
c . Then GXc = X1(XT

c Xc)−1XT
c Xc = X1.

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
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1.19 a. For the model E(yij) = 𝛽0 + 𝛽i + 𝛾xij, let 𝜷 = (𝛽0, 𝛽1,… , 𝛽r, 𝛾)T, xi =
(xi1,… , xini

)T, and

X =
⎛⎜⎜⎜⎝

1n1
1n1

0n1
⋯ 0n1

x1
1n2

0n2
1n2

⋯ 0n2
x2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1nr

0nr
0nr

⋯ 1nr
xr

⎞⎟⎟⎟⎠
b. (i) 𝛾 , because for each group it is a difference of means at x values one-unit

apart. (ii) 𝛽i

c. We can construct X to have identifiable parameters by imposing the con-
straint 𝛽1 = 0. For a fixed x, 𝛽i then represents the difference between E(y)
in group i and in group 1, and 𝛾 represents the change in E(y) per unit
increase in x for each group.

Chapter 2

2.3 a. The normal equation for 𝛽j is
∑

i yixij =
∑

i 𝜇ixij. For 𝛽0,
∑

i yi =∑
i(𝛽0 + 𝛽1xi), so 𝛽0 = ȳ − 𝛽1x̄. For 𝛽1,

∑
i yixi = nx̄𝛽0 + 𝛽1

∑
i x2

i , so 𝛽1 =
[
∑

i(xi − x̄)(yi − ȳ)]∕[
∑

i(xi − x̄)2].

2.8 Hint: See McCullagh and Nelder (1989, p. 85) or Wood (2006, p. 13).

2.9 Hint: For simplification, express the model with all variables centered, so
there is no intercept term, 𝛽1 and 𝛽2 are unchanged, and var(𝜷) is 2×2. Since
corr(x1, x2) > 0, the off-main-diagonal elements of (XTX) are positive.

2.12 rank(H) = tr(H) = tr[XTX(XTX)−1] = tr(Ip) = p = rank(X).

2.17 Hint: Need 0 be a solution?

2.19 a. Following an example in Rodgers et al. (1984), let

X =
⎛⎜⎜⎜⎝

0 1
0 0
1 1
1 0

⎞⎟⎟⎟⎠
and W =

⎛⎜⎜⎜⎝
−1 5
−5 1

3 1
−1 3

⎞⎟⎟⎟⎠
.

The columns of X are uncorrelated and linearly independent. The columns
of W are orthogonal and linearly independent. However, the columns of X
are not orthogonal and the columns of W are not uncorrelated.

b. If corr(u, v) = 0, then
∑

i(ui − ū)(vi − v̄) = 0. This implies that u∗ = (u −
ū) and v∗ = (v − v̄) are orthogonal. If ū = 0 (or equivalently v̄ = 0), then
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u and v are orthogonal since
∑

i(ui − ū)(vi − v̄) = uTv = 0. If ū ≠ 0 and
v̄ ≠ 0, then there is no guarantee that u and v are orthogonal.

c. If uTv = 0, then the numerator of corr(u, v) is
∑

i(ui − ū)(vi − v̄) = (uTv −
nūv̄) = −nūv̄. This can only equal 0 if at least one of ū and v̄ equals 0.

2.23 a. For the saturated model, E(yi) = 𝛽i, i = 1,… , n, X = In and C(X) = ℝn.
C(X)⟂ = 0. PX = In and I − PX = 0n×n, the matrix of 0’s.

b. 𝜷 = y and �̂� = 𝜷 = y. s2 =
∑

i[(yi − yi)
2]∕(n − n) = 0∕0. The model is not

sensible in practice because the prediction �̂�i only considers observation
yi and ignores the others. Also, the model is not useful for predicting new
values of y.

2.25 aT = 𝓵T(XTX)−1XT

2.29 From (2.6), the leverage for an observation in group i is 1∕ni.

2.30 a. The mean of the leverages is tr(H)∕n = tr[X(XTX)−1XT]∕n =
tr[XTX(XTX)−1]∕n = tr(Ip)∕n = p∕n.

2.34 Model is not identifiable unless each factor has a constraint such as setting the
parameter = 0 at the first or last level.

2.36 Hint: �̂�ij = ȳi. + ȳ.j − ȳ... See Hoaglin and Welsch (1978).

Chapter 3

3.5 Use I = P0 + (I − P0), with P0 the projection matrix for the null model. With
𝝁0 = 𝜇01 and ȳ = ȳ1, we have P0𝝁0 = I𝝁0 = 𝝁0 and P0y = ȳ,

(y − 𝝁0)T(y − 𝝁0) = (y − 𝝁0)TP0(y − 𝝁0) + (y − 𝝁0)T(I − P0)(y − 𝝁0)

= n(ȳ − 𝜇0)2 + (y − ȳ)T(y − ȳ).

By Cochran’s Theorem, (1∕𝜎2)n(ȳ − 𝜇0)2 ∼ 𝜒2
1,𝜆, where 𝜆 = (n∕𝜎2)(𝜇 −

𝜇0)2, and (1∕𝜎2)(y − ȳ)T(y − ȳ) = 1
𝜎2 (n − 1)s2 ∼ 𝜒2

n−1, and the two quantities
are independent. Thus, the test statistic

n(ȳ − 𝜇0)2∕𝜎2

s2∕𝜎2
∼

𝜒2
1,𝜆

𝜒2
n−1∕(n − 1)

∼ F1,n−1,𝜆.

The equivalent t test uses the signed square root of this test statistic,

ȳ − 𝜇0

s∕
√

n
∼ ±

√
F1,n−1,𝜆 ∼ tn−1,𝜆.

Under H0, 𝜆 = 0 and the null distributions are F1,n−1 and tn−1.
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3.7 a. For 𝜆 = (1∕𝜎2)𝝁T(P1 − P0)𝝁,

(P1 − P0)𝝁 =
⎛⎜⎜⎝

(𝜇1 − �̄�)1n1
⋮

(𝜇c − �̄�)1nc

⎞⎟⎟⎠ .
Thus, 𝜆 = (1∕𝜎2)𝝁T(P1 − P0)𝝁 = (1∕𝜎2)

∑
i ni(𝜇i − �̄�)2.

b. 𝜆 = (2n∕𝜎2)0.25𝜎2 = n∕2. P(F2,3n−3,𝜆 > F2,3n−3,0.05) equals 0.46 for
n = 10, 0.94 for n = 30, and 0.99 for n = 50.

c. 𝜆 = 2nΔ2. The powers are 0.05, 0.46, and 0.97 for Δ = 0, 0.5, 1.0.

3.9 a. Let y =
(

y1
y2

)
, X =

(
1n1

1n1

1n2
0n2

)
and 𝜷 =

(
𝛽0
𝛽1

)
. Then E(y) = X𝜷 and

𝜇1 = 𝛽0 + 𝛽1 and 𝜇2 = 𝛽0. Thus 𝜇1 − 𝜇2 = 𝛽1.

c. H0 : 𝜇1 = 𝜇2 is H0 : 𝛽1 = 0 and H1 : 𝛽1 ≠ 0. We can use the decomposition

yTy = yTP0y + yT(PX − P0)y + yT(I − PX)y,

finding that (1∕𝜎2)yT(PX − P0)y = (1∕𝜎2)(ȳ1 − ȳ2)2( 1
n1

+ 1
n2

)−1 ∼ 𝜒2
1,𝜆,

where 𝜆 = 0 under H0, and (1∕𝜎2)yT(I − PX)y = (1∕𝜎2)(n1 + n2 − 2)s2 ∼
𝜒2

n1+n2−2, where s2 is the pooled variance estimate. The test statistic is thus

(ȳ1 − ȳ2)2
( 1

n1
+ 1

n2

)−1

s2
=

(ȳ1 − ȳ2)2

s2
( 1

n1
+ 1

n2

) ∼ F1,n1+n2−2.

d. The square root of F gives the t statistic, which has df = n1 + n2 − 2.

3.10 (ȳ1 − ȳ2) ± t𝛼∕2,n1+n2−2s
√

1
n1

+ 1
n2

3.13 d. df values are r − 1, c − 1, (r − 1)(c − 1), (N − rc). Each mean square =
SS/df . For H0: no interaction, test statistic F = (interaction MS)/(residual
MS) has df1 = (r − 1)(c − 1), df2 = N − rc.

3.15 For models k = 0 and 1, substitute 1 − R2
k = (1 − R2

adj,k)[(n − pk)∕(n − 1)] and
simplify.

3.17 a. Under the general linear hypothesis framework, let 𝚲 be a single row of 0s
except for 1 in position j and −1 in position k. The F test of H0: 𝚲𝜷 = 0
gives

F =
(𝚲𝜷)T[𝚲(XTX)−1𝚲T]−1𝚲𝜷

s2
=

(𝛽j − 𝛽k)2

s2𝚲(XTX)−1𝚲T
∼ F1,n−p.

The denominator simplifies to [SE2
j + SE2

k
− 2ĉov(𝛽j, 𝛽k)].
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b. Equivalently, the F test compares the model M1 with p parameters and the
simpler model M0 that replaces columns for x∗j and x∗k in the model matrix
with a single column for x∗j + x∗k.

3.19 a. 𝚲 =
⎛⎜⎜⎝

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

⎞⎟⎟⎠.

b. df1 = c − 2, df2 = n − c.

c. Quantitative model has disadvantage that true relationship may be far from
linear in the chosen scores (e.g., nonmonotonic), and qualitative model has
disadvantage of lower power for detecting effect if true relationship is close
to linear.

3.20 𝓵𝜷 ± t𝛼∕2,n−ps
√

𝓵(XTX)−1𝓵T.

Special case (𝛽j − 𝛽k) ± t𝛼∕2,n−p

√
SE2

j + SE2
k − 2ĉov(𝛽j, 𝛽k).

3.21 Hint: For the null model, ȳ is the estimated linear predictor.

3.22 The actual P[|y − ȳ|∕𝜎√1 + 1
n
≤ 1.96]

= Φ
(

1.96
√

1 + 1
n
+ zo∕

√
n

)
− Φ

(
−1.96

√
1 + 1

n
+ zo∕

√
n

)
.

3.23 Squared partial correlation = (SSE0 − SSE1)∕SSE0.

3.26 With 𝛼 = 0.05, over most values of c and n, the ratio is on the order 0.96–0.98.
For example, you can find the ratio in R using

> qtukey(1-alpha, c, c*(n-1))/(sqrt(2)*qt(1 - alpha/
(c*(c-1)), c*(n-1)))

3.30 When xi is uniformly distributed over (2.0, 4.0), R2 ≈ 0.34. When xi is
uniformly distributed over (3.5, 4.0), R2 ≈ 0.05. The wider the range sam-
pled for the explanatory variable, the larger R2 tends to be, because in
R2 = 1 − SSE/TSS, SSE tends to be unaffected but TSS tends to increase.

3.28 Expect same E(𝛽1) and 𝜎2 but larger SE for 𝛽1, since from Section 2.1.3,
var(𝛽1) = 𝜎2∕[

∑n
i=1(xi − x̄)2].

Chapter 4

4.7 a. For observations in group A, since 𝜕𝜇A∕𝜕𝜂i is constant, the likelihood
equation corresponding to 𝛽1 sets

∑
A(yi − 𝜇A)∕𝜇A = 0, so �̂�A = ȳA. The

likelihood equation corresponding to 𝛽0 gives

∑
A

(yi − 𝜇A)

𝜇A

(
𝜕𝜇A

𝜕𝜂i

)
+
∑

B

(yi − 𝜇B)

𝜇B

(
𝜕𝜇B

𝜕𝜂i

)
= 0.
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The first sum is 0 from the first likelihood equation, and for observations in
group B, 𝜕𝜇B∕𝜕𝜂i is constant, so the second sum sets

∑
B(yi − 𝜇B)∕𝜇B = 0,

and �̂�B = ȳB.

4.9 W = 𝜎−2I, var(𝜷) = 𝜎2(XTX)−1

4.11 Hint: If you have difficulty with this exercise, see Section 1.4 of Agresti (2013).

4.12 Hint: Construct a large-sample normal interval for x0𝜷 and then apply the
inverse link function to the endpoints.

4.13

D(y; �̂�0) − D(y; �̂�1) = 2
∑

i

yi(�̂�1i − �̂�0i) +
�̂�2

0i

2
−
�̂�2

1i

2

=
∑

i

(yi − �̂�0i)
2 −

∑
i

(yi − �̂�1i)
2.

4.14 Note that
∑

i �̂�i =
∑

i yi is the likelihood equation generated by the intercept
when the link function is canonical.

4.16 a. di = 2[niyi log(yi∕�̂�i) + ni(1 − yi) log[(1 − yi)∕(1 − �̂�i)]].

4.20 For log likelihood L(𝜇) = −n𝜇 + (
∑

i yi) log(𝜇), the score is u = (
∑

i yi −
n𝜇)∕𝜇, H = −(

∑
i yi)∕𝜇2, and the information is n∕𝜇. It follows that the

adjustment to 𝜇(t) in Fisher scoring is [𝜇(t)∕n][(
∑

i yi − n𝜇(t))∕𝜇(t)] = ȳ − 𝜇(t),
and hence 𝜇(t+1) = ȳ. For Newton–Raphson, the adjustment to 𝜇(t) is
𝜇(t) − (𝜇(t))2∕ȳ, so that 𝜇(t+1) = 2𝜇(t) − (𝜇(t))2∕ȳ. Note that if 𝜇(t) = ȳ, then
also 𝜇(t+1) = ȳ.

4.22 If the link is not canonical,

𝜕𝜇i

𝜕𝜂i
=
𝜕𝜇i

𝜕𝜃i

𝜕𝜃i

𝜕𝜂i
= b′′(𝜃i)

𝜕𝜃i

𝜕𝜂i

𝜕Li

𝜕𝛽j
=

(yi − 𝜇i)

var(yi)
b′′(𝜃i)

𝜕𝜃i

𝜕𝜂i
xij =

(yi − 𝜇i)xij

a(𝜙)

𝜕𝜃i

𝜕𝜂i
.

Then, 𝜕2Li∕𝜕𝛽j𝜕𝛽k depends on yi, so 𝜕2L∕𝜕𝛽j𝜕𝛽k ≠ E(𝜕2L∕𝜕𝛽j𝜕𝛽k).

4.25 Hint: Apply Jensen’s inequality to E[− log(x)], where P[x = (pMj∕pj)] = pj.

4.27 a. If y has standard deviation 𝜎 = c𝜇, then using log(y) ≈ log(𝜇) + (y − 𝜇)∕𝜇,
we have var[log(y)] ≈ var(y)∕𝜇2 = c2.
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b. If log(yi) ∼ N(𝜇i, 𝜎
2), then E(yi) = e𝜇i+𝜎2∕2 by the mgf of a normal. Thus,

log[E(yi)] = 𝜇i + 𝜎2∕2 = E[log(yi)] + 𝜎2∕2.

c. Li is also the log-normal fitted median. If f (⋅) is a monotonic function,
median[f (x)] = f [median(x)]. Then, emedian(log(y)) = median(y) and eLi is
the ML estimate of the median of the conditional distribution of yi. The
median would often be more relevant because yi has a skewed distribution.

Chapter 5

5.5 a. Let P(y = 1) = p and P(y = 0) = 1 − p. By Bayes’ Theorem,

P(y = 1 ∣ x) =
P(x ∣ y = 1)p

P(x ∣ y = 1)p + P(x ∣ y = 0)(1 − p)

=
p(1∕

√
2𝜋𝜎) exp[−(x − 𝜇1)2∕2𝜎2]

p(1∕
√

2𝜋𝜎) exp[−(x − 𝜇1)2∕2𝜎2] + (1 − p)(1∕
√

2𝜋𝜎) exp[−(x − 𝜇0)2∕2𝜎2]

=
exp{log( p

1−p
) − 1

2𝜎2 [(x − 𝜇1)2 − (x − 𝜇0)2]}

1 + exp{log( p

1−p
) − 1

2𝜎2 [(x − 𝜇1)2 − (x − 𝜇0)2]}

=
exp[logit(p) − 1

2𝜎2 (𝜇2
1 − 𝜇

2
0) + 𝜇1−𝜇0

𝜎2 x]

1 + exp[logit(p) − 1

2𝜎2 (𝜇2
1 − 𝜇

2
0) + 𝜇1−𝜇0

𝜎2 x]
.

So, set 𝛼 = logit(p) − (1∕2𝜎2)(𝜇2
1 − 𝜇2

0) and 𝛽 = (𝜇1 − 𝜇0)∕𝜎2.

b. When x has a N(𝜇j, 𝜎
2
j ) distribution, then

P(y = 1 ∣ x) =
exp[logit(p) + log(𝜎0∕𝜎1) − (x − 𝜇1)2∕2𝜎2 + (x − 𝜇0)2∕2𝜎2]

1 + exp[logit(p) + log(𝜎0∕𝜎1) − (x − 𝜇1)2∕2𝜎2 + (x − 𝜇0)2∕2𝜎2]

Then 𝛼 = logit(p) + log(𝜎0∕𝜎1) − 𝜇2
1∕2𝜎2

1 − 𝜇2
0∕2𝜎2

0 , 𝛽 = (𝜇1∕𝜎2
1) −

(𝜇0∕𝜎2
0), and 𝛾 = −(1∕2)[(1∕𝜎2

1) − (1∕𝜎2
0)], where 𝛾 is the coefficient for

the quadratic term.

5.3 > x <- c(1,2,3,4,5,6,7,8)
> y <- c(1,1,0,0,0,0,1,1)
> fit.toy <- glm(y ~ x, family = binomial)
> library(ROCR)
> pred.toy <- prediction(fitted(fit.toy), y)
> perf.toy <- performance(pred.toy,"tpr","fpr")
> plot(perf. toy)
> performance(pred.toy, "auc")
[1] 0.5
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5.7 In terms of the probability 𝜋 that y = 1 at x0, 𝛽 = [logit(𝜋)]∕x0, var(𝛽) ≈
[n𝜋(1 − 𝜋)x2

0]−1, and the noncentrality goes to 0 as 𝛽 → ∞ (i.e., as 𝜋 → 1).
So, the Wald test loses power.

5.8 Condition on the margins of each 2×2 stratum. Let T be total number of
successes for treatment 1, summed over strata. P-value is P(T ≥ tobs) for
tables with the given margins, based on hypergeometric probabilities in each
stratum. For details, see Agresti (1992 or 2013, Section 7.3.5).

5.9 Hint: There are
(6

3

)
possible data configurations with 3 successes, all equally-

likely under H0. Exact P-value = 0.05.

5.14 a. Assuming 𝜋1 = ⋯ = 𝜋N = 𝜋, we can maximize

L(𝜋) =
N∑

i=1

yi log(𝜋) + (ni − yi) log(1 − 𝜋)

to show that �̂� = (
∑

i yi)(
∑

i ni). The Pearson statistic for ungrouped
data is

X2 =
∑ (observed − fitted)2

fitted

=
N∑

i=1

ni∑
j=1

(yij − �̂�)2

�̂�
+

[1 − yij − (1 − �̂�)]2

1 − �̂�

=
N∑

i=1

ni∑
j=1

(yij − �̂�)2

�̂�(1 − �̂�)
= N�̂�(1 − �̂�)

�̂�(1 − �̂�)
= N,

Because X2 = N, the statistic is completely uninformative.

5.16 a. Treating the data as N binomial observations and letting si =
∑ni

j=1 yij, the
kernel of the log likelihood (ignoring the binomial coefficients) is

L(𝝅) =
N∑

i=1

si log(𝜋i) + (ni − si) log(1 − 𝜋i).

Treating the data as n =
∑N

i=1 ni Bernoulli observations, the log likelihood
is

L(𝝅) =
N∑

i=1

ni∑
j=1

yij log(𝜋i) + (1 − yij) log(1 − 𝜋i)

=
N∑

i=1

si log(𝜋i) + (ni − si) log(1 − 𝜋i).
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b. For the saturated model case, the two data forms differ. Treating the data as
N binomial observations, there are N parameters 𝜋1,… ,𝜋N . Treating the
data as n Bernoulli observations, there are n parameters, {𝜋ij}.

c. The difference between deviances of two unsaturated models does not
depend on the form of data entry because the log likelihood of the saturated
model cancels out when taking the difference between deviances. It depends
only on the log likelihoods of the unsaturated models, which from (a) do
not depend on the form of data entry.

5.17 a. For the ungrouped case, the deviance for M0 is 16.3 and the deviance for
M1 is 11.0. For the ungrouped case, the deviance for M0 is 6.3 and the
deviance for M1 is 1.0. The saturated model in the ungrouped case has 12
parameters and the log likelihood of the saturated model is 0 while the
saturated model in the grouped case has three parameters.

b. The differences between the deviances is the same (16.3 − 11.0 = 6.3 −
1.0 = 5.3). The log likelihoods for the grouped and ungrouped cases only
differ by the binomial coefficients. The difference between deviances is
double the difference in the log likelihoods. The difference between the log
likelihoods for either case is

D0 − D1 = −2[L(�̂�0; y) − L(y; y)] + 2[L(�̂�1; y) − L(y; y)]

= 2[L(�̂�1; y) − L(�̂�0; y)].

For the grouped case, the binomial coefficients cancel out.

5.22 a.
P(y = 1) = P(U1 > U0) = P(𝛽10 + 𝛽11x + 𝜖1 > 𝛽00 + 𝛽01x + 𝜖0)

= P
{

(1∕
√

2)(𝜖0 − 𝜖1) < (1∕
√

2)[𝛽10 − 𝛽00 + (𝛽11 − 𝛽01)x]
}

(11.2)

= Φ(𝛽′0 + 𝛽
′
1x) with 𝛽′0 = (1∕

√
2)(𝛽10 − 𝛽00) and 𝛽′1 = (1∕

√
2)(𝛽11 − 𝛽01).

Chapter 6

6.4

𝜕𝜋3(x)

𝜕x
= −

[𝛽1 exp(𝛼1 + 𝛽1x) + 𝛽2 exp(𝛼2 + 𝛽2x)]

[1 + exp(𝛼1 + 𝛽1x) + exp(𝛼2 + 𝛽2x)]2
.

a. Denominator > 0 and numerator < 0 when 𝛽1 > 0 and 𝛽2 > 0.
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6.6 b.

𝜋ij = P(uij > uik ∀j ≠ k) = E[P(uij > uik ∀j ≠ k ∣ uij)]

= E

[∏
k≠j

P(𝛼k + xi𝛽k + 𝜖ik < uij ∣ uij)

]
= E

[∏
k≠j

Φ(uij − 𝛼k − xi𝛽k) ∣ uij

]

=
∫
𝜙(uij − 𝛼j − xi𝛽j)

∏
k≠j

Φ(uij − 𝛼k − xi𝛽k)duij

We can form the likelihood by noting that 𝓁 =
∏N

i=1
∏c

j=1 𝜋
yij

ij .

6.8 For a baseline-category logit model with 𝛽j = j𝛽,

P(yi = j + 1 ∣ xi = u)

P(yi = j ∣ xi = u)
= eu(j+1)𝛽∕euj𝛽 = eu𝛽 .

Thus, the odds ratio comparing xi = u versus xi = v is

P(yi = j + 1 ∣ xi = u)

P(yi = j ∣ xi = u)

/
P(yi = j + 1 ∣ xi = v)

P(yi = j ∣ xi = v)
= e(u−v)𝛽 .

Note that the odds ratio does not depend on j (i.e., proportional odds structure
for adjacent-category logits).

6.9 See Agresti (2013, Section 16.5) for details.

6.13 a. For j < k, logit[P(y ≤ j ∣ x = xi)] − logit[P(y ≤ k ∣ x = xi)] = (𝛼j − 𝛼k) +
(𝛽j − 𝛽k)xi. This difference of logits cannot be positive since P(y ≤ j)
≤ P(y ≤ k); however, if 𝛽j > 𝛽k then the difference is positive for large
positive xi, and if 𝛽j < 𝛽k then the difference is positive for large
negative xi.

b. You need monotone increasing {𝛼j + 𝛽j}.

6.16 d. Hint: Show that var(T)∕var(S) is a squared correlation between two random
variables, where with probability 𝜋j the first equals bj and the second equals
f ′j (𝜃)∕fj(𝜃).

Chapter 7

7.4 2
∑

i yi log(yi∕ȳ), chi-squared with df = 1 when 𝜇1 and 𝜇2 are large.

7.7 a. Use that under H0, conditional on n the data have a multinomial distribution
with equal probabilities.
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7.9 For this model, 𝜕𝜇i∕𝜕xij = 𝛽j𝜇i and the likelihood equation for the intercept
is
∑

i 𝜇i =
∑

i yi.

7.11 �̂�ijk = ni+kn+jk∕n++k, the same as applying the ordinary independence model
to each partial table. The residual df = 𝓁(r − 1)(c − 1).

7.16 Baseline-category logit model with additive factor effects for B and C.

7.21 See Greenwood and Yule (1920).

7.23 a.

f (y;𝜇, k) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
𝜇

𝜇 + k

)y (
k

𝜇 + k

)k

= exp
[

y log 𝜇

𝜇 + k
+ k log k

𝜇 + k
+ log Γ(y + k) − log Γ(k) + log Γ(y + 1)

]

Let 𝜃 = log[𝜇∕(𝜇 + k)], b(𝜃) = − log(1 − e𝜃), and a(𝜙) = 1∕k.

b. Letting x = ya(𝜙),

f (x;𝜇, k) = exp
{

x log[𝜇∕(𝜇 + k)] + log[k∕(𝜇 + k)]

1∕k

+ log Γ(y + k) − log Γ(k) + log Γ(y + 1) + log k

}

where the log k at the end of the equation is the Jacobian.

7.25 The likelihood is proportional to [k∕(𝜇 + k)]nk[𝜇∕(𝜇 + k)]
∑

i yi . The log like-
lihood depends on 𝜇 through

−nk log(𝜇 + k) +
∑

i

yi[log𝜇 − log(𝜇 + k)].

Differentiating with respect to 𝜇, setting equal to 0, and solving for 𝜇 yields
�̂� = ȳ.

7.27 From including the GR term, the likelihood equations imply that the fitted GR
marginal totals equal the sample values. For example, the sample had 1040
white females, and necessarily the fitted model will have 1040 white females.
The model with AC, AM, CM, AG, AR, GM, GR two-factor terms and no
three-factor interaction terms fits well (G2 = 19.9, df = 19).
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Chapter 8

8.2 For a beta-binomial random variable s, var(s) = E[n𝜋(1 − 𝜋)] + var(n𝜋) =
nE(𝜋) − nE(𝜋2) + n[(E𝜋)2 − (E𝜋)2] + n2var(𝜋) = nE(𝜋)[1 − E(𝜋)] + n(n −
1)var(𝜋) = n𝜇(1 − 𝜇) + n(n − 1)𝜇(1 − 𝜇)𝜃∕(1 + 𝜃) = n𝜇(1 − 𝜇)[1 + (n − 1)
𝜃∕(1 + 𝜃)].

8.5 a. If logit(yi) = 𝛽i + 𝜎z, then yi = (e𝛽i+𝜎z)∕(1 + e𝛽i+𝜎z). Taking f (𝜎) =
(e𝛽i+𝜎z)∕(1 + e𝛽i+𝜎z) and expanding f (𝜎) around f (0) by Taylor approx-
imation,

yi =
e𝛽i

1 + e𝛽i
+ e𝛽i

1 + e𝛽i

1
1 + e𝛽i

𝜎z + e𝛽i (1 − e𝛽i)

2(1 + e𝛽i)3
𝜎2z2 +⋯

b. Using this approximation and the fact that E(z) = 0 and var(z) = 1, we have
E(yi) ≈ 𝜇i and var(yi) ≈ [𝜇i(1 − 𝜇i)]

2𝜎2.

c. The binomial approximation would imply that for a single region v(𝜇i) =
𝜙𝜇i(1 − 𝜇i). This approach is inappropriate when ni = 1 since in that
case 𝜙 = 1. Regardless of ni, the binomial distribution assumes the small
regions are independent, but contiguous regions would likely have depen-
dent results.

8.8 For the null model 𝜇i = 𝛽 and v(𝜇i) = 𝜎2,

u(𝛽) =
n∑

i=1

𝜕𝜇i

𝜕𝛽
v(𝜇i)

−1(yi − 𝜇i) =
n∑

i=1

yi − 𝜇i

𝜎2
.

Thus 𝛽 = ȳ and the variance of 𝛽 is V = 𝜎2∕n. A sensible model-based estimate
of V is V̂ = (1∕n2)

∑n
i=1(yi − ȳ)2. The actual asymptotic variance of 𝛽 is

V

[
n∑

i=1

𝜕𝜇i

𝜕𝛽

var(yi)

v(𝜇i)2

𝜕𝜇i

𝜕𝛽

]
V = 𝜎2

n

(
n∑

i=1

𝛽

𝜎4

)
𝜎2

n
= 𝛽

n
.

To find the robust estimate of the variance that adjusts for model misspeci-
fication, we replace var(yi) in the expression above with (yi − ȳ)2, leading to
[
∑n

i=1(yi − ȳ)2]∕n2.

8.11 The model-based estimator tends to be better when the model holds, and the
robust estimator tends to be better when there is severe overdispersion so that
the model-based estimator tends to underestimate the actual SE.

8.17 b. Hint: Is it realistic to treat the success probability as identical from shot to
shot?
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Chapter 9

9.3 Hint: Use (2.7) with A = In −
1
n
1
n
1T
n

, for which 𝝁TA𝝁 = 0.

9.8 Hint: See Exercise 9.8 for correlations for the autoregressive structure.

9.21 Hints: The covariance is the same for any pair of cells in the same row, and
var(

∑
j yij) = 0 since yi+ is fixed. If (x1,… , xd) is multivariate normal with

common mean and common variance 𝜎2 and common correlation 𝜌 for pairs
(xj, xk), then [

∑
j(xj − x̄)2]∕𝜎2(1 − 𝜌) is chi-squared with df = (d − 1).

9.19 b. Given Si = 0, P(yi1 = yi2 = 0) = 1. Given Si = 2, P(yi1 = yi2 = 1) = 1.
Given yi1 + yi2 = 1,

P(yi1, yi2 ∣ Si = 1) = exp(𝛽1)∕[1 + exp(𝛽1)], yi1 = 0, yi2 = 1

= 1∕[1 + exp(𝛽1)], yi1 = 1, yi2 = 0.

9.20 a. Hint: Apply the law of large numbers due to A. A. Markov for indepen-
dent but not identically distributed random variables, or use Chebyshev’s
inequality.

9.22 P(yij = 1 ∣ ui) = Φ(xij𝜷 + zijui), so

P(yij = 1) =
∫

P(z ≤ xij𝜷 + zijui)f (u;𝚺)dui,

where z is a standard normal variate that is independent of ui. Since z −
zijui has an N(0, 1 + zij𝚺zT

ij) distribution, the probability in the integrand is

Φ(xij𝜷[1 + zij𝚺zT
ij]

−1∕2), which does not depend on ui, so the integral is the
same. The parameters in the marginal model equal those in the GLMM divided

by [1 + zij𝚺zT
ij]

1∕2, which in the univariate case is
√

1 + 𝜎2.

9.24

cov(yij, yik) = E[cov(yij, yik ∣ ui)] + cov[E(yij ∣ ui), E(yik ∣ ui)]

= 0 + cov[exp(xij𝜷 + ui), exp(xik𝜷 + ui)].

The functions in the last covariance term are both monotone increasing func-
tions of ui, and hence are nonnegatively correlated.

9.31 Hint: See Diggle et al. (2002, Sec. 4.6).
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Chapter 10

10.1 Given
∑

yi = n, (y1,… , yc) have a multinomial distribution for n trials with
probabilities {𝜋i = 1∕c}, and yi has a binomial distribution with index n and
parameter 𝜋 = 1∕c. The {yi} are exchangeable but not independent.

10.4 Normal with mean (
𝚺−1

0 + n𝚺−1)−1 (𝚺−1
0 𝝁0 + n𝚺−1ȳ

)
and covariance matrix (𝚺−1

0 + n𝚺−1)−1.

10.5 E(𝜎2 ∣ y) = ws2 + (1 − w)E(𝜎2), where w = (n − p)∕(n − p + 𝜈0 − 2).

10.9

E(�̃� − 𝜋)2 =
( n

n + n∗

)2 𝜋(1 − 𝜋)
n

+
(

n∗

n + n∗

)2

(𝜇 − 𝜋)2.

10.11 a. ML estimate = 0, confidence interval = (0.0, 0.074).

b. Posterior mean= 1/27= 0.037, posterior 95% equal-tail interval is (0.001,
0.132), 95% HPD interval is (0, 0.109) where 0.109 is 95th percentile of
beta(1, 26) density.

Chapter 11

11.6 X = In, so

𝜷 = (XTX + 𝜆I)−1XTy = y∕(1 + 𝜆).

This has greater shrinkage of the ML estimate 𝜷 = y as 𝜆 increases.

11.9 Hint: Can the Dirichlet recognize ordered categories, such as higher corre-
lation between probabilities closer together? Can it recognize hierarchical
structure?

11.10 a. �̃�(x) converges to the overall sample proportion, �̂� = (
∑

i yi)∕n, and the
estimated asymptotic variance is approximately �̂�(1 − �̂�)∕n.

11.11 Hint: At the first stage, can you fit the model with ordinary least squares?
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Model checking, 101–105, 132–138

Bayesian, 339, 358
Model matrix, 3, 10–13
Model selection, 143–156

high-dimensional, 375–377
Model space, 11
Model sum of squares, see Regression sum

of squares
Monte Carlo methods, 313, 336–337
Multicollinearity, see Collinearity
Multilevel models, 296–299, 310–311,

323
Multinomial distribution, 202

natural parameters, 205
Poisson connection, 236

Multinomial logit model, see
Baseline-category logit model

Multinomial models
Bayesian, 358
large p, 377–378, 387
logit, 202–227
marginal, 324
random effects, 323

Multinomial probit model, 224
Multiple comparisons, 107–111

false discovery rate, 110–112, 377
Multiple correlation, 55, 71

binomial models, 172
GLM, 147
multinomial models, 212

Multivariate GLM, 204–205, 223, 286–332
Bayesian, 358

Multivariate normal distribution, 81
linear mixed model, 300
multivariate regression, 314

Mutual independence, 262

Natural exponential family, 121
Nearest-neighbors smoothing, 379–380
Negative binomial distribution, 248, 260

beta-binomial connection, 283
distribution of sum, 283
exponential family, 263

mode, 248
NB1 and NB2, 250
Poisson connection, 248, 250
variance proportional to mean, 250
zero-inflated, 252, 260

Negative binomial GLMs, 249–259, 267,
309

Nested models, 36, 88–95, 158
Nesting of categories, 8, 23, 296
Newton–Raphson method, 138–143

logistic regression, 176–177
Neyman–Scott phenomenon, 292
Nominal variable, 9

modeling, 203–209, 216–219, 324
random effects, 323

Noncentral distributions, 83–85, 91–92
Noninferiority testing, 94
Nonlinear regression, 385–387
Normal equations, 28, 32
Normal quadratic forms, 84–86
Null model, 41–43, 74, 86, 90, 112
Null space, 11

Odds ratio
Bayesian inference, 361
collapsibility, 246
logistic regression, 169, 349
loglinear models, 239, 240, 243

Offset, 233
Omitted variable bias, 62
One standard error rule, 367
One-way layout, 12–13, 43–47

ANOVA, 86–87
Bayesian, 342
count data, 231
empirical Bayes, 352
multiple comparisons, 109–110

Ordered logit model, 209–214
Ordinal variable, 9

analysis using ordinary regression,
214–216

cumulative link models, 212
cumulative logit models, 209–214
cumulative probit model, 212
modeling, 209–216, 219–227, 324
random effects, 323

Orthogonal complement, 31
Orthogonal decomposition, 31, 32, 36, 41,

46, 49, 51, 53, 135
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Orthogonal parameters, 38
GLM, 127, 157
one-way layout, 76
two-way layout, 76

Orthogonal projection, 34, 72
Orthogonality

GLMs, 156–157
orthogonal vectors, 31, 32, 73
uncorrelated vectors, 73

Overdispersion, 247–248, 259
beta-binomial models, 278
binomial GLMs, 270–278, 282,

283
Poisson GLM, 247–250, 259, 269–270
quasi-likelihood, 269–278

Panel data, see Longitudinal studies
Parsimony, 3, 20

model selection, 145, 146, 164
model smoothing, 145, 226, 382

Partial correlation, 62, 71, 106–107
Partial proportional odds model, 223
Partial regression plot, 60
Partial sum of squares, 53–54
Pearson chi-squared statistic, 135

binomial GLM, 180
comparing models, 135, 158
multinomial model, 207
Poisson GLM, 231, 233, 238

Pearson residual
binomial GLM, 181, 196
GLM, 136
Poisson GLM, 137, 244

Penalized likelihood, 366–374, 387
GAMs, 383, 387
quasi-likelihood (PQL), 313

Perfect discrimination, 178
Poisson distribution, 229

exponential family form, 122
multinomial connection, 236
negative binomial connection, 248
overdispersion, 247, 248, 269
properties, 229
truncated, 252–254, 260
variance test, 233
zero-inflated, 251–252, 260

Poisson GLM, 5, 230–235, 259
Bayesian, 358
deviance, 133

generalized linear mixed model,
307–310, 328

overdispersion, 247–250, 269–270, 310
Pearson residual, 137, 244
standardized residuals, 137, 244

Poisson loglinear model, 5, 125, 230–247
binary outcome, 199
covariance matrix, 127, 231
GLMM, 309–310
likelihood equations, 125, 230

Population-averaged effect, 291, 293
Positive predictive value, 361
Posterior distribution, 334
Posterior interval, 338
Power of F test, 92
Precision, 341
Prediction interval, 96–99

Bayesian, 339, 345
Predictive distribution, 334
Predictive power

binary regression, 170–172
GLM, 147
R-squared, 54

Principal component analysis, 376
Prior distribution, 334–336

beta, 336
binary GLM, 347
binary response probabilities, 336
conjugate, 335, 336, 357
Dirichlet, 377
improper, 335, 343–347
Jeffreys, 335
multivariate normal, 347
subjective, 334

Probit model, 167, 183–184
Bayesian fitting, 350–351
cumulative probit, 212–213
GLMM, 308, 328
history, 194
interpreting effects, 183–184
threshold model, 183

Profile likelihood confidence interval, 132
odds ratio, 179
software, 132

Projection matrix, 29, 33–37
decomposition, 35, 84–86
hat matrix, 35
least squares fit, 39
normal quadratic form, 84–86
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Projection matrix (Continued)
null model, 42
one-way layout, 45, 86
orthogonal, 34, 72
two-way layout, 48

Propensity score, 194
Proportional hazards model, 234
Proportional odds model

cumulative logit, 209–212, 223
testing fit, 213–214

Proportional reduction in variation, 147
Purposeful selection, 145
Pythagoras’s theorem, 39–41

Q-Q plot, 57, 101
QR decomposition, 72
Qualitative variable, 7

response, 203–209
Quantile regression, 384–385, 387
Quantitative variable, 7
Quasi-complete separation, 179, 187, 348,

374
Quasi-likelihood methods, 268–285

binomial overdispersion, 270–278, 282
GEE for clustered data, 316–318
Poisson overdispersion, 247–250,

269–270, 282

R (software)
aod package, 277
arm package, 346
biglm function, 15
cond package, 132, 188
confint function, 132
gam package, 384
gee package, 281, 321
glm function, 15, 148, 154, 178, 187,

235, 244, 255, 271, 275, 348, 371,
374, 383

glmmML package, 320
glmnet package, 369, 372
hmmm package, 319
lars package, 369
lm function, 15, 64, 101–106
lme4 package, 298
logistf package, 374
MASS package, 154, 164, 255, 271, 366,

369
MCMCglmm package, 357

MCMCpack package, 345, 349
nlme package, 301
nnet package, 217
ProfileLikelihood package, 132,

220
pscl package, 256
ridge package, 369
ROCR package, 190
truncreg package, 116
VGAM package, 217, 223, 254, 256, 276,

383
R-squared measures, 54–56, 71

F statistic, 114
adjusted, 55, 64, 71, 114
binomial models, 172
GLM, 147
multinomial models, 212

Random explanatory variables, 20
Random-effects models, see Generalized

linear mixed models
Random-intercept model, 289
Randomized block design, 47
Rank, 11

projection matrix, 35
Rasch model, 307
Rate data, 233–235
Regression model, 2, 5, 7, 17

OLS with ordinal data, 216
Regression sum of squares, 51–56

comparing models, 52, 74
Regression toward the mean, 30
Regularization methods, 33, 366–378,

386–387
REML, 306–307, 323, 324
Residual ML, see REML
Residual sum of squares, 51–52, 54, 88–89
Residuals, 32

data=fit+residuals, 40
deviance, 137, 182
GLMs, 136–138
Pearson, 136, 181, 244
plots, 56–57, 74, 103, 116
Pythagoras’s theorem, 39
standardized, 137, 158, 182, 244
uncorrelated with fitted values, 56,

135–136
Retrospective studies, 170
Ridge regression, 367, 386
Robust regression, 128, 365–374, 386
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Sandwich covariance matrix, 279–282,
317–318

Saturated model, 74, 132
loglinear, 241

Scheffé method, 112
Score function, 129
Score test, 158

comparing GLMs, 158
confidence interval, 131
goodness of fit of GLM, 135
Pearson chi-squared statistic, 135, 158

Selection bias, 116, 147
Sensitivity, 171–172
Sequential sum of squares, 52–54
Shrinkage estimator, 68, 341, 366, 368, 369,

373
Bayesian, 338, 343, 347, 353–357,

378
Simpson’s paradox, 105, 328
Simultaneous confidence intervals, 107–110
Simultaneous testing, 197
Small-area estimation, 304, 323
Small-dispersion asymptotics, 128, 133,

136, 137, 166, 181
Smoothing, 387

generalized additive model, 378
kernel, 379–380
penalized likelihood, 374

Sparse structure, 376
Spatial data, 323, 387
Specificity, 171–172
Spectral decomposition, 68, 85
Spline function, 380, 387
SSE (sum of squared errors), 51
SSR (regression sum of squares), 51
Standardized regression coefficients, 21
Standardized residuals, 57–58

binomial GLM, 182, 196
GLM, 137, 158
loglinear model, 244
Poisson, 158

Stepwise procedures, 143–146, 376
Stochastic ordering

ordinal response, 213
Studentized range distribution, 109
Studentized residual, 58
Subject-specific effect

binary matched pairs, 291–293
generalized linear mixed model, 293

Sum of squared errors, see Residual sum of
squares

Survival model, 226, 233–235, 261, 323

t distribution, 82
approximation of logistic, 351
noncentral, 83

Threshold model, 166–167, 198
ordinal response, 211

Time series, 294, 322
Toeplitz correlation structure, 302
Tolerance distribution, 198
Total sum of squares, 47, 51
Transforming data, 6, 20, 229–230
Transition model, 294, 323
Truncated discrete model, 252–254, 260
Truncated regression, 116
TSS (total sum of squares), 51
Tukey multiple comparisons, 109–110, 112
Two-way layout, 22–23, 47–49

ANOVA, 113–114

Unbiased estimating function, 278, 282,
284

Utility model, 198

Variable selection, 143–156, 159, 375–377
Bayesian, 358, 387
high-dimensional, 375–378

Variance
Bayesian inference, 343–345
estimating in linear model, 49–50, 70
estimating using REML, 306–307
inflated variance function, 269–273
modeling, 282

Variance components, 295, 296
Variance inflation factor, 148
Variance-stabilizing transformations, 6, 20,

229–230
Vector space, 11

Wald statistic, 129
aberrant behavior for binary GLM, 174,

195
confidence interval, 131
dependence on parameterization, 174

Weight matrix, 142
Weighted least squares, 69, 140–142, 284,

381
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Wilks’ lambda, 315
Wishart distribution, 351
Within-groups sum of squares, 46
Within-subject effects, 287, 293

Yule’s parameter notation, 10,
60–62

Zero count
infinite estimates, 179

Zero-inflated negative binomial model, 252,
260

Zero-inflated Poisson model, 251–252,
256–257, 260

Zero-truncated model, 254, 260
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KLEMELÄ � Smoothing of Multivariate Data: Density Estimation and Visualization
KLUGMAN, PANJER, and WILLMOT � Loss Models: From Data to Decisions, Third

Edition
KLUGMAN, PANJER, and WILLMOT � Loss Models: Further Topics
KLUGMAN, PANJER, and WILLMOT � Solutions Manual to Accompany Loss Models:

From Data to Decisions, Third Edition
KOSKI and NOBLE � Bayesian Networks: An Introduction
KOTZ, BALAKRISHNAN, and JOHNSON � Continuous Multivariate Distributions,

Volume 1, Second Edition
KOTZ and JOHNSON (editors) � Encyclopedia of Statistical Sciences: Volumes 1 to 9

with Index
KOTZ and JOHNSON (editors) � Encyclopedia of Statistical Sciences: Supplement

Volume
KOTZ, READ, and BANKS (editors) � Encyclopedia of Statistical Sciences: Update

Volume 1
KOTZ, READ, and BANKS (editors) � Encyclopedia of Statistical Sciences: Update

Volume 2
KOWALSKI and TU � Modern Applied U-Statistics
KRISHNAMOORTHY and MATHEW � Statistical Tolerance Regions: Theory,

Applications, and Computation

*Now available in a lower priced paperback edition in the Wiley Classics Library.
†Now available in a lower priced paperback edition in the Wiley–Interscience Paperback Series.



KROESE, TAIMRE, and BOTEV � Handbook of Monte Carlo Methods
KROONENBERG � Applied Multiway Data Analysis
KULINSKAYA, MORGENTHALER, and STAUDTE � Meta Analysis: A Guide to

Calibrating and Combining Statistical Evidence
KULKARNI and HARMAN � An Elementary Introduction to Statistical Learning Theory
KUROWICKA and COOKE � Uncertainty Analysis with High Dimensional Dependence

Modelling
KVAM and VIDAKOVIC � Nonparametric Statistics with Applications to Science and

Engineering
LACHIN � Biostatistical Methods: The Assessment of Relative Risks, Second Edition
LAD � Operational Subjective Statistical Methods: A Mathematical, Philosophical, and

Historical Introduction
LAMPERTI � Probability: A Survey of the Mathematical Theory, Second Edition
LAWLESS � Statistical Models and Methods for Lifetime Data, Second Edition
LAWSON � Statistical Methods in Spatial Epidemiology, Second Edition
LE � Applied Categorical Data Analysis, Second Edition
LE � Applied Survival Analysis
LEE � Structural Equation Modeling: A Bayesian Approach
LEE and WANG � Statistical Methods for Survival Data Analysis, Fourth Edition
LePAGE and BILLARD � Exploring the Limits of Bootstrap
LESSLER and KALSBEEK � Nonsampling Errors in Surveys
LEYLAND and GOLDSTEIN (editors) � Multilevel Modelling of Health Statistics
LIAO � Statistical Group Comparison
LIN � Introductory Stochastic Analysis for Finance and Insurance
LINDLEY � Understanding Uncertainty, Revised Edition
LITTLE and RUBIN � Statistical Analysis with Missing Data, Second Edition
LLOYD � The Statistical Analysis of Categorical Data
LOWEN and TEICH � Fractal-Based Point Processes
MAGNUS and NEUDECKER � Matrix Differential Calculus with Applications in

Statistics and Econometrics, Revised Edition
MALLER and ZHOU � Survival Analysis with Long Term Survivors
MARCHETTE � Random Graphs for Statistical Pattern Recognition
MARDIA and JUPP � Directional Statistics
MARKOVICH � Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and

Practice
MARONNA, MARTIN and YOHAI � Robust Statistics: Theory and Methods
MASON, GUNST, and HESS � Statistical Design and Analysis of Experiments with

Applications to Engineering and Science, Second Edition
McCULLOCH, SEARLE, and NEUHAUS � Generalized, Linear, and Mixed Models,

Second Edition
McFADDEN � Management of Data in Clinical Trials, Second Edition

* McLACHLAN � Discriminant Analysis and Statistical Pattern Recognition
McLACHLAN, DO, and AMBROISE � Analyzing Microarray Gene Expression Data
McLACHLAN and KRISHNAN � The EM Algorithm and Extensions, Second Edition
McLACHLAN and PEEL � Finite Mixture Models
McNEIL � Epidemiological Research Methods
MEEKER and ESCOBAR � Statistical Methods for Reliability Data
MEERSCHAERT and SCHEFFLER � Limit Distributions for Sums of Independent

Random Vectors: Heavy Tails in Theory and Practice
MENGERSEN, ROBERT, and TITTERINGTON � Mixtures: Estimation and

Applications

*Now available in a lower priced paperback edition in the Wiley Classics Library.
†Now available in a lower priced paperback edition in the Wiley–Interscience Paperback Series.



MICKEY, DUNN, and CLARK � Applied Statistics: Analysis of Variance and
Regression, Third Edition

* MILLER � Survival Analysis, Second Edition
MONTGOMERY, JENNINGS, and KULAHCI � Introduction to Time Series Analysis

and Forecasting
MONTGOMERY, PECK, and VINING � Introduction to Linear Regression Analysis,

Fifth Edition
MORGENTHALER and TUKEY � Configural Polysampling: A Route to Practical

Robustness
MUIRHEAD � Aspects of Multivariate Statistical Theory
MULLER and STOYAN � Comparison Methods for Stochastic Models and Risks
MURTHY, XIE, and JIANG � Weibull Models
MYERS, MONTGOMERY, and ANDERSON-COOK � Response Surface Methodology:

Process and Product Optimization Using Designed Experiments, Third Edition
MYERS, MONTGOMERY, VINING, and ROBINSON � Generalized Linear Models.

With Applications in Engineering and the Sciences, Second Edition
NATVIG � Multistate Systems Reliability Theory With Applications

† NELSON � Accelerated Testing, Statistical Models, Test Plans, and Data Analyses
† NELSON � Applied Life Data Analysis

NEWMAN � Biostatistical Methods in Epidemiology
NG, TAIN, and TANG � Dirichlet Theory: Theory, Methods and Applications
OKABE, BOOTS, SUGIHARA, and CHIU � Spatial Tesselations: Concepts and

Applications of Voronoi Diagrams, Second Edition
OLIVER and SMITH � Influence Diagrams, Belief Nets and Decision Analysis
PALTA � Quantitative Methods in Population Health: Extensions of Ordinary Regressions
PANJER � Operational Risk: Modeling and Analytics
PANKRATZ � Forecasting with Dynamic Regression Models
PANKRATZ � Forecasting with Univariate Box-Jenkins Models: Concepts and Cases
PARDOUX � Markov Processes and Applications: Algorithms, Networks, Genome and

Finance
PARMIGIANI and INOUE � Decision Theory: Principles and Approaches

* PARZEN � Modern Probability Theory and Its Applications
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