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This book presents a clear and concise introduction to statistics and econometrics. A course in statistics
or econometrics is often one of the most useful but also one of the most difficult of the required courses
in colleges and universities. The purpose of this book is to help overcome this difficulty by using a
problem-solving approach.

Each chapter begins with a statement of theory, principles, or background information, fully illu-
strated with examples. This is followed by numerous theoretical and practical problems with detailed,
step-by-step solutions. While primarily intended as a supplement to all current standard textbooks of
statistics and/or econometrics, the book can also be used as an independent text, as well as to supplement
class lectures.

The book is aimed at college students in economics, business administration, and the social sciences
taking a one-semester or a one-year course in statistics and/or econometrics. It also provides a very
useful source of reference for M.A. and M.B.A. students and for all those who use (or would like to use)
statistics and econometrics in their work. No prior statistical background is assumed.

The book is completely self-contained in that it covers the statistics (Chaps. 1 to 5) required for
econometrics (Chaps. 6 to 11). It is applied in nature, and all proofs appear in the problems section
rather than in the text itself. Real-world socioeconomic and business data are used, whenever possible,
to demonstrate the more advanced econometric techniques and models. Several sources of online data
are used, and Web addresses are given for the student’s and researcher’s further use (App. 12). Topics
frequently encountered in econometrics, such as multicollinearity and autocorrelation, are clearly and
concisely discussed as to the problems they create, the methods to test for their presence, and possible
correction techniques. In this second edition, we have expanded the computer applications to provide a
general introduction to data handling, and specific programming instruction to perform all estimations
in this book by computer (Chap. 12) using Microsoft Excel, Eviews, or SAS statistical packages. We
have also added sections on nonparametric testing, matrix notation, binary choice models, and an entire
chapter on time series analysis (Chap. 11), a field of econometrics which has expanded as of late. A
sample statistics and econometrics examination is also included.

The methodology of this book and much of its content has been tested in undergraduate and
graduate classes in statistics and econometrics at Fordham University. Students found the approach
and content of the book extremely useful and made many valuable suggestions for improvement. We
have also received very useful advice from Professors Mary Beth Combs, Edward Dowling, and Damo-
dar Gujarati. The following students carefully read through the entire manuscript and made many
useful comments: Luca Bonardi, Kevin Coughlin, Sean Hennessy, and James Santangelo. To all of
them we are deeply grateful. We owe a great intellectual debt to our former professors of statistics and
econometrics: J. S. Butler, Jack Johnston, Lawrence Klein, and Bernard Okun.

We are indebted to the Literary Executor of the late Sir Ronald A. Fisher, F. R. S., to Dr. Frank
Yates, F. R. S., and the Longman Group Ltd., London, for permission to adapt and reprint Tables III
and IV from their book, Statistical Tables for Biological, Agricultural and Medical Research.

In addition to Statistics and Econometrics, the Schaum’s Outline Series in Economics includes
Microeconomic Theory, Macroeconomic Theory, International Economics, Mathematics for Economists,
and Principles of Economics.

DOMINICK SALVATORE
DERRICK REAGLE

New York, 2001
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Introduction

1.1 THE NATURE OF STATISTICS

Statistics refers to the collection, presentation, analysis, and utilization of numerical data to make
inferences and reach decisions in the face of uncertainty in economics, business, and other social and
physical sciences.

Statistics is subdivided into descriptive and inferential. Descriptive statistics is concerned with
summarizing and describing a body of data. Inferential statistics is the process of reaching general-
izations about the whole (called the population) by examining a portion (called the sample). In order
for this to be valid, the sample must be representative of the population and the probability of error also
must be specified.

Descriptive statistics is discussed in detail in Chap. 2. This is followed by (the more crucial)
statistical inference; Chap. 3 deals with probability, Chap. 4 with estimation, and Chap. 5 with hypoth-
esis testing.

EXAMPLE 1. Suppose that we have data on the incomes of 1000 U.S. families. This body of data can be

summarized by finding the average family income and the spread of these family incomes above and below the
average. The data also can be described by constructing a table, chart, or graph of the number or proportion of
families in each income class. This is descriptive statistics. If these 1000 families are representative of all U.S.

families, we can then estimate and test hypotheses about the average family income in the United States as a whole.
Since these conclusions are subject to error, we also would have to indicate the probability of error. This is
statistical inference.

1.2 STATISTICS AND ECONOMETRICS

Econometrics refers to the application of economic theory, mathematics, and statistical techniques
for the purpose of testing hypotheses and estimating and forecasting economic phenomena. Econo-
metrics has become strongly identified with regression analysis. This relates a dependent variable to one
or more independent or explanatory variables. Since relationships among economic variables are
generally inexact, a disturbance or error term (with well-defined probabilistic properties) must be
included (see Prob. 1.8).

Chapters 6 and 7 deal with regression analysis; Chap. 8 extends the basic regression model; Chap. 9
deals with methods of testing and correcting for violations in the assumptions of the basic regression
model; and Chaps. 10 and 11 deal with two specific areas of econometrics, specifically simultaneous-
equations and time-series methods. Thus Chaps. 1 to 5 deal with the statistics required for econometrics
(Chaps. 6 to 11). Chapter 12 is concerned with using the computer to aid in the calculations involved in
the previous chapters.

1
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EXAMPLE 2. Consumption theory tells us that, in general, people increase their consumption expenditure C as

their disposable (after-tax) income Yd increases, but not by as much as the increase in their disposable income. This
can be stated in explicit linear equation form as

C ¼ b0 þ b1Yd ð1:1Þ
where b0 and b1 are unknown constants called parameters. The parameter b1 is the slope coefficient representing the

marginal propensity to consume (MPC). Since even people with identical disposable income are likely to have
somewhat different consumption expenditures, the theoretically exact and deterministic relationship represented by
Eq. (1.1) must be modified to include a random disturbance or error term, u, making it stochastic:

C ¼ b0 þ b1Yd þ u ð1:2Þ

1.3 THE METHODOLOGY OF ECONOMETRICS

Econometric research, in general, involves the following three stages:

1. Specification of the model or maintained hypothesis in explicit stochastic equation form,
together with the a priori theoretical expectations about the sign and size of the parameters
of the function.

2. Collection of data on the variables of the model and estimation of the coefficients of the function
with appropriate econometric techniques (presented in Chaps. 6 to 8).

3. Evaluation of the estimated coefficients of the function on the basis of economic, statistical, and
econometric criteria.

EXAMPLE 3. The first stage in econometric research on consumption theory is to state the theory in explicit
stochastic equation form, as in Eq. (1.1), with the expectation that b0 > 0 (i.e., at Yd ¼ 0, C > 0 as people dissave
and/or borrow) and 0 < b1 < 1. The second stage involves the collection of data on consumption expenditure and
disposable income and estimation of Eq. (1.1). The third stage in econometric research involves (1) checking to see if

the estimated value of b0 > 0 and if 0 < b1 < 1; (2) determining if a ‘‘satisfactory’’ proportion of the variation in C is
‘‘explained’’ by changes in Yd and if b0 and b1 are ‘‘statistically significant at acceptable levels’’ [see Prob. 1.13(c) and
Sec. 5.2]; and (3) testing to see if the assumptions of the basic regression model are satisfied or, if not, how to correct

for violations. If the estimated relationship does not pass these tests, the hypothesized relationship must be
modified and reestimated until a satisfactory estimated consumption relationship is achieved.

Solved Problems

THE NATURE OF STATISTICS

1.1 What is the purpose and function of (a) The field of study of statistics? (b) Descriptive sta-
tistics? (c) Inferential statistics?

(a) Statistics is the body of procedures and techniques used to collect, present, and analyze data on which
to base decisions in the face of uncertainty or incomplete information. Statistical analysis is used today

in practically every profession. The economist uses it to test the efficiency of alternative production
techniques; the businessperson may use it to test the product design or package that maximizes sales;
the sociologist to analyze the result of a drug rehabilitation program; the industrial psychologist to

examine workers’ responses to plant environment; the political scientist to forecast voting patterns; the
physician to test the effectiveness of a new drug; the chemist to produce cheaper fertilizers; and so on.

(b) Descriptive statistics summarizes a body of data with one or two pieces of information that characterize
the whole data. It also refers to the presentation of a body of data in the form of tables, charts, graphs,
and other forms of graphic display.

2 INTRODUCTION [CHAP. 1



(c) Inferential statistics (both estimation and hypothesis testing) refers to the drawing of generalizations

about the properties of the whole (called a population) from the specific or a sample drawn from the
population. Inferential statistics thus involves inductive reasoning. (This is to be contrasted with
deductive reasoning, which ascribes properties to the specific starting with the whole.)

1.2 (a) Are descriptive or inferential statistics more important today? (b) What is the importance
of a representative sample in statistical inference? (c) Why is probability theory required?

(a) Statistics started as a purely descriptive science, but it grew into a powerful tool of decision making as
its inferential branch was developed. Modern statistical analysis refers primarily to inferential or
inductive statistics. However, deductive and inductive statistics are complementary. We must study

how to generate samples from populations before we can learn to generalize from samples to popula-
tions.

(b) In order for statistical inference to be valid, it must be based on a sample that fully reflects the

characteristics and properties of the population from which it is drawn. A representative sample is
ensured by random sampling, whereby each element of the population has an equal chance of being
included in the sample (see Sec. 4.1).

(c) Since the possibility of error exists in statistical inference, estimates or tests of a population property or

characteristic are given together with the chance or probability of being wrong. Thus probability
theory is an essential element in statistical inference.

1.3 How can the manager of a firm producing lightbulbs summarize and describe to a board meeting
the results of testing the life of a sample of 100 lightbulbs produced by the firm?

Providing the (raw) data on the life of each in the sample of 100 lightbulbs produced by the firm would
be very inconvenient and time-consuming for the board members to evaluate. Instead, the manager might
summarize the data by indicating that the average life of the bulbs tested is 360 h and that 95% of the bulbs

tested lasted between 320 and 400 h. By doing this, the manager is providing two pieces of information (the
average life and the spread in the average life) that characterize the life of the 100 bulbs tested. The manager
also might want to describe the data with a table or chart indicating the number or proportion of bulbs
tested that lasted within each 10-h classification. Such a tubular or graphic representation of the data is also

very useful for gaining a quick overview of the data. In summarizing and describing the data in the ways
indicated, the manager is engaging in descriptive statistics. It should be noted that descriptive statistics can
be used to summarize and describe any body of data, whether it is a sample (as above) or a population (when

all the elements of the population are known and its characteristics can be calculated).

1.4 (a) Why may the manager in Prob. 1.3 want to engage in statistical inference? (b) What would
this involve and require?

(a) Quality control requires that the manager have a fairly good idea about the average life and the spread
in the life of the lightbulbs produced by the firm. However, testing all the lightbulbs produced would
destroy the entire output of the firm. Even when testing does not destroy the product, testing the entire

output is usually prohibitively expensive and time-consuming. The usual procedure is to take a sample
of the output and infer the properties and characteristics of the entire output (population) from the
corresponding characteristics of a sample drawn from the population.

(b) Statistical inference requires first of all that the sample be representative of the population being
sampled. If the firm produces lightbulbs in different plants, with more than one workshift, and
with raw materials from different suppliers, these must be represented in the sample in the proportion
in which they contribute to the total output of the firm. From the average life and spread in the life of

the bulbs in the sample, the firm manager might estimate, with 95% probability of being correct and
5% probability of being wrong, the average life of all the lightbulbs produced by the firm to be between
320 and 400 h (see Sec. 4.3). Instead, the manager may use the sample information to test, with 95%

probability of being correct and 5% probability of being wrong, that the average life of the population
of all the bulbs produced by the firm is greater than 320 h (see Sec. 5.2). In estimating or testing the
average for a population from sample information, the manager is engaging in statistical inference.
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STATISTICS AND ECONOMETRICS

1.5 What is meant by (a) Econometrics? (b) Regression analysis? (c) Disturbance or error
term? (d) Simultaneous-equations models?

(a) Econometrics is the integration of economic theory, mathematics, and statistical techniques for the
purpose of testing hypotheses about economic phenomena, estimating coefficients of economic relation-
ships, and forecasting or predicting future values of economic variables or phenomena. Econometrics

is subdivided into theoretical and applied econometrics. Theoretical econometrics refers to the methods
for measurement of economic relationships in general. Applied econometrics examines the problems
encountered and the findings in particular fields of economics, such as demand theory, production,
investment, consumption, and other fields of applied economic research. In any case, econometrics is

partly an art and partly a science, because often the intuition and good judgment of the econometrician
plays a crucial role.

(b) Regression analysis studies the causal relationship between one economic variable to be explained (the
dependent variable) and one or more independent or explanatory variables. When there is only one

independent or explanatory variable, we have simple regression. In the more usual case of more than
one independent or explanatory variable, we have multiple regression.

(c) A (random) disturbance or error must be included in the exact relationships postulated by economic
theory and mathematical economics in order to make them stochastic (i.e., in order to reflect the fact
that in the real world, economic relationships among economic variables are inexact and somewhat

erratic).

(d) Simultaneous-equations models refer to relationships among economic variables expressed with more
than one equation and such that the economic variables in the various equations interact. Simulta-
neous-equations models are the most complex aspect of econometrics and are discussed in Chap. 10.

1.6 (a) What are the functions of econometrics? (b) What aspects of econometrics (and other social
sciences) make it basically different from most physical sciences?

(a) Econometrics has basically three closely interrelated functions. The first is to test economic theories or

hypotheses. For example, is consumption directly related to income? Is the quantity demanded of a
commodity inversely related to its price? The second function of econometrics is to provide numerical
estimates of the coefficients of economic relationships. These are essential in decision making. For

example, a government policymaker needs to have an accurate estimate of the coefficient of the relation-
ship between consumption and income in order to determine the stimulating (i.e., the multiplier) effect
of a proposed tax reduction. A manager needs to know if a price reduction increases or reduces the
total sales revenues of the firm and, if so, by how much. The third function of econometrics is the

forecasting of events. This, too, is necessary in order for policymakers to take appropriate corrective
action if the rate of unemployment or inflation is predicted to rise in the future.

(b) There are two basic differences between econometrics (and other social sciences) on one hand, and most
physical sciences (such as physics) on the other. One is that (as pointed out earlier) relationships

among economic variables are inexact and somewhat erratic. The second is that most economic
phenomena occur contemporaneously, so that laboratory experiments cannot be conducted. These
differences require special methods of analysis (such as the inclusion of a disturbance or error term with

the exact relationships postulated by economic theory) and multivariate analysis (such as multiple
regression analysis). The latter isolates the effect of each independent or explanatory variable on
the dependent variable in the face of contemporaneous change in all explanatory variables.

1.7 In what way and for what purpose are (a) economic theory, (b) mathematics, and (c) statistical
analysis combined to form the field of study of econometrics?

(a) Econometrics presupposes the existence of a body of economic theories or hypotheses requiring testing.
If the variables suggested by economic theory do not provide a satisfactory explanation, the researcher

may experiment with alternative formulations and variables suggested by previous tests or opposing
theories. In this way, econometric research can lead to the acceptance, rejection, and reformulation of
economic theories.
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(b) Mathematics is used to express the verbal statements of economic theories in mathematical form,

expressing an exact or deterministic functional relationship between the dependent and one or more
independent or explanatory variables.

(c) Statistical analysis applies appropriate techniques to estimate the inexact and nonexperimental relation-

ships among economic variables by utilizing relevant economic data and evaluating the results.

1.8 What justifies the inclusion of a disturbance or error term in regression analysis?

The inclusion of a (random) disturbance or error term (with well-defined probabilistic properties) is

required in regression analysis for three important reasons. First, since the purpose of theory is to generalize
and simplify, economic relationships usually include only the most important forces at work. This means
that numerous other variables with slight and irregular effects are not included. The error term can be
viewed as representing the net effect of this large number of small and irregular forces at work. Second, the

inclusion of the error term can be justified in order to take into consideration the net effect of possible errors
in measuring the dependent variable, or variable being explained. Finally, since human behavior usually
differs in a random way under identical circumstances, the disturbance or error term can be used to capture

this inherently random human behavior. This error term thus allows for individual random deviations from
the exact and deterministic relationships postulated by economic theory and mathematical economics.

1.9 Consumer demand theory states that the quantity demanded of a commodity DX is a function of,
or depends on, its price PX , consumer’s income Y , and the price of other (related) commodities,
say, commodity Z (i.e., PZ). Assuming that consumers’ tastes remain constant during the period
of analysis, state the preceding theory in (a) specific or explicit linear form or equation and
(b) in stochastic form. (c) Which are the coefficients to be estimated? What are they called?

(a) DX ¼ b0 þ b1PX þ b2Y þ b3PZ (1.3)

(b) DX ¼ b0 þ b1PX þ b2Y þ b3PZ þ u (1.4)

(c) The coefficients to be estimated are b0, b1, b2, and b3. They are called parameters.

THE METHODOLOGY OF ECONOMETRICS

1.10 With reference to the consumer demand theory in Prob. 1.9, indicate (a) what the first step is in
econometric research and (b) what the a priori theoretical expectations are of the sign and
possible size of the parameters of the demand function given by Eq. (1.4).

(a) The first step in econometric analysis is to express the theory of consumer demand in stochastic
equation form, as in Eq. (1.4), and indicate the a priori theoretical expectations about the sign and
possibly the size of the parameters of the function.

(b) Consumer demand theory postulates that in Eq. (1.4), b1 < 0 (indicating that price and quantity are
inversely related), b2 > 0 if the commodity is a normal good (indicating that consumers purchase more
of the commodity at higher incomes), b3 > 0 if X and Z are substitutes, and b3 < 0 if X and Z are

complements.

1.11 Indicate the second stage in econometric research (a) in general and (b) with reference to the
demand function specified by Eq. (1.4).

(a) The second stage in econometric research involves the collection of data on the dependent variable and
on each of the independent or explanatory variables of the model and utilizing these data for the

empirical estimation of the parameters of the model. This is usually done with multiple regression
analysis (discussed in Chap. 7).

(b) In order to estimate the demand function given by Eq. (1.4), data must be collected on (1) the
quantity demanded of commodity X by consumers, (2) the price of X , (3) consumer’s incomes,
and (4) the price of commodity Z per unit of time (i.e., per day, month, or year) and over a number

CHAP. 1] INTRODUCTION 5



of days, months, or years. Data on PX , Y , and PZ are then regressed against data on DX and estimates

of parameters b0, b1, b2, and b3 obtained.

1.12 How does the type of data required to estimate the demand function specified by Eq. (1.4) differ
from the type of data that would be required to estimate the consumption function for a group of
families at one point in time?

In order to estimate the demand function given by Eq. (1.4), numerical values of the variables are

required over a period of time. For example, if we want to estimate the demand function for coffee, we need
the numerical value of the quantity of coffee demanded, say, per year, over a number of years, say, from 1960
to 1980. Similarly, we need data on the average price of coffee, consumers’ income, and the price, of say, tea
(a substitute for coffee) per year from 1960 to 1980. Data that give numerical values for the variables of a

function from period to period are called time-series data. However, to estimate the consumption function
for a group of families at one point in time, we need cross-sectional data (i.e., numerical values for the
consumption expenditures and disposable incomes of each family in the group at a particular point in time,

say, in 1982).

1.13 What is meant by (a) The third stage in econometric analysis? (b) A priori theoretical cri-
teria? (c) Statistical criteria? (d) Econometric criteria? (e) The forecasting ability of the
model?

(a) The third stage in econometric research involves the evaluation of the estimated model on the basis of
the a priori criteria, statistical and econometric criteria, and the forecasting ability of the model.

(b) The a priori economic criteria refer to the sign and size of the parameters of the model postulated by
economic theory. If the estimated coefficients do not conform to those postulated, the model must be
revised or rejected.

(c) The statistical criteria refer to (1) the proportion of variation in the dependent variable ‘‘explained’’
by changes in the independent or explanatory variables and (2) verification that the dispersion or
spread of each estimated coefficient around the true parameter is sufficiently narrow to give us ‘‘con-

fidence’’ in the estimates.

(d) The econometric criteria refer to tests that the assumptions of the basic regression model, and particu-
larly those about the disturbance or error term, are satisfied.

(e) The forecasting ability of the model refers to the ability of the model to accurately predict future values
of the dependent variable based on known or expected future value(s) of the independent or explana-
tory variable(s).

1.14 How can the estimated demand function given by Eq. (1.4) be evaluated in terms of (a) The a
priori criteria? (b) The statistical criteria? (c) The econometric criteria? (d) The forecasting
ability of the model?

(a) The estimated demand function given by Eq. (1.4) can be evaluated in terms of the a priori theoretical

criteria by checking that the estimated coefficients conform to the theoretical expectations with regard
to sign and possible size, as postulated in Prob. 1.10(b). The demand theory given by Eq. (1.4) is
confirmed only if b1 < 0, if b2 > 0 (if X is a normal good), and if b3 > 0 (if Z is a substitute for X), as
postulated by demand theory.

(b) The statistical criteria are satisfied only if a ‘‘high’’ proportion of the variation in DX over time is
‘‘explained’’ by changes in PX , Y , and PZ, and if the dispersion of estimated b1, b2, and b3 around the
true parameters are ‘‘sufficiently narrow.’’ There is no generally accepted answer as to what is a ‘‘high’’

proportion of the variation in DX ‘‘explained’’ by PX , Y , and PZ. However, because of common trends
in time-series data, we would expect more than 50 to 70% of the variation in the dependent variable to
be explained by the independent or explanatory variables for the model to be judged satisfactory.

Similarly, in order for each estimated coefficient to be ‘‘statistically significant,’’ we would expect the
dispersion of each estimated coefficient about the true parameter (measured by its standard deviation;
see Sec. 2.3) to be generally less than half the estimated value of the coefficient.
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(c) The econometric criteria are used to determine if the assumptions of the econometric methods used are

satisfied in the estimation of the demand function of Eq. (1.4). Only if these assumptions are satisfied
will the estimated coefficients have the desirable properties of unbiasedness, consistency, efficiency, and
so forth (see Sec. 6.4).

(d) One way to test the forecasting ability of the demand model given by Eq. (1.4) is to use the estimated
function to predict the value of DX for a period not included in the sample and checking that this

predicted value is ‘‘sufficiently close’’ to the actual observed value of DX for that period.

1.15 Present in schematic form the various stages of econometric research.

Stage 1: Economic theory

#
Mathematical model

#
Econometric (stochastic) model

Stage 2: Collection of appropriate data

#
Estimation of the parameters of the model

Stage 3: Evaluation of the model on the basis of economic,
statistical, and econometric criteria

Accept theory Reject theory Revise theory
if compatible if incompatible if incompatible
with data with data with data

# #
Prediction Confrontation of

revised theory

with new data

Supplementary Problems

THE NATURE OF STATISTICS

1.16 (a) To which field of study is statistical analysis important? (b) What are the most important functions of

descriptive statistics? (c) What is the most important function of inferential statistics?
Ans. (a) To economics, business, and other social and physical sciences (b) Summarizing and describing
a body of data (c) Drawing inferences about the characteristics of a population from the corresponding

characteristics of a sample drawn from the population.

1.17 (a) Is statistical inference associated with deductive or inductive reasoning? (b) What are the conditions
required in order for statistical inference to be valid?
Ans. (a) Inductive reasoning (b) A representative sample and probability theory

STATISTICS AND ECONOMETRICS

1.18 Express in the form of an explicit linear equation the statement that the level of investment spending I is

inversely related to rate of interest R.
Ans. I ¼ b0 þ b1R with b1 postulated to be negative (1.5)
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1.19 What is the answer to Prob. 1.18 an example of?

Ans. An economic theory expressed in (exact or deterministic) mathematical form

1.20 Express Eq. (1.5) in stochastic form.
Ans. I ¼ b0 þ b1R þ u (1.6)

1.21 Why is a stochastic form required in econometric analysis?
Ans. Because the relationships among economic variables are inexact and somewhat erratic as opposed to

the exact and deterministic relationships postulated by economic theory and mathematical economics

THE METHODOLOGY OF ECONOMETRICS

1.22 What are stages (a) one, (b) two, and (c) three in econometric research?
Ans. (a) Specification of the theory in stochastic equation form and indication of the expected signs and
possible sizes of estimated parameters (b) Collection of data on the variables of the model and estimation

of the coefficients of the function (c) Economic, statistical, and econometric evaluation of the estimated
parameters

1.23 What is the first stage of econometric analysis for the investment theory in Prob. 1.18?
Ans. Stating the theory in the form of Eq. (1.6) and predicting b1 < 0

1.24 What is the second stage in econometric analysis for the investment theory in Prob. 1.18?
Ans. Collection of time-series data on I and R and estimation of Eq. (1.6)

1.25 What is the third stage of econometric analysis for the investment theory in Prob. 1.18?
Ans. Determination that the estimated coefficient of b1 < 0, that an ‘‘adequate’’ proportion of the variation

in I over time is ‘‘explained’’ by changes in R, that b1 is ‘‘statistically significant at customary levels,’’ and
that the econometric assumptions of the model are satisfied
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Descriptive Statistics

2.1 FREQUENCY DISTRIBUTIONS

It is often useful to organize or arrange a body of data into a frequency distribution. This breaks up
the data into groups or classes and shows the number of observations in each class. The number of
classes is usually between 5 and 15. A relative frequency distribution is obtained by dividing the number
of observations in each class by the total number of observations in the data as a whole. The sum of the
relative frequencies equals 1. A histogram is a bar graph of a frequency distribution, where classes are
measured along the horizontal axis and frequencies along the vertical axis. A frequency polygon is a line
graph of a frequency distribution resulting from joining the frequency of each class plotted at the class
midpoint. A cumulative frequency distribution shows, for each class, the total number of observations in
all classes up to and including that class. When plotted, this gives a distribution curve, or ogive.

EXAMPLE 1. A student received the following grades (measured from 0 to 10) on the 10 quizzes he took during a
semester: 6, 7, 6, 8, 5, 7, 6, 9, 10, and 6. These grades can be arranged into frequency distributions as in Table 2.1
and shown graphically as in Fig. 2-1.

9

Table 2.1 Frequency Distributions of Grades

Grades Absolute Frequency Relative Frequency

5 1 0.1

6 4 0.4

7 2 0.2

8 1 0.1

9 1 0.1

10 1 0.1

10 1.0

4 5 6 7 8 9 10 11
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Fig. 2-1
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EXAMPLE 2. The cans in a sample of 20 cans of fruit contain net weights of fruit ranging from 19.3 to 20.9 oz, as

given in Table 2.2. If we want to group these data into 6 classes, we get class intervals of 0.3 oz
½ð21:0� 19:2Þ=6 ¼ 0:3 oz�. The weights given in Table 2.2 can be arranged into the frequency distributions given
in Table 2.3 and shown graphically in Fig. 2-2.
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Table 2.2 Net Weight in Ounces of Fruit

19.7 19.9 20.2 19.9 20.0 20.6 19.3 20.4 19.9 20.3

20.1 19.5 20.9 20.3 20.8 19.9 20.0 20.6 19.9 19.8

Table 2.3 Frequency Distribution of Weights

Weight, oz Class Midpoint Absolute Frequency Relative Frequency Cumulative Frequency

19.2–19.4 19.3 1 0.05 1

19.5–19.7 19.6 2 0.10 3

19.8–20.0 19.9 8 0.40 11

20.1–20.3 20.2 4 0.20 15

20.4–20.6 20.5 3 0.15 18

20.7–20.9 20.8 2 0.10 20

20 1.00

19.2-
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19.5-
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19.8-
20.0
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2.2 MEASURES OF CENTRAL TENDENCY

Central tendency refers to the location of a distribution. The most important measures of central
tendency are (1) the mean, (2) the median, and (3) the mode. We will be measuring these for
populations (i.e., the collection of all the elements that we are describing) and for samples drawn
from populations, as well as for grouped and ungrouped data.

1. The arithmetic mean or average, of a population is represented by � (the Greek letter mu); and
for a sample, by X (read ‘‘X bar’’). For ungrouped data, � and X are calculated by the following
formulas:

� ¼
P

X

N
and X ¼

P
X

n
ð2:1a; bÞ

where
P

X refers to the sum of all the observations, while N and n refer to the number of
observations in the population and sample, respectively. For grouped data, � and X are
calculated by

� ¼
P

fX

N
and X ¼

P
fX

n
ð2:2a; bÞ

where
P

fX refers to the sum of the frequency of each class f times the class midpoint X .

2. The median for ungrouped data is the value of the middle item when all the items are arranged in
either ascending or descending order in terms of values:

Median ¼ the
N þ 1

2

� �
th item in the data array ð2:3Þ

where N refers to the number of items in the population (n for a sample). The median for
grouped data is given by the formula

Median ¼ L þ n=2� F

fm

c ð2:4Þ

where L ¼ lower limit of the median class (i.e., the class that contains the middle item of

the distribution

n ¼ the number of observations in the data set

F ¼ sum of the frequencies up to but not including the median class

fm ¼ frequency of the median class

c ¼ width of the class interval

3. The mode is the value that occurs most frequently in the data set. For grouped data, we obtain

Mode ¼ L þ d1
d1 þ d2

c ð2:5Þ

where L ¼ lower limit of the modal class (i.e., the class with the greatest frequency)

d1 ¼ frequency of the modal class minus the frequency of the previous class

d2 ¼ frequency of the modal class minus the frequency of the following class

c ¼ width of the class interval

The mean is the most commonly used measure of central tendency. The mean, however, is affected
by extreme values in the data set, while the median and the mode are not. Other measures of central
tendency are the weighted mean, the geometric mean, and the harmonic mean (see Probs. 2.7 to 2.9).
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EXAMPLE 3. The mean grade for the population on the 10 quizzes given in Example 1, using the formula for

ungrouped data, is

� ¼
P

X

N
¼ 6þ 7þ 6þ 8þ 5þ 7þ 6þ 9þ 10þ 6

10
¼ 70

10
¼ 7 points

To find the median for the ungrouped data, we first arrange the 10 grades in ascending order: 5, 6, 6, 6, 6, 7, 7, 8, 9,
10. Then we find the grade of the ðN þ 1Þ=2 or ð10þ 1Þ=2 ¼ 5:5th item. Thus the median is the average of the 5th

and 6th item in the array, or ð6þ 7Þ=2 ¼ 6:5. The mode for the ungrouped data is 6 (the value that occurs most
frequently in the data set).

EXAMPLE 4. We can estimate the mean for the grouped data given in Table 2.3 with the aid of Table 2.4:

X ¼
P

fX

n
¼ 401:6

20
¼ 20:08 oz

This calculation could be simplified by coding (see Prob. 2.6).

We can estimate the median (med) for the same grouped data as follows:

Med ¼ L þ n=2� F

fm

c ¼ 19:8þ 20=2� 3

8
0:3 ¼ 19:8þ 7

8
0:3

¼ 19:8þ 0:2625 ffi 20:06 oz

where L ¼ 19:8 ¼ lower limit of the median class (i.e., the 19.8�20.0 class which contains the 10th and 11th

observationsÞ
n ¼ 20 ¼ number of observations or items

F ¼ 3 ¼ sum of frequencies up to but not including the median class

fm ¼ 8 ¼ frequency of the median class

c ¼ 0:3 ¼ width of class interval

Similarly

Mode ¼ L þ d1
d1 þ d2

c ¼ 19:8þ 6

6þ 4
0:3 ¼ 19:8þ 1:8

10
¼ 19:8þ 0:18 ¼ 19:98 oz

As noted in Prob. 2.4, the mean, median, and mode for grouped data are estimates used when only the grouped data
are available or to reduce calculations with a large ungrouped data set.
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Table 2.4 Calculation of the Sample Mean for the Data in Table 2.3

Weight, oz

Class

Midpoint X

Frequency

f fX

19.2–19.4 19.3 1 19.3

19.5–19.7 19.6 2 39.2

19.8–20.0 19.9 8 159.2

20.1–20.3 20.2 4 80.8

20.4–20.6 20.5 3 61.5

20.7–20.9 20.8 2 41.6P
f ¼ n ¼ 20

P
fX ¼ 401:6



2.3 MEASURES OF DISPERSION

Dispersion refers to the variability or spread in the data. The most important measures of disper-
sion are (1) the average deviation, (2) the variance, and (3) the standard deviation. We will mea-
sure these for populations and samples, as well as for grouped and ungrouped data.

1. Average deviation. The average deviation (AD), also called the mean absolute deviation (MAD),
is given by

AD ¼
P jX � �j

N
for populations ð2:6aÞ

and AD ¼
P jX � X j

n
for samples (2.6b)

where the two vertical bars indicate the absolute value, or the values omitting the sign, with the
other symbols having the same meaning as in Sec. 2.2. For grouped data

AD ¼
P

f jX � �j
N

for populations ð2:7aÞ

and AD ¼
P

f jX � X j
n

for samples (2.7b)

where f refers to the frequency of each class and X to the class midpoints.

2. Variance. The population variance �2 (the Greek letter sigma squared) and the sample
variance s2 for ungrouped data are given by

�2 ¼
Pðx � �Þ2

N
and s2 ¼

PðX � XÞ2
n � 1

(2.8a,b)

For grouped data

�2 ¼
P

f ðX � �Þ2
N

and s2 ¼
P

f ðX � XÞ2
n � 1

(2.9a,b)

3. Standard deviation. The population standard deviation � and sample standard deviation s are
the positive square roots of their respective variances. For ungrouped data

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX � �Þ2

N

s
and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX � XÞ2
n � 1

s
(2.10a,b)

For grouped data

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

f ðX � �Þ2
N

s
and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
f ðX � XÞ2
n � 1

s
(2.11a,b)

The most widely used measure of (absolute) dispersion is the standard deviation. Other
measures (besides the variance and average deviation) are the range, the interquartile range,
and the quartile deviation (see Probs. 2.11 and 2.12).

4. The coefficient of variation (V) measures relative dispersion:

V ¼ �

�
for populations ð2:12aÞ

and V ¼ s

X
for samples (2.12b)

EXAMPLE 5. The average deviation, variance, standard deviation, and coefficient of variation for the ungrouped
data given in Example 1 can be found with the aid of Table 2.5 (� ¼ 7; see Example 3):
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AD ¼
P jX � �j

N
¼ 12

10
¼ 1:2 points

�2 ¼
PðX � �Þ2

N
¼ 22

10
¼ 2:2 points squared

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX � �Þ2

N

s
¼

ffiffiffiffiffi
22

10

r
¼

ffiffiffiffiffiffiffi
2:2

p
ffi 1:48 points

V ¼ �

�
ffi 1:48

7
ffi 0:21; or 21%

EXAMPLE 6. The average deviation, variance, standard deviation, and coefficient of variation for the frequency

distribution of weights (grouped data) given in Table 2.3 can be found with the aid of Table 2.6 ðX ¼ 20:08 oz; see
Example 4):

AD ¼
P

f jX � X j
n

¼ 6:36

20
¼ 0:318 oz

s2 ¼
P

f ðX � XÞ2
n � 1

¼ 2:9520

19
ffi 0:1554 oz squared

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

f ðX � XÞ2
n � 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:9520

19

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1544

p
ffi 0:3942 oz

V ¼ s

X
ffi 0:3942 oz

20:08 oz
ffi 0:0196; or 1:96%

Note that in the formula for s2 and s; n � 1 rather than n is used in the denominator (see Prob. 2.16 for the reason).
From the formulas for �2, �, s2, and s given in this section, others may be derived that will simplify the calculations

for a large body of data (see Probs. 2.17 to 2.19 for their derivation and application).
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Table 2.5 Calculations on the Data in Example 1

Grade X � X � � jX � �j ðX � �Þ2

6 7 �1 1 1

7 7 0 0 0

6 7 �1 1 1

8 7 1 1 1

5 7 �2 2 4

7 7 0 0 0

6 7 �1 1 1

9 7 2 2 4

10 7 3 3 9

6 7 �1 1 1PðX � �Þ ¼ 0
P jX � �j ¼ 12

PðX � �Þ2 ¼ 22

Table 2.6 Calculations on the Data in Table 2.4

Weight,
oz

Class
Midpoint X

Frequency
f Mean X X � X jX � X j P

f jX � X j ðX � XÞ2 f ðX � XÞ2

19.20–19.40 19.30 1 20.08 �0:78 0.78 0.78 0.6084 0.6084

19.50–19.70 19.60 2 20.08 �0:48 0.48 0.96 0.2304 0.4608

19.80–20.00 19.90 8 20.08 �0:18 0.18 1.44 0.0324 0.2592

20.10–20.30 20.20 4 20.08 0:12 0.12 0.48 0.0144 0.0576

20.40–20.60 20.50 3 20.08 0:42 0.42 1.26 0.1764 0.5292

20.70–20.90 20.80 2 20.08 0:72 0.72 1.44 0.5184 1.0368P
f ¼ n ¼ 20

P
f jX � X j ¼ 6:36

P
f ðX � XÞ2 ¼ 2:9520



2.4 SHAPE OF FREQUENCY DISTRIBUTIONS

The shape of a distribution refers to (1) its symmetry or lack of it (skewness) and (2) its peak-

edness (kurtosis).

1. Skewness. A distribution has zero skewness if it is symmetrical about its mean. For a
symmetrical (unimodal) distribution, the mean, median, and mode are equal. A distribution
is positively skewed if the right tail is longer. Then, mean > median > mode. A distribution is
negatively skewed if the left tail is longer. Then, mode > median > mean (see Fig. 2-3).

Skewness can be measured by the Pearson coefficient of skewness:

Sk ¼ 3ð��medÞ
�

for populations ð2:13aÞ

and Sk ¼ 3ðX �medÞ
s

for samples (2.13b)

Mean and variance are the first and second moments of a distribution, respectively. Skewness
can also be measured by the third moment [the numerator of Eq. (2.14a,b)] divided by the cube
of the standard deviation:

Sk ¼
P

f ðX � �Þ3
�3

for populations ð2:14aÞ

and Sk ¼
P

f ðX � XÞ3
s3

for samples (2.14b)

For symmetric distributions, Sk ¼ 0.

2. Kurtosis. A peaked curve is called leptokurtic, as opposed to a flat one (platykurtic), relative to
one that is mesokurtic (see Fig. 2-4). Kurtosis can be measured by the fourth moment [the
numerator of Eq. (2.15a,b)] divided by the standard deviation raised to the fourth power. The
kurtosis for a mesokurtic curve is 3.
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Kurtosis ¼
P

f ðX � �Þ4
�4

for populations ð2:15aÞ

and Kurtosis ¼
P

f ðX � XÞ4
s4

for samples (2.15b)

3. Joint moment. The comovement of two separate distributions can be measured by covariance:

covðX ;YÞ ¼ �ðX � XÞðY � YÞ
N

¼ �ðXYÞ
N

� XY for populations

covðX ;YÞ ¼ �ðX � XÞðY � YÞ
n

¼ �ðXYÞ
n

� XY for samples

A positive covariance indicates that X and Y move together in relation to their means. A
negative covariance indicates that they move in opposite directions.

EXAMPLE 7. We can find the Pearson coefficient of skewness for the grades given in Example 1 by using � ¼ 7,
med ¼ 6:5 (see Example 3), and � ¼ 1:48 (see Example 5):

Sk ¼ 3ð��medÞ
�

ffi 3ð7� 6:5Þ
1:48

ffi 3ð0:5Þ
1:48

ffi 1:01 (see Fig. 2-1)

Similarly, by using X ¼ 20:08 oz, med ¼ 20:06 oz (see Example 4), and s ¼ 0:39 oz (see Example 6), we can find the
Pearson coefficient of skewness for the frequency distribution of weights in Table 2.3 as follows:

Sk ¼ 3ðX �medÞ
s

ffi 3ð20:08� 20:06Þ
0:39

ffi 0:15 (see Fig. 2-2cÞ:

For kurtosis, see Prob. 2.23.

Solved Problems

FREQUENCY DISTRIBUTIONS

2.1 Table 2.7 gives the grades on a quiz for a class of 40 students. (a) Arrange these grades (raw
data set) into an array from the lowest grade to the highest grade. (b) Construct a table showing
class intervals and class midpoints and the absolute, relative, and cumulative frequencies for each
grade. (c) Present the data in the form of a histogram, relative-frequency histogram, frequency
polygon, and ogive.

(a) See Table 2.8.
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Table 2.7 Grades on a Quiz for a Class of 40 Students

7 5 6 2 8 7 6 7 3 9

10 4 5 5 4 6 7 4 8 2

3 5 6 7 9 8 2 4 7 9

4 6 7 8 3 6 7 9 10 5

Table 2.8 Data Array of Grades

2 2 2 3 3 3 4 4 4 4

4 5 5 5 5 5 6 6 6 6

6 6 7 7 7 7 7 7 7 7

8 8 8 8 9 9 9 9 10 10



(b) See Table 2.9. Note that since we are dealing here with discrete data (i.e., data expressed in whole

numbers), we used the actual grades as the class midpoints.

(c) See Fig. 2-5.
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Table 2.9 Frequency Distribution of Grades

Grade

Class

Midpoint

Absolute

Frequency

Relative

Frequency

Cumulative

Frequency

1.5–2.4 2 3 0.075 3

2.5–3.4 3 3 0.075 6

3.5–4.4 4 5 0.125 11

4.5–5.4 5 5 0.125 16

5.5–6.4 6 6 0.150 22

6.5–7.4 7 8 0.200 30

7.5–8.4 8 4 0.100 34

8.5–9.4 9 4 0.100 38

9.5–10.4 10 2 0.050 40
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2.2 A sample of 25 workers in a plant receive the hourly wages given in Table 2.10. (a) Arrange
these raw data into an array from the lowest to the highest wage. (b) Group the data into
classes. (c) Present the data in the form of a histogram, relative-frequency histogram, frequency
polygon, and ogive.

(a) See Table 2.11.

(b) The hourly wages in Table 2.10 range from $3.55 to $4.26. This can be conveniently subdivided

into 8 equal classes of $0.10 each. That is, ð$4:30� $3:50Þ=8 ¼ $0:80=8 ¼ $0:10. Note that the

range was extended from $3.50 to $4.30 so that the lowest wage, $3.55, falls within the lowest class

and the largest wage, $4.26, falls within the largest class. It is also convenient (and needed for

plotting the frequency polygon) to find the class mark or midpoint of each class. These are

shown in Table 2.12.

(c) See Fig. 2-6. Another way of getting the ogive is to plot the cumulative frequencies up to $3.595, 3.695,

3.795, and so on (so as to include the upper limit of each class). The values $3.595, 3.695, 3.795, etc. are

often referred to as the class boundaries or exact limits. Note that the class midpoints are obtained by

adding together the lower and upper class boundaries and dividing by 2. For example, the second class

midpoint is given by ð3:595þ 3:695Þ=2 ¼ 7:290=2 ¼ 3:65 (see Table 2.12).
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Table 2.10 Hourly Wages in Dollars

3.65 3.78 3.85 3.95 4.00 4.10 4.25 3.55 3.85 3.96

3.60 3.90 4.26 3.75 3.95 4.05 4.08 4.15 3.80 4.05

3.88 3.95 4.06 4.18 4.05

Table 2.11 Data Array of Wages in Dollars

3.55 3.60 3.65 3.75 3.78 3.80 3.85 3.85 3.88 3.90

3.95 3.95 3.95 3.96 4.00 4.05 4.05 4.05 4.06 4.08

4.10 4.15 4.18 4.25 4.26

Table 2.12 Frequency Distribution of Wages

Hourly Wage,

$

Class

Midpoint, $

Absolute

Frequency

Relative

Frequency

Cumulative

Frequency

3.50–3.59 3.55 1 0.04 1

3.60–3.69 3.65 2 0.08 3

3.70–3.79 3.75 2 0.08 5

3.80–3.89 3.85 4 0.16 9

3.90–3.99 3.95 5 0.20 14

4.00–4.09 4.05 6 0.24 20

4.10–4.19 4.15 3 0.12 23

4.20–4.29 4.25 2 0.08 25

25 1.00



MEASURES OF CENTRAL TENDENCY

2.3 Find the mean, median, and mode (a) for the grades on the quiz for the class of 40 students
given in Table 2.7 (the ungrouped data) and (b) for the grouped data of these grades given in
Table 2.9.

(a) Since we are dealing with all grades, we want the population mean:

� ¼
P

X

N
¼ 7þ 5þ 6þ � � � þ 5

40
¼ 240

40
¼ 6 points

That is, � is obtained by adding together all the 40 grades given in Table 2.7 and dividing by 40 [the

three centered dots (ellipses) were put in to avoid repeating the 40 values in Table 2.7]. The median is

given by the values of the ½ðN þ 1Þ=2�th item in the data array in Table 2.8. Therefore, the median is

the value of the ð40þ 1Þ=2 or 20.5th, or the average of the 20th and 21st item. Since they are both

equal to 6, the median is 6. The mode is 7 (the value that occurs most frequently in the data set).

(b) We can find the population mean for the grouped data in Table 2.9 with the aid of Table 2.13:

� ¼
P

fX

N
¼ 240

40
¼ 6

This is the same mean we found for the ungrouped data. Note that the sum of the frequencies,
P

f ,

equals the number of observations in the population, N, and �X ¼ P
fX. The median for the

grouped data of Table 2.13 is given by

Med ¼ L þ N=2� F

fm

c ¼ 5:5þ 40=2� 16

6
1 ¼ 5:5þ 0:67 ¼ 6:17
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where L ¼ 5:5 ¼ lower limit of the median class (i.e., the 5.5�6.4 class, which contains the

20th and 21st observations)

N ¼ 40 ¼ number of observations

F ¼ 16 ¼ sum of observations up to but not including the median class

fm ¼ 6 ¼ frequency of the median class

c ¼ 1 ¼ width of class interval

The mode for the grouped data in Table 2.13 is given by

Mode ¼ L þ d1
d1 þ d2

c ¼ 6:5þ 2

2þ 4
1 ¼ 6:5þ 0:33 ¼ 6:83

where L ¼ 6:5 ¼ lower limit of the modal class (i.e., the 6.5�7.4 class with the highest frequency of 8)

d1 ¼ 2 ¼ frequency of the modal class, 8, minus the frequency of the previous class, 6

d2 ¼ 4 ¼ frequency of the modal class, 8, minus the frequency of the following class, 4

c ¼ 1 ¼ width of the class interval

Note that while the mean calculated from the grouped data is in this case identical to the mean
calculated for the ungrouped data, the median and the mode are only (good) approximations.

2.4 Find the mean, median, and mode (a) for the sample of hourly wages received by the 25
workers recorded in Table 2.10 (the ungrouped data) and (b) for the grouped data of these
wages given in Table 2.12.

ðaÞ X ¼
P

X

n
¼ $3:65þ $3:78þ $3:85þ � � � þ $4:05

25
¼ $98:65

25
¼ $3:946 or $3:95

Median ¼ $3:95 [the value of the ðn þ 1Þ=2 ¼ ð25þ 1Þ ¼ 13th item in the data array in Table 2.11].

Mode ¼ $3:95 and $4.05, since there are three of each of these wages. Thus the distribution is bimodal
(i.e., it has two modes).

(b) We can find the sample mean for the grouped data in Table 2.12 with the aid of Table 2.14:

X ¼
P

fX

n
¼ $98:75

25
¼ $3:95

Note that in this case
P

fX ¼ $98:75 6¼ P
X ¼ $98:65 (found in part a) since the average of the

observations in each class is not equal to the class midpoint for all classes [as in Prob. 2.3(b)].

20 DESCRIPTIVE STATISTICS [CHAP. 2

Table 2.13 Calculation of the Population Mean for the Grouped Data in

Table 2.9

Grade Class Midpoint X Frequency f fX

1.5–2.4 2 3 6

2.5–3.4 3 3 9

3.5–4.4 4 5 20

4.5–5.4 5 5 25

5.5–6.4 6 6 36

6.5–7.4 7 8 56

7.5–8.4 8 4 32

8.5–9.4 9 4 36

9.5–10.4 10 2 20P
f ¼ N ¼ 40

P
fX ¼ 240



Thus X calculated from the grouped data is only a very good approximation for the true value of X

calculated for the ungrouped data. In the real world, we often have only the grouped data, or if we
have a very large body of ungrouped data, it will save on calculations to estimate the mean by first
grouping the data.

Med ¼ L þ n=2� F

fm

c ¼ $3:90þ 25=2� 9

5
ð0:10Þ ¼ $3:90þ $0:07 ¼ $3:97

as compared with the true median of $3.95 found from the ungrouped data (see part a).

Mode ¼ L þ d1
d1 þ d2

c ¼ $4:00þ 1

1þ 3
ð0:10Þ ¼ $4:00þ $0:025 ¼ $4:025 or $4:03

as compared with the true modes of $3.95 and $4.05 found from the ungrouped data (see part a).

Sometimes the mode is simply given as the midpoint of the modal class.

2.5 Compare the advantages and disadvantages of (a) the mean, (b) the median, and (c) the
mode as measures of central tendency.

(a) The advantages of the mean are (1) it is familiar and understood by virtually everyone, (2) all the

observations in the data are taken into account, and (3) it is used in performing many other

statistical procedures and tests. The disadvantages of the mean are (1) it is affected by extreme

values, (2) it is time-consuming to compute for a large body of ungrouped data, and (3) it cannot

be calculated when the last class of grouped data is open-ended (i.e., it includes the lower limit of the

last class ‘‘and over’’).

(b) The advantages of the median are (1) it is not affected by extreme values, (2) it is easily understood

(i.e., half the data are smaller than the median and half are greater), and (3) it can be calculated even

when the last class is open-ended and when the data are qualitative rather than quantitative. The

disadvantages of the mean are (1) it does not use much of the information available, and (2) it

requires that observations be arranged into an array, which is time-consuming for a large body of

ungrouped data.

(c) The advantages of the mode are the same as those for the median. The disadvantages of the

mode are (1) as for the median, the mode does not use much of the information available,

and (2) sometimes no value of the data is repeated more than once, so that there is no mode, while

at other times there may be many modes. In general, the mean is the most frequently used measure of

central tendency and the mode is the least used.
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Table 2.14 Calculation of the Sample Mean for the Grouped Data in

Table 2.12

Hourly
Wage, $

Class
Midpoint X , $ Frequency f fX

3.50–3.59 3.55 1 3.55

3.60–3.69 3.65 2 7.30

3.70–3.79 3.75 2 7.50

3.80–3.89 3.85 4 15.40

3.90–3.99 3.95 5 19.75

4.00–4.09 4.05 6 24.30

4.10–4.19 4.15 3 12.45

4.20–4.29 4.25 2 8.45P
f ¼ n ¼ 25

P
fX ¼ $98:75



2.6 Find the mean for the grouped data in Table 2.12 by coding (i.e., by assigning the value of � ¼ 0
to the 4th or 5th classes and � ¼ �1, � ¼ �2, etc. to each lower class and � ¼ 1, � ¼ 2, etc. to
each larger class and then using the formula

X ¼ X0 þ
P

f�

n
c ð2:16Þ

where X0 is the midpoint of the class assigned � ¼ 0 and c is the width of the class intervals). See
Table 2.15.

X ¼ X0 þ
P

f�

n
c ¼ $3:85þ 25

25
ð$0:10Þ ¼ $3:85þ $0:10 ¼ $3:95

X for the grouped data formed by coding is identical to that found in Prob. 2.4b without coding.
Coding eliminates the problem of having to deal with possibly large and inconvenient class
midpoints; thus it may simplify the calculations.

2.7 A firm pays a wage of $4 per hour to its 25 unskilled workers, $6 to its 15 semiskilled workers, and
$8 to its 10 skilled workers. What is the weighted average, or weighted mean, wage paid by this firm?

In find the weighted mean, or weighted average, of a population, �w, or sample, Xw, the weights, w,
have the same function as the frequency in finding the mean for the grouped data. Thus

Xw or �w ¼
P

wXP
w

ð2:17Þ

For this problem, the weights are the number of workers employed at each wage, and
P

w equals the sum of
all the workers:

�w ¼ ð$4Þð25Þ þ ð$6Þð15Þ þ ð$8Þð10Þ
25þ 15þ 10

¼ $100þ $90þ $80

50
¼ $270

50
¼ $5:40

This weighted average compares with the simple average of $6 ½ð$4þ $6þ $8Þ=3 ¼ $6� and is a better

measure of the average wages.

2.8 A nation faces a rate of inflation of 2% in one year, 5% in the second year, and 12.5% in the third
year. Find the geometric mean of the inflation rates (the geometric mean, �G or XG, of a set of n
positive numbers is the nth root of their product and is used mainly to average rates of change
and index numbers):

�G or XG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 � X2 � � �Xn

n
p

ð2:18Þ
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Table 2.15 Calculation of the Sample Mean by Coding for the Grouped Data in Table 2.12

Hourly Wage, $ Class Midpoint X , $ Code � Frequency f f�

3.50–3.59 3.55 �3 1 �3
3.60–3.69 3.65 �2 2 �4
3.70–3.79 3.75 �1 2 �2
3.80–3.89 3.85 0 4 0

3.90–3.99 3.95 1 5 5

4.00–4.09 4.05 2 6 12

4.10–4.19 4.15 3 3 9

4.20–4.29 4.25 4 2 8P
f ¼ n ¼ 25

P
f� ¼ 25



where X1;X2; . . . ;Xn refer to the n (or N) observations.

�G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Þð5Þð12:5Þ3

p
¼

ffiffiffiffiffiffiffiffi
125

3
p

¼ 5%

This compares with � ¼ ð2þ 5þ 12:5Þ=3 ¼ 19:5=3 ¼ 6:5%. When all the numbers are equal, �G equals �;
otherwise �G is smaller than �. In practice, �G is calculated by logarithms:

log�G ¼
P

logx

N
ð2:19Þ

The geometric mean is used primarily in the mathematics of finance and financial management.

2.9 A commuter drives 10mi on the highway at 60mi/h and 10mi on local streets at 15mi/h. Find
the harmonic mean. The harmonic mean �H is used primarily to average ratios:

�H ¼ NPð1=XÞ ð2:20Þ

¼ 2

ð1=60Þ þ ð1=15Þ ¼
2

ð1þ 4Þ=60

¼ 2

5=60
¼ 2

60

5
¼ 120

5
¼ 24mi=h

as compared with � ¼ P
X=N ¼ ð60þ 15Þ=2 ¼ 75=2 ¼ 37:5mi/h. Note that if the commuter had averaged

37.5mi/h, it would have taken her (20mi/37.5mi)60min ¼ 32min to drive the 20mi. Instead she drives
6min on the highway (10mi at 60mi/h) and 40min on local streets (10mi at 15mi/h) for a total of 50min,
and this is the (correct) answer we get by using �H ¼ 24mi/h. That is, (20mi/24mi/h) � 60min ¼ 50min.

2.10 (a) For the ungrouped data in Table 2.7, find the first, second, and third quartiles and the third
deciles and sixtieth percentiles. (b) Do the same for the grouped data in Table 2.12. (Quartiles
divide the data into 4 parts, deciles into 10 parts, and percentiles into 100 parts.)

(a) Q1 (first quartile) ¼ 4 (the average of the 10th and 11th values in Table 2.8)

Q2 (second quartile) ¼ 6 ¼ the value of the 20.5th item ¼ the median

Q3 (third quartile) ¼ 7:5 ¼ the value of the 30.5th item

D3 (third decile) ¼ 5 ¼ the value of the 12.5th item

P60 (sixtieth percentile) ¼ 7 ¼ the value of the 24.5th item

ðbÞ Q1 ¼ L þ n=4� F

f1
c

¼ $3:80þ 25=4� 5

4
ð$0:10Þ ¼ $3:80þ $0:03125 ffi $3:83 ð2:21Þ

Q2 ¼ L þ n=2� F

f2
c

¼ $3:90þ 25=2� 9

5
ð$0:10Þ ¼ $3:90þ $0:07 ¼ $3:97 ¼ median ð2:22Þ

Q3 ¼ L þ 3n=4� F

f3
c

¼ $4:00þ 75=4� 14

6
ð$0:10Þ ¼ $4:00þ $0:0792 ffi $4:08 ð2:23Þ
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D3 ¼ L þ 3n=10� F

f3
c

¼ $3:80þ 75=10� 5

4
ð$0:10Þ ¼ $3:80þ $0:0625 ¼ $3:86 ð2:24Þ

P60 ¼ L þ 60n=100� F

f60
c

¼ $4:00þ 1500=100� 14

6
ð$0:10Þ ¼ $4:00þ $0:0167 ffi $4:02 ð2:25Þ

MEASURES OF DISPERSION

2.11 (a) Find the range for the ungrouped data in Table 2.7. (b) Find the range for the ungrouped
data in Table 2.10 and for the grouped data in Table 2.12. (c) What are the advantages and
disadvantages of the range?

(a) The range for ungrouped data is equal to the value of the largest observation minus the value of the

smallest observation in the data set. The range for the ungrouped data in Table 2.7 is from 2 to 10, or 8
points.

(b) The range for the ungrouped data in Table 2.10 is from $3.55 to $4.26, or $0.71. For grouped data, the
range extends from the lower limit of the smallest class to the upper limit of the largest class. For the
grouped data in Table 2.12, the range extends from $3.50 to $4.29.

(c) The advantages of the range are that it is easy to find and understand. Its disadvantages are that it

considers only the lowest and highest values of a distribution, it is greatly influenced by extreme values,
and it cannot be found for open-ended distributions. Because of these disadvantages, the range is of
limited usefulness (except in quality control).

2.12 Find the interquartile range and the quartile deviation (a) for the ungrouped data in Table 2.7
and (b) for the grouped data in Table 2.12.

(a) The interquartile range is equal to the difference between the third and first quartiles:

IR ¼ Q3 � Q1 ð2:26Þ
For the ungrouped data in Table 2.7, IR ¼ 7:5� 4 ¼ 3:5 points [utilizing the values of Q3 and Q4 found
in Prob. 2.10 (a)]. Note that the interquartile range is not affected by extreme values because it utilizes
only the middle half of the data. It is thus better than the range, but it is not as widely used as the other

measures of dispersion. For the quartile deviation,

QD ¼ Q3 � Q1

2
ð2:27Þ

Therefore, QD ¼ ð7:5� 4Þ=2 ¼ 3:5=2 ¼ 1:75 points. Quartile deviation measures the average range of
one-fourth of the data.

(b) IR ¼ Q3 � Q1 ¼ $4:08� $3:83 ¼ $0:25 [utilizing the values of Q3 and Q1 found in Prob. 2.10(b)]:

QD ¼ Q3 � Q1

2
¼ $4:08� $3:83

2
¼ $0:125

2.13 Find the average deviation for (a) the ungrouped data in Table 2.7 and (b) for the grouped
data in Table 2.9.

(a) Since � ¼ 6 [see Prob. 2.3(a)],X
jX � �j ¼ 1þ 1þ 0þ 4þ 2þ 1þ 0þ 1þ 3þ 3þ 4þ 2þ 1þ 1þ 2þ 0þ 1þ 2þ 2þ 4

þ 3þ 1þ 0þ 1þ 3þ 2þ 4þ 2þ 1þ 3þ 2þ 0þ 1þ 2þ 3þ 0þ 1þ 3þ 4þ 1

¼ 72

AD ¼
P jX � �j

N
¼ 72

40
¼ 1:8 points
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Note that the average deviation takes every observation into account. It measures the average of the

absolute deviation of each observation from the mean. It takes the absolute value (indicated by the
two vertical bars) because

PðX � �Þ ¼ 0 (see Example 5).

(b) We can find the average deviation for the same grouped data with the aid of Table 2.16:

AD ¼
P

f jX � �j
N

¼ 72

40
¼ 1:8 points

the same as we found for the ungrouped data.

2.14 Find the average deviation for the grouped data in Table 2.12.

We can find the average deviation for the grouped data of hourly wages in Table 2.12 with the aid of
Table 2.17 ½X ¼ $3:95; see Prob. 2.4(b)]:

AD ¼
P

f jX � Xj
n

¼ $3:60

25
¼ $0:144

Note that the average deviation found for the grouped data is an estimate of the ‘‘true’’ average deviation
that could be found for the ungrouped data. It usually differs slightly from the true average deviation

because we use the estimate of the mean for the grouped data in our calculations [compare the values of X
found in Prob. 2.4(a) and (b)].
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Table 2.16 Calculations for the Average Deviation for the Grouped Data in Table 2.9

Grade
Class Midpoint

X Frequency f Mean � X � � jX � �j f jX � �j

1.5–2.4 2 3 6 �4 4 12

2.5–3.4 3 3 6 �3 3 9

3.5–4.4 4 5 6 �2 2 10

4.5–5.4 5 5 6 �1 1 5

5.5–6.4 6 6 6 0 0 0

6.5–7.4 7 8 6 1 1 8

7.5–8.4 8 4 6 2 2 8

8.5–9.4 9 4 6 3 3 12

9.5–10.4 10 2 6 4 4 8P
f ¼ N ¼ 40

P jX � �j ¼ 72

Table 2.17 Calculations for the Average Deviation for the Grouped Data in Table 2.12

Hourly Wage,

$

Class Midpoint

X , $

Frequency

f

Mean X ,

$

X � X,

$

jX � X j,
$

f jX � X j,
$

3.50–3.59 3.55 1 3.95 �0:40 0.40 0.40

3.60–3.69 3.65 2 3.95 �0:30 0.30 0.60

3.70–3.79 3.75 2 3.95 �0:20 0.20 0.40

3.80–3.89 3.85 4 3.95 �0:10 0.10 0.40

3.90–3.99 3.95 5 3.95 0:00 0.00 0.00

4.00–4.09 4.05 6 3.95 0:10 0.10 0.60

4.10–4.19 4.15 3 3.95 0:20 0.20 0.60

4.20–4.29 4.25 2 3.95 0:30 0.30 0.60P
f ¼ n ¼ 25

P
f jX � Xj ¼ $3:60



2.15 Find the variance and the standard deviation for (a) the ungrouped data in Table 2.7 and
(b) the grouped data in Table 2.9. (c) What is the advantage of the standard deviation over
the variance?

ðaÞ �2 ¼
PðX � �Þ2

N
and � ¼ 6 (see Prob. 2.3aÞPðX � �Þ2 ¼ 1þ 1þ 0þ 16þ 4þ 1þ 0þ 1þ 9þ 9þ 16þ 4þ 1þ 1þ 4þ 0þ 1þ 4þ 4þ 16

þ 9þ 1þ 0þ 1þ 9þ 4þ 16þ 4þ 1þ 9þ 4þ 0þ 1þ 4þ 9þ 0þ 1þ 9þ 16þ 1

¼ 192

�2 ¼
PðX � �Þ2

N
¼ 192

40
¼ 4:8 points squared

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX � �Þ2

N

s
¼

ffiffiffiffiffiffiffiffi
192

40

r
¼

ffiffiffiffiffiffiffi
4:8

p
ffi 2:19 points

(b) We can find the variance and the standard deviation for the grouped data of grades with the aid of

Table 2.18:

�2 ¼
P

f ðX � �Þ2
N

¼ 192

40
¼ 4:8 points squared

and � ¼
ffiffiffiffiffi
�2

p
¼

ffiffiffiffiffiffiffi
4:8

p
ffi 2:19 points

the same as we found for the ungrouped data.

(c) The advantage of the standard deviation over the variance is that the standard deviation is expressed in

the same units as the data rather than in ‘‘the width squared,’’ which is how the variance is expressed.
The standard deviation is by far the most widely used measure of (absolute) dispersion.

2.16 Find the variance and the standard deviation for the grouped data in Table 2.10.

We can find the variance and the standard deviation for the grouped data of hourly wages with the aid

of Table 2.19 ½X ¼ $3:95; see Prob. 2.4(b)]:

s2 ¼
P

f ðX � XÞ2
n � 1

¼ 0:82

24
ffi 0:0342 dollars squared

and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

f ðX � XÞ2
n � 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0342

p
¼ $0:18
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Table 2.18 Calculations for the Variance and Standard Deviation for the Data in Table 2.9

Grade

Class Midpoints

X Frequency f Mean � X � � ðX � �Þ2 f ðX � �Þ2

1.5–2.4 2 3 6 �4 16 48

2.5–3.4 3 3 6 �3 9 27

3.5–4.4 4 5 6 �2 4 20

4.5–5.4 5 5 6 �1 1 5

5.5–6.4 6 6 6 0 0 0

6.5–7.4 7 8 6 1 1 8

7.5–8.4 8 4 6 2 4 16

8.5–9.4 9 4 6 3 9 36

9.5–10.4 10 2 6 4 16 32P
f ¼ N ¼ 40

P
f ðX � �Þ2 ¼ 192



Note that in the formula for s2 and s; n � 1 rather than n is used in the denominator. The reason for this

is that if we take many samples from a population, the average of the sample variances does not tend to

equal population variance, �2, unless we use n � 1 in the denominator of the formula for s2 (more will be

said on this in Chap. 5). Furthermore, s2 and s for the grouped data are estimates for the true s2 and s

that could be found for the ungrouped data because we use the estimate of X from the grouped data in

our calculations.

2.17 Starting with the formula for �2 and s2 given in Sec. 2.3, prove that

ðaÞ �2 ¼
P

X2 � N�2

N
and s2 ¼

P
X2 � nX

2

n � 1
ð2:28a; bÞ

ðbÞ �2 ¼
P

fX2 � N�2

N
and s2 ffi

P
fX2 � nX

2

n � 1
ð2:29a; bÞ

ðaÞ �2 ¼
PðX � �Þ2

N
¼

PðX2 � 2X�þ �2Þ
N

¼
P

X2 � 2�
P

X þ N�2

N

¼
P

X2

N
� 2�2 þ �2 ¼

P
X2 � N�2

N

We can get s2 by simply replacing � with X and N with n in the numerator and N with n � 1 in the

denominator of the formula for �2.

ðbÞ �2 ¼
P

f ðX � �Þ2
N

¼
P

f ðX2 � 2X�þ �2Þ
N

¼
P

fX2 � 2�
P

fX þ N�2

N

¼
P

fX2

N
� 2�2 þ �2 ¼

P
fX2 � N�2

N

We can get s2 in the same way as we did in part a. The preceding formulas will simplify the calculations

for �2 and s2 for a large body of data. Coding also helps (see Prob. 2.6).

2.18 Find the variance and the standard deviation for (a) the ungrouped data in Table 2.7 and
(b) the grouped data in Table 2.9, using the simpler computational formulas in Prob. 2.17.
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Table 2.19 Calculations for the Variance and Standard Deviation for the Data in Table 2.12

Hourly

Wage, $

Class

Midpoint X , $ Frequency f

Mean X ,

$

X � X ,

$ ðX � XÞ2 f ðX � XÞ2

3.50–3.59 3.55 1 3.95 �0:40 0.16 0.16

3.60–3.69 3.65 2 3.95 �0:30 0.09 0.18

3.70–3.79 3.75 2 3.95 �0:20 0.04 0.08

3.80–3.89 3.85 4 3.95 �0:10 0.01 0.04

3.90–3.99 3.95 5 3.95 0:00 0.00 0.00

4.00–4.09 4.05 6 3.95 0:10 0.01 0.06

4.10–4.19 4.15 3 3.95 0:20 0.04 0.12

4.20–4.29 4.25 2 3.95 0:30 0.09 0.18P
f ¼ n ¼ 25

P
f ðX � XÞ2 ¼ 0:82



ðaÞ
X

X2 ¼ 49þ 25þ 36þ 4þ 64þ 49þ 36þ 49þ 9þ 81þ 100þ 16þ 25þ 25

þ 16þ 36þ 49þ 18þ 64þ 4þ 9þ 25þ 36þ 49þ 81þ 64þ 4þ 16þ 49

þ 81þ 16þ 36þ 49þ 64þ 9þ 36þ 49þ 81þ 100þ 25

¼ 1,632

� ¼
P

X

N
¼ 240

40
¼ 6

�2 ¼
P

X2 � N�2

N
¼ 1,632� ð40Þð36Þ

40
¼ 1;632� 1,440

40
¼ 192

40
¼ 4:8 points squared

� ¼
ffiffiffiffiffi
�2

p
¼

ffiffiffiffiffiffiffi
4:8

p
ffi 2:19 points

the same as in Prob. 2.15(a).

(b) We can find �2 and � for the grouped data in Table 2.9 with the aid of Table 2.20:

� ¼
P

fX

N
¼ 240

6
¼ 6

�2 ¼
P

fX2 � N�2

N
¼ 1,632� ð40Þð36Þ

40
¼ 1,632� 1,440

40
¼ 192

40
¼ 4:8 points squared

� ¼
ffiffiffiffiffi
�2

p
¼

ffiffiffiffiffiffiffi
4:8

p
ffi 2:19 points

the same as in part a and Prob. 2.15.

2.19 Find the variance and the standard deviation for the grouped data in Table 2.12 using the simpler
computational formula given in Prob. 2.17(b).

We can find s2 and s for the grouped data in Table 2.12 with the aid of Table 2.21:

X ¼
P

fX

n
¼ 98:75

25
¼ $3:95

s2 ¼
P

fX2 � nX
2

n � 1
¼ 390:8825� ð25Þð15:6025Þ

24
¼ 390:8825� 390:0625

24
¼ 0:82

24

ffi 0:0342 dollars squared

and s ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0342

p
ffi $0:18

the same as we found in Prob. 2.16.
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Table 2.20 Calculations for the Variance and Standard Deviation for the Grouped Data

in Table 2.9

Grade Class Midpoint X Frequency f fX X2 fX2

1.5–2.4 2 3 6 4 12

2.5–3.4 3 3 9 9 27

3.5–4.4 4 5 20 16 80

4.5–5.4 5 5 25 25 125

5.5–6.4 6 6 36 36 216

6.5–7.4 7 8 56 49 392

7.5–8.4 8 4 32 64 256

8.5–9.4 9 4 36 81 324

9.5–10.4 10 2 20 100 200P
f ¼ N ¼ 40

P
fX ¼ 240

P
fX2 ¼ 1,632



2.20 Find the coefficient of variation V for the data in (a) Table 2.7 and (b) Table
2.12. (c) What is the usefulness of the coefficient of variation?

(a) with � ¼ 6 and � ffi 2:19 (see Prob. 2.19)

V ¼ �

�
ffi 2:19 points

6 points
ffi 0:635; or 6:35%

(b) With X ¼ $3:95 and s ffi $0:18 (see Prob. 2.19)

V ¼ s

X
ffi $0:18

$3:95
ffi 0:046; or 4:6%

(c) The coefficient of variation measures the relative dispersion in the data and is expressed as a pure

number without any units. This is to be contrasted with standard deviation and other measures of
absolute dispersion, which are expressed in the units of the problem. Thus the coefficient of variation
can be used to compare the relative dispersion of two or more distributions expressed in different units,

as well as when the true mean values differ. For example, we can say that the dispersion of the data in
Table 2.7 is greater than that in Table 2.12. The coefficient of variation also can be used to compare the
relative dispersion of the same type of data over different time periods (when � or X and � or s change).

SHAPE OF FREQUENCY DISTRIBUTIONS

2.21 Find the Pearson coefficient of skewness for the (grouped) data in (a) Table 2.9 and (b) Table
2.12.

(a) With � ¼ 6, med ¼ 6:17 [see Prob. 2.3(b)], and � ffi 2:19 [see Prob. 2.15(b)]

Sk ¼ 3ð��medÞ
�

ffi 3ð6� 6:17Þ
2:19

ffi 3ð�0:17Þ
2:19

ffi �0:23 (a pure number)

Note that median is greater than mean and that the distribution is slightly negatively skewed (see Fig.
2-5c).

(b) With X ¼ $3:95, med ¼ $3:97 [see Prob. 2.4(b)], and s ffi $0:18 (see Prob. 2.16)

Sk ¼ 3ðX �medÞ
s

ffi 3ð3:95� 3:97Þ
0:18

¼ 3ð�0:02Þ
0:18

¼ �0:33

(see Fig. 2-6c).
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Table 2.21 Calculations for the Variance and Standard Deviation for the Grouped Data in

Table 2.12

Hourly

Wage, $

Class

Midpoint X , $ Frequency f fX, $ X2 fX2

3.50–3.59 3.55 1 3.55 12.6025 12.6025

3.60–3.69 3.65 2 7.30 13.3225 26.6450

3.70–3.79 3.75 2 7.50 14.0625 28.1250

3.80–3.89 3.85 4 15.40 14.8225 59.2900

3.90–3.99 3.95 5 19.75 15.6025 78.0125

4.00–4.09 4.05 6 24.30 16.4025 98.4150

4.10–4.19 4.15 3 12.45 17.2225 51.6675

4.20–4.29 4.25 2 8.50 18.0625 36.1250P
f ¼ n ¼ 25

P
fX ¼ $98:75

P
fX2 ¼ 390:8825



2.22 Using the formula for skewness based on the third moment, find the coefficient of skewness for
the data in (a) Table 2.9 and (b) Table 2.12.

(a) We can find the coefficient of skewness for the data in Table 2.9 using the formula based on the third
moment with the aid of Table 2.22:

Sk ¼ � f ðX � �Þ3
s3

ffi �42
2:193

¼ �42
10:50349

ffi �4

This indicates that this distribution is negatively skewed, but the degree of skewness is measured
differently than in Prob. 2.21.

(b) See Table 2.23.

Sk ¼
P

f ðX � XÞ3
s3

¼ �0:054
0:183

ffi �0:054
0:006

ffi �9

Note that regardless of the measure of skewness used, the distributions of the data in Tables 2.9 and

2.12 are negatively skewed, with the latter more negatively skewed than the former.
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Table 2.22 Calculations for Skewness for the Data in Table 2.9

Grade

Class

Midpoint X Frequency f Mean � X � � ðX � �Þ3 f ðX � �Þ3

1.5–2.4 2 3 6 �4 �64 �192
2.5–3.4 3 3 6 �3 �27 �81
3.5–4.4 4 5 6 �2 �8 �40
4.5–5.4 5 5 6 �1 �1 �5
5.5–6.4 6 6 6 0 0 0

6.5–7.4 7 8 6 1 1 8

7.5–8.4 8 4 6 2 8 32

8.5–9.4 9 4 6 3 27 108

9.5–10.4 10 2 6 4 64 128P
f ¼ N ¼ 40

P
f ðX � �Þ3 ¼ �42

Table 2.23 Calculations for Skewness for the Data in Table 2.12

Hourly

Wages, $

Class

Midpoint X , $ Frequency f

Mean

X, $

X � X ,

$ ðX � XÞ3 f ðX � XÞ3

3.50–3.59 3.55 1 3.95 �0:40 �0:064 �0:064
3.60–3.69 3.65 2 3.95 �0:30 �0:027 �0:054
3.70–3.79 3.75 2 3.95 �0:20 �0:008 �0:016
3.80–3.89 3.85 4 3.95 �0:10 �0:001 �0:004
3.90–3.99 3.95 5 3.95 0 0 0

4.00–4.09 4.05 6 3.95 0:10 0:001 0:006

4.10–4.19 4.15 3 3.95 0:20 0:008 0:024

4.20–4.29 4.25 2 3.95 0:30 0:027 0:054P
f ðX � XÞ3 ¼ �0:054



2.23 Find the coefficient of kurtosis for the data in (a) Table 2.9 and (b) Table 2.12.

(a) We can find the coefficient of kurtosis for the data in Table 2.9 with the aid of Table 2.24:

Kurtosis ¼
P

f ðX � �Þ4
�4

ffi 2,004

2:194
ffi 2,004

23:00
ffi 87:13 (a pure number)

Thus the distribution of grades is very peaked (leptokurtic; see Fig. 2-5c).

(b) Table 2.25 will aid us here:

Kurtosis ¼
P

f ðX � XÞ4
s2

ffi 0:067

0:001
ffi 67

Thus the distribution of wages is also leptokurtic (see Fig. 2-6c), but less than the distribution of

grades.
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Table 2.24 Calculations for Kurtosis for the Data in Table 2.9

Grade
Class

Midpoint X Frequency f Mean � X � � ðX � �Þ4 f ðX � �Þ4

1.5–2.4 2 3 6 �4 256 768

2.5–3.4 3 3 6 �3 81 243

3.5–4.4 4 5 6 �2 16 80

4.5–5.4 5 5 6 �1 1 5

5.5–6.4 6 6 6 0 0 0

6.5–7.4 7 8 6 1 1 8

7.5–8.4 8 4 6 2 16 64

8.5–9.4 9 4 6 3 81 324

9.5–10.4 10 2 6 4 256 512P
f ¼ N ¼ 40

P
f ðX � �Þ4 ¼ 2,004

Table 2.25 Calculations for Kurtosis for the Data in Table 2.12

Hourly

Wages, $

Class

Midpoint X , $ Frequency f

Mean

X , $

X � X,

$ ðX � XÞ4 f ðX � XÞ4

3.50–3.59 3.55 1 3.95 �0:40 0.0256 0.0256

3.60–3.69 3.65 2 3.95 �0:30 0.081 0.0162

3.70–3.79 3.75 2 3.95 �0:20 0.0016 0.0032

3.80–3.89 3.85 4 3.95 �0:10 0.0001 0.0004

3.90–3.99 3.95 5 3.95 0 0 0

4.00–4.09 4.05 6 3.95 0:10 0.0001 0.0006

4.10–4.19 4.15 3 3.95 0:20 0.0016 0.0048

4.20–4.29 4.25 2 3.95 0:30 0.0081 0.0162P
f ðX � XÞ4 ¼ 0:0670



2.24 Find the covariance between hourly wage X and education Y , measured in years of schooling in
the data in Table 2.26.

From the calculations in Table 2.27, covðX;YÞ ¼ ð103:55=10Þ ¼ 10:355. When X and Y are both above or

below their means, covariance is increased. When X and Y move in opposite directions relative to their
means (employee 5), covariance is decreased. Since in this case covðX ;YÞ > 0, X and Y move together
relative to their means.
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Table 2.26 Employee Hourly Wages and Years of Schooling

Employee

Number

Hourly

Wage X , $

Years of

Schooling
Y

1 8.50 12

2 12.00 14

3 9.00 10

4 10.50 12

5 11.00 16

6 15.00 16

7 25.00 18

8 12.00 18

9 6.50 12

10 8.25 10

Table 2.27 Calculations for Covariance

Employee

Number

Hourly

Wage X , $

Years of

Schooling Y ðX � XÞ ðY � YÞ ðX � XÞðY � YÞ
1 8.50 12 �3:275 �1:8 5:895

2 12.00 14 0:225 0:2 0:045

3 9.00 10 �2:775 �3:8 10:545

4 10.50 12 �1:275 �1:8 2:295

5 11.00 16 �0:775 2:2 �1:705
6 15.00 16 3:225 2:2 7:095

7 25.00 18 13:225 4:2 55:545

8 12.00 18 0:225 4:2 0:945

9 6.50 12 �5:275 �1:8 9:495

10 8.25 10 �3:525 �3:8 13:395

X ¼ 11:775 Y ¼ 13:8 �ðX � XÞðY � YÞ ¼ 103:55



2.25 Compute the covariance from Table 2.26 using the alternate formula.
Computations are given in Table 2.28. covðX ;YÞ ¼ ð1728:5=10Þ � ð11:775Þð13:8Þ ¼ 172:85�
162:495 ¼ 10:355.

Supplementary Problems

FREQUENCY DISTRIBUTIONS

2.26 Table 2.29 gives the frequency for gasoline prices at 48 stations in a town. Present the data in the form of a

histogram, a relative-frequency histogram, a frequency polygon, and an ogive.

2.27 Table 2.30 gives the frequency distribution of family incomes for a sample of 100 families in a city. Graph
the data into a histogram, a relative-frequency histogram, a frequency polygon, and an ogive.
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Table 2.28 Calculations for Covariance with Alternate Formula

Employee

Number

Hourly Wage

X, $

Years of

Schooling Y XY

1 8.50 12 102

2 12.00 14 168

3 9.00 10 90

4 10.50 12 126

5 11.00 16 176

6 15.00 16 240

7 25.00 18 450

8 12.00 18 216

9 6.50 12 78

10 8.25 10 82.5

X ¼ 11:775 Y ¼ 13:8 �XY ¼ 1; 728:5

Table 2.29 Frequency Distribution of

Gasoline Prices

Price, $ Frequency

1.00–1.04 4

1.05–1.09 6

1.10–1.14 10

1.15–1.19 15

1.20–1.24 8

1.25–1.29 5



MEASURES OF CENTRAL TENDENCY

2.28 Find (a) the mean, (b) the median, and (c) the mode for the grouped data in Table 2.29.

Ans. (a) � ¼ $1:15 (b) Median ¼ $1:16 (c) Mode ¼ $1:17

2.29 Find (a) the mean, (b) the median, and (c) the mode for the frequency distribution of incomes in
Table 2.30.
Ans. (aÞ X ¼ $17,000, (b) Median ¼ $16,000 (c) Mode ¼ $15,053

2.30 Find the mean for the grouped data in (a) Table 2.29 and (b) Table 2.30 by coding.
Ans. (a) � ¼ $1:15 (b) X ¼ $17,000

2.31 A firm pays 5/12 of its labor force an hourly wage of $5, 1/3 of the labor force a wage of $6, and 1/4 a wage

of $7. What is the weighted average paid by this firm?
Ans. �w ffi $5:83

2.32 For the same amount of capital invested in each of 3 years, an investor earned a rate of return of 1% during

the first year, 4% during the second year, and 16% during the third. (a) Find �G. (b) Find �. (c) Which
is appropriate?
Ans. (a) �G ¼ 4% (b) � ¼ 7% (c) �G

2.33 A plane traveled 200mi at 600mi/h and 100mi at 500mi/h. What was its average speed?

Ans. �H ¼ 562:5mi/h

2.34 A driver purchases $10 worth of gasoline at $0.90 a gallon and $10 at $1.10 a gallon. What is the average
price per gallon?

Ans. �H ffi $0:99 per gallon

2.35 For the grouped data of Table 2.29, find (a) the first quartile, (b) the second quartile, (c) the third
quartile, (d) the fourth decile, and (e) the seventieth percentile.
Ans. (a) Q1 ¼ $1:11 ðbÞ Q2 ffi $1:16 ðcÞ Q3 ffi $1:21 ðdÞ D4 ¼ $1:146 ðeÞ P70 ffi $1:195

2.36 For the grouped data in Table 2.30, find (a) the first quartile, (b) the third quartile, (c) the third decile,
and (d) the sixtieth percentile.
Ans. ðaÞ Q1 ffi $13,857 (bÞ Q3 ffi $19,538 ðcÞ D3 ffi $14,333 ðdÞ P60 ffi $17,333
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Table 2.30 Frequency Distribution of

Family Incomes

Family Income, $ Frequency

10,000–11,999 12

12,000–13,999 14

14,000–15,999 24

16,000–17,999 15

18,000–19,999 13

20,000–21,999 7

22,000–23,999 6

24,000–25,999 4

26,000–27,999 3

28,000–29,999 2

100



MEASURES OF DISPERSION

2.37 What is the range of the distribution of (a) gasoline prices in Table 2.29 and (b) family incomes in Table

2.30?
Ans. ðaÞ $0:29 ðbÞ $10,000 to $29,999, or $20,000

2.38 Find the interquartile range and quartile deviation for the data in (a) Table 2.29 and (b) Table 2.30.
Ans. ðaÞ IR ffi $0:10 and QD ffi $0:05 ðbÞ IR ffi $476 and QD ffi $238

2.39 Find the average deviation for the data in (a) Table 2.29 and (b) Table 2.30.
Ans. ðaÞ $0:0575 ðbÞ $3,520

2.40 Find (a) the variance and (b) the standard deviation for the frequency distribution of gasoline prices in
Table 2.29.

Ans. ðaÞ �2 ffi 0:0048 dollars squared (bÞ � ffi $0:0693

2.41 Find (a) the variance and (b) the standard deviation for the frequency distribution of family incomes in
Table 2.30.

Ans. ðaÞ s2 ¼ 19,760,000 dollars squared (bÞ s ffi $4,445.22

2.42 Using the easier computational formulas, find (a) the variance and (b) the standard deviation for the
distribution of gasoline prices in Table 2.29.
Ans. ðaÞ �2 ffi 0:0048 dollars squared (bÞ � ffi $0.0693

2.43 Using the easier computational formulas, find (a) the variance and (b) the standard deviation for the

family incomes in Table 2.30.
Ans. ðaÞ s2 ¼ 19,760,000 dollars squared ðbÞ s ffi $4,445.22

2.44 Find the coefficient of variation V for (a) the data in Table 2.29 and (b) the data in Table

2.30. (c) Which data have the greater dispersion?
Ans. ðaÞ 0:060, or 6% (b) 0.261, or 26.1% (c) The data of Table 2.30.

SHAPE OF FREQUENCY DISTRIBUTIONS

2.45 Find the Pearson coefficient of skewness for the data in (a) Table 2.29 and (b) Table 2.30.
Ans. ðaÞ � 0:43 ðbÞ 0:67

2.46 Find the coefficient of skewness using the formula based on the third moment for the data in (a) Table 2.29

and (b) Table 2.30.
Ans. ðaÞ � 1:88 ðbÞ 755

2.47 Find the coefficient of kurtosis for the data in (a) Table 2.29 and (b) Table 2.30.
Ans. ðaÞ 177 ðbÞ 300

2.48 For covariance, (a) in what range should the covariance for directly related data fall? (b) for inversely
related data? (c) for unrelated data?
Ans. ðaÞ cov > 0 ðbÞ cov < 0 ðcÞ cov ¼ 0
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Probability and
Probability

Distributions

3.1 PROBABILITY OF A SINGLE EVENT

If event A can occur in nA ways out of a total of N possible and equally likely outcomes, the
probability that event A will occur is given by

PðAÞ ¼ nA

N
ð3:1Þ

where PðAÞ ¼ probability that event A will occur

nA ¼ number of ways that event A can occur

N ¼ total number of equally possible outcomes

Probability can be visualized with a Venn diagram. In Fig. 3-1, the circle represents event A, and the
total area of the rectangle represents all possible outcomes.

PðAÞ ranges between 0 and 1:

0 � PðAÞ � 1 ð3:2Þ

If PðAÞ ¼ 0, event A cannot occur. If PðAÞ ¼ 1, event A will occur with certainty.
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If PðA 0Þ represents the probability of nonoccurrence of event A, then

PðAÞ þ PðA 0Þ ¼ 1 ð3:3Þ

EXAMPLE 1. A head (H) and a tail (T) are the two equally possible outcomes in tossing a balanced coin. Thus

PðHÞ ¼ nH
N

¼ 1

2

PðTÞ ¼ nT
N

¼ 1

2

and PðHÞ þ PðTÞ ¼ 1

EXAMPLE 2. In rolling a fair die once, there are six possible and equally likely outcomes: 1, 2, 3, 4, 5, and 6.
Thus

Pð1Þ ¼ Pð2Þ ¼ Pð3Þ ¼ Pð4Þ ¼ Pð5Þ ¼ Pð6Þ ¼ 1

6

The probability of not rolling a 1 is

Pð1 0Þ ¼ 1� Pð1Þ ¼ 1� 1

6
¼ 5

6

and Pð1Þ þ Pð1 0Þ ¼ 1

6
þ 5

6
¼ 6

6
¼ 1

EXAMPLE 3. A card deck has 52 cards divided into 4 suits (diamonds, hearts, clubs, and spades) with 13 cards in

each suit (1, 2, 3, . . . , 10, jack, queen, king). If the deck is well-shuffled, each of the 52 cards is equally likely to be
picked. Since there are 4 jacks, the probability of picking a jack, J, on a single pick is

J ¼ nJ
N

¼ 4

52
¼ 1

13

Since there are 13 diamonds, D

PðD 0Þ ¼ 1� PðDÞ ¼ 1� 13

52
¼ 1� 1

4
¼ 3

4

and PðDÞ þ PðD 0Þ ¼ 1

4
þ 3

4
¼ 1

EXAMPLE 4. Suppose that in 100 tosses of a balanced coin, we get 53 heads and 47 tails. The relative frequency

of heads is 53/100, or 0.53. This is the relative frequency or empirical probability, which is to be distinguished from
the a priori or classical probability of PðHÞ ¼ 0:5. As the number of tosses increases and approaches infinity in the
limit, the relative frequency or empirical probability approaches the a priori or classical probability. For example,

the relative frequency or empirical probability might be 0.517 or 1000 tosses, 0.508 for 10,000 tosses, and so on.

3.2 PROBABILITY OF MULTIPLE EVENTS

1. Rule of addition for nonmutually exclusive events. Two events, A and B, are not mutually
exclusive if the occurrence of A does not preclude the occurrence of B, or vice versa. Then

PðA or BÞ ¼ PðAÞ þ PðBÞ � PðA and BÞ ð3:4Þ
PðA and BÞ is subtracted to avoid double counting. This can be seen with the Venn diagram in
Fig. 3.2.

2. Rule of addition for mutually exclusive events. Two events, A and B, are mutually exclusive if the
occurrence of A precludes the occurrence of B, or vice versa ½PðA and BÞ ¼ 0�. Then

PðA and BÞ ¼ PðAÞ þ PðBÞ ð3:5Þ
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3. Rule of multiplication for dependent events. Two events are dependent if the occurrence of one is
connected in some way with the occurrence of the other. Then the joint probability of A and B is

PðA and BÞ ¼ PðAÞ � PðB=AÞ ð3:6Þ
This reads: ‘‘The probability that both events A and B will take place equals the probability of
event A times the probability of event B, given that event A has already occurred.’’

PðB=AÞ ¼ conditional probability of B, given that A has already occurred ð3:7Þ
and PðA and BÞ ¼ PðB and AÞ ð3:8Þ
See Prob. 3.15(c) and (d).

4. Rule of multiplication for independent events. Two events, A and B, are independent if the
occurrence of A is not connected in any way to the occurrence of B. ½PðB=AÞ ¼ PðBÞ�. Then

PðA and BÞ ¼ PðAÞ � PðBÞ ð3:9Þ

EXAMPLE 5. On a single toss of a die, we can get only one of six possible outcomes: 1, 2, 3, 4, 5, or 6. These are

mutually exclusive events. If the die is fair, Pð1Þ ¼ Pð2Þ ¼ Pð3Þ ¼ Pð4Þ ¼ Pð5Þ ¼ Pð6Þ ¼ 1=6. The probability of
getting a 2 or a 3 on a single toss of the die is

Pð2 or 3Þ ¼ Pð2Þ þ Pð3Þ ¼ 1

6
þ 1

6
¼ 2

6
¼ 1

3

Similarly Pð2 or 3 or 4Þ ¼ Pð2Þ þ Pð3Þ þ Pð4Þ ¼ 1

6
þ 1

6
þ 1

6
¼ 3

6
¼ 1

2

EXAMPLE 6. Picking at random a spade or a king on a single pick from a well-shuffled card deck does not
constitute two mutually exclusive events because we could pick the king of spades. Thus

PðS or KÞ ¼ PðSÞ þ PðKÞ � PðS and KÞ ¼ 13

52
þ 4

52
� 1

52
¼ 16

52
¼ 4

13

Using set theory, the preceding statement can be rewritten in an equivalent way as

PðS [KÞ ¼ PðSÞ þ PðKÞ � PðS \KÞ ¼ 13

52
þ 4

52
� 1

52
¼ 16

52
¼ 4

13

where the symbol [ (read ‘‘union’’) replaces or and \ (read ‘‘intersection’’) replaces and.

EXAMPLE 7. The outcomes of two successive tosses of a balanced coin are independent events. The outcome of
the first toss in no way affects the outcome on the second toss. Thus

PðH and HÞ ¼ PðH \HÞ ¼ PðHÞ � PðHÞ ¼ 1

2
� 1
2
¼ 1

4
; or 0:25

Similarly, P(H and H and H) ¼ PðH \H \HÞ ¼ PðHÞ � PðHÞ � PðHÞ ¼ 1

2
� 1
2
� 1
2
¼ 1

8
; or 0:125

EXAMPLE 8. The probability that on the first pick from a deck we get the king of diamonds is

PðKDÞ ¼
1

52
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If the first card picked was indeed the king of diamonds and if the first card was not replaced, the probability of getting

another king on the second pick is dependent on the first pick because there are now only 3 kings and 51 cards left in
the deck. The conditional probability of picking another king, given that the king of dimaonds was already picked
and not replaced, is

PðK=KDÞ ¼
3

51

Thus the probability of picking the king of diamonds on the first pick and, without replacement, picking another
king on the second pick is

PðKD and KÞ ¼ PðKDÞ � PðK=KDÞ ¼
1

52
� 3
51

¼ 3

2652

or about 1 in 1000. Related to conditional probability is Bayes’ theorem (see Prob. 3.17). Problem 3.18 reviews
combinations and permutations, or ‘‘counting techniques.’’

3.3 DISCRETE PROBABILITY DISTRIBUTIONS: THE BINOMIAL DISTRIBUTION

A random variable is a variable whose values are associated with some probability of being observed.
A discrete (as opposed to continuous) random variable is one that can assume only finite and distinct
values. The set of all possible values of a random variable and its associated probabilities is called a
probability distribution. The sum of all probabilities equals 1 (see Example 9).

One discrete probability distribution is the binomial distribution. This is used to find the probability
of X number of occurrences or successes of an event, PðXÞ, in n trials of the same experiment when (1)
there are only two possible and mutually exclusive outcomes, (2) the n trials are independent, and (3) the
probability of occurrence or success, p, remains constant in each trial. Then

PðXÞ ¼ n!

X!ðn � XÞ! p
Xð1� pÞn�X ð3:10Þ

where n! (read ‘‘n factorial’’) ¼ n � ðn � 1Þ � ðn � 2Þ � � � 3 � 2 � 1, and 0! ¼ 1 by definition (see Prob. 3.18).
The mean of the binomial distribution is

� ¼ np ð3:11Þ
The standard deviation is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� p

p
Þ ð3:12Þ

If p ¼ 1� p ¼ 0:5, the binomial distribution is symmetrical; if p < 0:5, it is skewed to the right; and if
p > 0:5, it is skewed to the left.

EXAMPLE 9. The possible outcomes in 2 tosses of a balanced coin are TT, TH, HT, and HH. Thus

Pð0HÞ ¼ 1

4
Pð1HÞ ¼ 1

2
and Pð2HÞ ¼ 1

4

The number of heads is therefore a discrete random variable, and the set of all possible outcomes with their
associated probabilities is a discrete probability distribution (see Table 3.1 and Fig. 3-3).
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Table 3.1 Probability Distribution of Heads in Two Tosses of a Balanced Coin

Number of Heads Possible Outcomes Probability

0 TT 0.25

1 TH, HT 0.50

2 HH 0.25

1.00



EXAMPLE 10. Using the binomial distribution, we can find the probability of 4 heads in 6 flips of a balanced coin
as follows:

Pð4Þ ¼ 6!

4!ð6� 4Þ! ð1=2Þ
4ð1=2Þ2 ¼ 6 � 5 � 4 � 3 � 2 � 1

4 � 3 � 2 � 1 � 2 � 1 ð1=16Þð1=4Þ ¼ 15ð1=64Þ ¼ 15

64
ffi 0:23

When n and X are large numbers, lengthy calculations to find probabilities can be avoided by using App. 1. The
expected number of heads in 6 flips ¼ � ¼ np ¼ ð6Þð1=2Þ ¼ 3 heads. The standard deviation of the probability
distribution of 6 flips is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6Þð1=2Þð1=2Þ

p
¼

ffiffiffiffiffiffiffiffi
6=4

p
¼

ffiffiffiffiffiffiffi
1:5

p
ffi 1:22 heads

Because p ¼ 0:5, this probability distribution is symmetrical. If we were not dealing with a coin and the trials were
not dependent (as in sampling without replacement), we would have had to use the hypergeometric distribution (see

Prob. 3.27).

3.4 THE POISSON DISTRIBUTION

The Poisson distribution is another discrete probability distribution. It is used to determine the
probability of a designated number of successes per unit of time, when the events or successes are
independent and the average number of successes per unit of time remains constant. Then

PðXÞ ¼ �Xe��

X !
ð3:13Þ

where X ¼ designated number of successes

PðXÞ ¼ probability of X number of successes

� ¼ (Greek letter lambda) ¼ average number of successes per unit of time

e ¼ base of the natural logarithmic system, or 2.71828

Given the value of � (the expected value or mean and variance of the Poisson distribution), we can
find e�l from App. 2, substitute in Eq. (3.13), and find PðXÞ.

EXAMPLE 11. A police department receives an average of 5 calls per hour. The probability of receiving 2 calls in

a randomly selected hour is

PðXÞ ¼ �X e��

X !
¼ 52e�5

2!
¼ ð25Þð0:00674Þ

2
¼ 0:08425

The Poisson distribution can be used as an approximation to the binomial distribution when n is large and p or 1� p
is small [say, n � 30 and np < 5 or nð1� pÞ < 5]. See Prob. 3.30.
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3.5 CONTINUOUS PROBABILITY DISTRIBUTIONS: THE NORMAL DISTRIBUTION

A continuous random variable X is one that can assume an infinite number of values within any given

interval. The probability that X falls within any interval is given by the area under the probability

distribution (or density function) within that interval. The total area (probability) under the curve is 1

(see Prob. 3.31).

The normal distribution is a continuous probability distribution and the most commonly used dis-

tribution in statistical analysis (see Prob. 3.32). The normal curve is bell-shaped and symmetrical about

its mean. It extends indefinitely in both directions, but most of the area (probability) is clustered around

the mean (see Fig. 3-4); 68.26% of the area (probability) under the normal curve is included within one

standard deviation of the mean (i.e., within �� 1�), 95.44% within �� 2�, and 99.74% within �� 3�.

The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation
of 1 (i.e., � ¼ 0 and � ¼ 1). Any normal distribution (X scale in Fig. 3-4) can be converted into a
standard normal distribution by letting � ¼ 0 and expressing deviations from � in standard deviation
units (z scale).

To find probabilities (areas) for problems involving the normal distribution, we first convert the X
value into its corresponding z value, as follows:

z ¼ X � �

�
ð3:14Þ

Then we look up the z value in App. 3. This gives the proportion of the area (probability) included
under the curve between the mean and that z value.

EXAMPLE 12. The area (probability) under the standard normal curve between z ¼ 0 and z ¼ 1:96 is obtained by
looking up the value of 1.96 in App. 3. We move down the z column in the table to 1.9 and then across unitl we are
below the column headed 0.06. The value that we get is 0.4750. This means that 47.50% of the total area (of 1, or

100%) under the curve lies between z ¼ 0 and z ¼ 1:96 (the shaded area in the figure above the table). Because of
symmetry, the area between z ¼ 0 and z ¼ �1:96 (not given in the table) is also 0.4750, or 47.50%.

EXAMPLE 13. Suppose that X is a normally distributed random variable with � ¼ 10 and �2 ¼ 4 and we want to
find the probability of X assuming a value between 8 and 12. We first calculate the z values corresponding to the X

values of 8 and 12 and then look up these z values in App. 3:

z1 ¼
X1 � �

�
¼ 8� 10

2
¼ �1 and z2 ¼

X2 � �

�
¼ 12� 10

2
¼ þ1
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For z ¼ 1, we get 0.3413 from App. 3. Then, z ¼ �1 equals 2(0.3413), or 0.6826. This means that the probability

of X assuming a value between 8 and 12, or Pð8 < X < 12Þ, is 68.26% (see Fig. 3-4).

EXAMPLE 14. Suppose again that X is a normally distributed random variable with � ¼ 10 and �2 ¼ 4. The

probability that X will assume a value between 7 and 14 can be found as follows:

z1 ¼
X1 � �

�
¼ 7� 10

2
¼ �1:5 and z2 ¼

X2 � �

�
¼ 14� 10

2
¼ 2

For z1 ¼ �1:5, we look up 1.50 in App. 3 and get 0.4322. For z2 ¼ 2, we get 0.4772. Therefore,

Pð7 < X < 14Þ ¼ 0:4332þ 0:4772 ¼ 0:9104, or 91.04% (see Fig. 3-5). Therefore, the probability of X assuming

a value smaller than 7 or larger than 14 (the unshaded tail areas in Fig. 3-5) is 1� 0:9104 ¼ 0:0896, 8.96%. The

normal distribution approximates the binomial distribution when n � 30 and both np > 5 and nð1� pÞ > 5, and it

approximates the Poisson distribution when � � 10 (see Probs. 3.37 and 3.38). Another continuous probability

distribution is the exponential distribution (see Prob. 3.39). Chebyshev’s theorem, or inequality, states that regardless

of the shape of a distribution, the proportion of the observations or area falling within K standard deviations of the

mean is at least 1� 1=K2, for K � 1 (see Probs. 3.40 and 3.72).

Solved Problems

PROBABILITY OF A SINGLE EVENT

3.1 (a) Distinguish among classical or a priori probability, relative frequency or empirical probabil-
ity, and subjective or personalistic probability. (b) What is the disadvantage of each? (c) Why
do we study probability theory?

(a) According to classical probability, the probability of an event A is given by

PðAÞ ¼ nA

N

where PðAÞ ¼ probability that event A will occur

nA ¼ number of ways event A can occur

N ¼ total number of equally possible outcomes

By the classical approach, we can make probability statements about balanced coins, fair dice, and
standard card decks a priori, or without tossing a coin, rolling a die, or drawing a card. Relative

frequency or empirical probability is given by the ratio of the number of times an event occurs to the
total number of actual outcomes or observations. As the number of experiments or trials (such as the
tossing of a coin) increases, the relative frequency or empirical probability approaches the classical or a
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priori probability. Subjective or personalistic probability refers to the degree of belief of an individual

that the event will occur, based on whatever evidence is available to the individual.

(b) The classical or a priori approach to probability can only be applied to games of chance (such as tossing
a balanced coin, rolling a fair die, or picking cards from a standard deck of cards) where we can
determine a priori, or without experimentation, the probability that an event will occur. In real-

world problems of economics and business, we often cannot assign probabilities a priori and the
classical approach cannot be used. The relative-frequency or empirical approach overcomes the
disadvantages of the classical approach by using the relative frequencies of past occurrences as

probabilities. The difficulty with the relative-frequency or empirical approach is that we get different
probabilities (relative frequencies) for different numbers of trials or experiments. These probabilities
stabilize, or approach a limit, as the number of trials or experiments increases. Because this may be
expensive and time-consuming, people may end up using it without a ‘‘sufficient’’ number of trials or

experiments. The disadvantage of the subjective or personalistic approach to probability is that
different people faced with the same situation may come up with completely different probabilities.

(c) Most of the decisions we face in economics, business, science, and everyday life involve risks and

probabilities. These probabilities are easier to understand and illustrate for games of choice because
objective probabilities can easily be assigned to various events. However, the primary reason for
studying probability theory is to help us make intelligent decisions in economics, business, science, and
everyday life when risk and uncertainty are involved.

3.2 What is the probability of (a) A head in one toss of a balanced coin? A tail? A head or a tail?
(b) A 2 in one rolling of a fair die? Not a 2? A 2 or not a 2?

ðaÞ PðHÞ ¼ nH
N

¼ 1

2

PðTÞ ¼ nT
N

¼ 1

2

PðHÞ þ PðTÞ ¼ 1

2
þ 1

2
¼ 1

(b) Since each of the 6 sides of a fair die is equally likely to come up and a 2 is one of the possibilities

Pð2Þ ¼ n2
N

¼ 1

6

The probability of not rolling a 2 [that is, Pð2 0Þ] is given by

Pð2 0Þ ¼ 1� Pð2Þ ¼ 1� 1

6
¼ 5

6

Pð2Þ þ Pð2 0Þ ¼ 1

6
þ 5

6
¼ 6

6
¼ 1; or certainty

3.3 What is the probability that by picking one card from a well-shuffled deck, the card is (a) a king,
(b) a spade, (c) the king of spades, (d) not the king of spades, or (e) the king of spades or not
the king of spades?

(a) Since there are 4 kings K in the 52 cards of the standard deck

PðKÞ ¼ nK
N

¼ 4

52
¼ 1

13

(b) Since there are 13 spades S in the 52 cards, PðSÞ ¼ 13=52 ¼ 1=4

(c) There is only one king of spades in the deck, therefore PðKSÞ ¼ 1=52

(d) The probability of not picking the king of spades is PðK 0
SÞ ¼ 1� 1=52 ¼ 51=52

(e) PðKSÞ þ PðK 0
SÞ ¼ 1=52þ 51=52 ¼ 52=52 ¼ 1, or certainty
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3.4 An urn (vase) contains 10 balls that are exactly alike except that 5 are red, 3 are blue, and 2 are
green. What is the probability that, in picking up a single ball, the ball is (a) Red? (b) Blue?
(c) Green? (d) Nonblue? (e) Nongreen? ( f ) Green or nongreen? (g) What are the odds of
picking a blue ball? (h) What are the odds of not picking a blue ball?

PðRÞ ¼ NR

N
¼ 5

10
¼ 0:5ðaÞ

PðBÞ ¼ nB
N

¼ 3

10
¼ 0:3ðbÞ

PðGÞ ¼ nG
N

¼ 2

10
¼ 0:2ðcÞ

PðB 0Þ ¼ 1� PðBÞ ¼ 1� 0:3 ¼ 0:7ðdÞ
PðG 0Þ ¼ 1� PðGÞ ¼ 1� 0:2 ¼ 0:8ðeÞ

PðGÞ þ PðG 0Þ ¼ 0:2þ 0:8 ¼ 1ð f Þ
(g) The odds of picking a blue ball are given by the ratio of the number of ways of picking a blue ball to the

number of ways of not picking a blue ball. Since there are 3 blue balls and 7 nonblue balls, the odds in
favor of picking a blue ball are 3 to 7, or 3 : 7.

(h) The odds of not (against) picking a blue ball are 7 to 3, or 7 : 3.

3.5 Suppose that a 3 comes up 106 times in 600 tosses of a die. (a) What is the relative frequency of
the 3? How does this differ from classical or a priori probability? (b) What would you expect to
be the relative frequency or empirical probability if you increased the number of times the die is
rolled?

(a) The relative frequency or empirical probability of the 3 is given by the ratio of the number of times 3
comes up (106) out of the total number of times the die is rolled (600). Thus the relative frequency or
empirical probability of the 3 is 106=600 ffi 0:177 in 600 rolls. According to the classical or a priori

approach (and without rolling the die at all), Pð3Þ ¼ 1=6 ffi 0:167. If the die is fair, we expect the 3 to
come up 100 times in 600 rolls of the die as compared with the actual, observed, or empirical 106 times.

(b) If the number of times the same die is rolled is increased from 600, we expect the relative frequency or

empirical probability to approach (i.e., to become less unequal with) the classical or a priori probability.

3.6 The production process results in 27 defective items for each 1000 items produced. (a) What is
the relative frequency or empirical probability of a defective item? (b) How many defective items
do you expect out of the 1600 items produced each day?

(a) The relative frequency or empirical probability of a defective item is 27=1000 ¼ 0:027:

(b) By multiplying the number of items produced each day (1600) by the relative frequency or empirical

probability of a defective item (0.027), we get the number of defective items we expect out of each day’s
output. This is ð1600Þð0:027Þ ¼ 43, to the nearest item.

PROBABILITY OF MULTIPLE EVENTS

3.7 Define and give some examples of events that are (a) mutually exclusive, (b) not mutually
exclusive, (c) independent, and (d) dependent.

(a) Two or more events are mutually exclusive, or disjoint, if the occurrence of one of them precludes or

prevents the occurrence of the other(s). When one event takes place, the other(s) will not. For
example, in a single flip of a coin, we get either a head or a tail, but not both. Heads and tails are
therefore mutually exclusive events. In a simple toss of a die, we get one and only one of six possible

outcomes: 1, 2, 3, 4, 5, or 6. The outcomes are therefore mutually exclusive. A card picked at random
can be of only one suit: diamonds, hearts, clubs, or spades. A child is born either a boy or a girl. An
item produced on an assembly line is either good or defective.
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(b) Two or more events are not mutually exclusive if they may occur at the same time. The occurrence of

one does not preclude the occurrence of the other(s). For example, a card picked at random from a
deck of cards can be both an ace and a club. Therefore, aces and clubs are not mutually exclusive
events, because we could pick the ace of clubs. Because we could have inflation and recession at the
same time, inflation and recession are not mutually exclusive events.

(c) Two or more events are independent if the occurrence of one of them in no way affects the occurrence of
the other(s). For example, in two successive flips of a balanced coin, the outcome of the second flip in
no way depends on the outcome of the first flip. The same is true for two successive tosses of a pair of
dice or picks of two cards from a deck with replacement.

(d) Two or more events are dependent if the occurrence of one of them affects the probability of the
occurrence of the other(s). For example, if we pick a card from a deck and do not replace it, the
probability of picking the same card on the second pick is 0. All other probabilities also are affected,

since there are now only 51 cards in the deck. Similarly, if the proportion of defective items is greater
for the evening than for the morning shift, the probability that an item picked at random from the
evening output is defective is greater than for the morning output.

3.8 Draw a Venn diagram for (a) mutually exclusive events and ðbÞ not mutually exclusive events.
ðcÞ Are mutually exclusive events dependent or independent? Why?

ðaÞ Figure 3-6 illustrates the Venn diagram for events A and B which are mutually exclusive.

(b) Figure 3-7 illustrates the Venn diagram for events A and B which are not mutually exclusive.

(c) Mutually exclusive events are dependent events. When one event occurs, the probability of the other
occurring is 0. Thus the occurrence of the first affects (precludes) the occurrence of the other.

3.9 What is the probability of getting ðaÞ Less than 3 on a single roll of a fair die? ðbÞ Hearts or
clubs on a single pick from a well-shuffled standard deck of cards? ðcÞ A red or a blue ball from
an urn containing 5 red balls, 3 blue balls, and 2 green balls? ðdÞ More than 3 on a single roll of
a fair die?

ðaÞ Getting less than 3 on a single roll of a fair die means getting a 1 or a 2. These are mutually exclusive
events. Applying the rule of addition for mutually exclusive events, we get

Pð1 or 2Þ ¼ Pð1Þ þ Pð2Þ ¼ 1

6
þ 1

6
¼ 2

6
¼ 1

3

Using set theory, P(1 or 2) can be rewritten in an equivalent way as Pð1 [ 2Þ, where [ is read ‘‘union’’
and stands for or.

ðbÞ Getting a heart or a club on a single pick from a well-shuffled deck of cards also constitutes two

mutually exclusive events. Applying the rule of addition, we get

PðH or CÞ ¼ PðH [ CÞ ¼ 13

52
þ 13

52
¼ 26

52
¼ 1

2

PðR or BÞ ¼ PðR [ BÞ ¼ 5

10
þ 3

10
¼ 8

10
¼ 4

5
¼ 0:8ðcÞ

Pð4 or 5 or 6Þ ¼ Pð4 [ 5 [ 6Þ ¼ Pð4Þ þ Pð5Þ þ Pð6Þ ¼ 1

6
þ 1

6
þ 1

6
¼ 3

6
¼ 1

2
ðdÞ
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3.10 (a) What is the probability of getting an ace or a club on a single pick from a well-shuffled
standard deck of cards? (In all remaining problems, it will be implicitly assumed that coins are
balanced, die are fair, and decks of cards are standard and well shuffled and cards are picked at
random without replacement.) ðbÞ What is the function of the negative term in the rule of
addition for events that are not mutually exclusive?

ðaÞ Getting an ace or a club does not constitute two mutually exclusive events because we could get the ace
of clubs. Applying the rule of addition for events that are not mutually exclusive, we get

PðA or CÞ ¼ PðAÞ þ PðCÞ � PðA and CÞ ¼ 4

52
þ 13

52
� 1

52
¼ 16

52
¼ 4

13

The preceding probability statement can be rewritten in an equivalent way using set theory as

PðA [ CÞ ¼ PðAÞ þ PðCÞ � PðA \ CÞ
where \ is read ‘‘intersection’’ and stands for and.

(b) The function of the negative term in the rule of addition for events that are not mutually exclusive is to

avoid double counting. For example, in calculating PðA or CÞ in part a, the ace of clubs is counted
twice, once as an ace and once as a club. Therefore, we subtract the probability of getting the ace of
clubs in order to avoid this double counting. If the events are mutually exclusive, the probability that

both events will occur simultaneously is 0, and no double counting is involved. This is why the rule of
addition for mutually exclusive events does not contain a negative term.

3.11 What is the probability of ðaÞ Inflation I or recession R if the probability of inflation is 0.3, the
probability of recession is 0.2, and the probability of inflation and recession is 0.06?
(b) Drawing an ace, a club, or a diamond on a single pick from a deck?

(a) Since the probability of inflation and recession is not 0, inflation and recession are not mutually
exclusive events. Applying the rule of addition, we get

PðI or RÞ ¼ PðIÞ þ PðRÞ � PðI and RÞ
PðI [RÞ ¼ PðIÞ þ PðRÞ � PðI \RÞor

PðI or RÞ ¼ PðI [RÞ ¼ 0:3þ 0:2� 0:06 ¼ 0:44and

(b) Getting an ace, a club, or a diamond does not constitute mutually exclusive events because we could get
the ace of clubs or the ace of diamonds. Applying the rule of addition for events that are not mutualy
exclusive, we get

PðA or C or DÞ ¼ PðAÞ þ PðCÞ þ PðDÞ � PðA and CÞ � PðA and DÞ
PðA or C or DÞ ¼ 4

52
þ 13

52
þ 13

52
� 1

52
� 1

52
¼ 28

52
¼ 7

13

3.12 What is the probability of ðaÞ Two 6s on 2 rolls of a die? ðbÞ A 6 on each die in rolling 2 dice
once? (c) Two blue balls in 2 successive picks with replacement from the urn in Prob. 3.4?
(d) Three girls in a family with 3 children?

(a) Getting a 6 on each of 2 rolls of a die constitutes independent events. Applying the rule of multi-
plication for independent events, we get

Pð6 and 6Þ ¼ Pð6 \ 6Þ ¼ Pð6Þ � Pð6Þ ¼ 1

6
� 1
6
¼ 1

36

(b) Getting a 6 on each die in rolling 2 dice once also constitutes independent events. Therefore

Pð6 and 6Þ ¼ Pð6 \ 6Þ ¼ Pð6Þ � Pð6Þ ¼ 1

6
� 1
6
¼ 1

36

(c) Since we replace the first ball picked, the probability of getting a blue ball on the second pick is the same
as on the first pick. The events are independent. Therefore
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PðB and BÞ ¼ PðB \ BÞ ¼ PðBÞ � PðBÞ ¼ 3

10
� 3
10

¼ 9

100
¼ 0:09

(d) The probability of a girl, G, on each birth constitutes independent events, each with a probability of 0.5.
Therefore

PðG and G and GÞ ¼ PðG \G \GÞ ¼ PðGÞ � PðGÞ � PðGÞ ¼ ð0:5Þ � ð0:5Þ � ð0:5Þ ¼ 0:125

or 1 chance in 8.

3.13 (a) List all possible outcomes in rolling 2 dice simultaneously. (b) What is the probability of
getting a total of 5 in rolling 2 dice simultaneously? (c) What is the probability of getting a total
of 4 or less in rolling 2 dice simultaneously? More than 4?

(a) Each die has 6 possible and equally likely outcomes, and the outcome on each die is independent. Since
each of the 6 outcomes on the first die can be associated with each of the 6 outcomes on the second die,
there are a total of 36 possible outcomes; that is, the sample space N is 36. (In Table 3.2, the first

number refers to the outcome on the first die, and the second number refers to the second die. The dice
can be distinguished by different colors.) The total of the 36 possible outcomes also can be shown by a
tree (or sequential) diagram, as in Fig. 3-8.

(b) Out of the 36 possible and equally likely outcomes, 4 of them give a total of 5. These are 1, 4; 2, 3; 3, 2;

and 4, 1. Thus the probability of a total of 5 (event A) in rolling 2 dice simultaneously is given by

PðAÞ ¼ nA

N
¼ 4

36
¼ 1

9

(c) Rolling a total of 4 or less involves rolling a total of 2, 3, or 4. There are 6 possible and equally likely

ways of rolling a total of 4 or less. These are 1, 1; 1, 2; 1, 3; 2, 1; 2, 2; and 3, 1. Thus if event A is

defined as rolling a total of 4 or less, PðAÞ ¼ 6=36 ¼ 1=6. The probability of getting a total of more

than 4 equals 1 minus the probability of getting a total of 4 or less. This is 1� 1=6 ¼ 5=6.

3.14 What is the probability of (a) Picking a second red ball from the urn in Prob. 3.4 when a red ball
was already obtained on the first pick and not replaced? ðbÞ A red ball on the second pick when
the first ball picked was not red and was not replaced? (c) A red ball on the third pick when a
red and a nonred ball were obtained on the first two picks and were not replaced?

(a) Picking a second red ball from the urn when a red ball was already picked on the first pick and was not

replaced is a dependent event, since there are now only 4 red balls and 5 nonred balls remaining in the

urn. The conditional probability of picking a second red ball when a red ball was already obtained on

the first pick and was not replaced is PðR=RÞ ¼ 4=9.

(b) The conditional probability of obtaining a red ball on the second pick when the first ball picked was not

red (R 0) and was not replaced in the urn before the second ball is picked is PðR=R 0Þ ¼ 5=9.
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Table 3.2 Outcomes in Rolling Two Dice Simultaneously

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

1, 4 2, 4 3, 4 4, 4 5, 4 6, 4

1, 5 2, 5 3, 5 4, 5 5, 5 6, 5

1, 6 2, 6 3, 6 4, 6 5, 6 6, 6



(c) Since 2 balls, one of which was red, were already picked and not replaced, there remains a total of 8
balls, of which 4 are red, in the urn. The (conditional) probability of picking another red ball is

PðR/R and R 0Þ ¼ PðR=R 0 and RÞ ¼ 4=8 ¼ 1=2.

3.15 What is the probability of obtaining ðaÞ Two red balls from the urn in Prob. 3.4 in 2 picks
without replacement? ðbÞ Two aces from a deck in 2 picks without replacement? ðcÞ The ace of
clubs and a spade in that order in 2 picks from a deck without replacement? ðdÞ A spade and the
ace of clubs in that order in 2 picks from a deck without replacement? ðeÞ Three red balls from
the urn of Prob. 3.4 in 3 picks without replacement? ð f Þ Three red balls from the same urn in 3
picks with replacement?

(a) Applying the rule of multiplication for dependent events, we get

PðR and RÞ ¼ PðR \RÞ ¼ PðRÞ � PðR=RÞ ¼ 5

10
� 4
9
¼ 20

90
¼ 2

9

PðA and AÞ ¼ PðA \AÞ ¼ PðAÞ � PðA=AÞ ¼ 4

52
� 3
51

¼ 12

2652
¼ 1

221
ðbÞ

PðAC and SÞ ¼ PðAC \ SÞ ¼ PðACÞ � PðS=ACÞ ¼
1

52
� 13
51

¼ 13

2652
ðcÞ

48 PROBABILITY AND PROBABILITY DISTRIBUTIONS [CHAP. 3

Fig. 3-8 Tree Diagram for Rolling Two Dice Simultaneously



PðS and ACÞ ¼ PðS \ACÞ ¼ PðSÞ � PðAC=SÞ ¼
13

52
� 1
51

¼ 13

2652
¼ PðAC and SÞðdÞ

PðR and R and RÞ ¼ PðR \R \RÞ ¼ PðRÞ � PðR=RÞ � PðR/R and RÞðeÞ
¼ 5

10
� 4
9
� 3
8
¼ 60

720
¼ 1

12
( f ) With replacement, picking three balls from an urn constitutes three independent events. Therefore

PðR and R and RÞ ¼ PðRÞ � PðRÞ � PðRÞ ¼ 5

10
� 5
10

� 5
10

¼ 125

1000
¼ 1

8
¼ 0:125

3.16 Past experience has shown that for every 100,000 items produced in a plant by the morning shift,
200 are defective, and for every 100,000 items produced by the evening shift, 500 are defective.
During a 24-h period, 1000 items are produced by the morning shift and 600 by the evening shift.
What is the probability that an item picked at random from the total of 1600 items produced
during the 24-h period (a) Was produced by the morning shift and is defective? ðbÞ Was
produced by the evening shift and is defective? ðcÞ Was produced by the evening shift and is not
defective? ðdÞ Is defective, whether produced by the morning or the evening shift?

(a) The probabilities of picking an item produced by the morning shift M and evening E are

PðMÞ ¼ 1000

1600
¼ 0:625 and PðEÞ ¼ 600

1600
¼ 0:375

The probabilities of picking a defective item D from the morning and evening outputs separately are

PðD=MÞ ¼ 20

100,000
¼ 0:002 and PðD=EÞ ¼ 500

100,000
¼ 0:005

The probability that an item picked at random from the total of 1600 items produced during the 24-h
period was produced by the morning shift and is defective is

PðM and DÞ ¼ PðMÞ � PðD=MÞ ¼ ð0:625Þð0:002Þ ¼ 0:00125

PðE and D) ¼ PðEÞ � PðD=EÞ ¼ ð0:375Þð0:005Þ ¼ 0:001875ðbÞ

PðE and D 0Þ ¼ PðEÞ � PðD 0=EÞ ¼ ð0:375Þ 99,500
100,000

¼ 0:373125ðcÞ

(dÞ The expected number of defective items from the morning shift is equal to the probability of a defective

item from the morning output times the number of items produced by the morning shift; that is,
ð0:002Þð1000Þ ¼ 2. From the evening shift we expect ð0:005Þð600Þ ¼ 3 defective items. Thus we
expect 5 defective items from the 1600 items produced during the 24-h period. If there are indeed 5
defective items, the probability of picking at random any of the 5 defective items out of a total of 1600

items is 5/1600 or 1/320 or 0.003125.

3.17 (a) From the rule of multiplication for dependent events B and A, derive the formula for PðA=BÞ
in terms of PðB=AÞ and PðBÞ. This is known as Bayes’ theorem and is used to revise probabilities
when additional relevant information becomes available. (b) Using Bayes’ theorem, find the
probability that a defective item picked at random from the 24-h output of 1600 items in Prob.
3.16 was produced by the morning shift; by the evening shift.

PðB and AÞ ¼ PðBÞ � PðA=BÞðaÞ
By dividing both sides by PðBÞ and rearranging, we get

PðA=BÞ ¼ PðB and AÞ
PðBÞ

However, PðB and AÞ ¼ PðA and BÞ; see Prob. 3.15(c) and (d). Therefore
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PðA=BÞ ¼ PðA and BÞ
PðBÞ and PðA=BÞ ¼ PðAÞ � PðB=AÞ

PðBÞ Bayes’ theorem ð3:15Þ

(b) Applying Bayes’ theorem to the statement in Prob. 3.16, letting A signify the morning shift M and B
signify defective D, and utilizing the results of Prob. 3.16, we get

PðM=DÞ ¼ PðMÞ � PðD=MÞ
PðDÞ ¼ ð0:625Þð0:002Þ

0:003125
¼ 0:00125

0:003125
¼ 0:4

That is, the probability that a defective item picked at random from the total 24-h output of 1600 items
was produced by the morning shift is 40%. Similarly

PðE=DÞ ¼ PðEÞ � PðD=EÞ ¼ ð0:375Þð0:005Þ
0:003125

¼ 0:001875

0:003125
¼ 0:6, or 60%

Bayes’ theorem can be generalized, for example, to find the probability that a defective item B picked at
random was produced by any of n plants ðAi; i ¼ 1; 2; . . . ; nÞ, as follows:

PðAi=BÞ ¼ PðAiÞ � PðB=AiÞP
PðAiÞ � PðB=AiÞ

ð3:16Þ

where
P

refers to the summation over the n plants (the only ones producing the output). Bayes’
theorem is applied in business decision theory, but is seldom used in the field of economics. (However,

bayesian econometrics is becoming increasingly important.)

3.18 A club has 8 members. (a) How many different committees of 3 members each can be formed
from the club? (Two committees are different even when only one member is different.)
(b) How many committees of 3 members each can be formed from the club if each committee
is to have a president, a treasurer, and a secretary?

(a) We are interested here in finding the number of combinations of 8 people taken 3 at a time without
concern for the order

8C3 ¼
8!

3!ð8� 3Þ! ¼
8!

3!5!
¼ 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1
3 � 2 � 1 � 5 � 4 � 3 � 2 � 1 ¼ 8 � 7 � 6

3 � 2 � 1 ¼ 336

6
¼ 56

In general, the number of arrangements of n things taken X at a time without conern for the order is a
combination given by

nCX ¼ n

X

	 

¼ n!

X !ðn � XÞ! ð3:17Þ

where n! (read n factorial) ¼ n � ðn � 1Þ � ðn � 2Þ � � � 3 � 2 � 1 and 0! ¼ 1 by definition.

(b) Since each committee of 3 has to have a president, a treasurer, and a secretary, we are now interested in
finding the number of permutations of 8 people taken 3 at a time, when the order is important:

8P3 ¼
8!

ð8� 3Þ! ¼
8!

5!
¼ 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1

5 � 4 � 3 � 2 � 1 ¼ 8 � 7 � 6 ¼ 336

In general, the number of arrangements, in a definite order, of n things taken X at a time is a permuta-

tion given by

nPX ¼ n!

ðn � XÞ! ð3:18Þ

Permutations and combinations (often referred to as counting techniques) are helpful in counting the

number of equally likely ways event A can occur in relation to the total of all possible and equally likely
outcomes. Combinations and permutations were not used in previous problems because those pro-
blems were simple enough without them.
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DISCRETE PROBABILITY DISTRIBUTIONS: THE BINOMIAL DISTRIBUTION

3.19 Define what is meant by and give an example of (a) a random variable, (b) a discrete random
variable, and (c) a discrete probability distribution. (d) What is the distinction between a
probability distribution and a relative-frequency distribution?

(a) A random variable is a variable whose values are associated with some probability of being observed.
For example, on 1 roll of a fair die, we have 6 mutually exclusive outcomes (1, 2, 3, 4, 5, or 6), each
associated with a probability occurrence of 1/6. Thus the outcome from the roll of a die is a random

variable.

(b) A discrete random variable is one that can assume only finite or distinct values. For example, the
outcomes from rolling a die constitute discrete random variables because they are limited to the values

1, 2, 3, 4, 5, and 6. This is to be contrasted with continuous variables, which can assume an infinite
number of values within any given interval [see Prob. 3.31(a)].

(c) A discrete probability distribution refers to the set of all possible values of a (discrete) random variable
and their associated probabilities. The set of the 6 outcomes in rolling a die and their associated

probabilities is an example of a discrete probability distribution. The sum of the probabilities asso-
ciated with all the values that the discrete random variable can assume always equals 1.

(dÞ A probability distribution refers to the classical or a priori probabilities associated with all the values that
a random variable can assume. Because those probabilities are assigned a priori and without any

experimentation, a probability distribution is often referred to as a theoretical (relative) frequency
distribution. This differs from an empirical (relative) frequency distribution, which refers to the
ratio of the number of times each outcome actually occurs to the total number of actual trials or

observations. For example, in actually rolling a die a number of times, we are not likely to get
each outcome exactly 1/6 of the times. However, as the number of rolls increases, the empirical
(relative) frequency distribution stabilizes at the (uniform) probability or theoretical relative-frequency

distribution of 1/6.

3.20 Derive the formula for (a) the mean � or expected value EðXÞ and (b) the variance for a
discrete probability distribution.

(a) The formula for the arithmetic mean for grouped population data [Eq. (2.2a)] is

� ¼
P

fX

N

where
P

fX is the sum of the frequency of each class f times the class midpoint X and N ¼ P
f , which

is the number of all observations or frequencies. In dealing with probability distributions, the mean �
is often referred to as the ‘‘expected value’’ EðXÞ. The formula for � or EðXÞ for a discrete probability
distribution can be derived by starting with Eq. (2.2a) and letting f ¼ PðXÞ, which is the probability of
each of the possible outcomes X . Then,

P
fX ¼ P

XPðXÞ, which is the sum of the value of each
outcome times its probability of occurrence, and N ¼ P

f ¼ P
PðXÞ, which is the sum of the prob-

abilities of each outcome, which is 1. Thus

EðXÞ ¼ � ¼
X

XPðXÞ ð3:19Þ

(b) The formula for the variance of grouped population data [Eq. (2.9a)] is

�2 ¼
P

f ðX � �Þ2
N

ð3:20Þ

Once again, letting f ¼ PðXÞ ¼ probability of each outcome and N ¼ P
f ¼ P

PðXÞ ¼ 1, we can get
the formula for the variance of a discrete probability distribution:

Var X ¼ �2X ¼
X

½X � EðXÞ�2PðXÞ ¼
X

X2PðXÞ � ½EðXÞ�2 ¼ EðX2Þ � �2 ð3:21Þ
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3.21 Table 3.3 gives the number of job applications processed at a small employment agency during
the past 100-day period. Determine the expected number of applications processed and the
variance and standard deviation.

To the extent that we believe that the experience of the past 100 days is typical, we can find the relative-

frequency distribution and equate its probability distribution. This and the other calculations to find EðXÞ
and Var X are shown in Table 3.4:

VarX ¼ �2X ¼
X

X2PðXÞ � ½�XPðXÞ�2 ¼ 116� ð10:6Þ2 ¼ 116� 112:36 ¼ 3:64 applications squared

SD X ¼ �X ¼
ffiffiffiffiffiffi
�2X

q
¼

ffiffiffiffiffiffiffiffiffi
3:64

p
ffi 1:91 applications

3.22 (a) State the conditions required to apply the binomial distribution. (b) What is the probability
of 3 heads in 5 flips of a balanced coin? (c) What is the probability of less than 3 heads in 5 flips
of a balanced coin?

(a) The binomial distribution is used to find the probability of X number of occurrences or successes of an

event, PðXÞ, in n trials of the same experiment when (1) there are only 2 mutually exclusive outcomes,
(2) the n trials are independent, and (3) the probability of occurrence or success, p, remains constant
in each trial.
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Table 3.3 Number of Job Applications Processed during the Past

100-Day Period

Number of Job Applicants Number of Days Achieved

7 10

8 10

10 20

11 30

12 20

14 10

100

Table 3.4 Calculations to Find the Expected Value and Variance

Number, X Days, f PðXÞ XPðXÞ X2 X2PðXÞ
7 10 0.1 0.7 49 4.9

8 10 0.1 0.8 64 6.4

10 20 0.2 2.0 100 20.0

11 30 0.3 3.3 121 36.3

12 20 0.2 2.4 144 28.8

14 10 0.1 1.4 196 19.6

N ¼ P
f ¼ 100

P
PðXÞ ¼ 1:0

P
XPðXÞ ¼ 10:6

P
X2PðXÞ ¼ 116:0

EðXÞ ¼ � ¼ P
XPðXÞ ¼ 10:6 applications



PðXÞ ¼ nCX pXð1� pÞn�X ¼ n

X

	 

pXð1� pÞn�X ¼ n!

X !ðn � XÞ! p
Xð1� pÞn�XðbÞ

See Eqs. (3.10) and (3.17). In some books, 1� p (the probability of failure) is defined as q. Here n ¼ 5,
X ¼ 3, p ¼ 1=2, and 1� p ¼ 1=2. Substituting these values into the preceding equation, we get

Pð3Þ ¼ 5!

3!ð5� 3Þ! ð1=2Þ
3ð1=2Þ5�3 ¼ 5!

3!2!
ð1=2Þ3ð1=2Þ2 ¼ 5 � 4 � 3 � 2 � 1

3 � 2 � 1 � 2 � 1 ð1=2Þ
5 ¼ 10ð1=32Þ ¼ 0:3125

PðX < 3Þ ¼ Pð0Þ þ Pð1Þ þ Pð2ÞðcÞ

Pð0Þ ¼ 5!

0!5!
ð1=2Þ0ð1=2Þ5 ¼ 1

32
¼ 0:03125

Pð1Þ ¼ 5!

1!ð5� 1Þ! ð1=2Þ
1ð1=2Þ4 ¼ 5

32
¼ 0:15625

Pð2Þ ¼ 5!

2!ð5� 2Þ! ð1=2Þ
2ð1=2Þ3 ¼ 10

32
¼ 0:3125

PðX < 3Þ ¼ Pð0Þ þ Pð1Þ þ Pð2Þ ¼ 0:03125þ 0:15625þ 0:3125 ¼ 0:5Thus

3.23 (a) Suppose that the probability of parents having a child with blond hair is 1/4. If there are 6
children in the family, what is the probability that half of them will have blond hair? (b) If the
probability of hitting a target on a single shot is 0.3, what is the probability that in 4 shots the
target will be hit at least 3 times?

(a) Here n ¼ 6, X ¼ 3, p ¼ 1=4, and 1� p ¼ 3=4. Substituting these values into the binomial formula, we
get

Pð3Þ ¼ 6!

3!ð6� 3Þ! ð1=4Þ
3ð3=4Þ3 ¼ 6!

3!3!
ð1=64Þð27=64Þ ¼ 6 � 5 � 4 � 3 � 2 � 1

3 � 2 � 1 � 3 � 2 � 1 ð27=4096Þ

¼ 20
27

4096
¼ 540

4096
ffi 0:13

(b) Here n ¼ 4, X � 3, p ¼ 0:3, and 1� p ¼ 0:7:

PðX � 3Þ ¼ Pð3Þ þ Pð4Þ

Pð3Þ ¼ 4!

3!ð4� 3Þ! ð0:3Þ
3ð0:7Þ1 ¼ 4 � 3 � 2 � 1

3 � 2 � 1 � 1 ð0:027Þð0:7Þ ¼ ð4Þð0:0189Þ ¼ 0:0756

Pð4Þ ¼ 4!

4!ð4� 4Þ! ð0:3Þ
4ð0:7Þ0 ¼ ð0:3Þ4 ¼ 0:0081

PðX � 3Þ ¼ Pð3Þ þ Pð4Þ ¼ 0:0756þ 0:0081 ¼ 0:0837Thus

3.24 (a) A quality inspector picks a sample of 10 tubes at random from a very large shipment of tubes
known to contain 20% defective tubes. What is the probability that no more than 2 of the tubes
picked are defective? (b) An inspection engineer picks a sample of 15 items at random from a
manufacturing process known to produce 85% acceptable items. What is the probability that 10
of the items picked are acceptable?

(a) Here n ¼ 10, X � 2, p ¼ 0:2, and 1� p ¼ 0:8:
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PðX � 2Þ ¼ Pð0Þ þ Pð1Þ þ Pð2Þ

Pð0Þ ¼ 10!

0!ð10� 0Þ! ð0:2Þ
0ð0:8Þ10

¼ 0:1074 (looking up n ¼ 10;X ¼ 0; and p ¼ 0:2 in App. 1Þ
Pð1Þ ¼ 0:2684 (looking up n ¼ 10;X ¼ 1; and p ¼ 0:2 in App. 1Þ
Pð2Þ ¼ 0:3020 (looking up n ¼ 10;X ¼ 2; and p ¼ 0:2 in App. 1Þ

PðX � 2Þ ¼ Pð0Þ þ Pð1Þ þ Pð2Þ ¼ 0:1074þ 0:2684þ 0:3020 ¼ 0:6778Thus

(b) Here n ¼ 15, X ¼ 10, p ¼ 0:85, and 1� p ¼ 0:15. Since App. 1 only gives binomial probabilities for up
to 0.5, we should transform the problem. The probability of X ¼ 10 acceptable items with p ¼ 0:85
equals the probability of X ¼ 5 defective items with p ¼ 0:15. Using n ¼ 15, X ¼ 5 defective, p (of
objective) ¼ 0:15, we get 0.0449 (from App. 1).

3.25 (a) If 4 balanced coins are tossed simultaneously (or 1 balanced coin is tossed 4 times), compute
the entire probability distribution and plot it. (b) Compute and plot the probability distribution
for a sample of 5 items taken at random from a production process known to produce 30%
defective items.

(a) Using n ¼ 4; X ¼ 0H, 1H, 2H, 3H, or 4H; P ¼ 1=2; and App. 1, we get Pð0HÞ ¼ 0:0625,
Pð1HÞ ¼ 0:2500, Pð2HÞ ¼ 0:3750, Pð3HÞ ¼ 0:2500, Pð4HÞ ¼ 0:0625, and

Pð0HÞ þ Pð1HÞ þ Pð2HÞ þ Pð3HÞ þ Pð4HÞthus

¼ 0:0625þ 0:2500þ 0:3750þ 0:2500þ 0:0625 ¼ 1

See Fig. 3-9. Note that p ¼ 0:5 and the probability distribution in Fig. 3-9 is symmetrical.

(b) Using n ¼ 5; X ¼ 0, 1, 2, 3, 4, or 5 defec-
tive; and p ¼ 0:3, we get pð0Þ ¼ 0:1681, Pð1Þ ¼ 0:3602, Pð2Þ ¼ 0:3087, Pð3Þ ¼ 0:1323, Pð4Þ ¼ 0:0284,
Pð5Þ ¼ 0:0024. Therefore

Pð0Þ þ Pð1Þ þ Pð2Þ þ Pð3Þ þ Pð4Þ þ Pð5Þ
¼ 0:1681þ 0:3602þ 0:3087þ 0:1323þ 0:0284þ 0:0024 ¼ 1

See Fig. 3-10. Note that p < 0:5 and the probability distribution in Fig. 3-10 is skewed to the right.

3.26 Calculate the expected value and standard deviation and determine the symmetry or asymmetry
of the probability distribution of (a) Prob. 3.23(a), (b) Prob. 3.23(b), (c) Prob. 3.24(a), and
(d) Prob. 3.24(b):

EðXÞ ¼ � ¼ np ¼ ð6Þð1=4Þ ¼ 3=2 ¼ 1:5 blond childrenðaÞ
SDX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1=4Þð3=4Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
18=16

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
1:125

p
ffi 1.06 blond children

Because p < 0:5, the probability distribution of blond children is skewed to the right.
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Fig. 3-9 Probability Distribution of Heads in
Tossing Four Balanced Coins Fig. 3-10 Probability Distribution of Defective Items



EðXÞ ¼ � ¼ np ¼ ð4Þð0:3Þ ¼ 1:2 hitsðbÞ
SDX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4Þð0:3Þð0:7Þ

p
¼

ffiffiffiffiffiffiffiffiffi
0:84

p
ffi 0:92 hits

Because p < 0:5, the probability distribution is skewed to the right.

EðXÞ ¼ � ¼ np ¼ ð10Þð0:2Þ ¼ 2 defective tubesðcÞ
SDX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10Þð0:2Þð0:8Þ

p
¼

ffiffiffiffiffiffiffi
1:6

p
ffi 1:26 defective tubes

Because p < 0:5, the probability distribution is skewed to the right.

EðXÞ ¼ � ¼ np ¼ ð15Þð0:85Þ ¼ 12:75 acceptable itemsðdÞ
SDX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15ð0:85Þð0:15Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:9125

p
ffi 1:38 acceptable items

Because p > 0:5, the probability distribution is skewed to the left.

3.27 When sampling is done from a finite population without replacement, the binomial distribution
cannot be used because the events are not independent. Then the hypergeometric distribution is
used. This is given by

PH ¼
N � Xt

n � X

� �
Xt

X

� �
N

n

� � hypergeometric distribution ð3:22Þ

It measures the number of successes X in a sample size n taken at random and without replace-
ment from a population of size N, of which Xt items have the characteristic denoting success.
(a) Using the formula, determine the probability of picking 2 men in a sample of 6 selected at
random without replacement from a group of 10 people, 5 of which are men. (b) What would
the result have been if we had (incorrectly) used the binomial distribution?

(a) Here X ¼ 2 men, n ¼ 6, N ¼ 10, and Xt ¼ 5:

PH ¼
10� 5

6� 2

� �
5

2

� �
10

6

� � ¼
5

4

� �
5

2

� �
10

6

� � ¼
5!

4!1!

5!

2!3!
10!

6!4!

¼ ð5Þð10Þ
210

ffi 0:24

Pð2Þ ¼ n!

X !ðn � XÞ! p
Xð1� pÞn�X ¼ 6!

2!4!
ð1=2Þ2ð1=2Þ4 ¼ 15

64
¼ 0:23ðbÞ

It should be noted that when the sample is very small in relation to the population (say, less than 5% of

the population), sampling without replacement has little effect on the probability of success in each trial
and the binomial distribution (which is easier to use) is a good approximation for the hypergeometric
distribution. This is the reason the binomial distribution was used in Prob. 3.24(a).

THE POISSON DISTRIBUTION

3.28 (a) What is the difference between the binomial and the Poisson distributions? (b) Give some
examples of when we can apply the Poisson distribution. (c) Give the formula for the Poisson
distribution and the meaning of the various symbols. (d) Under what conditions can the
Poisson distribution be used as an approximation to the binomial distribution? Why can this
be useful?

(a) Whereas the binomial distribution can be used to find the probability of a designated number of

successes in n trials, the Poisson distribution is used to find the probability of a designated number
of successes per unit of time. The other conditions required to apply the binomial distribution also are
required to apply the Poisson distribution; that is (1) there must be only two mutually exclusive out-
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comes, (2) the events must be independent, and (3) the average number of successes per unit of time

must remain constant.

(b) The Poisson distribution is often used in operations research in solving management problems. Some

examples are the number of telephone calls to the police per hour, the number of customers arriving at a
gasoline pump per hour, and the number of traffic accidents at an intersection per week.

(c) The probability of a designated number of successes per unit of time, PðXÞ, can be found by

PðXÞ ¼ �Xe��

X!

where X ¼ designated number of successes

� ¼ the average number of successes over a specific time period

e ¼ the base of the natural logarithm system, or 2.71828

Given the value of �, we can find e�� from App. 2, substitute it into the formula, and find PðXÞ. Note
that � is the mean and variance of the Poisson distribution.

(d) We can use the Poisson distribution as an approximation to the binomial distribution when n, the
number of trials, is large and p or 1� p is small (rare events). A good rule of thumb is to use the

Poisson distribution when n � 30 and np or nð1� pÞ < 5. When n is large, it can be very time-
consuming to use the binomial distribution and tables for binomial probabilities, for very small values
of p may not be available. If nð1� pÞ < 5, success and failure should be redefined so that np < 5 to

make the approximation accurate.

3.29 Past experience indicates that an average number of 6 customers per hour stop for gasoline at a
gasoline pump. (a) What is the probability of 3 customers stopping in any hour? (b) What is
the probability of 3 customers or less in any hour? (c) What is the expected value, or mean, and
standard deviation for this distribution?

Pð3Þ ¼ 63e�6

3!
¼ ð216Þð0:00248Þ

3 � 2 � 1 ¼ 0:53568

6
¼ 0:08928ðaÞ

PðX � 3Þ ¼ Pð0Þ þ Pð1Þ þ Pð2Þ þ Pð3ÞðbÞ

Pð0Þ ¼ 60e�6

0!
¼ ð1Þð0:00248Þ

1
¼ 0:00248

Pð1Þ ¼ 61e�6

1!
¼ ð6Þð0:00248Þ

1
¼ 0:01488

Pð2Þ ¼ 62e�6

2!
¼ ð36Þð0:0248Þ

2:1
¼ 0:04464

Pð3Þ ¼ 0:08928 (from part aÞ
PðX � 3Þ ¼ 0:00248þ 0:01488þ 0:04464þ 0:08928 ¼ 0:15128Thus

(c) The expected value, or mean, of this Poisson distribution is � ¼ 6 customers, and the standard devia-

tion is
ffiffiffi
�

p ¼ ffiffiffi
6

p ffi 2:45 customers.

3.30 Past experience shows that 1% of the lightbulbs produced in a plant are defective. Find the
probability that more than 1 bulb is defective in a random sample of 30 bulbs, using (a) the
binomial distribution and (b) the Poisson distribution.

(a) Here n ¼ 30, p ¼ 0:01, and we are asked to find PðX > 1Þ. Using App. 1, we get

Pð2Þ þ Pð3Þ þ Pð4Þ þ � � � ¼ 0:0328þ 0:0031þ 0:0002 ¼ 0:0361, or 3.61%

(b) Since n ¼ 30 and np ¼ ð30Þð0:01Þ ¼ 0:3, we can use the Poisson approximation of the binomial
distribution. Letting � ¼ np ¼ 0:3, we have to find PðX > 1Þ ¼ 1� PðX � 1Þ, where X is the number
of defective bulbs. Using Eq. (3.13), we get
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Pð1Þ ¼ 0:31e�0:3

1!
¼ ð0:3Þð0:74082Þ ¼ 0:222246

Pð0Þ ¼ 0:30e�0:3

0!
¼ e�0:3 ¼ 0:74082

PðX � 1Þ ¼ Pð1Þ þ Pð0Þ ¼ 0:222246þ 0:74082 ¼ 0:963066

PðX > 1Þ ¼ 1� PðX � 1Þ ¼ 1� 0:963066 ¼ 0:036934, or 3.69%Thus

As n becomes larger, the approximation becomes even closer.

CONTINUOUS PROBABILITY DISTRIBUTIONS: THE NORMAL DISTRIBUTION

3.31 (a) Define what is meant by a continuous variable and give some examples. (b) Define what is
meant by a continuous probability distribution. (c) Derive the formula for the expected value
and variance of a continuous probability distribution.

(a) A continuous variable is one that can assume any value within any given interval. A continuous
variable can be measured with any degree of accuracy simply by using smaller and smaller units of

measurement. For example, if we say that a production process takes 10 h, this means anywhere
between 9.5 and 10.4 h (10 h rounded to the nearest hour). If we used minutes as the unit of measure-
ment, we could have said that the production process takes 10 h and 20min. This means anywhere

between 10 h and 19.5min and 10 h and 20.4min, and so on. Time is thus a continuous variable, and so
are weight, distance, and temperature.

(b) A continuous probability distribution refers to the range of all possible values that a continuous random
value can assume, together with the associated probabilities. The probability distribution of a con-

tinuous random variable is often called a probability density function, or simply a probability function.
It is given by a smooth curve such that the total area (probability) under the curve is 1. Since a
continuous random variable can assume an infinite number of values within any given interval, the

probability of a specific value is 0. However, we can measure the probability that a continuous random
variable X assumes any value within a given interval (say, between X1 and X2) by the area under the
curve within that interval:

PðX1 < X < X2Þ ¼
ðX2

X1

f ðXÞ dX ð3:23Þ

where f ðXÞ is the equation of the probability density function, and the integration sign, Ð , is analogous
to the summation sign

P
for discrete variables. Probability tables for some of the most used con-

tinuous probability distributions are given in the appendixes, thus eliminating the need to perform the
integration ourselves.

(c) The expected value, or mean, and variance for continuous probability distributions can be derived by
substituting

Ð
for

P
and f ðXÞ for PðXÞ into the formula for the expected value and variance for

discrete probability distributions [Eqs. (3.19) and (3.20)]:

EðXÞ ¼ � ¼
ð

Xf ðXÞ dX ð3:24Þ

VarX ¼ �2 ¼
ð
½X � EðXÞ�2 f ðXÞ dX ð3:25Þ

3.32 (a) What is a normal distribution? (b) What is its usefulness? (c) What is the standard normal
distribution? What is its usefulness?

(a) The normal distribution is a continuous probability function that is bell-shaped, symmetrical about the

mean, and mesokurtic (defined in Sec. 2.4). As we move further away from the mean in both
directions, the normal curve approaches the horizontal axis (but never quite touches it). The equation
of the normal probability function is given by
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f ðXÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2	�2

p exp � 1

2

X � �

�

� �2
" #

ð3:26Þ

where f ðXÞ ¼ height of the normal curve

exp ¼ constant 2.7183

	 ¼ constant 3.1416

� ¼ mean of the distribution

� ¼ standard deviation of the distribution

ð1
�1

1ffiffiffiffiffiffiffiffiffiffi
2	�2

p exp � 1

2

X � �

�

� �2
" #

dX ¼ 1
(the total area under the normal curve

from minus infinity to plus infinityÞ

(b) The normal distribution is the most commonly used of all probability distributions in statistical
analysis. Many distributions actually found in nature and industry are normal. Some examples
are the IQs (intelligence quotients), weights, and heights of a large number of people and the variations

in dimensions of a large number of parts produced by a machine. The normal distribution often can be
used to approximate other distributions, such as the binomial and the Poisson distributions (see Probs.
3.37 and 3.38). Distributions of sample means and proportions are often normal, regardless of the

distribution of the parent population (see Sec. 4.2).

(c) The standard normal distribution is a normal distribution with � ¼ 0 and �2 ¼ 1. Any normal
distribution (defined by a particular value for � and �2) can be transformed into a standard normal

distribution by letting � ¼ 0 and expressing deviations from � in standard deviation units. We often
can find areas (probabilities) by converting X values into corresponding z values [that is,
z ¼ ðX � �Þ=�� and looking up these z values in App. 3.

3.33 Find the area under the standard normal curve (a) between z � 1, z � 2, and z � 3; (b) from
z ¼ 0 to z ¼ 0:88; (c) from z ¼ �1:60 to z ¼ 2:55; (d) to the left of z ¼ �1:60; (e) to the right
of z ¼ 2:55; ( f ) to the left of z ¼ �1:60 and to the right of z ¼ 2:55.

(a) The area (probability) included under the standard normal curve between z ¼ 0 and z ¼ 1 is obtained
by looking up the value of 1.0 in App. 3. This is accomplished by moving down the z column in the

table to 1.0 and then across until we are below the column headed .00. The value that we get is 0.3413.
This means that 34.13% of the total area (of 1, or 100%) under the curve lies between z ¼ 0 and
z ¼ 1:00. Because of symmetry, the area between z ¼ 0 and z ¼ �1 is also 0.3413, or 34.13%.

Therefore, the area between z ¼ �1 and z ¼ 1 is 68.26% (see Fig. 3-4). Similarly, the area between
z ¼ 0 and z ¼ 2 is 0.4772, or 47.72% (by looking up z ¼ 2:00 in the table), so that the area between
z ¼ �2 is 95.44% (see Fig. 3-4). The area between z � 3 ¼ 99:74% (see Fig. 3-4). Note that the table
only gives detailed z values for up to 2.99 because the area under the curve outside z � 3 is negligible.

(b) The area between z ¼ 0 and z ¼ 0:88 is obtained by looking up 0.88 in the table. This is 0.3106.

(c) The area between z ¼ 0 and z ¼ �1:60 is obtained by looking up z ¼ 1:60 in the table. This is 0.4452.
The area between z ¼ 0 and z ¼ 2:55 is obtained by looking up z ¼ 2:55 in the table. This is 0.4946.
Thus the area under the standard normal curve from z ¼ �1:60 and z ¼ 2:55 equals 0.4452 plus 0.4946.
This is 0.9398, or 93.98% (see Fig. 3-11). In all problems of this nature it is helpful to sketch a figure.

(d) We know that the total area under the normal curve is equal to 1. Because of symmetry, 0.5 of the area
lies on either side of � ¼ 0. Since 0.4452 extends from z ¼ 0 to z ¼ �1:60, 0:5� 0:4452 ¼ 0:0548, or
5.48%, is the area in the left tail, to the left of �1:60 (see Fig. 3-11).

(e) 0:5� 0:4946 ¼ 0:0054, or 0:54%, is the area in the right tail, to the right of z ¼ 2:55 (see Fig. 3-11).

( f ) The area to the left of z ¼ �1:60 and to the right of z ¼ 2:55 is equal to 1� 0:9398 (see part c). This is
0.0602, or 6.02% of the total.
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3.34 The lifetime of lightbulbs is known to be normally distributed with � ¼ 100 h and � ¼ 8 h. What
is the probability that a bulb picked at random will have a lifetime between 110 and 120 burning
hours?

We are asked here to find Pð110 < X < 120Þ, where X refers to time measured in hours of burning time.

Given � ¼ 100 h and � ¼ 8 h, and letting X1 ¼ 110 h and X2 ¼ 120 h, we get

z1 ¼
X1 � �

�
¼ 110� 100

8
¼ 1:25 and z2 ¼

X2 � �

�
¼ 120� 100

8
¼ 2:50

Thus we want the area (probability) between z1 ¼ 1:25 and z2 ¼ 2:50 (the shaded area in Fig. 3-12).
Looking up z2 ¼ 2:50 in App. 3, we get 0.4938. This is the area from z ¼ 0 to z2 ¼ 2:50. Looking up

z1 ¼ 1:25, we get 0.3944. This is the area from z ¼ 0 to z1 ¼ 1:25. Subtracting 0.3944 from 0.4938, we get
0.0994, or 9.94%, for the shaded area that gives Pð110 < X < 120Þ.

3.35 Assume that family incomes are normally distributed with � ¼ $16,000, and � ¼ $2000. What is
the probability that a family picked at random will have an income: (a) Between $15,000 and
$18,000? (b) Below $15,000? (c) Above $18,000? (d) Above $20,000?

(a) We want Pð$15,000 < X < $18,000Þ, where X is family income:

z1 ¼
X1 � �

�
¼ $15,000� $16,000

$2000
¼ �0:5 and z2 ¼

X2 � �

�
¼ $18,000� $16,000

$2000
¼ 1

Thus we want the area (probability) between z1 ¼ �0:5 and z2 ¼ 1 (the shaded area in Fig. 3-13).

Looking up z ¼ 0:5 in App. 3, we get 0.1915 for the area from z ¼ 0 to z ¼ �0:5. Looking up
z ¼ 1, we get 0.3413 for the area from z ¼ 0 to z ¼ 1. Thus, Pð$15,000 � X � $18,000Þ ¼ 0:1915þ
0:3413 ¼ 0.5328, or 53.28%.
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(b) PðX < $15,000Þ ¼ 0:5� 0:1915 ¼ 0:3085, or 30.85% (the unshaded area in the left tail of Fig. 3-13).

(c) PðX > $18,000Þ ¼ 0:5� 0:3413 ¼ 0:1587, or 15.87% (the unshaded area in the right tail of Fig. 3-13).

(d) X ¼ $20,000 corresponds to z ¼ ð$20,000� $16,000Þ=$2000 ¼ 2. Therefore, PðX > $20,000Þ ¼ 0:5�
0:4772 ¼ 0:0228, or 2.28%.

3.36 The grades on the midterm examination in a large statistics section are normally distributed with
a mean of 78 and a standard deviation of 8. The professor wants to give the grade of A to 10%
of the students. What is the lowest grade point that can be designated an A on the midterm?

In this problem we are asked to find the point grade such that 10% of the students will have higher

grades. This involves finding the grade point X such that 10% of the area under the normal curve will be to
the right of X (the shaded area in Fig. 3-14). Since the total area under the curve to the right of 78 is 0.5, the
unshaded area in Fig. 3-14 to the right of 78 must be 0.4. We must look into the body of App. 3 for the value

closest to 0.4. This is 0.3997, which corresponds to the z value of 1.28. The X value (the grade point) that
corresponds to the z value of 1.28 is obtained by substituting the known values into z ¼ ðX � �Þ=� and
solving for X:

1:28 ¼ X � 78

8

This gives 10:24 ¼ X � 78. Therefore X ¼ 78þ 10:24 ¼ 88:24, or 88 to the nearest whole number.

3.37 Experience indicates that 30% of the people entering a store make a purchase. Using (a) the
binomial distribution and (b) the normal approximation to the binomial, find the probability
that out of 30 people entering the store, 10 or more will make a purchase.

(a) Here n ¼ 30, p ¼ 0:3, and 1� p ¼ 0:7 and we are asked to find PðX � 10Þ. Using App. 1 (the table of
binomial probabilities),

ðX � 10Þ ¼ Pð10Þ þ Pð11Þ þ Pð12Þ þ � � � þ Pð30Þ ¼ 0:1416þ 0:1103þ 0:0749þ 0:0444þ 0:0231

þ 0:0106þ 0:0042þ 0:0015þ 0:005þ 0:001

¼ 0:4112

(b) � ¼ np ¼ ð30Þð0:3Þ ¼ 9 persons, and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið30Þð0:3Þð0:7Þp ¼ ffiffiffiffiffiffiffi

6:3
p ffi 2:51 persons.

Since n ¼ 30 and both np and nð1� pÞ > 5, we can approximate the binomial probability with the
normal. However, the number of people is a discrete variable. In order to use the normal distribution,

we must treat the number of people as if it were a continuous variable and find PðX � 9:5Þ. Thus

z ¼ X � �

�
¼ 9:5� 9

2:51
¼ 0:5

2:51
ffi 0:20

From z ¼ 0:20, we get 0:0793 (from App. 3). This means that 0.0793 of the area under the standard
normal curve lies from z ¼ 0 to z ¼ 0:20. Therefore, PðX � 9:5Þ ¼ 0:5� 0:0793 ¼ 0:4207 (the normal
approximation). As n becomes even larger, the approximation becomes even closer. [If we had not
treated the number of people as a continuous variable, we would have found that PðX � 10Þ ¼ 0:34,
and the approximation would not have been as close.]
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3.38 A production process produces 10 defective items per hour. Find the probability that 4 or less
items are defective out of the output of a randomly chosen hour using (a) the Poisson distribu-
tion and (b) the normal approximation of the Poisson.

(a) Here � ¼ 10 and we are asked to find PðX � 4Þ, where X is the number of defective items from the
output of a randomly chosen hour. The value of e�10 from App. 2 is 0.00005. Therefore

Pð0Þ ¼ �0e�10

0!
¼ e�10 ¼ 0:00005

Pð1Þ ¼ �1e�10

1!
¼ 10ð0:00005Þ

1
¼ 0:0005

Pð2Þ ¼ �2e�10

2!
¼ 102ð0:00005Þ

2
¼ 0:0025

Pð3Þ ¼ �3e�10

3!
¼ 103ð0:00005Þ

6
¼ 0:0083335

Pð4Þ ¼ �4e�10

4!
¼ 104ð0:00005Þ

24
¼ 0:0208335

PðX � 4Þ ¼ Pð0Þ þ Pð1Þ þ Pð2Þ þ Pð3Þ þ Pð4Þ
¼ 0:00005þ 0:0005þ 0:0025þ 0:0083335þ 0:0208335

¼ 0:032217, or about 3.22%

(b) Treating the items as continuous [see Prob. 3.37(b)], we are asked to find PðX � 4:5Þ, where X is the
number of defective items, � ¼ � ¼ 10, and � ¼ ffiffiffi

�
p ¼ ffiffiffiffiffi

10
p ffi 3:16. Thus

z ¼ X � �

�
¼ 4:5� 10

3:16
¼ �5:5

3:16
¼ �1:74

For z ¼ 1:74 in App. 3, we get 0.4591. This means that 0:5� 0:4591 ¼ 0:0409 of the area (probability)
under the standard normal curve lies to the left of z ¼ �1:74. Thus PðX � 4:5Þ ¼ 0:0409, or 4.09%.

As � becomes larger, we get a better approximation. [If we had not treated the number of defective
items as a continuous variable, we would have found that PðX � 4Þ ¼ 0:287:�

3.39 If events or successes follow a Poisson distribution, we can determine the probability that the first
event occurs within a designated period of time, PðT � tÞ, by the exponential probability
distribution. Because we are dealing with time, the exponential is a continuous probability
distribution. This is given by

PðT � tÞ ¼ 1� e�� ð3:27Þ
where � is the mean number of occurrences for the interval of interest and e�� can be obtained
from App. 2. The expected value and variance are

EðTÞ ¼ 1

�
ð3:28Þ

VarT ¼ 1

�2
ð3:29Þ

(a) For the statement of Prob. 3.29, find the probability that starting at a random point in time,
the first customer stops at the gasoline pump within a half hour. (b) What is the probability that
no customer stops at the gasoline pump within a half hour? (c) What is the expected value and
variance of the exponential distribution, where the continuous variable is time T?

(a) Since an average of 6 customers stop at the pump per hour, � ¼ average of 3 customers per half hour.
The probability that the first customer will stop within the first half hour is

1� e�� ¼ 1� e�3 ¼ 1� 0:04979 (from App. 2) ¼ 0:9502, or 95:02%
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(b) The probability that no customer stops at the pump within a half hour is

e�� ¼ e�3 ¼ 0:04979

(c) EðTÞ ¼ 1=� ¼ 1=6 ffi 0:17 h per car, and varT ¼ 1=�2 ¼ 1=36 ffi 0:03 h per car squared. The expo-

nential distribution also can be used to calculate the time between two successive events.

3.40 The mean level of schooling for a population is 8 years and the standard deviation is 1 year.
What is the probability that a randomly selected individual from the population will have had
between 6 and 10 years of schooling? Less than 6 years or more than 10 years?

Since we have not been told the form of the distribution, we can use Chebyshev’s theorem, which applies
to any distribution. With � ¼ 8 years and � ¼ 1 year, 6 years of schooling is 2 standard deviations below �
and 10 years of schooling is 2 standard deviations above �. Using Chevyshev’s theorem or inequality we

obtain

Pðj �XX � �j � K�Þ � 1� 1

K2
ð3:30Þ

The probability of an individual picked at random from the population will be within 2 standard deviations
from the mean is

1� 1

K2
¼ 1� 1

22
¼ 3

4
, or 75%

Therefore, the probability that the individual will have had either less than 6 or more than 10 years of
schooling is 25%.

Supplementary Problems

PROBABILITY OF A SINGLE EVENT

3.41 What approach to probability is involved in the following statements? (a) The probability of a head in the
toss of a balanced coin is 1/2. (b) The relative frequency of a head in 100 tosses of a coin is 0.53. (c) The

probability of rain tomorrow is 20%.
Ans. (a) The classical or a priori approach. (b) The relative frequency or empirical approach. (c) The
subjective or personalistic approach.

3.42 What is the probability that in tossing a balanced coin we get (a) a tail, (b) a head, (c) not a tail, or (d) a

tail or not a tail?
Ans. (a) PðTÞ ¼ 1=2 ðbÞ PðHÞ ¼ 1=2 ðcÞ PðT 0Þ ¼ 1=2 ðdÞ PðTÞ þ PðT 0Þ ¼ 1

3.43 What is the probability that in one roll of a fair die we get (a) a 1, (b) a 6, (c) not a 1, or (d) a 1 or not
a 1?

Ans. (a) Pð1Þ ¼ 1=6 ðbÞ Pð6Þ ¼ 1=6 ðcÞ Pð1 0Þ ¼ 5=6 ðdÞ Pð1Þ þ Pð1 0Þ ¼ 1

3.44 What is the probability that in a single pick from a standard deck of cards we pick (a) a club, (b) an ace,
(c) the ace of clubs, (d) not a club, or (e) a club or not a club?
Ans. (a) PðCÞ ¼ 13=52 ¼ 1=4 ðbÞ PðAÞ ¼ 4=52 ¼ 1=13 ðcÞ PðACÞ ¼ 1=52 ðdÞ PðC 0Þ ¼ 3=4
(e) PðCÞ þ PðC 0Þ ¼ 1

3.45 An urn contains 12 balls that are exactly alike except that 4 are blue, 3 are red, 3 are green, and 2 are white.
What is the probability that by picking a single ball we pick (a) A blue ball? (b) A red ball? (c) A green
ball? (d) A white ball? (e) A nonred ball? ( f ) A nonwhite ball? (g) A white or nonwhite ball? Also
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(h) What are the odds of picking a green ball? (i) What are the odds of picking a nongreen ball?

Ans. (a) PðBÞ ¼ 1=3 or 0.33 (b) PðRÞ ¼ 1=4 or 0.25 (c) PðGÞ ¼ 1=4 or 0.25 ðdÞ PðWÞ ¼ 1=6 or 0.167
ðeÞ PðR 0Þ ¼ 0:75 ð f Þ PðW 0Þ ¼ 0:833 ðgÞ PðWÞ þ PðW 0Þ ¼ 1 ðhÞ 3 : 9 ðiÞ 9 : 3

3.46 Suppose that a card is picked from a well-shuffled standard deck. The card is then replaced, the deck
reshuffled, and another card is picked. As this process is repeated 520 times, we obtain 136 spades.

(a) What is the relative frequency or empirical probability of getting a spade? (b) What is the classical
or a priori probability of getting a spade? (c) What would you expect the relative frequency or empirical
probability of getting a spade to be if the process is repeated many more times?

Ans. (a) 136=520 ffi 0:26 ðbÞ PðSÞ ¼ 1=4 ðcÞ To approach 1/4 or 0.25

3.47 An insurance company found that from a sample of 10,000 men between the ages of 30 and 40, 87 become

seriously ill during a 1-year period. (a) What is the relative frequency or empirical probability of men
between 30 and 40 becoming seriously ill during a 1-year period? (b) Why is the insurance company
interested in these results? (c) Suppose that the company subsequently sells health insurance to

1,387,684 men in the 30 to 40 age group. How many claims can the company expect during a 1-year period?
Ans. (a) The relative frequency or empirical probability is 87/10,000 ¼ 0:0087. (b) The insurance com-
pany is interested in the relative frequency or empirical probability in order to determine its insurance

premiums. (c) 12,073, to the nearest person

PROBABILITY OF MULTIPLE EVENTS

3.48 What types of events are the following? (a) Picking hearts or clubs on a single pick from a deck.
(b) Picking diamonds or a queen on a single pick from a deck. (c) Two successive flips of a balanced

coin. (d) Two successive tosses of a fair die. (e) Picking two cards from a deck with replacement.
( f ) Picking two cards from a deck without replacement. (g) Picking two balls from an urn without
replacement.

Ans. (a) Mutually exclusive (b) Not mutuall exclusive (c) Independent (d) Independent (e)
Independent ( f ) Dependent (g) Dependent

3.49 What is the probability of getting (a) Four or more on a single toss of a fair die? (b) Ace or king on a
single pick from a well-shuffled standard deck of cards? (c) A green or white ball from the urn of Prob.
3.45?

Ans. (a) 1/2 (b) 8/52 or 2/13 (c) 5/12

3.50 What is the probability of getting (a) A diamond or a queen on a single pick from a deck of cards? (b) A

diamond, a queen, or a king? (c) An African-American or a woman president of the United States if the
probability of an African-American president is 0.25, of a woman is 0.15, and of an African-American
woman is 0.07?

Ans. (a) 16/52 or 4/13 (b) 19/52 (c) 0.33

3.51 What is the probability of (a) Two ones in 2 rolls of a die? (b) Three tails in 3 flips of a coin? (c) A total

of 6 in rolling 2 dice simultaneously? (d) A total of less than 5 in rolling 2 dice simultaneously? (e) A
total of 10 or more in rolling 2 dice simultaneously?
Ans. (a) 1/36 (b) 1/8 (c) 5/36 (d) 1/6 (e) 1/6

3.52 What is the probability of obtaining the following from a deck of cards: (a) A diamond on the second pick
when the first card picked and not replaced was a diamond? (b) A diamond on the second pick when the
first card picked and not replaced was not a diamond? (c) A king on the third pick when a queen and a jack

were already obtained on the first and second pick and not replaced?
Ans. (a) 12/51 (b) 13/51 (c) 4/50

3.53 What is the probability of picking (a) the king of clubs and a diamond in that order in 2 picks from a deck
without replacement? (b) A white ball and a green ball in that order in 2 picks without replacement from the
urn of Prob. 3.45? (c) A green ball and a white ball in that order in 2 picks without replacement from the
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urn of Prob. 3.45? (d) A green and a white ball in that order in 2 picks without replacement from the same

urn? (e) Three green balls in 3 picks without replacement from the urn?
Ans. (a) 13/2652 or 1/204 (b) 6/132 or 1/22 (c) 1/22 (d) 1/11 (e) 6/1320 or 1/220

3.54 Suppose that the probability of rain on a given day is 0.1 and the probability of my having a car accident is

0.005 on any day and 0.012 on a rainy day. (a) What rule should I use to calculate the probability that on a
given day it will rain and I will have a car accident? (b) State the rule asked for in part a, letting A signify
accident and R signify rain. (b) Calculate the probability asked for in part a.

Ans. (a) The rule of multiplication for dependent events (b) P(R and AÞ ¼ PðRÞ � PðA=RÞ (c) 0.0012

3.55 (a) What rule or theorem should I use to calculate for the statement in Prob. 3.54 the probability that it was
raining when I had a car accident? (b) State the rule or theorem applicable to part a. (c) Answer the

question in part c.
Ans. (a) Bayes’ theorem (b) PðR=AÞ ¼ PðRÞ � PðA=RÞ=PðAÞ (c) 0.24

3.56 In how many different ways can 6 qualified individuals be assigned to (a) Three trainee positions available

if the positions are identical? (b) Three trainee positions eventually if the positions differ? (c) Six trainee
positions available if the positions differ?
Ans. (a) 20 (b) 120 (c) 720

DISCRETE PROBABILITY DISTRIBUTIONS: THE BINOMIAL DISTRIBUTION

3.57 The probability distribution of lunch customers at a restaurant is given in Table 3.5. Calculate (a) the

expected number of lunch customers, (b) the variance, and (c) the standard deviation.

Ans. (a) 113.1 customers (b) 65.69 customers squared (c) 8.10 customers

3.58 What is the probability of (a) Getting exactly 4 heads and 2 tails in 6 tosses of a balanced coin?

(b) Getting 3 sixes in 4 rolls of a fair die?
Ans. (a) 0.23 (b) 0.0154321

3.59 (a) If 20% of the students entering college drop out before receiving their diplomas, find the probability that
out of 20 students picked at random from the very large number of students entering college, less than 3 drop

out. (b) If 90% of the bulbs produced in a plant are acceptable, what is the probability that out of 10 bulbs
picked at random from the very large output of the plant, 8 are acceptable?
Ans. (a) 0.206 (b) 0.1937

3.60 Calculate the expected value and standard deviation and determine the symmetry or asymmetry of the
probability distribution of (a) Prob. 3.58(a), (b) Prob. 3.59(a), and (c) Prob. 3.59(b).

Ans. (a) EðXÞ ¼ 3 heads, SD X ¼ 1:22 heads, and the distribution is symmetrical. (b) EðXÞ ¼ 4 students,
SD X ¼ 1:79 students, and the distribution is skewed to the right. (c) EðXÞ ¼ 9 bulbs, SD X ¼ 0:95 bulbs,
and the distribution is skewed to the left.
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Table 3.5 Probability Distribution of Lunch Customers at

a Restaurant

Number of Customers, X Probability, PðXÞ
100 0.2

110 0.3

118 0.2

120 0.2

125 0.1
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3.61 What is the probability of picking (a) Two women in a sample of 5 drawn at random and without

replacement from a group of 9 people, 4 of whom are women? (b) Eight men in a sample of 10 drawn
at random and without replacement from a population of 1000, half of which are men.
Ans. (a) About 0.71 (using the hypergeometric distribution) (b) About 0.0439 (using the binomial
approximation to the hypergeometric probability)

THE POISSON DISTRIBUTION

3.62 Past experience shows that there are two traffic accidents at an intersection per week. What is the prob-
ability of: (a) Four accidents during a randomly selected week? (b) No accidents? (c) What is the

expected value and standard deviation of the distribution?
Ans. (a) About 0.36 (b) About 0.14 (c) EðXÞ ¼ � ¼ 2 accidents, and SD X ¼ ffiffiffi

�
p ¼ 1:41 accidents

3.63 Past experience shows that 0.003 of the national labor force get seriously ill during a year. If 1000 persons
are randomly selected from the national labor force: (a) What is the expected number of workers that will
get sick during a year? (b) What is the probability that 5 workers will get sick during the year?
Ans. (a) 3 workers (b) About 0.1 (using the Poisson approximation to the binomial distribution)

CONTINUOUS PROBABILITY DISTRIBUTIONS: THE NORMAL DISTRIBUTION

3.64 Give the formulas: (a) the probability that continuous variable X falls between X1 and X2, (b) the normal
distribution, (c) the expected value and variance of the normal distribution, and (d) the standard normal

distribution, (e) what is the mean and variance of the standard normal distribution?
Ans. (a) PðX1 < X < X2Þ ¼

ÐX2

X1
f ðxÞ dX ðbÞ f ðXÞ ¼ ð1=

ffiffiffiffiffiffiffiffiffiffi
2	�2

p
Þ expf�ð1=2Þ½ðX � �Þ=��2g (c) EðXÞ ¼Ð1

�1 X f ðXÞ dX and �2 ¼ Ð1
�1½X � EðXÞ�2 f ðXÞ dX ðdÞ f ðXÞ ¼ ð1= ffiffiffiffiffiffi

2	
p Þ exp½�ð1=2Þz2� (e) EðXÞ ¼ � ¼ 0

and �2 ¼ 1

3.65 Find the area under the standard normal curve (a) within z � 1:64, (b) within z ¼ �1:96, (c) within
z ¼ �2:58, (d) between z ¼ 0:90 and z ¼ 2:10, (e) to the left of z ¼ 0:90, ( f ) to the right of z ¼ 2:10,
(g) to the left of z ¼ 0:90 and to the right of z ¼ 2:10.
Ans. (a) 0.899, or 89.90% (b) 0.95 (c) 0.9902 (d) 0.1662 (e) 0.8159 ( f ) 0.0179 (g) 0.8338

3.66 A random variable is normally distributed with � ¼ 67 and � ¼ 3. What is the probability that this random
variable will assume a value (a) Between 67 and 70? (b) Between 60 and 70? (c) Between 60 and 65?
(d) Below 60? (e) Above 65?

Ans. (a) 0.3413, or 34.13% (b) 0.8334 (c) 0.2415 (d) 0.0099 (e) 0.7486

3.67 The mean weight of a large group of people is 180 lb and the standard deviation is 15 lb. If the weights are

normally distributed, find the probability that a person picked at random from the group will weigh
(a) between 160 and 180 lb, (b) above 200 lb, (c) below 150 lb.
Ans. (a) 0.4082, or 40.82% (b) 0.0918 (c) 0.228

3.68 The IQs of army volunteers in a given year are normally distributed with � ¼ 110 and � ¼ 10. The army
wants to give advanced training to the 25% of those recruits with the highest IQ scores. What is the lowest
IQ score acceptable for the advanced training?

Ans. 117, to the nearest whole number

3.69 Past experience indicates that 60% of the students entering college get their degrees. Using (a) the

binomial distribution and (b) the normal approximation to the binomial, find the probability that out
of 30 students picked at random from the entering class, more than 20 will receive their degrees.
Ans. (a) 0.1762 (b) 0.1762

3.70 An average of 10 cars per minute pass through a toll booth during rush hour. Using (a) the Poisson
distribution and (b) the normal approximation to the Poisson, find the probability that less than 6 cars pass
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through the toll booth during a randomly chosen minute.

Ans. (a) 0.0749, or 7.49% (b) 0.0778, or 7.78%

3.71 A manufacturing process produces on the average two defective items per hour. What is the probability

that after a defective item: (a) One hour will pass before the next defective item? (b) One-half hour will
pass? (c) Fifteen minutes will pass? (d) What is the expected value and standard deviation of this
distribution?

Ans. (a) 0.13534, or 13.53% (b) 0.36788 (c) 0.60653 (d) EðTÞ ¼ � ¼ 1=� ¼ 0:5 h per defective item

3.72 If a student has a grade point average 3 standard deviations above the mean in her school, what proportion
of the other students in the school have: (a) A higher grade point average? (b) A lower grade point
average?
Ans. (a) < 0:11, or 11% (using Chevyshev’s theorem) (b) at least 0.89, or 89%

3.73 According to Chebyshev’s theorem, at least what proportion of the observations fall within (a) 1.5

standard deviations from the mean, (b) 2.5 standard deviations from the mean?
Ans. (a) 0.56, or 56% (b) 0.84, or 84%
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Statistical Inference:
Estimation

4.1 SAMPLING

Statistical inference is one of the most important and crucial aspects of the decision making process
in economics, business, and science. Statistical inference refers to estimation and hypothesis testing
(Chap. 5). Estimation is the process of inferring or estimating a population parameter (such as its mean
or standard deviation) from the corresponding statistic of a sample drawn from the population.

To be valid, estimation (and hypothesis testing) must be based on a representative sample. This can
be obtained by random sampling, whereby each member of the population has an equal chance of being
included in the sample.

EXAMPLE 1. A random sample of 5 out of the 80 employees of a plant can be obtained by recording the name of

each employee on a separate slip of paper, mixing the slips of paper thoroughly, and then picking 5 at random. A
less cumbersome method is to use a table of random numbers (App. 4). To do this, we first assign each employee a
number from 1 to 80. Then starting at random (say, from the third column and eleventh row) in App. 4, we can

read 5 numbers (as pairs) either horizontally or vertically (eliminating all numbers exceeding 80). For example,
reading vertically we get 13, 54, 19, 59, and 71.

4.2 SAMPLING DISTRIBUTION OF THE MEAN

If we take repeated random samples from a population and measure the mean of each sample, we
find that most of these sample means, �XXs, differ from each other. The probability distribution of these
sample means is called the sampling distribution of the mean. However, the sampling distribution of the
mean itself has a mean, given by the symbol � �XX , and a standard deviation or standard error, � �XX .

Two important theorems relate the sampling distribution of the mean to the parent population.

1. If we take repeated random samples of size n from a population

� �XX ¼ � ð4:1Þ

and � �XX ¼ �ffiffiffi
n

p or � �XX ¼ �ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
ð4:2a; bÞ

where Eq. (4.2b) is used for finite populations of size N when n � 0:05N [see Prob. 4.5(b)].
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2. As the samples’ size is increased (i.e., as n ! 1), the sampling distribution of the mean
approaches the normal distribution regardless of the shape of the parent population. The
approximation is sufficiently good for n � 30. This is the central-limit theorem.

We can find the probability that a random sample has a mean �XX in a given interval by first
calculating the z values for the interval, where

z ¼
�XX � � �XX

� �XX

ð4:3Þ

and then looking up these values in App. 3, as explained in Sec. 3.5.

EXAMPLE 2. In Fig. 4-1, the mean of the sampling distribution of the mean � �XX is equal to the mean of the parent
population � regardless of the samples’ size n. However, the greater is n, the smaller is the spread or standard error

of the mean, � �XX . If the parent population is normal, the sampling distributions of the mean are also normally
distributed, even in small samples. According to the central-limit theorem, even if the parent population is not
normally distributed, the sampling distributions of the mean are approximately normal for n � 30.

EXAMPLE 3. Assume that a population is composed of 900 elements with a mean of 20 units and a standard
deviation of 12. The mean and standard error of the sampling distribution of the mean for a sample size of 36 is

� �XX ¼ � ¼ 20 units

� �XX ¼ �ffiffiffi
n

p ¼ 12ffiffiffiffiffi
36

p ¼ 2

If n had been 64 instead of 36 (so that n > 0:05N), then

� �XX ¼ �ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
¼ 12ffiffiffiffiffi

64
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900� 64

900� 1

r
¼ 12

8

ffiffiffiffiffiffiffiffi
836

899

r
¼ ð1:5Þð0:96Þ ¼ 1:44

instead of � �XX ¼ 1:5, without the finite correction factor.

EXAMPLE 4. The probability that the mean of a random sample �XX of 36 elements from the population in

Example 3 falls between 18 and 24 units is computed as follows:

z1 ¼
�XX1 � � �XX

� �XX

¼ 18� 20

2
¼ �1 and z2 ¼

�XX2 � � �XX

� �XX

¼ 24� 20

2
¼ 2

Looking up z1 and z2 in App. 3, we get

Pð18 < �XX < 24Þ ¼ 0:3413þ 0:4772 ¼ 0:8185, or 81:85%
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See Fig. 4-2.

4.3 ESTIMATION USING THE NORMAL DISTRIBUTION

We can get a point or an interval estimate of a population parameter. A point estimate is a single
number. Such a point estimate is unbiased if in repeated random samplings from the population, the
expected or mean value of the corresponding statistic is equal to the population parameter. For
example, �XX is an unbiased (point) estimate of � because � �XX ¼ �, where � �XX is the expected value of
�XX . The sample standard deviation s [as defined in Eqs. (2.10b) and (2.11b)] is an unbiased estimate of �
[see Prob. 4.13(b)], and the sample proportion �pp is an unbiased estimate of p (the proportion of the
population with a given characteristic).

An interval estimate refers to a range of values together with the probability, or confidence level, that
the interval includes the unknown population parameter. Given the population standard deviation or
its estimate, and given that the population is normal or that a random sample is equal to or larger than
30, we can find the 95% confidence interval for the unknown population mean as

Pð �XX � 1:96� �XX < � < �XX þ 1:96� �XXÞ ¼ 0:95 ð4:4Þ
This states that in repeated random sampling, we expect that 95 out of 100 intervals such as Eq. (4.4)
include the unknown population mean and that our confidence interval (based on a single random
sample) is one of these.

A confidence interval can be constructed similarly for the population proportion (see Example 7)
where

��pp ¼ �

n
¼ p (the proportion of successes in the population) ð4:5Þ

��pp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
(the standard error of the proportion) ð4:6Þ

EXAMPLE 5. A random sample of 144 with a mean of 100 and a standard deviation of 60 is taken from a

population of 1000. The 95% confidence interval for the unknown population mean is

� ¼ �XX � 1:96� �XX since n > 30

¼ �XX � 1:96
�ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
since n > 0:05N

¼ 100� 1:96
60ffiffiffiffiffiffiffiffi
144

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000� 144

1000� 1

r
using s as an estimate of �

¼ 100� 1:96ð5Þð0:93Þ
¼ 100� 9:11

Thus � is between 90.89 and 109.11 with a 95% degree of confidence. Other frequently used confidence intervals are
the 90 and 99% levels, corresponding to the z values of 1.64 and 2.58, respectively (see App. 3).
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EXAMPLE 6. A manager wishes to estimate the mean number of minutes that workers take to complete a

particular manufacturing process within �3 min and with 90% confidence. From past experience, the manager
knows that the standard deviation � is 15min. The minimum required sample size ðn > 30Þ is found as follows:

z ¼
�XX � �

� �XX

z� �XX ¼ �XX � �

1:64
�ffiffiffi
n

p ¼ �XX � � assuming n < 0:05N

1:64
15ffiffiffi

n
p ¼ 3 since the total confidence interval, �XX � �, is 3 min

1:64
15

3
¼ ffiffiffi

n
p

n ¼ 67:24, or 68 (rounded to the next higher integer)

EXAMPLE 7. A state education department finds that in a random sample of 100 persons who attended college,
40 received a college degree. To find the 99% confidence interval for the proportion of college graduates out of all

the persons who attended college, we proceed as follows. First, we note that this problem involves the binomial
distribution (see Sec. 3.3). Since n > 30 and both np > 5 and nð1� pÞ > 5, the binomial distribution approaches the
normal distribution (which is simpler to use; see Sec. 3.5). Then

p ¼ �pp � z��pp

and p ¼ �pp � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
assuming n < 0:05N

¼ 0:4� 2:58

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:4Þð0:6Þ

100

r
using �pp as an estimate of p

ffi 0:4� 2:58ð0:05Þ
ffi 0:4� 0:13

Thus p is between 0.27 and 0.53 with a 99% level of confidence.

4.4 CONFIDENCE INTERVALS FOR THE MEAN USING THE t DISTRIBUTION

When the population is normally distributed but � is not known and n < 30, we cannot use the
normal distribution for determining confidence intervals for the unknown population mean, but we can
use the t distribution. This is symmetrical about its zero mean but is flatter than the standard normal
distribution, so that more of its area falls within the tails. While there is a single standard normal
distribution, there is a different t distribution for each sample size, n. However, as n becomes larger, the
t distribution approaches the standard normal distribution (see Fig. 4-3) until, when n � 30, they are
approximately equal.

Appendix 5 gives the values of t to the right of which we find 10, 5, 2.5, 1, and 0.5% of the total area
under the curve for various degrees of freedom. Degrees of freedom (df) are defined in this case as n � 1
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(or the sample size minus 1 for the single parameter � we wish to estimate). The 95% confidence interval

for the unknown population mean when the t distribution is used is given by

P �XX � t
sffiffiffi
n

p < � < �XX þ t
sffiffiffi
n

p
� �

¼ 0:95 ð4:7Þ

where t refers to the t values such that 2.5% of the total area under the curve falls within each tail (for the

degrees of freedom involved) and s=
ffiffiffi
n

p
is used instead of � �XX ¼ �=

ffiffiffi
n

p
.

EXAMPLE 8. A random sample of n ¼ 10 flashlight batteries with a mean operating life �XX ¼ 5 h and a sample

standard deviation s ¼ 1 h is picked from a production line known to produce batteries with normally distributed
operating lives. To find the 95% confidence interval for the unknown mean of the working life of the entire
population of batteries, we first find the value of �t0:025 so that 2.5% of the area is within each tail for n� 1 ¼ 9 df.

This is obtained from App. 5 by moving down the column headed 0.025 to 9 df. The value we get is 2.262. Thus

� ¼ �XX � 2:262
sffiffiffi
n

p ¼ 5� 2:262
1ffiffiffiffiffi
10

p ffi 5� 2:262ð0:316Þ ffi 5� 0:71

and � is between 4.29 and 5.71 h with 95% confidence (see Fig. 4-4). When n < 30 and the population is not

normally distributed, we must use Chebyshev’s theorem (see Prob. 4.27).

Solved Problems

SAMPLING

4.1 (a) What is meant by statistical inference? What is its function and importance? (b) What is
meant by and what is the relationship between a parameter and a statistic? (c) What is meant by
estimation? Hypothesis testing?

(a) Statistical inference is the process of making inferences about populations from information provided

by samples. A population is the collection of all the elements (people, parts produced by a machine,

cars passing through a checkpoint, etc.) that we are describing. A sample is a portion chosen from the

population. Analyzing an entire population may be impossible (if the population is infinite), it may

destroy all the output (such as in testing all the flashbulbs produced), and it may be prohibitively

expensive. These problems can be overcome by taking a (representative) sample from a population

and making inferences about the population from the sample.

(b) A parameter is a descriptive characteristic (such as the mean and the standard deviation) of a

population. A statistic is a descriptive characteristic of a sample. In statistical inference, we make

inferences about parameters from their corresponding statistics.
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(c) Statistical inference is of two kinds: estimation and hypothesis testing. Estimation is the process of

inferring or estimating a parameter from the corresponding statistic. For example, we may estimate the
mean and the standard deviation of a population from the mean and standard deviation of a sample
drawn from the population. Hypothesis testing is the process of determining, on the basis of sample
information, whether to accept or reject a hypothesis or assumption with regard to the value of a

parameter. We deal with estimation in this chapter and with hypothesis testing in Chap. 5.

4.2 What is meant by random sampling? What is its importance?

Random sampling is a sampling procedure by which each member of a population has an equal chance of
being included in the sample. Random sampling ensures a representative sample. There are several types of
random sampling. In simple random sampling, not only each item in the population but each sample has an

equal probability of being picked. In systematic sampling, items are selected from the population at uniform
intervals of time, order, or space (as in picking every one-hundredth name from a telephone directory).
Systematic sampling can be biased easily, such as, for example, when the amount of household garbage is

measured on Mondays (which includes the weekend garbage). In stratified and cluster sampling, the popula-
tion is divided into strata (such as age groups) and clusters (such as blocks of a city) and then a proportionate
number of elements is picked at random from each stratum and cluster. Stratified sampling is used when the

variations within each stratum are small in relation to the variations between strata. Cluster sampling is used
when the opposite is the case. In what follows, we assume simple random sampling. Sampling can be from a
finite population (as in picking cards from a deck without replacement) or from an infinite population (as in
picking parts produced by a continuous process or cards from a deck with replacement).

4.3 (a) How can a random sample be obtained? (b) Using a table of random numbers, obtain a
random sample of 10 from the 95 employees of a plant that were out sick during a particular day.
(c) Obtain a random sample of 12 out of the 240 parts produced by a machine during its first
hour of operation.

(a) A random sample can be obtained (1) by a computer programmed to assemble numbers, (2) from a

table of random numbers, and (3) by assigning a number to each item in a population, recording each
number on a separate slip of paper, mixing the slips of paper thoroughly, and then picking as many slips
of paper and numbers as we want in the sample. The last method of obtaining a random sample is very
cumbersome with large populations and may not give a representative sample because of the difficulty

of thoroughly scrambling the pieces of paper.

(b) To obtain a random sample of 10 from the 95 employees, we assign each employee a number from 1 to
95 and then consult App. 4 (the table of random numbers of digits). Appendix 4 lists 1600 digits in sets
of 5 digits generated by a completely random process and such that each digit and sequence of digits has

the same probability of occurring as every other digit and sequence of digits. Starting at an arbitrary
point in App. 4 (say, the fourteenth column and fifth row) and reading 10 numbers in pairs (say,
vertically and omitting all numbers above 95), we get the following random sample: 60, 39, 4, 34,

76, 43, 52, 14, 8, and 95.

(c) Starting, say, from the third row and eighth line in App. 4 and reading 8 numbers horizontally (three

digits at a time and eliminating numbers exceeding 240), we get the following random sample: 215, 182,
51, 9, 127, 177, 53, and 186 (the last four numbers were obtained from the ninth line after reaching the
end of the eighth line).

SAMPLING DISTRIBUTION OF THE MEAN

4.4 (a) What does sampling distribution mean and how is a sampling distribution of the mean
obtained? (b) What is meant by the mean and standard error of the sampling distribution of
the mean?

(a) If we take repeated (or all possible) random samples, each of size n, from a population of values of the
variable X and find the mean of each of these samples �XX , we find that most of the sample means differ

from each other. The probability distribution of these sample means is called the theoretical sampling
distribution of the mean. Similarly, we could get the theoretical sampling distribution of a proportion,
of the difference between two means, and of the difference between two proportions. For example, we
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could have found the proportion of defective items in each sample and obtained the theoretical sam-

pling distribution of the proportion of defective items. For simplicity, this section deals only with the
sampling distribution of the mean.

(b) Just as in other probability distributions (see Secs. 3.3 to 3.5), the theoretical sampling distribution of the
mean can be described by its mean and standard deviation. The mean of the sampling distribution of the

mean is given by the symbol � �XX (read ‘‘mu sub X bar’’). This is the mean of the �XXs and is to be
distinguished from � (the mean of the parent population). The standard deviation of the sampling
distribution of the mean is given by the symbol � �XX (read ‘‘sigma sub X bar’’). This is the standard
deviation of the �XXs and is to be clearly distinguished from � (which is the standard deviation of the

parent population). The smaller is � �XX , the more accurate is a sample mean �XX as an estimate of the
(unknown) population mean �. For this reason, � �XX is usually referred to as the standard error of the
mean.

4.5 How can we find (a) The mean of the sampling distribution of the mean � �XX? (b) The standard
deviation of the sampling distribution of the mean or standard error � �XX?

(a) The mean of the theoretical sampling distribution of the mean � �XX is equal to the mean of the parent
population �; that is, � �XX ¼ �. Note that for this to be true, either we must take all the different samples
of size n possible from the finite population or, if we are dealing with an infinite population (or a finite

population with replacement), we must continue to take repeated random samples of size n indefinitely.
Moreover, � �XX is also equal to Eð �XXÞ (see Probs. 3.20 and 3.31).

(b) The standard error of the mean � �XX is given by the standard deviation of the parent population � divided
by the square root of the samples’ size

ffiffiffi
n

p
; that is, � �XX ¼ �=

ffiffiffi
n

p
. For finite populations of size N, a finite

correction factor must be added, and � �XX ¼ ð�= ffiffiffi
n

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � nÞ=ðN � 1Þp
. However, if the sample size is

very small in relation to the population size,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � nÞ=ðN � 1Þp

is close to 1 and can be dropped from the
formula. By convention, this is done whenever n < 0:05N. Independently of this finite correction

factor, � �XX is directly related to � and inversely related to
ffiffiffi
n

p
[see Eq. (4.2a,b)]. Thus increasing the

samples size 4 times increases the accuracy of �XX as an estimate of � by cutting � �XX in half. Note also that
� �XX is always smaller than �. The reason for this is that the sample means, as averages of the sample

observations, exhibit less variability or spread than the population values. Furthermore, the larger are
the sample sizes, the more the values of � �XX are averaged down with respect to the value of � (see Fig. 4-1).

4.6 For a population composed of the following 5 numbers: 1, 3, 5, 7, and 9, find (a) � and �,
(b) the theoretical sampling distribution of the mean for the sample size of 2, and (c) � �XX and � �XX .

� ¼
P

X

N
¼ 1þ 3þ 5þ 7þ 9

5
¼ 25

5
¼ 5ðaÞ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX � �Þ2

N

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 5Þ2 þ ð3� 5Þ2 þ ð5� 5Þ2 þ ð7� 5Þ2 þ ð9� 5Þ2

5

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 4þ 0þ 4þ 16

5

r
¼

ffiffiffiffiffi
40

5

r
¼

ffiffiffi
8

p
ffi 2:83

(b) The theoretical sampling distribution of the sample mean for the sample size of 2 from the given finite
population n is given by the mean of all the possible different samples that can be obtained from this
population. The number of combinations of 5 numbers taken 2 at a time without concern for the order is

5!=2!3! ¼ 10 (see Prob. 3.18). These 10 samples are 1; 3; 1; 5; 1; 7; 1; 9; 3; 5; 3; 7; 3; 9; 5; 7; 5; 9; and 7; 9.
The mean, �XX, of the preceding 10 samples is 2, 3, 4, 5, 4, 5, 6, 6, 7, 8. The theoretical sampling
distribution of the mean is given in Table 4.1. Note that the variability or spread of the sample means

(from 2 to 8) is less than the variability or spread of the values in the parent population (from 1 to 9),
confirming the statement made at the end of Prob. 4.5(b).

(c) By applying theorem 1 (Sec. 4.2), � �XX ¼ � ¼ 5. Since the sample size of 2 is greater than 5% of the
population size (that is, n > 0:05N),

� �XX ¼ �ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
¼

ffiffiffi
8

pffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
5� 2

5� 1

r
¼

ffiffiffi
4

p ffiffiffi
3

4

r
¼

ffiffiffi
3

p
ffi 1:73
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4.7 For the theoretical sampling distribution of the sample mean found in Prob. 4.6(b) (a) find the
mean and the standard error of the mean using the formulas for the population mean and standard
deviation given in Secs. 2.2 and 2.3. (b) What do the answers to part a show?

� �XX ¼
P

�XX

N
¼ 2þ 3þ 4þ 5þ 4þ 5þ 6þ 6þ 7þ 8

10
¼ 50

10
¼ 5ðaÞ

� �XX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPð �XX � � �XXÞ2

N

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 5Þ2 þ ð3� 5Þ2 þ ð4� 5Þ2 þ ð5� 5Þ2 þ ð4� 5Þ2

þð5� 5Þ2 þ ð6� 5Þ2 þ ð6� 5Þ2 þ ð7� 8Þ2 þ ð8� 5Þ2
10

vuuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4þ 1þ 0þ 1þ 0þ 1þ 1þ 4þ 9

10

r
¼

ffiffiffiffiffi
30

10

r
¼

ffiffiffi
3

p
ffi 1:73

(b) The answers to part a confirm the results obtained in Prob. 4.5(c) by the application of theorem 1 (Sec.

4.2), namely, that � �XX ¼ � and � �XX ¼ ð�= ffiffiffi
n

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � nÞ=ðN � 1Þp
for the finite population where

n > 0:05N. Note that we took all the possible different samples of size 2 that we could take from our
finite population of 5 numbers. Sampling from an infinite parent population (or from a finite parent

population with replacement) would have required taking an infinite number of random samples of size
n from the parent population (an obviously impossible task). By taking only a limited number of
random samples, theorem 1 would hold only approximately (i.e., � �XX � � and � �XX � �=

ffiffiffi
n

p
), with the

approximation becoming better as the number of random samples taken is increased. In this case, the

sampling distribution of the sample mean generated is referred to as the empirical sampling distribution
of the mean.

4.8 A population of 12,000 elements has a mean of 100 and a standard deviation of 60. Find the
mean and standard error of the sampling distribution of the mean for sample sizes of (a) 100
and (b) 900.

� �XX ¼ � ¼ 100ðaÞ
� �XX ¼ �ffiffiffi

n
p ¼ 60ffiffiffiffiffiffiffiffi

100
p ¼ 6

� �XX ¼ � ¼ 100ðbÞ
Since a sample of 900 is more than 5% of the population size, the finite correction factor must be used
in the formula for the standard error:
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Table 4.1 Theoretical Sampling Distribution of the Mean

Values of the Mean Possible Outcomes Probability of Occurrence

2 2 0.1

3 3 0.1

4 4, 4 0.2

5 5, 5 0.2

6 6, 6 0.2

7 7 0.1

8 8 0.1

Total 1.0



� �XX ¼ �ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
¼ 60ffiffiffiffiffiffiffiffi

900
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12,000� 900

12,000� 1

s
¼ 60

30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11,100

11,999

s
ffi 2

ffiffiffiffiffiffiffiffiffiffiffi
0:925

p
ffi 2ð0:962Þ ffi 1:92

Without the correction factor, � �XX would have been equal to 2 instead of 1.92.

4.9 (a) What is the shape of the theoretical sampling distribution of the mean if the parent popula-
tion is normal? If the parent population is not normal? (b) What is the importance of the answer
to part a?

(a) If the parent population is normally distributed, the theoretical sampling distributions of the mean are

also normally distributed, regardless of sample size. According to the central limit theorem, even if the

parent population is not normal, the theoretical sampling distributions of the sample mean approach

normality as sample size increases (i.e., as n ! 1). This approximation is sufficiently good for samples

of at least 30.

(b) The central-limit theorem is perhaps the most important theorem in all of statistical inference. It

allows us to use sample statistics to make inferences about population parameters without knowing

anything about the shape of the parent population. This will be done in this chapter and in Chap. 5.

4.10 (a) How can we calculate the probability that a random sample has a mean that falls within a
given interval if the theoretical sampling distribution of the mean is normal or approximately
normal? How is this different from the process of finding the probability that a normally dis-
tributed random variable assumes a value within a given interval? (b) Draw a normal curve in
the �XX and z scales and show the percentage of the area under the curve within 1, 2, and 3 standard
deviation units of its mean.

(a) If the theoretical sampling distribution of the mean is normal or approximately normal, we can find the

probability that a random sample has a mean �XX that falls within a given interval by calculating the

corresponding z values in App. 3. This is analogous to what was done in Sec. 3.5, where the normal

and the standard normal curves were introduced. The only difference is that now we are dealing with

the distribution of the �XXs rather than with the distribution of the Xs. In addition, before

z ¼ ðX � �Þ=�, while now z ¼ ð �XX � � �XXÞ=� �XX ¼ ð �XX � �Þ=� �XX , since � �XX ¼ �.

(b) In Fig. 4-5, we have a normal curve in the �XX scale and a standard normal curve in the z scale. The area

under the curve within 1, 2, and 3 standard deviation units from the mean is 68.26, 95.44, and 99.74%,

respectively. Note the great similarity and important difference between Figs. 4-5 and 3-4.
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4.11 Find the probability that the mean of a random sample of 25 elements from a normally dis-
tributed population with a mean 90 and a standard deviation of 60 is larger than 100.

Since the parent population is normally distributed, the theoretical sampling distribution of the mean is
also normally distributed and � �XX ¼ �=

ffiffiffi
n

p
because n < 0:05N. For �XX ¼ 100

z ¼
�XX � � �XX

� �XX

¼
�XX � �

�=
ffiffiffi
n

p ¼ 100� 90

60=
ffiffiffiffiffi
25

p ¼ 10

12
ffi 0:83

Looking up this value in App. 3, we get

Pð �XX > 100Þ ¼ 1� ð0:5000þ 0:2967Þ ¼ 1� 0:7967 ¼ 0:2033, or 20:33%

See Fig. 4-6.

4.12 A small local bank has 1450 individual savings accounts with an average balance of $3000 and a
standard deviation of $1200. If the bank takes a random sample of 100 accounts, what is the
probability that the average savings for these 100 accounts will be below $2800?

Since n ¼ 100, the theoretical sampling distribution of the mean is approximately normal, but since
n > 0:05N, the finite correction factor must be used to find � �XX . For �XX ¼ $2800

z ¼
�XX � � �XX

� �XX

¼
�XX � �

�ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r ¼ 2800� 3000

1200ffiffiffiffiffiffiffiffi
100

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1450� 100

1450� 1

r ¼ �200

120

ffiffiffiffiffiffiffiffiffiffi
1350

1449

r ffi �200
120ð0:965Þ ffi �1:73

Looking up z ¼ 1:73 in App. 3, we get

Pð �XX < $2800Þ ¼ 1� ð0:5000þ 0:4582Þ ¼ 1� 0:9582 ¼ 0:0418; or 4:18%

See Fig. 4-7.

ESTIMATION USING THE NORMAL DISTRIBUTION

4.13 What is meant by (a) A point estimate? (b) Unbiased estimator? (c) An interval estimate?

(a) Because of cost, time, and feasibility, population parameters are frequently estimated from sample
statistics. A sample statistic used to estimate a population parameter is called an estimator, and a
specific observed value is called an estimate. When the estimate of an unknown population parameter

is given by a single number, it is called a point estimate. For example, the sample mean �XX is an
estimator of the population mean �, and a single value of �XX is a point estimate of �. Similarly, the
sample standard deviation s can be used as an estimator of the population standard deviation � and a

single value of s is a point estimate of �. The sample proportion �pp can be used as an estimator for the
population proportion p, and a single value of �pp is a point estimate of p (i.e., the proportion of the
population with a given characteristic).
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(b) An estimator is unbiased if in repeated random sampling from the population the corresponding

statistic from the theoretical sampling distribution is equal to the population parameter. Another
way of stating this is that an estimator is unbiased if its expected value (see Probs. 3.20 and 3.31) is
equal to the population parameter being estimated. For example, �XX, s [defined in Eqs. (2.10b) and
(2.11b)], and �pp are unbiased estimators of �, �, and p, respectively. Other important criteria for a good

estimator are discussed in Sec. 6.4.

(c) An interval estimate refers to the range of values used to estimate an unknown population parameter
together with the probability, or confidence level, that the interval does include the unknown population
parameter. This is known as a confidence interval and is usually centered around the unbiased point

estimate. For example, the 95% confidence interval for � is given by

Pð �XX � 1:96� �XX < � < �XX þ 1:96� �XX Þ ¼ 0:95

The two numbers defining a confidence interval are called confidence limits. Because an interval
estimate also expresses the degree of accuracy or confidence we have in the estimate, it is superior to

a point estimate.

4.14 A random sample of 64 with a mean of 50 and a standard deviation of 20 is taken from a
population of 800. (a) Find an interval estimate for the population mean such that we are
95% confident that the interval includes the population mean. (b) What does the result of part a
tell us?

(a) Since n > 30, we can use the z value of 1.96 from the standard normal distribution to construct the 95%
confidence interval for the unknown population and we can use s as an estimate for the unknown �:

�̂� ¼ s ð4:8Þ
where the ‘‘hat’’ (^) indicates an estimate, and

�̂� �XX ¼ �̂�ffiffiffi
n

p ¼ sffiffiffi
n

p or �̂� �XX ¼ �̂�ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
¼ sffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
when n > 0:05N ð4:9a; bÞ

In this problem

�̂� �XX ¼ sffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
¼ 20ffiffiffiffiffi

64
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
800� 64

800� 1

r
� 20

8
0:96 ffi 2:4

Then � ffi �XX � z� �XX ffi 50� 1:96ð2:4Þ ffi 50� 4:70. Thus � is between the lower confidence limit of 45.3
and the upper confidence limit of 54.7 with a 95% level of confidence.

(b) The result of part a tells us that if we take from the population repeated random samples, each of size

n ¼ 64, and construct the 95% confidence interval for each of the sample means, 95% of these con-
fidence intervals will contain the true unknown population mean. By assuming that our confidence
interval (based on the single random sample that we have actually taken) is one of these 95% confidence

intervals that includes �, we take the calculated risk of being wrong 5% of the time.

4.15 A random sample of 25 with a mean 80 is taken from a population of 1000 that is normally
distributed with a standard deviation of 30. Find (a) the 90%, (b) the 95%, and (c) the 99%
confidence intervals for the unknown population mean. (d) What does the difference in the
results to parts a, b, and c indicate?

� ¼ �XX � 1:64� �XX since the population is normally distributedðaÞ
� ¼ �XX � 1:64

�ffiffiffi
n

p since n < 0:05N and � is known

¼ 80� 1:64
30ffiffiffiffiffi
25

p

¼ 80� 1:64ð6Þ
¼ 80� 9:84
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Thus � is between 70.16 and 89.94 with 90% confidence.

� ¼ 80� 1:96ð6Þ ¼ 80� 11:76ðbÞ
Thus � is between 68.24 and 91.76 with 95% level of confidence.

� ¼ 80� 2:58ð6Þ ¼ 80� 15:48ðcÞ
Thus � is between 64.52 and 95.48 with 99% level of confidence.

(d) The results of parts a, b, and c indicate that as we increase the degree of confidence required, the size of

the confidence interval increases and the interval estimate becomes more vague (i.e., less precise).
However, the degree of confidence associated with a very narrow confidence interval may be so low
as to have little meaning. By convention, the most frequently used confidence interval is 95%, followed

by 90 and 99%.

4.16 A random sample of 36 students is taken out of the 500 students from a high school taking the
college entrance examintion. The mean test score for the sample is 380, and the standard
deviation for the entire population of 500 students is 40. Find the 95% confidence interval
for the unknown population mean score.

Since n > 30, the theoretical sampling distribution of the mean is approximately normal. Also, since
n > 0:05N

� �XX ¼ �ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
¼ 40ffiffiffiffiffi

36
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
500� 36

500� 1

r
ffi 40

6
ð0:96Þ ffi 6:4

� ¼ �XX � z� �XX ¼ 380� 1:96ð6:4Þ ¼ 380� 12:54Then

Thus � is between 367.46 and 392.54 with a 95% level of confidence.

4.17 A researcher wishes to estimate the mean weekly wage of the several thousands of workers
employed in a plant within plus or minus $20 and with a 99% degree of confidence. From
past experience, the researcher knows that the weekly wages of these workers are normally
distributed with a standard deviation of $40. What is the minimum sample size required?

z ¼
�XX � �

� �XX

z� �XX ¼ �XX � �

z
�ffiffiffi
n

p ¼ �XX � � (presumably, n < 0:05NÞ

2:58
40ffiffiffi

n
p ¼ 20

2:58
40

20
¼ ffiffiffi

n
p

n ¼ 5:162 ¼ 26:63; or 27 (rounded to the nearest higher integer)

4.18 (a) Solve Prob. 4.17 by first getting an expression for n and then substituting the values from the
problem into the expression obtained. (b) Why is the question of sample size important?
(c) What is the size of the total confidence interval in Prob. 4.17? (d) What would have to be
the sample size in Prob. 4.17 if we had not been told that the population was normally
distributed? (e) What would have happened if we had not been told the population standard
deviation?

(a) Starting with z�=
ffiffiffi
n

p ¼ �XX � � (see Prob. 4.17), we get z�=ð �XX � �Þ ¼ ffiffiffi
n

p
. Thus
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n ¼ z�
�XX � �

� �2

ð4:10Þ

Substituting the values from Prob. 4.17, we get

n ¼ ð2:58Þð40Þ
20

� �2
¼ 26:63, or 27 (the same as in Prob. 4.17)

(b) The question of sample size is important because if the sample is too small, we fail to achieve the

objectives of the analysis, and if the sample is too large, we waste resources because it is more expensive

to collect and evaluate a larger sample.

(c) The size of the total confidence interval in Prob. 4.17 is $40, or twice �XX � �. Since we are using �XX as an

estimate of �, �XX � � is sometimes referred to as the error of the estimate. Because in Prob. 4.17 we

want the error of the estimate to be ‘‘within plus or minus $20,’’ we get �XX � � ¼ �$20, or a range of $40

for the total confidence interval.

(d) If we had not been told that the population was normally distributed, we would have had to increase

the sample to at least 30 in Prob. 4.17 in order to justify the use of the normal distribution.

(e) If we had not been told the value of �, we could not have solved the problem. (Since we were deciding

on what sample size to take in Prob. 4.17, we could not possibly have known the s to use as an estimate

of �.) The only way we could estimate � (and thus approximate n) would be if we knew the range of

wages from the highest to the lowest. Since �3� includes 99.7% of all the area under the normal curve,

we could have equated 6� with the range of wages and thus estimate � (and solve the problem).

4.19 With reference to a binomial distribution, indicate the relationship between (a) � and ��pp, (b) p
and �pp, and (c) �, ��pp, and �̂��pp.

(a) � ¼ np ¼ mean number of successes in n trials, where p is the probability of success in any of the trials

(see Sec. 3.3). ��pp ¼ �=n ¼ p ¼ the proportion of successes of the sampling distribution of the propor-

tion.

(b) p ¼ the proportion of successes in the population, and �pp ¼ the proportion of successes in the sample (and

an unbiased estimator of p).

(c) � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp ¼ standard deviation of the number of successes in the population, and

��pp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
¼ standard error of p ð4:6aÞ

or ��pp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
when n > 0:05N ð4:6bÞ

�̂��pp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ppð1� �ppÞ

n

r
or �̂��pp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ppð1� �ppÞ

n

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
when n > 0:05N ð4:11a; bÞ

4.20 For a random sample of 100 workers in a plant employing 1200, 70 prefer providing for their own
retirement benefits over belonging to a company-sponsored plan. Find the 95% confidence
interval for the proportion of all the workers in the plant who prefer their own retirement plans.
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�pp ¼ 70

100
¼ 0:7

p ¼ �pp � z��pp since n > 30 and np > 5 and nð1� pÞ > 5

¼ �pp � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
since n > 0:05N

¼ 0:7� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:7Þð0:3Þ

100

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1200� 100

1200� 1

r
using �pp as an estimate for p

ffi 0:7� 1:96ð0:05Þð0:96Þ
ffi 0:7� 0:09

Thus p (the proportion of all the workers in the plant who prefer their own retirement plans) is between 0.61

and 0.79 with 95% degree of confidence.

4.21 A polling agency wants to estimate with 90% level of confidence the proportion of voters who
would vote for a particular candidate within �0:06 of the true (population) proportion of voters.
What is the minimum sample size required if other polls indicate that the proportion voting for
this candidate is 0.30?

z ¼ �pp � p

��pp

z��pp ¼ �pp � p

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
¼ �pp � p presumably n < 0:05N

1:64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:3Þð0:7Þ

n

r
¼ 0:06

2:6896ð0:3Þð0:7Þ
n

¼ 0:0036 by squaring both sides

n ¼ ð2:6896Þð0:3Þð0:7Þ
0:0036

ffi 156:89, or 157

4.22 (a) Solve Prob. 4.21 by first getting an expression for n and then substituting the values from the
problem into the expression obtained. (b) How could we still have solved Prob. 4.21 if we had
not been told that the proportion voting for the candidate was 0.30?

(a) Starting with z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p ¼ �pp � p (see Prob. 4.21), we get

z2pð1� pÞ
n

¼ ð�pp � pÞ2 and n ¼ z2pð1� pÞ
ð�pp � pÞ2 ð4:12Þ

Substituting the values from Prob. 4.21, we get

n ¼ ð1:64Þ2ð0:3Þð0:7Þ
0:062

¼ ð2:6896Þð0:21Þ
0:0036

ffi 156:89, or 157

(the same as in Prob. 4.21).

(b) If we had not been told that the proportion voting for the candidate was 0.30, we could estimate the
largest value of n to achieve the precision required no matter what the actual value of p is. This is done

by letting p ¼ 0:5 (so that 1� p ¼ 0:5 also). Since pð1� pÞ appears in the numerator of the formula for
n (see part a) and this product is greatest when p and 1� p both equal 0.5, the value of n is greatest.
Thus
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n ¼ z2pð1� pÞ
ð�pp � pÞ2 ¼ 1:642ð0:5Þð0:5Þ

0:062
¼ ð2:6896Þð0:25Þ

0:0036
ffi 186:8, or 187

(instead of n ¼ 157 when we were told that p ¼ 0:30). In this and similar cases, trying to get an actual
estimate of p does not greatly reduce the size of the required sample. When p is taken to be 0.5, the
formula for n can be simplified to

n ¼ z

2ð�pp � pÞ
� �2

ð4:13Þ

Using this, we get

n ¼ 1:64

2ð0:06Þ
� �2

¼ 1:64

0:12

� �2

ffi 186:8, or 187 (the same as above)

CONFIDENCE INTERVALS FOR THE MEAN USING THE t DISTRIBUTION

4.23 (a) Under what conditions can we not use the normal distribution but can use the t distribution
to find confidence intervals for the unknown population mean? (b) What is the relationship
between the t distribution and the standard normal distribution? (c) What is the relationship
between the z and t statistics for the theoretical sampling distribution of the mean? (d) What is
meant by degrees of freedom?

(a) When the population is normally distributed but the population standard deviation � is not known and
the sample size n is smaller than 30, we cannot use the normal distribution for determining confidence
intervals for the unknown population mean but we can use the Student t (or simply, the t) distribution.

(b) Like the standard normal distribution, the t distribution is bell-shaped and symmetrical about its zero

mean, but it is platykurtic (see Sec. 2.4) or flatter than the standard normal distribution so that more of
its area falls within the tails. While there is only one standard normal distribution, there is a different t
distribution for each sample size n. However, as n becomes larger, the t distribution approaches the
standard normal distribution until, when n � 30, they are approximately equal.

z ¼
�XX � � �XX

� �XX

¼
�XX � �

�=
ffiffiffi
n

pðcÞ

and is found in App. 3.

t ¼
�XX � �

s=
ffiffiffi
n

p ð4:14Þ

and is found in App. 5 for the degrees of freedom involved.

(d) Degrees of freedom (df) refer to the number of values we can choose freely. For example, if we deal
with a sample of 2 and we know that the sample mean for these two values is 10, we can freely assign the
value to only one of these two numbers. If one number is 8, the other number must be 12 (to get the

mean of 10). Then we say that we have n � 1 ¼ 2� 1 ¼ 1 df. Similarly, if n ¼ 10, this means that we
can freely assign a value to only 9 of the 10 values if we want to estimate the population mean, and so
we have n � 1 ¼ 10� 1 ¼ 9 df.

4.24 (a) How can you find the t value for 10% of the area in each tail for 9 df? (b) In what way are t
values interpreted differently from z values? (c) Find the t value for 5, 2.5, and 0.5% of the area
within each tail for 9 df. (d) Find the t value for 5, 2.5, and 0.5% of the area within each tail for
a sample size, n, that is very large or infinite. How do these t values compare with their
corresponding z values?

(a) The t value for 10% of the area within each tail is obtained by moving down the column headed 0.10 in
App. 5 to 9 df. This gives the t value of 1.383. By symmetry, 10% of the area under the t distribution
with 9 df also lies within the left tail, to the left of t ¼ �1:383.
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(b) The t values given in App. 5 refer to the areas (probabilities) within the tail(s) of the t distribution

indicated by the degrees of freedom. However, z values given in App. 3 refer to the areas (probabilities)
under the standard normal curve from the mean to the specified z values (compare Example 4 with
Example 8).

(c) Moving down the columns headed 0.05, 0.025, and 0.005 in App. 5 to 9 df, we get t values of 1.833,
2.262, and 3.250, respectively. Because of symmetry, 5, 2.5, and 0.5% of the area within the left tail of
the t distribution for 9 df lie to the left of t ¼ �1:833, t ¼ �2:262, and t ¼ �3:250, respectively.

(d) For sample sizes (and df) that are very large or infinite, t0:05 ¼ 1:645, t0:025 ¼ 1:960, and t0:005 ¼ 2:576
(from the last row of App. 5). These coincide with the corresponding z values in App. 3. Specifically,
t0:025 ¼ 1:960 means that 2.5% of the area under the t distribution with1 df lies within the right tail, to

the right of t ¼ 1:96. Similarly, z ¼ 1:96 gives (from App. 3) 0.4750 of the area under the standard
normal curve from � ¼ 0 to z ¼ 1:96. Thus, for df ¼ n � 1 ¼ 1, the t distribution is identical to the
standard normal curve.

4.25 A random sample of 25 with a mean of 80 and a standard deviation of 30 is taken from a
population of 1000 that is normally distributed. Find (a) the 90%, (b) the 95%, and (c) the
99% confidence intervals for the unknown population mean. (d) How do these results compare
with those in Prob. 4.15?

t0:05 ¼ 1:711 for 24 dfðaÞ
� ¼ �XX � t

sffiffiffi
n

p ¼ 80� 1:711
30ffiffiffiffiffi
25

p ¼ 80� 10:266

Thus � is between 69.734 and 90.266 with a 90% level of confidence.

t0:025 ¼ 2:064 for 24 dfðbÞ
� ¼ �XX � t

sffiffiffi
n

p ¼ 80� 2:064
30ffiffiffiffiffi
25

p ¼ 80� 12:384

Thus � is between 67.616 and 92.384 with a 95% level of confidence.

t0:005 ¼ 2:797 for 24 dfðcÞ
� ¼ �XX � t

sffiffiffi
n

p ¼ 80� 2:797
30ffiffiffiffiffi
25

p ¼ 80� 16:782

Thus � is between 63.218 and 96.782 with 99% degree of confidence.

(d) The 90, 95, and 99% confidence intervals, as anticipated, are larger in this problem, where the t
distribution was used, than in Prob. 4.15, where the standard normal distribution was used. However,

the differences are not great because when n ¼ 25, the t distribution and the standard normal distribu-
tion are fairly similar. Note that in this problem we had to use the t distribution because s was given
(and not �, as in Prob. 4.15).

4.26 A random sample of n ¼ 9 lightbulbs with a mean operating life of 300 h and a standard deviation
s of 45 h is picked from a large shipment of lightbulbs known to have a normally distributed
operating life. (a) Find the 90% confidence interval for the unknown mean operating life of the
entire shipment. (b) Sketch a figure for the results of part a.

t0:05 ¼ 1:860 for 8 dfðaÞ
� ¼ �XX � t

sffiffiffi
n

p ¼ 300� 1:860
45ffiffiffi
9

p ¼ 300� 27:9

Thus � is approximately between 272 and 328 h with a 90% level of confidence.
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(b) See Fig. 4-8.

4.27 A random sample of n ¼ 25 with �XX ¼ 80 is taken from a population of 1000 with � ¼ 30.
Suppose that we know that the population from which the sample is taken is not normally
distributed. (a) Find the 95% confidence interval for the unknown population mean.
(b) How does this result compare with the results of Probs. 4.15(b) and 4.25(b)?

(a) Since we know that the population from which the sample is taken is not normally distributed and
n < 30, we can use neither the normal nor the t distributions. We can apply Chebyshev’s theorem,
which states that regardless of the shape of the distribution, the proportion of observations (or area

falling within K standard deviations of the mean) is at least 1� ð1=K2Þ, for K � 1 (see Prob. 3.40).
Setting 1� ð1=K2Þ ¼ 0:95 and solving for K , we get

1

K2
¼ 1� 0:95

1 ¼ 0:05K2

K2 ¼ 20

K ffi 4:47

� ¼ �XX þ K
�ffiffiffi
n

p ¼ 80� 4:47
30ffiffiffiffiffi
25

p ffi 80� 26:82Then

Thus � is approximately between 53 and 107 with a 95% level of confidence.

(b) The 95% confidence interval using Chebyshev’s theorem is much wider than that found when we could

use the normal distribution [Prob. 4.15(b)] or the t distribution [Prob. 4.25(b)]. For this reason,
Chebyshev’s theorem is seldom used to find confidence intervals for the unknown population mean.
However, it represents the only possibility short of increasing the sample size to at least 30 (so that the

normal distribution can be used).

4.28 Under what conditions can we construct confidence intervals for the unknown population mean
from a random sample drawn from a population using (a) The normal distribution? (b) The t
distribution? (c) Chebyshev’s theorem?

(a) We can use the normal distribution (1) if the parent population is normal, n � 30, and � or s are

known; (2) if n � 30 (by invoking the central-limit theorem) and using s as an estimate for �; or (3) if
n < 30 but � is given and the population from which the random sample is taken is known to be
normally distributed.

(b) We can use the t distribution (for the given degrees of freedom) when n < 30 but � is not given and the
population from which the sample is taken is known to be normally distributed.

(c) If n < 30 but the population from which the random sample is taken is not known to be normally
distributed, theoretically we should use neither the normal distribution nor the t distribution. In such
cases, either we should use Chebyshev’s theorem or we should increase the size of the random sample to
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n � 30 (so as to be able to use the normal distribution). In reality, however, the t distribution is used

even in these cases.

Supplementary Problems

SAMPLING

4.29 (a) What does statistical inference refer to? (b) What are the names of the descriptive characteristics of
populations and samples? (c) How can representative samples be obtained?
Ans. (a) Estimation and hypothesis testing (b) Parameters and statistics (c) By random sampling

4.30 (a) Starting from the third column and tenth row of App. 4 and reading horizontally, obtain a sample of 5

from 99 elements. (b) Starting from the seventh column and first row of App. 4 and reading vertically,
obtain a sample of 10 from 400 elements.
Ans. (a) 31, 13, 33, 67, 68 (b) 24, 54, 290, 218, 385, 130, 24, 72, 313, 387

SAMPLING DISTRIBUTION OF THE MEAN

4.31 How can we obtain the theoretical sampling distribution of the mean from a population which is (a) Finite?
(b) Infinite?

Ans. (a) By taking all possible different samples of size n from the population and then finding the mean of
each sample (b) By (hypothetically) taking an infinite number of samples of size n from the infinite
population and then finding the mean of each sample

4.32 What is (a) the mean and (b) the standard error for a theoretical sampling distribution of the mean?
Ans. (a) � �XX ¼ � where � is the mean of the parent population (b) � �XX ¼ �=

ffiffiffi
n

p
, where � is the standard

deviation of the parent population and n is the sample size; for finite populations of size N where n > 0:05N,
� �XX ¼ ð�= ffiffiffi

n
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � nÞ=ðN � 1Þp

4.33 For a population of 1000 items, � ¼ 50 and � ¼ 10. What is the mean and standard error of the theoretical
sampling distribution of the mean for sample sizes of (a) 25 and (b) 81?
Ans. (a) � �XX ¼ 50 units and � �XX ¼ 2 (b) � �XX ¼ 50 units and � �XX ¼ 1:07

4.34 What is the shape of the theoretical sampling distribution of the mean for samples of (a) 10 if the parent
population is normal? (b) 50 if the parent population is not normal? (c) On what was the answer to part b

based?
Ans. (a) Nomal (b) Approximately normal (c) The central-limit theorem

4.35 What is the statistic for (a) Random variable X? (b) The theoretical sampling distribution of �XX?
Ans. (a) z ¼ ðX � �Þ=� ðbÞ z ¼ ð �XX � �Þ=� �XX

4.36 What is the probability of �XX lying between 49 and 50 for a random sample of 36 from a population with
� ¼ 48 and � ¼ 12?

Ans. 0.1498, or 14.98%

4.37 What is the probability that the mean for a random sample of 144 accounts receivable drawn from a

population of 2000 accounts with a mean of $10,000 and a standard deviation of $4000 will be between
$9500 and $10,500?
Ans. 0.8812, or 88.12%
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ESTIMATION USING THE NORMAL DISTRIBUTION

4.38 What are unbiased point estimators of �, �, and p, respectively?

Ans. �XX , s [as defined in Eqs. (2.10b) and (2.11b)], and �pp

4.39 Using the standardized normal distribution, state for � (a) the 90%, (b) the 95%, and (c) the 99%
confidence intervals.
Ans. (a) Pð �XX � 1:64� �XX < � < �XX þ 1:64� �XX Þ ¼ 0:90 ðbÞ Pð �XX � 1:96� �XX < � < �XX þ 1:96� �XX Þ ¼ 0:95 (c)

Pð �XX � 2:58� �XX < � < �XX þ 2:58� �XX Þ ¼ 0:99

4.40 A random sample of 144 with a mean of 300 and a standard deviation of 100 is taken from a population of
5000. Find an interval estimate for � such that we are 90% confident that the interval includes �.
Ans. 286.34 to 313.66

4.41 For Prob. 4.40, find (a) the 95% and (b) the 99% confidence intervals. (c) What do the answers to parts

a and b indicate?
Ans. (a) 283.67 to 316.33 (b) 278.51 to 321.49 (c) The greater is the degree of confidence, the larger is the
confidence interval

4.42 A random sample of 400 is taken out of the more than 100,000 army recruits in a particular year. The average
weight for the sample of army recruits is 170 lb, and the standard deviation of the entire population of army

recruits is 40 lb. Find the 90% confidence interval for the mean weight of the population of army recruits.
Ans. 166.7 to 173.3 lb

4.43 A firm wishes to estimate the mean number of operating hours of a particular type of lightbulb within 10
operating hours (plus or minus) and with 95% confidence. On the basis of previous knowledge with this

type of lightbulb, the firm knows � ¼ 30 h. How large a sample would the firm take?
Ans. 35

4.44 (a) Write down the expression for n to solve Prob. 4.43. (b) What is the size of the total confidence interval
in Prob. 4.43? (c) What would have happened in Prob. 4.43 if n < 30?

Ans. (a) n ¼ ½z�=ð �XX � �Þ�2 (b) 20 operating hours (c) n would have had to be increased to 30 to justify
the use of the normal distribution

4.45 For the binomial distribution, write the formula for (a) � and �, (b) ��pp and �̂��pp when n < 0:05N, and
(c) �̂��pp when n > 0:05N.

Ans. (a) � ¼ np and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

(b) ��pp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
and �̂��pp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ppð1� �ppÞ=n
p

(c) �̂��pp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ppð1� �ppÞ=n

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � nÞ=ðN � 1Þp

4.46 For a random sample of 36 graduate students in economics in a graduate economics program with 880
students, 8 students have an undergraduate degree in mathematics. Find the proportion of all graduate
students at this university with an undergraduate major in mathematics at the 90% confidence level.

Ans. 0.11 to 0.33

4.47 A manufacturer of lightbulbs wants to estimate the proportion of defective lightbulbs within �0:1 with a
95% degree of confidence. What is the minimum sample size required if previous experience indicates that
the proportion of defective lightbulbs produced is 0.2.

Ans. 62

4.48 (a) Write down the expression for n to solve Prob. 4.47. (b) How could we still have solved Prob. 4.47 if the
manufacturer did not know that p ¼ 0:2?
Ans. (a) n ¼ z2pð1� pÞ=ð�pp � pÞ2 ðbÞ By letting p ¼ 0:5 and n ¼ 97
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CONFIDENCE INTERVALS FOR THE MEAN USING THE t DISTRIBUTION

4.49 Find the t value for 29 df for the following areas falling within the (right) tail of the t distribution: (a) 10%,

(b) 5%, (c) 2.5%, and (d) 0.05%.
Ans. (a) t0:10 ¼ 1:311 ðbÞ t0:05 ¼ 1:699 ðcÞ t0:025 ¼ 2:045 ðdÞ t0:005 ¼ 2:756

4.50 Find the z value for the following areas falling from the mean to the z value under the standard normal
curve: (a) z ¼ 40%; ðbÞ z ¼ 45%; ðcÞ z ¼ 47:5%, and ðdÞ z ¼ 49:5% ðeÞ How do these z
values compare with the corresponding t values found in Prob. 4.49?

Ans. (a) z ¼ 1:28 ðbÞ z ¼ 1:65 ðcÞ z ¼ 1:96 ðdÞ z ¼ 2:58 ðeÞ Corresponding z and t values
are very similar (compare z ¼ 1:28 to t ¼ 1:311, z ¼ 1:65 to t ¼ 1:699, z ¼ 1:96 to t ¼ 2:045, and z ¼ 2:58 to
t ¼ 2:756)

4.51 A random sample of n ¼ 16 with �XX ¼ 50 and s ¼ 10 is taken from a very large population that is normally

distributed. (a) Find the 95% confidence interval for the unknown population mean. (b) How would the
answer have differed if � ¼ 10?
Ans. (a) 44.67 to 55.33 (using the t distribution with 15 df) (b) 45.1 to 54.9 (using the standard normal

distribution)

4.52 On a particular test for a very large statistics class, a random sample of n ¼ 4 students has a mean grade
�XX ¼ 75 and s ¼ 8. The grades for the entire class are known to be normally distributed. For the unknown
population mean of the grades, find (a) the 95% confidence interval and (b) the 99% confidence interval.
Ans. (a) Approximately from 62 to 88 (b) Approximately from 52 to 98

4.53 A random sample of n ¼ 16 with �XX ¼ 50 and s ¼ 10 is taken from a very large population that is not

normally distrributed. (a) Find the 95% confidence interval for the unknown population mean.
(b) How is the answer in part a different from those of Prob. 4.51?
Ans. (a) 39 to 61 (using Chebyshev’s theorem and s as a rough estimate of �) (b) The 95% confidence

interval here is much wider than those found in Prob. 4.51

4.54 Indicate which distribution to use in order to find confidence intervals for the unknown population mean

from a random sample taken from the population in the following cases: (a) n ¼ 36 and s ¼ 10, (b) n ¼ 20
and s ¼ 10 and the population is normally distributed, and (c) n ¼ 20 and s ¼ 10 and the population is not
normally distributed.

Ans. (a) Normal distribution (invoking the central limit theorem and using s as an estimate of �) (b) The t
distribution with 19 df (c) Chebyshev’s theorem
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Statistical Inference:
Testing Hypotheses

5.1 TESTING HYPOTHESES

Testing hypotheses about population characteristics (such as � and �) is another fundamental aspect
of statistical inference and statistical analysis. In testing a hypothesis, we start by making an assumption
with regard to an unknown population characteristic. We then take a random sample from the
population, and on the basis of the corresponding sample characteristic, we either accept or reject the
hypothesis with a particular degree of confidence.

We can make two types of errors in testing a hypothesis. First, on the basis of the sample
information, we could reject a hypothesis that is in fact true. This is called a type I error. Second,
we could accept a false hypothesis and make a type II error.

We can control or determine the probability of making a type I error, �. However, by reducing �,
we will have to accept a greater probability of making a type II error, �, unless the sample size is
increased. � is called the level of significance, and 1� � is the level of confidence of the test.

EXAMPLE 1. Suppose that a firm producing lightbulbs wants to know if it can claim that its lightbulbs last 1000

burning hours, �. To do this, the firm can take a random sample of, say, 100 bulbs and find their average lifetime
X . The smaller the difference is between X and �, the more likely is acceptance of the hypothesis that � ¼ 1000
burning hours at a specified level of significance, �. By setting � at 5%, the firm accepts the calculated risk of

rejecting a true hypothesis 5% of the time. By setting � at 1%, the firm would face a greater probability of accepting
a false hypothesis, �.

5.2 TESTING HYPOTHESES ABOUT THE POPULATION MEAN AND PROPORTION

The formal steps in testing hypotheses about the population mean (or proportion) are as follows:

1. Assume that � equals some hypothetical value �0. This is represented by H0: � ¼ �0 and is
called the null hypothesis. The alternative hypotheses are then H1: � 6¼ �0 (read ‘‘� is not equal
to �0’’), H1: � > �0, or H1: � < �0, depending on the problem.

2. Decide on the level of significance of the test (usually 5%, but sometimes 1%) and define the
acceptance region and rejection region for the test using the appropriate distribution.

3. Take a random sample from the population and compute X . If X (in standard deviation units)
falls in the acceptance region, accept H0; otherwise, reject H0 in favor of H1.
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EXAMPLE 2. Suppose that the firm in Example 1 wants to test whether it can claim that the lightbulbs it produces

last 1000 burning hours. The firm takes a random sample of n ¼ 100 of its lightbulbs and finds that the sample
mean X ¼ 980 h and the sample standard deviation s ¼ 80 h. If the firm wants to conduct the test at the 5% level of
significance, it should proceed as follows. Since � could be equal to, larger than, or smaller than 1000, the firm
should set the null and alternative hypotheses as

H0: � ¼ 1000 H1: � 6¼ 1000

Since n > 30, the sampling distribution of the mean is approximately normal (and we can use s as an estimate of �).
The acceptance region of the test at the 5% level of significance is within �1:96 under the standard normal curve and
the rejection region is outside (see Fig. 5-1). Since the rejection region is in both tails, we have a two-tail test. The

third step is to find the z value corresponding to X :

z ¼ X � �0

�X

¼ X � �0

�=
ffiffiffi
n

p ¼ X � �0

s=
ffiffiffi
n

p ¼ 980� 1000

80=
ffiffiffiffiffiffiffiffi
100

p ¼ �20
8

¼ �2:5

Since the calculated z value falls in the rejection region, the firm should reject H0, that � ¼ 1000 and accept H1, that

� 6¼ 1000, at the 5% level of significance.

EXAMPLE 3. A firm wants to know with a 95% level of confidence if it can claim that the boxes of detergent it
sells contain more than 500 g (about 1.1 lb) of detergent. From past experience the firm knows that the amount of
detergent in the boxes is normally distributed. The firm takes a random sample of n ¼ 25 and finds that X ¼ 520 g

and s ¼ 75 g. Since the firm is interested in testing if � > 500 g, we have

H0: � ¼ 500 H1: � > 500

Since the population distribution is normal but n < 30 and � is not known, we must use the t distribution (with
n � 1 ¼ 24 degrees of freedom) to define the critical, or rejection, region of the test at the 5% level of significance.

This is found from App. 5 (see Sec. 4.4) and is given in Fig. 5-2. This is a right-tail test. Finally, since

t ¼ X � �

s=
ffiffiffi
n

p ¼ 520� 500

75=
ffiffiffiffiffi
25

p ¼ 20

15
¼ 1:33

and it falls within the acceptance region, we accept H0, that � ¼ 500 g, at the 5% level of significance (or with a 95%
level of confidence).

EXAMPLE 4. In the past, 60% of the students entering a specialized college program received their degrees within

4 years. For the 1980 entering class of 36, only 15 received their degrees by 1984. To test if the 1980 class
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Fig. 5-2



performed worse than previous classes, we first note that this problem involves the binomial distribution. However,

since n > 30 and np and nð1� pÞ > 5, we can use the normal distribution (see Sec. 3.5), with p (the proportion of
successes) ¼ 0.60. For the 1980 class, the proportion of successes p ¼ 15=36 ¼ 0:42 and the standard error
�p ¼ pð1� pÞ=n ¼ ð0:6Þð0:4Þ=36 ¼ 0:08. Since we would like to test if the 1980 class performed worse, we have

H0: p ¼ 0:60 H1: p < 0:60

z ¼ p � p

�p

¼ 0:42� 0:60

0:08
¼ �2:25Then

Since this is a left-tail test and 5% of the area under the standard normal curve lies to the left of �1:64 (see App. 3),
we reject H0 and conclude, at the 5% level of significance, that the 1980 class did perform worse than previous
classes. However, if � ¼ 1%, the critical region would be to the left of z ¼ �2:33 and we would accept H0.

Problem 5.5 shows how to define the acceptance and rejection regions in the units of the problem instead of in
standard deviation units. Problems 5.10 and 5.11 show how to find the operating-characteristic curve (OC curve),
which gives the value of � for various values of � > �0. Problem 5.12 then shows how to find the power curve,

which gives the value of ð1� �Þ for various values of � > �0.

5.3 TESTING HYPOTHESES FOR DIFFERENCES BETWEEN TWO MEANS

OR PROPORTIONS

In many decisionmaking situations, it is important to determine whether the means or proportions
of two populations are the same or different. To do this, we take a random sample from each
population and only if the difference in the sample means or proportions can be attributed to chance
do we accept the hypothesis that the two populations have equal means or proportions.

If the two populations are normally distributed (or if both n1 and n2 
 30) and independent, then the
sampling distribution of the difference between the sample means or proportions is also normal or
approximately normal with standard error given by

�X1�X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21
n1

þ �22
n2

s
to test if �1 ¼ �2 ð5:1Þ

and �p1�p2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n1
þ pð1� pÞ

n2

s
to test if p1 ¼ p2 ð5:2Þ

where p ¼ n1p1 þ n2p2
n1 þ n2

(a weighted average of p1 and p2Þ ð5:3Þ

EXAMPLE 5. A manager wants to determine at the 5% level of significance if the hourly wages for semiskilled
workers are the same in two cities. In order to do this, she takes a random sample of hourly wages in both cities and
finds that X1 ¼ $6:00, X2 ¼ $5:40, s1 ¼ $2:00, and s2 ¼ $1:80 for n1 ¼ 40 and n2 ¼ 54. The hypotheses to be tested

are

H0: �1 ¼ �2 or H0: �1 � �2 ¼ 0

H1: �1 ¼ �2 or H1: �1 � �2 6¼ 0

This is a two-tail test and the acceptance region for H0 lies within �1:96 under the standard normal curve (see Fig.
5-1).

�X1�X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21
n1

þ �22
n2

s
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:002

40
þ 1:802

54

s
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:1þ 0:06
p ¼

ffiffiffiffiffiffiffiffiffi
0:16

p
¼ 0:4

z ¼ ðX1 � X2Þ � ð�1 � �2Þ
�X1�X2

¼ ðX1 � X2Þ � 0

�X1�X2

¼ 0:6

0:4
¼ 1:5

CHAP. 5] STATISTICAL INFERENCE: TESTING HYPOTHESES 89



Since the calculated z value falls within the acceptance region, we accept H0, that �1 ¼ �2, at the 5% level of

significance. However, if the two populations were known to be normally distributed but both n1 and n2 were less
than 30 and it were assumed that �21 ¼ �22 (but unknown), then the sampling distribution of the difference between
the means would have a t distribution with n1 þ n2 � 2 degrees of freedom (see Prob. 5.15).

EXAMPLE 6. A firm wants to determine at the 1% level of significance if the proportion of acceptable electronic
components of a foreign supplier, p1, is greater than for a domestic supplier, p2. The firm takes a random sample
from the shipment of each supplier and finds that p1 ¼ 0:9 and p2 ¼ 0:7 for n1 ¼ 100 and n2 ¼ 80. The firm sets up

the following hypotheses:

H0: p1 ¼ p2 H1: p1 > p2

This is a right-tail test and the rejection region for H0 lies to the right of 2.33 under the standard normal curve.

p ¼ n1p1 þ n2p2
n1 þ n2

¼ ð100Þð0:9Þ þ ð80Þð0:7Þ
180

¼ 146

180
¼ 0:8

�p1�p2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n1
þ pð1� pÞ

n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:8Þð0:2Þ

100
þ ð0:8Þð0:2Þ

80

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0016þ 0:002
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0036

p
¼ 0:06

Since z ¼ ðp1 � p2Þ � ðp1 � p2Þ
�p1�p2

¼ 0:2

0:06
¼ 3:33

we reject H0 and accept the hypothesis that p1 > p2 at the 1% level of significance.

5.4 CHI-SQUARE TEST OF GOODNESS OF FIT AND INDEPENDENCE

The 	2 (chi-square) distribution is used to test whether (1) the observed frequencies differ ‘‘signifi-
cantly’’ from expected frequencies when more than two outcomes are possible; (2) the sampled distribu-
tion is binomial, normal, or other; and (3) two variables are independent.

The 	2 statistic calculated from the sample data is given by

	2 ¼
X ð f0 � feÞ2

fe

ð5:4Þ

where f0 denotes the frequencies and fe, the expected frequencies.
If the calculated 	2 is greater than the tabular value of 	2 at the specified level of significance and

degrees of freedom (from App. 6), the null hypothesis H0 is rejected in favor of the alternative hypothesis
H1.

The degrees of freedom for tests of goodness of fit (1 and 2) are given by

df ¼ c � m � 1 ð5:5Þ
where c represents the categories and m, the number of population parameters estimated from sample
statistics.

The degrees of freedom for tests of independence, or contingency-table tests (3), are given by

df ¼ ðr � 1Þðc � 1Þ ð5:6Þ
where r indicates the number of rows of the contingency table and c, the number of columns.

The expected frequency for each cell of a contingency table is

fe ¼
P

r f0
P

c f0
n

ð5:7Þ

where
P

r and
P

c indicate sum over row and column, respectively, of the observed cell and n represents
the overall sample size.

EXAMPLE 7. In the past, 30% of the TVs sold by a store were small-screen, 40% were medium, and 30% were
large. In order to determine the inventory to maintain of each type of TV set, the manager takes a random sample
of 100 recent purchases and finds that 20 were small-screen, 40 were medium, and 40 were large. To test at the 5%
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level of significance the hypothesis that the past pattern of sales H0 still prevails, the manager proceeds as follows

(see Table 5.1):

	2 ¼
X ð f0 � feÞ2

fe

¼ ð20� 30Þ2
30

þ ð40� 40Þ2
40

þ ð40� 30Þ2
30

¼ �102
30

þ 02

40
þ 102

40
¼ 100

30
þ 100

40
ffi 5:83

df ¼ c � m � 1 ¼ 3� 0� 1 ¼ 2

Because no population parameter was estimated, m ¼ 0. df ¼ 2 means that if we know the value of 2 of the 3 classes
(and the total), the third class is not ‘‘free’’ to vary. Since the calculated value of 	2 ¼ 5:83 is smaller than the tabular
value of 	2 ¼ 5:99 with � ¼ 0:05 and df ¼ 2 (see App. 6), we cannot reject H0, that the past sales pattern still prevails.

When the expected frequency of a category is less than 5, the category should be combined with an adjacent one (see
Prob. 5.18). For testing if the sampled distribution is binomial or normal, see Probs. 5.19 and 5.20.

EXAMPLE 8. A car dealer has collected the data shown in Table 5.2 on the number of foreign and domestic cars

purchased by customers under 30 years old and 30 and above. To test at the 1% level of significance if the type of
car bought (foreign or domestic) is independent of the age of the buyer, the dealer constructs a table of expected
frequencies (Table 5.3). For the first cell in row 1 and column 1, we obtain

fe ¼
P

r f0
P

c f0
n

¼ ð70Þð50Þ
170

ffi 21

The other three expected frequencies can be obtained by subtraction from row and column totals. Thus
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Table 5.1 Observed and Expected Purchases of TV Sets by Screen Size

Screen Size

TotalSmall Medium Large

Observed pattern f0 20 40 40 100

Past pattern fe 30 40 30 100

Table 5.2 Contingency Table for Car Buyers

Age

Type of Car

TotalForeign Domestic

< 30 30 40 70


 30 20 80 100

Total 50 120 170

Table 5.3 Table of Expected Frequencies for the Observed

Frequencies in Table 5.2

Age

Type of Car

TotalForeign Domestic

< 30 21 49 70


 30 29 71 100

Total 50 120 170



df ¼ ðr � 1Þðc � 1Þ ¼ ð2� 1Þð2� 1Þ ¼ 1

	2 ¼
X ð f0 � feÞ2

fe

¼ ð30� 21Þ2
21

þ ð40� 49Þ2
49

þ ð20� 29Þ2
29

þ ð80� 71Þ2
71

¼ 9:44

Since the calculated value of 	2 exceeds the tabular value of 	2 with � ¼ 0:01 and df ¼ 1 (see App. 6), we reject H0,
that age is not a factor in the type of car bought (and conclude that younger people seem more likely to buy foreign

cars). When df ¼ 1 but n < 50, a correction for continuity is made by using ðj f0 � fej � 0:5Þ2 in the numerator of Eq.
(5.4) (see Prob. 5.22).

5.5 ANALYSIS OF VARIANCE

The analysis of variance is used to test the null hypothesis that the means of two or more populations
are equal versus the alternative that at least one of the means is different. The populations are assumed
to be independently normally distributed, and of equal variance. The steps are as follows:

1. Estimate the population variance from the variance between the sample means (MSA in Table
5.4)

2. Estimate the population variance from the variance within the samples (MSE in Table 5.4)

3. Compute the F ratio (MSA/MSE in Table 5.4):

F ¼ variance between the sample means

variance within the samples

4. If the calculated F ratio is greater than the tabular value of F at the specified level of significance
and degrees of freedom (from App. 7), the null hypothesis, H0, of equal population means is
rejected in favor of the alternative hypothesis, H1. The preceding steps are formalized in Table
5.4.

where XJ ¼ mean of sample J composed of r observations ¼
X

i
XiJ

� �
=r ð5:8Þ

X ¼ grand mean of all c samples ¼
X

i

X
J

XiJ

� �
=rc ð5:9Þ

SSA ¼ sum of squares explained by factor A ¼ r
X

ðXJ � XÞ2 ð5:10Þ
SSE ¼ sum of squares of error unexplained by factor A ¼

XX
ðXiJ � XJÞ2 ð5:11Þ

SST ¼ total sum of squares ¼ SSAþ SSE ¼
XX

ðXiJ � XÞ2 ð5:12Þ

Appendix 7 gives F values for � ¼ 0:05 (the top number) and � ¼ 0:01 (the bottom or boldface
number) for each pair of degrees of freedom:
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Table 5.4 Analysis of Variance Table

Source of Variation Sum of Squares

Degrees

of
Freedom

Mean Square F Ratio

Between the means
(explained by
factor A)

SSA ¼ r
X

ðXJ � XÞ2 c � 1 MSA ¼ SSA

c � 1

MSA

MSE

Within the samples

(error or unexplained)
SSE ¼

XX
ðXiJ � XJ Þ2 ðr � 1Þc MSE ¼ SSE

ðr � 1Þc —

Total SST ¼
XX

ðXiJ � XÞ2 ¼ SSAþ SSE rc � 1 — —



df of numerator ¼ c � 1 ð5:13Þ
where c is the number of samples and

df of denominator ¼ ðr � 1Þc ð5:14Þ
where r is the number of observations in each sample.

EXAMPLE 9. A company sells identical soap in three different wrappings at the same price. The sales for 5

months are given in Table 5.5. Sales data are normally distributed with equal variance. To test at the 5% level of

significance whether the mean soap sales for each wrapping is equal or not (i.e., H0: �1 ¼ �2 ¼ �3 versus H1: �1, �2,
and �3 are not equal), the company proceeds as follows:

X1 ¼
410

5
¼ 82; X2 ¼

400

5
¼ 80; X3 ¼

435

5
¼ 87; X ¼ 410þ 400þ 435

ð5Þð3Þ ¼ 83

SSA ¼ 5½ð82� 83Þ2 þ ð80� 83Þ2 þ ð87� 83Þ2� ¼ 130

SSE ¼ ð87� 82Þ2 þ ð83� 82Þ2 þ ð79� 82Þ2 þ ð81� 82Þ2 þ ð80� 82Þ2 þ ð78� 80Þ2 þ ð81� 80Þ2 þ ð79� 80Þ2
þ ð82� 80Þ2 þ ð80� 80Þ2 þ ð90� 87Þ2 þ ð91� 87Þ2 þ ð84� 87Þ2 þ ð82� 87Þ2 þ ð88� 87Þ2

¼ 110

SST ¼ ð87� 83Þ2 þ ð83� 83Þ2 þ � � � þ ð88� 83Þ2 ¼ SSAþ SSE ¼ 240

The preceding data are used to construct Table 5.6 for the analysis of variance (ANOVA).

Since the calculated value of F=7.09 (from Table 5.6) exceeds the tabular value of F ¼ 3:88 for � ¼ 0:05 and 2 and
12 degrees of freedom (see App. 7), we reject H0, that the mean soap sales for each wrapping is the same, and accept

H1, that it is not the same. The preceding procedure is referred to as one-way, or one-factor, analysis of variance.

For two-way analysis of variance, see Probs. 5.26 and 5.27.
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Table 5.5 Five-Month Sales of Soap in Wrappings 1, 2, and 3

Wrapping 1 Wrapping 2 Wrapping 3

87 78 90

83 81 91

79 79 84

81 82 82

80 80 88

410 400 435

Table 5.6 ANOVA Table for Soap Wrappings

Variation

Sum of

Squares

Degrees of

Freedom Mean Square F Ratio

Explained by

wrappings
(between columns)

SSA ¼ 130 c � 1 ¼ 2 MSA ¼ 130=2 ¼ 65

MSA=MSE ¼ 65=9:17

¼ 7:09Error or
unexplained

(within columns)

SSE ¼ 110 ðr � 1Þc ¼ 12 MSE ¼ 110=12 ¼ 9:17

Total SST ¼ 240 rc � 1 ¼ 14 —



5.6 NONPARAMETRIC TESTING

Nonparametric testing is used when one or more of the assumptions of the previous tests have not
been met. Usually the assumption in question is the normality of the distribution (distribution of the
data is unknown or the sample size is small). Nonparametric tests are often based on counting
techniques that are easier to calculate and may be used for ordinal as well as quantitative data.
These tests are inefficient if the distribution is known or the sample is large enough for a parametric test.

To test a hypothesis about the median of a population (analogous to test of population mean), the
Wilcoxon signed rank test may be used:

1. For each observation, calculate the difference between the value and the hypothesized median.

2. Rank values according to the distance from the median, dropping zero differences.

3. The test statistic, W ¼ the sum of the ranks of the positive differences. This is compared to the
critical values in App. 9.

The signed rank test can be adjusted slightly to test equality of medians of more than two samples
(analogous to ANOVA, but no assumption of normality) in the Kruskal-Wallis test:

1. Rank all data as if from a single sample.

2. Add ranks of each sample,
P

Rj .

3. The test statistic

H ¼ 12

nðn þ 1Þ
ðPR2

1Þ
n1

þ ðPR2
2Þ

n2
þ � � � þ ðPR2

cÞ
nc

 !
� 3ðn þ 1Þ

If all sample sizes are at least 5, chi-square tables (App. 6) can be used with df ¼ c � 1.

For a nonparametric test of goodness of fit, the Kolmogorov-Smirnov test compares cumulative
probabilities of the data to a hypothesized distribution.

1. Arrange data from smallest value to largest value.

2. The proportion of data below each value is compared with cumulative probability below that
value from the hypothesized distribution.

3. The test statistic is the maximum difference found in step 2, which can be compared to the
critical value in App. 10.

EXAMPLE 10. A corporation has 8 subsidiaries with profits of 20, 35, 10, �5, �50, 5, 0, 13, respectively (in
M$), and wants to know with 95% confidence if the median firm is making profit of 5 M$. Since we have a
small sample (<30) and no assumption of normality, a t test cannot be used. We set the null and alternative

hypotheses as

H0: Med ¼ 5 H1: Med 6¼ 5

The steps for the signed rank test are listed in Table 5.7.

Since 4 < W < 32, we accept H0: Med ¼ 5 at the 5% significance level.

EXAMPLE 11. A store owner wants to determine at the 5% significance level whether sales are normally dis-

tributed with mean of 10 units and standard deviation of 3 units. Sales for a week are observed of 2, 8, 4, 18, 9, 11,
and 13 units.

The small sample precludes the use of the chi-square goodness-of-fit test but the nonparametric Kolmogorov-
Smirnov test may be used to test H0: normally distributed � ¼ 10, � ¼ 3; H1: not normally distributed � ¼ 10,
� ¼ 3:
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Ordered data values 2 4 8 9 11 13 18

Proportion below, % 14.29 28.57 42.86 57.14 71.43 85.71 100

Normal cumulative probability, % 0.38 2.27 25.24 36.94 63.05 84.13 99.61

Difference, % 13.91 26.3 17.62 20.20 8.38 1.58 0.39

The maximum difference is 26.30% (0.2630), which is less than the critical value of 0.410; therefore we accept the null
hypothesis that sales are normally distributed with a mean of 10 and standard deviation of 3.

Solved Problems

TESTING HYPOTHESES

5.1 (a) What is meant by testing a hypothesis? What is the general procedure? (b) What is meant
by type I and type II errors? (c) What is meant by the level of significance? The level of
confidence?

(a) Testing a hypothesis refers to the acceptance or rejection of an assumption made about an unknown
characteristic of a population, such as a parameter or the shape or form of the population distribution.
The first step in testing a hypothesis is to make an assumption about an unknown population

characteristic. A random sample is then taken from the population, and on the basis of the
corresponding sample characteristic, we accept or reject the hypothesis with a particular degree of
confidence.

(b) Type I error refers to the rejection of a true hypothesis. Type II error refers to the acceptance of a false
hypothesis. In statistical analysis, we can control or determine the probability of type I or type II

errors. The probability of type I error is usually given by the Greek letter alpha (�), while the
probability of type II error is represented by a beta (�). By specifying a smaller type I error, we
increase the probability of a type II error. The only way to reduce both � and � is to increase the

sample size.

(c) The level of significance refers to the probability of rejecting a true hypothesis or committing type I error

(�). The level of confidence (given by 1� �) refers to the probability of accepting a true hypothesis. In
statistical work, the level of significance, �, is usually set at 5%, so that the level of confidence, 1� �, is
95%. Sometimes � ¼ 1% (so that 1� � ¼ 99%).

CHAP. 5] STATISTICAL INFERENCE: TESTING HYPOTHESES 95

Table 5.7 Signed Rank Test

X � 5 Ordered Rank
Rank for Positive

Differences

15 0 N/A

30 5 1.5 (tie) 1.5

5 �5 1.5 (tie)

�10 8 3 3

�55 �10 4

0 15 5 5

�5 30 6 6

8 �55 7

W ¼ 15:5



5.2 (a) How can we test the hypothesis that a particular coin is balanced? (b) What is the meaning
of type I and type II error in this case?

(a) To test the hypothesis that a particular coin is balanced, we can toss the coin a number of times and
record the number of heads and tails. For example, we might toss the coin 20 times and get 9 heads

instead of the expected 10. This, however, does not necessarily mean that the coin is unbalanced.
Indeed, since 9 is ‘‘so close’’ to 10, we are ‘‘likely’’ to be dealing with a balanced coin. If, however, we
get only 4 heads in 20 times, we are likely to be dealing with an unbalanced coin because the probability

of getting 4 heads (and 16 tails) in 20 times with a balanced coin is very small indeed (see Sec. 3.3).

(b) Even though 9 heads in 20 tosses indicates in all likelihood a balanced coin, there is always a small
probability that the coin is unbalanced. By accepting the hypothesis that the coin is balanced, we could
thus be making a type I error. However, 4 heads in 20 tosses is very likely to mean an unbalanced coin.
But by accepting the hypothesis that the coin is unbalanced, we must face the small probability that the

coin is instead balanced, which would mean that we made a type II error. In testing a hypothesis, the
investigator can set the probability of rejecting a true hypothesis, �, as small as desired. However, by
increasing the ‘‘region of acceptance’’ of the hypothesis, the investigator would necessarily increase the

probability of accepting a false hypothesis or of making a type II error, �.

5.3 How can a producer of steel cables test that the breaking strength of the cables produced is
(a) 5000 lb? (b) Greater than 5000 lb? (c) Less than 5000 lb?

(a) The producer can test if the breaking strength of the steel cables produced is 5000 lb by taking a random
sample of the cables and finding their mean breaking strength X. The closer X is to the hypothesized

� ¼ 5000 lb, the more likely the producer is to accept the hypothesis for the specified level of signifi-
cance �.

(b) The producer may instead by interested in testing if the breaking strength of the cable exceeds 5000 lb
(i.e., � > 5000 lb). To do this, once again, the producer takes a random sample of the cable produced

and tests the mean breaking strength X . The more X exceeds the hypothesized � ¼ 5000 lb, the more
likely the producer is to accept the hypothesis at the specified level of significance, �.

(c) To test that the breaking strength of the cable does not exceed 5000 lb, the producer finds the mean
breaking strength of a random sample of the steel cables. The more X falls short of 5000 lb, the more

likely the producer is to accept the hypothesis that the breaking strength of the steel cables is less than
the 5000 lb (i.e., � < 5000 lb), with a particular degree of confidence 1� �.

TESTING HYPOTHESES ABOUT THE POPULATION MEAN AND PROPORTION

5.4 A producer of steel cables wants to test if the steel cables it produces have a breaking strength of
5000 lb. A breaking strength of less than 5000 lb would not be adequate, and to produce steel
cables with breaking strengths of more than 5000 lb would unnecessarily increase production
costs. The producer takes a random sample of 64 pieces and finds that the average breaking
strength is 5100 lb and the sample standard deviation is 480 lb. Should the producer accept the
hypothesis that its steel cable has a breaking strength of 5000 lb at the 5% level of significance?

Since � could be equal to, greater than, or smaller than 5000 lb, we set up the null and alternative
hypotheses as follows:

H0: � ¼ 5000 lb H1: � 6¼ 5000 lb

Since n > 30, the sampling distribution of the mean is approximately normal (and we can use s as an estimate
of �). The acceptance region of the test at the 5% level of significance is within �1:96 under the standard
normal curve and the rejection or critical region is outside (see Fig. 5-3). Since the rejection region is in both

tails, we have a two-tail test. The third step is to find the z value corresponding to X:

z ¼ X � �0

�X

¼ X � �0

�=
ffiffiffi
n

p ¼ X � �0

s=
ffiffiffi
n

p ¼ 5100� 5000

480=
ffiffiffiffiffi
64

p ¼ 100

60
¼ 1:67

Since the calculated value of z falls within the acceptance region, the producer should accept the null
hypothesis H0 and reject H1 at the 5% level of significance (or with a 95% level of confidence). Note
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that this does not ‘‘prove’’ that � is indeed equal to 5000 lb. It only ‘‘proves’’ that there is no statistical

evidence that � is not equal to 5000 lb at the 5% level of significance.

5.5 Define the rejection and acceptance regions for Prob. 5.4 in terms of pounds, the units of the
problem.

To find the acceptance region (at the 5% level of significance) in terms of pounds, we proceed as in Sec.

4.4 by finding the 95% confidence interval about �0:

�0 � z�X ¼ �0 � z
�ffiffiffi
n

p ¼ �0 � z
sffiffiffi
n

p ¼ 5000� 1:96
480ffiffiffiffiffi
64

p ¼ 5000� 117:6

Thus, to accept H0 at the 5% level of significance, X must have a value greater than 4882.4 lb and smaller

than 5117.6 lb. The relationship between this and the result obtained in Prob. 5.4 is shown in Fig. 5-4.

5.6 An army recruiting center knows from past experience that the weight of army recruits is nor-
mally distributed with a mean � of 80 kg (about 176 lb) and a standard deviation � of 10 kg. The
recruiting center wants to test, at the 1% level of significance, if the average weight of this year’s
recruits is above 80 kg. To do this, it takes a random sample of 25 recruits and finds that the
average weight for this sample is 85 kg. How can this test be performed?

Since the center is interested in testing that � > 80 kg, it sets up the following hypotheses:

H0: � ¼ 80 kg H1: � > 80 kg

(Some books state the null hypothesis as H0: � � 80 kg, but the result is the same.) Since the parent
population is normally distributed and � is known, the standard normal distribution can be used to define
the critical region, or rejection region, of the test. With H1: � > 80 kg, we have a right-tail test with the

critical region to the right of z ¼ 2:33 at the 1% level of significance (see App. 3 and Fig. 5-5). Then

z ¼ X � �0

�X

¼ X � �0

�=
ffiffiffi
n

p ¼ 85� 80

10=
ffiffiffiffiffi
25

p ¼ 2:5
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Since the calculated value of z falls within the rejection region, we reject H0 and accept H1 (that � > 80 kg).

This means that if � ¼ 80 kg, the probability of getting a random sample from this population that gives
X ¼ 85 kg is less than 1%. That would be an unusual sample indeed. Thus we reject H0 at the 1% level of
significance (i.e., we are 99% confident of making the right decision).

5.7 A government agency receives many consumer complaints that the boxes of detergent sold by a
company contain less than the 20 oz of detergent advertised. To check the consumers’ com-
plaints, the agency purchases 9 boxes of the detergent and finds that X ¼ 18 oz and s ¼ 3 oz.
How can the agency conduct the test at the 5% level of significance if it knows that the amount of
detergent in the boxes is normally distributed?

The agency can set up H0 and H1 as follows:

H0: � ¼ 20 oz H1: � < 20 oz

(Some books set up the null hypothesis as H0: � 
 20, but the result is the same.) Since the parent
population is normal, � is not known, and n < 30, the t distribution (with 8 df and � ¼ s) must be used
to define the rejection region for this left-tail test at the 5% level of significance (see Fig. 5-6). Then

t ¼ X � �0

�X

¼ X � �0

�=
ffiffiffi
n

p ¼ X � �0

s=
ffiffiffi
n

p ¼ 18� 20

3=
ffiffiffi
9

p ¼ �2:0

Since the calculated t value falls within the rejection region, the agency should reject H0 and accept the
consumers’ complaints, H1. Note that if � had been set at 1%, the rejection region would lie to the left of
t ¼ �2:896, leading to the acceptance of H0. Thus it is important to specify the level of significance before

the test.

5.8 A hospital wants to test that 90% of the dosages of a drug it purchases contain 100mg (1/1000 g)
of the drug. To do this, the hospital takes a sample of n ¼ 100 dosages and finds that only 85 of
them contain the appropriate amount. How can the hospital test this at (a) � ¼ 1%?
(b) � ¼ 5%? (c) � ¼ 10%?

(a) This problem involves the binomial distribution. However, since n > 30 and np and nð1� pÞ > 5, we

can use the normal distribution with p ¼ 0:90. For the sample
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p ¼ 85

100
¼ 0:85 and �p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ
100

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:9Þð0:1Þ

100

r
¼ 0:03

Since we are interested in finding if p 

< 0:90, we have H0: p ¼ 0:90 and H1: p 6¼ 0:90. The acceptance

region for H0 at the 1% level of significance lies within �2:58 standard deviation units (see App. 3).
Since

z ¼ p � p

�p

¼ 0:85� 0:90

0:03
¼ 1:67

the hospital should accept H0, that p ¼ 0:90, at the 1% level of significance.

(b) At the 5% level of significance, the acceptance region for H0 lies within �1:96 standard deviation units,
and thus the hospital should accept H0 and reject H1 at the 95% level of confidence as well.

(c) At the 10% level of significance, the acceptance region for H0 lies within �1:64 standard deviation units
(see App. 3), and thus the hospital should reject H0 and accept H1, that p 6¼ 0:90. Note that larger
values of � increase the rejection region for H0 (i.e., increase the probability of acceptance of H1).

Furthermore, the greater is the value of � (i.e., the greater is the probability of rejecting H0 when true),
the smaller is � (the probability of accepting a false hypothesis).

5.9 The government antipollution spokesperson asserts that more than 80% of the plants in the
region meet the antipollution standards. An antipollution advocate does not believe the govern-
ment claim. She takes a random sample of published data on pollution emission for 64 plants in
the area and finds that 56 plants meet the pollution standards. (a) Do the sample data support
the government claim at the 5% level of significance? (b) Would the conclusion change if the
sample had been 124, but with the sample proportion of the firms meeting the pollution standards
the same as before?

(a) Here H0: p ¼ 0:80 and H1: p > 0:80. The rejection region for H0 lies to the right 1.64 standard normal
deviation units for � ¼ 5%. For the sample

p ¼ 56

64
¼ 0:88 and �p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:8Þð0:2Þ

64

r
¼ 0:05

z ¼ p � p

�p

¼ 0:88� 0:80

0:05
¼ 1:6Since

it falls within the acceptance region for H0. This means that there is no statistical support for the
government claim that p > 0:8 at the 5% level of significance.

(b) If the sample size had been 124 instead of 64, but p ¼ 0:88 as before,

�p ¼ ð0:8Þð0:2Þ
124

¼ 0:04 and z ¼ 0:88� 0:80

0:04
¼ 2

and would fall in the rejection region for H0 (so that there would be no evidence against the government
claim that p > 0:8). Note that increasing n (and holding everything else the same) increases the
probability of accepting the government claim.

5.10 Find the probability of accepting H0 for Prob. 5.6 if (a) � ¼ �0 ¼ 80 kg, (b) � ¼ 82 kg,
(c) � ¼ 84 kg, (d) � ¼ 85 kg, (e) � ¼ 87 kg, and ( f ) � ¼ 90 kg.

(a) If � ¼ �0 ¼ 80 kg, X ¼ 85, � ¼ 10 kg, and n ¼ 25, then

z ¼ X � �0

�X

¼ X � �

�=
ffiffiffi
n

p ¼ 85� 80

10=
ffiffiffiffiffi
25

p ¼ 5

2
¼ 2:5
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The probability of accepting H0 when � ¼ �0 ¼ 80 kg is 0.9938 (by looking up the value of z ¼ 2:5 in
App. 3 and adding 0.5 to it). Therefore, the probability of rejecting H0 when H0 is in fact true equals
1� 0:9938, or 0:0062.

(b) If � ¼ 82 kg instead, then

z ¼ X � �

�=
ffiffiffi
n

p ¼ 85� 82

10=
ffiffiffiffiffi
25

p ¼ 3

2
¼ 1:5

Therefore, the probability of accepting H0 when H0 is false equals 0.9332 (by looking up the value of
z ¼ 1:5 in App. 3 and adding 0.5 to it).

(c) If � ¼ 84 kg, z ¼ ð85� 84Þ=2 ¼ 1=2 and � ¼ 0:6915.

(d) If � ¼ 85 kg, z ¼ 0 and � ¼ 0:5.

(e) If � ¼ 86 kg, z ¼ ð85� 86Þ=2 ¼ �1=2 and � ¼ 0:5� 0:1915 ¼ 0:3085.

( f ) If � ¼ 87 kg, z ¼ �1 and � ¼ 0:5� 0:3413 ¼ 0:1587.

5.11 (a) Draw a figure for the answers to Prob. 5.10 showing on the vertical axis the probability of
accepting H0 when � ¼ 80 kg, 84 kg, 85 kg, 86 kg, and 88 kg. (b) What does this show?
(c) What is the importance of knowing the value of �?

(a) See Fig. 5-7.

(b) The operating-characteristic (OC) curve in Fig. 5-7 shows the values of � for various values of � > �0.

Note that the more the actual value of � exceeds �0, the smaller is � (or the probability of accepting H0

when false).

(c) Knowing the value of � is important if accepting a false hypothesis (type II error) leads to very
damaging results, such as, for example, when a drug is accepted as effective when it is not. In such

cases, we want to keep � low, even if we have to accept a higher � (type I error). The only way to avoid
this and reduce both � and � is to increase the sample size, n.

5.12 (a) Draw a figure for the answers to Prob. 5.10 showing on the vertical axis the probability of
rejecting H0 for various values of � > �0. What does this show? (b) How would the OC curve
found in Prob. 5.11(a) and in part b of this problem look if the alternative hypothesis had been
H1: � < �0?

(a) For each value of � > �0, the probability of rejecting H0 when H0 is false is given by 1� �, where � was
found in Prob. 5.10(b) to part f . Joining these 1� � points (starting with the value of �), we get the
power curve (see Fig. 5-8). The power curve shows the probability of rejecting H0 for various values of

� > �0. Note that the more � exceeds �0, the greater is the power of the test (i.e., the greater is the

probability of rejecting a false hypothesis).
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(b) For H1: � < �0, the OC curve (for an actual value of X and for various alternative values of � < �0)
would look like the power curve in Fig. 5-8. However, the power curve would resemble the OC curve

in Fig. 5-7.

TESTING HYPOTHESES FOR DIFFERENCES BETWEEN TWO MEANS OR PROPORTIONS

5.13 A large buyer of lightbulbs wants to decide, at the 5% level of significance, which of two equally
priced brands to purchase. To do this, he takes a random sample of 100 bulbs of each brand and
finds that brand 1 lasts 980 h on the average X1 with a sample standard deviation s1 of 80 h. For
brand 2, X2 ¼ 1010 h and s2 ¼ 120 h. Which brand should the buyer purchase to reach a
decision at the significance level of (a) 5%? (b) 1%?

H0: �1 ¼ �2 or H0: �1 � �2 ¼ 0ðaÞ
H1: �1 6¼ �2 or H1: �1 � �2 6¼ 0

X1 ¼ 980 h s1 ¼ 80 h n1 ¼ 100

X2 ¼ 1010 h s2 ¼ 120 h n2 ¼ 100

This is a two-tail test with an acceptance region within �1:96 under the standard normal curve (see Fig.
5-1). Therefore

�X1�X2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21
n1

þ �22
n2

s
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
802

100
þ 1202

100

s
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64þ 144
p ffi 14:42

z ¼ ðX1 � X2Þ � ð�1 � �2Þ
�X1�X2

¼ ðX1 � X2Þ � 0

�X1�X2

¼ 980� 1010

14:42
¼ �30
14:42

¼ �2:08

Since the calculated value of z falls within the rejection region for H0, the buyer should accept H1, that
�1 6¼ �2, at the 5% level of significance (and presumably decide to purchase brand 2).

(b) At the 1% level of significance, the calculated z would fall within the acceptance region for H0 (see Fig.
5-9). This would indicate that there is no significant difference between �1 and �2 at the 1% level, so
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the buyer could buy either brand. Note that even though brand 2 lasts longer than brand 1, brand 2

also has a greater standard deviation than brand 1.

5.14 The 65 students who apply for admission into a master’s program in 1981 have average Graduate
Record Examination (GRE) scores of 640 with a standard deviation of 20. In 1982, the 81
students who apply have average GRE scores of 650 with a standard deviation of 40. (a) Are
the 1981 applicants inferior to the 1982 applicants at the 1% level of significance? (b) What is
the acceptance region for the test in terms of GRE scores?

H0: �1 ¼ �2 and H1: �1 < �2ðaÞ

X1 ¼ 640 s1 ¼ 20 n1 ¼ 64

X2 ¼ 650 s2 ¼ 40 n2 ¼ 81

This is a left-tail test with acceptance region for H0 to the right of �2:33 under the standard normal
curve. Therefore

�X1�X2
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202

64
þ 402

81

s
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:25þ 19:75
p ¼

ffiffiffiffiffi
26

p
¼ 5:10

z ¼ X1 � X2

�X1�X2

¼ 640� 650

5:10
¼ �10
5:10

¼ �1:96

Since the calculated value of z falls within the acceptance region, H0 is accepted. This means that there

is no statistical evidence at the 1% level of significance indicating that the applicants in the two years are
of different quality.

(b) Since the hypothesized difference between the two population means in H0 is 0, we can find the accep-
tance region for the test in terms of GRE scores as follows:

ð�1 � �2Þ0 � z�X1�X2
¼ 0� ð2:33Þð5:10Þ ¼ �11:88

Since X1 � X2 ¼ �10, it falls within the acceptance region for H0 (see Fig. 5-10).

5.15 The American Dental Association wants to test which of two toothpaste brands is better for
fighting tooth decay. A random sample is taken of 21 persons using each toothpaste. The
average number of cavities for the first group over a 10-year period is 25 with a standard
deviation of 5. In the second group, the average number of cavities is 23 with a standard
deviation of 4. Assuming that the distribution of cavities is normal for all the users of tooth-
pastes 1 and 2 and that �21 ¼ �22 , determine if �1 ¼ �2 at the 5% level of significance.

H0: �1 ¼ �2 and H1: �1 6¼ �2
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X1 ¼ 25 s1 ¼ 5 n1 ¼ 21

X2 ¼ 23 s2 ¼ 4 n2 ¼ 21

Since the two populations are normally distributed but both n1 and n2 < 30 and it is assumed that
�21 ¼ �22 (but unknown), the sampling distribution of the difference between the means has a t distribu-

tion with n1 þ n2 � 2 degrees of freedom. Since it is assumed that �21 ¼ �22 (and we can use s21 as an
estimate of �21 and s22 as an estimate of �22), we get

�X1�X2
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n1
þ s2

n2

s
ð5:1aÞ

where s2 ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
n1 þ n2 � 2

ð5:3aÞ

where s2 is a weighted average of s21 and s22. The weights are n1 � 1 and n2 � 1, as in Eq. (2.8b) for s21
and s22, in order to get ‘‘unbiased’’ estimates for �21 and �22 (see Prob. 2.16). This is a two-tail test with
the acceptance region for H0 within �2:021 under the t distribution with � ¼ 5% and

n1 þ n2 � 2 ¼ 21þ 21� 2 ¼ 40 df:

s2 ¼ 20ð5Þ2 þ 20ð4Þ2
40

¼ 500þ 320

40
¼ 20:5

�X1�X2
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20:5

21
þ 20:5

21

r
¼

ffiffiffiffiffi
42

21

r
¼

ffiffiffi
2

p
ffi 1:41

z ¼ X1 � X2

�X1�X2

¼ 25� 23

1:41
ffi 1:42

Since the calculated value of z falls within the acceptance region, we cannot reject H0, that �1 ¼ �2 (see
Fig. 5-11).

5.16 Suppose that 50% of the 60 plants in region 1 abide by the antipollution standards but only 40%
of the 40 plants in region 2 do so. Is the percentage of plants abiding by the antipollution
standards significantly greater in region 1 as opposed to region 2 at: (a) the 5% level of sig-
nificance? (b) the 10% level of significance?

H0: p1 ¼ p2 and H1: p1 > p2ðaÞ
p1 ¼ 0:50 and n1 ¼ 60

p2 ¼ 0:40 and n2 ¼ 40

This is a right-tail test, and the acceptance region for H0 with � ¼ 0:05 lies to the left of 1.64 under the
standard normal curve:

p ¼ n1p1 þ n2p2
n1 þ n2

¼ 60ð0:5Þ þ 40ð0:4Þ
60þ 40

¼ 30þ 16

100
¼ 0:46
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�p1�p2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n1
þ pð1� pÞ

n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:46Þð0:54Þ

60
þ ð0:46Þð0:54Þ

40

r
¼ 0:00414ð0:00621Þ ¼ 0:01035 ¼ 0:10

Since z ¼ ð p1 � p2Þ=�p1�p2
¼ ð0:5� 0:4Þ=0:1 ¼ 0:10=0:10 ¼ 1, we accept H0, that p1 ¼ p2, with � ¼ 0:05:

(b) With � ¼ 0:10, the acceptance region for H0 lies to the left of 1.28 under the standard normal curve.
Since the calculated z falls within the acceptance region, we accept H0 at � ¼ 0:10 as well.

CHI-SQUARE TEST OF GOODNESS OF FIT AND INDEPENDENCE

5.17 A plant manager takes a random sample of 100 sick days and finds that 30% of the plant labor
force in the 20 to 29 age group took 26 of the 100 sick days, that 40% of the labor force in the 30
to 39 age group took 37 sick days, that 20% in the 40 to 49 age group took 24 sick days, and that
10% of the 50-and-over age group took 13 sick days. How can the manager test at the 5% level
of significance the hypothesis that age is not a factor in taking sick days?

If age is not a factor in taking sick days, then the expected number of sick days taken by each age group
should be the same as the proportion of the age group in the plant’s labor force (see Table 5.8):

	2 ¼
X ð f0 � feÞ2

fe

¼ ð26� 30Þ2
30

þ ð37� 40Þ2
40

þ ð24� 20Þ2
20

þ ð13� 10Þ2
10

¼ 16

30
þ 9

40
þ 16

20
þ 9

10
ffi 2:46

where df ¼ c � m � 1 ¼ 4� 0� 1 ¼ 3. Because no population parameter was estimated, m ¼ 0. df ¼ 3

means that if we know the value of 3 of the 4 classes, the fourth class is not ‘‘free’’ to vary. Since the

calculated value of 	2 ¼ 2:46 is smaller than the tabular value of 	2 ¼ 7:81 with � ¼ 0:05 and df ¼ 3 (see

App. 6 and Fig. 5-12), we cannot reject H0, that age is not a factor in taking sick days. Note that as in the

case of the t distribution, there is a 	2 distribution for each degree of freedom. However, the 	2 test is used
here as a right-tail test only.

5.18 Table 5.9 indicates the observed and expected frequency of 4 rare diseases (A, B, C, and D) in a
city. Is the difference between the observed and the expected frequency of the diseases significant
at the 10% level?

Since for fe < 5, diseases C and D, we combine these two classes (see Table 5.10):
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Table 5.8 Observed and Expected Sick Days

Age Group 20–29 30–39 40–49 
 50 Total

f0 26 37 24 13 100

fe 30 40 20 10 100

Fig. 5-12



	2 ¼
X ð f0 � feÞ2

fe

¼ ð3� 6Þ2
6

þ ð5� 6Þ2
6

þ ð9� 5Þ2
5

¼ 9

6
þ 1

6
þ 16

5
¼ 4:87

Since the calculated value of 	2 exceeds the tabular value of 	2 ¼ 4:61 for � ¼ 0:10 and df ¼ 2, we reject H0

and accept the alternative hypothesis H1, that there is a significant difference between the observed and

expected frequencies of occurrence of these rare diseases in this city. Note that if f0 ¼ fe, 	
2 ¼ 0. The

greater is the difference between f0 and fe, the larger is the calculated value of 	
2 and the more likely it is that

H0 would be rejected. Note also that because of the squaring, 	2 can never be negative.

5.19 Table 5.11 gives the distribution of the number of acceptances of 100 students into 3 colleges.
Test at the 5% level of significance that the distribution of acceptances is approximately binomial
if the probability of a student’s being accepted into college is 0.40.

The binomial probabilities given in Table 5.12 for 0, 1, 2, or 3 acceptances by any one student with

p ¼ 0:4 are obtained from App. 1. Therefore

	2 ¼
X ð f0 � feÞ2

fe

¼ ð25� 22Þ2
22

þ ð34� 43Þ2
43

þ ð31� 29Þ2
29

þ ð10� 6Þ2
6

¼ 9

22
þ 81

43
þ 4

29
þ 16

6
¼ 5:10

Since the calculated value of 	2 ¼ 5:10 is smaller than the tabular value of 	2 ¼ 7:81 with � ¼ 0:05
and df ¼ 3, we cannot reject H0, that the distribution of acceptances follows a binomial distribution,

with p ¼ 0:40. Note that the 	2 distribution is a continuous distribution (as are the normal and t

distributions).
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Table 5.9 Observed and Expected Frequencies of Rare Diseases A, B, C, D

Type of Disease

TotalA B C D

f0 3 5 6 3 17

fe 6 6 3 2 17

Table 5.10 Observed and Expected Frequencies of Rare Diseases A, B, C, and D

Type of Disease

TotalA B C and D

f0 3 5 9 17

fe 6 6 5 17

Table 5.11 Distribution of Acceptances of 100 Students

into 3 Colleges

Number of Acceptances Number of Students

0 25

1 34

2 31

3 10

100



5.20 Table 5.13 gives the distribution of Scholastic Aptitude Test (SAT) scores for a random sample of
100 college students. Test at the 5% level of significance that the SAT scores are normally
distributed.

To conduct this test, we must first calculate X and s for this distribution, as shown in Table 5.14:

X ¼
P

fX

n
¼ 49,300

100
¼ 493

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

fX2 � nX
2

n � 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24,950,000� ð100Þð493Þ2

99

s
ffi 80:72and

If the SAT scores are normally distributed, then fe is estimated as shown in Table 5.15:
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Table 5.12 Observed Frequencies, Binomial Probabilities, and

Expected Frequencies of Acceptances

Number of
Acceptances

Observed
Frequency

Binomial Number of
Probabilities Applicants

Expected
Frequency of
Acceptance

0 25 0:216 � 100 22

1 34 0:432 � 100 43

2 31 0:288 � 100 29

3 10 0.064 � 100 6

1.000 � 100

Table 5.13 Frequency Distribution of SAT

Scores

SAT Score Number of Students

251–350 3

351–450 25

451–550 50

551–650 20

651–750 2

100

Table 5.14 Calculation of X and s for SAT Scores

Class Interval Frequency f0 Midpoint X fX X2 fX2

251–350 3 300 900 90,000 270,000

351–450 25 400 10,000 160,000 4,000,000

451–550 50 500 25,000 250,000 12,500,000

551–650 20 600 12,000 360,000 7,200,000

651–750 2 700 1,400 490,000 980,000

100 49,300 24,950,000



	2 ¼
X ð f0 � feÞ2

fe

¼ ð28� 29:81Þ2
29:81

þ ð50� 46:31Þ2
46:31

þ ð22� 23:88Þ2
23:88

ffi 0:54

Note that the first two and the last two classes of observed and expected frequencies were combined because
fe < 5. df ¼ c � m � 1 ¼ 5� 2� 1 ¼ 2. Because two population parameters were estimated (� and � with

X and s, respectively), m ¼ 2. The tabular value of 	2 with � ¼ 0:05 and df ¼ 2 is 5.99. Since the calculated
value of 	2 is smaller than the tabular value, we cannot reject H0. That is, we cannot reject the hypothesis
that the random sample of SAT scores comes from a normal distribution with � ¼ 493 and � ¼ 80:72.

5.21 The number of heart attacks suffered by males and females of various age groups in a city is given
by contingency Table 5.16. Test at the 1% level of significance the hypothesis that age and sex
are independent in the occurrence of heart attacks.

To test this hypothesis, expected frequencies fe must be estimated (see Table 5.17):

fe ¼
P

r f0
P

c f0
n

¼ ð20Þð90Þ
150

¼ 12 for the cell in row 1, column 1

¼
P

r f0
P

c f0
n

¼ ð80Þð90Þ
150

¼ 48 for the cell in row 2, column 1
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Table 5.15 Expected Frequencies for SAT Scores Using X ¼ 493 and s ¼ 80.72

SAT Score,

x ¼ Upper Class
Limit

z ¼ X � 493

80:72
Area to
Left of X

Area of

Class
Interval

Expected
Frequency fe

� 350 �1:77 0.0384 0:0384� 100 ¼ 3:84
29:81

450 �0:53 0.2981 0:2597� 100 ¼ 25:97 }
550 0:71 0.7612 0:4631� 100 ¼ 46:31 46:31

650 1:94 0.9738 0:2126� 100 ¼ 21:26
23:88

>750 3:18 1.0000 0.0262� 100¼ 2.62 }
1:0000 100.00

Table 5.16 Number of Heart Attacks of Males and

Females in Various Age Groups in a City

Age Group Male Female Total

<30 10 10 20

30–60 50 30 80

>60 30 20 50

90 60 150

Table 5.17 Expected Frequencies of Heart Attacks

Age Group Male Female Total

<30 12 8 20

30–60 48 32 80

>60 30 20 50

90 60 150



All other expected frequencies can be obtained by subtraction from the appropriate row or column totals.

Therefore

	2 ¼
X ð f0 � feÞ2

fe

¼ ð10� 12Þ2
12

þ ð10� 8Þ2
8

þ ð50� 48Þ2
48

þ ð30� 32Þ2
32

þ ð30� 30Þ2
30

þ ð20� 20Þ2
20

¼ 1:04

where df ¼ ðr � 1Þðc � 1Þ ¼ ð3� 2Þð2� 1Þ ¼ 2 (corresponding to the two expected frequencies we had to
calculate by formula). From App. 6, 	2 ¼ 9:21 with � ¼ 0:01 and df ¼ 2. Since the calculated 	2 is smaller
than the tabular 	2, we accept the null hypothesis, H0, that age is independent of sex in the occurrence of

heart attacks. To be sure, males seem more likely to suffer heart attacks, but this tendency does not differ
significantly with age at the 1% level of significance.

5.22 A random sample of 37 workers above the age of 65 in a town gives the results indicated by
contingency Table 5.18. Test at the 10% level of significance the hypothesis that the number of
male and female workers in the 66 to 70 and 71-plus age groups in the town is independent of sex.

Table 5.19 gives the expected frequencies. For the first cell

fe ¼
P

r f0
P

c f0
n

¼ ð26Þð20Þ
37

¼ 14

For the other cells, fe is found by subtraction from the row and column totals. df ¼ ðr � 1Þðc � 1Þ ¼
ð2� 1Þð2� 1Þ ¼ 1. Since df ¼ 1 and n < 50, a correction for continuity must be made to calculate 	2, as
indicated in Eq. (5.4a):

	2 ¼
X ðj f0 � fej � 0:5Þ2

fe

ð5:4aÞ

Thus 	2 ¼ ðj17� 14j � 0:5Þ2
14

þ ðj9� 12j � 0:5Þ2
12

þ ðj3� 6j � 0:5Þ2
6

þ ðj8� 5j � 0:5Þ2
5

¼ 2:52

14
þ 2:52

12
þ 2:52

6
þ 2:52

5
¼ 3:25

Since the calculated 	2 is larger than the tabular value of 	2 with � ¼ 0:10 and df ¼ 1, we reject H0, that

males and females over 65 continue to work in this town independently of whether they are above or below

70 years of age. The proportion of workers is significantly higher for males in the 66 to 70 age group and for
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Table 5.18 Male and Female Workers over 65 in a Town

Age Group Male Female Total

66–70 17 9 26


71 3 8 11

20 17 37

Table 5.19 Expected Male and Female Workers over 65

Age Group Male Female Total

66–70 14 12 26


71 6 5 11

20 17 37



females in the 71-plus age group. Note that the same adjustment indicated by Eq. (5.4a) is also made for

tests of the goodness of fit when df ¼ 1 and n < 50.

ANALYSIS OF VARIANCE

5.23 Table 5.20 gives the output for 8 years of an experimental farm that used each of 4 fertilizers.
Assume that the outputs with each fertilizer are normally distributed with equal variance.
ðaÞ Find the mean output for each fertilizer and the grand mean for all the years and for all
four fertilizers. (b) Estimate the population variance from the variance between the means or
columns. (c) Estimate the population variance from the variance within the samples or
columns. (d) Test the hypothesis that the population means are the same at the 5% level of
significance.

X1 ¼

X
i

Xi1

r
¼ 440

8
¼ 55 X2 ¼

X
i

Xi2

r
¼ 424

8
¼ 53ðaÞ

X3 ¼

X
i

Xi3

r
¼ 432

8
¼ 54 X4 ¼

X
i

Xi4

r
¼ 464

8
¼ 58

X ¼

X
J

X
i

XiJ

rc
¼ 440þ 424þ 432þ 464

ð8Þð4Þ ¼ 55

�2 ¼ �2
X

n
ffi
PðX � XÞ2=ðn � 1Þ

n
[from Eqs. (4.2a), (4.9a), and (2.8bÞ�ðbÞ

�2 ¼ �2
X

n
ffi r

PðXJ � XÞ2
c � 1

Here

where XJ is a sample or column mean, X is the grand mean, r is the number of observations in each
sample, and c is the number of samples. ThenX

ðXJ � XÞ2 ¼ ð55� 55Þ2 þ ð53� 55Þ2 þ ð54� 55Þ2 þ ð58� 55Þ2 ¼ 14

�2 ¼ r
PðXJ � XÞ2

c � 1
¼ 8ð14Þ

3
¼ 112

3
¼ 37:33

which is an estimate of population variance from the variance between the means or columns.

(c) An estimate of the population variance from the variance within the samples or columns is obtained by
averaging the four sample variances:
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Table 5.20 Eight-Year Outputs with 4 Different Fertilizers

Fertilizer 1 Fertilizer 2 Fertilizer 3 Fertilizer 4

51 47 57 50

47 50 48 61

56 58 52 57

52 61 60 65

57 51 61 58

59 48 57 53

58 59 51 61

60 50 46 59

440 424 432 464



S2
1 ¼

PðXi1 � X1Þ2
r � 1

¼ ð51� 55Þ2 þ ð47� 55Þ2 þ � � � þ ð60� 55Þ2
8� 1

¼ 144

7
ffi 20:57

S2
2 ¼

PðXi2 � X2Þ2
r � 1

¼ ð47� 53Þ2 þ ð50� 53Þ2 þ � � � þ ð50� 53Þ2
8� 1

¼ 208

7
ffi 29:71

S2
3 ¼

PðXi3 � X3Þ2
r � 1

¼ ð57� 54Þ2 þ ð48� 54Þ2 þ � � � þ ð46� 54Þ2
8� 1

¼ 216

7
ffi 30:86

S2
4 ¼

PðXi4 � X4Þ2
r � 1

¼ ð50� 58Þ2 þ ð61� 58Þ2 þ � � � þ ð59� 58Þ2
8� 1

¼ 158

7
ffi 22:57

�2 ffi S2
1 þ S2

2 þ S2
3 þ S2

4

4
¼ 20:57þ 29:71þ 30:86þ 22:57

4
ffi 25:93

A more concise way of expressing the above is

�2 ¼
P

S2
J

c
¼ S2

1 þ S2
2 þ � � � þ S2

c

c

¼

PðXi1 � X1Þ2
r � 1

þ
PðXi2 � X2Þ2

r � 1
þ
PðXi3 � X3Þ2

r � 1
þ
PðXi4 � X4Þ2

r � 1
c

¼
PPðXiJ � XJ Þ2

ðr � 1Þc ¼ 144þ 208þ 216þ 158

ð7Þð4Þ ¼ 726

28
¼ 25:93

F ¼ variance between sample means

variance within samples
¼ 37:33

25:93
¼ 1:44ðdÞ

The value of F from App. 7 for � ¼ 0:05 and c � 1 ¼ 3 df in the numerator and ðr � 1Þc ¼ 28 df in the
denominator is 2.95. Since the calculated value of F is smaller than the tabular value, we accept H0,
that the population means are the same.

5.24 (a) From the results obtained in Prob. 5.23, find the value of SSA, SSE, and SST; the degrees of
freedom for SSA, SSE, and SST; and MSA, MSE, and the F ratio. (b) From the results in part
a, construct an ANOVA table similar to Table 5.4. (c) Conduct the analysis of variance and
draw a figure showing the acceptance and rejection regions for H0.

SSA ¼ r
PðXJ � XÞ2 ¼ 112 [from Prob. 5.23ðbÞ�ðaÞ

SSE ¼PPðXiJ � XJ Þ2 ¼ 726 [from Prob. 5.23ðcÞ�
SST ¼PPðXiJ � XÞ2 ¼ ð51� 55Þ2 þ ð47� 55Þ2 þ � � � þ ð59� 55Þ2 ¼ 838

¼ SSAþ SSE ¼ 112þ 726 ¼ 838

The df of SSA ¼ c � 1 ¼ 4� 1 ¼ 3; df of SSE ¼ ðr � 1Þc ¼ ð8� 1Þð4Þ ¼ 28; and df of SST ¼ rc � 1 ¼
32� 1 ¼ 31, which is the same as the df of SSA plus the df of SSE.

MSA ¼ SSA

c � 1
¼ 112

3
¼ 37:33

MSE ¼ SSE

ðr � 1Þc ¼ 726

28
¼ 25:93

F ¼ MSA

MSE
¼ 37:33

25:93
¼ 1:44

(b) See Table 5.21.

(c) The hypotheses to be tested are

H0: �1 ¼ �2 ¼ �3 ¼ �4 versus H1: �1; �2; �3; �4 are not equal

Since the calculated value of F ¼ 1:44 is smaller than the tabular value of F ¼ 2:95 with � ¼ 0:05 and
df ¼ 3 and 28, we accept H0 (see Fig. 5-13); that is, we accept the null hypothesis, H0, that
�1 ¼ �2 ¼ �3 ¼ �4. Since we were told (in Prob. 5.23) that the populations were normal with
equal variance, we could view the four samples as coming from the same population. Note that the
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MSE is a good estimate of �2 whether H0 is true. However, MSA is about equal to MSE only if H0 is

true (so that F ¼ 1Þ. Note that the F distribution is continuous and is used here for a right-tail test
only.

5.25 Table 5.22 gives the outputs of an experimental farm that used each of four fertilizers and three
pesticides such that each plot of land had an equal probability of receiving each fertilizer-pesticide
combination (completely randomized design). (a) Find the average output for each fertilizer X �J
for each pesticide Xi. and for the sample as a whole X . (b) Find the total sum of squares, SST,
the sum of squares for fertilizer or factor A, SSA, for pesticides or factor B, SSB, and for the error
or unexplained residual, SSE. (c) Find the degrees of freedom for SSA, SSB, SSE, and SST.
(d) Find MSA, MSB, MSE, MSA/MSE, and MSB/MSE.

(a) The column mean for each fertilizer is given by

X :J ¼

X
i

XiJ

r
ð5:8aÞ

The row mean for each pesticide is given by
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Table 5.21 One-Way ANOVA Table for Fertilizer Experiment

Variation Sum of Squares Degrees of Freedom Mean Square F Ratio

Explained by
fertilizer

(between
columns)

SSA ¼ 112 c � 1 ¼ 3 MSA ¼ 37:33

MSA=MSE ¼ 1:44
Error or
unexplained

(within
columns)

SSE ¼ 726 ðr � 1Þc ¼ 28 MSE ¼ 25:93

Total SST ¼ 838 rc � 1 ¼ 31 —

Fig. 5-13

Table 5.22 Output with 4 Fertilizers and 3 Pesticides

Fertilizer 1 Fertilizer 2 Fertilizer 3 Fertilizer 4

Pesticide 1 21 12 9 6

Pesticide 2 13 10 8 5

Pesticide 3 8 8 7 1



Xi: ¼

X
J

XiJ

c
ð5:8bÞ

The grand mean is given by

X ¼
P

Xi:

r
¼
P

X :J
c

ð5:9aÞ

The subscripted dots signify that more than one factor is being considered. The results are shown in
Table 5.23.

SST ¼
XX

ðXiJ � XÞ2ðbÞ

ð21� 9Þ2 ¼ 144 ð12� 9Þ2 ¼ 9 ð9� 9Þ2 ¼ 0 ð6� 9Þ2 ¼ 9

ð13� 9Þ2 ¼ 16 ð10� 9Þ2 ¼ 1 ð8� 9Þ2 ¼ 1 ð5� 9Þ2 ¼ 16

ð8� 9Þ2 ¼ 1 ð8� 9Þ2 ¼ 1 ð7� 9Þ2 ¼ 4 ð1� 9Þ2 ¼ 64

161 11 5 89

SST ¼ 161þ 11þ 5þ 89 ¼ 266

SSA ¼ r
X

ðX :J � XÞ2 (between-column variations)

¼ 3½ð14� 9Þ2 þ ð10� 9Þ2 þ ð8� 9Þ2 þ ð4� 9Þ2�
¼ 3ð25þ 1þ 1þ 25Þ ¼ 156

SSB ¼ c
X

ðXi:� XÞ2 (between-row variations)

¼ 4½ð12� 9Þ2 þ ð9� 9Þ2 þ ð6� 9Þ2�
¼ 4ð9þ 0þ 9Þ ¼ 72

SSE ¼ SST� SSA� SSB ¼ 266� 156� 72 ¼ 38

ðcÞ df of SSA ¼ c � 1 ¼ 3 ð5:13aÞ
df of SSB ¼ r � 1 ¼ 2 ð5:13bÞ
df of SSE ¼ ðr � 1Þðc � 1Þ ¼ 6 ð5:14aÞ
df of SST ¼ rc � 1 ¼ 11 ð5:15Þ

ðdÞ MSA ¼ SSA

c � 1
¼ 156

3
¼ 52 ð5:16Þ

MSB ¼ SSB

r � 1
¼ 72

2
¼ 36 ð5:17Þ

MSE ¼ SSE

ðr � 1Þðc � 1Þ ¼
38

6
¼ 6:33 ð5:18Þ
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Table 5.23 Output with 4 Fertilizers and 3 Pesticides (with Row, Column, and Grand Means)

Fertilizer 1 Fertilizer 2 Fertilizer 3 Fertilizer 4 Sample Mean

Pesticide 1 21 12 9 6 X1: ¼ 12

Pesticide 2 13 10 8 5 X2: ¼ 9

Pesticide 3 8 8 7 1 X3: ¼ 6

Sample mean X :1 ¼ 14 X:2 ¼ 10 X:3 ¼ 8 X :4 ¼ 4 X ¼ 9



MSA

MSE
¼ 52

6:33
¼ 8:21 F ratio for factor A (fertilizer) ð5:19Þ

MSB

MSE
¼ 36

6:33
¼ 5:69 F ratio for factor B (pesticide) ð5:20Þ

5.26 (a) From the results of Prob. 5.25, construct an ANOVA table similar to Table 5.4. (b) Test at
the 1% level of significance the hypothesis that the means for factor A populations (fertilizers) are
identical. (c) Test at the 1% level of significance the hypothesis that the means for factor B
populations (pesticides) are identical.

(a) See Table 5.24.

(b) The hypotheses to be tested are

H0: �1 ¼ �2 ¼ �3 ¼ �4 versus H1: �1; �2; �3; �4 are not all equal

where � refers to the various means for factor A (fertilizer) populations. For factor A, F ¼ 9:78 (from
App. 7) for degrees of freedom 3 (numerator) and 6 (denominator) and � ¼ 0:01. Since the calculated

value of F ¼ 8:21 (from Table 5.24) is less than the tabular value of F , we accept H0, that the means for
factor A (fertilizer) populations are equal.

(c) The second set of hypotheses to be tested consists of

H0: �1 ¼ �2 ¼ �3 versus H1: �1; �2; �3 are not all equal

but now � refers to the various means for factor B (pesticide) populations. For factor B, F ¼ 10:92
(from App. 7) for degrees of freedom 2 and 6 and � ¼ 0:01. Since the calculated value of F ¼ 5:69
(from Table 5.24) is less than the tabular value of F , we accept H0, that the means for factor B

(pesticide) populations are also equal. Note that in two-factor analysis of variance (with an
ANOVA table similar to Table 5.24) we can test two null hypotheses, one for factor A and one for
factor B.

5.27 Table 5.25 gives the first-year earnings (in thousands of dollars) of students with master’s degrees
from 5 schools and for 3 class rankings at graduation. Test at the 5% level of significance that
the means are identical (a) for school populations and (b) for class-ranking populations.

(a) The hypotheses to be tested are

H0: �1 ¼ �2 ¼ �3 ¼ �4 ¼ �5 versus H1: �1; �2; �3; �4; �5 are not equal

where � refers to the various means for factor A (school) populations.

SST ¼
XX

ðXiJ � XÞ2
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Table 5.24 Two-Factor ANOVA Table for Effect of Fertilizers and Pesticides on Output

Variation Sum of Squares Degrees of Freedom Mean Square F

Explained by fertilizer

(between columns) SSA ¼ 156 c � 1 ¼ 3 MSA ¼ 52
MSA

MSE
¼ 8:21

Explained by pesticide
(between rows) SSB ¼ 72 r � 1 ¼ 2 MSB ¼ 36

MSB

MSE
¼ 5:69

Error or unexplained SSE ¼ 38 ðr � 1Þðc � 1Þ ¼ 6 MSE ¼ 6:33 —

Total SST ¼ 266 rc � 1 ¼ 11 — —



ð20� 14Þ2 ¼ 36 ð18� 14Þ2 ¼ 16 ð16� 14Þ2 ¼ 4 ð14� 14Þ2 ¼ 0 ð12� 14Þ2 ¼ 4

ð19� 14Þ2 ¼ 25 ð16� 14Þ2 ¼ 4 ð13� 14Þ2 ¼ 1 ð12� 14Þ2 ¼ 4 ð10� 14Þ2 ¼ 16

ð18� 14Þ2 ¼ 16 ð14� 14Þ2 ¼ 0 ð10� 14Þ2 ¼ 16 ð10� 14Þ2 ¼ 16 ð8� 14Þ2 ¼ 36

77 20 21 20 56

SST ¼ 77þ 20þ 21þ 20þ 56 ¼ 194

SSA ¼ r
X

ðX:J � XÞ2 (between-column variations)

¼ 3½ð19� 14Þ2 þ ð16� 14Þ2 þ ð13� 14Þ2 þ ð12� 14Þ2 þ ð10� 14Þ2� ¼ 3ð25þ 4þ 1þ 4þ 16Þ
¼ 150

SSB ¼ c
X

ðXi:� XÞ2 ¼ 5½ð16� 14Þ2 þ ð14� 14Þ2 þ ð12� 14Þ2� ¼ 5ð4þ 0þ 4Þ ¼ 40

SSE ¼ SST� SSA� SSB ¼ 194� 150� 40 ¼ 4

These results are summarized in Table 5.26. From App. 7, F ¼ 3:84 for degrees of freedom 4 and 8 and
� ¼ 0:05. Since the calculated F ¼ 70, we reject H0 and accept H1, that the population means of first-

year earnings for the 5 schools are different.

(b) The hypotheses to be tested are

H0: �1 ¼ �2 ¼ �3 versus H1: �1; �2; �3 are not equal

where � refers to the various means for factor B (class-ranking) populations. From Table 5.26, we get
that the calculated value of F ¼ MSB=MSE ¼ 40. Since this is larger than the tabular value of

F ¼ 4:46 for df 2 and 8 and � ¼ 0:05, we reject H0 and accept H1, that the population means of
first-year earnings for the 3 class rankings are different. Thus the type of school and class ranking
are both statistically significant at the 5% level in explaining differences in first-year earnings. The
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Table 5.25 First-Year Earnings of MA Graduates of 5 Schools and 3 Class Ranks

(in Thousands of Dollars)

Class Ranks School 1 School 2 School 3 School 4 School 5 Sample Mean

Top 1/3 20 18 16 14 12 X1� ¼ 16

Middle 1/3 19 16 13 12 10 X2� ¼ 14

Bottom 1/3 18 14 10 10 8 X3� ¼ 12

Sample mean X :1 ¼ 19 X :2 ¼ 16 X :3 ¼ 13 X :4 ¼ 12 X :5 ¼ 10 X ¼ 14

Table 5.26 Two-Factor ANOVA Table for First-Year Earnings

Variation Sum of Squares Degrees of Freedom Mean Square F

Explained by
schools (A)

(between columns)

SSA ¼ 150 c � 1 ¼ 4 MSA ¼ 150

4
¼ 37:5

MSA

MSE
¼ 37:5

0:5
¼ 70

Explained by
ranking (B)
(between rows)

SSB ¼ 40 r � 1 ¼ 2 MSB ¼ 40

2
¼ 20

MSB

MSE
¼ 20

0:5
¼ 40

Error or

unexplained
SSE ¼ 4 ðr � 1Þðc � 1Þ ¼ 8 MSE ¼ 4

8
¼ 0:5

Total SST ¼ 194 rc � 1 ¼ 14 —



preceding analysis implicitly assumes that the effects of the two factors are additive (i.e., there is no

interaction between them).

NONPARAMETRIC TESTING

5.28 (a) What are nonparametric tests? (b) When would one want to use a nonparametric test?
(c) What are the advantages and disadvantages of nonparametric tests?

(a) Nonparametric tests require fewer assumptions to establish the validity of their results. Parametric
tests involve assumptions about the specific distribution that the data follows, as well as the structure of

data-generating process. Nonparametric tests allow the researcher to relax the assumptions regarding
the distribution of the data and/or the functional form of the underlying processes.

(b) Nonparametric tests should be used only when one is uncertain about the assumptions behind the

parametric test. The usual situation for using a nonparametric test in statistics is a small sample size.
If the values are not normally distributed, a small sample would invalidate the assumption that the
sample mean is normally distributed with a mean of � and a variance of �2=n.

(c) A nonparametric test is advantageous because of its ease of calculation and its flexibility. There are
nonparametric tests appropriate for most scales of measurement, and for nonstandard functional forms
and distributions. Also, the nonparametric goodness-of-fit test does not have the researcher choose

class intervals to compare observed and expected values. The chi-square goodness-of-fit test is often
not robust to changes in class specifications. The disadvantages of a nonparametric test focus around
the loss of information. Nonparametric tests are based on counting rules, such as ranking, and
therefore summarize magnitudes into a rank statistic. This only uses the relative position of values.

If the standard assumptions hold, a parametric test will be more efficient, and therefore more powerful,
for a given data set.

5.29 A marketing firm is deciding whether food additive B is better tasting than food additive A. A
focus group of 10 individuals rate the taste on a scale of 1 to 10. Results of the focus group are
listed in Table 5.27. Test at the 5% significance level the null hypothesis that food additive B is no
better tasting than food additive A.

This is a small sample with ratings rather than quantitative variables; therefore the usual assumptions
do not hold. We proceed with the nonparametric test. Since we have two samples with data that are paired
(two ratings per person), we first take the difference of the two ratings for each person to test the hypotheses

H0: MedA �MedB 
 0 H1: MedA �MedB < 0

The steps are shown in Table 5.28. Since W < 11, we reject H0: MedA �MedB 
 0 and accept H1:
MedA �MedB < 0 at the 5% significance level.
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Table 5.27 Food Additive Taste Comparison

Individual ID

No.

Additive A

Rating

Additive B

Rating

1 5.5 6

2 7 8

3 9 9

4 3 6

5 6 8

6 6 6

7 8 4

8 6.5 8

9 7 8

10 6 9



5.29 Data from the World Bank’s World Development Indicators reports that for 9 Latin American
countries, male illiteracy is as follows (in percent):

Argentina 3, Bolivia 8, Brazil, 15, Chile 4, Colombia 9, Ecuador 7, Peru 6, Uruguay 3,
Venezuela 7

(a) Test the null hypothesis that the median illiteracy rate is 8% at the 10% significance level.
(b) Test the null hypothesis that the median illiteracy rate is greater than or equal to 8% at the
10% significance level.

(a) Calculations for the signed rank test are given in Table 5.29 to test H0: Med ¼ 8 versus H1: Med 6¼ 8.

The critical values for the signed rank test (App. 9) for a two-tail test at the 10% significance level and
n ¼ 9 are 9 and 36. Since 9 < W < 36, we accept the null hypothesis that the median illiteracy rate for

South American countries is equal to 8.

(b) To test H0: Med 
 8 versus H1: Med < 8, we would expect a higher value of W for a higher population
median. Therefore this is a one-tail test with the rejection region in the left tail. The critical value from

App. 9 is 11. Since W < 11, we reject the null hypothesis at the 10% significance level and conclude
that the median illiteracy rate for males is less than 8. Note accepting the null in part a just means that
we could not rule out a median of 8, but not that there was proof that the median was 8. As with any
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Table 5.28 Ratings Signed Rank Test

XA � XB Ordered Rank

Rank for Positive

Differences

�0:5 0 N/A —

�1 0 N/A —

0 �0:5 1 —

�3 �1 2.5 —

�2 �1 2.5 —

0 �1:5 4 —

4 �2 5 —

�1:5 �3 6.5 —

�1 �3 6.5 —

�3 4 8 8

W ¼ 8

Table 5.29 Illiteracy Signed Rank Test

Illiteracy

Rates ðXÞ X �Med0 Ordered Rank

Rank for Positive

Differences

3 �5 0 N/A

8 0 1 2 2

15 7 �1 2

4 �4 �1 2

9 1 �2 4

7 �1 �4 5

6 �2 �5 6.5

3 �5 �5 6.5

7 �1 7 8 8

W ¼ 10



test, the one-tail test with the signed rank statistic has a larger rejection region in the tail tested since the

significance percentage is not split between two tails.

5.30 Continuing with the analysis from Prob. 5.29, the following is male illiteracy data from two other
regions:

Asia: China 9, Hong Kong 4, Indonesia 9, Korea, Republic 1, Malaysia 9, Philippines 5,
Singapore 4

Africa: Chad 50, Ivory Coast 46, Egypt, Arab Republic 34, Ethiopia 57, Morocco 39,
Niger 77, Nigeria 29, Rwanda 27

(a) Perform a nonparametric test of equality of the median male illiteracy rate for South Amer-
ica, Asia, and Africa at the 1% significance level. (b) Test the equality of the median illiteracy
rate for South America and Asia at the 5% significance level.

(a) Since we are testing more than one group, the Kruskal-Wallis rank test should be used. Calculations

are listed in Table 5.30. SA indicates South America, As indicates Asia, and Af indicates Africa
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Table 5.30 Kruskal-Wallis Rank Test

Illiteracy
Rates (X) Ordered Rank Totals

3 (SA) 1 (As) 1 For South America: �RSA ¼ 76:5

8 (SA) 3 (SA) 2.5

15 (SA) 3 (SA) 2.5

4 (SA) 4 (SA) 4

9 (SA) 4 (As) 4

7 (SA) 4 (As) 4

6 (SA) 5 (As) 7

3 (SA) 6 (SA) 8

7 (SA) 7 (SA) 9.5

9 (As) 7 (SA) 9.5 For Asia: �RAs ¼ 56:5

4 (As) 8 (SA) 11

9 (As) 9 (SA) 13.5

1 (As) 9 (As) 13.5

9 (As) 9 (As) 13.5

5 (As) 9 (As) 13.5

4 (As) 15 (SA) 16

50 (Af) 27 (Af) 17 For Africa: �RAf ¼ 164:0

46 (Af) 29 (Af) 18

34 (Af) 34 (Af) 19

57 (Af) 39 (Af) 20

39 (Af) 46 (Af) 21

77 (Af) 50 (Af) 22

29 (Af) 57 (Af) 23

27 (Af) 77 (Af) 24



H ¼ 12

nðn þ 1Þ
ð�RSAÞ2

nSA
þ ð�RAsÞ2

nAs
þ ð�RAf Þ2

nAf

 !
� 3ðn þ 1Þ

¼ 12

24ð24þ 1Þ
ð76:5Þ2

9
þ ð56:5Þ2

7
þ ð164Þ2

8

 !
� 3ð24þ 1Þ ¼ 14:36

The critical value for the chi-square distribution with 3 degrees of freedom at the 1% significance level is

11.34. Since H ¼ 14:36 > 11:34, we reject the null hypothesis that the median male illiteracy rates of all
three groups are equal.

(b) For testing two samples, one can use the same ranking method, but can compare the sum of ranks of
the smallest of the two groups with the critical values in the two-sample section of the Wilcoxon

statistics in App. 9. Since all African rankings fell above the rankings of South American and
Asian countries, the rankings from Table 5.12 may be used.

W ¼P
RAs ¼ 56:5

From the table in App. 9, the critical values at the 5% significance level are 41 and 78. Since

41 < W < 78, we accept the null hypothesis that the median male illiteracy rates in South America
are equal.

5.31 Using the African male illiteracy rates from Prob. 5.30, test the null hypothesis at the 10%
significance level that the illiteracy rates in Africa follow the continuous uniform distribu-
tion (a) between 25 and 80 (b) between 25 and 100.

(a) The continuous uniform distribution has equal value of the density function at each point between 25 and
80. To calculate the probability of being between values a and b, one can take the area under the

density function: Pða < X < bÞ ¼ ðb � aÞ=ð80� 25Þ, where the denominator is the difference between
the upper and lower bound. Since we have a small sample size, we will use the Kolmogorov-Smirnov
goodness-of-fit test.

Ordered data values 27 29 34 39 46 50 57 77

Proportion below, % 12.5 25.0 37.5 50.0 42.5 75.0 87.5 100.0

Uniform cumulative
probability, %

3.6 7.3 16.4 25.5 38.2 45.5 58.2 94.5

Difference, % 8.9 17.7 21.1 24.5 4.3 29.5 29.3 5.5

The maximum difference is 29.5% (0.295), which is less than the critical value of 0.411 (App. 10);
therefore we accept the null hypothesis that illiteracy rates in Africa follow the continuous uniform

distribution between 25 and 80.

(b) This continuous uniform distribution has equal value of the density function at each point between 25

and 100 under the null: Pða < X < bÞ ¼ ðb � aÞ=ð100� 25Þ. The calculations are as follows

Ordered data values 27 29 34 39 46 50 57 77

Proportion below, % 12.5 25.0 37.5 50.0 42.5 75.0 87.5 100.0

Uniform cumulative
probability, %

2.7 5.3 12.0 18.7 28.0 33.3 42.7 69.3

Difference, % 9.8 19.7 25.5 31.3 14.5 41.7 44.8 30.7

The maximum difference is 44.8% (0.448), which is greater than the critical value of 0.411; therefore we

reject the null hypothesis that illiteracy rates in Africa follow the continuous uniform distribution
between 25 and 100.

5.32 Repeat the test from Prob. 5.19 with the Kolmogorov-Smirnov goodness-of-fit test to test the H0:
data are from the binomial distribution with probability of acceptance equal to 0.4.
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Calculations are given in Table 5.31. The largest difference is 0.058 in absolute value. The critical

value from the table for n ¼ 100 is 0.136 at the 5% level of significance. Since 0:058 < 0:136, we accept the
null hypothesis that the distribution of college acceptances follows the binomial distribution with a prob-

ability of acceptance of 40%.

Supplementary Problems

TESTING HYPOTHESIS

5.33 (a) What do we call the error of accepting a false hypothesis? Of rejecting a true hypothesis? (b) What
symbol is usually used for the probability of type I error? What is another name for this? (c) What is the
symbol conventionally used for the probability of type II error? (d) What is the level of confidence? (e) If

� is reduced from 5 to 1%, what happens to �?
Ans. (a) Type II error; type I error (b) �; level of significance (c) � (d) 1� � (e) � increases

5.34 Having set � ¼ 5%, when is a graduate school more likely to accept the hypothesis that the average
Graduate Record Examination (GRE) scores of its entering class (a) Equal 600? (b) Are larger than
600? (c) Are smaller than 600?

Ans. (a) The closer the mean sample, X, is to 600 (b) The more X > 600 (c) The more X < 600

TESTING HYPOTHESES ABOUT THE POPULATION MEAN AND PROPORTION

5.35 An aircraft manufacturer needs to buy aluminum sheets of 0.05 in thickness. Thinner sheets would not be
appropriate, and thicker sheets would be too heavy. The aircraft manufacturer takes a random sample of

100 sheets from a supplier of aluminum sheets and finds that their average thickness is 0.048 in and their
standard deviation is 0.01 in. Should the aircraft manufacturer buy the aluminum sheets from this supplier
in order to make the decision at the 5% level of significance?

Ans. No

5.36 Define the acceptance region for Prob. 5.35 in inches.

Ans. 0.04804 to 0.05196 in

5.37 A navy recruiting center knows from past experience that the height of recruits is normally distributed with a

mean � of 180 cm (1 cm ¼ 1=100mÞ and a standard deviation � of 10 cm. The recruiting center wants to test
at the 1% level of significance the hypothesis that the average height of this year’s recruits is above 180 cm.
To do this, the recruiting officer takes a random sample of 64 recruits and finds that the average height for

this sample is 182 cm. (a) Should the recruiting officer accept the hypothesis? (b) What is the rejection
region for the test in centimeters?
Ans. (a) No (b) Greater than 182.9125
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Table 5.31 Kolmogorov-Smirnov Goodness-of-Fit Test

Number of
Acceptances Frequency

Relative
Frequency

Binomial
Probabilities

Cumulative
Relative

Frequency
(Observed)

Cumulative

Probability
(Expected) Difference

0 25 0.25 0.216 0.25 0.216 0:034

1 34 0.34 0.432 0.59 0.648 �0:058
2 31 0.31 0.288 0.90 0.936 �0:036
3 10 0.10 0.064 1.00 1.00 0:00



5.38 A purchaser of electronic components wants to test the hypothesis that they last less than 100 h. To do this

she takes a random sample of 16 such components and finds that, on average, they last 96 h, with a standard
deviation of 8 h. If the purchaser knows that the lifetime of the components is normally distributed, should
she accept the hypothesis that they last less than 100 h at (a) A 95% level of confidence? (b) A 99% level
of confidence?

Ans. (a) Yes (b) No

5.39 In the past, 20% of applicants for admission into a master’s program had GRE scores above 650. Of the 88
students applying to be admitted into the program in 1981, 22 had GRE scores above 650. Do the 1981
applicants have greater GRE scores than previous applicants at the 5% level of significance?

Ans. No

5.40 Find the probability of accepting H0 (that � ¼ 650) for Prob. 5.39 if �p ¼ 0:043 and (a) p ¼ 0:20,
(b) p ¼ 0:22, (c) p ¼ 0:24, (d) p ¼ 0:25, (e) p ¼ 0:26, and ( f ) p ¼ 0:28.
Ans. (a) 0.877 (b) 0.758 (c) 0.591 (d) 0.5 (e) 0.409 ( f ) 0.242

5.41 (a) What is the value of � when p ¼ 0:20 in Prob. 5.39 (b) How can the OC curve be derived for Prob. 5.39?

Ans. (a) 0.123 (b) By joining the value of 1� � for p ¼ 0:20 with the values of � found in Prob. 5.40(b) to
ð f Þ for various values of p > 0:20

5.42 Find the probability of rejecting H0 (that � ¼ 650) for Prob. 5.39 if �p ¼ 0:043 and (a) p ¼ 0:20,
(b) p ¼ 0:22, (c) p ¼ 0:24, (d) p ¼ 0:25, (e) p ¼ 0:26, and ( f ) p ¼ 0:28.
Ans. (a) 0.123 (b) 0.242 (c) 0.409 (d) 0.5 (e) 0.591 ( f ) 0.758

5.43 How can we get the power curve for Prob. 5.39?

Ans. By joining the values found in Prob. 5.42(a) to ( f ) for various alternative values of p > 0:2.

TESTING HYPOTHESES FOR DIFFERENCES BETWEEN TWO MEANS OR PROPORTIONS

5.44 A consulting firm wants to decide at the 5% level of significance if the salaries of construction workers differ

between New York and Chicago. A random sample of 100 construction workers in New York has an
average weekly salary of $400 with a standard deviation of $100. In Chicago, a random sample of 75
workers has an average weekly salary of $375 with a standard deviation of $80. Is there a significant

difference between the salaries of construction workers in New York and Chicago at (a) The 5% level?
(b) The 10% level?
Ans. (a) No (b) Yes

5.45 A random sample of 21 AFC football players has a mean weight of 265 lb with a standard deviation of 30 lb,

while a random sample of 11 NFC players has a mean weight of 240 lb with a standard deviation of 20 lb. Is
the mean weight of all AFC football players greater than that for the NFC players at the 1% level of
significance?
Ans. Yes

5.46 A random sample of 100 soldiers indicates that 20% are married in year 1, while 30% are married in year 2.

Determine whether to accept the hypothesis that the proportion of married soldiers in year 1 is less than that
in year 2 (a) at the 5% level of significance and (b) at the 1% level of significance.
Ans. (a) Accept the hypothesis (b) Reject the hypothesis

CHI-SQUARE TEST OF GOODNESS OF FIT AND INDEPENDENCE

5.47 A die is rolled 60 times with the following results: a 1 came up 12 times, a 2 came up 8 times, a 3 came up 13
times, a 4 came up 12 times, a 5 came up 7 times, and a 6 came up 8 times. Is the die balanced at the 5%

level of significance?
Ans. Yes

5.48 An urn contains balls of 4 colors: green, white, red, and blue. A ball is picked from the urn and its color is
recorded. The ball is then replaced in the urn, the balls are thoroughly mixed, and another ball is picked.
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The process is repeated 18 times, and the result is that a green ball is picked 8 times, a white ball is picked 7

times, a red ball is picked once, and a blue ball is picked twice. Does the urn contain an equal number of
green, white, red, or blue balls? Test the hypothesis at the 5% level of significance.
Ans. The hypothesis should be accepted at the 5% level of significance that the urn contains an equal
number of balls of all four colors.

5.49 A random sample of 64 cities in the United States indicates the number of rainy days during the month of

June given in Table 5.32. Do rainy days in U.S. cities follow a normal distribution with � ¼ 3 and � ¼ 2 at
the 10% level of significance?
Ans. No

5.50 Contingency Table 5.33 gives the number of acceptable and nonacceptable electronic components produced
at various hours of the morning in a random sample from the output of a plant. Should the hypothesis be
accepted or rejected at the 5% level of significance that the production of acceptable items is independent of

the hour of the morning in which they are produced?
Ans. Accept H0

5.51 The number of people voting Democrat or Republican below the age of 40 and 40 plus in a random sample
of 30 voters in a city is given in contingency Table 5.34. Is voting Democrat or Republican independent of
the voter being below the age of 40 or 40 plus in this city at the 5% level of significance?

Ans. No
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Table 5.32 Number of Rainy Days during June for

64 U.S. Cities

Number of Rainy Days Number of Cities

0 10

1 12

2 22

3 13

4 6

5 1

64

Table 5.33 Acceptable and Nonacceptable Components Produced Each Hour of

the Morning

8–9 A.M. 9–10 A.M. 10–11 A.M. 11–12 A.M. Total

Acceptable 60 75 80 65 280

Nonacceptable 30 25 30 35 120

90 100 110 100 400

Table 5.34 Democrats and Republicans below and above Age 40

Age Group Democrats Republicans Total

<40 6 5 11


40 10 9 19

16 14 30



ANALYSIS OF VARIANCE

5.52 Table 5.35 gives the miles per gallon for 4 different octanes of gasoline for 5 days. Assume that the miles per

gallon for each octane is normally distributed with equal variance. Should the hypothesis of equal popula-
tion means be accepted or rejected at the 5% level of significance?
Ans. Rejected

5.53 Table 5.36 gives the miles per gallon for each of 4 different octanes of gasoline and 3 types of car (heavy,

medium, and light) in a completely randomized design. Should the hypothesis be accepted at the 1% level of
significance that the population means are the same for each (a) Octane of gasoline? (b) Type of car?
Ans. (a) Yes (b) No

5.54 Table 5.37 gives sales data for soap with each of 3 different wrappings and 4 different formulas in a

completely randomized design. Should the hypothesis be accepted at the 5% level of significance that
the population means are the same for each (a) Wrappings? (b) Formula?
Ans. (a) No (b) Yes

NONPARAMETRIC TESTING

5.55 Using the data from Table 5.35, would the Wilcoxon signed rank test reject at the 10% significance level the

null hypothesis that the median miles per gallon for type 1 gasoline is (a) 12 (b) 15?
Ans. (a) No ðW ¼ 2Þ (b) Yes ðW ¼ 0Þ
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Table 5.37 Soap Sales for Each of 3 Wrappings and 4 Formulas

Wrapping 1 Wrapping 2 Wrapping 3

Formula 1 87 78 90

Formula 2 79 79 84

Formula 3 83 81 91

Formula 4 85 83 89

Table 5.35 Miles per Gallon with 4 Types of Gasoline

for 5 Days

Type 1 Type 2 Type 3 Type 4

12 12 16 17

11 14 14 15

12 13 15 17

13 15 13 16

11 14 14 18

Table 5.36 Miles per Gallon for Each of 4 Octanes and 3 Types of Car

Type of Car Octane 1 Octane 2 Octane 3 Octane 4

Heavy 8 9 9 10

Medium 16 15 18 17

Light 24 26 28 30



5.56 Repeat the test from Prob. 5.52 using the Kruskal-Wallis rank test. Is the null hypothesis of equality of

medians accepted at the 5% level of significance?
Ans. No, it is rejected ðH ¼ 14:25Þ

5.57 Repeat the test from Prob. 5.49 using the Kolmogorov-Smirnov goodness-of-fit test. Are the data normally
distributed with � ¼ 3 and � ¼ 2 at the 10% level of significance?
Ans. No (maximum difference ¼ 0:391)
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Statistics Examination

1. Table 1 gives the frequency distribution of the rate of unemployment in a sample of 20 large U.S.
cities in 1980. (a) Find the mean, median, and mode of the unemployment rate. ðbÞ Find the
variance, standard deviation, and coefficient of variation. ðcÞ Find the Pearson’s coefficient of
skewness and sketch the relative frequency histogram

2. The lifetime of an electronic component is known to be normally distributed with a mean of 1000 h
and a standard deviation of 80 h. What is the probability that a component picked at random
from the production line will have a lifetime ðaÞ Between 1120 and 1180 h? ðbÞ Between 955 and
975 h? ðcÞ Below 955 h? ðdÞ Above 975 h? ðeÞ Sketch the normal and the standard normal
distribution for this problem and shade the area corresponding to part d.

3. The average IQ of a random sample of 25 students at a college is 110. If the distribution of the IQ
at the college is known to be normal with a standard deviation of 10 ðaÞ Find the 95% confidence
interval for the unknown mean IQ for the entire student body at the college. ðbÞ Answer the same
question if the population standard deviation had not been known, but the sample standard
deviation was calculated to be 8. ðcÞ Specify all possible cases when the normal distribution,
the t distribution, or Chebyshev’s inequality can be used.

4. A firm sells detergent packed in two plants. From past experience, the firm knows that the amount
of detergent in the boxes packed in the two plants is normally distributed. The firm takes a
random sample of 25 boxes from the output of each plant and finds that the mean weight and
standard deviation of the detergent in the boxes from plant 1 is 1064 g (2.34 lb) and 100 g,
respectively. For the sample in plant 2, the mean is 1024 g and the standard deviation is 60 g.
ðaÞ Can the firm claim with a 95% level of confidence that the boxes of detergent from plant 1
contain more than 1000 g? ðbÞ Test at the 95% level of confidence that the amount of detergent in
the boxes of both plants is the same.

Answers

1. ðaÞ See Table 2.

X ¼
P

fX

n
¼ 168:0

20
¼ 8:4%

Med ¼ L þ n=2� F

fm

c ¼ 8:0þ 20=2� 6

5
0:4 ¼ 8:32%

Mode ¼ L þ d1
d1 þ d2

c ¼ 8:0þ 1

1þ 1
0:4 ¼ 8:2%

ðbÞ See Table 3.

Table 1 Frequency Distribution of Unemployment Rate

Unemployment Rate, % Frequency

7.0–7.4 2

7.5–7.9 4

8.0–8.4 5

8.5–8.9 4

9.0–9.4 3

9.5–9.9 2

n ¼ 20
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s2 ¼
P

f ðX � XÞ2
n � 1

¼ 10:70

19
ffi 0:56% squared

s ¼
ffiffiffiffi
s2

p
ffi 0:75%

V ¼ s

X
¼ 0:75%

8:4%
ffi 0:09

Sk ¼ 3
X �med

s
¼ 3

8:40� 8:32

0:75
ffi 0:32 (see Fig. 1)ðcÞ

2. ðaÞ The problem asks to find Pð1120 < X < 1180), where X refers to time measured in hours of lifetime for
electronic component. Given � ¼ 1000 h and � ¼ 80 h and letting X1 ¼ 1120 h and X2 ¼ 1180 h, we get

z1 ¼
X1 � �

�
¼ 1120� 1000

80
¼ 1:5 and z2 ¼

1180� 1000

80
¼ 2:25
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Table 2 Calculations to Find Sample Mean, Median, and Mode

Unemployment

Rate, %

Class

Midpoint X Frequency f fX

7.0–7.4 7.2 2 14.4

7.5–7.9 7.7 4 30.8

8.0–8.4 8.2 5 41.0

8.5–8.9 8.7 4 34.8

9.0–9.4 9.2 3 27.6

9.5–9.9 9.7 2 19.4P
f ¼ n ¼ 20

P
fX ¼ 168:0

Table 3 Calculations to Find the Variance, Standard Deviation, and Coefficient of Variation

Unemployment

Rate, %

Class

Midpoint X Frequency f Mean X ðX � XÞ ðX � XÞ2 f ðX � XÞ2

7.0–7.4 7.2 2 8.4 �1:2 1.44 2.88

7.5–7.9 7.7 4 8.4 �0:7 0.49 1.96

8.0–8.4 8.2 5 8.4 �0:2 0.04 0.20

8.5–8.9 8.7 4 8.4 0.3 0.09 0.36

9.0–9.4 9.2 3 8.4 0.8 0.64 1.92

9.5–9.9 9.7 2 8.4 1.3 1.69 3.38P
f ¼ n ¼ 20

P
f ðX � XÞ2 ¼ 10:70

Fig. 1



Subtracting the value of z2 ¼ 0:4878 from the value of z1 ¼ 0:4332 (obtained from the table of the

standard normal distribution), we get

Pð1120 < X < 1180Þ ¼ 0:0546, or 5:46%

ðbÞ z1 ¼
955� 1000

80
¼ �0:5625 and z2 ¼

975� 1000

80
¼ �0:3125

Looking up z1 ¼ 0:56 in the table, we get 0.2123. For z2 ¼ 0:31, we get 0.1217. Thus
Pð955 < X < 975Þ ¼ 0:2123� 0:1217 ¼ 0:0906, or 9.06%.

ðcÞ PðX < 955Þ ¼ 0:5� 0:2123 ¼ 0:2877; or 28:77%.

ðdÞ PðX > 975Þ ¼ 0:1217þ 0:5 ¼ 0:6217 or 62:17%:

ðeÞ See Fig. 2

3. ðaÞ Since the population is normally distributed and � is known, the normal distribution can be used:

� ¼ X � z�X ¼ X � z
�ffiffiffi
n

p ¼ 110� 1:96
10ffiffiffi
2

p
5
¼ 110� 3:92

Thus � is between 106.08 and 113.92 with 95% confidence.

ðbÞ Since the distribution is normal, n < 30, and � is not known, the t rather than the normal distribution
must be used, with s as an estimate of �:

� ¼ X � t0:025
sffiffiffi
n

p t0:025 with 25 df ¼ 2:064

¼ 110� 2:064
8ffiffiffi
2

p
5

¼ 110� 3:30

Thus � is between 106.70 and 113.30 with 95% confidence.

ðcÞ The normal distribution can be used (1) if the parent population is normal, n 
 30, and � or s are

known; (2) if n 
 30 (by invoking the central-limit theorem) and using s as an estimate for �; or (3) if
n < 30 but � is given and the population from which the random sample is taken is known to be
normally distributed. The t distribution can be used (for the given degrees of freedom) when n < 30

but � is not given and the population from which the sample is taken is known to be normally
distributed. If n < 30 but either � is not given or the population from which the random sample is
taken is not known to be normally distributed, we should use Chebyshev’s inequality or increase the size

of the random sample to n 
 30 (to enable us to use the normal distribution). In reality, however, the t
distribution is used even when n < 30 and � is not known, as long as the population is normally
distributed.

4. ðaÞ Since the firm is interested in testing if � > 1000 g in plant 1, we have a right-tail test:

H0 : �1 ¼ 1000 and H1 : �1 > 1000

Since the population distribution is normal, but n < 30 and � is not known, we must use the t
distribution with n � 1 ¼ 24 degrees of freedom:
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t ¼ X1 � �1

s1=
ffiffiffi
n

p
1

¼ 1064� 1000

100=
ffiffiffi
2

p
5

¼ 3:2

The calculated value of t exceeds the tabular value of t0:05 ¼ 1:71 with 24 degrees of freedom. Thus H0

is rejected and H1 is accepted, so that the firm can claim at the 95% level of confidence that the boxes of

detergent from plant 1 contain more than 1000 g of detergent.

ðbÞ

H0 : �1 ¼ �2 or H0 : �1 � �0 ¼ 0

H1 : �1 6¼ �2 or H1 : �1 � �0 6¼ 0

�X1�X2
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1002

25
þ 602

25

s
¼

ffiffiffiffiffiffiffiffi
544

p
ffi 23:32

t ¼ ðX1 � X2Þ � ð�1 � �2Þ
�X1�X2

¼ X1 � X2 � 0

�X1�X2

¼ 1064� 1024

23:32
ffi 1:72

This is a two-tail test with n1 þ n2 � 1 ¼ 49 degrees of freedom. Since the tabular value of

t0:025 > 2:00 with 49 df, the firm can accept at the 95% level of confidence the hypothesis that

there is no difference in the amount of detergent in the boxes from both plants.
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Simple Regression
Analysis

6.1 THE TWO-VARIABLE LINEAR MODEL

The two-variable linear model, or simple regression analysis, is used for testing hypotheses about the
relationship between a dependent variable Y and an independent or explanatory variable X and for
prediction. Simple linear regression analysis usually begins by plotting the set of XY values on a scatter
diagram and determining by inspection if there exists an approximate linear relationship:

Yi ¼ b0 þ b1Xi ð6:1Þ
Since the points are unlikely to fall precisely on the line, the exact linear relationship in Eq. (6.1) must be
modified to include a random disturbance, error, or stochastic term, ui (see Sec. 1.2 and Prob. 1.8):

Yi ¼ b0 þ b1Xi þ ui ð6:2Þ
The error term is assumed to be (1) normally distributed, with (2) zero expected value or mean,

and (3) constant variance, and it is further assumed (4) that the error terms are uncorrelated or
unrelated to each other, and (5) that the explanatory variable assumes fixed values in repeated
sampling (so that Xi and ui are also uncorrelated).

EXAMPLE 1. Table 6.1 gives the bushels of corn per acre, Y , resulting from the use of various amounts of

fertilizer in pounds per acre, X, produced on a farm in each of 10 years from 1971 to 1980. These are plotted
in the scatter diagram of Fig. 6-1. The relationship between X and Y in Fig. 6-1 is approximately linear (i.e., the
points would fall on or near a straight line).

6.2 THE ORDINARY LEAST-SQUARES METHOD

The ordinary least-squares method (OLS) is a technique for fitting the ‘‘best’’ straight line to the
sample of XY observations. It involves minimizing the sum of the squared (vertical) deviations of
points from the line:

Min
X

ðYi � ŶYiÞ2 ð6:3Þ
where Yi refers to the actual observations, and ŶYi refers to the corresponding fitted values, so that
Yi � ŶYi ¼ ei, the residual. This gives the following two normal equations (see Prob. 6.6):
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X
Yi ¼ nb0 þ b̂b1

X
Xi ð6:4ÞX

XiYi ¼ b̂b0
X

Xi þ b̂b1
X

X2
i ð6:5Þ

where n is the number of observations and b̂b0 and b̂b1 are estimators of the true parameters b0 and b1.

Solving simultaneously Eqs. (6.4) and (6.5), we get [see Prob. 6.7(a)]

b̂b1 ¼
n
P

XiYi �
P

Xi

P
Yi

n
P

X2
i � P

Xi

� �2 ð6:6Þ

The value of b̂b0 is then given by [see Prob. 6.7(b)]

b̂b0 ¼ Y � b̂b1X ð6:7Þ
It is often useful to use an equivalent formula for estimating b̂b1 [see Prob. 6.10(a)]:

b̂b1 ¼
P

xi yiP
x2

i

¼ covðX;YÞ
�2X

ð6:8Þ

where xi ¼ Xi � X , and yi ¼ Yi � Y . The estimated least-squares regression (OLS) equation is then
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Table 6.1 Corn Produced with Fertilizer Used

Year n Yi Xi

1971 1 40 6

1972 2 44 10

1973 3 46 12

1974 4 48 14

1975 5 52 16

1976 6 58 18

1977 7 60 22

1978 8 68 24

1979 9 74 26

1980 10 80 32

Fig. 6-1



ŶYi ¼ b̂b0 þ b̂b1Xi ð6:9Þ

EXAMPLE 2. Table 6.2 shows the calculations to estimate the regression equation for the corn-fertilizer problem

in Table 6.1. Using Eq. (6.8),

b̂bi ¼
P

xi yiP
x2i

¼ 956

576
¼ 1:66 (the slope of the estimated regression line)

b̂b0 ¼ Y � b̂b1X ffi 57� ð1:66Þð18Þ ffi 57� 29:88 ffi 27:12 (the Y intercept)

ŶYi ¼ 27:12þ 1:66Xi (the estimated regression equation)

Thus, when Xi ¼ 0, ŶY ¼ 27:12 ¼ b̂b0. When Xi ¼ 18 ¼ X, ŶY ¼ 27:12þ 1:66ð18Þ ¼ 57 ¼ Y . As a result, the

regression line passes through point XY (see Fig. 6-2).

6.3 TESTS OF SIGNIFICANCE OF PARAMETER ESTIMATES

In order to test for the statistical significance of the parameter estimates of the regression, the
variance of b̂b0 and b̂b1 is required (see Probs. 6.14 and 6.15):

Var b̂b0 ¼ �2u

P
X2

i

n
P

x2
i

ð6:10Þ

Var b̂b1 ¼ �2u
1P
x2

i

ð6:11Þ

Since �2u is unknown, the residual variance s2 is used as an (unbiased) estimate of �2u :

s2 ¼ �̂�2u ¼
P

e2i
n � k

ð6:12Þ

where k represents the number of parameter estimates.

Unbiased estimates of the variance of b̂b0 and b̂b1 are then given by
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Table 6.2 Corn Produced with Fertilizer Used: Calculations

n
Yi

(Corn)
Xi

(Fertilizer) yi xi xiyi x2i

1 40 6 �17 �12 204 144

2 44 10 �13 �8 104 64

3 46 12 �11 �6 66 36

4 48 14 �9 �4 36 16

5 52 16 �5 �2 10 4

6 58 18 1 0 0 0

7 60 22 3 4 12 16

8 68 24 11 6 66 36

9 74 26 17 8 136 64

10 80 32 23 14 322 196

n ¼ 10
P

Yi ¼ 570

Y ¼ 57

P
Xi ¼ 180

X ¼ 18

P
yi ¼ 0

P
xi ¼ 0

P
xiyi ¼ 956

P
x2i ¼ 576



s2
b̂b0
¼
P

e2i
n � k

P
X2

i

n
P

x2
i

ð6:13Þ

s2
b̂b1
¼
P

e2i
n � k

1P
x2

i

ð6:14Þ

so that s
b̂b0
and s

b̂b1
are the standard errors of the estimates. Since ui is normally distributed, Yi and

therefore b̂b0 and b̂b1 are also normally distributed, so that we can use the t distribution with n � k
degrees of freedom, to test hypotheses about and construct confidence intervals for b̂b0 and b̂b1 (see Secs.
4.4 and 5.2).

EXAMPLE 3. Table 6.3 (an extension of Table 6.2) shows the calculations required to test the statistical signifi-
cance of b̂b0 and b̂b1. The values of ŶYi in Table 6.3 are obtained by substituting the values of Xi into the estimated
regression equation found in Example 2. (The values of y2i are obtained by squaring yi from Table 6.2 and are to be

used in Sec. 6.4.)

s2
b̂b0
¼
P

e2i
n � k

P
X2

i

n
P

x2i
ffi 47:3056

10� 2

3816

10ð576Þ ffi 3:92 and s
b̂b0
¼

ffiffiffiffiffiffiffiffiffi
3:92

p
ffi 1:98

s2
b̂b1
¼

P
e2i

ðn � kÞP x2i
ffi 47:3056

ð10� 2Þ576 ffi 0:01 and s
b̂b1
ffi

ffiffiffiffiffiffiffiffiffi
0:01

p
ffi 0:1

t0 ¼
b̂b0 � b0

s
b̂b0

ffi 27:12� 0

1:98
ffi 13:7 and t1 ¼

b̂b1 � b1
s

b̂b1

ffi 1:66

0:1
ffi 16:6Therefore
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Since both t0 and t1 exceed t ¼ 2:306 with 8 df at the 5% level of significance (from App. 5), we conclude that both b0
and b1 are statistically significant at the 5% level.

6.4 TEST OF GOODNESS OF FIT AND CORRELATION

The closer the observations fall to the regression line (i.e., the smaller the residuals), the greater is the
variation in Y ‘‘explained’’ by the estimated regression equation. The total variation in Y is equal to the
explained plus the residual variation:PðYi � YÞ2 ¼ PðŶYi � YÞ2 þ PðYi � ŶYiÞ2

Total variation in Explained variation Residual variation

Y ½or total sum of in Y ½or regression in Y ½or error sum
squares sum of squares of squares

ðTSSÞ� ¼ ðRSSÞ� þ ðESSÞ�

ð6:15Þ

Dividing both sides by TSS gives

1 ¼ RSS

TSS
þ ESS

TSS

The coefficient of determination, or R2, is then defined as the proportion of the total variation in Y
‘‘explained’’ by the regression of Y on X :

R2 ¼ RSS

TSS
¼ 1� ESS

TSS
ð6:16Þ

R2 can be calculated by

R2 ¼
P

ŷy2P
y2i

¼ 1�
P

e2iP
y2i

ð6:17Þ

where
X

ŷy2i ¼
X

ðŶYi � YiÞ2

R2 ranges in value from 0 (when the estimated regression equation explains none of the variation in Y)
to 1 (when all points lie on the regression line).

The correlation coefficient r is given by (see Prob. 6.22)

r ¼
ffiffiffiffiffiffi
R2

p
¼ covðX;YÞ

�X�Y

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b1

P
xi yiP
y2i

s
ð6:18Þ
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Table 6.3 Corn-Fertilizer Calculations to Test Significance of Parameters

Year Yi Xi ŶYi ei e2i X2
i x2i y2i

1 40 6 37.08 2:92 8.5264 36 144 289

2 44 10 43.72 0:28 0.0784 100 64 169

3 46 12 47.04 �1:04 1.0816 144 36 121

4 48 14 50.36 �2:36 5.5696 196 16 81

5 52 16 53.68 �1:68 2.8224 256 4 25

6 58 18 57.00 1:00 1.0000 324 0 1

7 60 22 63.64 �3:64 13.2496 484 16 9

8 68 24 66.96 1:04 1.0816 576 36 121

9 74 26 70.28 3:72 13.8384 676 64 289

10 80 32 80.24 �0:24 0.0576 1024 196 529

n ¼ 10
P

ei ¼ 0
P

e2i ¼ 47:3056
P

X2
i ¼ 3816

P
x2i ¼ 576

P
y2i ¼ 1634



r ranges in value from �1 (for perfect negative linear correlation) to þ1 (for perfect positive linear
correlation) and does not imply causality or dependence. With qualitative data, the rank or (the
Spearman) correlation coefficient r 0 (see Prob. 6.25) can be used.

EXAMPLE 4. The coefficient of determination for the corn-fertilizer example can be found from Table 6.3:

R2 ¼ 1�
P

e2iP
y2i

ffi 1� 47:31

1634
ffi 1� 0:0290 ffi 0:9710, or 97.10%

Thus the regression equation explains about 97% of the total variation in corn output. The remaining 3% is
attributed to factors included in the error term. Then r ¼

ffiffiffiffiffiffi
R2

p
ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9710
p ffi 0:9854, or 98.54%, and is positive

because b̂b1 is positive. Figure 6-3 shows the total, the explained, and the residual variation of Y .

6.5 PROPERTIES OF ORDINARY LEAST-SQUARES ESTIMATORS

Ordinary least-squares (OLS) estimators are best linear unbiased estimators (BLUE). Lack of bias
means

Eðb̂bÞ ¼ b

Bias ¼ Eðb̂bÞ � bso that

Best unbiased or efficient means smallest variance. Thus OLS estimators are the best among all unbiased
linear estimators [see Probs. 6.14(a) and 6.15(b)]. This is known as the Gauss-Markov theorem and
represents the most important justification for using OLS.
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Sometimes, a researcher may want to trade off some bias for a possibly smaller variance and
minimize the mean square error, MSE (see Prob. 6.29):

MSEðb̂bÞ ¼ Eðb̂b � bÞ2 ¼ var ðb̂bÞ þ ðbias b̂bÞ2

An estimator is consistent if, as the sample size approaches infinity in the limit, its value approaches
the true parameter (i.e., it is asymptotically unbiased) and its distribution collapses on the true parameter
(see Prob. 6.30).

EXAMPLE 5. OLS estimators b̂b0 and b̂b1 found in Example 2 are unbiased linear estimators of b0 and b1 because

Eðb̂b0Þ ¼ b0 and Eðb̂b1Þ ¼ b1

Var b̂b0 and var b̂b1 found in Example 3 are also lower than for any other linear unbiased estimators. Therefore b̂b0 and
b̂b1 are BLUE.

Solved Problems

THE TWO-VARIABLE LINEAR MODEL

6.1 What is meant by and what is the function of (a) Simple regression analysis? (b) Linear
regression analysis? (c) A scatter diagram? (d) An error term?

(a) Simple regression is used for testing hypotheses about the relationship between a dependent variable Y
and an independent or explanatory variable X and for prediction. This is to be contrasted with
multiple regression analysis, in which there are not one, but two or more independent or explanatory

variables. Multiple regression analysis is discussed in Chap. 7.

(b) Linear regression analysis assumes that there is an approximate linear relationship between X and Y
(i.e., the set of random sample values of X and Y fall on or near a straight line). This is to be
contrasted with nonlinear regression analysis (discussed in Sec. 8.1).

(c) A scatter diagram is a figure in which each pair of independent-dependent observations is plotted as a
point in the XY plane. Its purpose is to determine (by inspection) if there exists an approximate linear

relationship between the dependent variable Y and the independent or explanatory variable X .

(d) The error term (also known as the disturbance or stochastic term) measures the deviation of each

observed Y value from the true (but unobserved) regression line. These error terms, designated by
ui and ei, arise because of (1) numerous explanatory variables with only slight and irregular effects on
Y that are omitted from the exact linear relationship given by Eq. (6.1), (2) possible errors of

measurement in Y , and (3) random human behavior (see Prob. 1.8).

6.2 The data in Table 6.4 reports the aggregate consumption (Y , in billions of U.S. dollars) and
disposable income (X , also in billions of U.S. dollars) for a developing economy for the 12 years
from 1988 to 1999. Draw a scatter diagram for the data and determine by inspection if there
exists an approximate linear relationship between Y and X .

From Fig. 6-4 it can be seen that the relationship between consumption expenditures Y and disposable
income X is approximately linear, as required by the linear regression model.

6.3 State the general relationship between consumption Y and disposable income X in (a) exact
linear form and (b) stochastic form. (c) Why would you expect most observed values of Y not
to fall exactly on a straight line?

(a) The exact or deterministic general relationship between aggregate consumption expenditures Y and
aggregate disposable income X can be written as
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Yi ¼ b0 þ b1Xi ð6:1Þ
where i refers to each year in time-series analysis (as with the data in Table 6.4) or to each economic unit

(such as a family) in cross-sectional analysis. In Eq. (6.1), b0 and b1 are unknown constants called
parameters. Parameter b0 is the constant or Y intercept, while b1 measures �Y=�X , which, in the
context of Prob. 6.2, refers to the marginal propensity to consume (MPC) (see Sec. 1.2). The specific
linear relationship corresponding to the general linear relationship in Eq. (6.1) is obtained by estimating

the values of b0 and b1 (represented by b̂b0 and b̂b1 and read as ‘‘b sub zero hat’’ and ‘‘b sub one hat’’).

(b) The exact linear relationship in Eq. (6.1) can be made stochastic by adding a random disturbance or
error term, ui, giving

Yi ¼ b0 þ b1Xi þ ui ð6:2Þ
(c) Most observed values of Y are not expected to fall precisely on a straight line (1) because even though

consumption Y is postulated to depend primarily on disposable income X , it also may depend on
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Table 6.4 Aggregate Consumption (Y) and

Disposable Income (X)

Year n Yi Xi

1988 1 102 114

1989 2 106 118

1990 3 108 126

1991 4 110 130

1992 5 122 136

1993 6 124 140

1994 7 128 148

1995 8 130 156

1996 9 142 160

1997 10 148 164

1998 11 150 170

1999 12 154 178

Fig. 6-4



numerous other omitted variables with only slight and irregular effect on Y (if some of these other

variables had instead a significant and regular effect on Y , then they should be included as additional
explanatory variables, as in a multiple regression model); (2) because of possible errors in measuring
Y ; and (3) because of inherent random human behavior, which usually leads to different values of Y
for the same value of X under identical circumstances (see Prob. 1.8).

6.4 State each of the five assumptions of the classical regression model (OLS) and give an intuitive
explanation of the meaning and need for each of them.

1. The first assumption of the classical linear regression model (OLS) is that the random error term u is
normally distributed. As a result, Y and the sampling distribution of the parameters of the regression

are also normally distributed, so that tests can be conducted on the significance of the parameters (see
Secs. 4.2, 5.2, and 6.3).

2. The second assumption is that the expected value of the error term or its mean equals zero:

EðuiÞ ¼ 0 ð6:19Þ
Because of this assumption, Eq. (6.1) gives the average value of Y . Specifically, since X is assumed

fixed, the value of Y in Eq. (6.2) varies above and below its mean as u exceeds or is smaller than 0.
Since the average value of u is assumed to be 0, Eq. (6.1) gives the average value of Y .

3. The third assumption is that the variance of the error term is constant in each period and for all values
of X:

EðuiÞ2 ¼ �2u ð6:20Þ
This assumption ensures that each observation is equally reliable, so that estimates of the regression

coefficients are efficient and tests of hypotheses about them are not biased. These first three assump-
tions about the error term can be summarized as

u � Nð0; �2uÞ ð6:21Þ
4. The fourth assumption is that the value which the error term assumes in one period is uncorrelated or

unrelated to its value in any other period:

EðuiujÞ ¼ 0 for i 6¼ j; i; j ¼ 1; 2; . . . ; n ð6:22Þ
This ensures that the average value of Y depends only on X and not on u, and it is, once again, required
in order to have efficient estimates of the regression coefficients and unbiased tests of their significance.

5. The fifth assumption is that the explanatory variable assumes fixed values that can be obtained in
repeated samples, so that the explanatory variable is also uncorrelated with the error term:

EðXiuiÞ ¼ 0 ð6:23Þ
This assumption is made to simplify the analysis.

THE ORDINARY LEAST-SQUARES METHOD

6.5 (a) What is meant by the ordinary least-squares (OLS) method of estimating the ‘‘best’’ straight
line that fits the sample of XY observations? (b) Why do we take vertical deviations? (c) Why
do we not simply take the sum of the deviations without squaring them? (d) Why do we not take
the sum of the absolute deviations?

(a) The OLS method gives the best straight line that fits the sample of XY observations in the sense that it
minimizes the sum of the squared (vertical) deviations of each observed point on the graph from the

straight line.

(b) We take vertical deviations because we are trying to explain or predict movements in Y , which is
measured along the vertical axis.

(c) We cannot take the sum of the deviations of each of the observed points from the OLS line because
deviations that are equal in size but opposite in sign cancel out, so the sum of the deviations equals 0
(see Table 6.2).
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(d) Taking the sum of the absolute deviations avoids the problem of having the sum of the deviations equal

to 0. However, the sum of the squared deviations is preferred so as to penalize larger deviations
relatively more than smaller deviations.

6.6 Starting from Eq. (6.3) calling for the minimization of the sum of the squared deviations or
residuals, derive (a) normal Eq. (6.4) and (b) normal Eq. (6.5). (The reader without knowl-
edge of calculus can skip this problem.)X

e2i ¼
X

ðYi � ŶYiÞ2 ¼
X

ðYi � b̂b0 � b̂b1XiÞ2ðaÞ
Normal Eq. (6.4) is derived by minimizing

P
e2i with respect to b̂b0:

@
P

e2i

@b̂b0
¼ @

PðYi � b̂b0 � b̂b1XiÞ2
@b̂b0

¼ 0

2
X

ðYi � b̂b0 � b̂b1XiÞð�1Þ ¼ 0X
ðYi � b̂b0 � b̂b1XiÞ ¼ 0X

Yi ¼ nb̂b0 þ b̂b1
X

Xi ð6:4Þ
(b) Normal Eq. (6.5) is derived by minimizing

P
e2i with respect to b̂b1:

@
P

e2i

@b̂b1
¼ @

PðYi � b̂b0 � b̂b1XiÞ2
@b̂b1

¼ 0

2
X

ðYi � b̂b0 � b̂b1XiÞð�XiÞ ¼ 0X
ðYiXi � b̂b0Xi � b̂b1X

2
i Þ ¼ 0X

YiXi ¼ b̂b0
X

Xi þ b̂b1
X

X2
i ð6:5Þ

6.7 Derive (a) Eq. (6.6) to find b̂b1 and (b) Eq. (6.7) to find b̂b0. [Hint for part a: Start by
multiplying Eq. (6.5) by n and Eq. (6.4) by

P
Xi.]

(a) Multiplying Eq. (6.5) by n and Eq. (6.4) by
P

Xi, we get

n
X

XiYi ¼ b̂b0n
X

Xi þ b̂b1n
X

X2
i ð6:24ÞX

Xi

X
Yi ¼ b̂b0n

X
Xi þ b̂b1

X
Xi

� �2
ð6:25Þ

Subtracting Eq. (6.25) from Eq. (6.24), we get

n
X

XiYi �
X

Xi

X
Yi ¼ b̂b1 n

X
X2

i �
X

Xi

� �2
 �
ð6:26Þ

Solving Eq. (6.26) for b̂b1, we get

b̂b1 ¼
n
P

XiYi �
P

Xi

P
Yi

n
P

X2
i � P

Xi

� �2 ð6:6Þ

(b) Equation (6.7) is obtained by simply solving Eq. (6.4) for b̂b0:X
Yi ¼ nb̂b0 þ b̂b1

X
Xi ð6:4Þ

b̂b0 ¼
P

Yi

n
� b̂b1

P
Xi

n

¼ Y � b̂b1X ð6:7Þ

6.8 (a) State the difference between b0 and b1, on one hand, and b̂b0 and b̂b1 on the other hand.
(b) State the difference between ui and ei. (c) Write the equations for the true and estimated
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relationships between X and Y . (d) Write the equations for the true and estimated regression
lines between X and Y .

(a) b0 and b1 are the parameters of the true but unknown regression line, while b̂b0 and b̂b1 are the parameters
of the estimated regression line.

(b) ui is the random disturbance, error, or stochastic term in the true but unknown relationship between X

and Y . However, ei is the residual between each observed value of Y and its corresponding fitted value
ŶY in the estimated relationship.

(c) The equations for the true and estimated relationships between X and Y are, respectively,

Yi ¼ b0 þ b1Xi þ ui ð6:2Þ
Yi ¼ b̂b0 þ b̂b1Xi þ ei ð6:27Þ

(d) The equations for the true and estimated regressions between X and Y are, respectively,

EðYiÞ ¼ b0 þ b1Xi ð6:28Þ
ŶYi ¼ b̂b0 þ b̂b1Xi ð6:9Þ

6.9 (a) Find the regression equation for the consumption schedule in Table 6.4, using Eq. (6.6) to find

b̂b1. (b) Plot the regression line and show the deviations of each Yi from the corresponding ŶYi.

(a) Table 6.5 shows the calculations to find b̂b1 and b̂b0 for the data in Table 6.4.

b̂b1 ¼
n
P

XiYi �
P

Xi

P
Yi

n
P

X2
i � P

Xi

� �2 ¼ ð12Þð225,124Þ � ð1740Þð1524Þ
ð12Þð257,112Þ � ð1740Þ2 ¼ 2,701,488� 2,651,760

3,085,344� 3,027,600

¼ 49,728

57,744
ffi 0:86

b̂b0 ¼ Y � b̂b1X ffi 127� 0:86ð145Þ ffi 127� 124:70 ffi 2:30

Thus the equation for the estimated consumption regression is ŶYi ¼ 2:30þ 0:86X̂Xi.

(b) To plot the regression equation, we need to define any two points on the regression line. For example,

when Xi ¼ 114, Yi ¼ 2:30þ 0:86ð114Þ ¼ 100:34. When Xi ¼ 178, Yi ¼ 2:30þ 0:86ð178Þ ¼ 155:38.
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Table 6.5 Aggregate Consumption and Disposable Income: Calculations

n Yi Xi XiYi X2
i

1 102 114 11,628 12,996

2 106 118 12,508 13,924

3 108 126 13,608 15,876

4 110 130 14,300 16,900

5 122 136 16,592 18,496

6 124 140 17,360 19,600

7 128 148 18,944 21,904

8 130 156 20,280 24,336

9 142 160 22,720 25,600

10 148 164 24,272 26,896

11 150 170 25,500 28,900

12 154 178 27,412 31,684

n ¼ 12
P

Yi ¼ 1524
Y ¼ 127

P
Xi ¼ 1740
X ¼ 145

P
XiYi ¼ 225,124

P
X2

i ¼ 257,112



The consumption regression line is plotted in Fig. 6-5, where the positive and negative residuals are also

shown. The regression line represents the best fit to the random sample of consumption–disposable
income observations in the sense that it minimizes the sum of the squared (vertical) deviations from the
line.

6.10 (a) Starting with Eq. (6.6), derive the equation for b̂b1 in deviation form for the case where
X ¼ Y ¼ 0. (b) What is the value of b̂b0 when X ¼ Y ¼ 0?

(a) Starting with Eq. (6.6) for b̂b1

b̂b1 ¼
n
P

XiYi �
P

Xi

P
Yi

n
P

X2
i � P

Xi

� �2 ð6:6Þ

we divide numerator and denominator by n2 and get

b̂b ¼
P

XiYi=n � P
Xi=n

� � P
Yi=n

� �P
X2

i =n � P
Xi=n

� �2
¼
P

XiYi=n � XYP
X2

i =n � X
2

¼
P

XiYiP
X2

i

since X ¼ Y ¼ 0 and canceling the n terms

¼
P

xiyiP
x2i

since X ¼ Y ¼ 0 ð6:8Þ

(b) Starting with Eq. (6.7) for b̂b0, we obtain

b̂b0 ¼ Y � b̂b1X ð6:7Þ

and substituting 0 for X and Y , we get

b̂b0 ¼ 0� b̂b1ð0Þ ¼ 0
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6.11 With respect to the data in Table 6.4, (a) find the value of b̂b1 using Eq. (6.8), and (b) plot the
regression line on a graph measuring the variables as deviations from their respective means.
How does this regression line compare with the regression line plotted in Fig. 6-5?

(a) Table 6.6 shows the calculations to find b̂b1 for the data in Table 6.4. In deviation form (note thatP
yi ¼

P
xi ¼ 0):

b̂b1 ¼
P

xiyiP
x2i

¼ 4144

4812
ffi 0:86 [the same as in Prob. 6.9ðaÞ�

(b) From Prob. 6.10ðbÞ we know that the regression line crosses the origin when plotted on a graph with the

axis measuring the variables in deviation form, and from part a of this problem we know that this

regression line has the same slope as the regression line in Fig. 6-5. See Fig. 6-6.

6.12 In the context of Prob. 6.9(a), what is the meaning of: (a) Estimator b̂b0? (b) Estimator b̂b1?
(c) Find the income elasticity of consumption.

(a) Estimator b̂b0 ffi 2:30 is the Y intercept, or the value of aggregate consumption, in billions of dollars,

when disposable income, also in billions of dollars, is 0. The fact that b̂b0 > 0 confirms what was

anticipated on theoretical grounds in Example 3 in Chap. 1.
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Table 6.6 Aggregate Consumption and Disposable Income: Alternative Calculations

n Yi Xi yi xi xiyi x2
i

1 102 114 �25 �31 775 961

2 106 118 �21 �27 567 729

3 108 126 �19 �19 361 361

4 110 130 �17 �15 255 225

5 122 136 �5 �9 45 81

6 124 140 �3 �5 15 25

7 128 148 1 3 3 9

8 130 156 3 11 33 121

9 142 160 15 15 225 225

10 148 164 21 19 399 361

11 150 170 23 25 575 625

12 154 178 27 33 891 1089P
yi ¼ 0

P
xi ¼ 0

P
xiyi ¼ 4144

P
x2i ¼ 4812

Fig. 6-6



(b) Estimator b̂b1 ¼ dY=dX ffi 0:86 is the slope of the estimated regression line. It measures the marginal

propensity to consume (MPC) or the change in consumption per one-unit change in disposable income.
Once again, the fact that 0 < b̂b1 < 1 confirms what was anticipated on theoretical grounds in Example 3
in Chap. 1.

(c) The income elasticity of consumption � measures the percentage change in consumption resulting from
a given percentage change in disposable income. Since the elasticity usually changes at every point in
the function, it is measured at the means:

� ¼ b̂b1
X

Y
ð6:29Þ

For the data in Table 6.4

� ¼ 0:86
145

127
ffi 0:98

Note that elasticity, as opposed to the slope, is a pure (unit-free) number.

TESTS OF SIGNIFICANCE OF PARAMETER ESTIMATES

6.13 Define (a) �2u and s2, (b) var b̂b0 and var b̂b1, (c) s2
b̂b0
and s2

b̂b1
, and (d) s

b̂b0
and s

b̂b1
.

(a) �2u is the variance of the error term in the true relationship between Xi and Yi. However, s2 ¼ �2u ¼P
e2i =ðn � kÞ is the residual variance and is an (unbiased) estimate of �2u , which is unknown. k is the

number of estimated parameters. In simple regression analysis, k ¼ 2. Thus n � k ¼ n � 2 and refers
to the degrees of freedom.

(b) Var b̂b0 ¼ �2u
P

Xi=n
P

x2
i , while var b̂b1 ¼ �2u=

P
x2i . The variances of b̂b0 and b̂b1 (or their estimates) are

required to test hypotheses about and construct confidence intervals for b̂b0 and b̂b1.

s2
b̂b0
¼ s2

P
X2

i

n
P

x2i
¼

P
e2i
P

X2
i

ðn � kÞnP x2
i

and s2
b̂b1
¼ s2P

x2
i

¼
P

e2i
ðn � kÞPx2

i

ðcÞ

s2
b̂b0
and s2

b̂b1
are, respectively, (unbiased) estimates of var b̂b0 and var b̂b1, which are unknown since �2u is

unknown.

(d) s
b̂b0
¼

ffiffiffiffiffiffi
s2

b̂b0

q
and s

b̂b1
¼

ffiffiffiffiffiffi
s2

b̂b1

q
. s

b̂b0
and s

b̂b1
are, respectively, the standard deviations of b̂b0 and b̂b1 and are

called the standard errors.

6.14 Prove that (a) mean b̂b1 ¼ b1, and (b) var b̂b1 ¼ �2u=
P

x2
i

(c) mean b̂b0 ¼ b0, and (d) var b̂b0 ¼ �2uð
P

X2
i =n

P
x2

i Þ

b̂b1 ¼
P

xiyiP
x2i

¼
P

xiðYi � YÞP
x2i

¼
P

xiYiP
x2i

�
P

xiYP
x2

i

¼
P

xiYiP
X2

i

since
X

xi ¼ 0ðaÞ

¼
X

ciYi

where ci ¼ xi=
P

x2i ¼ constant because of assumption 5 (Sec. 6.1)

b̂b1 ¼
X

ciYi ¼
X

ciðb0 þ b1Xi þ uiÞ ¼ b0
X

ci þ b1
X

ciXi þ
X

ciui

¼ b1 þ
X

ciui ¼ b1 þ
P

xiuiP
x2i

since
P

ci ¼
P

xi=
P

x2i ¼ 0 (because
P

xi ¼ 0Þ andX
ciXi ¼

P
xiXiP
x2

i

¼
PðXi � XÞXiPðXi � XÞ2 ¼

P
X2

i � X
P

XiP
X2

i � 2X
P

Xi þ nX
2
¼
P

X2
i � X

P
XiP

X2
i � X

P
Xi

¼ 1

Eðb̂b1Þ ¼ Eðb1Þ þ E

P
xiuiP
x2

i


 �
¼ Eðb1Þ þ

1P
x2i

E
X

xiui

� �
¼ b1

since b1 is a constant and EðPxiuiÞ ¼ 0 because of assumption 5 (Sec. 6.1).
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(b) From part a, we obtain

b1 ¼
P

xiYiP
x2i

¼
X

ciYi

Var b̂b1 ¼ var
X

ciYi

� �
¼
X

c2i varYi ¼
X

c2i �
2
u

since Yi varies only because of ui with Xi assumed fixed.

Var b̂b1 ¼
X

c2i �
2
u ¼

X xiP
x2

i

� �2

�2u ¼
P

x2iP
x2i

� �2 �2u ¼ �2uP
x2i

b̂b0 ¼ Y � b̂b1X ¼
P

Yi

n
� X

X
ciYi (from part aÞðcÞ

b̂b0 ¼
P

Yi

n
� X

X
ciYi ¼

X 1

n
� Xci

� �
Yi

Eðb0Þ ¼
X 1

n
� Xci

� �
EðYiÞ ¼

X 1

n
� Xci

� �
ðb0 þ b1XiÞ [from Eq. (6.1) in Prob. 6.8(dÞ�

Cross multiplying,

Eðb0Þ ¼
X b0

n
� Xcib0 þ

b1Xi

n
� Xcib1Xi

� �
¼ b0 þ b1X � b1X ¼ b0

because
P

ci ¼ 0 and
P

ciXi ¼ 1, from part a.

(d) We saw in part c that

b̂b0 ¼
X 1

n
� Xci

� �
Yi

Var b̂b0 ¼ var
X 1

n
� Xci

� �
Yi


 �
¼
X 1

n
� Xci

� �2

varYi ¼ �2u
X 1

n
� Xci

� �2

Var b̂b0 ¼ �2u
X 1

n2
� 2Xci

n
þ X

2
c2i

� �
¼ �2u

1

n
þ X

2P
x2i

 !
¼ �2u

P
x2i þ nX

2

n
P

x2
i

since
P

ci ¼ 0 and
P

c2i ¼ 1=
P

x2
i .

Var b̂b0 ¼ �2u

P
x2i þ nX

2

n
P

x2
i

¼ �2u

P
X2

i � nX
2 þ nX

2

n
P

x2i
¼ �2u

P
X2

i

n
P

x2i

since in part a we saw that
P

x2i ¼P
X2

i � nX
2
.

6.15 For the aggregate consumption-income observations in Table 6.4, find (a) s2, (b) s2
b̂b0
and s

b̂b0
,

(c) s2
b̂b1
and s

b̂b1
.

(a) The calculations required to find s2 are shown in Table 6.7, which is an extension of Table 6.6. The
values for ŶYi in Table 6.7 are obtained by substituting the values for Xi into the regression equation
found in Prob. 6.9(a):

s2 ¼ �̂�2u ¼
P

e2i
n � k

¼ 115:2752

12� 2
¼ 11:52752 ffi 11:53

s2
b̂b0
¼
P

e2i
n � k

P
X2

i

n
P

x2
i

¼ s
P

X2
i

n
P

x2
i

ffi ð11:53Þð257,112Þ
ð12Þð4812Þ ffi 51:34ðbÞ

s
b̂b0
¼

ffiffiffiffiffiffi
s2

b̂b0

q
ffi

ffiffiffiffiffiffiffiffiffiffiffi
51:34

p
ffi 7:17Then
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s2
b̂b1
¼

P
e2i

ðn � kÞPx2
i

¼ s2P
x2

i

ffi 11:53

4812
ffi 0:0024ðcÞ

s
b̂b1
¼

ffiffiffiffiffiffi
s2

b̂b1

q
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0024

p
ffi 0:05Then

6.16 (a) State the null and alternative hypotheses to test the statistical significance of the parameters of
the regression equation estimated in Prob. 6.9(a). (b) What is the form of the sampling dis-
tribution of b̂b0 and b̂b1? (c) Which distribution must we use to test the statistical significance of b0
and b1? (d) What are the degrees of freedom?

(a) To test for the statistical significance of b0 and b1, we set the following null hypothesis, H0, and
alternative hypothesis, H1 (see Sec. 5.2):

H0: b0 ¼ 0 versus H1: b0 6¼ 0

H0: b1 ¼ 0 versus H1: b1 6¼ 0

The hope in regression analysis is to reject H0 and to accept H1, that b0 and b1 6¼ 0, with a two-tail test.

(b) Since ui is assumed to be normally distributed (assumption 1 in Sec. 6.1), Yi is also normally distributed
(since Xi is assumed to be fixed—assumption 5). As a result, b̂b0 and b̂b1 also will be normally

distributed.

(c) To test the statistical significance of b0 and b1, the t distribution (from App. 5) must be used because b̂b0
and b̂b1 are normally distributed, but var b̂b0 and var b̂b1 are unknown (since �2u is unknown) and n < 30

(see Sec. 4.4).

(d) The degrees of freedom are n � k, where n is the number of observations and k is the number of

parameters estimated. Since in simple regression analysis, two parameters are estimated ðb̂b0 and
b̂b1), df ¼ n � k ¼ n � 2.

6.17 Test at the 5% level of significance for (a) b0 and (b) b1 in Prob. 6.9(a):

t0 ¼
b̂b0 � b0

s
b̂b0

ffi 2:30� 0

7:17
ffi 0:32ðaÞ
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Table 6.7 Consumption Regression: Calculations to Test Significance of Parameters

Year Yi Xi ŶYi ei e2i X2
i x2

i

1 102 114 100.34 1:66 2.7556 12,996 961

2 106 118 103.78 2:22 4.9284 13,924 729

3 108 126 110.66 �2:66 7.0756 15,876 361

4 110 130 114.10 �4:10 16.8100 16,900 225

5 122 136 119.26 2:74 7.5076 18,496 81

6 124 140 122.70 1:30 1.6900 19,600 25

7 128 148 129.58 �1:58 2.4964 21,904 9

8 130 156 136.46 �6:46 41.7316 24,336 121

9 142 160 139.90 2:10 4.4100 25,600 225

10 148 164 143.34 4:66 21.7156 26,896 361

11 150 170 148.50 1:50 2.2500 28,900 625

12 154 178 155.38 �1:38 1.9044 31,684 1089P
ei ¼ 0

P
e2i ¼ 115:2752

P
X2

i ¼ 27,112
P

x2i ¼ 4812



Since t0 is smaller than the tabular value of t ¼ 2:228 at the 5% level (two-tail test) and with 10 df (from

App. 5), we conclude that b0 is not statistically significant at the 5% level (i.e., we cannot reject H0, that
b0 ¼ 0).

t1 ¼
b̂b1 � b1

s
b̂b1

ffi 0:86� 0

0:05
ffi 17:2ðbÞ

So b1 is statistically significant at the 5% (and 1%) level (i.e., we cannot reject H1, that b1 6¼ 0).

6.18 Construct the 95% confidence interval for (a) b0 and (b) b1 in Prob. 6.9(a).

(a) The 95% confidence interval for b0 is given by (Sec. 4.4)

b0 ¼ b̂b0 � 2:228s
b̂b0
¼ 2:30� 2:228ð7:17Þ ¼ 2:30� 15:97

So b0 is between �13:67 and 18.27 with 95% confidence. Note how wide (and meaningless) the 95%
confidence interval b0 is, reflecting the fact that b̂b0 is highly insignificant.

(b) The 95% confidence interval for b1 is given by

b1 ¼ b̂b1 � 2:228s
b̂b1
¼ 0:86� 2:228ð0:05Þ ¼ 0:86� 0:11

So b1 is between 0.75 and 0.97 (i.e., 0:75 < b1 < 0:97) with 95% confidence.

TEST OF GOODNESS OF FIT AND CORRELATION

6.19 Derive the formula for R2.

The coefficient of determination R2 is defined as the proportion of the total variation in Y ‘‘explained’’

by the regression of Y on X . The total variation in Y or total sum of squares TSS ¼PðYi � YÞ2 ¼P
y2i .

The explained variation in Y or regression sum of squares RSS ¼PðŶYi � YÞ2 ¼P
ŷy2i . The residual

variation in Y or error sum of squares ESS ¼PðYi � ŶYiÞ2 ¼
P

e2i .

TSS ¼ RSS þ ESSX
ðYi � YÞ2 ¼PðŶYi � YÞ2 þ PðYi � ŶYiÞ2X
y2i ¼P

ŷy2i þ P
e2i

Dividing both sides by
P

y2i , we getP
y2iP
y2i

¼
P

ŷy2iP
y2i

þ
P

e2iP
y2i

1 ¼
P

ŷy2iP
y2i

þ
P

e2iP
y2i

R2 ¼
P

ŷy2iP
y2i

¼ 1�
P

e2iP
y2i

Therefore

R2 is unit-free and 0 � R2 � 1 because 0 � ESS � TSS. R2 ¼ 0 when, for example, all sample points lie on a
horizontal line Y ¼ Y or on a circle. R2 ¼ 1 when all sample points lie on the estimated regression line,
indicating a perfect fit.

6.20 (a) What does the correlation coefficient measure? What is its range of values? (b) What is the
relationship between correlation and regression analysis?

(a) The correlation coefficient measures the degree of association between two or more variables. In the
two-variable case, the simple linear correlation coefficient, r, for a set of sample observations is given by

r ¼
ffiffiffiffiffi
R2
p

¼
P

xiyiffiffiffiffiffiffiffiffiffiffiffiP
x2i

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b1

P
xiyiP
y2i

s
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�1 � r � þ1. r < 0 means that X and Y move in opposite directions, such as, for example, the

quantity demanded of a commodity and its price. r > 0 indicates that X and Y change in the same
direction, such as the quantity supplied of a commodity and its price. r ¼ �1 refers to a perfect
negative correlation (i.e., all the sample observations lie on a straight line of negative slope); however,
r ¼ 1 refers to perfect positive correlation (i.e., all the sample observations lie on a straight line of

positive slope). r ¼ �1 is seldom found. The closer r is to �1, the greater is the degree of positive or
negative linear relationship. It should be noted that the sign of r is always the same as that of b̂b1. A
zero correlation coefficient means that there exists no linear relationship whatsoever between X and Y

(i.e., they tend to change with no connection with each other). For example, if the sample observations
fall exactly on a circle, there is a perfect nonlinear relationship but a zero linear relationship, and r ¼ 0.

(b) Regression analysis implies (but does not prove) causality between the independent variable X and
dependent variable Y . However, correlation analysis implies no causality or dependence but refers
simply to the type and degree of association between two variables. For example, X and Y may be

highly correlated because of another variable that strongly affects both. Thus correlation analysis is a
much less powerful tool than regression analysis and is seldom used by itself in the real world. In fact,
the main use of correlation analysis is to determine the degree of association found in regression

analysis. This is given by the coefficient of determination, which is the square of the correlation
coefficient.

6.21 Derive the equation (a) r ¼P
xiyi=ð

ffiffiffiffiffiffiffiffiffiffiffiP
x2

i

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p
Þ (Hint: Start by showing that

P
xiyi is a

measure of association between X and Y .) and (b) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b1ð
P

xiyi=
P

y2i Þ
q

[Hint: Start with

r ¼P
xiyi=ð

ffiffiffiffiffiffiffiffiffiffiffiP
x2

i

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p
Þ:�

(a)
P

xiyi provides a measure of the association between X and Y because if X and Y both rise or fall,
xiyi > 0, while if X rises and Y falls, or vice versa, xiyi < 0. If all or most sample observations involve
a rise or fall in both X and Y ,

P
xiyi > 0 and large, implying a large positive correlation. If all or most

sample observations involve opposite changes in X and Y , then
P

xiyi < 0 and large, implying a large
negative correlation. If, however, some X and Y observations move in the same direction, while others
move in opposite directions,

P
xiyi will be smaller, indicating a small net positive or negative

correlation. However, measuring the degree of association by
P

xiyi has two disadvantages.
First, the greater is the number of sample observations, the larger is

P
xiyi; and second,

P
xiyi is

expressed in the units of the problem. These problems can be overcome by dividing
P

xiyi by n (the

number of sample observations) and by the standard deviation of X and Y ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x2i =n
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

y2i =n
p

Þ.
Then P

xiyi

n
¼ covariance of X and Y ð6:30Þ

and

P
xiyi

n

ffiffiffiffiffiffiffiffiffiffiffiP
x2i

n

r ffiffiffiffiffiffiffiffiffiffiffiP
y2i

n

r ¼
P

xiyiffiffiffiffiffiffiffiffiffiffiffiP
x2i

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p ¼ r

r ¼
P

xiyiffiffiffiffiffiffiffiffiffiffiffiP
x2i

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xiyi

p ffiffiffiffiffiffiffiffiffiffiffiP
x2i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xiyi

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b1

P
xiyiP
y2i

s
ðbÞ

6.22 Find R2 for the estimated consumption regression of Prob. 6.9 using the equation (a) R2 ¼P
ŷy2i =

P
y2i and (b) R2 ¼ 1�P

e2i =
P

y2i .

(a) From Prob. 6.19, we know that
P

y2i ¼P
ŷy2i þ

P
e2i , so

P
ŷy2i ¼P

y2i �
P

e2i . Since
P

y2i ¼ 3684 (by

squaring and adding the yi terms from Table 6.6) and
P

e2i ¼ 115:2572 (from Table 6.7)
P

ŷy2i ¼ 3684 �
115:2572 ¼ 3568:7428. Thus

R2 ¼
P

ŷy2iP
y2i

¼ 3568:7428

3684
ffi 0:9687, or 96:87%
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(b) Using
P

e2i ¼ 115:2572 and
P

y2i ¼ 3684, we get

R2 ¼ 1�
P

e2iP
y2i

¼ 1� 115:2572

3684
ffi 0:9687, or 96:87%

(as in part a).

6.23 Find r for the estimated consumption regression in Prob. 6.9 using (a)
ffiffiffiffiffiffi
R2

p
, (b) r ¼P

xiyi=

ð
ffiffiffiffiffiffiffiffiffiffiffiP

x2
i

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p
Þ, and (c) r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b1ð
P

xiyi=
P

y2i

q
Þ.

(a) r ¼
ffiffiffiffiffiffi
R2

p
ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9687
p ffi 0:9842 and is positive because b̂b1 > 0.

(b) Using
P

xiyi ¼ 4144 and
P

x2i ¼ 4812 from Table 6.6 and
P

y2i ¼ 3684 from Prob. 6.22(a), we get

r ¼
P

xiyiffiffiffiffiffiffiffiffiffiffiffiP
x2i

p ffiffiffiffiffiffiffiffiffiffiffiP
y2i

p ffi 4144ffiffiffiffiffiffiffiffiffiffi
4812

p ffiffiffiffiffiffiffiffiffiffi
3684

p ffi 0:9841

The very small difference between the value of r found here and that found in part a results from
rounding errors.

(c) Using b̂b1 ffi 0:86 found in Prob. 6.9(a), we obtain

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b1

P
xiyiP
y2i

s
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:86Þð4144Þ

3684

r
ffi 0:9836

6.24 (a) Find the rank or Spearman correlation coefficient between the midterm grade and the IQ
ranking of a random sample of 10 students in a large class, as given in Table 6.8, using Eq. (6.31).
(b) When is the rank correlation used?

ðaÞ r 0 ¼ 1� 6
P

D2

nðn2 � 1Þ ð6:31Þ

where D is the difference between ranks of corresponding pairs of the two variables (either in ascending
or descending order, with the mean rank assigned to observations of the same value) and n is the
number of observations.

The calculations to find r 0 are given in Table 6.9.

r 0 ¼ 1� 6
P

D2

nðn2 � 1Þ ¼ 1� 6ð10:50Þ
10ð99Þ ¼ 1� 63

990
ffi 0:94

(b) Rank correlation is used with qualitative data such as profession, education, or sex, when, because of
the absence of numerical values, the coefficient of correlation cannot be found. Rank correlation also
is used when precise values for all or some of the variables are not available (so that, once again, the

coefficient of correlation cannot be found). Furthermore, with a great number of observations of large
values, r 0 can be found as an estimate of r in order to avoid very time-consuming calculations (however,
easy accessibility to computers has practically eliminated this reason for using r 0).
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Table 6.8 Midterm Grade and IQ Ranking

Student 1 2 3 4 5 6 7 8 9 10

Midterm grade 77 78 65 84 84 88 67 92 68 96

IQ ranking 7 6 8 5 4 3 9 1 10 2



PROPERTIES OF ORDINARY LEAST-SQUARES ESTIMATORS

6.25 (a) What is meant by an unbiased estimator? How is bias defined? (b) Draw a figure showing
the sampling distribution of an unbiased and a biased estimator.

(a) An estimator is unbiased if the mean of its sampling distribution equals the true parameter. The mean

of the sampling distribution is the expected value of the estimator. Thus lack of bias means that

Eðb̂bÞ ¼ b, where b̂b is the estimator of the true parameter, b. Bias is then defined as the difference

between the expected value of the estimator and the true parameter; that is, bias ¼ Eðb̂bÞ � b. Note that

lack of bias does not mean that b̂b ¼ b, but that in repeated random sampling, we get, on average, the

correct estimate. The hope is that the sample actually obtained is close to the mean of the sampling

distribution of the estimator.

(b) Figure 6-7a shows the sampling distribution of an estimator that is unbiased, and Fig. 6-7b shows one

that is biased.

6.26 (a) What is meant by the best unbiased or efficient estimator? Why is this important? (b) Draw
a figure of the sampling distribution of two unbiased estimators, one of which is efficient.

(a) The best unbiased or efficient estimator refers to the one with the smallest variance among unbiased

estimators. It is the unbiased estimator with the most compact or least spread-out distribution. This is

very important because the researcher would be more certain that the estimator is closer to the true

population parameter being estimated. Another way of saying this is that an efficient estimator has the
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Table 6.9 Calculations to Find the Coefficient of Rank Correlation

n
Midterm
Grade

Ranking on
Midterm

IQ
Ranking D D2

1 96 1 2 �1 1

2 92 2 1 1 1

3 88 3 3 0 0

4 84 4.5 4 0:5 0.25

5 84 4.5 5 �0:5 0.25

6 78 6 6 0 0

7 77 7 7 0 0

8 68 8 10 �2 4

9 67 9 9 0 0

10 65 10 8 2 4P
D2 ¼ 10:50

Fig. 6-7



smallest confidence interval and is more likely to be statistically significant than any other estimator. It

should be noted that minimum variance by itself is not very important, unless coupled with the lack of

bias.

(b) Figure 6-8a shows the sampling distribution of an efficient estimator, while Fig. 6-8b shows an ineffi-

cient estimator.

6.27 Why is the OLS estimator so widely used? Is it superior to all other estimators?

The OLS estimator is widely used because it is BLUE (best linear unbiased estimator). That is, among
all unbiased linear estimators, it has the lowest variance. The BLUE properties of the OLS estimator is

often referred to as the Gauss-Markov theorem. However, nonlinear estimators may be superior to the OLS
estimator (i.e., they might be unbiased and have lower variance). Since it is often difficult or impossible to
find the variance of unbiased nonlinear estimators, however, the OLS estimator remains by far the most
widely used. The OLS estimator, being linear, is also easier to use than nonlinear estimators.

6.28 (a) What is meant by the mean-square error? Why and when is the rule to minimize the mean-
square error useful? (b) Prove that the mean-square error equals the variance plus the square of
the bias of the estimator.

MSEðb̂bÞ ¼ Eðb̂b � bÞ2 ¼ var b̂b þ ðbias b̂bÞ2ðaÞ
The rule to minimize the MSE arises when the researcher faces a slightly biased estimator but with a
smaller variance than any unbiased estimator. The researcher is then likely to choose the estimator

with the lowest MSE. This rule penalizes equally for the larger variance or for the square of the bias of
an estimator. However, this is used only when the OLS estimator has an ‘‘unacceptably large’’
variance.

MSEðb̂bÞ ¼ Eðb̂b � bÞ2ðbÞ
¼ E½b̂b � Eðb̂bÞ þ Eðb̂bÞ � b�2

¼ E½b̂b � Eðb̂bÞ�2 þ ½Eðb̂bÞ � b�2 þ 2Ef½b̂b � Eðb̂bÞ�½Eðb̂bÞ � b�g
¼ var b̂b þ ðbias b̂bÞ2

because E½b̂b � Eðb̂bÞ�2 ¼ var b̂b, ½Eðb̂bÞ � b�2 ¼ ðbias b̂bÞ2, and Ef½b̂b � Eðb̂bÞ�½Eðb̂bÞ � b�g ¼ 0 because this
expression is equal to Efb̂bEðb̂bÞ � ½Eðb̂bÞ�2 � b̂bb þ bEðb̂bÞg ¼ ½Eðb̂bÞ�2 � ½Eðb̂bÞ�2 � bEðb̂bÞ þ bEðb̂bÞ ¼ 0.

6.29 (a) What is meant by consistency? (b) Draw a figure of the sampling distribution of a consistent
estimator.

(a) Two conditions are required for an estimator to be consistent: (1) as the sample size increases, the
estimator must approach more and more the true parameter (this is referred to as asymptotic unbiased-
ness); and (2) as the sample size approaches infinity in the limit, the sampling distribution of the
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estimator must collapse or become a straight vertical line with height (probability) of 1 above the value

of the true parameter. This large-sample property of consistency is used only in situations when small-

sample BLUE or lowest MSE estimators cannot be found.

(b) In Fig. 6-9, b̂b is a consistent estimator of b because as n increases, b̂b approaches b, and as n approaches

infinity in the limit, the sampling distribution of b̂b collapses on b.

SUMMARY PROBLEM

6.30 Table 6.10 gives the per capita income to the nearest $100 (Y) and the percentage of the economy
represented by agriculture (X) reported by the World Bank World Development Indicators for
1999 for 15 Latin American countries. (a) Estimate the regression equation of Yi on Xi.
(b) Test at the 5% level of significance for the statistical significance of the parameters.
(c) Find the coefficient of determination. (d) Report the results obtained in part a in standard
summary form.

(a) The first seven columns of Table 6.11 are used to answer part a. The rest of the table is filled by

utilizing the results of part a in order to answer parts b and c of this problem.

b̂b1 ¼
P

xiyiP
x2i

¼ �1149
442

ffi �2:60

b̂b0 ¼ Y � b̂b1X ¼ 30:53� ð�2:60Þð11Þ ¼ 59:13

ŶYi ¼ 59:13� 2:60Xi
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Fig. 6-9

Table 6.10 Per Capita Income (Y , $00) and Percentage of the Economy in Agriculture (X)

Country:* (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Yi 76 10 44 47 23 19 13 19 8 44 4 31 24 59 37

Xi 6 16 9 8 14 11 12 10 18 5 26 8 8 9 5

*Key: (1) Argentina; (2) Bolivia; (3) Brazil; (4) Chile; (5) Colombia; (6) Dominican Republic; (7) Ecuador; (8) El Salvador; (9)
Honduras; (10) Mexico; (11) Nicaragua; (12) Panama; (13) Peru; (14) Uruguay; (15) Venezuela.
Source: World Bank World Development Indicators.
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Table 6.11 Worksheet

n Yi Xi yi xi xiyi x2i ŶYi ei e2i X2
i Y2

i

1 76 6 45:47 �5 �227:35 25 43:53 32:47 1054.3009 36 2067.5209

2 10 16 �20:53 5 �102:65 25 17:53 �7:53 56.7009 256 421.4809

3 44 9 13:47 �2 �26:94 4 35:73 8:27 68.3929 81 181.4409

4 47 8 16:47 �3 �49:41 9 38:33 8:67 75.1689 64 271.2609

5 23 14 �7:53 3 �22:59 9 22:73 0:27 0.0729 196 56.7009

6 19 11 �11:53 0 0 0 30:53 �11:53 132.9409 121 132.9409

7 13 12 �17:53 1 �17:53 1 27:93 �14:93 222.9049 144 307.3009

8 19 11 �11:53 �1 11:53 1 33:13 �14:13 199.6569 100 132.9409

9 8 18 �22:53 7 �157:71 49 12:33 �4:33 18.7489 324 507.6009

10 44 5 13:47 �6 �80:82 36 46:13 �2:13 4.5369 25 181.4409

11 4 26 �26:53 15 �397:95 225 �8:47 12:47 155.5009 676 703.8409

12 31 8 0:47 �3 �1:41 9 38:33 �7:33 53.7289 64 0.2209

13 24 8 �6:53 �3 19:59 9 38:33 �14:33 205.3489 64 42.6409

14 59 9 28:47 �2 �56:94 4 35:73 23:27 541.4929 81 810.5409

15 37 5 6:47 �6 �38:82 36 46:13 �9:13 83.3569 25 41.9609P
Yi ¼ 458

Y ffi 30:53

P
Xi ¼ 165

X ¼ 11:00

P
yixi ¼ �1149 P

x2i ¼ 442
P

e2i ¼ 2872:8535
P

X2
i ¼ 2257

P
y2i ¼ 5859:7335



s2
b̂b0
¼

P
e2i

ðn � kÞ
P

X2
i

n
P

x2i
¼ ð2872:8535Þð2257Þ

ð15� 2Þð15Þð442Þ ffi 75:23 and s
b̂b0
ffi 8:67ðbÞ

s2
b̂b1
¼

P
e2i

ðn � kÞP x2i
¼ ð2872:8535Þ

ð15� 2Þð442Þ ffi 0:050 and s
b̂b1
¼ 0:71

t0 ¼
b̂b0
s2

b̂b0

¼ 59:13

8:67
ffi 6:82

t1 ¼
b̂b1
s2

b̂b1

¼ �2:60
0:71

ffi �3:66

Therefore both b̂b0 and b̂b1 are statistically significant at the 5% level.

R2 ¼ 1�
P

e2iP
y2i

¼ 1� 2872:8535

5859:7335
ffi 0:51ðcÞ

ŶYi ¼ 59:13� 2:60Xi R2 ¼ 0:51ðdÞ
ð6:82Þ ð�3:66Þ

The numbers in parentheses below the estimated parameters are the corresponding t values. An
alternative way is to report the standard error of the estimates in parentheses.

Supplementary Problems

THE TWO-VARIABLE LINEAR MODEL

6.31 Draw a scatter diagram for the data in Table 6.12 and determine by inspection if there is an approximate
linear relationship between Yi and Xi.
Ans. The relationship between X and Y in Fig. 6-10 is approximately linear.

6.32 State the assumptions of the classical linear regression (OLS) model in mathematical form.
Ans.

u � Nð0; �2uÞ ð6:21Þ
EðuiujÞ ¼ 0 for i 6¼ j; i; j ¼ 1; 2; . . . ; n ð6:22Þ
EðXiuiÞ ¼ 0 ð6:23Þ

(See Prob. 6.4.)
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Table 6.12 Observations on

Variables Y and X

n Yi Xi

1 20 2

2 28 3

3 40 5

4 45 4

5 37 3

6 52 5

7 54 7

8 43 6

9 65 7

10 56 8



THE ORDINARY LEAST-SQUARES METHOD

6.33 Express mathematically the following statements and formulas: (a) Minimize the sum of the squared
deviations of each value of Y from its corresponding fitted value. (b) Minimize the sum of squared
residuals. (c) The normal equations. (d) The formulas for estimating b̂b1 and b̂b0.

Ans. (a) Min
PðYi � ŶYiÞ2 (b) Min

P
e2i (c)

P
Yi ¼ nb̂b0 þ b̂b1

P
Xi and

P
XiYi ¼ b̂b0

P
Xi þ b̂b1

P
X2

i

(d) b̂b1 ¼ ðnPXiYi �
P

Xi

P
YiÞ=½n

P
X2

i � ðPXiÞ2� ¼
P

xiyi=
P

x2i and b̂b0 ¼ Y � b̂b1X

6.34 For the data in Table 6.12, find the value of (a) b̂b1 and (b) b̂b0. (c) Write the equation for the estimated
OLS regression line.
Ans. (a) b̂b1 ffi 5:94 ðbÞ b̂b0 ffi 14:28 ðcÞ ŶYi ¼ 14:28þ 5:94Xi

6.35 (a) On a set of axes, plot the data in Table 6.12, plot the estimated OLS regression line in Prob. 6.34, and
show the residuals. (b) Show algebraically that the regression line goes through point XY .
Ans. (a) See Fig. 6-11 (b) At Xi ¼ 5 ¼ X , ŶYi ¼ 14:28þ 5:94ð5Þ ¼ 43:98 ffi Y ¼ 44 (the slight difference

due to rounding)

6.36 With reference to the estimated OLS regression line in Prob. 6.34, state (a) the meaning of b̂b0, (b) the
meaning of b̂b1, and (c) the elasticity of Y with respect to X at the means.

Ans. (a) b̂b0 is the Y intercept (b) b̂b1 is the slope of the estimated OLS regression line (c) � ffi 0:68

TESTS OF SIGNIFICANCE OF PARAMETER ESTIMATES

6.37 For the data in Table 6.12 in Prob. 6.31, find (a) s2 ðbÞ s2
b̂b0
and s

b̂b0
, and (c) s2

b̂b1
and s

b̂b1
.

Ans. (a) s2 ffi 46:97 ðbÞ s2
b̂b0
ffi 37:31 and s

b̂b0
ffi 6:11 ðcÞ s2

b̂b1
ffi 1:31 and s

b̂b1
ffi 1:14
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6.38 Test at the 5% level of significance for (a) b0 and (b) b1 in Prob. 6.34.

Ans. (a) b0 is statistically significant at the 5% level (b) b1 is also statistically significant at the 5% level

6.39 Construct the 95% confidence interval for (a) b0 and (b) b1 in Prob. 6.34.
Ans. (a) 0:19 < b0 < 28:37 ðbÞ 3:31 < b1 < 8:57

TEST OF GOODNESS OF FIT AND CORRELATION

6.40 For the estimated OLS regression equation in Prob. 6.34, find (a) R2 and (b) r.
Ans. (a) R2 ffi 0:77 ðbÞ r ffi 0:88

6.41 Find the coefficient of rank correlation for the sample of XY observations in Table 6.12.
Ans. r 0 ffi 0:90 ðffi r ffi 0:88Þ

PROPERTIES OF ORDINARY LEAST-SQUARES ESTIMATORS

6.42 With reference to b̂b0 and b̂b1 in Prob. 6.34, are they (a) BLUE? (b) Asymptotically unbiased? (c) Con-

sistent?
Ans. (a) Yes (b) Yes (c) Yes

6.43 With reference to b̂b0 and b̂b1 in Prob. 6.34 (a) What is the MSE? (b) Do b̂b0 and b̂b1 minimize the MSE?

Ans. (a) MSEðb̂b0Þ ¼ var b̂b0 and MSEðb̂b1Þ ¼ var b̂b1 ðbÞ Yes

SUMMARY PROBLEM

6.44 Table 6.13 gives data for a random sample of 12 couples on the number of children they have Yi and the
number of children they had stated they wanted at the time of their marriage Xi. Regress Yi on Xi and
report your results in summary form.

ŶYi ¼ 0:22þ 1:14Xi R2 ¼ 0:68Ans:
ð0:39Þ ð4:56Þ

The numbers in parentheses are t values. Thus b̂b1 is statistically significant at the 5% (and 1%) level of

significance, but b̂b0 is not.
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Table 6.13 Number of Children Had and Wanted

Couple 1 2 3 4 5 6 7 8 9 10 11 12

Yi 4 3 0 4 4 3 0 4 3 1 3 1

Xi 3 3 0 2 2 3 0 3 2 1 3 2



Multiple Regression
Analysis

7.1 THE THREE-VARIABLE LINEAR MODEL

Multiple regression analysis is used for testing hypotheses about the relationship between a depen-
dent variable Y and two or more independent variables X and for prediction. The three-variable linear
regression model can be written as

Yi ¼ b0 þ b1X1i þ b2X2i þ ui ð7:1Þ

The additional assumption (to those of the simple regression model) is that there is no exact linear
relationship between the X values.

Ordinary least-squares (OLS) parameter estimates for Eq. (7.1) can be obtained by minimizing the
sum of the squared residuals:X

e2i ¼
X

ðYi � ŶYiÞ2 ¼
X

ðYi � b̂b0 � b̂b1X1i � b̂b2X2iÞ2

This gives the following three normal equations (see Prob. 7.2):X
Yi ¼ nb̂b0 þ b̂b1

X
X1i þ b̂b2

X
X2i ð7:2ÞX

X1iYi ¼ b̂b0
X

X1i þ b̂b1
X

X2
1i þ b̂b2

X
X1iX2i ð7:3ÞX

X2iYi ¼ b̂b0
X

X2i þ b̂b1
X

X1iX2i þ b̂b2
X

X2
2i ð7:4Þ

which (when expressed in deviation form) can be solved simultaneously for b̂b1 and b̂b2, giving (see Prob.
7.3)

b̂b1 ¼
P

x1y
� � P

x2
2

� �� P
x2y

� � P
x1x2

� �P
x2
1

� � P
x2
2

� �� P
x1x2

� �2 ð7:5Þ

b̂b2 ¼
P

x2y
� � P

x2
1

� �� P
x1y

� � P
x1x2

� �P
x2
1

� � P
x2
2

� �� P
x1x2

� �2 ð7:6Þ

Then b̂b0 ¼ 	YY � b̂b1 	XX1 � b̂b2 	XX2 ð7:7Þ
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Estimator b̂b1 measures the change in Y for a unit change in X1 while holding X2 constant. b̂b2 is
analogously defined. Estimators b̂b1 and b̂b2 are called partial regression coefficients. b̂b0, b̂b1, and b̂b2 are
BLUE (see Sec. 6.5).

EXAMPLE 1. Table 7.1 extends Table 6.1 and gives the bushels of corn per acre, Y , resulting from the use of
various amounts of fertilizer X1 and insecticides X2, both in pounds per acre, from 1971 to 1980. Using Eqs. (7.5),

(7.6), and (7.7), we get

b̂b1 ¼
P

x1y
� � P

x22
� �� P

x2y
� � P

x1x2
� �P

x2
1

� � P
x22

� �� P
x1x2

� �2 ¼ ð956Þð504Þ � ð900Þð524Þ
ð576Þð504Þ � ð524Þ2 ffi 0:65

b̂b2 ¼
P

x2y
� � P

x21
� �� P

x1y
� � P

x1x2
� �P

x2
1

� � P
x22

� �� P
x1x2

� �2 ¼ ð900Þð576Þ � ð956Þð524Þ
ð576Þð504Þ � ð524Þ2 ffi 1:11

b̂b0 ¼ 	YY � b̂b1 	XX1 � b̂b2 	XX2 ffi 57� ð0:65Þð18Þ � ð1:11Þð12Þ ffi 31:98

so that ŶYi ¼ 31:98þ 0:65X1i þ 1:11X2i. To estimate the regression parameters with three or more independent or
explanatory variables, see Section 7.6.

7.2 TESTS OF SIGNIFICANCE OF PARAMETER ESTIMATES

In order to test for the statistical significance of the parameter estimates of the multiple regression,
the variance of the estimates is required:

Var b̂b1 ¼ �2u

P
x2
2P

x2
1

P
x2
2 �

P
x1x2

� �2 ð7:8Þ

Var b̂b2 ¼ �2u

P
x2
1P

x2
1

P
x2
2 �

P
x1x2

� �2 ð7:9Þ

[b0 is usually not of primary concern; see Prob. 7.7(e)]. Since �2u is unknown, the residual variance s2 is
used as an unbiased estimate of �2u :

s2 ¼ �̂�2u ¼
P

e2i
n � k

ð6:12Þ

where k ¼ number of parameter estimates.
Unbiased estimates of the variance of b̂b0 and b̂b1 are then given by

s2
b̂b1
¼
P

e2i
n � k

P
x2
2P

x2
1

P
x2
2 �

P
x1x2

� �2 ð7:10Þ

s2
b̂b2
¼
P

e2i
n � k

P
x2
1P

x2
1

P
x2
2 �

P
x1x2

� �2 ð7:11Þ

so that s
b̂b1
and s

b̂b2
are the standard errors of the estimates. Tests of hypotheses about b1 and b2 are

conducted as in Sec. 6.3.

EXAMPLE 2. Table 7.2 (an extension of Table 7.1) shows the additional calculations required to test the statistical
significance of b̂b1 and b̂b2. The values for ŶYi in Table 7.2 are obtained by substituting the values for X1i and X2i into
the estimated OLS regression equation found in Example 1. (The values for y2i are obtained by squaring yi from

Table 7.1 and are to be used in Sec.7.3.) Using the values from Table 7.2 and 7.1, we get

s2
b̂b1
¼
P

e2i
n � k

P
x22P

x2
1

P
x22 �

P
x1x2

� �2 ¼ 13:6704

10� 3

504

ð576Þð504Þ � ð524Þ2 ffi 0:06 and s
b̂b1
ffi 0:24

s2
b̂b2
¼
P

e2i
n � k

P
x21P

x2
1

P
x22 �

P
x1x2

� �2 ¼ 13:6704

10� 3

576

ð576Þð504Þ � ð524Þ2 ¼ 0:07 and s
b̂b2
ffi 0:27
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Table 7.1 Corn Produced with Fertilizer and Insecticide Used with Calculations for Parameter Estimation

Year Y X1 X2 y x1 x2 x1y x2y x1x2 x21 x22

1971 40 6 4 �17 �12 �8 204 136 96 144 64

1972 44 10 4 �13 �8 �8 104 104 64 64 64

1973 46 12 5 �11 �6 �7 66 77 42 36 49

1974 48 14 7 �9 �4 �5 36 45 20 16 25

1975 52 16 9 �5 �2 �3 10 15 6 4 9

1976 58 18 12 1 0 0 0 0 0 0 0

1977 60 22 14 3 4 2 12 6 8 16 4

1978 68 24 20 11 6 8 66 88 48 36 64

1979 74 26 21 17 8 9 136 153 72 64 81

1980 80 32 24 23 14 12 322 276 168 196 144

n ¼ 10
P

Y ¼ 570
	YY ¼ 57

P
X1 ¼ 180
	XX1 ¼ 18

P
X2 ¼ 120
	XX2 ¼ 12

P
y ¼ 0

P
x1 ¼ 0

P
x2 ¼ 0

P
x1y ¼ 956

P
x2y ¼ 900

P
x1x2 ¼ 524

P
x21 ¼ 576

P
x22 ¼ 504



Therefore, t1 ¼ b̂b1=s
b̂b1
ffi 0:65=0:24 ffi 2:70, and t2 ¼ b̂b2=s

b̂b2
¼ 1:11=0:27 ffi 4:11. Since both t1 and t2 exceed

t ¼ 2:365 with 7 df at the 5% level of significance (from App. 5), both b1 and b2 are statistically significant at the

5% level.

7.3 THE COEFFICIENT OF MULTIPLE DETERMINATION

The coefficient of multiple determination R2 is defined as the proportion of the total variation in Y
‘‘explained’’ by the multiple regression of Y on X1 and X2, and (as shown in Sec. 6.4) it can be calculated
by (see Prob. 7.14)

R2 ¼
P

ŷy2iP
y2i

¼ 1�
P

e2iP
y2i

¼ b̂b1
P

yx1 þ b̂b2
P

yx2P
y2

Since the inclusion of additional independent or explanatory variables is likely to increase the
RSS ¼P

ŷy2i for the same TSS ¼P
y2i (see Sec. 6.4), R2 increases. To factor in the reduction in the

degrees of freedom as additional independent or explanatory variables are added, the adjusted R2 or 	RR2,
is computed (see Prob. 7.16):

	RR2 ¼ 1� ð1� R2Þ n � 1

n � k
ð7:12Þ

where n is the number of observations, and k the number of parameters estimated.

EXAMPLE 3. R2 for the corn-fertilizer-insecticide example can be found from Table 7.2:

R2 ¼ 1�
P

e2iP
y2i

¼ 1� 13:6704

1634
ffi 1� 0:0084 ¼ 0:9916, or 99:16%

This compares with an R2 of 97.10% in the simple regression, with fertilizer as the only independent or explanatory
variable.

	RR2 ¼ 1� ð1� R2Þ n � 1

n � k
¼ 1� ð1� 0:9916Þ 10� 1

10� 3
¼ 1� 0:0084ð1:2857Þ ¼ 0:9892, or 98:92%
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Table 7.2. Corn-Fertilizer-Insecticide Calculations to Test Significance of Parameters

Year Y X1 X2 ŶY e e2 y2

1971 40 6 4 40.32 �0:32 0.1024 289

1972 44 10 4 42.92 1:08 1.1664 169

1973 46 12 5 45.33 0:67 0.4489 121

1974 48 14 7 48.85 �0:85 0.7225 81

1975 52 16 9 52.37 �0:37 0.1369 25

1976 58 18 12 57.00 1:00 1.0000 1

1977 60 22 14 61.82 �1:82 3.3124 9

1978 68 24 20 69.78 �1:78 3.1684 121

1979 74 26 21 72.19 1:81 3.2761 289

1980 80 32 24 79.42 0.58 0.3364 529

n ¼ 10
P

e ¼ 0
P

e2 ¼ 13:6704
P

y2 ¼ 1634



7.4 TEST OF THE OVERALL SIGNIFICANCE OF THE REGRESSION

The overall significance of the regression can be tested with the ratio of the explained to the
unexplained variance. This follows an F distribution (see Sec. 5.5) with k � 1 and n � k degrees of
freedom, where n is number of observations and k is number of parameters estimated:

Fk�1;n�k ¼
P

ŷy2i =ðk � 1ÞP
e2i =ðn � kÞ ¼

R2=ðk � 1Þ
ð1� R2Þ=ðn � kÞ ð7:13Þ

If the calculated F ratio exceeds the tabular value of F at the specified level of significance and degrees of
freedom (from App. 7), the hypothesis is accepted that the regression parameters are not all equal to zero
and that R2 is significantly different from zero.

In addition, the F ratio can be used to test any linear restriction of regression parameters by using
the form

Fp;n�k �

P
e2Ri �

P
e2i

p

 !
P

e2i
n � k

 !
where p is the number of restriction being tested,

P
e2Ri indicates the sum of squared residuals for the

restricted regression where the restrictions are assumed to be true, and
P

e2i indicates the sum of squared
residuals for the unrestricted regression (i.e., the usual residuals). The null hypothesis is that the p
restrictions are true, in which case the residuals from the restricted and unrestricted models should be
identical, and F would take the value of zero. If the restrictions are not true, the unrestricted model will
have lower errors, increasing the value of F . If F exceeds the tabular value, the null hypothesis is
rejected. This test will be used extensively in Sec. 11.6.

EXAMPLE 4. To test the overall significance of the regression estimated in Example 1 at the 5% level, we can use

R2 ¼ 0:9916 (from Example 3), so that

F2;7 ¼
0:9916=2

ð1� 0:9916Þ=7 ffi 413:17

Since the calculated value of F exceeds the tabular value of F ¼ 4:74 at the 5% level of significance and with df ¼ 2
and 7 (from App. 7), the hypothesis is accepted that b1 and b2 are not both zero and that R2 is significantly different
from zero.

7.5 PARTIAL-CORRELATION COEFFICIENTS

The partial-correlation coefficient measures the net correlation between the dependent variable and
one independent variable after excluding the common influence of (i.e., holding constant) the other
independent variables in the model. For example, rYX1�X2

is the partial correlation between Y and
X1, after removing the influence of X2 from both Y and X1 [see Prob. 7.23(a)]:

rYX1�X2
¼ rYX1

� rYX2
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX2

q ð7:14Þ

rYX2�X1
¼ rYX2

� rYX1
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX1

q ð7:15Þ

where rYX1
¼ simple-correlation coefficient between Y and X1, and rYX2

and rX1X2
are analogously

defined. Partial-correlation coefficients range in value from �1 to þ1 (as do simple-correlation coeffi-
cients), have the sign of the corresponding estimated parameter, and are used to determine the relative
importance of the different explanatory variables in a multiple regression.
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EXAMPLE 5. Substituting the values from Tables 7.1 and 7.2 into Eq. (6.18) for the simple-correlation coefficient,

we get

rYX1
¼

P
x1yffiffiffiffiffiffiffiffiffiffiffiP

x21

q ffiffiffiffiffiffiffiffiffiffiffiP
y2

p ¼ 956ffiffiffiffiffiffiffiffi
576

p ffiffiffiffiffiffiffiffiffiffi
1634

p ffi 0:9854

rYX2
¼

P
x2yffiffiffiffiffiffiffiffiffiffiffiP

x22

q ffiffiffiffiffiffiffiffiffiffiffiP
y2

p ¼ 900ffiffiffiffiffiffiffiffi
504

p ffiffiffiffiffiffiffiffiffiffi
1634

p ffi 0:9917

rX1X2
¼

P
x2x1ffiffiffiffiffiffiffiffiffiffiffiP

x22

q ffiffiffiffiffiffiffiffiffiffiffiP
x21

q ¼ 524ffiffiffiffiffiffiffiffi
504

p ffiffiffiffiffiffiffiffi
576

p ffi 0:9725

rYX1�X2
¼ rYX1

� rYX2
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX2

q ¼ 0:9854� ð0:9917Þð0:9725Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:97252

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:99172

pThus

ffi 0:7023, or 70:23%

rYX2�X1
¼ rYX2

� rYX1
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX1

q ¼ 0:9917� ð0:9854Þð0:9725Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:97252

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:98542

p ffi 0:8434, or 84:34%and

Therefore, X2 is more important than X1 in explaining the variation Y .

EXAMPLE 6. The overall results of the corn-fertilizer-insecticide example can be summarized as

ŶY ¼ 31:98 þ 0:65X1 þ 1:11X2

t values ð2:70Þ ð4:11Þ
R2 ¼ 0:992 	RR2 ¼ 0:989 F2;7 ¼ 413:17

rYX1�X2
¼ 0:70 rYX2�X1

¼ 0:84

Even though results are usually obtained from the computer (see Chap. 12), it is crucial to work through a problem
‘‘by hand,’’ as we have done, in order to clearly understand the procedure.

7.6 MATRIX NOTATION

Calculations increase substantially as the number of independent variables increase. Matrix nota-
tion can aid in solving larger regressions algebraically. The following solution works with any number
of independent variables, and is therefore extremely flexible. Students not familiar with linear algebra
may skip this section with no loss of continuity.

The regression from Sec. 1 can be written with matrices as

Y ¼ Xb þ u

Y ¼

Y1

Y2

..

.

Yn

266664
377775 X ¼

1 X11 X21

1 X12 X22

..

. ..
. ..

.

1 X1n X2n

266664
377775 b ¼

b0

b1

b2

264
375 u ¼

u1

u2

..

.

un

266664
377775where

b̂b ¼
b̂b0

b̂b1

b̂b2

264
375 ¼ ðX 0XÞ�1X 0Y

s2
b̂b
¼

s2
b̂b0

covðb0; b1Þ covðb0; b2Þ
covðb0; b1Þ s2

b̂b1
covðb1; b2Þ

covðb0; b2Þ covðb1; b2Þ s2
b̂b2

0BBB@
1CCCA ¼ e 0e

ðn � kÞ ðX
0XÞ�1 (symmetrical, so lower and

upper triangle are identical)
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EXAMPLE 7. Recalculation of corn-fertilizer-insecticide example with matrices

b̂b ¼
1 1 1 1 1 1 1 1 1 1

6 10 12 14 16 18 22 24 26 32

4 4 5 7 9 12 14 20 21 24

264
375

1 6 4

1 10 4

1 12 5

1 14 7

1 16 9

1 18 12

1 22 14

1 24 20

1 26 21

1 37 24

26666666666666666664

37777777777777777775

26666666666666666664

37777777777777777775

�1

�
1 1 1 1 1 1 1 1 1 1

6 10 12 14 16 18 22 24 26 32

4 4 5 7 9 12 14 20 21 24

264
375

40

44

46

48

52

58

60

68

74

80

26666666666666666664

37777777777777777775

26666666666666666664

37777777777777777775
b̂b ¼

1:36 �0:18 0:16

�0:18 0:03 �0:03
0:16 �0:03 0:04

264
375 570

11,216

7740

264
375 ¼

31:98

0:65

1:11

264
375

therefore, b̂b0 ¼ 31:98, b̂b1 ¼ 0:65, and b̂b2 ¼ 1:11.

e ¼ Y � Xb̂b ¼

40

44

46

48

52

58

60

68

74

80

26666666666666666664

37777777777777777775

�

1 6 4

1 10 4

1 12 5

1 14 7

1 16 9

1 18 12

1 22 14

1 24 20

1 26 21

1 32 24

26666666666666666664

37777777777777777775

31:98

0:65

1:11

264
375 ¼

�0:32
1:08

0:67

�0:85
�0:37
1:00

�1:82
�1:78
1:81

0:58

26666666666666666664

37777777777777777775
s2b ¼ 13:6704

ð10� 3Þ

1:36 �0:18 0:16

�0:18 0:03 �0:03
0:16 �0:03 0:04

264
375 ¼

2:66 �0:35 0:31

�0:34 0:06 �0:07
0:31 �0:07 0:07

264
375

therefore s2
b̂b0
¼ 2:66, s2

b̂b1
¼ 0:06, and s2

b̂b2
¼ 0:07.
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Solved Problems

THE THREE-VARIABLE LINEAR MODEL

7.1 (a) Write the equation of the multiple regression linear model for the case of 2 and k independent
or explanatory variables. (b) State the assumptions of the multiple regression linear model.

(a) For the case of 2 independent or explanatory variables, we have

Yi ¼ b0 þ b1X1i þ b2X2i þ ui ð7:1Þ
For the case of k independent or explanatory variables, we have

Yi ¼ b0 þ b1X1i þ b2X2i þ � � � þ bkXki þ ui

where X2i represents, for example, the ith observation on independent variable X2.

(b) The first five assumptions of the multiple regression linear model are exactly the same as those of the
simple OLS regression model (see Prob. 6.4). That is, the first three assumptions can be summarized as
ui � Nð0; �2uÞ. The fourth assumption is EðuiujÞ ¼ 0 for i 6¼ j; and the fifth assumption is EðXiuiÞ ¼ 0.
The only additional assumption required for the multiple OLS regression linear model is that there is no

exact linear relationship between the Xs. If two or more explanatory variables are perfectly linearly
correlated, it will be impossible to calculate OLS estimates of the parameters because the system of
normal equations will contain two or more equations that are not independent. If two or more

explanatory variables are highly but not perfectly linearly correlated, then OLS parameter estimates
can be calculated, but the effect of each of the highly linearly correlated variables on the explanatory
variable cannot be isolated (see Sec. 9.1).

7.2 With the OLS procedure in the case of two independent or explanatory variables, derive
(a) normal Eq. (7.2), (b) normal Eq. (7.3), and (c) normal Eq. (7.4). (The reader without
knowledge of calculus can skip this problem.)

(a) Normal Eq. (7.2) is derived by minimizing
P

e2i with respect to b̂b0:

@e2i

@b̂b0
¼ @

PðYi � b̂b0 � b̂b1X1i � b̂b2X2iÞ2
@b̂b0

¼ 0

� 2
X

ðYi � b̂b0 � b̂b1X1i � b̂b2X2iÞ ¼ 0X
Yi ¼ nb̂b0 þ b̂b1

X
X1i þ b̂b2

X
X2i

ð7:2Þ

(b) Normal Eq. (7.3) is derived by minimizing
P

e2i with respect to b̂b1:

@
P

e2i

@b̂b1
¼ @

PðYi � b̂b0 � b̂b1X1i � b̂b2X2iÞ2
@b̂b1

¼ 0

� 2
X

X1iðYi � b̂b0 � b̂b1X1i � b̂b2X2iÞ ¼ 0X
X1iYi ¼ b̂b0

X
X1i þ b̂b1

X
x21i þ b̂b2

X
X1iX2i

ð7:3Þ

(c) Normal Eq. (7.4) is derived by minimizing
P

e2i with respect to b̂b2:

@
P

e2i

@b̂b2
¼ @

PðYi � b̂b0 � b̂b1X1i � b̂b2X2iÞ2
@b̂b2

¼ 0

� 2
X

X2iðYi � b̂b0 � b̂b1X1i � b̂b2X2iÞ ¼ 0X
X2iYi ¼ b̂b0

X
X2i þ b̂b1

X
X1iX2i þ b̂b2

X
X2
2i

ð7:4Þ

7.3 For the two independent or explanatory variable multiple linear regression model, (a) derive the
normal equations in deviation form. (Hint: Start by deriving the expression for ŷyi; the reader
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without knowledge of calculus can skip this part of this problem.) (b) How are Eqs. (7.5), (7.6),
and (7.7) derived for b̂b1, b̂b2, and b̂b0?

ŶYi ¼ b̂b0 þ b̂b1X1i þ b̂b2X2iðaÞ
	YY ¼ b̂b0 þ b̂b1 	XX1 þ b̂b2 	XX2

Subtracting, we get

ŷyi ¼ ŶYi � 	YY ¼ b̂b1x1i þ b̂b2x2i

Therefore, ei ¼ yi � ŷyi ¼ yi � b̂b1x1i � b̂b2x2iX
e2i ¼

X
ð yi � ŷyiÞ2 ¼

X
ð yi � b̂b1x1i � b̂b2x2iÞ2

@
P

e2i

@b̂b1
¼ @

Pð yi � b̂b1x1i � b̂b2x2iÞ2
@b̂b1

¼ 0

� 2
X

x1ið yi � b̂b1x1i � b̂b2x2iÞ ¼ 0X
x1iyi ¼ b̂b1

X
x2
1i þ b̂b2

X
x1ix2i ð7:16Þ

@
P

e2i

@b̂b2
¼ @

Pð yi � b̂b1x1i � b̂b2x2iÞ2
@b̂b2

¼ 0

� 2
X

x2ið yi � b̂b1x1i � b̂b2x2iÞ ¼ 0X
x2iyi ¼ b̂b1

X
x1ix2i þ b̂b2

X
x22i ð7:17Þ

(b) Equations (7.5) and (7.6) to calculate b̂b1 and b̂b2, respectively, are obtained by solving Eqs. (7.16) and
(7.17) simultaneously. It is always possible to calculate b̂b1 and b̂b2, except if there is an exact linear
relationship between X1 and X2 or if the number of observations on each variable of the model is 3 or

fewer. Parameter b̂b0 can then be calculated by substituting into Eq. (7.7) the values of b̂b1 and b̂b2
[calculated with Eqs. (7.5) and (7.6)] and 	YY , 	XX1, and 	XX2 (calculated from the given values of the
problem).

7.4 With reference to multiple regression analysis with two independent or explanatory variables,

indicate the meaning of (a) b̂b0, (b) b̂b1, (c) b̂b2. (d) Are b̂b0; b̂b1, and b̂b2 BLUE?

(a) Parameter b0 is the constant term or intercept of the regression and gives the estimated value of Yi,
when X1i ¼ X2i ¼ 0.

(b) Parameter b1 measures the change in Y for each one-unit change in X1 while holding X2 constant.

Slope parameter b1 is a partial regression coefficient because it corresponds to the partial derivative of Y
with respect to X1, or @Y=@X1.

(c) Parameter b2 measures the change in Y for each one-unit change in X2 while holding X1 constant.
Slope parameter b2 is the second partial regression coefficient because it corresponds to the partial

derivative of Y with respect to X2, or @Y=@X2.

(d) Since b̂b0, b̂b1, and b̂b2 are obtained by the OLS method, they are also best linear unbiased estimators
(BLUE; see Sec. 6.5). That is, Eðb̂b0Þ ¼ b0, Eðb̂b1Þ ¼ b1, and Eðb̂b2Þ ¼ b2, and s

b̂b0
, s

b̂b1
, and s

b̂b2
are lower

than for any other unbiased linear estimator. Proof of these properties is very cumbersome without the

use of matrix algebra, so they are not provided here.

7.5 Table 7.3 gives the real per capita income in thousands of U.S. dollars Y with the percentage of
the labor force in agriculture X1 and the average years of schooling of the population over 25
years of age X2 for 15 developed countries in 1981. (a) Find the least-squares regression
equation of Y on X1 and X2. (b) Interpret the results of part a.

(a) Table 7.4 shows the calculations required to estimate the parameters of the OLS regression equation of
Y on X1 and X2.
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b̂b1 ¼
P

x1y
� � P

x22
� �� P

x2y
� � P

x1x2

� �P
x21

� � P
x2
2

� �� P
x1x2

� �2 ¼ ð�28Þð74Þ � ð38Þð�12Þ
ð60Þð74Þ � ð�12Þ2

¼ �2072þ 456

4440� 144
ffi �0:38

b̂b2 ¼
P

x2y
� � P

x21
� �� P

x1y
� � P

x1x2

� �P
x21

� � P
x2
2

� �� P
x1x2

� �2 ¼ ð38Þð60Þ � ð�28Þð�12Þ
ð60Þð74Þ � ð�12Þ2

¼ 2280� 336

4440� 144
ffi 0:45

b̂b0 ¼ 	YY � b̂b1 	XX1 � b̂b2 	XX2 ffi 9� ð�0:38Þð7Þ � ð0:45Þð12Þ ¼ 9þ 2:66� 5:40 ffi 6:26

Thus the estimated OLS regression equation of Y on X1 and X2 is

ŶYi ¼ 6:26� 0:38X1i þ 0:45X2i

(b) The estimated OLS regression equation indicates that the level of real per capita income Y is inversely
related to the percentage of the labor force in agriculture X1 but directly related to the years of
schooling of the population over 25 years (as might have been anticipated). Specifically, b̂b1 indicates
that a 1 percentage point decline in the labor force in agriculture is associated with an increase in per

capita income of 380 U.S. dollars while holding X2 constant. However, an increase of 1 year of
schooling for the population over 25 years of age is associated with an increase in per capita income of
450 U.S. dollars, while holding X1 constant. When X1i ¼ X2i ¼ 0, ŶYi ¼ b̂b0 ¼ 6:26.

7.6 Table 7.5 extends Table 6.11 and gives the per capita GDP (gross domestic product) to the
nearest $100 (Y) and the percentage of the economy represented by agriculture (X1), and the
male literacy rate ðX2Þ reported by the World Bank World Development Indicators for 1999 for
15 Latin American countries. (a) Find the least-squares regression equation of Y on X1 and X2.
(b) Interpret the results of part a and compare them with those of Prob. 6.30.

(a) Table 7.6 shows the calculations required to estimate the parameters of the OLS regression equation of

Y on X1 and X2.

b̂b1 ¼
P

x1y
� � P

x22
� �� P

x2y
� � P

x1x2
� �P

x2
1

� � P
x22

� �� P
x1x2

� �2 ¼ ð�1149Þð1093:7335Þ � ð1637:7335Þð�543Þ
ð442Þð1093:7335Þ � ð�543Þ2 ffi �1:95

b̂b2 ¼
P

x2y
� � P

x21
� �� P

x1y
� � P

x1x2
� �P

x2
1

� � P
x22

� �� P
x1x2

� �2 ¼ ð1637:7335Þð442Þ � ð�1149Þð�543Þ
ð442Þð1093:7335Þ � ð�543Þ2 ffi 0:53

b̂b0 ¼ 	YY � b̂b1 	XX1 � b̂b2 	XX2 ¼ 30:53� ð�1:95Þð11Þ � ð0:53Þð88:53Þ ¼ 5:06

Thus the estimated OLS regression equation of Y on X1 and X2 is

ŶY ¼ 5:06� 1:95X1 þ 0:53X2

(b) The estimated OLS equation indicates that the level of per capita income Y is inversely related to the

percentage of the economy represented by agriculture X1 but directly related to the literacy rate of the
male population (as might have been anticipated). Specifically, b̂b1 indicates that a 1 point decline in the
percentage of the economy represented by agriculture is associated with an increase in per capita
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Table 7.3 Per Capita Income, Labor Force in Agriculture, and Years of Schooling

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y 6 8 8 7 7 12 9 8 9 10 10 11 9 10 11

X1 9 10 8 7 10 4 5 5 6 8 7 4 9 5 8

X2 8 13 11 10 12 16 10 10 12 14 12 16 14 10 12



1
6
4

M
U
L
T
IP
L
E

R
E
G
R
E
S
S
IO

N
A
N
A
L
Y
S
IS

[C
H
A
P
.
7

Table 7.4 Worksheet for Estimating the Parameters for the Data in Table 7.3

n Y X1 X2 y x1 x2 x1y x2y x1x2 x21 x22

1 6 9 8 �3 2 �4 �6 12 �8 4 16

2 8 10 13 �1 3 1 �3 �1 3 9 1

3 8 8 11 �1 1 �1 �1 1 �1 1 1

4 7 7 10 �2 0 �2 0 4 0 0 4

5 7 10 12 �2 3 0 �6 0 0 9 0

6 12 4 16 3 �3 4 �9 12 �12 9 16

7 9 5 10 0 �2 �2 0 0 4 4 4

8 8 5 10 �1 �2 �2 2 2 4 4 4

9 9 6 12 0 �1 0 0 0 0 1 0

10 10 8 14 1 1 2 1 2 2 1 4

11 10 7 12 1 0 0 0 0 0 0 0

12 11 4 16 2 �3 4 �6 8 �12 9 16

13 9 9 14 0 2 2 0 0 4 4 4

14 10 5 10 1 �2 �2 �2 �2 4 4 4

15 11 8 12 2 1 0 2 0 0 1 0

n ¼ 15
P

Y ¼ 135
	YY ¼ 9

P
X1 ¼ 105
	XX1 ¼ 7

P
X2 ¼ 180
	XX2 ¼ 12

P
y ¼ 0

P
x1 ¼ 0

P
x2 ¼ 0

P
x1y ¼ �28 P

x2y ¼ 38
P

x1x2 ¼ �12 P
x21 ¼ 60

P
x2
2 ¼ 74



income of 195 U.S. dollars while holding X2 constant. However, an increase in the male literacy rate of
1 point is associated with an increase in per capita income of 53 U.S. dollars, while holding X1 constant.

When X1i ¼ X2i ¼ 0, ŶYi ¼ b̂b0 ¼ 5:06. If X2 is found to be statistically significant [see Prob. 7.12(b)] and
should, therefore, be included in the regression, b̂b1 ¼ �2:60 found in Prob. 6.30 is not a reliable estimate
of b1.

TESTS OF SIGNIFICANCE OF PARAMETER ESTIMATES

7.7 Define (a) �2u and s2, (b) var b̂b1 and var b̂b2, (c) s2
b̂b1
and s2

b̂b2
, (d) s

b̂b1
and s

b̂b2
. (e) Why is b0

usually not of primary concern?

(a) �2u is the variance of the error term in the true relationship between X1i, X2i, and Yi. However,
s2 ¼ �̂�2u ¼P

e2i =ðn � kÞ is the residual variance and is an unbiased estimate of �2u , which is unknown.

k is the number of estimated parameters. In the two independent or explanatory variable multiple
regression, k ¼ 3. Thus n � k ¼ n � 3 ¼ df.

Var b̂b1 ¼ �2u

P
x22P

x21
P

x2
2 �

P
x1x2

� �2ðbÞ

Var b̂b2 ¼ �2u

P
x21P

x21
P

x2
2 �

P
x1x2

� �2while

The variances of b̂b1 and b̂b2 (or their estimates) are required to test hypotheses about and construct
confidence intervals for b1 and b2.

s2
b̂b1
¼ s2

P
x22P

x2
1

P
x22 �

P
x1x2

� �2 ¼ P
e2i

n � k

P
x22P

x21
P

x22 �
P

x1x2
� �2ðcÞ

s2
b̂b2
¼ s2

P
x21P

x2
1

P
x22 �

P
x1x2

� �2 ¼ P
e2i

n � k

P
x21P

x21
P

x22 �
P

x1x2
� �2

s2
b̂b1
and s2

b̂b2
are, respectively, unbiased estimates of var b̂b1 and var b̂b2, which are unknown because �2u is

unknown.

(d) s
b̂b1
¼

ffiffiffiffiffiffi
s2

b̂b1

q
and s

b̂b2
¼

ffiffiffiffiffiffi
s2

b̂b2

q
. s

b̂b1
and s

b̂b2
are, respectively, the standard deviations of b̂b1 and b̂b2 and are

called the standard errors.

(e) Unless sufficient observations near X1i ¼ X2i ¼ 0 are available, intercept parameter b0 is usually not of
primary concern and a test of its statistical significance can be omitted. Equation (7.18) for var b̂b0 is
very cumbersome and also for that reason is seldom given and used:

Var b̂b0 ¼ �2u �
P

X2
1

P
X2
2 �

P
X1X2

� �2
n
P

X2
1X2

2 �
P

X1X2

� �2h i
�P

X1

P
X1

P
X2
2 �

P
X2

P
X1X2

� �
þPX2

P
X1

P
X1X2 �

P
X2

P
X2
1

� �
ð7:18Þ
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Table 7.5 Per Capita Income, Agricultural Proportion, and Literacy

Country:* (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Yi 76 10 44 47 23 19 13 19 8 44 4 31 24 59 37

X1 6 16 9 8 14 11 12 10 18 5 26 8 8 9 5

X2 97 92 85 96 91 83 93 81 74 93 67 92 94 97 93

*Key: (1) Argentina; (2) Bolivia; (3) Brazil; (4) Chile; (5) Colombia; (6) Dominican Republic; (7) Ecuador; (8) El Salvador; (9)
Honduras; (10) Mexico; (11) Nicaragua; (12) Panama; (13) Peru; (14) Uruguay; (15) Venezuela.
Source: World Bank World Development Indicators.
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Table 7.6 Worksheet

n Y X1 X2 y x1 x2 x1y x2y x1x2 x2
1 x22

1 76 6 97 45:47 �5 8:47 �227:35 385:1309 �42:35 25 71.7409

2 10 16 92 �20:53 5 3:47 �102:65 �71:2391 17:35 25 12.0409

3 44 9 85 13:47 �2 �3:53 �26:94 �47:5491 7:06 4 12.4609

4 47 8 96 16:47 �3 7:47 �49:41 123:0309 �22:41 9 55.8009

5 23 14 91 �7:53 3 2:47 �22:59 �18:5991 7:41 9 6.1009

6 19 11 83 �11:53 0 �5:53 0 63:7609 0 0 30.5809

7 13 12 93 �17:53 1 4:47 �17:53 �78:3591 4:47 1 19.9809

8 19 10 81 �11:53 �1 �7:53 11:53 86:8209 7:53 1 56.7009

9 8 18 74 �22:53 7 �14:53 �157:71 327:3609 �101:71 49 211.1209

10 44 5 93 13:47 �6 4:47 �80:82 60:2109 �26:82 36 19.9809

11 4 26 67 �26:53 15 �21:53 �397:95 571:1909 �322:95 225 463.5409

12 31 8 92 0:47 �3 3:47 �1:41 1:6309 �10:41 9 12.0409

13 24 8 94 �6:53 �3 5:47 19:59 �35:7191 �16:41 9 29.9209

14 59 9 97 28:47 �2 8:47 �56:94 241:1409 �16:94 4 71.7409

15 37 5 93 6:47 �6 4:47 �38:82 28:9209 �26:82 36 19.9809P
Y1 ¼ 458

	YY ffi 30:53

P
X1 ¼ 165

	XX1 ¼ 11:00

P
X2 ¼ 1328

	XX2 ffi 88:53

P
x1y ¼ �1149 P x2y ¼ 1637:7335

P
x1x2 ¼ �543 P

x2
1 ¼ 442

P
x22 ¼ 1093:7335



However, s
b̂b0
is sometimes given in the computer printout, so tests of the statistical significance of b0 can be

conducted easily.

7.8 For the data in Table 7.3, find (a) s2, (b) s2
b̂b1
and s

b̂b1
, and (c) s2

b̂b2
and s

b̂b2
.

(a) The calculations required to find s2 are shown in Table 7.7, which is an extension of Table 7.4. The
values of ŶYi are obtained by substituting the values of X1i and X2i into the estimated OLS regression
equation found in Prob. 7.5(a):

s2 ¼ �̂�2u ¼
P

e2i
n � k

¼ 12:2730

15� 3
ffi 1:02

(b) Using the value of s2 found in part a and the values in Table 7.4, we get

s2
b̂b1
¼ s2

P
x22P

x21
P

x22 �
P

x1x2
� �2 ffi 1:02

74

ð60Þð74Þ � ð�12Þ2 ffi 0:02

s
b̂b1
ffi

ffiffiffiffiffiffiffiffiffi
0:02

p
ffi 0:14

s2
b̂b2
¼ s2

P
x21P

x21
P

x22 �
P

x1x2
� �2 ffi 1:02

60

ð60Þð74Þ � ð�12Þ2 ffi 0:01ðcÞ

s
b̂b2
ffi

ffiffiffiffiffiffiffiffiffi
0:01

p
ffi 0:10

7.9 Test at the 5% level of significance for (a) b1 and (b) b2 in Prob. 7.5(a).

t1 ¼
b̂b1 � b1

s
b̂b1

¼ �0:38� 0

0:14
ffi 2:71ðaÞ
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Table 7.7 Per Capita Income Regression: Calculation to Test Significance of Parameters

Country Y X1 X2 ŶY e e2

1 6 9 8 6.44 �0:44 0.1936

2 8 10 13 8.31 �0:31 0.0961

3 8 8 11 8.17 �0:17 0.0289

4 7 7 10 8.10 �1:10 1.2100

5 7 10 12 7.86 �0:86 0.7396

6 12 4 16 11.94 0:06 0.0036

7 9 5 10 8.86 0:14 0.0196

8 8 5 10 8:86 �0:86 0.7396

9 9 6 12 9.38 �0:38 0.1444

10 10 8 14 9.52 0:48 0.2304

11 10 7 12 9.00 1:00 1.0000

12 11 4 16 11.94 �0:94 0.8836

13 9 9 14 9.14 �0:14 0.0196

14 10 5 10 8.86 1:14 1.2996

15 11 8 12 8.62 2:38 5.6644

n ¼ 15
P

e ¼ 0
P

e2 ¼ 12:2730



Since the absolute value of t1 exceeds the tabular value of t ¼ 2:179 (from App. 5) at the 5% level (two-

tail test) and n � k ¼ 15� 3 ¼ 12 df, we conclude that b1 is statistically significant at the 5% level (i.e.,
we cannot reject H1, that b1 6¼ 0):

t2 ¼
b̂b2 � b2

s
b̂b2

ffi 0:45� 0

0:10
¼ 4:50ðbÞ

So b2 is statistically significant at the 5% (and 1%) level (i.e., H1, that b2 6¼ 0 cannot be rejected).

7.10 Construct the 95% confidence interval for (a) b1 and (b) b2 in Prob. 7.5(a).

(a) the 95% confidence interval for b1 is given by

b1 ¼ b̂b1 � 2:179s
b̂b1
¼ �0:38� 2:179ð0:14Þ ¼ �0:38� 0:31

So b1 is between �0:69 and �0:07 (i.e., �0:69 � b1 � �0:07) with 95% confidence.

(b) The 95% confidence interval for b2 is given by

b2 ¼ b̂b2 � 2:179s
b̂b2
¼ 0:45� 2:179ð0:10Þ ¼ 0:45� 0:22

So b2 is between 0.23 and 0.67 (i.e., 0:23 � b2 � 0:67) with 95% confidence.

7.11 For the data in Table 7.5, find (a) s2, (b) s2
b̂b1
and sb1 , and (c) s2

b̂b2
and sb2 .

(a) The calculations required to find s2 are shown in Table 7.8, which is an extension of Table 7.6. The
values of ŶYi are obtained by substituting the values of X1i and X2i into the estimated OLS regression

equation found in Prob. 7.6(a):

s2 ¼ �̂�2u ¼
P

e2i
n � k

¼ 2752:9517

15� 3
ffi 229:41

(b) Using the value of s2 found in part a and the values in Table 7.6, we get
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Table 7.8 Per Capita GDP Regression: Calculation to Test Significance of Parameters

n Y X1 X2 ŶY e e2

1 76 6 97 44:77 31:23 975.3129

2 10 16 92 22:62 �12:62 159.2644

3 44 9 85 32:56 11:44 130.8736

4 47 8 96 40:34 6:66 44.3556

5 23 14 91 25:99 �2:99 8.9401

6 19 11 83 27:60 �8:60 73.9600

7 13 12 93 30:95 �17:95 322.2025

8 19 10 81 28:49 �9:49 90.0601

9 8 18 74 9:18 �1:18 1.3924

10 44 5 93 44:60 �0:60 0.3600

11 4 26 67 �10:13 14:13 199.6569

12 31 8 92 38:22 �7:22 52.1284

13 24 8 94 39:28 �15:28 233.4784

14 59 9 97 38:92 20:08 403.2064

15 37 5 93 44.60 �7:60 57.7600P
e2 ¼ 2752:9517



s2
b̂b1
¼ s2

P
x22P

x2
1

P
x22 �

P
x1
P

x2
� �2 ffi 229:41

1093:7335

ð442Þð1093:7335Þ � ð�543Þ2 ffi 1:33

s
b̂b1
¼

ffiffiffiffiffiffi
s2

b̂b1

q
¼

ffiffiffiffiffiffiffiffiffi
1:33

p
ffi 1:15

s2
b̂b2
¼ s2

P
x21P

x2
1

P
x22 �

P
x1
P

x2
� �2 ffi 229:41

442

ð442Þð1093:7335Þ � ð�543Þ2 ffi 0:54ðcÞ

s
b̂b1
¼

ffiffiffiffiffiffi
s2

b̂b2

q
¼

ffiffiffiffiffiffiffiffiffi
0:54

p
ffi 0:73

7.12 Test at the 5% level of significance for (a) b1 and (b) b2 in Prob. 7.6(a).

t1 ¼
b̂b1 � b1

s
b̂b1

¼ �1:95� 0

1:15
ffi �1:69ðaÞ

Since the absolute value of t1 does not exceed the tabular value of t ¼ 2:179 (from App. 5) at the 5%
level (two-tail test) and n � k ¼ 15� 3 ¼ 12 df, we conclude that b1 is not statistically significant at the
5% level (i.e., we cannot reject H0, that b1 ¼ 0).

t2 ¼
b̂b2 � b2

s
b̂b2

¼ 0:53� 0

0:73
ffi 0:73ðbÞ

b2 is also not statistically significant at the 5% level (i.e., H0, that b2 ¼ 0 cannot be rejected).

7.13 Construct the 95% confidence interval for (a) b1 and (b) b2 in Prob. 7.6ða).
(a) The 95% confidence interval for b1 is given by

b1 ¼ b̂b1 � 2:179s
b̂b1
¼ �1:95� 2:179ð1:15Þ ¼ �1:95� 2:51

So b1 is between �4:46 and 0.56 (i.e., �4:46 � b1 � 0:56Þ with 95% confidence. Since the confidence
interval contains 0, we can see that b1 is not statistically significant.

(b) The 95% confidence interval for b2 is given by

b2 ¼ b̂b2 � 2:179s
b̂b2
¼ 0:53� 2:179ð0:73Þ ¼ 0:53� 1:59

So b1 is between �1:06 and 2.12 (i.e., �1:06 � b1 � 2:12Þ with 95% confidence. Again, the confidence

interval contains 0, and we can see that b2 is not statistically significant.

THE COEFFICIENT OF MULTIPLE DETERMINATION

7.14 Starting with R2 ¼ 1�P
e2i =

P
y2i , derive R2 ¼ ðb̂b1

P
yx1 þ b̂b2

P
yx2Þ=

P
y2i (Hint: Start by

showing that
P

e2i ¼P
y2i � b̂b1

P
yx1 � b̂b2

P
yx2. The reader without knowledge of calculus

can skip this problem.)X
e2i ¼

X
eið yi � ŷyiÞ ¼

X
eið yi � b̂b1x1i � b̂b2x2iÞ ¼

X
eiyi � b̂b1

X
eix1i � b̂b2

X
eix2i

But in the OLS process

@
P

e2i

@
P

b̂b1
¼ �

X
eix1i ¼ 0 and

X
eix1i ¼ 0

@
P

e2i

@
P

b̂b2
¼ �

X
eix2i ¼ 0 and

X
eix2i ¼ 0
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X
e2i ¼

X
eiyi ¼

X
ð yi � ŷyiÞ yi ¼

X
yið yi � b̂b1x1i � b̂b2x2iÞTherefore

¼
X

y2i � b̂b1
X

yix1i � b̂b2
X

yix2i

Substituting into the equation for R2, we obtain

R2 ¼ 1�
P

e2iP
y2i

¼ 1�
P

y2i � b̂b1
P

yix1i � b̂b2
P

yix2iP
y2i

¼ b̂b1
P

yix1i þ b̂b2
P

yix2iP
y2i

or omitting the i for simplicity, we get (as in Sec. 7.3)

R2 ¼ b̂b1
P

yx1 þ b̂b2
P

yx2P
y2

7.15 Find R2 for the OLS regression equation estimated in Prob. 7.5ðaÞ, using (a) R2 ¼P
ŷy2i =

P
y2i ,

(b) R2 ¼ 1�P
e2i =

P
y2i , and (c) R2 ¼ ðb̂b1

P
yx1 þ b̂b2

P
yx2Þ=

P
y2i .

(a) From Prob. 6.20, we know thatX
y2i ¼

X
ŷy2i þ

X
e2i so that

X
ŷy2i ¼

X
y2i �

X
e2i

Since
P

y2i ¼ 40 (by squaring and adding the yi values from Table 7.4) and
P

e2i ¼ 12:2730 (from Table
7.7),

P
ŷy2i ¼ 40� 12:2730 ¼ 27:7270. Thus R2 ¼P

ŷy2i =
P

y2i ¼ 27:7270=40 ffi 0:6932, or 69.32%.

(b) Using
P

e2i ¼ 12:2730 and
P

y2i ¼ 40, we get R2 ¼ 1�P
e2i =

P
y2i ¼ 1� 12:2730=40 ffi 0:6932, or

69.32%, the same as in part a.

(c) Using b̂b1 ¼ �0:38 and b̂b2 ¼ 0:45 [found in Prob. 7.5(a)],
P

yx1 ¼ �28 and
P

yx2 ¼ 38 (from Table
7.4), and

P
y2i ¼ 40, we get

R2 ¼ b̂b1
P

yx1 þ b̂b2
P

yx2P
y2

¼ ð�0:38Þð�28Þ þ ð0:45Þð38Þ
40

ffi 27:74

40
¼ 0:6935; or 69:35%

This value of R2 differs slightly from that found in parts a and b because of rounding errors.

7.16 (a) From R2 ¼ 1� ðP e2i =
P

y2i Þ, derive 	RR2. (b) What is the range of values for 	RR2? (Hint for
part a: Start from the similarity between

P
e2i and var e and

P
y2i and varY .)

(a) The difficulty with (the unadjusted) R2 is that it does not take into consideration the degrees of freedom.
However, var e ¼ s2 ¼P

e2i =ðn � kÞ, where n � k ¼ df, and varY ¼PðYi � 	YYÞ2=ðn � 1Þ, where
n � 1 ¼ df. Therefore,

P
e2i ¼ s2ðn � kÞ and PðYi � 	YYÞ2 ¼P

y2i ¼ varYðn � 1Þ, so that

R2 ¼ 1�
P

e2iP
y2i

¼ 1� s2ðn � kÞ
varYðn � 1Þ

Thus 1� R2 ¼ ðs2=varYÞðn � kÞ=ðn � 1Þ. But 1� 	RR2 ¼ s2=varY , so that

1� R2 ¼ ð1� 	RR2Þ ðn � kÞ
ðn � 1Þ

Solving for 	RR2, we get

	RR2 ¼ 1� ð1� R2Þ ðn � 1Þ
ðn � kÞ ð7:12Þ

(b) When k ¼ 1, ðn � 1Þ=ðn � kÞ ¼ 1 and R2 ¼ 	RR2. When k > 1, ðn � 1Þ=ðn � kÞ > 1 and R2 > 	RR2. When

n is large, for a given k, ðn � 1Þ=ðn � kÞ is close to unity and 	RR2 and R2 will not differ much. When n is
small and k is large in relation to n, 	RR2 will be much smaller than R2 and 	RR2 can even be negative (even
though 0 � R2 � 1).

7.17 (a) Find 	RR2 for the OLS regression equation estimated in Prob. 7.5(a). (b) How does 	RR2 com-
puted in part a compare with R2 from Prob. 7.15(a) in R2 from Prob. 6.31(c)?
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(a) Using R2 ¼ 0:6932 found in Prob. 7.15(b), we get

	RR2 ¼ 1� ð1� R2Þ n � 1

n � k
¼ 1� ð1� 0:6932Þ 15� 1

15� 3
ffi 0:6410

(b) R2 ¼ 0:33 in the simple regression, with only the percentage of the labor force in agriculture, X1, as an
independent or explanatory variable [see Prob. 6.31(c)]. R2 ¼ 0:69 by adding the years of schooling for
the population over 25 years of age, X2, as the second independent or explanatory variable. However,

when consideration is taken of the fact that the addition of X2 reduces the degrees of freedom by 1
(from n � k ¼ 15� 2 ¼ 13 in the simple regression of Y on X1, to n � k ¼ 15� 3 ¼ 12 in the multiple
regression of Y on X1 and X2), 	RR2 is reduced to 0.64. The fact that b2 was found to be statistically

significant [in Prob. 7.9(b)] and R2 ¼ 	RR2 ¼ 0:33 in the simple regression of Y on X1 and rises to
	RR2 ¼ 0:64 in the multiple regression of Y on X1 and X2 justifies the retention of X2 as an additional
independent or explanatory variable in the regression equation.

7.18 (a) How can
P

e2i (required to conduct tests of significance) be found without first finding ŶYi?
(b) Find

P
e2i for the data in Table 7.3 without finding ŶYi (Table 7.7).

(a) Using the estimated values of b̂b1 and b̂b2 and
P

yx1,
P

yx2, and
P

y2, we first get

R2 ¼ b̂b1
P

yx1 þ b̂b2
P

yx2P
y2

Then R2 ¼ 1� ðP e2i =
P

y2i Þ, so that
P

e2i ¼ ð1� R2ÞP y2i . This method of finding
P

e2i involves
much fewer calculations than using ŶYi (the only additional calculation besides those required to esti-
mate b̂b1 and b̂b2 is

P
y2i ).

(b) From the value of R2 ¼ 0:6935 found in Prob. 7.15(c) [which utilizes only the estimated values of b̂b1 and
b̂b2 found in Prob. 7.5(a) and the values calculated in Table 7.4] and

P
y2i ¼ 40 from Prob. 7.15(a), we

get X
e2i ¼ ð1� R2Þ

X
y2i ¼ ð1� 0:6935Þð40Þ ¼ 12:26

This compares with
P

e2i ¼ 12:2730 found in Table 7.7. (The small difference in the value of
P

e2i
found by these two methods is obviously due to rounding errors.) Note, however, that finding

P
e2i as

done above eliminates entirely the need for Table 7.7.

TEST OF THE OVERALL SIGNIFICANCE OF THE REGRESSION

7.19 (a) State the null and alternative hypotheses in testing the overall significance of the regression.
(b) How is the overall significance of the regression tested? What is its rationale? (c) Give the
formula for the explained and unexplained or residual variance.

(a) Testing the overall significance of the regression refers to testing the hypothesis that none of the
independent variables helps to explain the variation of the dependent variable about its mean. For-
mally, the null hypothesis is

H0: b1 ¼ b2 ¼ � � � ¼ bk ¼ 0

against the alternative hypothesis:

H1: not all bi values are 0

(b) The overall significance of the regression is tested by calculating the F ratio of the explained to the
unexplained or residual variance. A ‘‘high’’ value for the F statistic suggests a significant relationship

between the dependent and independent variables, leading to the rejection of the null hypothesis that
the coefficients of all explanatory variables are jointly zero.

(c) Explained variance ¼PðŶYi � 	YYÞ2=ðk � 1Þ ¼ RSS=ðk � 1Þ ¼P
ŷy2i =ðk � 1Þ, where k is number of esti-

mated parameters (see Sec. 6.4). Unexplained variance ¼PðYi � ŶYiÞ2=ðn � kÞ ¼ ESS=ðn � kÞ ¼P
e2i =ðn � kÞ.
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7.20 (a) Give the formula for the calculated F ratio or statistic for the case of a simple regression and
for a regression with n ¼ 15, k ¼ 3. (b) Can the calculated F statistic be ‘‘large’’ and yet none of
the estimated parameters be statistically significant?

F1;n�2 ¼
P

ŷy2i =1P
e2i =ðn � 2ÞðaÞ

where the subscripts on F denote the number of degrees of freedom in the numerator and denominator,

respectively. In this simple regression case, F1;n�2 ¼ t2n�2 for the same level of significance. For a
multiple regression with n ¼ 15 and k ¼ 3, F2;12 ¼ ðP ŷy2i =2Þ=ð

P
e2i =12Þ.

(b) It is possible for the calculated F statistic to be ‘‘large’’ and yet none of the estimated parameters to be
statistically significant. This might occur when the independent variables are highly correlated with
each other (see Sec. 9.2). The F test is often of limited usefulness because it is likely to reject the null

hypothesis, regardless of whether the model explains ‘‘a great deal’’ of the variation of Y .

7.21 (a) Prove that ½P ŷy2i =ðk � 1Þ�=½P e2i =ðn � kÞ� ¼ ½R2=ðk � 1Þ�=½ð1� R2Þ=ðn � kÞ�. (b) In view of
the result of part a, what is an alternative way to state the hypothesis for testing the overall
significance of the regression?P

ŷy2i =ðk � 1ÞP
e2i =ðn � kÞ ¼

P
ŷy2iP
e2i

n � k

k � 1
¼
P

ŷy2i =
P

y2iP
e2i =

P
y2i

n � k

k � 1
¼ R2

ð1� R2Þ
n � k

k � 1
¼ R2=ðk � 1Þ

ð1� R2Þ=ðn � kÞðaÞ

(b) The F ratio, as a test of significance of the explanatory power of all independent variables jointly, is

roughly equivalent to testing the significance of the R2 statistic. If the alternative hypothesis is
accepted, we would expect R2, and therefore F , to be ‘‘high.’’

7.22 Test at the 5% level the overall significance of the OLS regression estimated in Prob. 7.5(a) by
using (a)

P
ŷy2i =ðk � 1Þ�=½P e2i =ðn � kÞ� and (b) ½R2=ðk � 1Þ�=½ð1� R2Þ=ðn � kÞ�.

(a) Using
P

ŷy2i ¼ 27:727 from Prob. 7.15(a) and
P

e2i ¼ 12:2730 from Table 7.7, we get

F2;12 ¼
27:727=2

12:273=12
ffi 13:59

Since the calculated value of F ratio exceeds the tabular value of F ¼ 3:88 at the 5% level of significance

and 2 and 12 degrees of freedom (see App. 7), the alternative hypothesis that not all bi’s are zero is
accepted at the 5% level.

(b) Using R2 ¼ 0:6932 from Prob. 7.15(b), we get

F2;12 ¼
R2=ðk � 1Þ

ð1� R2Þ=ðn � kÞ ¼
0:6932=2

ð1� 0:6932Þ=12 ffi 13:54

and we accept the hypothesis that R2 is significantly different from zero at the 5% level.

PARTIAL-CORRELATION COEFFICIENTS

7.23 (a) How can the influence of X2 be removed from both Y and X1 in finding rYX1�X2
? (b) What is

the range of values for partial-correlation coefficients? (c) What is the sign of partial-correlation
coefficients? (d) What is the use of partial correlation coefficients?

(a) In order to remove the influence of X2 on Y , we regress Y on X2 and find the residual e1 ¼ Y�. To
remove the influence of X2 on X1, we regress X1 on X2 and find the residual e2 ¼ X�

1 . Y� and X�
1 then

represent the variations in Y and X1, respectively, left unexplained after removing the influence of X2

from both Y and X1. Therefore, the partial correlation coefficient is merely the simple correlation
coefficient between the residuals Y� and X�

1 (that is, rYX1�X2
¼ rY�X�

1
).

(b) Partial correlation coefficients range in value from �1 to þ1 (just as in the case of simple correlation
coefficients). For example, rYX1 �X2

¼ �1 refers to the case where there is an exact or perfect negative
linear relationship between Y and X1 after removing the common influence of X2 from both Y and X1.
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However, rYX1�X2
¼ 1 indicates a perfect positive linear net relationship between Y and X1. And

rYX1�X2
¼ 0 indicates no linear relationship between Y and X1 when the common influence of X2 has

been removed from both Y and X1. As a result, X1 can be omitted from the regression.

(c) The sign of partial correlation coefficients is the same as that of the corresponding estimated parameter.
For example, for the estimated regression equation ŶY ¼ b̂b0 þ b̂b1X1 þ b̂b2X2, rYX1�X2

has the same sign as
b̂b1 and rYX2�X1

has the same sign as b̂b2.

(d) Partial correlation coefficients are used in multiple regression analysis to determine the relative impor-
tance of each explanatory variable in the model. The independent variable with the highest partial

correlation coefficient with respect to the dependent variable contributes most to the explanatory power
of the model and is entered first in a stepwisemultiple regression analysis. It should be noted, however,
that partial correlation coefficients give an ordinal, not a cardinal, measure of net correlation, and the

sum of the partial correlation coefficients between the dependent and all the independent variables in
the model need not add up to 1.

7.24 For the regression estimated in Prob. 7.5(a), find (a) rYX1�X2
and (b) rYX2�X1

. (c) Does X1 or X2

contribute more to the explanatory power of the model?

(a) To find rYX1�X2
, we need to find first rYX1

, rYX2
, and rX1X2

. Using the values from Table 7.4, we get

rYX1
¼

P
x1yffiffiffiffiffiffiffiffiffiffiffiP

x21

q ffiffiffiffiffiffiffiffiffiffiffiP
y2

p ¼ �28ffiffiffiffiffi
60

p ffiffiffiffiffi
40

p ffi �0:5715

rYX2
¼

P
x2yffiffiffiffiffiffiffiffiffiffiffiP

x22

q ffiffiffiffiffiffiffiffiffiffiffiP
y2

p ¼ 38ffiffiffiffiffi
74

p ffiffiffiffiffi
40

p ffi 0:6984

rX1X2
¼

P
x2x1ffiffiffiffiffiffiffiffiffiffiffiP

x22

q ffiffiffiffiffiffiffiffiffiffiffiP
x2
1

q ¼ �12ffiffiffiffiffi
74

p ffiffiffiffiffi
60

p ffi �0:1801

rYX1�X2
¼ rYX1

� rYX2
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX2

q ¼ ð�0:5715Þ � ð0:6984Þð�0:1801Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:1801Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:69842

p ffi �0:6331Then

(b) Using the values of rYX1
, rYX2

, and rX1X2
calculated in part a, we get

rYX2 �X1
¼ rYX2

� rYX1
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX1

q ¼ ð0:6984Þ � ð�0:5715Þð�0:1801Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:1801Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:5715Þ2

q ffi 0:8072

(c) Since rYX2�X1
exceeds the absolute value of rYX1�X2

, we conclude that X2 contributes more than X1 to the

explanatory power of the model.

MATRIX NOTATION

7.25 (a) Why is matrix notation used? (b) What are the advantages? (c) What are the disadvan-
tages?

(a) Matrix notation is a mathematical way to represent a system of several linear equation in an organized
fashion. Since, by our assumptions (Chap. 6), the standard regression is linear and contains multiple
observations of the same linear equation, linear algebra lends itself well to econometrics.

(b) One advantage of matrix notation is conciseness in the notation since one does not have to write

summations and ellipses. Also, the matrix solution works for any number of independent variables
(from 0 to k).

(c) The main disadvantage of matrix notation is that it requires a more advanced knowledge of linear
algebra and matrix mathematics.

7.26 Derive the OLS solution using matrix notation.

In matrices, the regression is written
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Y ¼ Xb þ u

We want to minimize the sum of squared errors, or in matrix notation

Min u 0u or Min ðY � Xb̂bÞ 0ðY � Xb̂bÞ

Taking the first derivative and setting it equal to zero:

2X 0ðY � Xb̂bÞ ¼ 0

Expanding terms and simplifying

X 0Y � X 0Xb̂b ¼ 0

Solving for b̂b

X 0Xb̂b ¼ X 0Y

ðX 0XÞ�1X 0Xb̂b ¼ ðX 0XÞ�1X 0Y

Since any matrix times its inverse is equal to the identity matrix I

Ib̂b ¼ ðX 0XÞ�1X 0Y

Since any matrix multiplied by I is equal to itself

b̂b ¼ ðX 0XÞ�1X 0Y

7.27 For the regression in Prob. 7.6, identify the matrices (a) X and (b) Y .

X ¼

1 6 97

1 16 92

1 9 85

1 8 96

1 14 91

1 11 83

1 12 93

1 10 81

1 18 74

1 5 93

1 26 67

1 8 92

1 8 94

1 9 97

1 5 93

266666666666666666666666666666664

377777777777777777777777777777775

ðaÞ
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Y ¼

76

10

44

47

23

19

13

19

8

44

4

31

24

59

37

266666666666666666666666666666664

377777777777777777777777777777775

ðbÞ

7.28 For the regression in Prob. 7.6, identify the matrices (a) X 0X and (b) ðX 0XÞ�1.

X 0X ¼
15 165 1328

165 2257 14,065

1328 14,065 118,666

264
375ðaÞ

ðX 0XÞ�1 ¼
24:7479 �0:3187 �0:2392
�0:3187 0:0058 0:0029

�0:2392 0:0029 0:0023

264
375ðbÞ

SUMMARY PROBLEM

7.29 Table 7.9 gives the hypothetical quantity demanded of a commodity, Y , it price, X1, and con-
sumers’ income, X2, from 1985 to 1999. (a) Fit an OLS regression to these observations.
(b) Test at the 5% level for the statistical significance of the slope parameters. (c) Find the
unadjusted and adjusted coefficient of multiple correlation. (d) Test for the overall significance
of the regression. (e) Find the partial correlation coefficients and indicate which independent
variable contributes more to the explanatory power of the model. ( f ) Find the coefficient of
price elasticity of demand �P and income elasticity of demand �M at the means. (g) Report all
the results in summary and round off all calculations to four decimal places.

(a) Table 7.10 gives the calculations required to fit the linear regression.

b̂b1 ¼
P

x1y
� � P

x2
2

� �� P
x2y

� � P
x1x2

� �P
x2
1

� � P
x22

� �� P
x1x2

� �2 ¼ ð�505Þð2,800,000Þ � ð107,500Þð�11,900Þ
ð60Þð2,800,000Þ � ð�11,900Þ2 ffi �5:1061

b̂b2 ¼
P

x2y
� � P

x2
1

� �� P
x1y

� � P
x1x2

� �P
x2
1

� � P
x22

� �� P
x1x2

� �2 ¼ ð107,500Þð60Þ � ð�505Þð�11,900Þ
ð60Þð2,800,000Þ � ð�11,900Þ2 ffi 0:0167

b̂b0 ¼ 	YY � b̂b1 	XX1 � b̂b2 	XX2 ¼ 70� ð�5:1061Þð6Þ � ð0:0167Þð1100Þ ffi 82:2666

ŶY ¼ 82:2666� 5:1061X1 þ 0:0167X2

(b) We can find
P

e2i by first calculating R2 from Table 7.10:
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R2 ¼ b̂b1
P

yx1 þ b̂b2
P

yx2P
y2

¼ ð�5:1061Þð�505Þ þ ð0:0167Þð107,500Þ
4600

ffi 0:9508

R2 ¼ 1�
P

e2P
y2

But

so
P

e2 ¼ ð1� R2ÞP y2 ¼ ð1� 0:9508Þ4600 ffi 226:32

s2
b̂b1
¼
P

e2i
n � k

P
x22P

x21
P

x22 �
P

x1x2
� �2

¼ 226:32

15� 3

2,800,000

ð60Þð2,800,000Þ � ð�11,900Þ2 ffi 2:0011 and s
b̂b1
ffi 1:4146

s2
b̂b2
¼
P

e2i
n � k

P
x1P

x21
P

x22 �
P

x1x2
� �2

¼ 226:32

15� 3

60

ð60Þð2,800,000Þ � ð�11,900Þ2 ffi 0:00004 and s
b̂b2
ffi 0:0065

t1 ¼
b̂b1
s

b̂b1

¼ �5:1061
1:4146

ffi �3:6096 and t2 ¼
b̂b2
s

b̂b2

¼ 0:0167

0:0065
ffi 2:5692

Therefore, both b̂b1 and b̂b2 are statistically significant at the 5% level.

(c) R2 ¼ 0:9508 (found in part b). Therefore

	RR2 ¼ 1� ð1� R2Þ n � 1

n � k
¼ 1� ð1� 0:9508Þ 15� 1

15� 3
ffi 0:9426

Fk�1;n�k ¼ R2=ðk � 1Þ
ð1� R2Þ=ðn � kÞ ¼

0:9508=ð3� 1Þ
ð1� 0:9508Þ=ð15� 3Þ ffi 115:9512ðdÞ

Therefore, R2 is significantly different from 0 at the 5% level.

(e) To find rYX1�X2
and rYX2�X1

, we must first find (from Table 7.10)
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Table 7.9 Quantity Demanded of a Commodity,

Price, and Consumers Income, 1985–1999

Year Y X1 X2

1985 40 9 400

1986 45 8 500

1987 50 9 600

1988 55 8 700

1989 60 7 800

1990 70 6 900

1991 65 6 1000

1992 65 8 1100

1993 75 5 1200

1994 75 5 1300

1995 80 5 1400

1996 100 3 1500

1997 90 4 1600

1998 95 3 1700

1999 85 4 1800



C
H
A
P
.
7
]

M
U
L
T
IP
L
E

R
E
G
R
E
S
S
IO

N
A
N
A
L
Y
S
IS

1
7
7

Table 7.10 Quantity Demanded Regression: Calculations

Year Y X1 X2 y x1 x2 yx1 yx2 x1x2 x21 x2
2 y2

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

40

45

50

55

60

70

65

65

75

75

80

100

90

95

85

9

8

9

8

7

6

6

8

5

5

5

3

4

3

4

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

�30
�25
�20
�15
�10

0

�5
�5
5

5

10

30

20

25

15

3

2

3

2

1

0

0

2

�1
�1
�1
�3
�2
�3
�2

�700
�600
�500
�400
�300
�200
�100

0

100

200

300

400

500

600

700

�90
�50
�60
�30
�10

0

0

�10
�5
�5
�10
�90
�40
�75
�30

21,000

15,000

10,000

6000

3000

0

500

0

500

1000

3000

12,000

10,000

15,000

10,500

�2100
�1200
�1500
�800
�300

0

0

0

�100
�200
�300
�1200
�1000
�1800
�1400

9

4

9

4

1

0

9

4

1

1

1

9

4

9

4

490,000

360,000

250,000

160,000

90,000

40,000

10,000

0

10,000

40,000

90,000

160,000

250,000

360,000

490,000

900

625

400

225

100

0

25

25

25

25

100

900

400

625

225

n ¼ 15
P

Y ¼ 1050
	YY ¼ 70

P
X1 ¼ 90
	XX1 ¼ 6

P
X2 ¼ 16,500
	XX2 ¼ 1100

P
y ¼ 0

P
x1 ¼ 0

P
x2 ¼ 0

P
yx1 ¼ �505 P

yx2 ¼ 107,500
P

x1x2 ¼ �11,900 P
x2
1 ¼ 60

P
x22 ¼ 2,800,000

P
y2 ¼ 4600



rYX1
¼

P
x1yffiffiffiffiffiffiffiffiffiffiffiP

x2
1

q ffiffiffiffiffiffiffiffiffiffiffiP
y2

p ¼ �505ffiffiffiffiffi
60

p ffiffiffiffiffiffiffiffiffiffi
4600

p ffi �0:9613

rYX2
¼

P
x2yffiffiffiffiffiffiffiffiffiffiffiP

x2
2

q ffiffiffiffiffiffiffiffiffiffiffiP
y2

p ¼ 107,000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2,800,000

p ffiffiffiffiffiffiffiffiffiffi
4600

p ffi 0:9472

rX1X2
¼

P
x2x1ffiffiffiffiffiffiffiffiffiffiffiP

x2
2

q ffiffiffiffiffiffiffiffiffiffiffiP
x21

q ¼ �11,900ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2,800,000

p ffiffiffiffiffi
60

p ffi �0:9181

rYX1�X2
¼ rYX1

� rYX2
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX2

q ¼ ð�0:9613Þ � ð0:9472Þð�0:9181Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:9181Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:9472Þ2

q ffi �0:7213

rYX2�X1
¼ rYX2

� rYX1
rX1X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2YX1

q ¼ ð0:9472Þ � ð�0:9613Þð�0:9181Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:9181Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�0:9613Þ2

q ffi 0:5919

Thus X1 contributes more than X2 to the explanatory power of the model.

�P ¼ b̂b1
	XX1

	YY
¼ �5:1061 6

70
ffi �0:4377ð f Þ

�M ¼ b̂b2
	XX2

	YY
¼ 0:0167

1100

70
ffi 0:2624

ŶY1 ¼ 82:2666� 5:1061X1 þ 0:0167X2 R2 ¼ 0:9508 	RR2 ¼ 0:9426 F2;12 ¼ 115:9512ðgÞ
t values ð�3:6096Þ ð2:5692Þ

rYX1�X2
¼ �0:7213 rYX2�X1

¼ 0:5919

�P ¼ �0:4377 �M ¼ 0:2624

Supplementary Problems

THE THREE-VARIABLE LINEAR MODEL

7.30 Table 7.11 extends Table 6.12 and gives observations on Y , X1, and X2. Find the OLS regression equation
of Y on X1 and X2.
Ans. ŶYi ¼ 4:76þ 5:29X1i þ 2:13X2i

7.31 With reference to the estimated OLS regression equation of Y on X1 and X2 in Prob. 7.30 interpret (a) b̂b0,
(b) b̂b1, and (c) b̂b2.

Ans. (a) b̂b0 ¼ 4:76 is the constant or Y intercept; ŶYi ¼ b̂b0 ¼ 4:76, when X1i ¼ X2i ¼ 0 (b) b1 ¼ 5:29,
indicating that a one-unit increase in X1 (while holding X2 constant) results in an increase in ŶYi of 5.29
units (c) b̂b2 ¼ 2:13, indicating that a one-unit increase in X2 (while holding X1 constant) results in an

increase in ŶYi of 2.13 units
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Table 7.11 Observations on Y , X1, and X2

n 1 2 3 4 5 6 7 8 9 10

Y 20 28 40 45 37 52 54 43 65 56

X1 2 3 5 4 3 5 7 6 7 8

X2 5 6 6 5 5 7 6 6 7 7



TESTS OF SIGNIFICANCE OF PARAMETER ESTIMATES

7.32 With reference to the data in Table 7.11, find (a) s2, (b) s2
b̂b1
and s

b̂b1
, and (c) s2

b̂b2
and s

b̂b2
.

Ans. (a) s2 ¼ 50 ðbÞ s2
b̂b1
ffi 3:16 and s

b̂b1
ffi 1:78 ðcÞ s2

b̂b2
ffi 18:95 and s

b̂b2
ffi 4:35

7.33 Test at the 5% level of significance for (a) b1 and (b) b2 in Prob. 7.30.
Ans. (a) b1 is statistically significant at the 5% level (b) b2 is not statistically significant at the 5%
level

7.34 Construct the 95% confidence interval for (a) b1 and (b) b2 in Prob. 7.30.
Ans. (a) 1:08 � b1 � 9:50 ðbÞ � 8:16 � b2 � 12:42

THE COEFFICIENT OF MULTIPLE DETERMINATION

7.35 For the estimated OLS regression found in Prob. 7.30, find (a) R2 and (b) 	RR2. (c) Should X2 be
included in the regression?
Ans. (a) R2 ffi 0:79 [using R2 ¼ 1� ðP e2i =

P
y2i Þ] (b) 	RR2 ffi 0:73 (c) Since b2 was not found to

be statistically significant [in Prob. 7.33(b)] and 	RR2 fell from R2 ¼ 	RR2 ¼ 0:77 with only X1 as an
independent variable [see Prob. 6.40(a)] to 	RR2 ¼ 0:73 (above), X2 should not be included in the
regression.

7.36 For R2 ¼ 0:60; n ¼ 10, and k ¼ 1, find 	RR2.

Ans. 	RR2 ¼ 0:60

7.37 For R2 ¼ 0:60; n ¼ 10, and k ¼ 2, find 	RR2.
Ans. 	RR2 ¼ 0:55

7.38 For R2 ¼ 0:60 and k ¼ 2 (as in Prob. 7.37) but n ¼ 100, find 	RR2.

Ans. 	RR2 ¼ 0:596

7.39 For R2 ¼ 0:40; n ¼ 10, and k ¼ 5, find 	RR2.
Ans. 	RR2 ¼ �0:08 (but is interpreted as being equal to 0)

TEST OF THE OVERALL SIGNIFICANCE OF THE REGRESSION

7.40 For the estimated OLS regression in Prob. 7.30, find (a) the explained variance, (b) the unexplained or
residual variance, and (c) the F ratio or statistic.

Ans. (a)
P

ŷy2=ðk � 1Þ ffi 649 ðbÞ P
e2=ðn � kÞ ¼ 50 ðcÞ F2;7 ¼ 12:98

7.41 Test the overall significance of the OLS regression estimated in Prob. 7.30 at (a) the 5% level and (b) at
the 1% level.

Ans. (a) Since the calculated F ratio (12.98) exceeds the tabular or theoretical value of F (4.74) at � ¼ 0:05
and df ¼ 2 and 7, we accept the hypothesis that the estimated OLS regression parameters are jointly
significant at the 5% level. (b) Since the tabular value of F is 9.55 at � ¼ 0:01, the alternative hypothesis
is accepted at the 1% level of significance also.

PARTIAL CORRELATION COEFFICIENTS

7.42 For the estimated OLS regression in Prob. 7.30, find (a) rYX1�X2
and (b) rYX2 �X1

. (c) Which independent

variable contributes more to the explanatory power of the model?
Ans. (a) rYX1�X2

¼ 0:74 ðbÞ rYX2�X1
¼ 0:18 ðcÞ X1

MATRIX NOTATION

7.43 (a) What is the first column of the X matrix? (b) Where is the variance of b̂b1 in the s2
b̂b
matrix?

Ans. (a) a column of 1s (b) second row, second column
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SUMMARY PROBLEM

7.44 Table 7.12 extends Table 6.13 and gives data for a random sample of 12 couples on the number of children

they had, Y , the number of children they stated that they wanted at the time of their marriage, X1, and the
years of education of the wife, X2. (a) Find the OLS regression equation of Y on X1 and X2. (b) Calculate
t values and test at the 5% level for the statistical significance of the slope parameters. (c) Find the

unadjusted and adjusted coefficient of multiple correlation. (d) Test for the overall significance of the
regression. (e) Find the partial correlation coefficients and indicate which independent variable contributes
more to the explanatory power of the model. Carry out all calculations to two decimal places.

Ans. (a) ŶY ¼ 6:90þ 0:53X1 � 0:39X2 (b) Since t1 ¼ 3:12 and t2 ¼ �5:57, both b̂b1 and b̂b2 are statistically

significant at the 5% level. (c) R2 ¼ 0:92 and 	RR2 ¼ 0:90 ðdÞ Since F2;9 ¼ 51:31, R2 is statistically sig-
nificant at the 5% level. (e) rYX1�X2

¼ 0:71 and rYX2 �X1
¼ �0:87; thus X2 contributes more than X1 to the

explanatory power of the model.
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Table 7.12 Number of Children Had and Wanted and Education of Wife

Couple 1 2 3 4 5 6 7 8 9 10 11 12

Y 4 3 0 4 4 3 0 4 3 1 3 1

X1 3 3 0 2 2 3 0 3 2 1 3 2

X2 12 14 18 10 10 14 18 12 15 16 14 15



Further Techniques and
Applications in

Regression Analysis

8.1 FUNCTIONAL FORM

Theory or the scatter of points frequently suggests nonlinear relationships. It is possible to trans-

form some nonlinear functions into linear ones so that the OLS method can still be used. Some of the

most common of these and their transformations are shown in Table 8.1. Applying the OLS method to

the transformed linear functions gives unbiased slope estimates. In Eq. (8.1), b1 is the elasticity of Y

with respect to X .

EXAMPLE 1. Suppose that we postulate a demand function of the form

Y ¼ b0X
b1
1 Xb2

2 eu

where Y ¼ quantity demanded of a commodity

X1 ¼ its price

X2 ¼ consumers’ income
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Table 8.1 Functional Forms and their Transformations

Function Transformation Form Equation

Y ¼ b0X
b1eu Y� ¼ b�0 þ b1X

� þ u Double log (8.1)

lnY ¼ b0 þ b1X þ u Y� ¼ b0 þ b1X þ u Semilog (8.2)

Y ¼ b0 þ ðb1=XÞ þ u Y ¼ b0 þ b1Z þ u Reciprocal (8.3)

Y ¼ b0 þ b1X þ b2X
2 þ u Y ¼ b0 þ b1X þ B2W þ u Polynomial (8.4)

where Y� ¼ lnY , b�0 ¼ ln b0, X� ¼ lnX, u ¼ ln eu, Z ¼ 1=X , W ¼ X2

ln ¼ the natural logarithm to the base e ffi 2:718

Copyright 2002 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



Utilizing the data in Table 7.9 and applying the OLS method to this demand function transformed into double-log

linear form, we get

lnY ¼ 1:96� 0:26 lnX1 þ 0:39 lnX2 R2 ¼ 0:97

ð�3:54Þ ð6:64Þ
where �0:26 and 0.39 are, respectively, unbiased estimates of the price and income elasticity of demand (see Prob.
8.2). The fit here seems better than for the linear form [see Prob. 7.29(g)].

8.2 DUMMY VARIABLES

Qualitative explanatory variables (such as wartime vs. peacetime, periods of strike vs. nonstrike,
male vs. females, etc.) can be introduced into regression analysis by assigning the value of 1 for one
classification (e.g., wartime) and 0 for the other (e.g., peacetime). These are called dummy variables and
are treated as any other variable. Dummy variables can be used to capture changes (shifts) in the
intercept [Eq. (8.5)], changes in slope [Eq. (8.6)], and changes in both intercept and slope [Eq. (8.7)]:

Y ¼ b0 þ b1X þ b2D þ u ð8:5Þ
Y ¼ b0 þ b1X þ b2XD þ u ð8:6Þ
Y ¼ b0 þ b1X þ b2D þ b3XD þ u ð8:7Þ

where D is 1 for one classification and 0 otherwise and X is the usual quantitative explanatory variable.
Dummy variables also can be used to capture differences among more than two classifications, such as
seasons and regions [Eq. (8.8)]:

Y ¼ b0 þ b1X þ b2D1 þ b3D2 þ b4D3 þ u ð8:8Þ
where b0 is the intercept for the first season or region and D1, D2, and D3 refer, respectively, to season or
region 2, 3, and 4. Note that for any number of classifications k, k � 1 dummies are required (see Probs.
8.9, 8.26, and 8.27). For qualitative dependent variables, see Sec. 8.5.

EXAMPLE 2. Table 8.2 gives gross private domestic investment Y and gross national product X , both in billions
of current dollars, for the United States from 1939 to 1954. Using D ¼ 1 for the war years (1942–1945) and D ¼ 0
for the peace years, we get

ŶY ¼ �2:58� 0:16X � 20:81D R2 ¼ 0:94

ð10:79Þ ð�6:82Þ
D is statistically significant at the 5% level. Thus b̂b0 ¼ �2:58 for peactime and �23:39 for wartime, while b̂b1 ¼ 0:16
is the common slope coefficient. (For tests of a difference in slope, as well as differences in intercept and slope, see
Probs. 8.7 and 8.8.)

8.3 DISTRIBUTED LAG MODELS

It is often the case that the current value of the dependent variable is a function of or depends on the

weighted sum of present t and past values of the independent variable (and the error term), with

generally different weights assigned to various time periods:
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Table 8.2 Gross Private Domestic Investment and Gross National Product (in Billions of Dollars); United States,

1939–1954

Year 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

Y 9.3 13.1 17.9 9.9 5.8 7.2 10.6 30.7 34.0 45.9 35.3 53.8 59.2 52.1 53.3 52.7

X 90.8 100.0 124.9 158.3 192.0 210.5 212.3 209.3 232.8 259.1 258.0 286.2 330.2 347.2 366.1 366.3

Source: Economic Report of the President, U.S. Government Printing Office, Washington, DC, 1980, p. 203.



Yt ¼ a þ b0Xt þ b1Xt�1 þ b2Xt�2 þ � � � þ ut ð8:9Þ
Estimating the distributed lag model [Eq. (8.9)] presents two difficulties: (1) the data on one observation
or time period are lost for each lagged value of X ; and (2) the Xs are likely to be related to each other, so
that it may be difficult or impossible to isolate the effect of each X on Y .

These difficulties can be eliminated by deriving from Eq. (8.9) the Koyck lag model [Eq. (8.10)],
which assumes that the weights decline geometrically (see Prob. 8.11):

Yt ¼ að1� 
Þ þ b0Xt þ 
Yt�1 þ vt ð8:10Þ
where 0 < 
 < 1 and vt ¼ ut � 
ut�1. However, Eq. (8.10) violates two assumptions of the OLS model
and results in biased and inconsistent estimators that require adjustment (see Sec. 9.3).

Alternatively, the Almon lag model can be used. This allows for a more flexible lag structure to be
approximated empirically by a polynomial of degree at least one more than the number of turning points
in the function (see Prob. 8.13). Assuming a three-period lag [Eq. (8.11)] taking the form of a second-
degree polynomial [Eq. (8.12)], we can derive Eq. (8.13) (see Prob. 8.14):

Yt ¼ a þ b0Xt þ b1Xt�1 þ b2Xt�2 þ b3Xt�3 þ ut ð8:11Þ
where bi ¼ c0 þ c1i þ c2i

2 ð8:12Þ
so that Yt ¼ a þ c0Z1t þ c1Z2t þ c2Z3t þ vt ð8:13Þ

where Z1t ¼
X3
i¼0

Xt�i Z2t ¼
X3
i¼1

iXt�i and Z3t ¼
X3
i¼1

i2Xt�i

The values of the b̂bi terms in Eq. (8.11) are obtained by substituting the estimated values of c0, c1, and c2
from Eq. (8.13) into Eq. (8.12) (see Prob. 8.15).

EXAMPLE 3. Table 8.3 gives the level of imports Y and the gross domestic product X , both in billions of 1996
dollars, for the United States from 1980 to 1999. Fitting the Koyck model, we get

ŶYt ¼ �329:99þ 0:57Xt þ 0:03Yt�1 R2 ¼ 0:99

ð3:15Þ ð2:95Þ
where ^
 ¼ 0:57 and �̂�ð1� 0:57Þ ¼ �329:99, so that �̂� ¼ �767:42.

8.4 FORECASTING

Forecasting refers to the estimation of the value of the dependent variable YF given the actual or

projected value of the independent variable XF . The forecast-error variance �2F is given by

CHAP. 8] FURTHER TECHNIQUES AND APPLICATIONS IN REGRESSION ANALYSIS 183

Table 8.3 Imports and Gross Domestic Product (in Billions of 1996 Dollars): United States, 1980–1999

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Imports 585.6 584.2 537.4 547.8 663.3 656.4 703.8 766.1 827.3 866.2

GDP 19,603.6 20,083.7 19,677.5 20,529.4 22,020.5 22,868.1 23,649.6 24,453.0 25,473.2 26,367.3

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Imports 877.3 819.2 829.6 873.8 988.4 1102.9 1159.0 1269.2 1321.9 1446.5

GDP 26,831.6 26,705.7 27,520.4 28,250.6 29,390.9 30,175.3 31,252.5 32,638.0 34,062.6 35,503.1

Source: St. Louis Federal Reserve (Bureau of Economic Analysis).



�2F ¼ �2u 1þ 1

n
þ ðXF � 	XXÞ2PðXi � 	XXÞ2

" #
ð8:14Þ

where n is the number of observations and �2u is the variance of u. Since �2u is seldom known, we use s2 as
an unbiased estimate of �2u , so that the estimated forecast-error variance, s2F , is

s2F ¼ s2 1þ 1

n
þ ðXF � 	XXÞ2PðXi � 	XXÞ2

" #
ð8:15Þ

The 95% confidence interval for the forecast YF is

ŶYF � t0:025sF

where ŶYF ¼ b̂b0 þ b̂b1XF and t refers to the t distribution with n � 2 degrees of freedom.

EXAMPLE 4. Returning to the corn-fertilizer example in Chap. 6, recall that ŶYi ¼ 27:12þ 1:66 Xi, n ¼ 10,
	XX ¼ 18,

PðXi � 	XXÞ2 ¼ 576 (from Example 6.2), and s2 ¼P
e2i =ðn� 2Þ ffi 47:31=8 ffi 5:91 (from Example 6.3).

Projecting for 1981 an amount of fertilizer used per acre of XF ¼ 35, we get

s2F ¼ 5:91 1þ 1

10
þ ð35� 18Þ2

576

" #
ffi 9:46 and sF ffi 3:08

ŶYF ¼ 27:12þ 1:66ð35Þ ¼ 45:38

Then the 95% confidence or forecast interval for YF in 1981 is 45:38� ð2:31Þð3:08Þ, or between 38.27 and 52.49.
(See Prob. 8.19 for forecasting in multiple regression analysis.)

8.5 BINARY CHOICE MODELS

If the dependent variable is a dummy variable, an OLS regression is not appropriate. An OLS
regression could yield incongruous predictions greater than 1 or less than 0. Also, the regression would
violate the assumption of no heteroscedasticity because of the discrete nature of the dependent variable.
To estimate the model, we first set up an underlying model

Y�
i ¼ b0 þ b1Xi þ ui

Here, Y� is considered an underlying propensity for the dummy variable to take the value of 1 and is a
continuous variable so that

Yi ¼ 1 if Y�
i 
 0ðui 
 �b0 � b1XiÞ

0 if Y�
i < 0ðui < �b0 � b1XiÞ

"
The maximum-likelihood estimate of the coefficients is calculated by setting up the log-likelihood

function

lnL ¼ �1½lnðPðui 
 �b0 � b1Xi j Yi ¼ 1ÞÞ� þ�0½lnðPðui < �b0 � b1Xi j Yi ¼ 0ÞÞ�
where �1 and �0 indicate sum of all probabilities for those data points where Yi ¼ 1 and 0, respectively,
and b̂b0 and b̂b1 are chosen to maximize the log-likelihood function. If the standard normal distribution is
used to find the probabilities, it is a probit model; if the logistic distribution is used, it is a logit model.
Since these functions are nonlinear, estimation by computer is usually required (see Chap. 12).

EXAMPLE 5. We estimate the relationship between the openness of a country Y and a country’s per capita

income in dollars X in 1992. We hypothesize that higher per capita income should be associated with free
trade, and test this at the 5% significance level. Data are given in Table 8.4. The variable Y takes the value of
1 for free trade, 0 otherwise.

Since the dependent variable is a binary variable, we set up the indicator function

Y� ¼ b0 þ b1ðXÞ þ u
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If Y� 
 0, Y ¼ 1 (open). If Y� < 0, Y ¼ 0 (not open).
Probit estimation gives the following results:

ŶY� ¼ �1:9942þ 0:0010ðXÞ s
b̂b0
¼ 0:8247; s

b̂b1
¼ 0:0005; lnL ¼ �6:8647

To test significance, we can use the usual t test, but since probit uses the standard normal distribution, the z tables
can be used:

t
b̂b0
¼ b̂b0=s

b̂b0
¼ �1:9942=0:8247 ¼ �2:42 < �1:96 (from App. 3); therefore significant at the 5% level.

t
b̂b1
¼ b̂b1=s

b̂b1
¼ 0:0010=0:0005 ¼ 2 > 1:96; therefore significant at the 5% level.

8.6 INTERPRETATION OF BINARY CHOICE MODELS

The interpretation of b1 changes in a binary choice model. b1 is the effect of X on Y�. The marginal
effect of X on PðY ¼ 1Þ is easier to interpret and is given by

f ðb0 þ b1 	XXÞ � b1

where Probit: f ðxÞ ¼ �ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p e�ðx2=2Þ

Logit: f ðxÞ ¼ 
ðxÞ ¼ ex

ð1þ exÞ2

To test the fit of the model (analogous to R2), the maximized log-likelihood value ðlnLÞ can be
compared to the maximized log likelihood in a model with only a constant ðlnL0Þ in the likelihood ratio
index

LRI ¼ 1� lnL

lnL0

Another measure of goodness of fit is to compare predicted values of Y to actual values. Custo-
marily, if Pðui 
 �b̂b0 � b̂b1XiÞ > 0:5; then ŶYi ¼ 1.

EXAMPLE 6. Continuing with the interpretation from Sec. 8.5. The marginal effect of X (GDP/cap) on the
probability of a country to be open is
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Table 8.4 Openness of Trade, and GDP per Capita: International Data for 1992

Country Burundi Chad Congo Egypt Hong Kong

Y 0 0 0 0 1

X 569 408 2240 1869 16,471

Country India Indonesia Ivory Coast Kenya Malaysia

Y 0 1 0 0 1

X 1282 2102 1104 914 5746

Country Morocco Nigeria Rwanda Singapore South Africa

Y 1 0 0 1 1

X 2173 978 762 12,653 3068

Country Tunisia Uganda Uruguay Venezuela Zimbabwe

Y 1 1 1 1 0

X 3075 547 5185 7082 1162

Source: Per capita GDP, World Bank World Development Indicators. Openness, Sachs-Warner Dates.



�ðb0 þ b1XÞ � b1 ¼ �ð�1:9942þ 0:0010ð3469:5ÞÞð0:0010Þ ¼ 0:0001

This can also be interpreted as the marginal effect of X on the expected value of Y .

LRI ¼ 1� lnL

lnL0

¼ 1� ð�6:8647Þ=ð�13:8629Þ ¼ 0:50 ðlnL0 ¼ �13:8629Þ

Predicted probabilities are given in Table 8.5. The model predicts 18 out of 20 countries correctly, or 90%. (Note: If

values for X when Y ¼ 1 are all greater or all less than values when Y ¼ 0, the binary choice model cannot be

estimated.)

Solved Problems

FUNCTIONAL FORM

8.1 (a) How is the form of the functional relationship decided? (b) What are some of the most
useful transformations into linear functions? (c) Are the estimated parameters obtained from
the application of the OLS method to transformed linear functions unbiased estimates of the true
population parameters?

(a) Economic theory can sometimes suggest the functional form of an economic relationship. For exam-
ple, microeconomic theory postulates an average (short-run) cost curve that is U-shaped and an average

fixed-cost curve that constantly falls and approaches the quantity axis asymptotically as total fixed costs
are spread over more and more units produced. The scatter of points also suggest the appropriate
functional form in a two-variable relationship. When neither theory nor scatter of points is of help, the
linear function is usually tried first because of its simplicity.

(b) Some of the most useful and common transformations of nonlinear into linear functions are the double
logarithm or double log, the semilog, the reciprocal, and the polynomial functions (see Table 8.1). One
of the advantages of the double-log form is that the slope parameters represent elasticities (see Prob.
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Table 8.5 Predicted Probabilities for the Probit Model

Country Burundi Chad Congo Egypt Hong Kong

PðY ¼ 1Þ 0.08 0.06 0.60 0.45 > 0:99

Country India Indonesia Ivory Coast Kenya Malaysia

PðY ¼ 1Þ 0.24 0.54 0.19 0.14 > 0:99

Country Morocco Nigeria Rwanda Singapore South Africa

PðY ¼ 1Þ 0.57 0.15 0.11 > 0:99 0.86

Country Tunisia Uganda Uruguay Venezuela Zimbabwe

PðY ¼ 1Þ 0.86 0.07 > 0:99 > 0:99 0.20

Y ¼ 0 Y ¼ 1

Y ¼ 0 9 1

Y ¼ 1 1 9

A
c
t
u
a
l

Predicted



8.2). The semilog function is appropriate when the dependent variable grows at about a constant rate

over time, as in the case of the labor force and population (see Prob. 8.4). The reciprocal and
polynomial functions are appropriate to estimate average-cost and total-cost curves (see Prob. 8.5).

(c) The estimation of a transformed double-log function by the OLS method results in unbiased slope
estimators. However, b̂b0 ¼ antilog b̂b�0 is a biased but consistent estimator of b0. The fact that b̂b0 is

biased is not of much consequence because the constant is usually not of primary interest [see Prob.
7.7(e)]. In the other transformed functions in Table 8.1, b̂b0 also is unbiased. The double-log linear
model is appropriate when lnY plotted against lnX lies approximately on a straight line.

8.2 Prove that in the double-log demand function of the form

Q ¼ b0P
b1Yb2eu

where Q is the quantity demanded, P is the price, and Y is the income, (a) b1 is the price
elasticity of demand, or �P, and (b) b2 is the income elasticity of demand, or �Y . (The reader
without knowledge of calculus can skip this problem.)

(a) The definition of price elasticity of demand is

�P ¼ dQ

dP
� P

Q

The derivative of the Q function with respect to P is

dQ

dP
¼ b1ðb0Pb1�1Yb2euÞ ¼ b1ðb0Pb1Yb2euÞP�1 ¼ b1 �

Q

P

Substituting the value of dQ=dP into the formula for �P, we get

�P ¼ dQ

dP
� P

Q
¼ b1 �

Q

P
� P

Q
¼ b1

(b) The definition of income elasticity of demand is

�Y ¼ dQ

dY
� Y

Q

The derivative of the Q function with respect to Y is

dQ

dY
¼ b2ðb0Pb1Yb2�1euÞ ¼ b2ðb0Pb1Yb2euÞY�1 ¼ b2 �

Q

Y

Substituting the value of dQ=dY into the formula for �Y , we get

�Y ¼ dQ

dY
� Y

Q
¼ b2 �

Q

Y
� Y

Q
¼ b2

8.3 Table 8.6 gives the output in tons Q, the labor input in hours L, and capital input in machine-
hours K , of 14 firms in an industry. Fit the data to the Cobb-Douglas production function

Q ¼ b0L
b1Kb2eu
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Table 8.6 Output and Labor and Capital Inputs of 14 Firms in an Industry

Firm 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q 240 400 110 530 590 470 450 160 290 490 350 550 560 430

L 1480 1660 1150 1790 1880 1860 1940 1240 1240 1850 1570 1700 2000 1850

K 410 450 380 430 480 450 490 395 430 460 435 470 480 440



The data are first transformed into natural log form, as shown in Table 8.7, and then the OLS method is

applied to the transformed variables as explained in Sec. 6.2 (the computer does all of this). The results are

lnQ ¼ �23:23 þ 1:43 lnL þ 3:05 lnK R2 ¼ 0:88

ð2:55Þ ð2:23Þ

The estimated coefficients 1.43 and 3.05 refer, respectively, to the output elasticity of L and K . Since
1:43þ 3:05 ¼ 4:48 > 1, there are increasing returns to scale in this industry (e.g., increasing the inputs of
both L and K by 10% causes output to increase by 44.8%).

8.4 Table 8.8 gives the number of nonfarm persons employed N (in millions) in the United States
from 1980 to 1999. Fit an OLS regression line to the data in Table 8.8.

Since employment tends to grow at about a constant rate over time T , we fit a semilog function
of the form of Eq. (8.2) to the transformed data in Table 8.9. The result is

lnN ¼ 4:46 þ 0:02T R2 ¼ 0:99

ð26:77Þ
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Table 8.7 Output and Labor and Capital Input in Original and Log Form

Firm Q L K lnQ lnL lnK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

240

400

110

530

590

470

450

160

290

490

350

550

560

430

1480

1660

1150

1790

1880

1860

1940

1240

1240

1850

1570

1700

2000

1850

410

450

380

430

480

450

490

395

430

460

435

470

480

440

5.48064

5.99146

4.70048

6.27288

6.38012

6.15273

6.10925

5.07517

5.66988

6.19441

5.85793

6.30992

6.32794

6.06379

7.29980

7.41457

7.04752

7.48997

7.53903

7.52833

7.57044

7.12287

7.12287

7.52294

7.35883

7.43838

7.60090

7.52294

6.01616

6.10925

5.94017

6.06379

6.17379

6.10925

6.19441

5.97889

6.06379

6.13123

6.07535

6.15273

6.17379

6.08677

Table 8.8. Millions of Persons Employed in the United States from 1980 to 1999

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

N 90.4 91.2 89.5 90.2 94.4 97.4 99.3 102.0 105.2 107.9

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

N 109.4 108.2 108.6 110.7 114.2 117.2 119.6 122.7 125.9 128.8

Source: Bureau of Labor Statistics.



8.5 Fit a short-run average-cost curve to the data in Table 8.10, which gives average cost AC and
output Q for a firm over a 12-week period.

Since microeconomic theory postulates U-shaped short-run cost curves, we fit

AC ¼ b0 � b1Q þ b2W þ u where W ¼ Q2

The result is dACAC ¼ 244:86� 2:20Q þ 0:01Q2 R2 ¼ 0:94

ð�9:84Þ ð10:42Þ

DUMMY VARIABLES

8.6 (a) Write an equation for peacetime and one for wartime for Eqs. (8.5) to (8.7), if
C ¼ consumption, Yd ¼ disposable income, and D ¼ 1 for war years and D ¼ 0 for peace
years. (b) Draw a figure for Eqs. (8.5) to (8.7) showing a consumption function for peace
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Table 8.9 Millions Employed in the

United States, 1980–1999:

Original and Transformed Data

Year N lnN T

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

90.4

91.2

89.5

90.2

94.4

97.4

99.3

102.0

105.2

107.9

109.4

108.2

108.6

110.7

114.2

117.2

119.6

122.7

125.9

128.8

4.5042

4.5131

4.4942

4.5020

4.5475

4.5788

4.5981

4.6250

4.6559

4.6812

4.6950

4.6840

4.6877

4.7068

4.7380

4.7639

4.7842

4.8097

4.8355

4.8583

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Table 8.10 Average Cost and Output of a Firm over a 12-Week Period

Week 1 2 3 4 5 6 7 8 9 10 11 12

AC 82 86 100 100 95 85 110 88 86 108 87 87

Q 149 121 190 100 109 138 209 170 158 201 130 181



years and one for war years. (a) What are the advantages of estimating Eqs. (8.5) to (8.7) as
opposed to estimating two regressions, one for peace years and one for war years, in each case?

(a) Letting a equations refer to peacetime and b equations refer to wartime, we get

C ¼ b0 þ b1Yd þ u ð8:5aÞ
C 0 ¼ ðb0 þ b2Þ þ b1Yd þ u ð8:5bÞ
C ¼ b0 þ b1Yd þ u ð8:6aÞ

C 0 ¼ b0 þ ðb1 þ b2ÞYd þ u ð8:6bÞ
C ¼ b0 þ b1Yd þ u ð8:7aÞ

C 0 ¼ ðb0 þ b2Þ þ ðb1 þ b3ÞYd þ u ð8:7bÞ

Note that all peacetime equations are identical because D ¼ 0. During wartime, consumption is less
than in peacetime because of controls, reduced availability of goods and services, and moral suasion.
Thus b2 and b3 (the coefficients of D) are expected to be negative for war years, so that the equations for

war years have a lower intercept and/or slope than the peacetime equations.

(b) See Fig. 8-1.

(c) The advantages of estimating Eqs. (8.5) to (8.7) as opposed to estimating a separate regression in each

case, one for peacetime and one for wartime, are (1) the degrees of freedom are greater, (2) a variety

of hypotheses can easily be tested to see if the differences in constants and/or slopes are statistically

significant, and (3) computer time is saved.

8.7 Table 8.11 gives the quantity of milk (in thousands of quarts) supplied by a firm per month Q at
various prices P over a 14-month period. The firm faced a strike in some of its plants during the
fifth, sixth, and seventh months. Run a regression of Q on P (a) testing only for a shift in the
intercept during periods of strike and nonstrike and (b) testing for a shift in the intercept and
slope.

(a) Letting D ¼ 1 during the months of strike and D ¼ 0 otherwise, we get

Q̂Q ¼ �32:47þ 165:97P � 37:64D R2 ¼ 0:98

ð15:65Þ ð�23:59Þ
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Fig. 8-1

Table 8.11 Quantity Supplied of Milk (in Thousands of Quarts) at Various Prices

Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q 98 100 103 105 80 87 94 113 116 118 121 123 126 128

P 0.79 0.80 0.82 0.82 0.93 0.95 0.96 0.88 0.88 0.90 0.93 0.94 0.96 0.97



Since D is statistically significant at better than the 1% level, the intercept is b0 ¼ �32:47 during the

period of no strike, and it equals b0 þ b2 ¼ �32:47� 37:64 ¼ �70:11 during the strike period.

Q̂Q ¼ �29:74þ 162:86P � 309:62D þ 287:14PD R2 ¼ 0:99ðbÞ
ð27:16Þ ð�5:67Þ ð4:98Þ

D and pD are statistically significant at better than the 1% level. The intercept and slope are,

respectively, �29:74 and 162.86 during the period of no strike. During the strike period, the intercept
is b̂b0 þ b̂b2 ¼ �29:74� 309:26 ¼ �339, while the slope is b̂b1 þ b̂b3 ¼ 162:86þ 287:14 ¼ 450 (since the
firm, presumably, is able to step up the increase in output in its nonstriking plants).

8.8 Table 8.12 gives the consumption expenditures C, the disposable income Yd , and the sex of the
head of the household S of 12 random families. (a) Regress C on Yd . (b) Test for a different
intercept for families with a male or a female as head of the household. (c) Test for a different
slope or MPC (marginal propensity to consume) for families with a male or a female as head of
the household. (d) Test for both different intercept and slope. (e) Which is the ‘‘best’’ result?

ĈC ¼ 1663:60þ 0:75Yd R2 ¼ 0:978ðaÞ
ð2:73Þ ð21:12Þ

(b) Letting D ¼ 1 for families headed by a female and D ¼ 0 otherwise, we get

ĈC ¼ 186:12þ 0:82Yd þ 832:09D R2 ¼ 0:984

ð16:56Þ ð1:82Þ

ĈC ¼ 709:18þ 0:79Yd þ 0:05YdD R2 ¼ 0:983ðcÞ
ð18:11Þ ð1:51Þ

ĈC ¼ �184:70þ 0:83Yd þ 1757:99D � 0:06YdD R2 ¼ 0:985ðdÞ
ð13:65Þ ð1:03Þ ð�0:57Þ

(e) Since neither D nor YdD is statistically significant at the 5% level in parts b, c, and d, there is no
difference in the consumption patterns of households headed by males or females. Thus the best results

are those given in part a.

8.9 Table 8.13 gives the retail sales (in billions of 1996 dollars) of the United States from the first
quarter of 1995 to the fourth quarter of 1999. (a) Prepare a table showing sales, a time trend,
and dummy variables to take into account seasonal effects. (b) Using the data from the table in
part a, run a regression of sales on inventories and the seasonal dummies and interpret the results.
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Table 8.12 Consumption, Disposable Income, and Sex of Head of Household of 12 Random Families

Family 1 2 3 4 5 6 7 8 9 10 11 12

C 18,535 11,350 12,130 15,210 8680 16,760 13,480 9680 17,840 11,180 14,320 19,860

Yd 22,550 14,035 13,040 17,500 9430 20,635 16,470 10,720 22,350 12,200 16,810 23,000

S M M F M F M M F M F F M



(a) Taking the first quarter as the base, and letting D1 ¼ 1 for the second quarter and 0 otherwise, D2 ¼ 1

for the third quarter and 0 otherwise, and D3 ¼ 1 for the fourth quarter and 0 otherwise, we get Table

8.14.

(b) Using the data from Table 8.14 to regress sales, S, on the time trend, T , D1, D2, D3, we get

ŜS ¼ 526:56þ 6:66 T þ 61:52D1 þ 53:01 D2 þ 96:15 D3 R2 ¼ 0:98

ð13:78Þ ð7:95Þ ð6:81Þ ð12:23Þ
Since all dummy variables are statistically significant at the 5% level, we obtain

ŜS ¼ 526:56þ 6:66 T in quarter I

ŜS ¼ 588:08þ 6:66 T in quarter II
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Table 8.13 Retail Sales in the United States (in Billions of 1996 $)

Sales

quarter
year

540.5 608.5 606.6 648.3 568.4 632.8 626.0 674.6 587.0 640.2

I II III IV I II III IV I II

1995 1996 1997

Sales
quarter

year

645.9 686.9 597.0 675.3 663.6 723.3 639.5 716.5 721.9 779.9

III IV I II III IV I II III IV

1997 1998 1999

Source: St. Louis Federal Reserve (U.S. Department of Commerce, Census Bureau).

Table 8.14 Sales, Time Trend, and Seasonal Dummies

Year Quarter Sales Time Trend D1 D2 D3

1995

1995

1995

1995

1996

1996

1996

1996

1997

1997

1997

1997

1998

1998

1998

1998

1999

1999

1999

1999

I

II

III

IV

I

II

III

IV

I

II

III

IV

I

II

III

IV

I

II

III

IV

540.5

608.5

606.6

648.3

568.4

632.8

626.0

674.6

587.0

640.2

645.9

686.9

597.0

675.3

663.6

723.3

639.5

716.5

721.9

779.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1



ŜS ¼ 579:57þ 6:66 T in quarter III

ŜS ¼ 622:71þ 6:66 T in quarter IV

These results remain unchanged when four dummies are used, one for each of the four seasons, but the
constant from the regression equation is dropped. Using the four seasonal dummies and the constant
together would make it impossible to estimate the OLS regression (see Sec. 9.2).

DISTRIBUTED LAG MODELS

8.10 (a) What is meant by a distributed lag model? (b) Write the equation for a general distributed lag
model with an infinite number of lags and for one with k lags. (c) What practical difficulties arise
in estimating a distributed lag model with k lags?

(a) Often the effect of a policy variable may be distributed over a series of time periods (i.e., the dependent

variable may be ‘‘sluggish’’ to respond to a policy change), requiring a series of lagged explanatory
variables to account for the full adjustment process through time. A distributed lag model is one in
which the current value of the dependent variable Yt depends on the weighted sum of present and past

values of the independent variables ðXt;Xt�1;Xt�2, etc.) and the error term, with generally different
weights assigned to various time periods (usually declining successively for earlier time periods).

ðbÞ Yt ¼ a þ b0Xt þ b1Xt�1 þ b2Xt�2 þ � � � þ ut ð8:9Þ
Yt ¼ a þ b0Xt þ b1Xt�1 þ b2Xt�2 þ � � � þ bkXt�k þ ut ð8:9aÞ

Note that in Eqs. (8.9) and (8.9a), a is constant, while b0 is the coefficient of Xt. This has been done in
order to simplify the algebraic manipulation in Prob. 8.11(a).

(c) In the estimation of a distributed lag model, the inclusion of each lagged term uses up one degree of
freedom. When the number of independent lagged terms k is small, the model can be estimated with

OLS, as done in Chap. 7. However, with k large (in relation to the length of the time series), an
inadequate number of degrees of freedom may be left to estimate the model or to be confident in the
estimated parameters. Moreover, the lagged explanatory variables in a distributed lag model are likely

to be strongly correlated, so it may be difficult to adequately separate their independent effects on the
dependent variable [see Prob. 7.3(b)].

8.11 (a) Derive the Koyck distributed lag model. (b) What problems arise in the estimation of this
model? (Hint for part a: Start with the general distributed lag model and assume that the weights
decline geometrically, with 
 referring to a constant larger than 0 and smaller than 1; then lag the
relationship by one period, multiply by 
, and subtract it from the original relationship.)

(a) Starting with Eq. (8.9), it is assumed that all the usual assumptions of OLS are satisfied (see Prob. 7.1):

Yt ¼ a þ b0Xt þ b1Xt�1 þ b2Xt�2 þ � � � þ ut ð8:9Þ
Geometrically declining weights and 0 < 
 < 1 gives

bi ¼ 
ib0 i ¼ 1; 2; . . . ð8:16Þ
Substituting Eq. (8.16) into Eq. (8.9), we obtain

Yt ¼ a þ b0Xt þ 
b0Xt�1 þ 
2b0Xt�2 þ � � � þ ut

Lagging by one period, we have

Yt�1 ¼ a þ b0Xt�1 þ 
b0Xt�2 þ 
2b0Xt�3 þ � � � þ ut�1

Multiplying by 
 yields


Yt�1 ¼ 
a þ 
b0Xt�1 þ 
2b0Xt�2 þ � � � þ 
ut�1

and subtracting from Eq. (8.9) yields
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Yt � 
Yt�1 ¼ a � 
a þ b0Xt þ 
b0Xt�1 � 
b0Xt�1
þ 
2b0Xt�2 � 
2b0Xt�2 þ � � � þ ut � 
ut�1

Yt � 
Yt�1 ¼ að1� 
Þ þ b0Xt þ ut � 
ut�1
Yt ¼ að1� 
Þ þ b0Xt þ 
Yt�1 þ vt ð8:10Þ

where vt ¼ ut � 
ut�1. Note that in Eq. (8.10) the number of regressors has been reduced to only two,

with only one X.

(b) Two serious problems arise in the estimation of a Koyck distributed lag model. First, if ut in Eq. (8.9)
satisfies all the OLS assumptions (see Prob. 6.4), then vt ¼ ut � 
ut�1 in Eq. (8.10) does not. Speci-

fically, Eðvtvt�1Þ 6¼ 0 because vt and vt�1 are both defined with ut�1 in common (i.e., vt ¼ ut � 
ut�1 and
vt�1 ¼ ut�1 � 
ut�2). In addition, EðvtYt�1Þ 6¼ 0. Violations of these OLS assumptions result in biased
and inconsistent estimators for the Koyck lag model [Eq. (8.10)], requiring elaborate correction pro-

cedures (some of which are discussed in Sec. 9.3). The second serious problem is that the Koyck model
rigidly assumes geometrically declining weights. This may seldom be the case in the real world, thus
requiring a more flexible lag scheme (see Prob. 8.13).

8.12 Table 8.15 gives the level of inventories Y and sales X (in billions of dollars) in U.S. manufactur-
ing from 1981 to 1999. (a) Fit the Koyck model to the data in Table 8.15. (b) What is the
value of 
̂
 and �̂�?

ŶYt ¼ 88,426:14þ 0:60 Xt þ 0:50 Yt�1 R2 ¼ 0:99ðaÞ
ð4:49Þ ð4:22Þ


̂
 ¼ 0:50 and �̂�ð1� 0:50Þ ¼ 88,426:14; so �̂� ¼ 176,852:28ðbÞ

8.13 (a) What is the lag structure in the Almon lag model? (b) What are the advantages and
disadvantages of the Almon lag model with respect to the Koyck model?

(a) While the Koyck lag model assumes geometrically declining weights, the Almon lag model allows for
any lag structure, to be approximated empirically by a polynomial of degree at least one more than the
number of turning points in the function. For example, a lag structure of the form of an inverted U

(i.e., with b1 > b0) can be approximated by a polynomial of at least the second degree. This may arise,
as in the case of an investment function, when because of delays in recognition and in making decisions,
the level of investment in the current period is more responsive to demand conditions in a few earlier

periods than in the current period.

(b) The Almon lag model has at least two important advantages with respect to the Koyck lag model.

First (and as pointed out earlier), the Almon model has a flexible lag structure as opposed to the rigid
lag structure of the Koyck model. Second, since the Almon lag model does not replace the lagged
independent variables (the Xs) with the lagged dependent variable, it does not violate any of the OLS
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Table 8.15 Inventories and Sales in U.S. Manufacturing, 1981–1999 (in Billions of Dollars)

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Y 546 574 590 650 664 663 710 767 815 841

X 345 344 396 417 428 445 473 522 533 542

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

Y 835 843 870 935 996 1014 1062 1100 1151

X 542 585 609 672 701 730 769 797 872

Source: St. Louis Federal Reserve (U.S. Department of Commerce, Census Bureau).



assumptions (as does the Koyck model). One disadvantage of the Almon model is that the number of

coefficients to be estimated is not reduced by as much as in the Koyck model. Another disadvantage is
that in actual empirical work, neither the period nor the form of the lag may be suggested by theory or
be known a priori.

8.14 Derive the Almon transformation for (a) a three-period lag taking the form of a second-degree
polynomial and (b) a four-period lag taking the form of a third-degree polynomial.

(a) Starting with Eqs. (8.11) and (8.12)

Yt ¼ a þ b0Xt þ b1Xt�1 þ b2Xt�2 þ b3Xt�3 þ ut ð8:11Þ
bi ¼ c0 þ c1i þ c2i

2 with i ¼ 0; 1; 2; 3 ð8:12Þ

and substituting Eq. (8.12) into Eq. (8.11), we get

Yt ¼ a þ c0Xt þ ðc0 þ c1 þ c2ÞXt�1 þ ðc0 þ 2c1 þ 4c2ÞXt�2 þ ðc0 þ 3c1 þ 9c2ÞXt�3 þ ut

Rearranging the terms in the last expression:

Yt ¼ a þ c0
X3
i¼0

Xt�i

 !
þ c1

X3
i¼1

iXt�i

 !
þ c2

X3
i¼1

i2Xt�i

 !
þ ut

and letting Z1t ¼
P3
i¼0

Xt�i, Z2t ¼
P3
i¼1

iXt�i, and Z3t ¼
P3
i¼1

i2Xt�i, we get

Yt ¼ a þ c0Z1t þ c1Z2t þ c2Z3t þ ut ð8:13Þ

(b) With a four-period lag taking the form of a third-degree polynomial, we have

Yt ¼ a þ b0Xt þ b1Xt�1 þ b2Xt�2 þ b3Xt�3 þ b4Xt�4 þ ut

bi ¼ c0 þ c1i þ c2i
2 þ c3i

3 with i ¼ 0; 1; 2; 3; 4

Substituting the second into the first, we get

Yt ¼ a þ c0Xt þ ðc0 þ c1 þ c2 þ c3ÞXt�1 þ ðc0 þ 2c1 þ 4c2 þ 8c3ÞXt�2
þ ðc0 þ 3c1 þ 9c2 þ 27c3ÞXt�3 þ ðc0 þ 4c1 þ 16c2 þ 64c3ÞXt�4 þ ut

Rearranging the terms in the last expression, we have

Yt ¼ a þ c0
X4
i¼0

Xt�i

 !
þ c1

X4
i¼1

iXt�i

 !
þ c2

X4
i¼1

i2Xt�i

 !
þ c3

X4
i¼1

i3Xt�i

 !
þ ut

and letting the terms in parentheses equal, respectively, Z1t;Z2t;Z3t, and Z4t, we get

Yt ¼ a þ c0Z1t þ c1Z2t þ c2Z3t þ c3Z4t þ ut

8.15 Using the data from Table 8.15 and assuming a three-period lag taking the form of a second-
degree polynomial, (a) Prepare a table with the original variables and the calculated Z values to
be used to estimate the Almon lag model. (b) Regress the level of inventories, Y , on the Z values
in the table in part a, i.e., estimate regression Eq. (8.13). (c) Find the b̂b values and write out
estimated Eq. (8.11).

(a) The Z values given in Table 8.16 are calculated as follows:
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Z1t ¼
X3
i¼0

Xt�i ¼ ðXt þ Xt�1 þ Xt�2 þ Xt�3Þ

Z2t ¼
X3
i¼1

iXt�i ¼ ðXt�1 þ 2Xt�2 þ 3Xt�3Þ

Z3t ¼
X3
i¼1

i2Xt�i ¼ ðXt�1 þ 4Xt�2 þ 9Xt�3Þ

(b) Regressing Y on the Zs, we get

ŶYt ¼ 171:80þ 0:44 Z1t þ 0:27 Z2t � 0:15 Z3t R2 ¼ 0:99

ð2:20Þ ð0:56Þ ð�0:99Þ

�̂� ¼ 171:80ðcÞ
b̂b0 ¼ ĉc0 ¼ 0:44

b̂b1 ¼ ðĉc0 þ ĉc1 þ ĉc2Þ ¼ ð0:44þ 0:27� 0:15Þ ¼ 0:56

b̂b2 ¼ ðĉc0 þ 2ĉc1 þ 4ĉc2Þ ¼ ð0:44þ 0:54� 0:60Þ ¼ 0:38

b̂b3 ¼ ðĉc0 þ 3ĉc1 þ 9ĉc2Þ ¼ ð0:44þ 0:81� 1:35Þ ¼ �0:10

so that ŶYt ¼ 171:80þ 0:44 Xt þ 0:56 Xt�1 þ 0:38 Xt�2 � 0:10 Xt�3
ð2:20Þ ð3:41Þ ð2:31Þ ð�0:47Þ

where the standard errors of the lagged values of X have been found byffiffiffiffiffiffiffiffiffiffiffiffi
var b̂bi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðĉc0 þ ĉc1i þ ĉc2i

2Þ
q

ð8:17Þ
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Table 8.16 Inventories, Sales, and Z Values in U.S. Manufacturing,

1981–1999 (in Billions of Dollars)

Year Y X Z1 Z2 Z3

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

546

574

590

650

664

663

710

767

815

841

835

843

870

935

996

1014

1062

1100

1151

345

344

396

417

428

445

473

522

533

542

542

585

609

672

701

730

769

797

872

—

—

—

1502

1585

1686

1763

1868

1973

2070

2139

2202

2278

2408

2567

2712

2872

2997

3168

—

—

—

2119

2241

2450

2552

2647

2803

2996

3174

3225

3295

3405

3645

3872

4148

4332

4525

—

—

—

4877

5097

5660

5910

6105

6419

6878

7372

7507

7631

7827

8373

8870

9582

9998

10,443



FORECASTING

8.16 (a) What is meant by forecasting? Conditional forecast? Prediction? (b) What are the possible
sources of errors in forecasting? (c) What is the forecast-error variance? What is an unbiased
estimate of the forecast-error variance? What do they depend on? (d) How is the value of ŶYF

found? The 95% confidence interval of the forecast, YF ?

(a) Forecasting refers to the estimation of the value of a dependent variable, given the actual or projected
value of the independent variable(s). When the forecast is based on an estimated or projected (rather
than on an actual) value of the independent variable, we have a conditional forecast. Prediction is often

used interchangeably with forecasting. At other times, prediction refers to estimating an intrasample
value of the dependent variable. Forecasting, then, refers to estimating a future value of the dependent
variable.

(b) Forecasting errors arise because of (1) the random nature of the error term, (2) estimated unbiased

parameters equal the true parameters only on the average, (3) errors in projecting the independent
variables, and (4) incorrect model specification.

(c) The forecast-error variance �2F is given by

�2F ¼ �2u 1þ 1

n
þ ðXF � 	XXÞ2PðXi � 	XXÞ2

" #
ð8:14Þ

where n is the number of observations and �2u is the variance of u. An unbiased estimate of the forecast-
error variance s2F is given by

s2F ¼ s2 1þ 1

n
þ ðXF � 	XXÞ2PðXi � 	XXÞ2

" #
ð8:15Þ

where s2 is an unbiased estimate of �2u given by

s2 ¼
PðYi � ŶYiÞ2

n � 2
¼
P

e2i
n � 2

ð6:12Þ

The larger is n, the smaller is �2F (or s2F ), �
2
u (or s2), and the difference between XF and 	XX .

(d) The value of ŶYF is found by substituting the actual or projected value of XF into the estimated
regression equation:

ŶYF ¼ b̂b0 þ b̂b1XF

The 95% confidence interval of the forecast YF is given by

ŶYF � t0:025sF

where t refers to the t distribution with n � 2 degrees of freedom.

8.17 Find the 95% confidence interval of the forecast for Y in Prob. 6.30 for (a) X ¼ 15% and
(b) X ¼ 11:5%.

(a) In Prob. 6.30, we found that ŶYi ¼ 59:13� 2:60Xi, n ¼ 15, 	XX ¼ 11:00,
P

x2i ¼ 442, and

s2 ¼ 2872:8535=13 ffi 220:99. For X ¼ 11%, we obtain

s2F ¼ 220:99 1þ 1

15
þ ð15� 11Þ2

442

 !
ffi 243:72 sF ffi 15:61

ŶYF ¼ 59:13� 2:60ð15Þ ¼ 20:13

Then the 95% confidence interval for YF is

20:13� ð2:18Þð15:61Þ or between � 13:90 and 54:16

where 2:18 ¼ t0:025 with df ¼ 13.

(b) For X ¼ 11:5%
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s2F ¼ 220:99 1þ 1

15
þ ð11:5� 11Þ2

442

 !
ffi 235:85 and sF ffi 15:35

ŶYF ¼ 59:13� 2:60ð11:5Þ ¼ 29:23

Then the 95% confidence interval for YF is

29:23� ð2:18Þð15:35Þ or between � 4:23 and 62:69

Note that the range of the 95% confidence interval for YF is less here than in part a because the
difference between the projected value of X and 	XX is smaller here.

8.18 Draw a graph showing a hypothetical positively sloped estimated OLS regression line, the 95%
confidence interval for YF for a given XF , and the 95% confidence interval bands for YF .

See Fig. 8-2. Note that the 95% confidence bands are closest at XF ¼ 	XX .

8.19 Find the 95% confidence interval of YF for X1F ¼ 35 and X2F ¼ 25 in 1981, given that
ŶYi ¼ 31:98þ 0:65X1i þ 1:11X2i, 	XX1 ¼ 18, 	XX2 ¼ 12 (from Example 7.1), s2 ¼P

e2i =ðn � kÞ ¼
13:67=7 ffi 1:95, s2

b̂b1
ffi 0:06, s2

b̂b2
ffi 0:07 (from Example 7.2), s2

b̂b0
ffi 2:66, covðb̂b1; b̂b2Þ ¼ s

b̂b1;b̂b2
ffi 0:07

(from the computer), and if

s2F ¼ s2 þ s2
b̂b0
þ s2

b̂b1
ðX1F � 	XX1Þ2 þ s2

b̂b2
ðX2F � 	XX2Þ2 þ s

b̂b1b̂b2
ðX1F � 	XX1ÞðX2F � 	XX2Þ ð8:18Þ

¼ 1:95þ 2:66þ 0:06ð35� 18Þ2 þ 0:07ð25� 12Þ2 þ ð�0:07Þð35� 18Þð25� 12Þ
ffi 18:31 and sF ffi 4:28

ŶYF ¼ 31:98þ 0:65ð35Þ þ 1:11ð25Þ ¼ 82:48

The 95% confidence interval for YF in 1981 is then 82:48� ð2:37Þð4:28Þ or between 73.34 and
92.62.

BINARY CHOICE MODELS

8.20 (a) Derive the log-likelihood function for the probit model. (b) Give two alternative represen-
tations of the log-likelihood function. (b) How would the log-likelihood function differ for the
logit model?
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(a) Since this is a probit model, we know that ui is normally distributed in the model of the underlying

propensity of Y :

Y�
i ¼ b0 þ b1Xi þ ui

where Yi ¼ 1 if Y�
i 
 0 and Yi ¼ 0 if Y�

i < 0. If we see an observed value of Y ¼ 1, we know that
Y�

i 
 0, or alternatively, ui > �b0 � b1Xi. The probability of ui being in this range is
1�
ð�b0 � b1XiÞ, where 
ð Þ is the cumulative probability for the normal distribution. Since the
normal distribution is symmetrical, we can also write this as

PðY ¼ 1Þ ¼ 
ðb0 þ b1XiÞ
Similarly, the probability of observing Y ¼ 0 for a single observation is

PðY ¼ 0Þ ¼ PðY�
i < 0Þ ¼ Pðui < �b0 � b1XiÞ ¼ 
ð�b0 � b1XiÞ

We know from Sec. 3.2, rule 4 that if the observations are independent, then the joint probability of

observing more than one event simultaneously is equal to the product of their individual probabilities.
For a given set of data, the joint probability of the observed combination of Y ¼ 1 and Y ¼ 0 is the
likelihood function L:

L ¼ �1½
ðb0 þ b1XiÞ� ��0½
ð�b0 � b1XiÞ�
(�1 and �0 indicate multiplication of all probabilities for those data points where Yi ¼ 1 and 0,
respectively). Taking logs yields the log-likelihood function

lnL ¼ �1½lnð
ðb0 þ b1XiÞÞ� þ�0½lnð
ð�b0 � b1XiÞÞ�
(b) Since it is awkward to write the summations for Y ¼ 1 and Y ¼ 0 separately, for notational conve-

nience the log-likelihood function may be written

lnL ¼ �½ðYiÞ lnð
ðb0 þ b1XiÞÞ þ ð1� YiÞ lnð
ð�b0 � b1XiÞÞ�
lnL ¼ �½lnð
½ð2Yi � 1Þðb0 þ b1XiÞ�Þ�or

(c) For the logit model, the only difference would be the substitution of the cumulative probability for the
logistic distribution [(�ðzÞ ¼ 1=ð1þ e�zÞ� for 
ð Þ.

8.21 Compare and contrast the logit and probit models.

Both the logit and probit models are based on the same underlying threshold model, but because a
threshold model is based on the probability of observing the error term in a certain range, a distribution
must be specified for estimation. The probit model specifies the normal distribution, which is a common

distribution that appears often in nature. The logit model specifies the logistic distribution, which is similar
to the normal distribution in appearance (it is close to a t distribution with df ¼ 7). The benefit of the
logistic distribution is in the ease of calculations since there are no tables required to find the cumulative
probability. Both models will yield similar results. As a rule of thumb, bL ¼ 1:6bP, where L and P indicate

coefficients for the logit and probit model, respectively.

8.22 By hand, graph the value of the log-likelihood function in Example 8.5 with lnL on the vertical
axis (ordinate) and b1 on the horizontal axis (abscissa) for b0 ¼ �2, and b1 ¼ (a) �0:001 (b) 0
(c) 0.001 (d) 0.002 (e) 0.003.

All calculations are given in Table 8.17; the graph is presented in Fig. 8-3. As can be seen in Fig. 8-3,
the maximum point of the log-likelihood function is at b1 ¼ 0:001, which was the estimated value from

Example 8.5.

8.23 Estimate Example 8.5 using the logit model.

Logit estimation gives the following results:

ŶY� ¼ �3:6050þ 0:0018 X s
b̂b0
¼ 1:6811; s

b̂b1
¼ 0:0009; lnL ¼ �6:7664
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To test significance, we have

t
b̂b0
¼ b0=s

b̂b0
¼ �3:6050=1:6811 ¼ �2:14 < �1:96; therefore significant at the 5% level

t
b̂b1
¼ b1=s

b̂b1
¼ 0:0018=0:0009 ¼ 2 > 1:96; therefore significant at the 5% level

The coefficients are proportionally higher in absolute value than in the probit model, but the marginal effects
and significance should be similar.

INTERPRETATION OF BINARY CHOICE MODELS

8.24 (a) Explain the difference between the following pairs of terms in the context of binary choice
models: (a) coefficient and marginal effect, (b) R2 and likelihood ratio index, (c) predicted Y
and observed Y .

(a) The coefficient in a binary choice model gives only the relationship between X and Y�, the unobservable
propensity of Y . Therefore, the coefficient has an ambiguous interpretation, and cannot be compared
across different models, or between probit and logit. The marginal effect is the effect of X on the
probability of observing a success for Y . Since Y is observable, the interpretation of the marginal effect

is clearer, and the marginal effect should be robust across models.

(b) R2 is the ratio of explained sum of squares to total sum of squares in a regression, which cannot be
defined in a model with an unobservable dependent variable. The likelihood ratio index uses the ratio

of log-likelihood values to achieve a similar measure, but its interpretation is not as straightforward. It
is bounded by 0 and 1, but achieves 1 only in the limit, and rarely takes on large values.

(c) Predicted Y values are successes of Y that are predicted by the binary choice model, usually by having a
probability of Y ¼ 1 greater than 50%. Observed Y values are the successes and failures of Y from the

data set.

8.25 Find the marginal effects, LRI, and predicted values for Y for the logit model in Prob. 8.23.
How do the results compare with Example 8.6?

The marginal effect of GDP/cap on the probability of a country being open to trade is


ðb0 þ b1 	XXÞ � b1 ¼
e�3:6050þ0:0018ð3469:5Þ

ð1þ e�3:6050þ0:0018ð3469:5ÞÞ2 ð0:0018Þ ¼ 0:0001

This can also be interpreted as the marginal effect of GDP/cap on the expected value of Y :

LRI ¼ 1� lnL

lnL0

¼ 1� ð�6:7664=� 13:8629Þ ¼ 0:51 ðlnL0 ¼ �13:8629Þ

Predicted probabilities are listed in Table 8.18.
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Table 8.17 Log-Likelihood Values for the Probit Model

Country Yi X
lnðPðY ¼ YiÞÞ
b1 ¼ �0:001

lnðPðY ¼ YiÞÞ
b1 ¼ 0

lnðPðY ¼ YiÞÞ
b1 ¼ 0:001

lnðPðY ¼ YiÞÞ
b1 ¼ 0:002

lnðPðY ¼ YiÞÞ
b1 ¼ 0:002

Burundi

Chad

Congo

Egypt

Hong Kong

India

Indonesia

Ivory Coast

Kenya

Malaysia

Morocco

Nigeria

Rwanda

Singapore

South Africa

Tunisia

Uganda

Uruguay

Venezuela

Zimbabwe

0

0

0

0

1

0

1

0

0

1

1

0

0

1

1

1

1

1

1

0

569

408

2240

1869

16,471

1282

2102

1104

914

5746

2173

978

762

12,653

3068

3075

547

5185

7082

1162

� 0:0051

� 0:0081

0:0000

� 0:0001

< �69:0776
� 0:0005

� 10:7955

� 0:0010

� 0:0018

� 32:9756

� 11:1048

� 0:0015

� 0:0029

< �69:0776
� 15:4182

� 15:4550

� 5:2153

� 28:7146

< �69:0776
� 0:0008

�0:0230
�0:0230
�0:0230
�0:0230
�3:7832
�0:0230
�3:7832
�0:0230
�0:0230
�3:7832
�3:7832
�0:0230
�0:0230
�3:7832
�3:7832
�3:7832
�3:7832
�3:7832
�3:7832
�0:0230

�0:0793
�0:0573
�0:9035
�0:5940
0:0000

�0:2697
�0:6150
�0:2047
�0:1494
0:0000

�0:5644
�0:1665
�0:1141
0:0000

�0:1540
�0:1522
�2:6158
�0:0007
0:0000

�0:2244

�0:2161
�0:1258
�5:0254
�3:1916
0:0000

�1:2504
�0:0139
�0:8732
�0:5651
0:0000

�0:0095
�0:6587
�0:3813
0:0000

0:0000

0:0000

�1:7012
0:0000

0:0000

�0:9863

�0:4857
�0:2470
�13:6495
�8:7726
0:0000

�3:4282
0:0000

�2:3564
�1:4738
0:0000

0:0000

�1:7421
�0:9482
0:0000

0:0000

0:0000

�1:0222
0:0000

0:0000

�2:6789
lnL ¼P

lnðPðY ¼ YiÞÞ
lnL ffi �326:9333

lnL ¼P
lnðPðY ¼ YiÞÞ

lnL ffi �38:0620
lnL ¼P

lnðPðY ¼ YiÞÞ
lnL ffi �6:8651

lnL ¼P
lnðPðY ¼ YiÞÞ

lnL ffi �14:9985
lnL ¼P

lnðPðY ¼ YiÞÞ
lnL ffi �36:8047



The model predicts 18 out of 20 countries correctly, or 90%. The marginal effect and predictions are

virtually identical to the probit model, giving an indication of why the logit model was used almost exclu-

sively before computers were readily available.

Supplementary Problems

FUNCTIONAL FORM

8.26 Transform the following nonlinear functions into linear functions: (a) Y ¼ b0e
b1X eu, (b) Y ¼ b0 þ b1

ln X þ u, (c) Y ¼ b0 � b=X þ u, and (d) Y ¼ b0 þ b1X � b2X
2 þ b3X

3 þ u.

Ans. (a) lnY ¼ ln b0 þ b1X þ u ðbÞ Y ¼ b0 þ b1R þ u, where R ¼ lnX ðcÞ Y ¼ b0 � b0Z þ u, where
Z ¼ 1=X ðdÞ Y ¼ b0 þ b1X � b2W þ b3T þ u, where W ¼ X2 and T ¼ X3

8.27 Fit a double-log function to the data in Table 6.12.

lnY ¼ 2:64 þ 0:72 lnX R2 ¼ 83:26%Ans:

ð14:69Þ ð6:31Þ

8.28 Fit a semilog function of the form Y ¼ b0 þ b1 lnX þ u to the data in Table 6.12.

Y ¼ 2:62þ 27:12 lnX R2 ¼ 81:29%Ans:

ð0:36Þ ð5:90Þ

8.29 (a) Fit a polynomial function of the form Y ¼ b0 þ b1X � b2X
2 þ u to the data in Table 6.12. (b) Which

gives a better fit for the data in Table 6.12, the linear form of Probs. 6.34, 6.37, 6.38, and 6.40; the semilog
form of Prob. 8.28; or the polynomial form of part a?

Y ¼ �2:25þ 13:67X � 0:77X2 R2 ¼ 80:75%Ans: ðaÞ
ð1:99Þ ð�1:14Þ F2;7 ¼ 14:68

(b) The fit with the semilog function is better than the fit with the linear and polynomial forms.
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Table 8.18 Predicted Probabilities for Logit Model

Country Burundi Chad Congo Egypt Hong Kong

PðY ¼ 1Þ 0.07 0.05 0.61 0.44 > 0:99

Country India Indonesia Ivory Coast Kenya Malaysia

PðY ¼ 1Þ 0.21 0.54 0.17 0.12 > 0:99

Country Morocco Nigeria Rwanda Singapore South Africa

PðY ¼ 1Þ 0.58 0.14 0.10 > 0:99 0.87

Country Tunisia Uganda Uruguay Venezuela Zimbabwe

PðY ¼ 1Þ 0.87 0.07 > 0:99 > 0:99 0.18

Y ¼ 0 Y ¼ 1

Y ¼ 0 9 1

Y ¼ 1 1 9

A
c
t
u
a
l

Predicted



DUMMY VARIABLES

8.30 For the data in Table 8.2 (a) run regression Eq. (8.6). (b) Is the slope coefficient significantly different in

wartime than in peacetime? (c) What is the slope coefficient in peacetime? In wartime?

ŶY ¼ �2:89þ 0:17X � 0:11XD R2 ¼ 0:95Ans: ðaÞ
ð11:88Þ ð�7:56Þ

(b) Yes (c) b1 ¼ 0:17 in peacetime and b1 ¼ 0:06 wartime

8.31 For the data in Table 8.2, (a) run regression Eq. (8.7). (b) Is the intercept significantly different in wartime
than in peacetime? (c) Is the slope coefficient significantly different in wartime than in peacetime?

ŶY ¼ �3:34þ 0:17X þ 14:59D � 0:18XD R2 ¼ 0:95Ans: ðaÞ
ð11:58Þ ð0:67Þ ð�1:64Þ

(b) No (c) No

8.32 Table 8.19 gives the aggregate reserves of U.S. depository institutions R from the first quarter of 1995 to the
third quarter of 2000. (a) Test for a linear trend in reserves and for seasonal effects. (b) What is the value
of the intercept for each season (use the 10% significance level)?

Ans. (a) Assigning a trend value T that equals 1; 2; 3; . . . ; 23 consecutively to each quarter and letting
D1 ¼ 1 for the second quarter and 0 otherwise, D2 ¼ 1 for the third quarter and 0 otherwise, and D3 ¼ 1 for
the fourth quarter and 0 otherwise, we get

R̂R ¼ 58,370:70� 956:30T þ 153:10D1 þ 104:60D2 þ 1875:50D3 R2 ¼ 0:98

ð�17:56Þ ð0:18Þ ð0:12Þ ð2:12Þ

(b) Since only D3 is statistically significant at the 10% level, b̂b0 ¼ 58,370:70 in quarters I, II, and III, while

b̂b0 ¼ 60,246:20 in quarter IV.

8.33 Table 8.20 gives the per capita disposable income Y in thousands of dollars and the percentage of college
graduates in the population 25 years of age or older X for the eastern United States in 1998. (a) Run a
regression of Y on X and on dummies to take regional effects into account. (b) What is the value of the

intercept for each region (use the 10% significance level)?
Ans. (a) Taking South Atlantic as the base, D1 ¼ 1 for New England states and 0 otherwise and D2 ¼ 1 for
Mid-Atlantic states and 0 otherwise, we get
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Table 8.19 Aggregate Reserves of U.S. Depository Institutions

(in Millions of Dollars)

Year

Quarter

I II III IV

1995

1996

1997

1998

1999

2000

57,571

54,878

47,551

45,591

43,229

39,752

57,031

53,742

46,606

45,094

42,331

39,217

57,162

51,045

46,060

44,199

41,314

39,257

57,896

51,174

47,919

45,209

41,655

Source: Federal Reserve Board of Governors.



ŶY ¼ 8:16þ 0:56X þ 0:88D1 þ 2:83D2 R2 ¼ 0:86

ð5:07Þ ð0:79Þ ð2:10Þ

(b) b̂b0 ¼ 8:16 for New England and South Atlantic states, while b̂b0 ¼ 10:99 for Mid-Atlantic states.

DISTRIBUTED LAG MODELS

8.34 What are the problems in estimating (a) Equation (8.9)? (b) Equation (8.10)? (c) Equation (8.13)?
Ans. (a) One observation is lost for each lagged value of X and the Xs are likely to be related to each other

(b) The rigidly geometrically declining lag structure and the violation of two assumptions of OLS leading to
biased and inconsistent estimators (c) The number of coefficients to be estimated is not reduced as much as
in Eq. (8.10) and the period and the form of the lag may not be known

8.35 Table 8.21 gives the business expenditures for new plant equipment of public utilities Y and the gross

national product X , both in billions of dollars, for the United States from 1960 to 1979. (a) Estimate
the Koyck model [i.e., Eq. (8.10)]. (b) What are the values of 
̂
 and âa?

ŶYt ¼ �1:92þ 0:01Xt þ 0:40Yt�1 R2 ¼ 0:99Ans: ðaÞ
ð4:55Þ ð2:63Þ

(b) 
̂
 ¼ 0:40 and âa ¼ �3:20
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Table 8.20 Disposable Income and Percent of College Graduates in the East in 1998

Disposable

income, %
Percent with

college degree, %
State

19.76 24.99 20.77 26.72 23.02 30.22 26.06 28.31 22.79

19.2 26.6 27.1 31.0 27.8 31.4 26.8 30.1 22.1

ME NH VT MA RI CN NY NJ PA

Region New England Mid-Atlantic

Disposable
income, %
Percent with

college degree, %

State

24.96 24.9 23.0 17.12 20.49 18.52 21.27 22.06

25.1 31.8 30.3 16.3 23.3 21.3 20.7 22.5

DE MD VA WV NC SC GA FL

Region South Atlantic

Source: Statistical Abstract of the United States.

Table 8.21 Business Expenditures for New Plant Equipment of Public Utilities and the

Gross National Product: United States, 1960–1979 (in Billions of Dollars)

Year 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

Y 5.2 5.0 4.9 5.0 5.5 6.3 7.4 8.7 10.2 11.6

X 506.0 523.3 563.8 594.7 635.7 688.1 753.0 796.3 868.5 935.5

Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

Y 13.1 15.3 17.0 18.7 20.6 20.1 22.3 25.8 29.5 33.2

X 982.4 1063.4 1171.1 1306.6 1412.9 1528.8 1702.2 1899.5 2127.6 2368.5

Source: Economic Report of the President, U.S. Government Printing Office, Washington, DC, 1980, pp. 203, 255.



8.36 Table 8.22 gives the total personal consumption expenditures Y and the total disposable personal income, X ,

both in billions of dollars, for the United States from 1960 to 1979. (a) Estimate the Almon lag model
assuming a three-period lag taking the form of a second-degree polynomial. (b) Does this model fit the data
well?

ŶY ¼ �19:08þ 1:94Xt þ 0:77Xt�1 þ 0:14Xt�2 þ 0:04Xt�3 R2 ¼ 0:09Ans: ðaÞ
ð0:98Þ ð2:62Þ ð0:36Þ ð0:13Þ

(b) Since only the coefficient of Xt�1 (i.e., b̂b1) is statistically significant at the 5% level and its value exceeds
the value of b̂b0, this model does not fit the data well. The Koyck model or another form of the Almon model
might be more appropriate.

FORECASTING

8.37 For X ¼ 4 in Prob. 6.44, find (a) s2F , (b) ŶYF , and (c) the 95% confidence interval for YF .
Ans. (a) s2F ffi 1:19 ðbÞ ŶYF ¼ 4:78 ðcÞ 4:78� 2:43

8.38 For Prob. 7.29 and X1F ¼ 2 and X2F ¼ 1250 for 2000 (a) find s2F and (b) the 95% confidence interval for
YF , given that ŶY ¼ 82:27� 5:11X1 þ 0:02X2, 	XX1 ¼ 6, 	XX2 ¼ 1100, s2 ¼P

e2=n � k ¼ 226:32=12 ffi 18:86,
s2

b̂b1
ffi 1:41, s2

b̂b2
ffi 0:01, s2

b̂b0
ffi 238:19, and s

b̂b1 b̂b2
ffi 0:01.

Ans. (a) s2F ffi 468:61 ðbÞ 97:05� ð2:18Þð21:65Þ, or between 49.85 and 144.25

BINARY CHOICE MODELS

8.39 Calculate the log-likelihood values for the logit model in Prob. 8.23 for b0 ¼ �3:6 and b1 ¼ (a) 0, (b) 0.001,

(c) 0.002.
Ans. (a) lnL ¼ �36:59 ðbÞ lnL ¼ �9:70 ðcÞ lnL ¼ �6:91

8.40 Calculate the log-likelihood values for the logit model in Prob. 8.23 for b1 ¼ 0:0018 and b0 ¼ (a) �3:8
(b) �3:6 (c) �3:4.
Ans. (a) lnL ¼ �6:80 ðbÞ lnL ¼ �6:77 ðcÞ lnL ¼ �6:82

INTERPRETATION OF BINARY CHOICE MODELS

8.41 Should coefficients be the same between probit and logit models?
Ans. No, logit coefficients should be proportionally greater than probit coefficients.

8.42 Should marginal effects be the same between probit and logit models?
Ans. Yes, marginal effects should differ only slightly.
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Table 8.22 Consumption and Disposable Income (in Billions of Dollars): United States, 1960–1979

Year 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

Y 324.9 335.9 355.2 374.6 400.4 430.2 464.8 490.4 535.9 579.7

X 349.4 362.9 383.9 402.8 437.0 472.2 510.4 544.5 588.1 630.4

Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

Y 618.8 668.2 733.0 809.9 889.6 979.1 1089.9 1210.0 1350.8 1509.8

X 685.9 742.8 801.3 901.7 984.6 1086.7 1184.5 1305.1 1458.4 1623.2

Source: Economic Report of the President, U.S. Government Printing Office, Washington, DC, 1980, p. 229.



Problems in Regression
Analysis

9.1 MULTICOLLINEARITY

Multicollinearity refers to the case in which two or more explanatory variables in the regression
model are highly correlated, making it difficult or impossible to isolate their individual effects on the
dependent variable. With multicollinearity, the estimated OLS coefficients may be statistically insig-
nificant (and even have the wrong sign) even though R2 may be ‘‘high.’’ Multicollinearity can some-
times be overcome or reduced by collecting more data, by utili zing a priori information, by transforming
the functional relationship (see Prob. 9.3), or by dropping one of the highly collinear variables.

EXAMPLE 1. Table 9.1 gives the growth rate of imports Y , gross domestic product X1, and inflation X2 for the

United States from 1985 to 1999 (the reason for using growth rates is explained in Chap. 11). It is expected that the
level of imports will be greater as GDP and domestic prices increase. Regressing Y on X1 and X2, we get

ŶY ¼ 0:0015þ 1:39X1 þ 0:09X2 R2 ¼ 0:42

ð1:46Þ ð1:85Þ r12 ¼ 0:38
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Table 9.1 Growth Rate of Imports, GDP and Inflation in the United States from 1985 to 1999

Year 1985 1986 1987 1988 1989 1990 1991 1992

Y 0:0540 0:0656 0.1475 0:0686 0:0455 0:0827 �0:0157 0:0753

X1 0:0709 0:0505 0.0780 0:0750 0:0627 0:0464 0:0399 0:0640

X2 �0:1593 �0:2683 0.4801 0:1348 �0:0218 0:1612 �0:2511 �0:2611
Year 1993 1994 1995 1996 1997 1998 1999

Y 0:0841 0:1540 0.0578 0:0918 0:0949 0:0555 0:1593

X1 0:0503 0:0621 0.0432 0:0600 0:0623 0:0585 0:0652

X2 0:0527 �0:1500 0.0251 �0:1119 �0:0131 �0:3613 0:2579

Source: St. Louis Federal Reserve (Bureau of Economic Analysis).

Copyright 2002 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



Neither b̂b1 nor b̂b2 is statistically significant at the 5% level. b̂b2 is significant at the 10% level, but the R2 indicates

that 42% of the variation in Y is explained by the model even though none of the independent variables stand out
individually. The correlation is positive correlation X1 and X2, as indicated by r12. Reestimating the regression
without either X2 or X1, we get

ŶY ¼ �0:04þ 2:06

(2.13)

X1 R2 ¼ 0:26

ŶY ¼ 0:09þ 0:11

(2.48)

X2 R2 ¼ 0:32

In simple regressions, the significance of both X1 and X2 increases, with X1 almost significant at the 5% level and X2

significant at more than the 5% level, indicating that the original regression exhibited multicollinearity. However,
dropping either variable from the regression leads to biased OLS estimates, because economic theory suggests that

both GDP and prices should be included in the import function.

9.2 HETEROSCEDASTICITY

If the OLS assumption that the variance of the error term is constant for all observations does not
hold, we face the problem of heteroscedasticity. This leads to unbiased but inefficient (i.e., larger than
minimum variance) estimates of the coefficients, as well as biased estimates of the standard errors (and,
thus, incorrect statistical tests and confidence intervals).

One test for heteroscedasticity involves arranging the data from small to large values of the inde-
pendent variable X and running two regressions, one for small values of X and one for large values,
omitting, say, one-fifth of the middle observations. Then, we test that the ratio of the error sum of
squares (ESS) of the second regression to the first regression is significantly different from zero, using the
F table with ðn � d � 2kÞ=2 degrees of freedom, where n is the total number of observations, d is the
number of omitted observations, and k is the number of estimated parameters.

If the error variance is proportional to X2 (often the case), heteroscedasticity can be overcome by
dividing every term of the model by X and then reestimating the regression using the transformed
variables.

EXAMPLE 2. Table 9.2 gives average wages Y and the number of workers employed X by 30 firms in an industry.
Regressing Y on X for the entire sample, we get

ŶY ¼ 7:5

(40.27)

þ 0:009

(16.10)

X R2 ¼ 0:90

The results of regressing Y on X for the first 12 and for the last 12 observations are, respectively

ŶY ¼ 8:1þ 0:006X R2 ¼ 0:66

ð39:4Þ ð4:36Þ ESS1 ¼ 0:507

ŶY ¼ 6:1þ 0:013X R2 ¼ 0:60

ð4:16Þ ð3:89Þ ESS2 ¼ 3:095
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Table 9.2 Average Wages and Number of Workers Employed

Average Wages Workers Employed

8.40 8.40 8.60 8.70 8.90 9.00 100

8.90 9.10 9.30 9.30 9.40 9.60 200

9.50 9.80 9.90 10.30 10.30 10.50 300

10.30 10.60 10.90 11.30 11.50 11.70 400

11.60 11.80 12.10 12.50 12.70 13.10 500



Since ESS2=ESS1 ¼ 3:095=0:507 ¼ 6:10 exceeds F10;10 ¼ 2:97 at the 5% level of significance (see App. 7), the hypoth-

esis of heteroscedasticity is accepted. Reestimating the transformed model to correct for heteroscedasticity, we get

ŶY

X
¼ 0:008

(14.43)

þ 7:8

(76.58)

1

X

� �
R2 ¼ 0:99

Note that the slope coefficient is now given by the intercept (i.e., 0.008), and this is smaller than before the
adjustment (i.e., 0.009).

9.3 AUTOCORRELATION

When the error term in one time period is positively correlated with the error term in the previous
time period, we face the problem of (positive first-order) autocorrelation. This is common in time-series
analysis and leads to downward-biased standard errors (and, thus, to incorrect statistical tests and
confidence intervals).

The presence of first-order autocorrelation is tested by utilizing the table of the Durbin-Watson
statistic (App. 8) at the 5 or 1% levels of significance for n observations and k 0 explanatory variables. If
the calculated value of d from Eq. (9.1) is smaller than the tabular value of dL (lower limit), the
hypothesis of positive first-order autocorrelation is accepted:

d ¼

Xn

t¼2
ðet � et�1Þ2

Xn

t¼1
e2t

ð9:1Þ

The hypothesis is rejected if d > dU (upper limit), and the test is inconclusive if dL < d < dU . (For
negative autocorrelation, see Prob. 9.8.)

One way to correct for autocorrelation is to first estimate � (Greek letter rho) from Eq. (9.2)

Yt ¼ b0ð1� �Þ þ �Yt�1 þ b1Xt � b1�Xt�1 þ vt ð9:2Þ
and then reestimate the regression on the transformed variables:

ðYt � �̂�Yt�1Þ ¼ b0ð1� �̂�Þ þ b1ðXt � �̂�Xt�1Þ þ ðut � �̂�ut�1Þ ð9:3Þ
To avoid losing the first observation in the differencing process, Y1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂�2

p
and X1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂�2

p
are used for

the first transformed observations of Y and X , respectively. When �̂� ffi 1, autocorrelation can be
corrected by rerunning the regression in difference form and omitting the intercept term (see Prob. 9.12).

EXAMPLE 3. Table 9.3 gives the level of inventories Y and sales S, both in billions of dollars, in U.S. manu-

facturing from 1979 to 1998. Regressing Y on X, we get

ŶYt ¼ 126:06þ 1:03Xt R2 ¼ 0:94

ð16:68Þ d ¼ 0:58
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Table 9.3 Inventory and Sales (Both in Billions of Dollars) in U.S. Manufacturing 1979–1998

Year 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

Y 242 265 283 312 312 340 335 323 338 369

X 144 154 168 163 172 191 194 195 206 225

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Y 391 405 391 383 384 405 431 437 456 467

X 237 243 240 250 261 279 300 310 327 338

Source: Economic Report of the President.



Since d ¼ 0:58 < dL ¼ 1:20 at the 5% level of significance with n ¼ 20 and k 0 ¼ 1 (from App. 8), there is evidence of

autocorrelation. An estimate of � is given by the coefficient of Yt�1 in the following regression:

ŶYt ¼ 66:88þ 0:58

(3.43)

Yt�1 þ 0:88

(2.36)

Xt � 0:50

(�1.04)
Xt�1 R2 ¼ 0:97

Utilizing �̂� ¼ 0:58 to transform the original variables (it is a coincidence here that �̂� ¼ d), as in Eq. (9.3), and using

242
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:582

p
¼ 197:14 and 144

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:582

p
¼ 117:30 for the first transformed observations of Y and X , respec-

tively, we rerun the regression on the transformed variables (denoted by the asterisk) and get

ŶY�
t ¼ 65:68þ 0:94X�

t R2 ¼ 0:83

ð9:34Þ d ¼ 1:78

Since now d ¼ 1:78 > dU ¼ 1:41 (from App. 8), there is no evidence of autocorrelation. Note that the t value of X�
t

is less than for Xt (but is still highly significant) and R2 is also lower.

9.4 ERRORS IN VARIABLES

Errors in variables refer to the case in which the variables in the regression model include measure-
ment errors. Measurement errors in the dependent variable are incorporated into the disturbance term
and do not create any special problem. However, errors in the explanatory variables lead to biased and
inconsistent parameter estimates.

One method of obtaining consistent OLS parameter estimates is to replace the explanatory variable
subject to measurement errors with another variable (called an instrumental variable) that is highly
correlated with the original explanatory variable but is independent of the error term. This is often
difficult to do and somewhat arbitrary. The simplest instrumental variable is usually the lagged
explanatory variable in question (see Example 4). Another method used when only X is subject to
measurement errors involves regressing X on Y (inverse least squares; see Prob. 9.15).

EXAMPLE 4. Table 9.4 gives inventories Y , actual sales X , and hypothetical values of X that include measure-
ment error X 0, all in billions of dollars, in U.S. retail trade from 1979 to 1998. X and Y are assumed to be error-

free. Regressing Yt on Xt, we get

ŶYt ¼ 2:92

(0.72)

þ 1:53

(56.67)

Xt R2 ¼ 0:99

Regressing Yt on X 0
t (if Xt is not available), we get

ŶYt ¼ 6:78

(1.70)

þ 1:46

(56.23)

X 0
t R2 ¼ 0:99
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Table 9.4 Inventories and Sales (in Billions of Dollars) in U.S. Retail Trade, 1979–1998

Year 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

Y 111 121 133 135 148 168 182 187 208 219

X 75 80 87 89 98 107 115 121 128 138

X 0 76 82 89 91 100 109 118 124 132 142

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Y 237 240 243 252 269 294 310 321 330 341

X 147 154 155 163 174 188 197 209 218 229

X 0 152 159 160 169 180 195 204 217 226 238

Source: Economic Report of the President.



Note that b̂b 0
1 < b̂b1; furthermore, b̂b1 falls outside the 95% confidence interval of b 0

1 (1.40 to 1.51). Using X 0
t�1 as an

instrumental variable for X 0
t (if X 0

t is suspected to be correlated with ut), we get

ŶY ¼ 13:88

(2.48)

þ 1:50

(40.19)

X 0
t�1 R2 ¼ 0:99

The coefficient on X 0
t�1 is closer to the true one (b̂b1 falls in the 95% confidence interval of 1.42 to 1.57), and is

consistent.

Solved Problems

MULTICOLLINEARITY

9.1 (a) What is meant by perfect multicollinearity? What is its effect? (b) What is meant by high, but
not perfect, multicollinearity? What problems may result? (c) How can multicollinearity be
detected? (d) What can be done to overcome or reduce the problems resulting from multi-
collinearity?

(a) Two or more independent variables are perfectly collinear if one or more of the variables can be

expressed as a linear combination of the other variable(s). For example, there is perfect multi-
collinearity between X1 and X2 if X1 ¼ 2X2 or X1 ¼ 5� ð1=3ÞX2. If two or more explanatory
variables are perfectly linearly correlated, it will be impossible to calculate OLS estimates of the

parameters because the system of normal equations will contain two or more equations that are not
independent.

(b) High, but not perfect, multicollinearity refers to the case in which two or more independent variables in
the regression model are highly correlated. This may make it difficult or impossible to isolate the effect
that each of the highly collinear explanatory variables has on the dependent variable. However, the

OLS estimated coefficients are still unbiased (if the model is properly specified). Furthermore, if the
principal aim is prediction, multicollinearity is not a problem if the same multicollinearity pattern
persists during the forecasted period.

(c) The classic case of multicollinearity occurs when none of the explanatory variables in the OLS
regression is statistically significant (and some may even have the wrong sign), even though R2

may be high (say, between 0.7 and 1.0). In the less clearcut cases, detecting multicollinearity

may be more difficult. High, simple, or partial correlation coefficients among explanatory vari-
ables are sometimes used as a measure of multicollinearity. However, serious multicollinearity
can be present even if simple or partial correlation coefficients are relatively low (i.e., less than

0.5).

(d) Serious multicollinearity may sometimes be corrected by (1) extending the size of the sample data,

(2) utilizing a priori information (e.g., we may know from a previous study that b2 ¼ 0:25b1),
(3) transforming the functional relationship, or (4) dropping one of the highly collinear variables
(however, this may lead to specification bias or error if theory tells us that the dropped variable should

be included in the model).

9.2 Table 9.5 gives the output in tons Q, the labor input in worker-hours L, and the capital
input in machine-hours K , of 15 firms in an industry. (a) Fit a Cobb-Douglas produc-
tion function of the form Q ¼ b0L

b1Kb2eu to the data and find 	RR2 and the simple correla-
tion coefficient between ln L and lnK . (b) Regress ln Q on ln L only. (c) Regress
ln Q on lnK only. (d) What can be concluded from the results with regard to multi-
collinearity?
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(a) Transforming the data into natural log form as shown in Table 9.6 and then regressing lnQ on lnL and
lnK , we get

R2 ¼ 0:969

lnQ ¼ 0:50þ 0:76 lnL þ 0:19 lnK 	RR2 ¼ 0:964

ð1:07Þ ð1:36Þ
rlnL lnK ¼ 0:992

lnQ ¼ �5:50 þ 1:71 lnL R2 ¼ 0:964ðbÞ
ð�7:74Þ ð18:69Þ

lnQ ¼ 5:30þ 0:34 lnK R2 ¼ 0:966ðcÞ
ð4:78Þ ð19:19Þ

(d) Since neither b̂b1 nor b̂b2 in part a is statistically significant at the 5% level (i.e., they have unduly large
standard errors) while R2 ¼ 0:97, there is clear indication of serious multicollinearity. Specifically,

large firms tend to use both more labor and more capital than do small firms. This is confirmed by the
very high value of 0.99 for the simple correlation coefficient between lnL and lnK . In parts b and c,
simple regressions were reestimated with either lnL or lnK as the only explanatory variable. In these
simple regressions, both lnL and lnK are statistically significant at much more than the 1% level with

R2 exceeding 0.96. However, dropping either lnK or lnL from the multiple regression leads to a biased
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Table 9.5 Output, Labor, and Capital Inputs of 15 Firms in an Industry

Firm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q 2350 2470 2110 2560 2650 2240 2430 2530 2550 2450 2290 2160 2400 2490 2590

L 2334 2425 2230 2463 2565 2278 2380 2437 2446 2403 2301 2253 2367 2430 2470

K 1570 1850 1150 1940 2450 1340 1700 1860 1880 1790 1480 1240 1660 1850 2000

Table 9.6 Output, Labor, and Capital Inputs in Original and Log Form

Firm Q L K lnQ lnL lnK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2350

2470

2110

2560

2650

2240

2430

2530

2550

2450

2290

2160

2400

2490

2590

2334

2425

2230

2463

2565

2278

2380

2437

2446

2403

2301

2253

2367

2430

2470

1570

1850

1150

1940

2450

1340

1700

1860

1880

1790

1480

1240

1660

1850

2000

7.76217

7.81197

7.65444

7.84776

7.88231

7.71423

7.79565

7.83597

7.84385

7.80384

7.73631

7.67786

7.78322

7.82004

7.85941

7.75534

7.79359

7.70976

7.80914

7.84971

7.73105

7.77486

7.79852

7.80221

7.78447

7.74110

7.72002

7.76938

7.79565

7.81197

7.35883

7.52294

7.04752

7.57044

7.80384

7.20042

7.43838

7.52833

7.53903

7.48997

7.29980

7.12287

7.41457

7.52294

7.60090



OLS slope estimate for the retained variable because economic theory postulates that both labor and

capital should be included in the production function.

9.3 How can the multicollinearity difficulty faced in Prob. 9.2 be overcome if it is known that
constant returns to scale (i.e., b1 þ b2 ¼ 1) prevail in this industry?

With constant returns to scale, the Cobb-Douglas production function can be rewritten as

Q ¼ b0L
b1K1�b1eu

Expressing this production function in double-log form and rearranging it, we get

lnQ ¼ ln b0 þ b1 lnL þ ð1� b1Þ lnK þ u

lnQ � lnK ¼ ln b0 þ b1ðlnL � lnKÞ þ u

Setting lnQ� ¼ lnQ � lnK and lnL� ¼ lnL � lnK and then regressing lnQ� on lnL�, we get

lnQ� ¼ 0:07

(9.26)

þ 0:83

(39.81)

lnL� R2 ¼ 0:992

Then b̂b2 ¼ 1� b̂b1 ¼ 1� 0:83 ¼ 0:17.

HETEROSCEDASTICITY

9.4 (a) What is meant by heteroscedasticity? (b) Draw a figure showing homoscedastic disturbances
and the various forms of heteroscedastic disturbances. (c) Why is heteroscedasticity a problem?

(a) Heteroscedasticity refers to the case in which the variance of the error term is not constant for all values
of the independent variable; that is, EðXiuiÞ 6¼ 0, so EðuiÞ2 6¼ �2u . This violates the third assumption of

the OLS regression model (see Prob. 6.4). It occurs primarily in cross-sectional data. For example, the
error variance associated with the expenditures of low-income families is usually smaller than for high-
income families because most of the expenditures of low-income families are on necessities, with little

room for discretion.

(b) Figure 9-1a shows homoscedastic (i.e., constant variance) disturbances, while Fig. 9-1b, c, and d shows
heteroscedastic disturbances. In Fig. 9-1b, �2u increases with Xi. In Fig. 9-1c, �2u decreases with Xi. In

Fig. 9-1d, �2u first decreases and then increases as Xi increases. In economics, the heteroscedasticity
shown in Fig. 9-1b is the most common, so the discussion that follows refers to that.

(c) With heteroscedasticity, the OLS parameter estimates are still unbiased and consistent, but they are

inefficient (i.e., they have larger than minimum variances). Furthermore, the estimated variances of the

parameters are biased, leading to incorrect statistical tests for the parameters and biased confidence

intervals.
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9.5 (a) How is the presence of heteroscedasticity tested? (b) How can heteroscedasticity be
corrected?

(a) The presence of heteroscedasticity can be tested by arranging the data from small to large values of the
independent variable Xi and then running two separate regressions, one for small values of Xi and one

for large values of Xi, omitting some (say, one-fifth) of the middle observations. Then the ratio of the
error sum of squares of the second regression to the error sum of squares of the first regression (i.e.,
ESS2=ESS1) is tested to see if it is significantly different from zero. The F distribution is used for this

test with ðn � d � 2kÞ=2 degrees of freedom, where n is the total number of observations, d is the
number of omitted observations, and k is the number of estimated parameters. This is the Gold-
feld-Quandt test for heteroscedasticity and is most appropriate for large samples (i.e., for n 
 30). If no

middle observations are omitted, the test is still correct, but it will have a reduced power to detect
heteroscedasticity.

(b) If it is assumed (as often is the case) that var ui ¼ CX2
i , where C is a nonzero constant, we can correct

for heteroscedasticity by dividing (i.e., weighting) every term of the regression by Xi and then reesti-

mating the regression using the transformed variables. In the two-variable case, we have

Yi

Xi

¼ b0
Xi

þ b1 þ
ui

Xi

ð9:4Þ

The transformed error term is now homoscedastic:

var ui ¼ var
ui

Xi

¼ 1

X2
i

var ui ¼ C
X2

i

X2
i

¼ C

Note that the original intercept has become a variable in Eq. (9.4), while the original slope parameter,

b1, is now the new intercept. However, care must be used to correctly interpret the results of the
transformed or weighted regression. Since in Eq. (9.4) the errors are homoscedastic, the OLS estimates
are not only unbiased and consistent, but also efficient. In the case of a multiple regression, each term

of the regression is divided (i.e., weighted) by the independent variable (say, X2i) that is thought to be
associated with the error term, so we have

Yi

X2i

¼ b0
X2i

þ b1
X1i

X2i

þ b2 þ
ui

X2i

ð9:5Þ

In Eq. (9.5), the original intercept, b0, has become a variable, while b2 has become the new intercept
term. We can visually determine whether it is X2i or X1i that is related to the ui by plotting X2i and X1i

against the regression residuals, ei.

9.6 Table 9.7 gives the consumption expenditures C and disposable income Yd for 30 families.
(a) Regress C on Yd for the entire sample and test for heteroscedasticity. (b) Correct for
heteroscedasticity if it is found in part a.
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Table 9.7 Consumption and Income Data for 30 Families (in U.S. Dollars)

Consumption Income

10,600

11,400

12,300

13,000

13,800

14,400

15,000

15,900

16,900

17,200

10,800

11,700

12,600

13,300

14,000

14,900

15,700

16,500

17,500

17,800

11,100

12,100

13,200

13,600

14,200

15,300

16,400

16,900

18,100

18,500

12,000

13,000

14,000

15,000

16,000

17,000

18,000

19,000

20,000

21,000



(a) Regressing C on Yd for the entire sample of 30 observations, we get

ĈC ¼ 1480:0

(3.29)

þ 0:788

(29.37)

Yd R2 ¼ 0:97

To test for heteroscedasticity, we regress C on Yd for the first 12 and for last 12 observations, leaving
the middle 6 observations out, and we get

ĈC ¼ 846:7þ 0:837Yd R2 ¼ 0:91

ð0:74Þ ð9:91Þ ESS1 ¼ 1,069,000

ĈC ¼ 2,306:7þ 0:747Yd R2 ¼ 0:71

ð0:79Þ ð5:00Þ ESS2 ¼ 3,344,000

Since ESS2=ESS1 ¼ 3,344,000/1,069,000 ¼ 3:13 exceeds F ¼ 2:97 with ð30� 6� 4Þ=2 ¼ 10 degrees of
freedom in the numerator and denominator at the 5% level of significance (see App. 7), we accept the
hypothesis of heteroscedasticity.

(b) Assuming that the error variance is proportional to Y2
d , and then reestimating the regression using the

transformed variables of Table 9.8 to correct for heteroscedasticity, we get (in the last column of Table
9.8; 0.833333E-04 ¼ 0.0000833333) the following:

ĈC

Yd

¼ 0:792
(31.51)

þ 1421:3
(3.59)

1

Yd

R2 ¼ 0:32

Note that the marginal propensity to consume is now given by the intercept (i.e., 0.792) and is larger
than before the adjustment (i.e., 0.788). The statistical significance of both estimated parameters is
now even higher than before. The R2 of the weighted regression (i.e., 0.32) is much lower but not
directly comparable with the R2 of 0.97 before the transformation because the dependent variables are

different (Y=X as opposed to Y).

9.7 Table 9.9 gives the level of inventories I and sales S, both in millions of dollars, and borrowing
rates for 35 firms in an industry. It is expected that I will be directly related to S but inversely
related to R. (a) Regress I on S and R for the entire sample and test for heteroscedasticity.
(b) Correct for heteroscedasticity if it is found in part a, assuming that the error variance is
proportional to S2.

(a) Regressing I on S and R for the entire sample of 35 firms, we get

ÎI ¼ �6:17þ 0:20

(12.39)

S � 0:25

(�2.67)
R R2 ¼ 0:98

To test for heteroscedasticity, we regress I on S and R for the first 14 and for the last 14 observations,
leaving the middle 7 observations out, and we get

ÎI ¼ �2:23þ 0:16S � 0:22R R2 ¼ 0:94

ð1:90Þ ð�0:81Þ ESS1 ¼ 0:908

¼ 16:10þ 0:11S � 1:40R R2 ¼ 0:96

ð3:36Þ ð�3:35Þ ESS2 ¼ 5:114

Since ESS2=ESS1 ¼ 5:114=0:908 ¼ 5:63 exceeds F11;11 ¼ 2:82 at the 5% level of significance (see App.

7), we accept the hypothesis of heteroscedasticity.

(b) Assuming that the error variance is proportional to S2 and reestimating the regression using the
transformed variable to correct for heteroscedasticity, we get

ÎI

S
¼ 0:21

(12.34)

� 8:45ð1=SÞ � 0:18

(�2.98)
ðR=SÞ R2 ¼ 0:93
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b0 ¼ 0:21 is now the slope coefficient associated with the variable S (instead of 0.16 before the trans-
formation), while b2 ¼ �0:18 is the slope coefficient associated with the variable R (instead of �0:25
before the transformation). Both these slope coefficients remain highly significant before and after the

transformation, as does R2. The new constant is �8:45 instead of �6:17:

AUTOCORRELATION

9.8 (a) What is meant by autocorrelation? (b) Draw a figure showing positive and negative first-
order autocorrelation. (c) Why is autocorrelation a problem?

(a) Autocorrelation or serial correlation refers to the case in which the error term in one time period is
correlated with the error term in any other time period. If the error term in one time period is

correlated with the error term in the previous time period, there is first-order autocorrelation. Most
of the applications in econometrics involve first rather than second- or higher-order autocorrelation.
Even though negative autocorrelation is possible, most economic time series exhibit positive
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Table 9.8 Consumption C and Disposable Income ðYd Þ in Original and
Transformed Form

Family C, $ Yd , $ C=Yd , % 1=Yd , %

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

10,600

10,800

11,100

11,400

11,700

12,100

12,300

12,600

13,200

13,000

13,300

13,600

13,800

14,000

14,200

14,400

14,900

15,300

15,000

15,700

16,400

15,900

16,500

16,900

16,900

17,500

18,100

17,200

17,800

18,500

12,000

12,000

12,000

13,000

13,000

13,000

14,000

14,000

14,000

15,000

15,000

15,000

16,000

16,000

16,000

17,000

17,000

17,000

18,000

18,000

18,000

19,000

19,000

19,000

20,000

20,000

20,000

21,000

21,000

21,000

0.883333

0.900000

0.925000

0.876923

0.900000

0.930769

0.878571

0.900000

0.942857

0.866667

0.886667

0.906667

0.862500

0.875000

0.887500

0.847059

0.876471

0.900000

0.833333

0.872222

0.911111

0.836842

0.868421

0.889474

0.845000

0.875000

0.905000

0.819048

0.847619

0.880952

0.833333E-04

0.833333E-04

0.833333E-04

0.769231E-04

0.769231E-04

0.769231E-04

0.714286E-04

0.714286E-04

0.714286E-04

0.666667E-04

0.666667E-04

0.666667E-04

0.625000E-04

0.625000E-04

0.625000E-04

0.588235E-04

0.588235E-04

0.588235E-04

0.555556E-04

0.555556E-04

0.555556E-04

0.526316E-04

0.526316E-04

0.526316E-04

0.500000E-04

0.500000E-04

0.500000E-04

0.476190E-04

0.476190E-04

0.476190E-04



autocorrelation. Positive, first-order serial or autocorrelation means that Eutut�1 > 0, thus violating the

fourth OLS assumption (see Prob. 6.4). This is common in time-series analysis.

(b) Figure 9-2a shows positive and Fig. 9-2b shows negative first-order autocorrelation. Whenever several

consecutive residuals have the same sign as in Fig. 9-2a, there is positive first-order autocorrelation.

However, whenever consecutive residuals change sign frequently, as in Fig. 9-2b, there is negative first-

order autocorrelation.

(c) With autocorrelation, the OLS parameter estimates are still unbiased and consistent, but the standard

errors of the estimated regression parameters are biased, leading to incorrect statistical tests and biased
confidence intervals. With positive first-order autocorrelation, the standard errors of the estimated
regression parameters are biased downward, thus exaggerating the precision and statistical significance
of the estimated regression parameters.

9.9 (a) How is the presence of positive or negative first-order autocorrelation tested? (b) How can
autocorrelation be corrected?

(a) The presence of autocorrelation can be tested by calculating the Durbin-Watson statistic d given by Eq.
(9.1). This is routinely given by most computer programs such as SAS:

d ¼

Xn

t¼2
ðet � et�1Þ2

Xn

t¼1
e2t

ð9:1Þ
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Table 9.9 Inventories, Sales, and Borrowing Rates for 35 Firms

Firm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I 10 10 10 11 11 11 12 12 12 12 12 13 13 13 14 14 14 15

S 100 101 103 105 106 106 108 109 111 111 112 113 114 114 116 117 118 120

R 17 17 17 16 16 16 15 15 14 14 14 14 13 13 12 12 12 11

Firm 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

I 15 15 15 16 16 16 17 17 17 17 18 18 19 19 19 20 20

S 122 123 125 128 128 131 133 134 135 136 139 143 147 151 157 163 171

R 11 11 11 10 10 10 10 9 9 9 8 8 8 8 8 7 7

Fig. 9-2



The calculated value of d ranges between 0 and 4, with no autocorrelation when d is in the neighbor-

hood of 2. The values of d indicating the presence or absence of positive or negative first-order

autocorrelation, and for which the test is inconclusive, are summarized in Fig. 9-3. When the lagged

dependent appears as an explanatory variable in the regression, d is biased toward 2 and its power to

detect autocorrelation is hampered.

(b) One method to correct positive first-order autocorrelation (the usual type) involves first regressing Y on
its value lagged one period, the explanatory variable of the model, and the explanatory variable lagged
one period:

Yt ¼ b0ð1� �Þ þ �Yt�1 þ b1Xt � b1�Xt�1 þ vt ð9:2Þ
(The preceding equation is derived by multiplying each term of the original OLS model lagged one
period by �, subtracting the resulting expression from the original OLS model, transposing the term
�Yt�1 from the left to the right side of the equation, and defining vt ¼ ut � �ut�1.) The second step
involves using the value of � found in Eq. (9.2) to transform all the variables of the original OLS model,

as indicated in Eq. (9.3), and then estimating Eq. (9.3):

Yt � �̂�Yt�1 ¼ b0ð1� �̂�Þ þ b1ðXt � �̂�Xt�1Þ þ "t ð9:3Þ
The error term, "t, in Eq. (9.3) is now free of autocorrelation. This procedure, known as the Durbin
two-stage method, is an example of generalized least squares. To avoid losing the first observation in

the differencing process, Y1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂�2

p
and X1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂�2

p
are used for the first transformed observation of Y

and X, respectively. If the autocorrelation is due to the omission of an important variable, wrong
functional form, or improper model specification, these problems should be removed first, before

applying the preceding correction procedure for autocorrelation.

9.10 Table 9.10 gives the level of U.S. imports M and GDP (both seasonally adjusted in billions of
dollars) from 1980 to 1999. (a) Regress M on GDP and test for autocorrelation at the 5% level
of significance. (b) Correct for autocorrelation if it is found in part a.

M̂Mt ¼ �201:80þ 0:14 GDPt R2 ¼ 0:98ðaÞ
ð�6:48Þ ð29:44Þ d ¼ 0:54

Since d ¼ 0:54 < dL ¼ 1:20 at the 5% level of significance with n ¼ 20 and k 0 ¼ 1 (from App. 8), there

is evidence of positive first-order autocorrelation.
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Fig. 9-3

Table 9.10 Seasonally Adjusted U.S. Imports and GDP (Both in Billions of Dollars) from 1980 to 1999

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

M 299.2 319.4 294.9 358.0 416.4 438.9 467.7 536.7 573.5 599.6

GDP 2918.8 3203.1 3315.6 3688.8 4033.5 4319.3 4537.5 4891.6 5258.3 5588.0

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

M 649.2 639.0 687.1 744.9 859.6 909.3 992.8 1087.0 1147.3 1330.1

GDP 5847.3 6080.7 6469.8 6795.5 7217.7 7529.3 7981.4 8478.6 8974.9 9559.7

Source: St. Louis Federal Reserve (Bureau of Economic Analysis).



(b) To correct for autocorrelation, first the following regression is run:

M̂Mt ¼ �103:21þ 0:82

(4.72)

Mt�1 þ 0:36

(4.68)

GDPt �0:33

(�4.23)
GDPt�1 R2 ¼ 0:98

Then, using �̂� ¼ 0:82 (the coefficient on Mt�1 in the preceding regression), we transform the original
variables as indicated in Eq. (9.3). The original variables (M and GDP) and the transformed variables
(M� and GDP�) are given in Table 9.11.

M�
1980 ¼ 299:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:822

p
¼ 171:251 and GDP�

1980 ¼ 2918:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:822

p
¼ 1670:615

Regressing M� on GDP�, we get

M̂M�
t ¼ 579:53þ 4:75 GDP�

t R2 ¼ 0:88

ð7:79Þ ð11:91Þ d ¼ 1:69

Since now d ¼ 1:69 > dU ¼ 1:41 at the 5% level of significance with n ¼ 20 and k 0 ¼ 1 (from App. 8),
there is no evidence of autocorrelation. Note that though GDP�

t remains highly significant, its t value
is lower than the t value of GDPt. In addition, R2 ¼ 0:88 now, as opposed to R2 ¼ 0:98 before the

correction for autocorrelation.

9.11 Table 9.12 gives gross private domestic investment (GPDI) and GDP, both in seasonally adjusted
billions of 1996 dollars, and the GDP deflator price index P for the United States from 1980 to
1999. (a) Regress GPDI on GDP and P and test for autocorrelation at the 5% level of
significance. (b) Correct for autocorrelation if it is found in part a.
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Table 9.11 U.S. Imports and GDP in Original and Transformed Form

Year M GDP M� GDP�

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

299.2

319.4

294.9

358.0

416.4

438.9

467.7

536.7

573.5

599.6

649.2

639.0

687.1

744.9

859.6

909.3

992.8

1087.0

1147.3

1330.1

2918.8

3203.1

3315.6

3688.8

4033.5

4319.3

4537.5

4891.6

5258.3

5588.0

5847.3

6080.7

6469.8

6795.5

7217.7

7529.3

7981.4

8478.6

8974.9

9559.7

171.250

74.056

32.992

116.182

122.840

97.452

107.802

153.186

133.406

129.330

157.528

106.656

163.120

181.478

248.782

204.428

247.174

272.904

255.960

389.314

1670.610

809.684

689.058

970.008

1008.684

1011.830

995.674

1170.850

1247.188

1276.194

1265.140

1285.914

1483.626

1490.264

1645.390

1610.786

1807.374

1933.852

2022.448

2200.282



dGPDIGPDIt ¼ �199:71þ 0:56 GDPt � 29:70 Pt R2 ¼ 0:97ðaÞ
ð10:61Þ ð�6:07Þ d ¼ 0:56

Since d ¼ 0:56 < dL ¼ 1:05 at the 5% level of significance with n ¼ 18 and k 0 ¼ 2 (from App. 8), there
is evidence of autocorrelation.

(b) To correct for autocorrelation, first, the following regression is run:

dGPDIGPDIt ¼ �291:79þ 0:74

(2.99)

GPDIt�1 þ 0:76

(7.12)

GDPt � 0:73

(�4.28)
GDPt�1 þ 1:91

(0.06)

Pt þ 1:40

(0.06)

Pt�1

R2 ¼ 0:99

Then, using �̂� ¼ 0:74 (the coefficient on GPDIt�1 in the preceding regression), we transform the original

variables as indicated in Eq. (9.3). The original and the transformed variables (the latter indicated by
an asterisk) are given in Table 9.13.

GPDI�1982 ¼ 571:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:742

p
¼ 384:126

GDP�
1982 ¼ 4915:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:742

p
¼ 3306:266

P�
1982 ¼ 67:44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:742

p
¼ 45:361

Regressing GPDI�t on GDP�
t and P�

t , we getdGPDIGPDI�t ¼ 31:05þ 0:52 GDP�
t � 30:02P�

t R2 ¼ 0:88

ð9:81Þ ð�6:54Þ d ¼ 1:77

Since d ¼ 1:77 > dU ¼ 1:53 at the 5% level of significance with n ¼ 18 and k 0 ¼ 2 (from App. 8), there
is no evidence of autocorrelation. Both variables remain highly significant, and R2 falls.

9.12 Table 9.14 gives personal consumption expenditures C and disposable personal income Y , both
in billions of dollars, for the United States from 1982 to 1999. (a) Regress Ct on Yt and test for
autocorrelation. (b) Correct for autocorrelation if it is found in part a.

ĈCt ¼ �293:46þ 0:97Yt R2 ¼ 0:99ðaÞ
ð�6:58Þ ð99:65Þ d ¼ 0:58

Since d ¼ 0:58, there is evidence of autocorrelation at both the 5 and 1% levels of significance.
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Table 9.12 U.S. GPDI, GDP (Both in Seasonally Adjusted Billions of 1996 Dollars), and

GDP Deflator Price Index, 1982–1999

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990

GPDI 571.1 762.2 876.9 887.8 838.2 929.3 916.7 922.9 849.6

GDP 4915.6 5286.8 5583.1 5806.0 5969.5 6234.4 6465.2 6633.5 6664.2

P 67.44 69.75 72.24 74.40 76.05 78.46 81.36 84.24 87.76

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

GPDI 864.2 941.6 1015.6 1150.5 1152.4 1283.7 1438.5 1609.9 1751.6

GDP 6720.9 6990.6 7168.7 7461.1 7621.9 7931.3 8272.9 8654.5 9084.1

P 90.47 92.56 94.79 96.74 98.79 100.63 102.49 103.69 105.31

Source: St. Louis Federal Reserve (Bureau of Economic Analysis).



(b) To correct for autocorrelation, first the following regression is run:

ĈCt ¼ 93:90þ 1:23

(5.18)

Ct�1 þ 0:40

(1.79)

Yt � 0:60

(�3.08)
Yt�1 R2 ¼ 0:99

Since �̂� ffi 1 (the coefficient on Ct�1 in the preceding regression), we rerun the regression on the first
differences of the original variables (i.e., �Ct and �Yt), omitting the intercept, and get

�ĈCt ¼ 0:97�Yt R2 ¼ 0:98

ð25:88Þ d ¼ 1:75

The new value of d indicates no evidence of autocorrelation at either the 1 or at the 5% level of
significance. (Note: R2 is not well defined in regression with no intercept and therefore is not compar-
able with the previous regressions. For a more in-depth study of procedure when � ¼ 1, see Sec. 11.3.)
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Table 9.13 GPDI, GDP, and P in Original and Transformed Form

Year GPDI GDP P GPDI� GDP� P�

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

662.2

708.8

571.1

762.2

876.9

887.8

838.2

929.3

916.7

922.9

849.6

864.2

941.6

1015.6

1150.5

1152.4

1283.7

1438.5

1609.9

1751.6

4936.6

4997.1

4915.6

5286.8

5583.1

5806.0

5969.5

6234.4

6465.2

6633.5

6664.2

6720.9

6990.6

7168.7

7461.1

7621.9

7931.3

8272.9

8654.5

9084.1

59.16

64.10

67.44

69.75

72.24

74.40

76.05

78.46

81.36

84.24

87.76

90.47

92.56

94.79

96.74

98.79

100.63

102.49

103.69

105.31

384.126

218.772

46.588

339.586

312.872

238.894

181.228

309.032

229.018

244.542

166.654

235.496

302.092

318.816

398.956

301.030

430.924

488.562

545.410

560.274

3306.266

1344.016

1217.746

1649.256

1670.868

1674.506

1673.060

1816.970

1851.744

1849.252

1755.410

1789.392

2017.134

1995.656

2156.262

2100.686

2291.094

2403.738

2532.554

2679.770

45.3610

20.3216

20.0060

19.8444

20.6250

20.9424

20.9940

22.1830

23.2996

24.0336

25.4224

25.5276

25.6122

26.2956

26.5954

27.2024

27.5254

28.0238

27.8474

28.5794

Table 9.14 U.S. Consumption Expenditures and Disposable Income (in Billions of Dollars), 1982-1999

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990

C 2079.3 2286.4 2498.4 2712.6 2895.2 3105.3 3356.6 3596.7 3831.5

Y 2406.8 2586.0 2887.6 3086.5 3262.5 3459.5 3752.4 4016.3 4293.6

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

C 3971.2 4209.7 4454.7 4716.4 4969.0 5237.5 5524.4 5848.6 6254.9

Y 4474.8 4754.6 4935.3 5165.4 5422.6 5677.7 5982.8 6286.2 6639.2

Source: Economic Report of the President.



ERRORS IN VARIABLES

9.13 (a) What is meant by errors in variables? (b) What problems do errors in variables create?
(c) Is there any test to detect the presence of errors in variables? (d) How can the problems
created by the existence of errors in variables be corrected?

(a) Errors in variables refer to the case in which the variables in the regression model include measurement
errors. These are probably very common in view of the way most data are collected and elaborated.

(b) Measurement errors in the dependent variable are incorporated into the disturbance term leaving

unbiased and consistent (although inefficient or larger than minimum variance) OLS parameter
estimates. However, with measurement errors in the explanatory variables, the fifth of the OLS
assumption of independence of the explanatory variables and error term is violated (see Prob. 6.4),

leading to biased and inconsistent OLS parameter estimates. In a simple regression, b̂b1 is biased
downward, while b̂b0 is biased upward.

(c) There is no formal test to detect the presence of errors in variables. Only economic theory and
knowledge of how the data were gathered can sometimes give some indication of the seriousness of

the problem.

(d) Onemethod of obtaining consistent (but still biased and inefficient) OLS parameter estimates is to replace
the explanatory variable subject to measurement errors with another variable that is highly correlated
with the explanatory variable in question but which is independent of the error term. In the real world, it

might be difficult to find such an instrumental variable, and one could never be sure that it would be
independent of the error term. The most popular instrumental variable is the lagged value of the
explanatory variable in question. Measurement errors in the explanatory variable only also can be

corrected by inverse least squares. This involves regressing X on Y . Then, b̂b0 ¼ �b̂b 0
0=b̂b 0

1 and
b̂b1 ¼ 1=b 0

1, where b̂b0 and b̂b1 are consistent estimates of the intercept and slope parameter of the regression
of Yt on Xt.

9.14 Table 9.15 gives inventories Y , actual sales X , and hypothetical values of X that include mea-
surement errors, X 0, all in billions of dollars, in U.S. manufacturing from 1983 to 1998. Y and X
are assumed to be free of measurement errors. (a) Regress Yt on Xt. (b) Regress Yt on X 0

t (on
the assumption that X is not available). What type of bias results in the estimates in using X 0

instead of X? (c) Use instrumental variables to obtain consistent parameter estimates, on the
assumption that Xt is correlated with ut. How do these parameter estimates compare with those
obtained in part b?

ŶYt ¼ 169:69

(11.66)

þ 0:90

(16.46)

Xt R2 ¼ 0:95ðaÞ
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Table 9.15 Inventory and Sales (Both in Billions of Dollars) in U.S. Manufacturing, 1983–1998

Year 1983 1984 1985 1986 1987 1988 1989 1990

Y 312 340 335 323 338 369 391 405

X 172 191 194 195 206 225 237 243

X 0 176 195 199 200 212 232 245 252

Year 1991 1992 1993 1994 1995 1996 1997 1998

Y 391 383 384 405 431 437 456 467

X 240 250 261 279 300 310 327 338

X 0 251 263 276 296 320 333 352 366

Source: Economic Report of the President.



(b) Regressing Yt on X 0
t (if Xt is not available), we get

ŶYt ¼ 182:50

(13.38)

þ 0:78

(15.23)

X 0
t R2 ¼ 0:94

Note that b̂b 0
1 < b̂b1; furthermore, b1 falls outside the 95% confidence interval of b 0

1 (0.67 to 0.89).

(c) Using X 0
t�1 as an instrumental variable for X 0

t (if X 0
t is believed to be correlated with ut), we get

ŶYt ¼ 187:90

(11.44)

þ 0:80

(12.57)

X 0
t�1 R2 ¼ 0:92

The coefficient on X 0
t�1 is closer to the true one (b̂b1 falls in the 95% confidence interval of 0.66 to 0.94),

and is consistent. Of course, in the real world it is rarely known what error of measurement might be
present (otherwise, the errors could be corrected before running the regression). It is also difficult or
impossible to establish whether X 0

t is correlated with ut.

9.15 Using the data in Table 9.15, (a) regress X 0
t on Yt in order to overcome errors in measuring Xt.

(b) How do these results compare with those in Prob. 9.14(c)?

(a) Since only Xt (i.e., the explanatory variable) is subject to measurement errors, inverse least squares is
another method for obtaining consistent parameter estimates. Regressing X 0

t on Yt, we get

X̂X 0
t ¼ �206:10

(�6.68)
þ1:21Yt

(15.23)

R2 ¼ 0:94

b̂b0 ¼ � b̂b 0
0

b̂b 0
1

¼ � ð�206:10Þ
1:21

¼ 170:33 and b̂b1 ¼
1

b̂b 0
1

¼ 1

1:21
¼ 0:83

where b̂b0 and b̂b1 are consistent (but still biased) estimates of the intercept and slope parameters of the

regression of Yt on Xt.

(b) Using inverse least squares gives better results in this case compared to the instrumental-variable
method [see Prob. 9.14(c)]. With instrumental variables, both the estimated intercept and slope
parameter are farther from the true values. However, the results may very well differ in other

cases. In any event, in the real world we seldom know what types of errors are present, what type
of adjustment is appropriate, and how close the adjusted parameters are to the true parameter values.

Supplementary Problems

MULTICOLLINEARITY

9.16 Why can the following consumption function not be estimated?

Ct ¼ b0 þ b1Ydt þ b2Ydt�1 þ b3 �Ydt þ ut

where �Ydt ¼ Ydt � Ydt�1.
Ans. Because there is a perfect multicollinearity between �Ydt on one hand and Ydt and Ydt�1 on the other.
As a result, there are only three independent normal equations and four coefficients to estimate, and so no
unique solution is possible.

9.17 Table 9.16 gives hypothetical data on consumption expenditures C, disposable income Yd , and wealth W , all

in thousands of dollars, for a sample of 15 families. (a) Regress C on Yd and W and find 	RR2 and rYd W .
(b) Regress C on Yd only. (c) Regress C on W only. (d) What can you conclude from the preceding with
regard to multicollinearity?
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ĈC ¼ 1:54 þ 1:41

(1.94)

Yd � 0:15W

(�0.83)

R2 ¼ 0:994
	RR2 ¼ 0:993

rYd W ¼ 0:995

Ans: ðaÞ

ĈC ¼ 2:13

(4.98)

þ 0:80

(46.25)

Yd R2 ¼ 0:994ðbÞ

ĈC ¼ 2:92

(6.37)

þ 0:19

(41.46)

W R2 ¼ 0:992ðcÞ

(d) Serious multicollinearity is present.

9.18 (a) How can a priori information that b2 ¼ 0:25b1 be utilized to overcome the multicollinearity problem in

Prob. 9.17? (b) Reestimate the regression of Prob. 9.17, incorporating the a priori information (as indicated
in part a) to overcome the multicollinearity problem. (c) What is the value of b̂b1? Of b̂b2?
Ans. (a) By estimating C ¼ b0 þ b1Z, where Z ¼ Yd þ 0:25W .

ĈC ¼ 2:53

(5.75)

þ 0:39

(44.10)

Z R2 ¼ 0:993ðbÞ

b̂b1 ¼ 0:39 and b̂b2 ¼ 0:10ðcÞ

HETEROSCEDASTICITY

9.19 Table 9.17 gives gross fixed capital formation Yi and sales Xi, both in thousands of dollars, for 35 firms in an
industry. Regress Yi on Xi (a) for all the data, (b) for the first 14 observations only and record the error

sum of squares (ESS1), (c) for the last 14 observations only and record the error sum of squares (ESS2).
(d) Test for the presence of heteroscedasticity.

ŶYi ¼ 21,637

(28.50)

þ 0:079

(22.00)

Xi R2 ¼ 0:94Ans: ðaÞ

ŶYi ¼ 27,429þ 0:033Xi R2 ¼ 0:66ðbÞ
ð31:51Þ ð4:85Þ ESS1 ¼ 4:897
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Table 9.16 Consumption Expenditures, Disposable Income, and Wealth for 15 Families

Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C 32 11 15 17 16 13 18 20 14 17 41 17 33 20 18

Yd 36 12 16 18 17 14 20 23 15 18 50 19 37 22 19

W 144 47 63 70 67 52 79 90 58 70 204 76 149 86 76

Table 9.17 Gross Fixed Capital Formation and Sales for 35 Firms

Gross Fixed Capital Formation Sales

30.2

31.5

35.1

38.4

44.3

30.5

31.5

35.7

39.1

44.9

30.5

31.9

36.3

40.2

45.2

30.7

32.3

36.9

40.8

45.9

30.9

32.8

37.4

42.1

46.5

31.2

33.4

37.4

42.9

47.7

31.2

33.4

37.8
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48.5

100
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200
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ŶYi ¼ 15,029þ 0:104Xi R2 ¼ 0:73ðcÞ
ð2:99Þ ð5:71Þ ESS2 ¼ 34:694

(d) Since ESS2=ESS1 ¼ 7:08 exceeds F11;11 ¼ 2:82 at the 5% level of significance, heteroscedasticity is
present.

9.20 Assuming that the error variance is proportional to X2
i in Prob. 9.19, (a) correct for heteroscedasticity.

(b) What is the value of the new intercept and the new slope parameter associated with the variable Xi?
How do they compare with the corresponding values before the transformation?

ŶYi

Xi

¼ 0:074

(20.41)

þ 23,187

(42.16)

1

Xi

� �
R2 ¼ 0:98Ans: ðaÞ

(b) The value of the new intercept is 23,187 (instead of 21,637), and the new slope parameter associated with
the variable Xi is now 0.074 (instead of 0.079).

9.21 Table 9.18 gives the level of gross fixed capital formation Y , sales X1, both in thousands of dollars, and a
productivity index X2, for 35 firms in an industry. It is expected that Y will be directly related to both X1

and X2. Regress Y on X1 and X2 for (a) the entire sample, (b) the 14 observations with the smallest
values of X2 and record ESS1, and (c) the 14 observations with the largest values of X2 and record ESS2.
(d) Test for the presence of heteroscedasticity.

ŶY ¼ 12,089þ 0:017

(2.53)

X1 þ 1:608

(8.93)

X2 R2 ¼ 0:99Ans: ðaÞ

ŶY ¼ 33,332þ 0:044X1 � 0:784X2 R2 ¼ 0:95ðbÞ
ð3:91Þ ð�0:99Þ ESS1 ¼ 0:658

ŶY ¼ 5874þ 0:010X1 þ 2:115X2 R2 ¼ 0:99ðcÞ
ð0:30Þ ð2:46Þ ESS2 ¼ 2:126

(d) Since ESS2=ESS1 ¼ 3:23 exceeds F11;11 ¼ 2:82 at the 5% level of significance, heteroscedasticity is
present.
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Table 9.18 Gross Fixed Capital Formation, Sales, and Productivity in 35 Firms

Firm 1 2 3 4 5 6 7 8 9 10 11 12

Y 30.9 31.5 43.2 36.9 44.3 30.5 32.3 42.9 31.2 39.1 35.7 40.8

X1 135 150 300 225 310 105 170 285 145 250 205 275

X2 10.3 10.8 16.4 12.9 16.7 10.0 10.9 15.9 10.6 14.6 12.1 15.5

Firm 13 14 15 16 17 18 19 20 21 22 23 24

Y 31.2 42.1 32.8 36.3 37.4 30.5 33.4 37.4 44.9 33.4 45.2 30.2

X1 140 280 180 215 235 110 190 230 315 195 320 100

X2 10.5 15.6 10.9 12.5 13.8 10.0 11.1 13.1 17.1 11.3 17.3 9.9

Firm 25 26 27 28 29 30 31 32 33 34 35

Y 45.9 46.8 35.1 40.2 47.9 30.7 38.1 49.3 31.9 37.8 31.5

X1 330 345 200 260 350 120 250 355 165 245 150

X2 17.5 17.9 11.5 14.9 18.3 10.1 14.1 18.5 10.8 13.9 10.7



9.22 (a) Assuming that the error variance is proportional to X2
2 in Prob. 9.21, (a) correct for heteroscedasticity.

(a) What is the value of the new intercept and the slope coefficients associated with X1 and X2? How do they
compare with the corresponding values before the transformation?

ŶY

X2

¼ 1:622

(10.53)

þ 0:016

(2.85)

X1

X2

� �
þ 12,200

1

X2

� �
R2 ¼ 0:94Ans: ðaÞ

(b) The new intercept term is 12,200 (instead of 12,089), while the new slope parameter associated with the

variable X1 is 0.016 (instead of 0.017) and the slope parameter associated with variable X2 is 1.622 (instead of
1.608).

AUTOCORRELATION

9.23 Table 9.19 gives fixed private investment Y , GDP X1, both seasonally adjusted in billions of dollars, and the
commercial paper interest rate X2 for the United States from 1982 to 1999. (a) Regress Y on X1. Is there
evidence of autocorrelation at the 5 and 1% levels of significance? (b) Regress Yt on Yt�1, X1t, and X1t�1.
What is the value of �? (c) Regress Y�

t on X�
1t to correct for autocorrelation, where Y�

t and X�
1t are the

transformed variables. Is there any evidence of autocorrelation at the 1% level of significance? At the 5%
level of significance?

ŶYt ¼ �43:95þ 0:16X1t R2 ¼ 0:94Ans: ðaÞ
ð�0:65Þ ð15:41Þ d ¼ 0:23

Since d ¼ 0:23, there is evidence of autocorrelation at both the 5 and 1% levels of significance.

(b) To correct for autocorrelation, first the following regression is run:

ŶYt ¼ �101:69þ 0:88Yt�1 þ 0:51X1t � 0:49X1t�1 R2 ¼ 0:99

ð7:94Þ ð4:62Þ ð�4:55Þ �̂� ffi 0:88

ŶY�
t ¼ �70:67þ 0:23X�

1t R2 ¼ 0:81ðcÞ
ð�2:22Þ ð8:16Þ d ¼ 1:17

There is no evidence of autocorrelation at the 1% level of significance, but the test is inconclusive at the 5%
level of significance.

9.24 Using the data in Table 9.19, (a) Regress Yt on X1t and X2t. Is there any evidence of autocorrelation at the
5 and 1% levels of significance? (b) If evidence of autocorrelation is found in part a, find the value of � to
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Table 9.19 Private Fixed Investment, GDP (Both Seasonally Adjusted in Billions of Dollars),

and Commercial Paper Interest Rate in the United States, 1982–1999

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990

Y 523.3 615.6 695.7 729.2 749.8 768.5 822.9 850.1 824.2

X1 3315.6 3688.8 4033.5 4319.3 4537.5 4891.6 5258.3 5588.0 5847.3

X2 11.84 8.87 10.07 7.94 6.61 6.74 7.58 9.11 8.15

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

Y 801.1 889.6 978.8 1071.6 1135.4 1250.9 1369.3 1524.1 1651.0

X1 6080.7 6469.8 6795.5 7217.7 7529.3 7981.4 8478.6 8974.9 9559.7

X2 5.89 3.71 3.17 4.43 5.93 5.43 5.54 5.43 5.12

Source: St. Louis Federal Reserve (Bureau of Economic Analysis) (for Y and X1 values); Federal Reserve
Board of Governors (for X2 values).



be used to transform the variables in order to adjust for autocorrelation. (c) If evidence of autocorrelation

is found in part a, regress Y�
t on X�

1t and X�
2t to correct for autocorrelation. Is there any evidence of

remaining autocorrelation at the 1% level of significance? At the 5% level of significance?

ŶYt ¼ �356:28þ 0:19X1t þ 25:62X2t R2 ¼ 0:95Ans: ðaÞ
ð13:48Þ ð2:26Þ d ¼ 0:49

Since d ¼ 0:49, there is evidence of autocorrelation at both the 5 and 1% levels of significance.

�̂� ffi 0:94ðbÞ

ŶY�
t ¼ �95:01þ 0:30X�

1t � 0:84X�
2t R2 ¼ 0:78ðcÞ

ð6:80Þ ð�0:14Þ d ¼ 1:02

Although d is closer to 2, there is still evidence of autocorrelation at the 5% level, and the test is inconclusive
at the 1% level of significance.

9.25 Using the data in Table 9.19, (a) regress �Yt on �X1t and �X2t. (b) Is there evidence of autocorrelation
at the 1 and 5% levels of significance? (c) Why is this transformation valid?

�ŶYt ¼ �99:04þ 0:45�X1t � 0:91�X2t R2 ¼ 0:73Ans: ðaÞ
ð6:02Þ ð�0:18Þ d ¼ 1:51

(b) There is now no evidence of autocorrelation at either the 5% or the 1% level of significance. (c) A
regression of �Yt on �X1t would be less valid since �̂� is not as close to 1.

ERRORS IN VARIABLES

9.26 Table 9.20 gives inventories Y , actual shipments X, and hypothetical values of X that include measurement
errors X 0, all in billions of dollars, in U.S. durable-goods industries from 1983 to 1998. Y and X are

assumed to be free of measurement errors. (a) Regress Yt on Xt. (b) Regress Yt on X 0
t (on the assumption

that X is not available). What type of bias results in the estimates in using X 0 instead of X? (c) Use
instrumental variables to obtain consistent parameter estimates, on the assumption that Xt is correlated with

ut. How do these parameter estimates compare with those of part b?

ŶYt ¼ �124:23
(�4.56)

þ 1:04

(9.42)

Xt R2 ¼ 0:86Ans: ðaÞ
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Table 9.20 Inventories and Shipments (in Billions of Dollars) in the U.S. Durable-Goods

Industries, 1983–1998

Year 1983 1984 1985 1986 1987 1988 1989 1990

Y 85.48 97.94 101.28 103.24 108.13 118.46 123.16 123.78

X 199.85 221.33 218.19 211.00 220.80 242.47 257.51 263.21

X 0 205.21 207.10 217.16 228.78 228.06 225.49 218.77 213.90

Year 1991 1992 1993 1994 1995 1996 1997 1998

Y 121.00 128.49 135.89 149.13 160.59 167.01 179.89 189.67

X 250.02 238.11 239.33 253.62 268.35 273.82 286.37 295.34

X 0 222.48 250.22 263.72 274.88 282.01 288.99 301.30 311.24

Source: St. Louis Federal Reserve (Department of Commerce, Census Bureau).



ŶYt ¼ �70:98
(�4.06)

þ 0:82

(11.66)

X 0
t R2 ¼ 0:91ðbÞ

With errors of measurement in the value of shipments, b̂b 0
1 < b̂b1.

(c) Using X 0
t�1 as an instrument for X 0

t , we get

ŶYt ¼ �77:82
(�4.93)

þ 0:88

(13.51)

X 0
t�1 R2 ¼ 0:93

The new parameter estimates are closer to the true ones than those obtained in part b.

9.27 Using the data in Table 9.20, (a) regress X 0
t on Yt in order to overcome errors in measuring Xt. When is

this method appropriate? (b) How do these results compare with those in Prob. 9.26(c)?

X̂X 0
t ¼ 101:49

(7.98)

þ 1:11

(11.66)

Yt R2 ¼ 0:91Ans: ðaÞ

Consistent parameter estimates of the regression of Yt on Xt are b̂b0 ¼ �91:43 and b̂b1 ¼ 0:90. Inverse least

squares is appropriate when only the explanatory variable includes measurement errors.

(b) Using inverse least squares gives better results in this case compared to the instrumental-variable method

[see Prob. 9.26(c)].
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Simultaneous-
Equations Methods

10.1 SIMULTANEOUS-EQUATIONS MODELS

When the dependent variable in one equation is also an explanatory variable in some other equation,
we have a simultaneous-equations system or model. The dependent variables in a system of simultaneous
equations are called endogenous variables. The variables determined by factors outside the model are
called exogenous variables. There is one behavioral or structural equation for each endogenous variable
in the system (see Example 1). Using OLS to estimate the structural equations results in biased and
inconsistent parameter estimates. This is referred to as simultaneous-equations bias. To obtain con-
sistent parameter estimates, the reduced-form equations of the model must first be obtained. These
express each endogenous variable in the system only as a function of the exogenous variable of the model
(see Example 2).

EXAMPLE 1. The following two equations represent a simple macroeconomic model:

Mt ¼ a0 þ a1Yt þ u1t

Yt ¼ b0 þ b1Mt þ b2It þ u2t

where Mt is money supply in time period t, Y is income, and I is investment. Since M depends on Y in the first

equation and Y depends on M (and I) in the second equation, M and Y are jointly determined, so we have a
simultaneous-equations model. M and Y are the endogenous variables, while I is exogenous or determined outside
the model. A change in u1t affects Mt in the first equation. This, in turn, affects Yt in the second equation. As a
result, Yt and u1t are correlated, leading to biased and inconsistent OLS estimates of the M (and Y) equation.

EXAMPLE 2. The first reduced-form equation can be derived by substituting the second equation into the first
and rearranging:

Mt ¼ a0 þ a1ðb0 þ b1Mt þ b2It þ u2tÞ þ u1t

¼ a0 þ a1b0
1� a1b1

þ a1b2
1� a1b1

It þ
u1t þ a1u2t

1� a1b1

Mt ¼ �0 þ �1It þ v1tor

The second reduced-form equation can be derived by substituting the first equation into the second and rearranging:
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Yt ¼ b0 þ b1ða0 þ a1Yt þ u1tÞ þ b2It þ u2t

¼ a0b1 þ b0
1� a1b1

þ b2
1� a1b1

It þ
b1u1t þ u2t

1� a1b1

Yt ¼ �2 þ �3It þ v2tor

10.2 IDENTIFICATION

Identification refers to the possibility of calculating the structural parameters of a simultaneous-
equations model from the reduced-form parameters. An equation of a system is exactly identified if the
number of excluded exogenous variables from the equation is equal to the number of endogenous
variables in the equation minus 1. However, an equation of a system is overidentified (or underidentified)
if the number of excluded exogenous variables from the equation exceeds (or is smaller than) the number
of endogenous variables included in the equation minus 1 (see Example 3). Although this is only a
necessary rather than a sufficient condition for identification, it usually gives the correct answer (see
Prob. 10.5). Unique structural coefficients can be calculated from the reduced-form coefficients only for
an exactly identified equation (see Example 4).

EXAMPLE 3. The money supply (M) equation of Example 1 is exactly identified because it excludes one exogen-
ous variable ðI) and includes two endogenous variables (M and Y). However, the income, Y , equation is under-
identified because it excludes no exogenous variable. If this second equation had included the additional exogenous

variable G (government expenditures), the first, orM, equation would have been overidentified because the number
of excluded exogenous variables would then have exceeded the number of endogenous variables minus 1.

EXAMPLE 4. A unique value of the structural parameters of the exactly identifiedM equation of Example 1 can
be calculated from the reduced-form parameters of Example 2 as follows:

a1 ¼
�1
�3

¼
a1b2

1� a1b1
b2

1� a1b1

and a0 ¼ �0 � a1�2 ¼
a0ð1� a1b1Þ
1� a1b1

10.3 ESTIMATION: INDIRECT LEAST SQUARES

Indirect least squares (ILS) is a method of calculating structural-parameter values for exactly iden-
tified equations. ILS involves using OLS to estimate the reduced-form equations of the system and then
using the estimated coefficients to calculate the structural parameters. However, it is not easy to
calculate the standard errors of the structural parameters, nor can ILS be used in cases of overidentifica-
tion.

EXAMPLE 5. Table 10.1 gives the money supply (M = currency plus demand deposits), GDP Y , gross private
domestic investment I , and government purchases of goods and services G, all seasonably adjusted in billions of

dollars, for the United States from 1982 to 1999 (G will be used in Example 6).

The estimated reduced-form equations of Example 2 are

M̂Mt ¼ 312:0608
ð2:98Þ

þ 0:5693Itð5:65Þ
R2 ¼ 0:67

ŶYt ¼ 852:3203
ð2:17Þ

þ 5:3522Itð14:18Þ
R2 ¼ 0:93

âa1 ¼
�̂�1
�̂�3

¼ 0:5693

5:3522
¼ 0:1064

and

CHAP. 10] SIMULTANEOUS-EQUATIONS METHODS 229



âa0 ¼ �̂�0 � a1�̂�3 ¼ 312:0608� 0:1064ð852:3203Þ ¼ 221:3739

Thus the M equation of Example 1 estimated by ILS is

M̂Mt ¼ 221:3739þ 0:1064Yt

The same equation estimated by OLS (inappropriately) is

M̂Mt ¼ 162:7044
ð2:13Þ

þ 0:1159Ytð9:70Þ
R2 ¼ 0:85

10.4 ESTIMATION: TWO-STAGE LEAST SQUARES

Two-stage least-squares (2SLS) is a method of estimating consistent structural parameters for over-

identified equations (for exactly identified equations, 2SLS gives the same results as ILS, but it also gives

the standard errors of the estimated structural parameters). 2SLS involves regressing each endogenous

variable on all the exogenous variables of the system and then using the predicted values of the endo-

genous variables to estimate the structural equations of the model.

EXAMPLE 6. If the second, or Y , equation of Example 1 now includes G (government expenditures) as an
additonal explanatory variable, then the first, orM, equation is overidentified (see Example 3) and can be estimated

by 2SLS. The first stage is

ŶYt ¼ �1007:5346þ 1:7471It þ 4:5794Gt R2 ¼ 0:99

ð�5:71Þ ð6:10Þ ð13:57Þ

The second stage is

M̂Mt ¼ 166:5660þ 0:1153ŶYt R2 ¼ 0:84

ð2:07Þ ð9:19Þ

âa1 ¼ 0:1153 is a consistent estimate of a1.
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Table 10.1 Money Supply, GDP, Investments, and Government Expenditures

(Seasonably Adjusted in Billions of Dollars) in the United States, 1982–1999

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990

M 474.30 520.79 551.20 619.28 724.20 749.61 786.25 792.49 824.41

Y 3315.60 3688.80 4033.50 4319.30 4537.50 4891.60 5258.30 5588.00 5847.30

I 483.50 639.50 743.60 762.30 737.10 831.60 842.00 866.70 812.80

G 710.10 742.70 829.00 905.10 963.20 1019.30 1060.70 1123.90 1213.10

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

M 896.34 1024.31 1129.69 1150.08 1126.80 1081.06 1073.94 1097.37 1122.96

Y 6080.70 6469.80 6795.50 7217.70 7529.30 7981.40 8478.60 8974.90 9559.70

I 832.10 909.80 995.80 1146.10 1155.60 1284.30 1434.50 1590.80 1723.70

G 1239.50 1281.80 1307.10 1344.00 1374.50 1438.90 1508.20 1567.20 1688.80

Source: St. Louis Federal Reserve (Bureau of Economic Analysis).



Solved Problems

SIMULTANEOUS-EQUATIONS MODELS

10.1 What is meant by (a) Simultaneous-equations system or model? (b) Endogenous variables? (c)
Exogenous variables? (d) Structural equations? (e) Simultaneous-equations bias? (f ) Reduced-
form equations?

(a) A simultaneous-equations system or model refers to the case in which the dependent variable in one or
more equations is also an explanatory variable in some other equation of the system. Specifically, not

only are the Ys determined by the Xs, but some of the Xs are, in turn, determined by the Ys, so that the
Ys and the Xs are jointly or simultaneously determined.

(b) The endogenous variables are the dependent variables in the system of simultaneous equations. These
are the variables that are determined by the system, even though they also appear as explanatory

variables in some other equation of the system.

(c) Exogenous variables are those variables which are determined outside of the model. These also include

the lagged endogenous variables, since their values are already known in any given period. The
exogenous variables and the lagged endogenous variables are sometimes called predetermined variables.

(d) Structural or behavioral equations describe the structure of an economy or the behavior of some
economic agents such as consumers or producers. There is one structural equation for each endogen-
ous variable of the system. The coefficients of the structural equations are called structural parameters

and express the direct effect of each explanatory variable on the dependent variable.

(e) Simultaneous-equations bias refers to the overestimation or underestimation of the structural para-
meters obtained from the application of OLS to the structural equations of a simultaneous-equations
model. This bias results because those endogenous variables of the system which are also explanatory

variables are correlated with the error terms, thus violating the fifth assumption of OLS (see Prob. 6.4).

(f ) Reduced-form equations are obtained by solving the system of structural equations so as to express each

endogenous variable of the system as a function only of the exogenous or predetermined variables of
the system. Since the exogenous variables of the system are uncorrelated with the error terms, OLS
gives consistent reduced-form parameter estimates. These measure the total direct and indirect effects

of a change in the exogenous variables on the endogenous variables and may be used to obtain
consistent structural parameters.

10.2 The following two structural equations represent a simple demand-supply model:

Demand: Qt ¼ a0 þ a1Pt þ a2Yt þ u1t a1 < 0 and a2 > 0

Supply: Qt ¼ b0 þ b1Pt þ u2t b1 > 0

where Q is quantity, P is price, and Y is consumers’ income. It is assumed that the market is
cleared in every year so that Qt represents both quantity bought and sold in year t. (a) Why is
this a simultaneous-equations model? (b) Which are the endogenous and exogenous variables of
the system? (c) Why would the estimation of the demand and supply function by OLS give
biased and inconsistent parameter estimates?

(a) The given demand-supply model represents a simple simultaneous-equations market system because Q
and P are mutually or jointly determined. If price were below equilibrium, the quantity demanded

would exceed the quantity supplied, and vice versa. At equilibrium, the (negatively sloped) demand
curve crosses the (positively sloped) supply curve, jointly or simultaneously determining (the equili-
brium) Q and P.

(b) The endogenous variables of the model are Q and P. These are the variables determined within the

model. Y is the only exogenous variable of the model (i.e., determined outside the model).

(c) Since the endogenous variable P is also an explanatory variable in both the demand and supply

equations, P is correlated with u1t in the demand equation and with u2t in the supply equation.
This violates the fifth assumption of OLS, which requires that the explanatory variable be uncorrelated
with the error term. As a result, estimating the demand and supply functions by OLS results in
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parameter estimates that are not only biased but also inconsistent (i.e., that do not converge on the true

parameters even as the sample size is increased).

10.3 (a) Find the reduced-form equations corresponding to the structural equations of Prob. 10.2. (b)
Why are these reduced-form equations important? What do the reduced-form coefficients
measure in this market model?

(a) To find the reduced-form equations, the structural equations of Prob. 10.2 are solved for Q and P (the

endogenous variables) as a function of only Y (the exogenous variable). Converting the supply
equation into a function of P and substituting into the demand equation, we get

Pt ¼
1

b1
ðQt � b0 � u2tÞ

Qt ¼ a0 þ
a1
b1

ðQt � b0 � u2tÞ þ a2Yt þ u1t

Qt

b1 � a1
b1

� �
¼ a0b1 � a1b0

b1

� �
þ a2Yt þ

b1u1t � a1u2t

b1

� �
Qt ¼

a0b1 � a1b0
b1 � a1

� �
þ b1a2

b1 � a1

� �
Yt þ

b1u1t � a1u2t

b1 � a1

� �
Qt ¼ �0 þ �1Yt þ v1t

�0 ¼
a0b1 � a1b0

b1 � a1
�1 ¼

b1a2
b1 � a1

v1t ¼
b1u1t � a1u2t

b1 � a1
where

Substituting the demand equation into the supply equation as a function of P, we get

Pt ¼
1

b1
ða0 þ a1Pt þ a2Yt þ u1t � b0 � u2tÞ

Pt

b1 � a1
b1

� �
¼ 1

b1
ða0 þ a2Yt þ u1t � b0 � u2tÞ

Pt ¼
a0 � b0
b1 � a1

� �
þ a2

b1 � a1

� �
Yt þ

u1t � u2t

b1 � a1

� �
Pt ¼ �2 þ �3Yt þ v2t

�2 ¼
a0 � b0
b1 � a1

�3 ¼
a2

b1 � a1
v2t ¼

u1t � u2t

b1 � a1
where

(b) Reduced-form equations

Qt ¼ �0 þ �1Yt þ v1t

Pt ¼ �2 þ �3Yt þ v2t

are important because Yt is uncorrelated with v1t and v2t, so that consistent estimates of reduced-form

parameters �0, �1, �2, and �3 can be obtained by applying OLS to the reduced-form equations. �1 and
�3 give, respectively, the total of the direct and indirect effects of a change in Y on Q and P. A change
in Y causes a shift in the demand curve, which affects both the equilibrium P and Q.

10.4 Given the following three-equations system, (a) explain why this is not a simultaneous-equations
model. (b) Could OLS be used to estimate each equation of this system? Why?

Y1t ¼ a0 þ a1Xt þ u1t

Y2t ¼ b0 þ b1Y1t þ b2Xt þ u2t

Y3t ¼ c0 þ c1Y2t þ c2Xt þ u3t

(a) The preceding system is not simultaneous because although Y2 is a function of Y1, Y1 is not a function

of Y2. Similarly, although Y3 is a function of Y2, Y2 is not a function of Y3. Thus the line of causation
runs only in one rather than in both directions. Once Y1 has been estimated in the first equation, Y1

can be used (together with X) to estimate Y2 in the second equation. Similarly, once Y2 has been
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estimated in the second equation, Y2 can be used (together with X) to estimate Y3 in the third equation.

Models of this nature are recursive rather than simultaneous.

(b) In the first equation, exogenous variable X is uncorrelated with error term u1, so that OLS gives

unbiased parameter estimates for the first equation. In the second equation, X and Y are uncorrelated
with u2 (i.e., Y1 is correlated with u1 but not with u2), so that OLS gives unbiased parameter estimates
for the second equation. The same is true for the third equation. Thus recursive models can be

estimated by the sequential application of OLS.

IDENTIFICATION

10.5 (a) What is meant by identification? (b) When is an equation of a system exactly identified? (c)
Overidentified? (d) Underidentified? (e) Are these rules sufficient for identification?

(a) Identification refers to the possibility or impossibility of obtaining the structural parameters of a

simultaneous-equations system from the reduced-form parameters. An equation of a system can be
exactly identified, overidentified, or underidentified. The system as a whole is exactly identified if all its
equations are exactly identified.

(b) An equation of a system is just or exactly identified if the number of excluded exogenous variables from

the equation is equal to the number of endogenous variables in the equation minus 1. For an exactly
identified equation, a unique value of the structural parameters can be calculated from the reduced-form
parameters.

(c) An equation of a system is overidentified if the number of excluded exogenous variables from the
equation exceeds the number of endogenous variables in the equation minus 1. For an overidentified

equation, more than one numerical value can be calculated from some of the structural parameters of
the equation from the reduced-form parameters.

(d) An equation of a system is underidentified or unidentified if the number of excluded variables from the
equation is smaller than the number of endogenous variables excluded from the equation minus 1. In
this case, no structural parameters can be calculated from the reduced-form parameters.

(e) The preceding rules for identification (called the order condition) are necessary but not sufficient.

However, since these rules do give the correct result in most cases, they are the only ones actually
used here. A sufficient condition for identification is given by the rank condition, which states that in a
system of G equations, any particular equation is identified if and only if it is possible to obtain one
nonzero determinant of order G � 1 from the coefficients of the variables excluded from that particular

equation but included in the other equations of the model. When this rank condition is satisfied, the
order condition is automatically satisfied. However, the reverse is not true.

10.6 Given the following demand-supply model (a) determine if the demand and/or supply is exactly
identified, overidentified, or underidentified.

Demand: Qt ¼ a0 þ a1Pt þ u1t a1 < 0

Supply: Qt ¼ b0 þ b1Pt þ u2t b1 > 0

(b) What would a regression of Qt on Pt indicate?

(a) Since this demand-supply model does not include any exogenous variable, both the demand and supply
functions are underidentified. In this case, there are no reduced-form equations, and no structural

parameters can be calculated. Each price-quantity observation represents the equilibrium quantity
bought and sold at the given price and corresponds to the interception of an (unknown) demand and
supply curve.

(b) Regressing Qt on Pt gives neither a demand curve nor a supply curve, but rather a hybrid of demand
and supply, which should be referred to simply as a regression line.
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10.7 With reference to the demand-supply model in Prob. 10.2 (a) determine if the demand and/or
supply function is exactly identified, overidentified, or underidentified. (b) Give a graphical
interpretation of your answer to part a. (c) Derive the formula for the structural coefficients
from the reduced-form coefficients.

(a) The demand function is underidentified because it does not exclude any exogenous variable. However,
since there is one excluded exogenous variable from the supply equation (that is, Y) and two included
endogenous variables (i.e., Q and P), the supply function is exactly identified.

(b) Changes in Y cause shifts in the demand curve, thus tracing the supply curve. Figure 10-1a shows a
hypothetical scatter of points resulting from changes in Y and the error terms, while Fig. 10-1b shows
the resulting supply curve that could be generated.

(c) Unique values of the structural coefficients of the supply equation (the exactly identified equation) can
be calculated from the reduced-form coefficients in Prob. 10.3 as follows:

b1 ¼
�1
�3

¼
b1a2

b1 � a1
a2

b1 � a1

b1 ¼ �0 � b1�2 ¼
a0b1 � a1b0

b1 � a1
� b1a0 þ b0b1

b1 � a1
¼ b0ðb1 � a1Þ

b1 � a1

The formula for the structural coefficients of the demand function cannot be derived from the reduced-

form coefficients because the demand function in this model is underidentified.

10.8 With reference to the demand-supply model given below, (a) determine if the demand and/or
supply functions are exactly identified, overidentified, or underidentified. (b) Find the reduced-
form equations. (c) Derive the formula for the structural parameters.

Demand: Qt ¼ a0 þ a1Pt þ a2Yt þ u1t a1 < 0; a2 > 0

Supply: Qt ¼ b0 þ b1Pt þ b2T þ u2t b1 > 0; b2 <> 0

where T = trend.

(a) The supply equation is exactly identified (as in Prob. 10.7) because it excludes one exogenous variable
(Y) and includes two endogenous variables (P and Q). The demand equation is now also exactly
identified because it excludes one exogenous variable (T) and includes two endogenous variables (P and

Q).

(b) The reduced-form equations can be obtained as in Prob. 10.3(a):
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Qt ¼
a0b1 � a1b0

b1 � a1

� �
þ a2b1

b1 � a1

� �
Yt þ

�a1b2
b1 � a1

� �
T þ b1u1t � a1u2t

b1 � a1

� �
Pt ¼

a0 � b0
b1 � a1

� �
þ a2

b1 � a1

� �
Yt þ

�b2
b1 � a1

� �
T þ u1t � u2t

b1 � a1

� �
Qt ¼ �0 þ �1Yt þ �2T þ v1tor;

Pt ¼ �3 þ �4Yt þ �5T þ v2t

�0 ¼
a0b1 � a1b0

b1 � a1
�1 ¼

a2b1
b1 � a1

�2 ¼
�a1b2
b1 � a1

v1t ¼
b1u1t � a1u2t

b1 � a1
where

�3 ¼
a0 � b0
b1 � a1

�4 ¼
a2

b1 � a1
�5 ¼

�b2
b1 � a1

v2t ¼
u1t � u2t

b1 � a1

a1 ¼
�2
�5

and b1 ¼
�1
�4

ðcÞ

a2 ¼ �4ðb1 � a1Þ ¼ �4
�1
�4

� �2
�5

� �
and b2 ¼ ��5ðb1 � a1Þ ¼ �5

�2
�5

� �1
�4

� �
a0 ¼ �3ðb1 � a1Þ þ b0 ¼ �3

�0
�3

� �2
�5

� �
and b0 ¼ ��3ðb1 � a1Þ þ a0 ¼ �3

�0
�3

� �1
�4

� �

10.9 With reference to the demand-supply model given below, (a) determine if the demand and/or
supply equation is exactly identified, overidentified, or underidentified. (b) Calculate the struc-
tural slope parameters.

Demand: Qt ¼ a0 þ a1Pt þ a2Yt þ a3Wt þ u1t

Supply: Qt ¼ b0 þ b1Pt þ u2t

where Wt is wealth and the expectation is that a3 > 0.

(a) The demand equation is underidentified because it does not exclude any exogenous variable. However,
since there are two excluded exogenous variables from the supply equation (i.e., Y and W) and two
included endogenous variables (i.e., Q and P), the supply function is overidentified.

(b) In order to calculate the structural slope parameters, the reduced-form equations must be found. They
are obtained as in Prob. 10.7(c) and are

Qt ¼ �0 þ �1Yt þ �2Wt þ v1t

Pt ¼ �3 þ �4Yt þ �5Wt þ v2t

�0 ¼
a0b1 � a1b0

b1 � a1
�1 ¼

a2b1
b1 � a1

�2 ¼
a3b1

b1 � a1
where

�3 ¼
a0 � b0
b1 � a1

�4 ¼
a2

b1 � a1
�5 ¼

a3
b1 � a1

The value of b1 can be calculated from

�1
�4

¼ b1 or
�2
�5

¼ b1

These two estimates of b1 will generally be different, reflecting the fact that the supply equation is now
overidentified. As in Prob. 10.7(c), the structural coefficients of the demand function cannot be
calculated from the reduced-form coefficients because the demand function in this model is under-
identified.

ESTIMATION: INDIRECT LEAST SQUARES

10.10 (a) When can indirect least squares be used? (b) What does it involve? (c) What are some of the
shortcomings of using indirect least squares?
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(a) Indirect least squares (ILS) is a method of calculating consistent structural parameter values for the

exactly identified equations in a system of simultaneous equations.

(b) ILS involves using OLS to estimate the reduced-form equations of the system and then using the
estimated reduced-form parameters to calculate unique and consistent structural parameter estimates,
as indicated in Probs. 10.7(c), 10.8(c), and 10.9(b).

(c) One disadvantage of using ILS is that it does not give the standard error of the calculated structural

parameters, and it is rather complicated (and beyond the scope of this book) to calculate them.
Another disadvantage of ILS is that it cannot be used to calculate unique and consistent structural-
parameter estimates from the reduced-form coefficients for the overidentified equations of a simulta-
neous-equations model.

10.11 Table 10.2 gives the index of crop output Q (indexed to 1992), crop prices P (indexed to 1991–
1992), and disposable income per capita Y (in 1996 dollars), in the United States from 1975 to
1996. Assume that the market is cleared in every year so that Qt represents both the quantity
bought and sold in year t. (a) Estimate by OLS the reduced-form equations given in Prob.
10.3(a). (b) Calculate the supply structural parameters from the reduced-form coefficients. (c)
How do these compare with the structural parameters obtained by regressing Qt on Pt directly?

(a) The estimated reduced-form equations [from Prob. 10.3(a)] are

Q̂Qt ¼ 14:2802þ 0:0039Yt R2 ¼ 0:67

ð1:26Þ ð6:31Þ
P̂Pt ¼ 54:1671þ 0:0026Yt R2 ¼ 0:30

ð3:36Þ ð2:91Þ

b̂b1 ¼
�̂�1
�̂�3

¼ 0:0039

0:0026
¼ 1:5000 ½see Prob. 10.7(c)]ðbÞ

b̂b0 ¼ �̂�0 � b1�̂�3 ¼ 14:2802� 1:5000ð54:1671Þ ¼ �66:9705

where b̂b0 and b̂b1 are consistent estimators of b0 and b1, respectively, and the structural supply equation

(estimated by ILS) is

Q̂Qt ¼ �66:9705þ 1:5000Pt

(c) Regressing Qt on Pt directly, we get

Q̂Qt ¼ 33:1984þ 0:5145Pt R2 ¼ 0:26

ð1:67Þ ð2:63Þ
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Table 10.2 Index of Crop Output, Prices, and Disposable Income per Capita in 1996 Dollars:

United States, 1975–1996

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

Q 68 68 74 76 83 75 87 87 68 85 89

P 88 87 83 89 98 107 111 98 108 111 98

Y 14,236 14,653 15,010 15,627 15,942 15,944 16,154 16,250 16,564 17,687 18,120

Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

Q 84 86 75 86 92 92 100 90 106 96 103

P 87 86 104 109 103 101 101 102 105 112 127

Y 18,536 18,790 19,448 19,746 19,967 19,892 20,359 20,354 20,675 21,032 21,385

Source: Economic Report of the President, 2000.



The values of b̂b0 and b̂b1 obtained by regressing Qt on Pt are biased and inconsistent estimates of the

supply parameters.

10.12 With reference to the demand-supply model of Prob. 10.8 and using the data in Table 10.2 and
trend values T ¼ 1; 2; 3; . . . ; 30, (a) calculate consistent structural parameters for the demand
equation. (b) How do these compare with the structural parameters obtained by estimating the
demand equation directly by OLS?

(a) Since the demand equation is exactly identified [see Prob. 10.8(a)], we can use ILS to obtain consistent
demand structural-parameter values. The estimated reduced-form equations [from Prob. 10.8(b)] are

Q̂Qt ¼ 102:6080
ð1:73Þ

� 0:0024Ytð�0:57Þ
þ 2:2520T

ð1:51Þ
R2 ¼ 0:70

P̂Pt ¼ 211:3674
ð2:58Þ

� 0:0087Ytð�1:49Þ
þ 4:0079T

ð1:95Þ
R2 ¼ 0:41

�̂�0 ¼ 102:6080; �̂�1 ¼ �0:0024; �̂�2 ¼ 2:2520where

�̂�3 ¼ 211:3674; �̂�4 ¼ �0:0087; �̂�5 ¼ 4:0079

Using the formulas given in Prob. 10.8(c), we get

âa1 ¼
�̂�2
�̂�5

¼ 2:2520

4:0079
¼ 0:5619

âa2 ¼ �̂�4
�̂�1
�̂�4

� �̂�2
�̂�5

� �
¼ ð�0:0087Þ ð�0:0024Þ

ð�0:0087Þ �
2:2520

4:0079

� �
¼ 0:0025

âa0 ¼ �̂�3
�̂�0
�̂�3

� �̂�2
�̂�5

� �
¼ 211:3674

102:6080

211:3674
� 2:2520

4:0079

� �
¼ �16:1573

Thus the demand equation estimated by ILS (and showing consistent parameter estimates) is

Q̂Qt ¼ �16:1573þ 0:5619Pt þ 0:0025T

(b) The OLS estimation of the demand function is

Q̂Qt ¼ 9:4529
ð0:66Þ

þ 0:0891Ptð0:56Þ
þ 0:0037T

ð4:89Þ
R2 ¼ 0:67

The values of âa0, âa1, and âa2 estimated by OLS are biased and inconsistent. Indeed, âa1 is less than 20%
of the ILS estimate, and âa0 even has the wrong sign (but is not statistically significant).

ESTIMATION: TWO-STAGE LEAST SQUARES

10.13 When can 2SLS be used? (b) What does it involve? (c) What are the advantages of 2SLS with
respect to ILS?

(a) Two-stage least squares (2SLS) is a method of estimating consistent structural-parameter values for the
exactly identified or overidentified equations of a simultaneous-equations system. For exactly identi-
fied equations, 2SLS gives the same result as ILS.

(b) 2SLS estimation involves the application of OLS in two stages. In the first stage, each endogenous
variable is regressed on all the predetermined variables of the system. These are now the reduced-form

equations. In the second stage, the predicted rather than the actual values of the endogenous variables
are used to estimate the structural equations of the model. The predicted values of the endogenous
variables are obtained by substituting the observed values of the exogenous variables into the reduced-
form equations. The predicted values of the endogenous variables are uncorrelated with the error

terms, leading to consistent 2SLS structural-parameter estimates.

(c) One advantage of 2SLS over ILS is that 2SLS can be used to obtain consistent structural-parameter

estimates for the overidentified as well as for the exactly identified equations in a system of simultaneous
equations. Another important advantage is that 2SLS (but not ILS) gives the standard error of the
estimated structural parameters directly. Since most identified models are in fact overidentified, 2SLS is
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very useful. Indeed, 2SLS is the simplest and one of the best and most common of all simultaneous-

equations estimators.

10.14 For the demand-supply model in Prob. 10.8 and using the data in Table 10.2 to estimate the
demand equation, (a) show the first-stage result of 2SLS estimation. (b) Show the second-stage
result of 2SLS estimation. (c) How do these results compare with the ILS estimation of the
demand equation found in Prob. 10.12(a)?

(a) The first-stage result of the 2SLS estimation of the demand equation is

P̂Pt ¼ 211:3674
ð2:58Þ

� 0:0087Ytð�1:49Þ
þ 4:0079T

ð1:95Þ
R2 ¼ 0:41

(b) The second-stage result of 2SLS estimation of the demand equation is

Q̂Qt ¼ �16:16
ð�0:70Þ

þ 0:56P̂Ptð2:18Þ
� 0:0025Ytð1:51Þ

R2 ¼ 0:70

(c) Since the demand equation in Prob. 10.8 is exactly identified, 2SLS estimation gives identical results to
ILS estimation [see Prob. 10.12(a)]. However, with 2SLS estimation (as opposed to ILS), we also get
the standard errors of the estimated structural parameters directly.

10.15 Table 10.3 includes the additional variable wealth W , measured here by total liquid assets, in
billions of dollars, to the data in Table 10.2 for the United States for the years 1975 to 1996. For
the demand-supply model in Prob. 10.9, estimate the supply equation by (a) 2SLS and (b) OLS.

(a) Since the supply equation in Prob. 10.9 is overidentified, 2SLS is an appropriate estimating technique to
obtain consistent structural parameters. The first stage is

P̂Pt ¼ 197:51
ð1:84Þ

� 0:01Ytð�1:05Þ
þ 0:02Wtð1:35Þ

R2 ¼ 0:36

The second stage is

Q̂Qt ¼ �32:11
ð�1:15Þ

þ 1:16P̂Ptð4:21Þ
R2 ¼ 0:47

(b) The (inappropriate) OLS estimation of the supply equation is

Q̂Qt ¼ �33:20
ð�1:67Þ

þ 0:51P̂Ptð2:63Þ
R2 ¼ 0:26
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Table 10.3 Index of Crop Output, Prices, Disposable Income per Capita, and Total Liquid Assets in

Billions of Dollars in the United States, 1975–1996

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

Q 68 68 74 76 83 75 87 87 68 85 89

P 88 87 83 89 98 107 111 98 108 111 98

Y 14,236 14,653 15,010 15,627 15,942 15,944 16,154 16,250 16,564 17,687 18,120

W 1366.5 1516.7 1705.4 1911.3 2121.2 2330.0 2601.8 2846.0 3150.7 3518.7 3827.1

Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

Q 84 86 75 86 92 92 100 90 106 96 103

P 87 86 104 109 103 101 101 102 105 112 127

Y 18,536 18,790 19,448 19,746 19,967 19,892 20,359 20,354 20,675 21,032 21,385

W 4122.4 4340.0 4663.7 4893.2 4977.5 5008.0 5081.4 5173.3 5315.8 5702.3 6083.6

Source: Economic Report of the President, 2000.



Supplementary Problems

SIMULTANEOUS-EQUATIONS MODELS

10.16 The following two equations represent a simple wage-price model:

Wt ¼ a0 þ a1Pt þ a2Qt þ u1t

Pt ¼ b0 þ b1Wt þ u2t

where Wt is the wage in time period t, P represents prices, and Q is productivity. (a) Why is this a
simultaneous-equations model? (b) Which are the endogenous and exogenous variables? (c) Why
would the estimation of W and P equations by OLS give biased and inconsistent parameter estimates?

Ans. (a) This two-equations model is simultaneous in nature because W ¼ f ðPÞ and P ¼ f ðWÞ; thus W and
P are jointly determined. (b) The endogenous variables are W and P. The exogenous variable is Q. (c)
The estimation of the W function by OLS gives biased and inconsistent parameter estimates because P is
correlated with u1. Similarly, estimating the second, or P, equation by OLS also gives biased and incon-

sistent parameter estimates because W and u2 are correlated.

10.17 (a) Find the reduced-form equations for the model in Prob. 10.16. (b) Why are they important? (c) What
do the reduced-form coefficients measure in this macro model?

Wt ¼
a0 þ a1b0
1� a1b1

þ a2
1� a1b1

Qt þ
u1t þ a1u2t

1� a1b1

or Wt ¼ �0 þ �1Qt þ v1tAns: ðaÞ

Pt ¼
b0 þ a0b1
1� a1b1

þ a2b1
1� a1b1

Qt þ
b1u1t þ u2t

1� a1b1
or Pt ¼ �2 þ �3Qt þ v2t

(b) The reduced-form equations are important because they express each endogenous variable of the model
as a function of the exogenous variable(s) only, so that OLS gives consistent parameter estimates. (c) The

reduced-form parameters give the total direct and indirect effects of a change in any exogenous variable of
the model on each endogenous variable of the model.

10.18 (a) What type of model is the following? (b) How can the equations of this model be estimated?

Y1t ¼ a0 þ a1X1t þ u1t

Y2t ¼ b0 þ b1Y1t þ b2X2t þ u2t

Y3t ¼ c0 þ c1Y1t þ c2Y2t þ c3X3t þ u3t

Ans. (a) The model is recursive. (b) The equations of the model can be estimated by applying OLS

sequentially, starting with the first equation.

IDENTIFICATION

10.19 If the simple macroeconomic model in Prob. 10.16 did not include the variable Qt, (a) would the first

equation be exactly identified, overidentified, or underidentified? (b) What about the second equation?
Ans. (a) The first equation would be underidentified. (b) The second equation also would be under-
identified.

10.20 For the macro model in Prob. 10.16, determine (a) if the first equation is exactly identified, overidentified,
or underidentified. (b) What about the second equation? (c) What are the values of the structural

parameters?
Ans. (a) The first equation is underidentified. (b) The second equation is exactly identified. (c) b1 ¼ �3=�1;
b0 ¼ �2 � b1�0; a1 and a2 cannot be calculated from the reduced-form coefficients because the W equation is

underidentified.

10.21 If the second equation of the macro model in Prob. 10.16 included the additional variable Y (GNP), (a)
determine if the W and/or P equations are exactly identified, overidentified, or underidentified. (b) Find the
reduced-form equations. (c) Derive the formula for the structural parameters.
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Ans. (a) Both the first, or W , equation and the second, or P, equation are now exactly identified.

Wt ¼
a0 þ a1b0
1� a1b1

þ a2
1� a1b1

Qt þ
a1b2

1� a1b1
Yt þ

u1t þ a1u2t

1� a1b1
ðbÞ

Pt ¼
a0b1 þ b0
1� a1b1

þ a2b1
1� a1b1

Qt þ
b2

1� a1b1
Yt þ

b1u1t þ u2t

1� a1b1

Wt ¼ �0 þ �1Qt þ �2Yt þ v1tor

Pt ¼ �3 þ �4Qt þ �5Yt þ v2t

a1 ¼
�2
�5

and b1 ¼
�4
�1

ðcÞ

a2 ¼ �2
�1
�2

� �4
�5

� �
and b2 ¼ �2

�5
�2

� �4
�1

� �
a0 ¼ �3

�0
�3

� �2
�5

� �
and b0 ¼ �0

�3
�0

� �4
�1

� �

10.22 If the first equation in Prob. 10.16 included the additional variable Pt�1 (price lagged 1 year), (a) would the

equations be exactly identified, overidentified, or underidentified? (b) What is the value of the structural
slope parameters?
Ans. (a) The first, or W , equation is underidentified, while the second, or P, equation is overidentified. (b)

b1 ¼ �4=�1 or �5=�2, reflecting the fact that the P equation is now overidentified; a1, a2, and a3 cannot be
calculated because the W equation is underidentified.

ESTIMATION: INDIRECT LEAST SQUARES

10.23 Table 10.4 gives an index of hourly earnings W , consumer prices P, output per hour in nonfarm businesses,
Q, and GDP in billions of dollars Y in the United States from 1980 to 1999. (a) Estimate the reduced-form
equations of Prob. 10.17(a). (b) Calculate the structural coefficients of the P equation from the reduced-

form coefficients. (c) How do these compare with the structural parameters obtained by regressing P on W
directly?

ŴWt ¼ �114:8528
ð�17:61Þ

þ 2:1270Qt

ð31:62Þ
R2 ¼ 0:98Ans: ðaÞ

P̂Pt ¼ �126:0632
ð�9:89Þ

þ 2:6471Qt

ð20:14Þ
R2 ¼ 0:96

(b) b̂b1 ¼ 1:2445; b̂b0 ¼ 16:8711 (c) By OLS b̂b1 ¼ 1:2550 and b̂b0 ¼ 15:9256
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Table 10.4 Earnings, Price Index, Productivity, and GDP: United States, 1980–1999

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

W 56.6 61.5 65.7 68.0 71.1 74.8 78.5 81.4 84.8 87.2

P 86.4 94.1 97.7 101.4 105.5 109.5 110.8 115.7 120.8 126.4

Q 82.4 82.5 83.3 87.3 88.4 90.2 92.2 93.1 94.1 94.6

Y 2918.8 3203.1 3315.6 3688.8 4033.5 4319.3 4537.5 4891.6 5258.3 5588.0

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

W 92.3 96.7 101.4 102.7 105.0 107.7 111.1 114.7 120.8 126.5

P 134.3 138.3 142.4 146.4 150.2 154.1 159.1 161.8 164.4 168.8

Q 94.4 94.4 101.5 101.3 102.4 103.6 105.9 108.1 111.2 115.8

Y 5847.3 6080.7 6469.8 6795.5 7217.7 7529.3 7981.4 8478.6 8974.9 9559.7

Source: St. Louis Federal Reserve (Bureau of Labor Statistics (W , P, Q values), Bureau of Economic
Analysis (Y values)).



10.24 For the model in Prob. 10.21, (a) estimate the reduced-form equations, and (b) calculate the structural

coefficients of the W equation from the reduced-form coefficients. (c) How do these compare with the
structural coefficients of the W equation obtained by OLS?

ŴWt ¼ �3:2144
ð�0:10Þ

þ 0:4954Qt

ð1:11Þ
þ 0:0079Yt

ð3:69Þ
R2 ¼ 0:99Ans: ðaÞ

P̂Pt ¼ 114:3837
ð2:10Þ

� 0:8671Qt

ð�1:10Þ
þ 0:0169Yt

ð4:47Þ
R2 ¼ 0:98

(b) âa0 ¼ �56:6837, âa1 ¼ 0:4675, and âa2 ¼ 0:9007 (c) By OLS, âa0 ¼ �54:2209, âa1 ¼ 0:4810, and âa2 ¼ 0:8539

10.25 For the model in Prob. 10.21, write the structural equation for the P equation estimated by (a) ILS and (b)

OLS.

P̂Pt ¼ �108:7575� 1:7503Wt þ 0:0307YtAns: ðaÞ
P̂Pt ¼ 12:9178

ð1:47Þ
þ 1:3544Wt

ð1:87Þ
� 0:0010Yt

ð�0:36Þ
R2 ¼ 0:99ðbÞ

TWO-STAGE LEAST SQUARES

10.26 For the model in Prob. 10.21 and using the data in Table 10.4 to estimate the W equation, (a) show the first-
stage results of 2SLS estimation, and (b) show the second-stage results of 2SLS estimation. (c) How do
these results compare with ILS estimation of the W equation found in Prob. 10.24?

P̂Pt ¼ 114:3837
ð2:10Þ

� 0:8671Qt

ð�1:10Þ
þ 0:0169Yt

ð4:47Þ
R2 ¼ 0:98Ans: ðaÞ

ŴWt ¼ �56:32
ð�3:39Þ

þ 0:46P̂Pt

ð3:69Þ
þ 0:90Qt

ð2:66Þ
R2 ¼ 0:99ðbÞ

(c) They are identical (there is a slight difference due to rounding); we also get the standard errors. The
structural parameters estimated by 2SLS and ILS are consistent.

10.27 For the model in Prob. 10.22 and the data in Table 10.4, estimate the P equation by (a) 2SLS and (b)
OLS.

P̂Pt ¼ 16:07
ð5:26Þ

þ 1:25ŴWt

ð38:63Þ
R2 ¼ 0:99Ans: ðaÞ

P̂Pt ¼ 15:93
ð6:17Þ

þ 1:25Wt

ð45:03Þ
R2 ¼ 0:99ðbÞ
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Time-Series Methods

11.1 ARMA

In Sec. 9.3, we discussed the problem of first-order autocorrelation in time series. Often, variables
are exploited solely for their time series properties to achieve forecasts. These forecasts are not based on
a theoretical model, but use past movements to predict future movements. High-frequency data
(monthly, daily, etc.) can follow complex time-series processes that will change the appropriate method
of estimation.

There are two main types of correlation:

1. Autoregressive of order p½ARðpÞ�
yt ¼ �1yt�1 þ �2yt�2 þ � � � þ �pyt�p þ "t

2. Moving average of order q½MAðqÞ�
yt ¼ "t � �1"t�1 � �2"t�2 � � � � � �q"t�q

Combining the two yields the ARMA(p, q) representation

yt ¼ �1yt�1 þ �2yt�2 þ � � � þ �pyt�p þ "t � �1"t�1 � �2"t�2 � � � � � �q"t�q

Estimation of AR(p) is simply a lag-dependent variable and can be estimated with OLS for large
samples. Inclusion of the moving-average process yields nonlinear equations that can be estimated by
computer as shown in Chap. 12.

EXAMPLE 1. Using the observations of "1 in Table 11.1, we generate ARð1Þ½�1 ¼ 0:8�, MAð1Þ½�1 ¼ �0:8�, and
ARMA(1,1)½�1 ¼ 0:8; �1 ¼ �0:8� and graph the results in Fig. 11-1 (with "0 ¼ 0 to start the processes).

As can be seen in Table 11.1 and in Fig. 11-1, the original series, "t, fluctuates around its mean (0). The AR(1)
process also moves around 0 but retains part of the past values and does not revert back to 0 as quickly. The MA(1)
process retains some memory of past values, but only for 1 period, and thus moves away from past values more
quickly. The ARMA(1,1) process has some qualities of both AR(1) and MA(1).

11.2 IDENTIFYING ARMA

An AR process can be distinguished from an MA process by its persistence. Since autoregression is
an iterative process, values of the random error fade away slowly as each year feeds to the next. The
MA process is correlation of only the random component, so after q periods the random error is no
longer in the system.
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Table 11.1 Time-Series Observations

t 1 2 3 4 5 6 7 8 9 10

" �0.69 1.04 1.3 �0.15 �0.26 0.07 1.12 �0.3 �1.72 0.01

yt½ARð1Þ� �0.69 0.488 1.6904 1.2023 0.7019 0.6315 1.6252 1.0002 �0.9199 �0.7259
yt½MAð1Þ� �0.69 0.488 2.132 0.89 �0.38 �0.138 1.176 0.596 �1.96 �1.366

yt½ARMAð1,1Þ� �0.69 �0.064 2.0808 2.5546 1.6637 1.193 2.1304 2.3003 �0.1198 �1.4618



The persistence of error terms can be examined through the autocorrelation function

ACFs ¼
covðyt; yt�sÞ

�2y

and the partial autocorrelation function (PACFs), which is the coefficient on yt�s in the regression

yt ¼ �1yt�1 þ �2yt�2 þ � � � þ �syt�s þ "t

Once the degree of correlation is narrowed down, multiple possibilities can be estimated. One way
to choose the best specification is to take the one which minimizes Aikake’s information criteria (AIC)

AIC ¼ ln
ESS

T

� �
þ 2j

T

where j is the number of parameters estimated and ESS is the sum of squared errors ðP e2Þ.
To test the presence of correlations, the Box-Pierce statistic Q ¼ T

P
ACF2

s tests the null hypothesis
that there are no correlations. Q follows the chi-square distribution with degrees of freedom equal to
the highest lag calculated (usually the minimum of 40 and T=2).

EXAMPLE 2. A company is trying to aid their prediction of sales patterns by looking at the time-series properties
of the past 4 years of weekly sales (208 weeks). Table 11.2 shows the ACF and PACF, and Fig. 11-2 reflects the

correlations plotted against the number of lags, known as a correlelogram.
Analyzing the ACF, we see a large positive correlation at 4 lags, and subsequently smaller correlations at

intervals of every 4 lags (8, 12, 16 lags). The persistence is consistent with an AR process. Looking at the PACF
confirms this. There is a large partial correlation at 4 lags, but after accounting for this, 8, 12, and 16 lags no longer
show correlation. Therefore our finding is of an AR(4) process. To see if it is significant, we calculate the Q statistic
(here we use only 16 lags for simplicity)

Q ¼ T
X

ACF2
s ¼ ð208Þð0:7994Þ ¼ 166:28

The critical value for the chi-square distribution with 16 df at the 5% level of significance is 26.3. Since
Q ¼ 166:28 > 26:3, we reject the null hypothesis and there is no correlation; therefore the AR(4) process is statis-
tically significant.
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Fig. 11-1 Time-Series Processes



11.3 NONSTATIONARY SERIES

For OLS estimation in general to be valid, the error term must be time-invariant, that is, stationary.

A nonstationary series follows the form

Yt ¼ Yt�1 þ "t

which is autoregressive with � ¼ 1, also called unit root, or integrated of order 1½Ið1Þ�.
Since the entire value from the previous period is carried forward to the current period, values of the

random error never fade away. The continuous buildup of the errors creates the problem that a

nonstationary series will tend toward an infinite variance. Furthermore, if the Y and X variables in

a regression are both nonstationary, the model will have a spuriously significant result and high R2 even

if the two variables are unrelated.

Taking first differences will eliminate the autoregressive component, and the unit root:
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Table 11.2 ACF and PACF of Sales

s ACF PACF

1 �0.12678 �0.12678
2 0.10376 0.08912

3 �0.08842 �0.06674
4 0.67066 0.66278

5 �0.12356 0.01116

6 0.08703 �0.01332
7 �0.05300 0.01831

8 0.42026 �0.05191
9 �0.04892 0.10053

10 0.06823 0.01297

11 �0.05903 �0.05758
12 0.24187 �0.04140
13 0.04356 0.08821

14 0.10290 0.12567

15 �0.04299 0.03352

16 0.17137 0.05023

Fig. 11-2 ACF and PACF Correlelogram



Yt � Yt�1 ¼ �Yt ¼ "t

EXAMPLE 3. The two series in Table 11.3, Y and X, are independently generated variables containing a unit root.
There should be no statistical relationship between Y and X .

Regressing Y and X yields

ŶYt ¼ �1:16� 0:45Xt R2 ¼ 0:32

ð�2:84Þ
If we ignored the unit root of Y and X , we would conclude that X has a statistically significant effect on

Y (at the 5% significance level). Taking the unit root into account and regressing �Y in �X, we get reliable
results:

�ŶYt ¼ 0:43� 0:12�Xt R2 ¼ 0:02

ð�0:53Þ
Correcting for the unit root lowers the spurious t statistic of b1 and the R2 dramatically.

11.4 TESTING FOR UNIT ROOT

Stationary and nonstationary series can follow different patterns, many of which look similar when
graphed. This makes testing for a unit root a tricky proposition.

Stationary Nonstationary

White noise: Yt ¼ �þ "t Random walk: Yt ¼ Yt�1 þ "t

Autoregressive: Yt ¼ �þ �Yt�1 þ "tðj�j < 1Þ Random walk with drift: Yt ¼ �þ Yt�1 þ "t

Trend stationary: Yt ¼ �þ �t þ "tðt ¼ 1; 2; . . .Þ

To distinguish a unit root, we can run the regression

�Yt ¼ b0 þ
X

bj �Yt�j þ �t þ �Yt�1 þ �t

The regression includes enough lags of �Yt so that ut contains no autocorrelation. The model may be
run without t if a time trend is not necessary. If there is a unit root, differencing Y should result in a
white-noise series (no correlation with Yt�1). The augmented Dickey-Fuller (ADF) test of the null
hypothesis of no unit root tests H0 : � ¼ � ¼ 0 if there is a trend (F test), and H0 : � ¼ 0 if there is no
trend (t test). If the null is accepted, we assume that there is a unit root and difference the data before
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Table 11.3 Unit-Root Variables and First Differences

t 1 2 3 4 5 6 7 8 9 10

Y �2.3356 �1.3109 0.7429 0.6579 2.0952 2.2506 0.6410 �0.7852 �1.3934 �0.3937
X �0.3670 �0.5800 �0.6762 �1.9027 �4.0932 �4.5873 �4.7776 �5.9336 �5.5949 �7.6423
�Y — 1.0246 2.0538 �0.0850 1.4373 0.1553 �1.6095 �1.4263 �0.6082 0.9997

�X — �0.2130 �0.0961 �1.2265 �2.1904 �0.4940 �0.1903 �1.1560 0.3387 �2.0474
t 11 12 13 14 15 16 17 18 19 20

Y �0.7470 0.0555 1.3462 2.6339 2.7433 2.7969 3.3475 4.4176 4.8743 6.6956

X �6.3011 �7.9872 �7.5572 �9.2341 �9.2107 �9.0498 �7.4928 �7.8962 �8.2248 �7.6246
�Y �0.3532 0.8025 1.2907 1.2876 0.1094 0.0536 0.5506 1.0700 0.4567 1.8213

�X 1.3411 �1.6860 0.4300 �1.6768 0.0233 0.1609 1.5570 �0.4034 �0.3285 0.6001



running a regression. If the null is rejected, the data are stationary and can be used without differencing.
Since a unit root biases the estimation of � downward, special tables in App. 11 are used to find the
critical value for the ADF test.

EXAMPLE 4. We test Y from Example 3 for a unit root at the 5% level of significance with and without a time

trend.

Without trend:

�ŶYt ¼ 0:50�0:02Yt�1 R2 < 0:01

ð�0:20Þ
Since tb1 ¼ �0:20 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root. The
correct procedure is then to take first differences of Y before using it in a regression.

With a trend:

�ŶYt ¼ �0:04þ0:07t � 0:17Yt�1 R2 ¼ 0:08

ð1:13Þ ð�0:96Þ F ¼ 0:66

Since F ¼ 0:66 < 7:24, we again find a unit root.

11.5 COINTEGRATION AND ERROR CORRECTION

For a series which has a unit root, the best forecast of the next period’s value is the current period’s
value. In some cases, even though two series have a unit root and follow a random walk individually,
they move together in the long run. If Yt ¼ Yt�1 þ "Yt and Xt ¼ Xt�1 þ "Xt, we see that Y and X have a
unit root. If there is no unit root in the error term from the regression Yt ¼ b0 þ b1Xt þ ut, then Y and
X are cointegrated.

If Y and X are cointegrated, then it is not enough to simply difference the variables to run a
regression. One must also take into account the long-run relationship between the variables. When
Y is above the level indicated by X , we would expect Y to fall, and vice versa. Therefore the deviations
from the long-run relationship should be included as an explanatory variable in an error-correction
model. First, the long-run relationship is estimated.

et ¼ Yt � b̂b0 � b̂b1Xt

are the deviations from the long-run relationship.

Next, these differences are included as an additional variable

�Yt ¼ c0 þ c1�Xt þ c2et�1 þ ut

Since all variables in the error-correction model are stationary, OLS may be used.

EXAMPLE 5. A potential investor wishes to model consumption in Korea. Table 11.4 reports log of consump-

tion Y and log of GDP X in Korea from 1953 to 1991 (both measured in 1985 international prices).

To ensure the validity of the results, we first test each series for a unit root:

�ŶYt ¼ 0:03þ 0:01Yt�1 R2 ¼ 0:04

ð1:24Þ
�X̂Xt ¼ 0:02þ 0:01Xt�1 R2 ¼ 0:08

ð1:78Þ
Both accept the null of a unit root. To test that first differences are stationary:
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��ŶYt ¼ 0:06� 0:90 �Yt�1 R2 ¼ 0:45

ð�5:36Þ
��X̂Xt ¼ 0:06� 0:74 �Xt�1 R2 ¼ 0:38

ð�4:58Þ
Both �Y and �X reject the null of a unit root. This establishes that Y and X both have unit roots; we
now test for a long-run relationship (i.e., cointegration). Estimating residuals of the long-run relation-
ship, we obtain

et ¼ Yt � 0:13� 0:88Xt

Unit-root test of et yields

�êet ¼ 0:002�0:55et�1 R2 ¼ 0:34

ð�4:27Þ
Since we can reject the null of a unit root for et at the 5% level of significance, we conclude that Y and X
are cointegrated. Therefore the correct model of consumption and GDP is an error-correction model:

�ŶYt ¼ 0:01þ0:73 �Xt � 0:55et�1 R2 ¼ 0:76

ð9:49Þ ð�4:42Þ
The results reveal that for a 1% increase in income there is a 0.73% increase in consumption (note that
this is a double-log model). The negative coefficient on et�1 indicates that if consumption is above its
long-run relationship with GDP, it will decrease to return to equilibrium.

11.6 CAUSALITY

The usual OLS model only identifies the correlation between variables; it does not help in determin-
ing the direction of the relationship. While causality is an elusive concept that can never be proved with
certainty, time-series econometrics can help sort out these timing issues. If changes in X precede
changes in Y , we can rule out Y causing X . Using this logic, we can estimate the regression:

Yt ¼ b0 þ
X

bjYt�j þ
X

cjXt�j þ ut

If past values of X help determine current values of Y , we say X Granger causes Y. The test of
H0 : ci ¼ 0 can be carried out with an F test. The number of lags may be chosen using the AIC,
adjusted R2, or one may include the highest feasible number of lags. To calculate the magnitude of
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Table 11.4 Log of Consumption and GDP in 1985 International Prices in Korea, 1953–1991

Year Y X Year Y X Year Y X Year Y X

1953 2.5291 2.8062 1963 2.9921 3.2771 1973 3.9005 4.2500 1983 4.5313 4.9981

1954 2.5861 2.8423 1964 3.0988 3.3384 1974 3.9615 4.3487 1984 4.6068 5.0865

1955 2.6923 2.9255 1965 3.1563 3.4035 1975 4.0161 4.4062 1985 4.6650 5.1479

1956 2.7412 2.9618 1966 3.2181 3.5233 1976 4.1105 4.5185 1986 4.7397 5.2488

1957 2.8026 3.0434 1967 3.2817 3.5896 1977 4.1584 4.6173 1987 4.8115 5.3528

1958 2.8311 3.0732 1968 3.3758 3.7099 1978 4.2465 4.7359 1988 4.9042 5.4610

1959 2.8772 3.0966 1969 3.4438 3.8178 1979 4.3523 4.8255 1989 5.0142 5.5538

1960 2.8899 3.1081 1970 3.6410 3.9821 1980 4.3252 4.7699 1990 5.1114 5.6562

1961 2.9091 3.1499 1971 3.7531 4.0802 1981 4.3691 4.8233 1991 5.1934 5.7485

1962 2.9689 3.1870 1972 3.7829 4.1170 1982 4.4447 4.8941

Source: Penn-World Tables 5.6.



causality
P

cj represents a short-run effect of Xi. Since there is a feedback effect from lags of Y in the
long run, the long-run effect is

P
cj=ð1�

P
bjÞ.

EXAMPLE 6. Using the data in Table 11.4, we want to test to see if either consumption or GDP leads the other.
Since the two series are cointegrated, the correct procedure would be Granger causality in an error correction model.
We use one lag of the variables, thus a t test can be used to test for Granger causality.

�ŶYt ¼ 0:06� 0:19 �Yt�1 þ 0:34 �Xt�1 � 0:58et�1 R2 ¼ 0:25

ð�0:70Þ ð0:19Þ ð�2:05Þ
Since the coefficient on �Xt�1 is not significant at the 5% level, we conclude that X does not Granger-cause Y .

We then test for reverse causality:

�X̂Xt ¼ 0:06þ 0:53� Xt�1 � 0:35 �Yt�1 þ 0:10et�1 R2 ¼ 0:25

ð1:80Þ ð�1:13Þ ð0:30Þ
Since the coefficient on �Yt�1 is not significant at the 5% level of significance, we conclude that Y does not

Granger-cause X . Therefore there is no leading variable in the relation between X and Y , and we can conclude that

the effect is contemporaneous.

Solved Problems

ARMA

11.1 (a) Explain the difference between an autoregressive and a moving-average process. (b) Why are
AR and MA processes referred to as stationary processes?

(a) Autoregression is a process in which a proportion of yt is carried forward to the next period, then a
proportion of ytþ1 is carried to the next, and so forth. Since some of yt is in ytþ1 when it is carried
forward, we say that autoregression is long-lasting. A high observation at time t will be carried

forward indefinitely in smaller and smaller proportions. The moving-average process, on the other
hand, carries forward "t, the random component of yt, so previous observations are not perpetuated.

(b) Both the AR process (given that j�1j < 1), and the MA process eventually revert back to their original
means after a positive or negative shock. In the AR process, the shock eventually dies out. In the MA

process, the shock leaves after a number of periods greater than the number of lags in the MA process.
Since both of these processes stay around their means, they are stationary.

11.2 Show algebraically that (a) an AR(1) process is equivalent to an MA(1) process and (b) an
MA(1) process is equivalent to an AR(1) process.

(a) An AR(1) process is defined as

yt ¼ �1yt�1 þ "t

Extending this process to yt�1 gives

yt�1 ¼ �1yt�2 þ "t�1

Substituting into the equation for yt yields

yt ¼ �1ð�1yt�2 þ "t�1Þ þ "t ¼ �21yt�2 þ �1"t�1 þ "t

Similarly, substituting for yt�1, we obtain

yt ¼ �1ð�1ð�1yt�3 þ "t�2Þ þ "t�1Þ þ "t ¼ �31yt�3 þ �21"t�2 þ �1"t�1 þ "t

Recursively substituting for each yt�s yields
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yt ¼ �t
1"0 þ �t�1

1 "1 þ � � � þ �s
1"t�s þ � � � þ �1"t�1 þ "t

As can be seen, an AR(1) process contains some part of each previous error term. Since �1 is a fraction,
errors farther away are reflected in smaller proportions. Also, the preceding equation is equivalent to
an MA(1) process (as t ! 1) with ��s ¼ �s

1 from s ¼ 1 to t.

(b) Starting with the MA(1) process and performing a similar manipulation as in part a, we obtain

yt ¼ "t � �1"t�1
yt�1 ¼ "t�1 � �1"t�2

Solving for "t�1

"t�1 ¼ yt�1 þ �1"t�2

Substituting into the equation for yt

yt ¼ "t � �1ðyt�1 þ �1"t�2Þ ¼ "t � �1yt�1 � �21"t�2

Substituting for "t�2

yt ¼ "t � �1ðyt�1 þ �1ðyt�2 þ �1"t�3ÞÞ ¼ "t � �1yt�1 � �21yt�2 � �31"t�3

Recursively substituting for "t�s

yt ¼ ��t
1y0 � �t�1

1 y1 � � � � � �s
1yt�s � � � � � �1yt�1 þ "t

This is equivalent to an AR(1) process (as t ! 1) with �s ¼ ��s
1 for s ¼ 1 to t.

11.3 For the randomly generated error terms in Table 11.5, calculate (a) AR(1), �1 ¼ �0:5; (b)
AR(1), �1 ¼ �0:1; (c) AR(1), �1 ¼ 0:1; (d) AR(1), �1 ¼ 0:5. (e) When would one see positive
and negative correlations?

The calculations for the first four parts are given in Table 11.6. To carry out the calculations for an AR
process, we will use as an example the calculations for part a since parts b, c, and d use the same method with

only a change of �1. The formula for an AR process is

yt ¼ �1yt�1 þ "t

(for part a, �1 ¼ �0:5). Starting at t ¼ 1, yt ¼ 1:4884. (We assume here that "0 ¼ 0 to get a starting value.
Another commonly used method to deal with a starting value is to delete the first period after generating the

series since it had no lag associated with it.)

y2 ¼ �0:5ð1:4884Þ þ 0:2709 ¼ �0:4733
y3 ¼ �0:5ð�0:4733Þ � 0:2714 ¼ �0:03475
y4 ¼ �0:5ð�0:03475Þ � 2:3637 ¼ �2:346325

etc.

(e) Note that the autoregressive series with negative correlation moves around zero to the opposite direc-
tion of the previous value. Natural phenomena that can exhibit negative correlations are overshooting,
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Table 11.5 Randomly Generated, Standard Normal Distributed Variable

t 1 2 3 4 5 6 7 8 9 10

" 1.4884 0.2709 �0.2714 �2.3637 �1.7548 0.0142 �0.3184 0.6471 0.7578 0.7866

t 11 12 13 14 15 16 17 18 19 20

" 0.0231 �0.2975 2.0248 0.3581 �0.2191 0.5701 �0.4038 �0.2615 0.2056 0.6881



smoothing, and scarce resources. Series with positive correlation move in the same direction as the
previous values. Examples of positive correlations are herding, learning, and spillovers.

11.4 For the randomly generated error terms in Prob. 11.3, calculate (a) MA(1), �1 ¼ 0:5; (b) MA(1),
�1 ¼ 0:1; (c) MA(1), �1 ¼ �0:1; (d) MA(1), �1 ¼ �0:5.

Calculations for parts a through d are listed in Table 11.7. To carry out the calculations for an MA
process, we will use as an example the calculations for part a since parts b, c, and d use the same method with
only a change of �1. The formula for an MA process is

yt ¼ "t � �1"t�1

(for part a, �1 ¼ 0:5). Starting at t ¼ 1, y1 ¼ 1:4884. (We assume again that "0 ¼ 0 to get a starting value.)

y2 ¼ 0:2709� 0:5ð1:4884Þ ¼ �0:4733
y3 ¼ �0:2714� 0:5ð0:2709Þ ¼ �0:40685
y4 ¼ �2:3637� 0:5ð�0:2714Þ ¼ �2:2280

etc.

IDENTIFYING ARMA

11.5 Compare the ACF for Prob. 11.3(d), y1; Prob. 11.4(d), y2; and the random error of Prob. 11.3, y3.
Calculate the ACF up to four lags.

Table 11.8 gives the variables and the first lags. The estimated covariances of the lags are
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Table 11.6 Autoregressive Series

t "
ðaÞ ARð1Þ
�1 ¼ �0:5

ðbÞ ARð1Þ
�1 ¼ �0:1

ðcÞ ARð1Þ
�1 ¼ 0:1

ðdÞ ARð1Þ
�1 ¼ 0:5

1 1.4884 1.4884 1.4884 1.4884 1.4884

2 0.2709 �0.4733 0.1220 0.4917 1.0151

3 �0.2714 �0.0347 �0.2836 �0.2294 0.2361

4 �2.3637 �2.3463 �2.3353 �2.3866 �2.2456
5 �1.7548 �0.5816 �1.5212 �1.9934 �2.8776
6 0.0142 0.3050 0.1663 �0.1851 �1.4246
7 �0.3184 �0.4709 �0.3350 �0.3369 �1.0307
8 0.6471 0.8825 0.6806 0.6134 0.1317

9 0.7578 0.3165 0.6897 0.8191 0.8236

10 0.7866 0.6283 0.7176 0.8685 1.1984

11 0.0231 �0.2910 �0.0486 0.1099 0.6223

12 �0.2975 �0.1519 �0.2926 �0.2865 0.0136

13 2.0248 2.1007 2.0540 1.9961 2.0316

14 0.3581 �0.6922 0.1526 0.5577 1.3739

15 �0.2191 0.1270 �0.2343 �0.1633 0.4678

16 0.5701 0.5065 0.5935 0.5537 0.8040

17 �0.4038 �0.6570 �0.4631 �0.3484 �0.0017
18 �0.2615 0.0670 �0.2151 �0.2963 �0.2623
19 0.2056 0.1720 0.2271 0.1759 0.0744

20 0.6881 0.6020 0.6653 0.7056 0.7253



Table 11.7 Moving Average Series

t "
ðaÞ MA(1)
�1 ¼ 0:5

ðbÞ MA(1)
�1 ¼ 0:1

ðcÞ MA(1)
�1 ¼ �0:1

ðdÞ MA(1)
�1 ¼ �0:5

1 1.4884 1.4884 1.4884 1.4884 1.4884

2 0.2709 �0.4733 0.12206 0.41974 1.0151

3 �0.2714 �0.40685 �0.29849 �0.24431 �0.13595
4 �2.3637 �2.228 �2.33656 �2.39084 �2.4994
5 �1.7548 �0.57295 �1.51843 �1.99117 �2.93665
6 0.0142 0.8916 0.18968 �0.16128 �0.8632
7 �0.3184 �0.3255 �0.31982 �0.31698 �0.3113
8 0.6471 0.8063 0.67894 0.61526 0.4879

9 0.7578 0.43425 0.69309 0.82251 1.08135

10 0.7866 0.4077 0.71082 0.86238 1.1655

11 0.0231 �0.3702 �0.05556 0.10176 0.4164

12 �0.2975 �0.30905 �0.29981 �0.29519 �0.28595
13 2.0248 2.17355 2.05455 1.99505 1.87605

14 0.3581 �0.6543 0.15562 0.56058 1.3705

15 �0.2191 �0.39815 �0.25491 �0.18329 �0.04005
16 0.5701 0.67965 0.59201 0.54819 0.46055

17 �0.4038 �0.68885 �0.46081 �0.34679 �0.11875
18 �0.2615 �0.0596 �0.22112 �0.30188 �0.4634
19 0.2056 0.33635 0.23175 0.17945 0.07485

20 0.6881 0.5853 0.66754 0.70866 0.7909

Table 11.8 Variables and First Lags

t y1 y2 y3 y1t�1 y2t�1 y3t�1

1 1.4884 1.4884 1.4884

2 1.0151 1.0151 0.2709 1.4884 1.4884 1.4884

3 0.2361 �0.13595 �0.2714 1.0151 1.0151 0.2709

4 �2.2456 �2.4994 �2.3637 0.2361 �0.13595 �0.2714
5 �2.8776 �2.93665 �1.7548 �2.2456 �2.4994 �2.3637
6 �1.4246 �0.8632 0.0142 �2.8776 �2.93665 �1.7548
7 �1.0307 �0.3113 �0.3184 �1.4246 �0.8632 0.0142

8 0.1317 0.4879 0.6471 �1.0307 �0.3113 �0.3184
9 0.8236 1.08135 0.7578 0.1317 0.4879 0.6471

10 1.1984 1.1655 0.7866 0.8236 1.08135 0.7578

11 0.6223 0.4164 0.0231 1.1984 1.1655 0.7866

12 0.0136 �0.28595 �0.2975 0.6223 0.4164 0.0231

13 2.0316 1.87605 2.0248 0.0136 �0.28595 �0.2975
14 1.3739 1.3705 0.3581 2.0316 1.87605 2.0248

15 0.4678 �0.04005 �0.2191 1.3739 1.3705 0.3581

16 0.804 0.46055 0.5701 0.4678 �0.04005 �0.2191
17 �0.0017 �0.11875 �0.4038 0.804 0.46055 0.5701

18 �0.2623 �0.4634 �0.2615 �0.0017 �0.11875 �0.4038
19 0.0744 0.07485 0.2056 �0.2623 �0.4634 �0.2615
20 0.7253 0.7909 0.6881 0.0744 0.07485 0.2056

�2y 1.460805 1.406931 0.899516 — — —



covðy1t; y1t�1Þ ¼ 0:980011 covðy1t; y1t�2Þ ¼ 0:336492 covðy1t; y1t�3Þ ¼�0:128358 covðy1t; y1t�4Þ ¼�0:471731
covðy2t; y2t�1Þ ¼ 0:828574 covðy2t; y2t�2Þ ¼ 0:056333 covðy2t; y2t�3Þ ¼�0:308114 covðy2t; y2t�4Þ ¼�0:517564
covðy3t; y3t�1Þ ¼ 0:307029 covðy3t; y3t�2Þ ¼ 0:034227 covðy3t; y3t�3Þ ¼�0:134893 covðy3t; y3t�4Þ ¼�0:299672

ACFs ¼
covðyt; yt�sÞ

�2y

For the first series:

ACF1 ¼ 0:980011=1:460805 ¼ 0:6709

ACF2 ¼ 0:336492=1:460805 ¼ 0:2303

ACF3 ¼ �0:128358=1:460805 ¼ �0:0879
ACF4 ¼ �0:471731=1:460805 ¼ �0:3229

The correlation is high for the first lag, declines for the second, but is still positive, and then is close to zero at
the third lag, indicating an AR process.

For the second series:
ACF1 ¼ 0:828574=1:406931 ¼ 0:5889

ACF2 ¼ 0:056333=1:406931 ¼ 0:0400

ACF3 ¼ �0:308114=1:406931 ¼ �0:2190
ACF4 ¼ �0:517564=1:406931 ¼ �0:3679

Correlation is high for the first lag, and then close to zero for the second, indicating an MA process.

For the third series:
ACF1 ¼ 0:307029=0:899516 ¼ 0:3413

ACF2 ¼ �0:034227=0:899516 ¼ �0:0381
ACF3 ¼ �0:134893=0:899516 ¼ �0:1500
ACF4 ¼ �0:299672=0:899516 ¼ �0:3331

All correlations are relatively low, indicating white noise.

11.6 Calculate the Q statistic for the three series in Prob. 11.5 up to four lags.

For the first series:

Q ¼ T
P

ACF2
s ¼ 20½0:67092 þ 0:23032 þ ð�0:0879Þ2 þ ð�0:3229Þ2� ¼ 20ð0:6151Þ ¼ 12:30

For the second series:

Q ¼ T
X

ACF2
s ¼ 20½0:58892 þ 0:04002 þ ð�0:2190Þ2 þ ð�0:3679Þ2� ¼ 20ð0:5317Þ ¼ 10:63

For the third series:

Q ¼ T
X

ACF2
s ¼ 20½0:34132 þ ð�0:0381Þ2 þ ð�0:1500Þ2 þ ð�0:3331Þ2� ¼ 20ð0:2514Þ ¼ 5:03

The critical value for the chi-square distribution with four degrees of freedom is 9.49 with a 5% level of
significance. For the first two series, Q > 9:49; therefore we reject the null hypothesis that there is no time-
series correlation. For the third series, Q ¼ 5:03 < 9:49; therefore we accept the null hypothesis that it is
white noise.

11.7 For the AR(1) series in Prob. 11.3(d), use the AIC to test between (a) white noise (no
correlation), (b) AR(1), (c) AR(2), and (d) AR(3).

Since the AR process simply involves a lag-dependent variable, we use OLS to estimate the four possible
models. For the four models the estimation yields
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yt ¼ 0:1582 R2 ¼ N=AðaÞ
ð0:57Þ ESS ¼ 29:22

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

29:22

20

� �
þ 2ð1Þ

20
¼ 0:4791

yt ¼ 0:0054þ 0:6448yt�1 R2 ¼ 0:44ðbÞ
ð0:02Þ ð3:65Þ ESS ¼ 15:35

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

15:35

19

� �
þ 2ð2Þ

19
¼ �0:0030

yt ¼ 0:0380þ 0:8995yt�1 � 0:3714yt�2 R2 ¼ 0:50ðcÞ
ð0:17Þ ð3:71Þ ð�1:58Þ ESS ¼ 13:14

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

13:14

18

� �
þ 2ð3Þ

18
¼ 0:0190

yt ¼ 0:0557þ 0:8697yt�1 � 0:2872yt�2 � 0:0815yt�3 R2 ¼ 0:51ðdÞ
ð0:23Þ ð3:11Þ ð�0:80Þ ð�0:30Þ ESS ¼ 13:02

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

13:02

17

� �
þ 2ð4Þ

17
¼ 0:2039

Since the AIC is at its minimum for the model in part b, we choose AR(1) as the appropriate specification.
Note that for each additional lag, there is one fewer observation. An alternative method for model selection
is to make the sample consistent for each model (i.e., 17 observations for each) so that the same data are used

for each specification.

NONSTATIONARY SERIES

11.8 (a) What are the problems of a nonstationary series? (b) What types of variables are likely to be
nonstationary?

(a) A nonstationary series invalidates the standard statistical tests because it has a time-varying variance.

Without a specified variance, test statistics cannot be standardized. Also, nonstationary series tend to
show a statistically significant spurious correlation when regressed even if they are independent.

(b) Variables quoted in levels rather than growth rates tend to possess a unit root since their next-period
value is a function of their current value plus growth. Since the full current value carries forward in the
stock, it is nonstationary.

11.9 Algebraically show that the variance of a unit root series increases with time.

The function of a unit root series is

Yt ¼ Yt�1 þ "t

Tracing this series from its initial value yields

Y1 ¼ "1 �2Y1
¼ �2"

Y2 ¼ Y1 þ "2 ¼ "1 þ "2 �2Y2
¼ �2" þ �2"

Y3 ¼ Y2 þ "3 ¼ "1 þ "2 þ "3 �2Y3
¼ 3�2"

Y4 ¼ Y3 þ "4 ¼ "1 þ "2 þ "3 þ "4 �2Y4
¼ 4�2"

etc:

As can be seen, the variance of the tth value of Y is t�2" , therefore as the time period increases, so does the
variance of Y .

11.10 (a) Use the random error from Prob. 11.3 to generate a unit-root series. (b) Graph the unit-root
series and the original error term on the same axis. (c) Calculate an average for each series for
t ¼ 1� 5, t ¼ 6� 10, t ¼ 11–15, and t ¼ 16–20.
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(a) The results are listed in Table 11.9. The method for generating Y is as follows:

Y1 ¼ "1 ¼ 1:4884

Y2 ¼ Y1 þ "2 ¼ 1:4884þ 0:2709þ 1:7593

Y3 ¼ Y2 þ "3 ¼ 1:7593� 0:2714 ¼ 1:4879

Y4 ¼ Y3 þ "4 ¼ 1:4879� 2:3637 ¼ �0:8758
etc:

(b) Figure 11-3 graphs the two series.

(c) The averages are shown in Table 11.9. The average for the stationary series (") stays near zero for all
subsets, while the averages for the unit-root series, Y , fluctuate to extreme negative values (�2:0224)
and extreme positive values (1.4561), giving different inference for different subsets.

11.11 Table 11.10 reports the close of the NYSE (New York Stock Exchange) composite stockmarket
index Y , and the population of Sri Lanka in thousands X for the years 1966 to 1992. (a) Regress
Y on X and test the coefficient on X at the 5% level of significance. (b) Regress �Y on �X and
test the coefficient on X at the 5% level of significance.

(a) For the initial regression in levels, we obtain
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Table 11.9 Unit-Root Series

t " Y 	"" 	YY

1 1.4884 1.4884

2 0.2709 1.7593

3 �0.2714 1.4879

4 �2.3637 �0.8758
5 �1.7548 �2.6306

	""1�5 ¼ �0:5261 	YY1�5 ¼ 0:2458

6 0.0142 �2.6164
7 �0.3184 �2.9348
8 0.6471 �2.2877
9 0.7578 �1.5299
10 0.7866 �0.7433

	""6�10 ¼ 0:3775 	YY6�10 ¼ �2:0224
11 0.0231 �0.7202
12 �0.2975 �1.0177
13 2.0248 1.0071

14 0.3581 1.3652

15 �0.2191 1.1461

	""11�15 ¼ 0:3779 	YY11�15 ¼ 0:3561

16 0.5701 1.7162

17 �0.4038 1.3124

18 �0.2615 1.0509

19 0.2056 1.2565

20 0.6881 1.9446

	""16�20 ¼ 0:1597 	YY16�20 ¼ 1:4561



ŶYt ¼ �313:01þ 0:03Xt R2 ¼ 0:75

ð8:72Þ
There is a positive relationship between Yt and Xt which is significant at the 5% level (critical value =

2.06 with 25 df). Also, the R2 is relatively high. We would conclude that the population of Sri Lanka is
an important indicator of the NYSE.

(b) Taking the unit root into account, and regressing �Yt on �Xt, we get reliable results:

�ŶYt ¼ 7:14þ 0:0018 �Xt R2 < 0:01

ð0:02Þ
The Sri Lankan population is no longer an indicator of the NYSE.

TESTING FOR UNIT ROOT

11.12 (a) Test Yt from Prob. 11.11 for a unit root without a trend at the 5% level of significance.
(b) Test �Yt from Prob. 11.11 for a unit root without a trend at the 5% level of significance.

�ŶYt ¼ �1:20þ 0:10Yt�1 R2 ¼ 0:12ðaÞ
ð1:80Þ

Since t
b̂b1
¼ 1:80 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root.

The correct procedure is then to take first differences of Y before using it in a regression.
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Fig. 11-3 Stationary (—) and Nonstationary (– – –) Series

Table 11.10 NYSE Closing Value and Population of Sri Lanka in Thousands, 1966–1992

Year 1966 1967 1968 1969 1970 1971 1972 1973 1974

Y 43.72 53.83 58.9 51.53 50.23 54.63 64.48 51.82 36.13

X 11440 11702 11992 12252 12516 12608 12861 13091 13284

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983

Y 47.64 57.88 52.5 53.62 61.95 77.86 71.11 81.03 95.18

X 13496 13717 13942 14184 14471 14738 14988 15189 15417

Year 1984 1985 1986 1987 1988 1989 1990 1991 1992

Y 96.38 121.58 138.58 138.23 156.26 195.01 180.49 229.44 240.21

X 15599 15837 16117 16361 16587 16806 16993 17190 17405

Source: New York Stock Exchange (Index) and Penn-World Tables (Pop).



��ŶYt ¼ 8:55� 1:14 �Yt�1 R2 ¼ 0:57ðbÞ
ð�5:56Þ

Since t
b̂b1
¼ �5:56 < �3:33 (from App. 11), we reject the null hypothesis that there is a unit root.

Therefore �Yt is a stationary series which can be used in a regression.

11.13 (a) Test Xt from Prob. 11.11 for a unit root without a trend at the 5% level of significance.
(b) Test �Xt from Prob. 11.11 for a unit root without a trend at the 5% level of significance.

�X̂Xt ¼ 291:80� 0:0043Xt�1 R2 ¼ 0:03ðaÞ
ð�0:93Þ

Since t
b̂b1
¼ �0:93 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root.

The correct procedure is then to take first differences of X before using it in a regression.

��X̂Xt ¼ 206:94� 0:91 �Xt�1 R2 ¼ 0:46ðbÞ
ð�4:42Þ

Since t
b̂b1
¼ �4:42 < �3:33 (from App. 11), we reject the null hypothesis that there is a unit root.

Therefore �Xt is a stationary series which can be used in a regression.

11.14 (a) Test Yt from Prob. 11.11 for a unit root using the F-test form of the ADF with a trend.
(b) Test Xt from Prob. 11.11 for a unit root using the F-test form of the ADF with a trend and
two lags of �Xt.

(a) Since the restriction for the null hypothesis involves testing if any coefficient is significant, the standard
F test may be used with the Dickey-Fuller adjusted critical values (App. 11). We run the regression:

�ŶYt ¼ �5:27� 0:10Yt�1 þ 1:77t R2 ¼ 0:28

ð�0:91Þ ð2:12Þ F ¼ 4:09

Since F ¼ 4:09 < 7:24, we cannot reject the null of unit root in favor of trend stationary.

(b) Recall from Chap. 7 the formula for the F test on a subset of variables is

Fp;n�k ¼

X
e2Ri �

X
e2i

pX
e2i

n � k

� �
0BB@

1CCA
where R indicates a restricted regression under the null hypothesis. The F test therefore requires two
regressions to be run

Unrestricted:

�X̂Xt ¼ 6922:06� 0:58Xt�1 þ 134:17t þ 0:33 �Xt�1 þ 0:28 �Xt�2 R2 ¼ 0:29

ð�2:77Þ ð2:77Þ ð1:54Þ ð1:31Þ ESS ¼ 26,483:44

Restricted:

�X̂Xt ¼ 219:57þ 0:05 �Xt�1 � 0:02 �Xt�2 R2 < 0:01

ð0:22Þ ð�0:09Þ ESS ¼ 37,225:56

Calculating the F statistic, we obtain

F2;22 ¼
37,225:56� 26,483:44

2

� �
26,483:44

22

� � ¼ 4:46

Since F ¼ 4:46 < 7:24, we accept the null that X follows a unit-root process.
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COINTEGRATION AND ERROR CORRECTION

11.15 (a) What is cointegration? (b) How does cointegration affect the specification of a regression
model?

(a) Two variables are cointegrated if they individually follow a unit root process, but jointly move together
in the long run. Individually, movements appear random and unpredictable, but the location of one

can give information about the other. If the prediction errors of Y regressed on X are stationary, there
is evidence of cointegration.

(b) If cointegration exists, the long-run process should be used to explain the dependent variable. If Y is
above (resp. below) its long-run equilibrium, we would expect Y to decrease (resp. increase) in the next

period. Therefore an error-correction model includes deviations from the long-run relationship as an
explanatory variable.

11.16 Show algebraically that estimating the model Yt ¼ b0 þ b1Xt þ b2Xt�1 þ b3Yt�1 þ ut when Y and
X are cointegrated implies the use of an error-correction model.

Error correction stipulates that Y and X follow a long-run relationship:

Y ¼ a0 þ a1X þ "

Taking the original model, Yt ¼ b0 þ b1Xt þ b2Xt�1 þ b3Yt�1 þ ut, in the long run (as t ! 1), we obtain

Y1 ¼ b0 þ b1X1 þ b2X1 þ b3Y1 þ ut or ð1� b3ÞY1 ¼ b0 þ ðb1 þ b2ÞX1 þ ut

Solving for Y , and dropping the subscript since it is contemporaneous, we have

Y ¼ b0
ð1� b3Þ

þ ðb1 þ b2Þ
ð1� b3Þ

X þ "

Since Y and X follow the long-run relationship, we know that b0=ð1� b3Þ ¼ a0, and ðb1 þ b2Þ=ð1� b3Þ ¼ a1.
Since these parameters move in a constant ratio, we can solve for b3 and b2 in terms of b0, b1, a0, and a1.

b3 ¼ 1� b0
a0

and b2 ¼ a1ð1� b3Þ � b1 ¼ a1
b0
a0

� b1

Substituting into the original model yields

Yt ¼ b0 þ b1Xt þ a1
b0
a0

� b1

� �
Xt�1 þ 1� b0

a0

� �
Yt�1 þ ut

Grouping terms, we obtain

�Yt ¼ b0 þ b1 �Xt �
b0
a0

ðYt�1 � a1Xt�1Þ þ ut

Since Yt�1 � a1Xt�1 ¼ a0 þ "t�1

�Yt ¼ b0 þ b1�Xt �
b0
a0

ða0 þ "t�1Þ þ ut

�Yt ¼ b1�Xt �
b0
a0

ð"t�1Þ þ utor

this is the error-correction model (we usually include a constant even though it theoretically should be zero).

11.17 (a) Estimate a long-run relationship between Y and X from Prob. 11.11. (b) Graph the
residuals. (c) Test for the presence of cointegration.

(a) A regression of Y and X is identical to that of Prob. 11.11:
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ŶYt ¼ �313:01þ 0:03Xt R2 ¼ 0:75

ð8:72Þ

(b) Graphing the residuals from the regression in part a in Fig. 11-4, however, gives a picture that does not

look stationary.

(c) Testing the residuals for a unit root to find evidence of cointegration (or lack thereof) yields

�êet ¼ 0:91� 0:08et�1 R2 ¼ 0:02

ð�0:67Þ

Since t
b̂b1
¼ �0:67 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root.

There is no evidence of cointegration, so error correction would not be appropriate.

11.18 Table 11.11 reports the Consumer Price Index for the Los Angeles area Y and the Chicago area X
on a monthly basis from Jan. 1998 to Dec. 2000 (base year = 1982–1984). (a) Test each variable
for a unit root. (b) Test for evidence of cointegration between Y and X .

�ŶYt ¼ �0:73þ 0:01Yt�1 R2 < 0:01ðaÞ
ð0:29Þ

Since t
b̂b1
¼ 0:29 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root

for Yt.
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Fig. 11-4

Table 11.11 Consumer Price Index for Los Angeles and Chicago (Base Year = 82–84): Jan. 1998–Dec. 2000

Date Jan-98 Feb-98 Mar-98 Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 Dec-98

Y 161.0 161.1 161.4 161.8 162.3 162.2 162.1 162.6 162.6 163.2 163.4 163.5

X 162.8 163.1 164.1 164.8 165.6 166.0 166.5 165.4 165.3 165.7 165.4 165.1

Date Jan-99 Feb-99 Mar-99 Apr-99 May-99 Jun-99 Jul-98 Aug-99 Sep-99 Oct-99 Nov-99 Dec-99

Y 164.2 164.6 165.0 166.6 166.2 165.4 165.8 166.3 167.2 167.2 167.1 167.3

X 166.1 166.4 167.0 167.6 168.2 168.9 169.4 169.3 169.7 169.7 169.3 169.2

Date Jan-00 Feb-00 Mar-00 Apr-00 May-00 Jun-00 Jul-00 Aug-00 Sep-00 Oct-00 Nov-00 Dec-00

Y 167.9 169.3 170.7 170.6 171.1 171.0 171.7 172.2 173.3 173.8 173.5 173.5

X 170.2 171.4 172.2 171.9 173.7 176.0 174.6 173.7 174.8 175.4 176.0 175.8

Source: Bureau of Labor Statistics.



�X̂Xt ¼ 2:51� 0:01Xt�1 R2 < 0:01

ð�0:37Þ
Since t

b̂b1
¼ �0:37 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root

for Xt.

(b) Since both Y and X are unit-root variables, we can proceed to test for cointegration. Estimating the
long-run relationship yields

ŶYt ¼ 10:45þ 0:95Xt R2 ¼ 0:95

ð26:69Þ
Testing the residual for unit root, we obtain

�êet ¼ 0:03� 0:50et�1 R2 ¼ 0:26

ð�3:38Þ
Since t

b̂b1
¼ �3:38 < �3:33, we reject the null hypothesis that there is a unit root for et. Therefore Y

and X are cointegrated.

11.19 Estimate the error-correction model for the data in Prob. 11.18.

Since both variables are unit root and cointegrated, we run the model in differences with the inclusion of
the lag residual of the long-run model:

�ŶYt ¼ 0:30þ 0:16�Xt þ 0:12et�1 R2 ¼ 0:04

ð1:11Þ ð0:96Þ

CAUSALITY

11.20 How does Granger causality differ from other types of causality?

Granger causality is an econometric representation of the timing of causation. Unfortunately, Granger
causality can never prove causality with certainty. There are several other factors that could mimic the

results of Granger causality. X could Granger-cause Y because of a third factor causing both. This would
not show up in the model. X could move before Y in anticipation of Y moving. X would Granger-cause
Y , but it is the movement in Y which is the true cause. Also, the reactions of Y could be transitory,

indicating that while X may Granger-cause Y , the effect does not last.

11.21 The data in Table 11.12 report housing starts Y in thousands and personal consumption X in
billions of 1996 US dollars. We want to determine if housing starts is a leading indicator of
consumption using Granger causality. What form should variables take in the regression (levels,
differences, etc.)?

Since Granger causality is a time-series regression, its form will depend on the time-series properties of
the variables, specifically if they possess a unit root, and if so, whether they are cointegrated. Testing for
unit root in levels yields

�ŶYt ¼ 458:92� 0:28Yt�1 R2 ¼ 0:16

ð�2:48Þ
Since t

b̂b1
¼ �2:48 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root for Yt.

Since housing starts are a flow variable, it is not obvious that it should follow a unit root. In fact, the t

statistic is close to the critical value. Unit-root testing suffers from being a low-power test in that it seldom
rejects a unit root when it should. Since a unit root causes many statistical problems, however, we err on the
side of correcting for the unit root when we do not have to.

�X̂Xt ¼ �94:06þ 0:02Xt�1 R2 ¼ 0:08

ð1:72Þ
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Since t
b̂b1
¼ 1:72 > �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root for Xt.

Testing for unit root in differences yields

��ŶYt ¼ 12:06� 1:41�Yt�1 R2 ¼ 0:71

ð�8:92Þ

Since t
b̂b1
¼ �8:92 < �3:33 (from App. 11), we can reject the null hypothesis that there is a unit root for �Yt.

��X̂Xt ¼ 25:63� 1:10 �Xt�1 R2 ¼ 0:52

ð�5:84Þ

Since t
b̂b1
¼ �5:84 < �3:33 (from App. 11), we fail to reject the null hypothesis that there is a unit root for

�Xt. Since both Y and X are unit-root variables, we can proceed to test for cointegration. Estimating the

long-run relationship yields

ŶYt ¼ 3060:41þ 1:66Xt R2 ¼ 0:58

ð6:84Þ

Testing the residual for a unit root yields

�êet ¼ 2:01� 0:33et�1 R2 ¼ 0:16

ð�2:46Þ

Since t
b̂b1
¼ �2:46 > �3:33 we cannot reject the null hypothesis that there is a unit root for et. Therefore

there is no evidence of cointegration. We can conclude that the correct model is to use both Y and X in first
differences with no error correction.

11.22 Calculate the AIC for the Granger causality model from Prob. 11.21 for one to six lags with the
first difference of consumption as the dependent variable. What is the optimal specification?

Since we are concerned only with the sum of squared errors (ESS), we omit reporting the regression
coefficients.

With one lag each of the first difference of consumption and the first difference of housing starts
ESS = 9297.932, T ¼ 34, j ¼ 3 (intercept and one lag of each):
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Table 11.12 Housing Starts in Thousands of Units and Real Personal Consumption in Billions of 1996 Dollars in the

United States, Jan. 1997 to Dec. 1999

Year 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997

Month Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

Y 1355 1486 1457 1492 1442 1494 1437 1390 1546 1520 1510 1566

X 5342.1 5351.2 5358.7 5368.2 5361.5 5397.4 5454.0 5464.9 5467.3 5484.8 5506.5 5530.0

Year 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998

Month Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

Y 1525 1584 1567 1540 1536 1641 1598 1614 1582 1715 1660 1792

X 5540.8 5573.0 5603.5 5609.8 5658.4 5686.4 5685.9 5708.7 5738.4 5758.3 5771.5 5809.5

Year 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999

Month Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

Y 1804 1738 1737 1561 1649 1562 1704 1657 1628 1636 1663 1769

X 5817.9 5854.5 5908.4 5915.8 5928.4 5976.6 5987.1 6020.4 6033.9 6062.1 6090.8 6150.0

Source: St. Louis Federal Reserve (Bureau of Economic Analysis).



AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

9297:932

34

� �
þ 2ð3Þ

34
¼ 5:79

With two lags each of the first difference of consumption and the first difference of housing starts
ESS = 7797.001, T ¼ 33, j ¼ 5:

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

7797:001

33

� �
þ 2ð5Þ

33
¼ 5:77

With three lags each of the first difference of consumption and the first difference of housing starts
ESS = 7354.929, T ¼ 32, j ¼ 7:

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

7354:929

32

� �
þ 2ð7Þ

32
¼ 5:87

With four lags each of the first difference of consumption and the first difference of housing starts

ESS = 4617.587, T ¼ 31, j ¼ 9:

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

4617:587

31

� �
þ 2ð9Þ

31
¼ 5:58

With five lags each of the first difference of consumption and the first difference of housing starts
ESS = 3742.738, T ¼ 30, j ¼ 11:

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

3742:738

30

� �
þ 2ð11Þ

30
¼ 5:56

With six lags each of the first difference of consumption and the first difference of housing starts
ESS = 3085.670, T ¼ 29, j ¼ 13:

AIC ¼ ln
ESS

T

� �
þ 2j

T
¼ ln

3085:670

29

� �
þ 2ð13Þ

29
¼ 5:564

Since five lags has the lowest AIC, that is the optimal model.

11.23 Determine if housing starts Granger-cause personal consumption at the 5% level of significance
using the data from Prob. 11.21 and the optimal model found in Probs. 11.21 and 11.22.

We run the model restricted and unrestricted, then use the F test to test whether housing starts are a
statistically significant predictor of personal consumption.

Unrestricted:

�X̂Xt ¼ 42:06� 0:01�Yt�1
ð�0:22Þ

� 0:01�Yt�2
ð�0:23Þ

þ 0:02�Yt�3
ð0:43Þ

� 0:03�Yt�4
ð�0:60Þ

þ 0:09�Yt�5
ð1:97Þ

� 0:12�Xt�1
ð�0:45Þ

� 0:57�Xt�2
ð�2:71Þ

þ 0:05�Xt�3
ð0:16Þ

� 0:13�Xt�4
ð�0:67Þ

þ 0:02�Xt�5
ð0:09Þ

R2 ¼ 0:52

ESS ¼ 3742:74

Restricted:

�X̂Xt ¼ 58:68� 0:42�Xt�1 � 0:57�Xt�2 � 0:18�Xt�3 � 0:16�Xt�4 � 0:11�Xt�5 R2 ¼ 0:28

ð�1:78Þ ð�2:71Þ ð�0:78Þ ð�0:83Þ ð�0:58Þ ESS ¼ 5648:53

F5;19 ¼

�e2Ri ��e2i
p

 !
�e2i

n � k

 ! ¼
5648:53� 3742:74

5

� �
3742:74

19

� � ¼ 1:93

The critical value for F5;19 at the 5% level of significance is 2.74; since F ¼ 1:93 < 2:74, we conclude that
housing starts do not Granger-cause personal consumption.
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Supplementary Problems

ARMA

11.24 Using the random variable from Table 11.13, and an AR(2) process for yt with �1 ¼ 0:4 and �2 ¼ �0:3,
(a) calculate y4 (b) y8 (c) y20 (d) y30.

Ans. (a) 0.0855 (b) 0.3618 (c) 0.7625 (d) 0.5188

11.25 Using the random variable from Table 11.13, and an MA(2) process for y1 with �1 ¼ 0:2 and
�2 ¼ �0:5, (a) calculate y4, (b) y8, (c) y20, (d) y30.
Ans. (a) 0.4695 (b) 0.6090 (c) 1.0254 (d) 0.4737

IDENTIFYING ARMA

11.26 Table 11.14 reports the average temperature in New York’s Central Park from 1969 to 1999. Calculate the

autocorrelation function of average temperature up to six lags.
Ans. ACF1 ¼ �0:0051, ACF2 ¼ �0:0013, ACF3 ¼ �0:2007, ACF4 ¼ 0:2448, ACF5 ¼ �0:1598, ACF6 ¼
0:1023

11.27 (a) Calculate the Q statistic for the autocorrelations in Prob. 11.26. (b) Are there statistically significant
correlations at the 5% level of significance?
Ans. (a) 4.22 (b) No

NONSTATIONARY SERIES

11.28 (a) Calculate the t statistic for the ADF test of unit root without a trend and no lags of �Yt for the

temperatures in Table 11.14. (b) Do the temperatures possess a unit root?
Ans. (a) �5:09 (b) No
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Table 11.13 Random-Error Terms

t 1 2 3 4 5 6 7 8 9 10

" 0.1291 0.6910 0.1348 0.1510 0.3869 0.7318 0.4515 0.3334 0.8943 0.0773

t 11 12 13 14 15 16 17 18 19 20

" 0.4303 0.5805 0.9250 0.0408 0.9621 0.6577 0.8292 0.5996 0.4197 0.8095

t 21 22 23 24 25 26 27 28 29 30

" 0.4661 0.2208 0.2334 0.5894 0.8296 0.4352 0.1958 0.6074 0.7228 0.3146

Table 11.14 Average Temperature T in Central Park: New York, 1969–1999

Year 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

T; 8C 12.71 12.33 12.58 12.24 13.34 12.59 12.91 12.15 12.13 11.5 13.06

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

T; 8C 13.16 12.70 12.41 13.68 12.63 13.53 12.68 12.83 12.84 12.67 13.23

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

T; 8C 14.04 12.27 13.07 12.66 13.39 11.66 12.51 13.73 13.75

Source: NASA Goddard Institute for Space Studies.



11.29 (a) Calculate the F statistic for the ADF test of unit root with a trend and no lags of �Yt for the tempera-

tures in Table 11.14. (b) Do the temperatures possess a unit root?
Ans. (a) 15.85 (b) No

COINTEGRATION AND ERROR CORRECTION

11.30 Table 11.15 reports the value of the Dow Jones Industrial Average (DJIA) Y , the S&P 500 Stock Index X,
and the Toronto Stock Exchange 300 Index Z, from Jan. 2 to 30, 2001. (a) Does the DJIA have a unit
root? (b) Does the S&P 500 have a unit root? (c) Are Y and X cointegrated?

Ans. (a) Yes (b) Yes (c) No

11.31 Using the data in Table 11.15 (a) Does the Toronto Stock Exchange have a unit root? (b) Are X and Z

cointegrated?
Ans. (a) Yes (b) Yes

CAUSALITY

11.32 Table 11.16 reports monthly first differences of an industrial production index for the United States Y and
the S&P 500 Stock Market Index X from February 1998 to December 2000. (a) Using one lag of Y and X,
does X Granger-cause Y? (b) If so, what is the short-run magnitude of the causality? (c) What is the long-

run magnitude?
Ans. ðaÞ Yes ðbÞ �0:0166 ðcÞ �0:0118
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Table 11.15 DJIA, S&P 500 Index, and TSE 300 Index: Jan. 2–30, 2001

Date 2-Jan-01 3-Jan-01 4-Jan-01 5-Jan-01 8-Jan-01 9-Jan-01 10-Jan-01 11-Jan-01 12-Jan-01 16-Jan-01

Y 10,646.15 10,881.2 10,945.75 10,912.41 10,662.01 10,621.35 10,572.55 10,604.27 10,609.55 10,525.38

X 1283.27 1373.73 1347.56 1333.34 1298.35 1295.86 1300.8 1313.27 1326.82 1318.55

Z 8611.5 8937.8 8905.7 8690.2 8671.7 8572 8600.8 8805.4 8716.4 8744.0

Date 17-Jan-01 18-Jan-01 19-Jan-01 22-Jan-01 23-Jan-01 24-Jan-01 25-Jan-01 26-Jan-01 29-Jan-01 30-Jan-01

Y 10,652.66 10,584.34 10,678.28 10,587.59 10,578.24 10,649.81 10,646.97 10,729.52 10,659.98 10,702.19

X 1326.65 1329.47 1347.97 1342.54 1342.9 2360.4 1364.3 1357.51 1354.95 1364.17

Z 8879.4 8899.1 9161.1 9121 9268.8 9306.2 9183.4 9158.2 9302.2 9348.4

Source: quote.yahoo.com.

Table 11.16 Industrial Production Index and S&P 500 Index: United States, Feb. 1998–Dec. 2000

Date Feb-98 Mar-98 Apr-98 May-98 Jun-98 Jul-98 Aug-98 Sep-98 Oct-98 Nov-98 Dec-98

Y 1.87 1.26 �2.00 0.68 2.62 �4.56 7.95 0.53 �0.12 �3.48 �1.75
X 69.05 52.41 10.00 �20.93 43.02 �13.16 �163.39 59.73 81.66 64.96 65.59

Date Jan-99 Feb-99 Mar-99 Apr-99 May-99 Jun-99 Jul-99 Aug-99 Sep-99 Oct-99 Nov-99 Dec-99

Y 1.13 1.88 2.12 �2.09 0.41 4.46 �4.99 7.12 0.75 0.61 �2.49 �1.39
X 50.41 �41.31 48.04 48.81 �33.34 70.87 �43.99 �8.30 �37.70 80.22 26.13 80.18

Date Jan-00 Feb-00 Mar-00 Apr-00 May-00 Jun-00 Jul-00 Aug-00 Sep-00 Oct-00 Nov-00 Dec-00

Y 1.37 2.16 2.03 �1.34 0.20 5.43 �6.76 7.66 1.65 �1.57 �3.01 �2.19
X �74.79 �28.04 132.16 �46.14 �31.83 34.00 �23.77 86.85 �81.17 �7.10 �114.45 5.32

Source: Federal Reserve Board of Governors (Industrial Production) and quote.yahoo.com (S&P 500).



11.33 Using the data from Table 11.16, (a) What is the F statistic used to test if X Granger-causes Y with six

lags? (b) Does X Granger-cause Y with six lags? (c) How would one know the correct number of lags
to use?
Ans. (a) 2.60 (b) No (c) Calculate the AIC for different number of lags and use model with lowest
AIC
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Computer Applications
in Econometrics

12.1 DATA FORMATS

If data are found from an existing source (rather than collected by the researcher), they often come
in a text format. Text format is flexible since any statistical package and brand of computer can read it.
There are two main types of text formats:

1. Delimited format (also called free format)—each variable is separated by a character, usually a
space, tab, or comma.

2. Fixed format—each variable occupies a specific column or group of columns in the text file.

To determine the format, order of the variables, and any codes (e.g., missing value code) one must
consult a codebook which accompanies the data set.

EXAMPLE 1. We report the data from Chap. 2, Example 1 as a text file in several formats.

1, 6 1 6 1 6
2, 7 2 7 2 7
3, 6 3 6 3 6
4, 8 4 8 4 8
5, 5 5 5 5 5
6, 7 6 7 6 7
7, 6 7 6 7 6
8, 9 8 9 8 9
9, 10 9 10 9 10
10, 6 10 6 10 6

Comma-delimited Space-delimited Fixed format: test no. in

order: test no., grade order: test no., grade columns 1–2, grade in columns 4–5

Below we explore three specific statistics packages. Our aim is to give a general understanding of
the programming language of each package, as well as procedures to carry out the calculations from this
text. As it is impossible to cover every statement and procedure of the software, we have chosen
windows-based programs which include a detailed help file for further reference.

Copyright 2002 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



12.2 MICROSOFT EXCEL

Excel is a spreadsheet package which includes functions for most common statistical calculations.
Excel uses a graphical interface, which means that the user enters data and function in certain locations
on the spreadsheet (called cells). Cell location in Excel is defined by the row number and column letter
of each cell. Data may be read from external files (see Example 2) or typed directly into the cells by
clicking on the cell and typing the text or number desired. Functions are designated by an equal sign
(=) and perform many statistical calculations. To identify the values for the calculation, either
individually enter each cell (A1, A2) or use a colon to indicate a range of cells (A1:A10, all cells from
A1 to A10). Below are some commonly used Excel functions:

Description Excel function

Add, subtract, multiply, divide, exponent +, -, *, /, ^

Square root =sqrt(A1)

Summation =sum(A1:A10)

Mean =average(A1:A10)

Median =median(A1:A10)

Mode =mode(A1:A10)

Population variance =varp(A1:A10)

Sample variance =var(A1:A10)

Population standard deviation =stdevp(A1:A10)

Sample standard deviation =stdev(A1:A10)

Covariance =covar(A1:A10,B1:B10)

Random number between 0 and 1 =rand()

Prob < A1 under standard normal distribution =normsdist(A1)

Prob <-A1 and > A1 under t distribution (20 df, 2-tail test) =tdist(A1,20,2)

All functions may be accessed through the toolbar Insert-Function, which includes descriptions of the
function. Graphing is done through the toolbar Insert-Chart. More advanced calculations (histogram,
t test, ANOVA, regression) are found in the toolbar Tools-Data Analysis. Note that if the Data
Analysis option is not present under tools, then the Analysis Tool Pack has not been installed. To
add the option either go to Microsoft Office Setup or Tools-Ad-Ins and install Analysis Tool Pack.

EXAMPLE 2. We saved the data from the comma-delimited version of Example 1 to a text file. Using Excel, we
can open the data directly into a worksheet with the following steps:

1. File-Open, in the Open dialog box set ‘‘Files of type’’ to ‘‘All Files (*.*),’’ select the desired file, in this case
example.txt.

2. The Text Import Wizard dialog box appears since the selected file is not an Excel file.
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We have the option of specifying ‘‘Delimited’’ or ‘‘Fixed width’’ (fixed format). If ‘‘Fixed width’’ is selected, the

next box allows the selection of columns. Since our data are delimited, we choose ‘‘Delimited’’ and click ‘‘Next.’’

The next box allows the selection of the delimiter. Our data are comma-delimited, so we check the box next to

‘‘Comma.’’ For most data purposes, this is enough for Excel to import the data, so we click ‘‘Finish.’’

Our data are now in Excel and may be used in calculations, and saved as an Excel spreadsheet.

12.3 EVIEWS

Eviews is a powerful statistical package designed especially for time-series regression analysis.
Eviews is a windows-based statistical package that works through windows dialog boxes. All regression
options are programmed by checking the desired options. The basic steps to work with data in Eviews
are

1. Open a workfile (File-New-Workfile). Since Eviews is written for time series, start and end
dates must be specified.

2. Read in data (File-Import-Read Text, Lotus, Excel). Give variable names, delimiters, sample.

3. Redefine data if necessary (Quick-Generate Series). Give equation for new variable using usual
math symbols (e.g., to define x2 as 2 times x1, the equation would be ‘‘x2 ¼ 2�x1’’).

4. Perform statistical operations. For example,
Descriptive statistic—histogram, mean, standard deviation, covariance, ACF, ADF (Quick-
Series Statistics)
Joint statistics—covariance, correlation, cointegration, Granger causality (Quick-Group
Statistics)
Estimation—regression, ARMA corrections (Quick-Estimate Equation)

  



EXAMPLE 3. Using the text file example1.txt from above, we can import the data into Eviews:

1. To start a new workspace, we click File-New-Workfile. A dialog box queries the period length and dates.
Since our data do not constitute a time series, we enter 1 as start date and 10 as end date to clear enough

space for 10 observations.

2. We click File-Import-Read Text, Lotus, Excel, to read data from an external text file. The ASCII Text
Import dialog box appears:

We list the variable names in the order in which they appear in the data set. Data are arranged in columns, comma-
delimited, so those options are checked. Checking the box for rectangular file layout indicates that there is one
observation per row. Clicking ‘‘OK’’ reads the data into Eviews and sets up an entry in the workfile for each

variable. The workfile may be saved at this point.

12.4 SAS

The current version of SAS (we are using V 8.0) operates in Windows, but is programmed by
entering statements rather than checking options. There are three main windows in SAS: the Program
Editor where statements are written; the Log, where comments are stored when a program is submitted
for processing (processing time, error messages, etc.), and the Output window, where results are written
on successful processing of a program. The Explorer window, which accesses SAS data sets, and the
Results window, which catalogs previous results, are useful for the organization of large projects.

SAS programming involves two distinct parts:

1. The data step where the data are read and the variables are defined. Its basic structure is:

Program Description

libname lname ‘c:\’; Gives path where SAS data set will be stored. This can
be omitted if the data set will be used once (i.e., tem-
porary data set). lname refers to the user-defined name

given to the library. All names in SAS must begin with
a letter and be no more than 8 characters.

data lname.dname; Names data set dname to be stored in library lname.

infile ‘path:\file.ext’ delimiter=’’,’’; Gives location of text file containing data.

The delimiter option may be omitted if the data are
space-delimited or in fixed format.

input var1 var2; Reads in variables in order of columns. If data are in
fixed format, list variables followed by the column
numbers where the data fall (e.g., var1 1–2).
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After the data step, new variables can be calculated through equations (as with Eviews
‘‘Generate’’). The usual math notation is used for add, subtract, multiply, and divide (+, -,
*, /). Exponents are achieved by two stars (**). Data manipulations must come in the data
step. If a procedure has been run, a new data step must be started in order to create new
variables. Previous data sets can be called into a data step with the ‘‘Set’’ command. For
example

data recall
set lname.dname;

calls back the data set read in above.

2. The procedures where the estimation routines are called. Procedures are identified by ‘‘proc’’
followed by the specific procedure name and options. Some commonly used procedures are
listed here:

Procedure Description

proc means; Calculates descriptive statistics, count, mean,

standard deviation, minimum, maximum
proc freq; Calculates descriptive statistics of discrete variables

proc corr; Calculates simple correlations between variables

proc reg; Runs a linear regression

proc autoreg; Runs a time-series regression

proc arima; Identifies and corrects ARMA processes

proc probit; Runs a binary choice regression

proc syslin; Estimates simultaneous equations

proc print; Prints the data set to the Output window

proc plot; Plots a graph

proc iml; Matrix language; performs matrix mathematics

All lines of a SAS program are followed by a semicolon. Sections of the program to be processed
are followed by the ‘‘run;’’ command; ‘‘quit;’’ designates the end of the program. The program is run by

clicking Run-Submit, or clicking the button.

EXAMPLE 4. Using the text file example1.txt from above, we can import the data into SAS through the data step.
The data step is as follows:

data example;
infile ‘‘c:\example1.txt’’ delimiter = ‘‘,’’;
input test score;
run;
quit;

The SAS Log window reports the following information:

1 data example;
2 infile ‘‘c:\example1.txt’’ delimiter = ‘‘,’’;
3 input test score;
4 run;

NOTE: The infile ‘‘c:\example1.txt’’ is:
File Name=c:\example1.txt,
RECFM=V, LRECL=256

NOTE: 10 records were read from the infile ‘‘c:\example1.txt’’.
The minimum record length was 3.
The maximum record length was 4.

NOTE: The data set WORK.EXAMPLE has 10 observations and 2 variables.
NOTE: DATA statement used:

real time 1.25 seconds

5 quit;



The Log window tells us that the file was found that 10 records (observations) and 2 variables were read.
It also reports the processing time of 1.25 s.

Solved Problems

DATA FORMATS

12.1 (a) Why are computers important in statistics and econometrics? (b) What are common sources
of computer-readable data?

(a) Much of statistical theory relies on the large-sample properties of estimators. As the data set gets
larger, standard errors get smaller; therefore confidence intervals get narrower and more precise. The
minimum acceptable number of observations for most practical purposes is 30. As data sets get larger,

however, calculations get more time-consuming. Without computers, even simple calculations invol-
ving large data sets would not be feasible. More complex calculations, such as probit or simultaneous
equations, are too computationally demanding even with relatively small data sets. Reading text files

on the computer also eliminates typing errors from data entry. What must be remembered is that while
the computer is a tool for processing calculations quickly, the researcher still must verify that the model
has been specified correctly.

(b) Government agencies have large amounts of public, computer-readable data (Census, Bureau of Labor
Statistics, Federal Reserve, etc.). Other sources are college and university research departments,
Internet search engines, nonprofit agencies, and political lobbying groups. Financial data may be

obtained through securities ratings companies and for-profit information services, but usually at a
substantial cost. Appendix 12 lists all Internet data sources used in this text.

12.2 (a) What is the difference between delimited and fixed-format data? (b) What are some possible
problems with delimited data?

(a) Delimited data have some type of character separating the different variables. In fixed-format data
sets, data are arranged so that each variable occupies specific columns of the text file.

(b) Tab delimiters can be a problem since some statistical packages do not read tabs well (SAS). Tabs can
especially be problems with non–Microsoft Windows programs such as mainframes and DOS. Space
delimiters can cause a problem with text variables that contain spaces within them. Consider reading

in data of countries for the list ‘‘United States of America Hong Kong Italy Germany.’’ Reading
this as space-delimited would yield eight variables; the first variable would be ‘‘United,’’ the second
‘‘States,’’ the third ‘‘of,’’ and so on. Comma-delimited data would solve this problem since ‘‘United
States of America, Hong Kong, Italy, Germany’’ would be read correctly.

12.3 Identify the format of the following population estimates (in millions) for July, 1999 from the
U.S. Census Bureau:
(a) (b) (c)

New Mexico 1.7 New Mexico, 1.7 New Mexico; 1.7
New York 18.2 New York, 18.2 New York; 18.2
North Carolina 7.7 North Carolina, 7.7 North Carolina; 7.7
North Dakota 0.6 North Dakota, 0.6 North Dakota; 0.6
Ohio 11.3 Ohio, 11.3 Ohio; 11.3

(a) Fixed format, state in columns 1 to 14, population in columns 16 to 19.

(b) Comma-delimited

(c) Semicolon-delimited
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MICROSOFT EXCEL

12.4 Using the data from Example 1, (a) Use the data analysis tools to graph the histogram and ogive
of test scores. (b) Calculate, a mean, median, mode, sample variance, sample standard devia-
tion, and coefficient of variation to statistially describe the data. (c) Use Excel functions to
standardize each test score.

(a) For a histogram in Excel, choose Tools-Data Analysis. In the resulting dialog box, select ‘‘Histogram’’

and click ‘‘OK.’’ We then choose the options we want for our histogram in the following box:

Our data are in column B, from row 1 to row 10. The default is a frequency distribution, checking

‘‘Chart Output’’ draws the histogram, and checking ‘‘Cumulative Percentage’’ plots the ogive. Custom

class intervals may be typed into Excel and indicated as the ‘‘Bin Range.’’ The results are as follows:

Parts b and c are reported in the image below as both numerical results and Excel formulas. For b the

descriptive statistics can all be performed through functions. The coefficient of variation is simply the

standard deviation divided by its mean (dividing by the mean gives a relative measure of variation

without units). For part c, note that when formulas are copied and pasted, the cell references adjust to

the new location. In standardizing, we want to subtract the same mean and divide by the same

standard deviation for all calculations. Including a dollar sign ($) before the column and row reference

keeps it from changing when pasted to a new location.
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12.5 For the data in Chap. 5, Example 9 (a) perform a t test of the null hypothesis that wrapping 1 has
average sales equal to 85. (b) Peform a t test of the null hypothesis that wrapping 1 and
wrapping 2 have the same average sales. (c) Perform an ANOVA test of the null hypothesis
that all three wrappings have the same average sales.

(a) We calculate the t statistic using the Excel Formulas. Since the probability in the tails of the t
distribution is greater than 0.05, we accept the null that the average sales are 85 at the 5% level of

significance.

(b) The two-sample t test is found in Tools-Data Analysis. There are several options. Since it is specified

in Chap. 5, Example 9 that the data have equal variances, we select ‘‘t test: Two Sample Assuming

Equal Variances,’’ and click ‘‘OK.’’ The following dialog box appears:
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We enter the range for wrapping 1 as variable 1 and from wrapping 2 as variable 2. The hypothesized

mean difference is 0 since our null states that the means are equal. Alpha is the desired level of

significance. The result fails to reject the null that both means are the same at the 5% level of

significance.

(c) The ANOVA test is also found through Tools-Data Analysis. We choose ‘‘ANOVA Single Factor.’’

We enter the entire range of all three variables and select ‘‘Grouped By: Columns’’ since the variables

are in separate columns. Again we set the level of significance to 5%.

Since the calculated F value exceeds the critical value (‘‘F crit’’ in the table), we reject the null hypoth-

esis that all three wrappings have the same average sales.
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12.6 In Example 1 of Chap. 6, Table 6.1 reports corn per acre Y and fertilizer used X from 1971 to
1980. (a) Calculate the covariance between X and Y . (b) Use Excel to plot X and Y . (c) Fit a
regression line to the graph.

(a) As seen below, the covariance between the X and Y is positive.

(b) To plot the two variables, we highlight both variables and choose Insert-Chart. We click XY (scatter)

plot and click next. The series can be named in the ‘‘Series’’ tab, we also switch the X and Y variable so

that Y is on the vertical axis. In the next window the chart and axes can be named. In the next box the

location can be determined, and we can click ‘‘Finish.’’ The following graph is created:

(c) To fit a regression line to the plot, click the right mouse button over the plot, and select ‘‘Add Trend-

line’’ (this may take some practice aiming). We select to add a linear trendline; under the ‘‘Options’’

tab we can select to have the regression equation and R2 reported.
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12.7 Example 1 of Chap. 7 extends the corn production table to add insecticide use. Run a multiple
regression of Y on X1 and X2, reporting the residual error terms.

Regression estimation is under Tools-Data Analysis; we select ‘‘Regression.’’

In the dialog box, we give the loction of the Y and X variables (this can be done easily by clicking in the

desired box and highlighting the variable on the worksheet). It is important that all the independent variables

are in a continuous range of columns. We check ‘‘Residuals’’ to report the errors of the regression. Note that

checking ‘‘Residual Plots’’ is a valuable diagnostic for autocorrelation and heteroscedasticity. The residuals

can be used to calculate the additional tests such as a Durbin-Watson statistic.
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EVIEWS

12.8 Save the variables from Prob. 12.7 in an Excel worksheet, and import the values into Eviews.

Since Eviews can read Excel worksheets, we save the data in Excel format. To make reading the data

easier, we eliminate all functions and labels. Below is the Excel worksheet and Eviews import options to

read the data.

12.9 Using the Eviews workfile from Problem 12.8 (a) generate a variable for the proportion of
fertilizer per bushel of corn. (b) Calculate descriptive statistics for the fertilizer ratio. (c)
Graph the correlogram for the fertilizer ratio.

(a) To generate a new variable, we go to Quick-Generate Series. We get the dialog box below.

We name the new variable ‘‘ratio’’ and define it by the equation ‘‘=fert/corn,’’ and click ‘‘OK.’’

Clicking on the ratio variable in the workfile shows the results of the circulation.

(b) For descriptive statistics of a series, choose Quick-Series Statistics-Histogram and Stats. Enter the

desired series for the resulting information. (Descriptive statistics of the entire data set can be found in

Quick-Group Statistics.)
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(c) The correlogram is found in Quick-Series Statistics-Correlogram. After specifying the series name,

correlations in levels, and eight lags, we get the following output. Note the high initial correlation

which fades out, and the large spike at one lag for partial correlations indicates AR(1).

12.10 Using the data from the Eview workfile in Prob. 12.8 (a) Estimate the regression of corn on
fertilizer and pesticides. (b) Is there evidence of autocorrelation in part a? If so, correct for
autocorrelation. (c) Estimate the regression of the fertilizer/corn ratio on only a constant. (d)
Is there evidence of autocorrelation in part c? If so, correct for autocorrelation.

(a) To run a regression, select Quick-Estimate equation. To specify the equation in the dialog box,

list the variables to be used in the regression with the dependent variable first; ‘‘c’’ includes a

constant (intercept), and then the dependent variables. The ‘‘Method’’ setting allows for different

estimation techniques. For OLS, the default setting is correct. ‘‘Sample’’ allows the user to

estimate the regression on a subset of the data set. The default setting is to estimate for the entire

data set. The specification of the regression equation and the output are listed in the following

dialog box.

278 COMPUTER APPLICATIONS IN ECONOMETRICS [CHAP. 12



(b) Eviews automatically calculates many diagnostic statistics, including the R2, the F statistic, AIC, log

likelihood, and the Durbin-Watson statistic. Since the Durbin-Watson statistic is near 2, there is no

evidence of first-order autocorrelation.

(c) In our estimate of the regression for ‘‘ratio,’’ however, the Durbin-Watson statistic is near zero in the

output below, indicating autocorrelation.

(d) To correct for autocorrelation, the same procedure is used as for the standard regression, except that

‘‘ar(1)’’ is included in the regression equation. This same method can be used to correct for any

ARMA process by including ‘‘ar(p)’’ for autoregression processes, and ‘‘ma(q)’’ for moving average

processes (where p and q are the appropriate numbers). Lags can also be inserted quickly by using

ð�LÞ where L is the desired lag length. For example, to insert one lag of ratio as an alternate control

for autocorrelation, the equation specification would be ‘‘ratio c ratio(�1).’’ From the resulting

output, we can see that first-order autocorrelation is no longer present.
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12.11 From the data in Example 2 of Chap. 11, use Eviews to (a) run an ADF test to test the null
hypothesis of a unit root in Y . (b) Run an ADF test to test the null hypothesis of a unit root in
�Y .

(a) The ADF test is found in the Quick-Series Statistics-Unit Root Test. The resulting dialog box is as

follows:

Eview allows flexibility in the unit root test, allowing choice of intercept; trend, or neither, levels or

difference; and different lags of the differenced terms to control for autocorrelation. We choose the test

in levels, with an intercept and no lags.

The output reports the regression as well as the critical values. Since the ADF statistic is greater than

the critical value, we accept the null of unit root.

(b) Running the ADF test in first differences allows us to reject the null of unit root at the 10% significance

level, but not at the 5% significance level.
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12.12 From the data in Table 11.16 for Prob. 11.33, use Eviews to test if (a) X Granger-causes Y with
six lags and (b) Y Granger-causes X with six lags.

(a), (b) Granger causality is found in the toolbar Quick-Group Statistics-Granger Causality Test. We

have input the data set and in the Granger causality dialog box specify series Y and X, and click ‘‘OK.’’ We

then specify six lags and click ‘‘OK.’’ From the output below, neither variable Granger-causes the other at

the 5% level of significance.

SAS

12.13 (a) Save the variables from Prob. 12.7 in a comma-delimited text file, and import the values into
SAS. (b) Create a variable for the fertilizer:corn ratio. (c) Print the ratio variable to the output
window. (d) Calculate descriptive statistics for the ratio variable. (e) Calculate the correlo-
gram for the fertilizer:corn ratio.

(a), (b), (c), (d) We start with the Excel file from Prob. 12.7. After deleting all but the variable values,
we click ‘‘File-Save As,’’ and save the data set as type ‘‘CSV (Comma Delimited)’’ for easy accessibility by

SAS. The SAS program to accomplish parts a through d is presented below. Note that in SAS ‘‘/*’’ and
‘‘*/’’ enclose comments which are not read by SAS. It is important to annotate programs and give variables
descriptive names so the program is easily debugged, if necessary, and others can read your program.

libname main ‘c:\’; /* designates the directory to
save data */

data main.corn; /* starts the data step */
infile ‘c:\corn.csv’ delimiter=‘‘,’’; /* gives location of text file

and delimiter */
input year n corn fert insect; /* names variables and gives

order */

ratio=fert/corn; /* defines ratio as division of
fert and corn */

proc print; /* prints data to output
window */

var ratio; /* names variables for print,
omit to print all variables */

proc means; /* calculates descriptive
stats */

var ratio; /* names variables, omit for
stats of all variables */

run;
quit;
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The output window reports the results. From proc print:

Obs year n corn fert insect ratio

1 1971 1 40 6 4 0.15000
2 1972 2 44 10 4 0.22727
3 1973 3 46 12 5 0.26087
4 1974 4 48 14 7 0.29167
5 1975 5 52 16 9 0.30769
6 1976 6 58 18 12 0.31034
7 1977 7 60 22 14 0.36667
8 1978 8 68 24 20 0.35294
9 1979 9 74 26 21 0.35135
10 1980 10 80 32 24 0.40000

From proc means:

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

year 10 1975.50 3.0276504 1971.00 1980.00
n 10 5.5000000 3.0276504 1.0000000 10.0000000
corn 10 57.0000000 13.4742553 40.0000000 80.0000000
fert 10 18.0000000 8.0000000 6.0000000 32.0000000
insect 10 12.0000000 7.4833148 4.0000000 24.0000000
ratio 10 0.3018805 0.0740907 0.1500000 0.4000000

(e) To diagnose ARMA processes in SAS, there is ‘‘proc arima’’ which has two stages: identify (designated
by ‘‘i’’) and estimate (designated by ‘‘e’’). Calling back up the data set from the previous parts and

continuing yields

libname main ‘c:\’; /* names library and gives location to find data */
data arma; /* begins data step and names temporary data set */
set main.corn; /* reads previously saved data */

proc arima; /* procedure to calculate correlogram */
i var=ratio; /* selects variable to identify */

run;
quit;

This produces the following output:

The ARIMA Procedure

Name of Variable = ratio

Mean of Working Series 0.301881
Standard Deviation 0.070289
Number of Observations 10

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error

0 0.0049405 1.00000 | |***************| 0
1 0.0026036 0.52700 | . |*********** . | 0.316228
2 0.0015690 0.31758 | . |****** . | 0.394393

‘‘.’’ marks two standard errors

Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.37607 | . ********| . |
2 -0.04410 | . *| . |
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Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.52700 | . |*********** . |
2 0.05517 | . |* . |

If we diagnosed an AR(1) process, we could add the line ‘‘e p=(1);’’ to the arima procedure after the
identify line. More complex processes can be estimated similarly. For example, ‘‘e p=(1) (8);’’
estimates an autoregressive process at the first and eighth lags, and ‘‘e q=(1 8);’’ estimates moving
average at the first and eighth lags.

12.14 Using the permanent SAS data set from Prob. 12.13. (a) Estimate the regression of corn on
fertilizer and pesticides. (b) Is there evidence of autocorrelation in part a? If so, correct for
autocorrelation. (c) Estimate the regression of the fertilizer:corn ratio on only a constant. (d)
Is there evidence of autocorrelation in part c? If so, correct for autocorrelation.

(a), (c) The Durbin-Watson statistic can be calculated in the basic regression procedure, ‘‘proc reg,’’ but
can also be calculated in ‘‘proc autoreg’’ with the added benefit of a p value which eliminates the need for
supplementary critical value tables, and can be used for longer lags of autoregression. We will use both

procedures.

libname main ‘c:\’; /* names library and gives location to
find data */

data dw; /* begins data step and names temporary
data set */

set main.corn; /* reads previously saved data */

proc reg; /* starts regression procedure */
model corn=fert insect /dw; /* specifies the regression model, SAS

automatically includes constant, /dw
is omitted for no Durbin-Watson */

proc autoreg; /* starts autoregression procedure */
model ratio= /dw=1 dwprob; /* specifies the regression model, /dw=1

calculates Durbin-Watson start for
1 lag, dwprob calculates
significance */

run;
quit;

The resulting output is

The REG Procedure
Model: MODEL1

Dependent Variable: corn

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 1620.32960 810.16480 414.85 < .0001
Error 7 13.67040 1.95291
Corrected Total 9 1634.00000

Root MSE 1.39747 R-Square 0.9916
Dependent Mean 57.00000 Adj R-Sq 0.9892
Coeff Var 2.45170
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Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 31.98067 1.63180 19.60 <.0001
fert 1 0.65005 0.25016 2.60 0.0355
insect 1 1.10987 0.26743 4.15 0.0043

The REG Procedure
Model : MODEL1

Dependent Variable: corn

Durbin-Watson D 2.114
Number of Observations 10
1st Order Autocorrelation -0.073

The AUTOREG Procedure

Dependent Variable: ratio

Ordinary Least Squares Estimates

SSE 0.04940489 DFE 9
MSE 0.00549 Root MSE 0.07409
SBC -22.421554 AIC -22.724139
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 0.2842 Pr < DW <.0001

Pr > DW 1.0000

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW
is the p-value for testing negative autocorrelation.

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.3019 0.0234 12.88 <.0001

(b), (d) The Durbin-Watson statistic for the model in part a does not indicate autocorrelation, but the

model in part d shows statistically significant autocorrelation since d is near 0 and Pr < DW is less than a

5% level of significance (0.05). To correct for autocorrelation, we also use ‘‘proc autoreg.’’

libname main ‘c:\’;
data dw;
set main.corn;

proc autoreg;
model ratio= /dw=1 dwprob nlag=1; /* nlag=1 corrects for AR(1) */

run;
quit;
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This gives the following output:

The AUTOREG Procedure

Dependent Variable: ratio

Ordinary Least Squares Estimates

SSE 0.04940489 DFE 9
MSE 0.00549 Root MSE 0.07409
SBC -22.421554 AIC -22.724139
Regress R-Square 0.0000 Total R-Square 0.0000
Durbin-Watson 0.2842 Pr < DW <.0001
Pr > DW 1.0000

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW
is the p-value for testing negative autocorrelation.

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.3019 0.0234 12.88 <.0001

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.00494 1.000000 | |***************|
1 0.00260 0.527000 | |*********** |

Preliminary MSE 0.00357

Estimates of Autoregressive Parameters

Standard
Lag Coefficient Error t Value

1 -0.527000 0.300473 -1.75

Yule-Walker Estimates

SSE 0.02653769 DFE 8
MSE 0.00332 Root MSE 0.05760
SBC -26.008448 AIC -26.613619
Regress R-Square 0.0000 Total R-Square 0.4629
Durbin-Watson 0.9705 Pr < DW 0.0334
Pr > DW 0.9666

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW
is the p-value for testing negative autocorrelation.

The AUTOREG Procedure

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.2970 0.0348 8.53 <.0001

The correction calculates the magnitude of autocorrelation and estimates the corrected regression. The

Durbin-Watson statistics indicates that autocorrelation is still present at the 5% level of significance, but not
at the 1% level. Note that the results differ from Eview since SAS uses a different estimation method by
default.
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12.15 Estimate the binary choice model from Example 5 in Chap. 8 using (a) probit and (b) logit.

(a) (b) Since the Logit specification is an option ‘‘proc probit,’’ we will put both parts in one program.
We will also show the method of manually inputing data through the ‘‘cards’’ statement to bypass creating a

separate text file. The probit procedure in SAS also requires that the data be sorted with successes first for
the estimation. This can be done with ‘‘proc sort.’’

data country;
input open gdpcap;
cards;
0 569
0 408
0 2240
0 1869
1 16471
0 1282
1 2102
0 1104
0 914
1 5746
1 2173
0 978
0 762
1 12653
1 3068
1 3075
1 547
1 5185
1 7082
0 1162
;

proc sort; /* calls sort procedure */
by descending open; /* sorts data set by open variable,

descending option puts larger
values first */

proc probit order=data; /* probit procedure, order=data
specifies that successes are
first in data */

class open; /* dependent variable */
model open=gdpcap; /* regression model */

proc probit order=data;
class open;
model open=gdpcap /d=logistic; /* regression model, /d option

specifies distribution */

run;
quit;

The output is

Probit Procedure

Class Level Information

Name Levels Values

open 2 1 0
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Model Information

Data Set WORK.COUNTRY
Dependent Variable open
Number of Observations 20
Name of Distribution NORMAL
Log Likelihood -6.86471345

Response Profile

Level Count

1 10
0 10

Algorithm converged.

Analysis of Parameter Estimates

Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq Label

Intercept 1 -1.99418 0.82471 5.8470 0.0156 Intercept
gdpcap 1 0.0010035 0.0004712 4.5347 0.0332

Probit Model in Terms of Tolerance Distribution

MU SIGMA

1987.23361 966.514769

Probit Procedure

Estimated Covariance Matrix
for Tolerance Parameters

MU SIGMA

MU 188389.39327 96239.205174
SIGMA 96239.205174 218986.43870

Probit Procedure

Class Level Information

Name Levels Values

open 2 1 0

Model Information

Data Set WORK.COUNTRY
Dependent Variable open
Number of Observations 20
Name of Distribution LOGISTIC
Log Likelihood -6.766465426

Response Profile

Level Count

1 10
0 10
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Algorithm converged.

Analysis of Parameter Estimates

Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq Label

Intercept 1 -3.60499 1.68107 4.5987 0.0320 Intercept
gdpcap 1 0.0017958 0.0008999 3.9817 0.0460

Probit Model in Terms of Tolerance Distribution

MU SIGMA

2007.49509 556.864971

Probit Procedure

Estimated Covariance Matrix
for Tolerance Parameters

MU SIGMA

MU 166670.35772 41952.902987
SIGMA 41952.902987 77881.332977

Note that both distributions give similar results.

12.16 Using the data from Chap. 10, Table 10.1, estimate the simultaneous equations model for Money
Supply on GDP by two-stage least squares (2SLS) using investment and government expenditure
as instrumental variables (Example 6).

data simul;
infile ‘c:\table101.csv’ delimiter=’’,’’;
input year m y i g;

proc syslin 2sls; /* simultaneous equations procedure, 2sls
indicates two-stage least squares */

endogenous m y; /* designates endogenous variables */
instruments i g; /* designates instrumental variables */
money: model m=y; /* model to be estimated */

run;
quit;

This gives the output

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model MONEY
Dependent Variable m

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 783204.1 783204.1 92.50 <.0001
Error 16 135469.4 8466.839
Corrected Total 17 931628.7
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Root MSE 92.01543 R-Square 0.85254
Dependent Mean 874.72667 Adj R-Sq 0.84332
Coeff Var 10.51933

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 166.5660 76.75781 2.17 0.0454
y 1 0.115286 0.011987 9.62 <.0001

12.17 From the data in Table 11.16 for Prob. 11.33, use SAS to test if (a) X Granger-causes Y with six
lags and (b) Y Granger-causes X with six lags.

(a), (b) In SAS, the F test can be calculated by adding a ‘‘test’’ line to ‘‘proc reg.’’

data granger;
infile ‘c:\granger.csv’ delimiter=’’,’’;
input y x;

/* create lagged variables */
y1=lag1(y);
y2=lag2(y);
y3=lag3(y);
y4=lag4(y);
y5=lag5(y);
y6=lag6(y);

x1=lag1(x);
x2=lag2(x);
x3=lag3(x);
x4=lag4(x);
x5=lag5(x);
x6=lag6(x);

proc reg;
model y=y1 y2 y3 y4 y5 y6 x1 x2 x3 x4 x5 x6; /* model with 6 lags of each */
grangxy: test x1, x2, x3, x4, x5, x6; /* test null that all are zero

with F test */

proc reg;
model x=y1 y2 y3 y4 y5 y6 x1 x2 x3 x4 x5 x6;
grangyx: test y1, y2, y3, y4, y5, y6;
run;
quit;

This gives the following output:

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 12 244.13732 20.34478 2.98 0.0219
Error 16 109.18963 6.82435
Corrected Total 28 353.32694
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Root MSE 2.61235 R-Square 0.6910
Dependent Mean 0.56138 Adj R-Sq 0.4592
Coeff Var 465.34419

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 2.70383 1.78699 1.51 0.1498
y1 1 -0.73704 0.22650 -3.25 0.0050
y2 1 -0.82864 0.36461 -2.27 0.0372
y3 1 -1.16165 0.42922 -2.71 0.0156
y4 1 -0.67208 0.46783 -1.44 0.1701
y5 1 0.26792 0.44364 0.60 0.5544
y6 1 0.09995 0.27288 0.37 0.7190
x1 1 -0.01778 0.00800 -2.22 0.0410
x2 1 -0.01157 0.01166 -0.99 0.3360
x3 1 -0.01493 0.01499 -1.00 0.3341
x4 1 -0.02471 0.01592 -1.55 0.1403
x5 1 0.01126 0.01750 0.64 0.5288
x6 1 0.03078 0.01391 2.21 0.0417

The REG Procedure
Model: MODEL1

Test GRANGXY Results for Dependent Variable y

Mean
Source DF Square F Value Pr > F

Numerator 6 17.71606 2.60 0.0596
Denominator 16 6.82435

The REG Procedure
Model: MODEL1

Dependent Variable: x

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 12 28986 2415.49262 0.37 0.9544
Error 16 103157 6447.29086
Corrected Total 28 132143

Root MSE 80.29502 R-Square 0.2194
Dependent Mean 6.88310 Adj R-Sq -0.3661
Coeff Var 1166.55262

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 68.79389 54.92640 1.25 0.2284
y1 1 -4.02016 6.96180 -0.58 0.5717
y2 1 -6.15257 11.20694 -0.55 0.5906
y3 1 -12.96359 13.19274 -0.98 0.3404
y4 1 -10.12374 14.37952 -0.70 0.4915
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y5 1 -14.33754 13.63601 -1.05 0.3087
y6 1 -8.95082 8.38735 -1.07 0.3017
x1 1 -0.17522 0.24590 -0.71 0.4864
x2 1 -0.35289 0.35841 -0.98 0.3395
x3 1 -0.34052 0.46075 -0.74 0.4706
x4 1 -0.55908 0.48943 -1.14 0.2701
x5 1 -0.33701 0.53778 -0.63 0.5397
x6 1 -0.37859 0.42743 -0.89 0.3889

The REG Procedure
Model: MODEL1

Test GRANGYX Results for Dependent Variable x

Mean
Source DF Square F Value Pr > F

Numerator 6 3452.68866 0.54 0.7736
Denominator 16 6447.29086

Again, neither variable Granger-causes the other at the 5% level of significance.

Supplementary Problems

DATA FORMATS

12.18 Using the data from the Federal Reserve Board of Governors (the Website is listed in App. 12), what two
data formats would be able to read the text file of the interest rate data?

Ans. Space-delimited and fixed format.

12.19 Can all space-delimited data be read in fixed format?
Ans. No, often space-delimited data do not line up into columns if observations are of differing lengths.

MICROSOFT EXCEL

12.20 In Problem 12.6, a simple regression line was fit to agricultural data using Excel. From the output (a)
what was b̂b0? (b) what was b̂b1? (c) What was the R2?
Ans. (a) 27.125 (b) 1.6597 (c) 0.971

12.21 In Prob. 12.7, a multiple regression was estimated using Excel. From the output (a) what was the sum of
squared errors? (b) What was the standard error of b̂b0? (c) What was the R2?
Ans. (a) 13.6704 (b) 0.2674 (c) 0.9916

EVIEWS

12.22 Using the output from Eviews in Prob. 12.9(b) (a) What would the t statistic be to test the null hypothesis
that the population mean of the fertilizer ratio is 0.25? (b) Is this statistically significant at the 5% level?

Ans. (a) 2.21 (b) No

12.23 What is the critical value for the Granger causality F statistic calculated in Prob. 12.12 (a) At the 5% level
of significance? (b) At the 1% level of significance?
Ans. (a) 2.74 (b) 4.20
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SAS

12.24 From the estimation in Prob. 12.15 (a) What is the log-likelihood value for the logit regression? (b) What

is the t statistic for b̂b1 in the logit regression?
Ans. (a) �6:7665 (b) t ¼ 0:0018=0:0009 ¼ 2

12.25 In Prob. 12.17, we see X Granger-causes Y at the 10% level of significance. From the output (a) What is
the short-run effect of X on Y? (b) What is the long-run effect of X on Y?

Ans. (a) �0:02695 (b) �0:00668
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Econometrics Examination

1. Table 1 gives the quantity supplied of a commodity Y at various prices X , holding everything else
constant. ðaÞ Estimate the regression equation of Y on X . ðbÞ Test for the statistical significance
of the parameter estimates at the 5% level of significance. (c) Find R2 and report all previous
results in standard summary form. ðdÞ Predict Y and calculate a 95% confidence or prediction
interval for X ¼ 10.

2. Suppose that from 24 yearly observations on the quantity demand of a commodity in kilograms per
year Y , its price in dollars X1, consumer’s income in thousands of dollars X2, and the price of a
substitute commodity in dollars X3, the following estimated regression is obtained, where the
numbers in parentheses represent standard errors:

^Y ¼ 13�7X1 þ 2:4X2 � 4X3

ð2Þ ð0:8Þ ð18Þ
ðaÞ Indicate whether the signs of the parameters conform to those predicted by demand theory. ðbÞ
Are the estimated slope parameters significant at the 5% level? ðcÞ Find R2, if

P
y2 ¼ 40,P

yx1 ¼ 10; and
P

yx2 ¼ 45 (where small letters indicate deviations from the mean). ðdÞ Find
R
2
. ðeÞ Is R2 significantly different from zero at the 5% level? ðf Þ Find the standard error of the

regression. ðgÞ Find the coefficient of price and income elasticity of demand at the means, given
Y ¼ 32, X1 ¼ 8, and X2 ¼ 16.

3. When the level of business expenditures for new plants and equipment of nonmanufacturing firms
in the United States Yt from 1960 to 1979 is regressed on the GNP X1t, and the consumer price
index, X2t, the following results are obtained:

^Yt ¼ 31:75þ 0:08X1t � 0:58X2t R2 ¼ 0:98

ð6:08Þ ð�3:08Þ d ¼ 0:77

ðaÞ How do you know that autocorrelation is present? What is meant by autocorrelation? Why is
autocorrelation a problem? ðbÞ How can you estimate �, the coefficient of autocorrelation? ðcÞ
How can the value of � be used to transform the variables in order to correct for autocorrelation?
How do you find the first value of the transformed variables? ðdÞ Is there any evidence of
remaining autocorrelation from the following results obtained by running the regression on the
transformed variables (indicated by an asterisk)?

Y�
t ¼ 3:79 þ 0:04X�

1t � 0:05X�
2t R2 ¼ 0:96

ð8:10Þ ð�0:72Þ d ¼ 0:89

What could be the cause of any remaining autocorrelation? How could this be corrected?

4. The following two equations represent a simple macroeconomic model:

Rt ¼ a0 þ a1Mt þ a2Yt þ u1t

Yt ¼ b0 þ b1Rt þ u2t

where R is the interest rate, M is the money supply, and Y is income. ðaÞ Why is this a
simultaneous-equations model? Which are the endogenous and exogenous variables? Why
would the estimation of the R and Y equations by OLS give biased and inconsistent parameter
estimates? ðbÞ Find the reduced form of the model. ðcÞ Is this model underidentified, over-
identified, or just identified? Why? What are the values of the structural coefficients? What
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Table 1. Quantity Supplied at Various Prices

n 1 2 3 4 5 6 7 8

Y 12 14 10 13 17 12 11 15

X 5 11 7 8 11 7 6 9
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is an appropriate estimation technique for the model? Explain this technique. ðdÞ If the first, or
R, equation included Yt�1 as an additional explanatory variable, would this model be identified,
overidentified, or underidentified? What are the values of the structural slope coefficients? What
would be an appropriate estimation technique? Explain this technique.

5. The ARIMA procedure in SAS gives the following output for a data set of 220 time-series
observations. ðaÞ What type of time-series process do the data seem to follow? ðbÞ Calculate
the Box-Pierce statistic up to 20 lags. ðcÞ Is there evidence of statistically significant time-series
correlations at the 5% level of significance? ðdÞ How would one choose the exact order or
correlation to correct for?
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The ARIMA Procedure

Name of Variable ¼ y

Mean of Working Series 0.033797
Standard Deviation 2.122958
Number of Observations 220

Autocorrelations

Lag Covariance Correlation �1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error

0 4.506949 1.00000 | |* * * * * * * * * * * * * * * * * * * * | 0
1 3.709889 0.82315 | . |* * * * * * * * * * * * * * * * | 0.067420
2 2.908734 0.64539 | . |* * * * * * * * * * * * | 0.103466
3 2.245384 0.49820 | . |* * * * * * * * * * | 0.120382
4 1.652113 0.36657 | . |* * * * * * * | 0.129415
5 1.098705 0.24378 | . |* * * * * | 0.134052
6 0.521525 0.11572 | . |* * . | 0.136052
7 �0.133209 �.02956 | . * | . | 0.136498
8 �0.868708 �.19275 | .* * * * | . | 0.136528
9 �1.567477 �.34779 | * * * * * * *| . | 0.137759
10 �2.185962 �.48502 | * * * * * * * * * *| . | 0.141694
11 �2.185497 �.48492 | * * * * * * * * * *| . | 0.149049
12 �2.009321 �.44583 | * * * * * * * * *| . | 0.156056
13 �1.979412 �.43919 | * * * * * * * * *| . | 0.161742
14 �1.759277 �.39035 | * * * * * * * *| . | 0.167074
15 �1.434070 �.31819 | . * * * * * * *| . | 0.171170
16 �1.137798 �.25245 | . * * * * *| . | 0.173837
17 �0.872123 �.19351 | . * * * *| . | 0.175496
18 �0.670881 �.14885 | . * * *| . | 0.176463
19 �0.314030 �.06968 | . *| . | 0.177033
20 �0.0008474 �.00019 | . | . | 0.177158

"." marks two standard errors

Partial Autocorrelations

Lag Correlation �1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.82315 | . |* * * * * * * * * * * * * * * * |
2 �0.09982 | .* *| . |
3 �0.01224 | . | . |
4 �0.05172 | . *| . |
5 �0.06475 | . *| . |
6 �0.11227 | .* *| . |
7 �0.16538 | * * *| . |
8 �0.20610 | * * * *| . |
9 �0.17777 | * * * *| . |
10 �0.18760 | * * * *| . |
11 0.22327 | . |* * * * |
12 0.03572 | . |* . |
13 �0.11763 | .* *| . |
14 0.10343 | . |* *. |
15 0.04442 | . |* . |
16 �0.06357 | . *| . |
17 �0.10960 | .* *| . |
18 �0.18580 | * * * *| . |
19 0.02378 | . | . |
20 �0.08972 | .* *| . |
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Table 2. Worksheet

n Yi Xi yi xi xiyi x2
i ŶYi ei e2i X2

i y2i

1 12 5 �1 �3 3 9 10.54 1.46 2.1316 25 1

2 14 11 1 3 3 9 15.46 �1:46 2.1316 121 1

3 10 7 �3 �1 3 1 12.18 �2:18 4.7524 49 9

4 13 8 0 0 0 0 13.00 0.00 0.0000 64 0

5 17 11 4 3 12 9 15.46 1.54 2.3716 121 16

6 12 7 �1 �1 1 1 12.18 �0:18 0.0324 49 1

7 11 6 �2 �2 4 4 11.36 �0:36 0.1296 36 4

8 15 9 2 1 2 1 13.82 1.18 1.3924 81 4

n ¼ 8
P

Yi ¼ 104
Y ¼ 13

P
Xi ¼ 64
X ¼ 8

P
yi ¼ 0

P
xi ¼ 0

P
xiyi ¼ 28

P
xi ¼ 34

P
ei ¼ 0

P
e2i ¼ 12:9416

P
X2

i ¼ 546
P

y2i ¼ 36



b̂1 ¼
P

xiyiP
x2i

¼ 28

34
ffi 0:82 (from the first 7 columns of Table 2):

b̂b0 ¼ Y � b̂b1X ffi 13� ð0:82Þð8Þ ffi 6:44

ŶYi ¼ 6:44þ 0:82 Xi

s2
b̂b0
¼

P
e2i

ðn � kÞ
P

X2
i

n
P

x2
i

¼ ð12:9416Þð546Þ
ð8� 2Þð8Þð34Þ ffi 4:33 and s

b̂b0
ffi 2:08ðbÞ

s2b1 ¼
P

e2i
ðn � kÞP x2i

¼ 12:9416

ð8� 2Þð34Þ ffi 0:06 and s
b̂b1
ffi 0:25

t0 ¼
b̂b0
s

b̂b0

¼ 6:44

2:08
ffi 3:10 and is significant at the 5% level

t1 ¼
b̂b1
s

b̂b1

¼ 0:82

0:25
ffi 3:28 and is also significant at the 5% level

R2 ¼ 1�
P

e2iP
y2i

¼ 1� 12:9416

36
ffi 0:6405; or 64:05%ðcÞ

ŶYi ¼ 6:44þ 0:82Xi R2 ffi 64:05

ð3:10Þ ð3:28Þ

ŶYF ¼ 6:44þ 0:82ð10Þ ¼ 14:64ðdÞ

s2F ¼
P

e2i
ðn � 2Þ 1þ 1

n
þ ðXF � XÞ2P

x2i

" #
¼ 12:9416

6
1þ 1

8
þ ð10� 8Þ2

34

" #
s2F ¼ 2:67 and sF ffi 1:63

Therefore, the 95% confidence or prediction interval for YF is given by YF ¼ 14:64� 2:45ð1:63Þ, where
t0:025 ¼ �2:45, with n � k ¼ 8� 2 ¼ 6 df, so that we are 95% confident that 10.65 � YF � 18:63.

2. ðaÞ Consumer demand theory postulates that the quantity demanded of a commodity is inversely related to its
price but directly related to consumers’ income (if the commodity is a normal good) and to the price of
substitute commodities. Thus the signs of b̂b1 and b̂b2 conform, but the sign of b̂b3 does not conform to that

predicted by demand theory.

ðbÞ t1 ¼ �7=2 ¼ �3:5, t2 ¼ 2:4=0:8 ¼ 3, and t3 ¼ 4=18 ffi 0:22. Therefore, b̂b1 and b̂b2 are statistically signifi-
cant at the 5% level, but b̂b3 is not.

R2 ¼ b̂b1
P

yx1 þ b̂b2
P

yx2P
y2

¼ �7ð10Þ þ 2:4ð45Þ
40

¼ �70þ 108

40
¼ 0:9500; or 95%ðcÞ

R
2 ¼ 1� ð1� R2Þ n � 1

n � 4
¼ 1� ð1� 0:95Þ 23

20
¼ 1� ð0:05Þð1:15Þ ¼ 0:9425; or 94:25%ðdÞ

ðeÞ Since

F3;20 ¼
R2=k � 1

ð1� R2Þ=n � k
¼ 0:95=4� 1

ð1� 0:95Þ=24� 4
ffi 0:3167

0:0025
¼ 126:68

R2 is significantly different from zero at the 5% level.

ðf Þ Since R2 ¼ 1� ðP e2=
P

y2Þ, it follows that P e2 ¼ ð1� R2ÞP y2 ¼ ð1� 0:95Þð40Þ ¼ 2. Thus

s ¼
ffiffiffiffiffiffiffiffiffiffiffiP

e2

n � k

r
¼

ffiffiffiffiffiffiffiffiffiffi
2=20

p
ffi 0:32

ðgÞ �x1 ¼ b̂b1ðX1=YÞ ¼ �7ð8=32Þ ¼ �1:75: �x2 ¼ b̂b2ðX2=YÞ ¼ 2:4ð16=32Þ ¼ 1:2:
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3. ðaÞ Evidence of the presence of autocorrelation is given by the very low value of the Durbin-Watson statistic

d. Autocorrelation refers to the case in which the error term in one time period is associated with the error
term in any other period. The most common form of autocorrelation in time-series data is positive first-
order autocorrelation. With autocorrelation, the OLS parameters are still unbiased and consistent, but
the standard errors of the estimated regression parameters are biased, leading to incorrect statistical tests

and biased confidence intervals.

ðbÞ An estimate of the coefficient of autocorrelation � can be obtained from the coefficient of Yt�1 in the
following regression:

ŶYt ¼ b̂b0 þ �̂�Yt�1 þ b̂b1X1t � b̂b1�Xt�1 þ b̂b2X2t � b̂b2�Xt�1

ðcÞ The value of the transformed variables to correct for autocorrelation can be found as follows (where the
asterisk refers to the transformed variables):

Y�
t ¼ Yt � �̂�Yt�1 X�

1t ¼ X1t � �̂�X1t�1 X�
2t ¼ X2t � �̂�X2t�1

Y�
1 ¼ Y1

ffiffiffiffiffiffiffiffiffiffiffiffi
1��̂2

p
X�
11 ¼ X1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂�2

p
X21 ¼ X2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂�2

p
ðdÞ Since d remains very low, evidence of autocorrelation remains even after the adjustment. In this case,

autocorrelation is very likely due to the fact that some important explanatory variables were not included

in the regression, to improper functional form, or more generally to biased model specification. There-
fore, before transforming the variables in an attempt to overcome autocorrelation, it is crucial to include
all the variables, use the functional form suggested by investment theory, and generally avoid an incorrect

model specification.

4. ðaÞ This two-equation model is simultaneous because R and Y are jointly determined; that is, R ¼ f ðYÞ and
Y ¼ f ðRÞ. The endogenous variables of the model are R and Y , while M is exogenous or determined
outside the model. The estimation of the R function by OLS gives biased and inconsistent parameter

estimates because Yt is correlated with u1t. Similarly, estimating the second, or Y , equation by OLS also
gives biased and inconsistent parameter estimates because R and u2 are correlated.

ðbÞ Substituting the value of Y given by the second equation into the first equation, we get

Rt ¼ a0 þ a1Mt þ a2ðb0 þ b1Rt þ u2tÞ þ u1t

Rt � a2b1R1 ¼ a0 þ a2b0 þ a1Mt þ a2u2t þ u1t

Rt ¼
a0 þ a2b0
1� a2b1

þ a1
1� a2b1

Mt þ
a2u2t þ u1t

1� a2b1
or Rt ¼ �0 þ �1Mt þ �1t

Substituting the value of Rt given by the first equation into the second equation, we get

Yt ¼ b0 þ b1ða0 þ a1Mt þ a2Yt þ u1tÞ þ u2t

Yt � a2b1Yt ¼ a0b1 þ b0 þ a1b1Mt þ b1u1t þ u2t

Yt ¼
a0b1 þ b0
1� a2b1

þ a1b1
1� a2b1

Mt þ
b1u1t þ u2t

1� a2b1
or Yt ¼ �2 þ �3Mt þ �2t

ðcÞ Since the first, or R, equation does not exclude any exogenous variable, it is unidentified. Since the
number of excluded exogenous variables from the second, or Y , equation (which is one, i.e., the M

variable) equals the number of endogenous variables (i.e, R and Y) minus 1, the second, or Y , equation
is exactly identified. b1 ¼ �3=�1 and b0 ¼ �2 � b1�0. The values of a1 and a2 cannot be found because
the R equation is underidentified. An appropriate technique for estimating the exactly identified Y

equation is indirect least squares (ILS). This involves OLS estimation of the Rt reduced-form equation
and then use of R̂Rt to estimate the Y structural equation. When this is done, b̂b1 is consistent.

ðdÞ If the first, or R, equation included the additional Yt�1 variable, the first equation would continue to be
underidentified, but the second equation would now be overidentified. Two different values of b1 can be
calculated from the reduced-form coefficients, but it would be impossible to calculate any of the structural

slope coefficients of the unidentified R equation. An appropriate technique for estimating the over-
identified Y equation is two-stage least squares (2SLS). This involves first regressing Rt on Mt and Yt�1,
and then using R̂Rt to estimate the Y structural equation. When this is done, b̂b1 is consistent.
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5. ðaÞ The large correlations at the first and tenth lag indicate the presence of time-series correlations. The spike

at one lag fades away slowly, and the partial correlation at one lag leaves quickly, indicating AR(1). The
tenth lag is more troublesome since it exhibits features of AR in the correlations, but the partial correla-
tion is not clear. The combination of the two effects makes diagnosis more difficult.

ðbÞ The Box-Pierce statistic is

Q ¼ T
X

ACF2
s ¼ 220ð2:9523Þ ¼ 649:56

ðcÞ The critical value of the chi-square distribution with 20 df is 31.41 at the 5% level of significance. Since
Q ¼ 649:56 > 31:41, we reject the null of no correlations. Therefore the correlations are statistically
significant.

ðdÞ One could try possible specifications and take the one with the lowest AIC. For our case, we try
AR(1,10), AR(1) and MA(10), and MA(1) and MA(10) since we have an idea of the lag lengths, but
not the process. We do this by adding the following procedure in our SAS program:

proc arima;
i var¼y;
e p¼(1) (10); /* AR(1) and AR(10) */
e p¼(1) q=(10); /* AR(1) and MA(10) */
e q¼(1 10); /* MA(1) and MA(10)*/

The resulting AIC is 670.97, 644.38, and 786.79, respectively, telling us that the second model of AR(1)

and MA(10) is the best specification.
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Binomial Distribution

p
n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

1 0 .9900 .9500 .9000 .8500 .8000 .7500 .7000 .6500 .6000 .5500 .5000

1 .0100 .0500 .1000 .1500 .2000 .2500 .3000 .3500 .4000 .4500 .5000

2 0 .9801 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500

1 .0198 .0950 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000

2 .0001 .0025 .1100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .9703 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250

1 .0294 .1354 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750

2 .0003 .0071 .0.270 .0574 .0960 .1406 .1890 .2289 .2880 .3341 .3750

3 .0000 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .9606 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625

1 .0388 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500

2 .0006 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750

3 .0000 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500

4 .0000 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .9510 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0312

1 .0480 .2036 .3280 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1562

2 .0010 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125

3 .0000 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125

4 .0000 .0000 .0004 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1562

5 .0000 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 0 .9415 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156

1 .0571 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938

2 .0014 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344

3 .0000 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125

4 .0000 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344

5 .0000 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938

6 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .9321 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078

1 .0659 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547

2 .0020 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641

300
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n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

3 .0000 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734

4 .0000 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734

5 .0000 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641

6 .0000 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547

7 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .9227 .6634 .4305 .2725 .1678 .1002 .0576 .0319 .0168 .0084 .0039

1 .0746 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0312

2 .0026 .0515 .1488 .2376 .2936 .3115 .2065 .2587 .2090 .1569 .1094

3 .0001 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188

4 .0000 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734

5 .0000 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188

6 .0000 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0403 .1094

7 .0000 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0312

8 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039

9 0 .9135 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020

1 .0830 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176

2 .0034 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703

3 .0001 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641

4 .0000 .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461

5 .0000 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461

6 .0000 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641

7 .0000 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703

8 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020

10 0 .9044 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010

1 .0914 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098

2 .0042 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439

3 .0001 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172

4 .0000 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051

5 .0000 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461

6 .0000 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051

7 .0000 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172

8 .0000 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

11 0 .8953 .5688 .3138 .1673 .0859 .0422 .0198 .0088 .0036 .0014 .0005

1 .0995 .3293 .3835 .3248 .2363 .1549 .0932 .0518 .0266 .0125 .0054

2 .0050 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269

3 .0002 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806

4 .0000 .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611

5 .0000 .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256

6 .0000 .0000 .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256

7 .0000 .0000 .0000 .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611

8 .0000 .0000 .0000 .0000 .0002 .0011 .0037 .0102 .0234 .0462 .0806

9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018 .0052 .0126 .0269

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0021 .0054

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005

12 0 .8864 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002

1 .1074 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029

2 .0060 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161

3 .0002 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537

4 .0000 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208

5 .0000 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934

6 .0000 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256

p
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n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

7 .0000 .0000 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934

8 .0000 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208

9 .0000 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

0 .8775 .5133 .2542 .1209 .0550 .0238 .0097 .0037 .0013 .0004 .0001

1 .1152 .3512 .3672 .2774 .1787 .1029 .0540 .0259 .0113 .0045 .0016

2 .0070 .1109 .2448 .2937 .2680 .2059 .1388 .0836 .0453 .0220 .0095

3 .0003 .0214 .0997 .1900 .2457 .2517 .2181 .1651 .1107 .0660 .0349

4 .0000 .0028 .0277 .0838 .1535 .2097 .2337 .2222 .1845 .1350 .0873

13 5 .0000 .0003 .0055 .0266 .0691 .1258 .1803 .2154 .2214 .1989 .1571

6 .0000 .0000 .0008 .0063 .0230 .0559 .1030 .1546 .1968 .2169 .2095

7 .0000 .0000 .0001 .0011 .0058 .0186 .0442 .0833 .1312 .1775 .2095

8 .0000 .0000 .0001 .0001 .0011 .0047 .0142 .0336 .0656 .1089 .1571

9 .0000 .0000 .0000 .0000 .0001 .0009 .0034 .0101 .0243 .0495 .0873

10 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0022 .0065 .0162 .0349

11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0012 .0036 .0095

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

14 0 .8687 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002 .0001

1 .1229 .3593 .3559 .2539 .1539 .0832 .0467 .0181 .0073 .0027 .0009

2 .0081 .1229 .2570 .2912 .2501 .1802 .1134 .0634 .0317 .0141 .0056

3 .0003 .0259 .1142 .2056 .2501 .2402 .1943 .1366 .0845 .0462 .0222

4 .0000 .0037 .0349 .0998 .1720 .2202 .2290 .2022 .1549 .1040 .0611

5 .0000 .0004 .0078 .0352 .0860 .1468 .1963 .2178 .2066 .1701 .1222

6 .0000 .0000 .0013 .0093 .0322 .0734 .1262 .1759 .2066 .2088 .1833

7 .0000 .0000 .0002 .0019 .0092 .0280 .0618 .1082 .1574 .1952 .2095

8 .0000 .0000 .0000 .0003 .0020 .0082 .0232 .0510 .0918 .1398 .1833

9 .0000 .0000 .0000 .0000 .0003 .0018 .0066 .0183 .0408 .0762 .1222

10 .0000 .0000 .0000 .0000 .0000 .0003 .0014 .0049 .0136 .0312 .0611

11 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0033 .0093 .0222

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0056

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0009

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

15 0 .8601 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000

1 .1303 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005

2 .0092 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032

3 .0004 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139

4 .0000 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417

5 .0000 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916

6 .0000 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527

7 .0000 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964

8 .0000 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964

9 .0000 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527

10 .0000 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916

11 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417

12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 0 .8515 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001 .0000

1 .1376 .3706 .3294 .2097 .1126 .0535 .0228 .0087 .0030 .0009 .0002

2 .0104 .1463 .2745 .2775 .2111 .1336 .0732 .0353 .0150 .0056 .0018

p



APPENDIX. 1] BINOMIAL DISTRIBUTION 303

pn x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

3 .0005 .0359 .1423 .2285 .2463 .2079 .1465 .0888 .0468 .0215 .0085

4 .0000 .0061 .0514 .1311 .2001 .2252 .2040 .1553 .1014 .0572 .0278

5 .0000 .0008 .0137 .0555 .1201 .1802 .2099 .2008 .1623 .1123 .0667

6 .0000 .0001 .0028 .0180 .0550 .1101 .1649 .1982 .1983 .1684 .1222

7 .0000 .0000 .0004 .0045 .0197 .0524 .1010 .1524 .1889 .1969 .1746

8 .0000 .0000 .0001 .0009 .0055 .0197 .0487 .0923 .1417 .1812 .1964

9 .0000 .0000 .0000 .0001 .0012 .0058 .0185 .0442 .0840 .1318 .1746

10 .0000 .0000 .0000 .0000 .0002 .0014 .0056 .0167 .0392 .0755 .1222

11 .0000 .0000 .0000 .0000 .0000 .0002 .0013 .0049 .0142 .0337 .0667

12 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0040 .0115 .0278

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0029 .0085

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

17 0 .8429 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002 .0000 .0000

1 .1447 .3741 .3150 .1893 .0957 .0426 .0169 .0060 .0019 .0005 .0001

2 .0117 .1575 .2800 .2673 .1914 .1136 .0581 .0260 .0102 .0035 .0010

3 .0006 .0415 .1556 .2359 .2393 .1893 .1245 .0701 .0341 .0144 .0052

4 .0000 .0076 .0605 .1457 .2093 .2209 .1868 .1320 .0796 .0411 .0182

5 .0000 .0010 .0175 .0668 .1361 .1914 .2081 .1849 .1379 .0875 .0472

6 .0000 .0001 .0039 .0236 .0680 .1276 .1784 .1991 .1839 .1432 .1944

7 .0000 .0000 .0007 .0065 .0267 .0668 .1201 .1685 .1927 .1841 .1484

8 .0000 .0000 .0001 .0014 .0084 .0279 .0644 .1134 .1606 .1883 .1855

9 .0000 .0000 .0000 .0003 .0021 .0093 .0276 .0611 .1070 .1540 .1855

10 .0000 .0000 .0000 .0000 .0004 .0025 .0095 .0263 .0571 .1008 .1484

11 .0000 .0000 .0000 .0000 .0001 .0005 .0026 .0090 .0242 .0525 .0944

12 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0081 .0215 .0472

13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0021 .0068 .0182

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 0 .8345 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000 .0000

1 .1517 .3763 .3002 .1704 .0811 .0338 .0126 .0042 .0012 .0003 .0001

2 .0130 .1683 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006

3 .0007 .0473 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031

4 .0000 .0093 .0700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117

5 .0000 .0014 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327

6 .0000 .0002 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708

7 .0000 .0000 .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214

8 .0000 .0000 .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669

9 .0000 .0000 .0000 .0004 .0033 .0139 .0386 .0794 .1284 .1694 .1855

10 .0000 .0000 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669

11 .0000 .0000 .0000 .0000 .0001 .0010 .0046 .0151 .0374 .0742 .1214

12 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0047 .0145 .0354 .0708

13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0045 .0134 .0327

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0117

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0031

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 0 .8262 .3774 .1351 .0456 .0144 .0042 .0011 .0003 .0001 .0000 .0000

1 .1586 .3774 .2852 .1529 .0685 .0268 .0093 .0029 .0008 .0002 .0000

2 .0144 .1787 .2852 .2428 .1540 .0803 .0358 .0138 .0046 .0013 .0003
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n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

3 .0008 .0533 .1796 .2428 .2182 .1517 .0869 .0422 .0175 .0062 .0018

4 .0000 .0112 .0798 .1714 .2182 .2023 .1491 .0909 .0467 .0203 .0074

5 .0000 .0018 .0266 .0907 .1636 .2023 .1916 .1468 .0933 .0497 .0222

6 .0000 .0002 .0069 .0374 .0955 .1574 .1916 .1844 .1451 .0949 .0518

7 .0000 .0000 .0014 .0122 .0443 .0974 .1525 .1844 .1797 .1443 .0961

8 .0000 .0000 .0002 .0032 .0166 .0487 .0981 .1489 .1797 .1771 .1442

9 .0000 .0000 .0000 .0007 .0051 .0198 .0514 .0980 .1464 .1771 .1762

10 .0000 .0000 .0000 .0001 .0013 .0066 .0220 .0528 .0976 .1449 .1762

11 .0000 .0000 .0000 .0000 .0003 .0018 .0077 .0233 .0532 .0970 .1442

12 .0000 .0000 .0000 .0000 .0000 .0004 .0022 .0083 .0237 .0529 .0961

13 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0024 .0085 .0233 .0518

14 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0082 .0222

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0022 .0074

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 0 .8179 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000

1 .1652 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000

2 .0159 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002

3 .0010 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011

4 .0000 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046

5 .0000 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148

6 .0000 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370

7 .0000 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739

8 .0000 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201

9 .0000 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0000 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762

11 .0000 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602

12 .0000 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201

13 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739

14 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0013 .0049 .0148

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

25 0 .7778 .2774 .0718 .0172 .0038 .0008 .0001 .0000 .0000 .0000 .0000

1 .1964 .3650 .1994 .0759 .0236 .0063 .0014 .0003 .0000 .0000 .0000

2 .0238 .2305 .2659 .1607 .0708 .0251 .0074 .0018 .0004 .0001 .0000

3 .0018 .0930 .2265 .2174 .1358 .0641 .0243 .0076 .0019 .0004 .0001

4 .0001 .0269 .1384 .2110 .1867 .1175 .0572 .0224 .0071 .0018 .0004

5 .0000 .0060 .0646 .1564 .1960 .1645 .1030 .0506 .0199 .0063 .0016

6 .0000 .0010 .0239 .0920 .1633 .1828 .1472 .0908 .0442 .0172 .0053

7 .0000 .0001 .0072 .0441 .1108 .1654 .1712 .1327 .0800 .0381 .0143

8 .0000 .0000 .0018 .0175 .0623 .1241 .1651 .1607 .1200 .0701 .0322

9 .0000 .0000 .0004 .0058 .0294 .0781 .1336 .1635 .1511 .1084 .0609

10 .0000 .0000 .0000 .0016 .0118 .0417 .0916 .1409 .1612 .1419 .0974

11 .0000 .0000 .0000 .0004 .0040 .0189 .0536 .1034 .1465 .1583 .1328

12 .0000 .0000 .0000 .0000 .0012 .0074 .0268 .0650 .1140 .1511 .1550

13 .0000 .0000 .0000 .0000 .0003 .0025 .0115 .0350 .0760 .1236 .1550

14 .0000 .0000 .0000 .0000 .0000 .0007 .0042 .0161 .0434 .0867 .1328

15 .0000 .0000 .0000 .0000 .0000 .0002 .0013 .0064 .0212 .0520 .0974

p
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16 .0000 .0000 .0000 .0000 .0000 .0000 .0004 .0021 .0088 .0266 .0609

17 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0031 .0115 .0322

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0009 .0042 .0143

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0013 .0053

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0016

21 0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0004

22 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

30 0 .7397 .2146 .0424 .0076 .0012 .0002 .0000 .0000 .0000 .0000 .0000

1 .2242 .3389 .1413 .0404 .0093 .0018 .0003 .0000 .0000 .0000 .0000

2 .0328 .2586 .2277 .1034 .0337 .0086 .0018 .0003 .0000 .0000 .0000

3 .0031 .1270 .2361 .1703 .0785 .0269 .0072 .0015 .0003 .0000 .0000

4 .0002 .0451 .1771 .2028 .1325 .0604 .0208 .0056 .0012 .0002 .0000

5 .0000 .0124 .1023 .1861 .1723 .1047 .0464 .0157 .0041 .0008 .0001

6 .0000 .0027 .0474 .1368 .1795 .1455 .0829 .0353 .0115 .0029 .0006

7 .0000 .0005 .0180 .0828 .1538 .1662 .1219 .0652 .0263 .0081 .0019

8 .0000 .0001 .0058 .0420 .1106 .1593 .1501 .1009 .0505 .0191 .0055

9 .0000 .0000 .0016 .0181 .0676 .1298 .1573 .1328 .0823 .0382 .0133

10 .0000 .0000 .0004 .0067 .0355 .0909 .1416 .1502 .1152 .0656 .0280

11 .0000 .0000 .0001 .0022 .0161 .0551 .1103 .1471 .1396 .0976 .0509

12 .0000 .0000 .0000 .0006 .0064 .0291 .0749 .1254 .1474 .1265 .0806

13 .0000 .0000 .0000 .0001 .0022 .0134 .0444 .0935 .1360 .1433 .1115

14 .0000 .0000 .0000 .0000 .0007 .0054 .0231 .0611 .1101 .1424 .1354

15 .0000 .0000 .0000 .0000 .0002 .0019 .0106 .0351 .0783 .1242 .1445

16 .0000 .0000 .0000 .0000 .0000 .0006 .0042 .0177 .0489 .0953 .1354

17 .0000 .0000 .0000 .0000 .0000 .0002 .0015 .0079 .0269 .0642 .1115

18 .0000 .0000 .0000 .0000 .0000 .0000 .0005 .0031 .0129 .0379 .0806

19 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0010 .0054 .0196 .0509

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0020 .0088 .0280

21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0034 .0133

22 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0055

23 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0019

24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006

25 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

*Example: PðX ¼ 3; n ¼ 5; p ¼ 0:30Þ ¼ 0:1323:

p



Poisson Distribution

Values of e
��

� e�� � e��

0.0 1.00000 2.5 .08208

0.1 .90484 2.6 .07427

0.2 .81873 2.7 .06721

0.3 .74082 2.8 .06081

0.4 .67032 2.9 .05502

0.5 .60653 3.0 .04979

0.6 .54881 3.2 .04076

0.7 .49659 3.4 .03337

0.8 .44933 3.6 .02732

0.9 .40657 3.8 .02237

1.0 .36788 4.0 .01832

1.1 .33287 4.2 .01500

1.2 .30119 4.4 .01228

1.3 .27253 4.6 .01005

1.4 .24660 4.8 .00823

1.5 .22313 5.0 .00674

1.6 .20190 5.5 .00409

1.7 .18268 6.0 .00248

1.8 .16530 6.5 .00150

1.9 .14957 7.0 .00091

2.0 .13534 7.5 .00055

2.1 .12246 8.0 .00034

2.2 .00180 8.5 .00020

2.3 .10026 9.0 .00012

2.4 .09072 10.0 .00005
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Standard Normal
Distribution
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308 STANDARD NORMAL DISTRIBUTION [APPENDIX 3

Proportions of Area for the Standard Normal Distribution

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549

0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4014

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4983 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987

3.5 .4997

4.0 .4999

*Example: For z = 1.96, shaded area is 0.4750 out of the total area of 1.0000.



Table of Random
Numbers

10097 85017 84532 13618 23157 86952 02438 76520 91499 38631 79430 64241 97959 67422 69992 68479

37542 16719 82789 69041 05545 44109 05403 64894 80336 49172 16332 44670 35089 17691 89246 26940

08422 65842 27672 82186 14871 22115 86529 19645 44104 89232 57327 34679 62235 79655 81336 85157

99019 76875 20684 39187 38976 94324 43204 09376 12550 02844 15026 32439 58537 48274 81330 11100

12807 93640 39160 41453 97312 41548 93137 80157 63606 40387 65406 37920 08709 60623 02237 16505

66065 99478 70086 71265 11742 18226 29004 34072 61196 80240 44177 51171 08723 39323 05798 26457

31060 65119 26486 47353 43361 99436 42753 45571 15474 44910 99321 72173 56239 04595 10836 95270

85269 70322 21592 48233 93806 32584 21828 02051 94557 33663 86347 00926 44915 34823 51770 67897

63573 58133 41278 11697 49540 61777 67954 05325 42481 86430 19102 37420 41976 76559 24358 97344

73796 44655 81255 31133 36768 60452 38537 03529 23523 31379 68588 81675 15694 43438 36879 73208

98520 02295 13487 98662 07092 44673 61303 14905 04493 98086 32533 17767 14523 52494 24826 75246

11805 85035 54881 35587 43310 48897 48493 39808 00549 33185 04805 05431 94598 97654 16232 64051

83452 01197 86935 28021 61570 23350 65710 06288 35963 80951 68953 99634 81949 15307 00406 26898

88685 97907 19078 40646 31352 48625 44369 86507 59808 79752 02529 40200 73742 08391 49140 45427

99594 63268 96905 28797 57048 46359 74294 87517 46058 18633 99970 67348 49329 95236 32537 01390

65481 52841 59684 67411 09243 56092 84369 17468 32179 74029 74717 17674 90446 00597 45240 87379

80124 53722 71399 10916 07959 21225 13018 17727 69234 54178 10805 35635 45266 61406 41941 20117

74350 11434 51908 62171 93732 26958 02400 77402 19565 11664 77602 99817 28573 41430 96382 01758

69916 62375 99292 21177 72721 66995 07289 66252 45155 48324 32135 26803 16213 14938 71961 19476

09893 28337 20923 87929 61020 62841 31374 14225 94864 69074 45753 20505 78317 31994 98145 36168
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Student’s
t Distribution

Proportions of Area for the t Distributions

df 0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

df 0.10 0.05 0.025 0.01 0.005

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

1 1.282 1.645 1.960 2.326 2.576

*Example: For the shaded area to represent 0.05 of the total area of 1.0, value of t with 10 degrees of freedom is 1.812
Source: From Table III of Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed., 1974,
published by Longman Group Ltd., London (previously published by Oliver & Boyd, Edinburgh), by permission of the authors
and publishers.
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Chi-Square Distribution

311

Proportions of Area for the �2
Distributions

Proportion of Area

df 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005

1 0.00004 0.00016 0.00098 0.00393 0.0158 0.455 2.71 3.84 5.02 6.63 7.88

2 0.0100 0.0201 0.0506 0.103 0.211 1.386 4.61 5.99 7.38 9.21 10.60

3 0.072 0.115 0.216 0.352 0.584 2.366 6.25 7.81 9.35 11.34 12.84

4 0.207 0.297 0.484 0.711 1.064 3.357 7.78 9.49 11.14 13.28 14.86

5 0.412 0.554 0.831 1.145 1.61 4.251 9.24 11.07 12.83 15.09 16.75

6 0.676 0.872 1.24 1.64 2.20 5.35 10.64 12.59 14.45 16.81 18.55

7 0.989 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96

9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.73 26.76

12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32

15 4.60 5.23 6.26 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 10.86 17.34 25.99 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
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312 CHI-SQUARE DISTRIBUTION [APPENDIX 6

Proportion of Area

df 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005

21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40

22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80

23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18

24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56

25 10.52 11.52 13.12 14.61 16.47 24.34 34.38 37.65 40.65 44.31 46.93

26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29

27 11.81 12.83 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.64

28 12.46 13.56 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99

29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34

30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77

50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49

60 35.53 37.43 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95

70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.4 104.2

80 51.17 53.54 51.17 60.39 64.28 79.33 98.58 101.9 106.6 112.3 116.3

90 59.20 61.75 65.65 69.13 73.29 89.33 107.6 113.1 118.1 124.1 128.3

100 67.33 70.06 74.22 77.93 82.36 99.33 118.5 124.3 129.6 135.8 140.2

*Example: For the shaded area to represent 0.05 of the total area of 1.0 under the density function, the value of x2 is 18.31 when

df ¼ 10:

Source: From Table IV of Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed., 1974,
published by Longman Group Ltd., London (previously published by Oliver & Boyd, Edinburgh), by permission of the authors
and publishers.
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Values of F Exceeded with Probabilities of 5 and 1 Percent

df (numerator)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 1
1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254

4,052 4,999 5,403 5,625 5,764 5,859 5,928 5,981 6,022 6,056 6,082 6,106 6,142 6,169 6,208 6,234 6,261 6,286 6,302 6,323 6,334 6,352 6,361 6,366

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.47 19.47 19.48 19.49 19.49 19.50 19.50

98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42 99.43 99.44 99.45 99.46 99.47 99.48 99.48 99.49 99.49 99.49 99.50 99.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66 8.64 8.62 8.60 8.58 8.57 8.56 8.54 8.54 8.53

34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80 5.77 5.74 5.71 5.70 5.68 5.66 5.65 5.64 5.63

21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.57 13.52 13.48 13.46

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56 4.53 4.50 4.46 4.44 4.42 4.40 4.38 4.37 4.36

16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.15 10.05 9.96 9.89 9.77 9.68 9.55 9.47 9.38 9.29 9.24 9.17 9.13 9.07 9.04 9.02

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87 3.84 3.81 3.77 3.75 3.72 3.71 3.69 3.68 3.67

13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.60 7.52 7.39 7.31 7.23 7.14 7.09 7.02 6.99 6.94 6.90 6.88

7 5.59 4.74 4.34 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44 3.41 3.38 3.34 3.32 3.29 3.28 3.25 3.24 3.23

12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47 6.35 6.27 6.15 6.07 5.98 5.90 5.85 5.78 5.75 5.70 5.67 5.65

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96 2.94 2.93

11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67 5.56 5.48 5.36 5.28 5.20 5.11 5.06 5.00 4.96 4.91 4.88 4.86

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93 2.90 2.86 2.82 2.80 2.77 2.76 2.73 2.72 2.71

10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11 5.00 4.92 4.80 4.73 4.64 4.56 4.51 4.45 4.41 4.36 4.33 4.31

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77 2.74 2.70 2.67 2.64 2.61 2.59 2.56 2.55 2.54

10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71 4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.91

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65 2.61 2.57 2.53 2.50 2.47 2.45 2.42 2.41 2.40

9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40 4.29 4.21 4.10 4.02 3.94 3.86 3.80 3.74 3.70 3.66 3.62 3.60

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54 2.50 2.46 2.42 2.40 2.36 2.35 2.32 2.31 2.30

9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16 4.05 3.98 3.86 3.78 3.70 3.61 3.56 3.49 3.46 3.41 3.38 3.36

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46 2.42 2.38 2.34 2.32 2.28 2.26 2.24 2.22 2.21

9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.85 3.78 3.67 3.59 3.51 3.42 3.37 3.30 3.27 3.21 3.18 3.16

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39 2.35 2.31 2.27 2.24 2.21 2.19 2.16 2.14 2.13

8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.70 3.62 3.51 3.43 3.34 3.26 3.21 3.14 3.11 3.06 3.02 3.00

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33 2.29 2.25 2.21 2.18 2.15 2.12 2.10 2.08 2.07

8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36 3.29 3.20 3.12 3.07 3.00 2.97 2.92 2.89 2.87

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28 2.24 2.20 2.16 2.13 2.09 2.07 2.04 2.02 2.01

8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25 3.18 3.10 3.01 2.96 2.98 2.86 2.80 2.77 2.75

(Continued)
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df (numerator)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 1
17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23 2.19 2.15 2.11 2.08 2.04 2.02 1.99 1.97 1.96

8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16 3.08 3.00 2.92 2.86 2.79 2.76 2.70 2.67 2.65

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19 2.15 2.11 2.07 2.04 2.00 1.98 1.95 1.93 1.92

8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07 3.00 2.91 2.83 2.78 2.71 2.68 2.62 2.59 2.57

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15 2.11 2.07 2.02 2.00 1.96 1.94 1.91 1.90 1.88

8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00 2.92 2.84 2.76 2.70 2.63 2.60 2.54 2.51 2.49

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12 2.08 2.04 1.99 1.96 1.92 1.90 1.87 1.85 1.84

8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.05 2.94 2.86 2.77 2.69 2.63 2.56 2.53 2.47 2.44 2.42

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09 2.05 2.00 1.96 1.93 1.89 1.87 1.84 1.82 1.81

8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17 3.07 2.99 2.88 2.80 2.72 2.63 2.58 2.51 2.47 2.42 2.38 2.36

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07 2.03 1.98 1.93 1.91 1.87 1.84 1.81 1.80 1.78

7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 2.42 2.37 2.33 2.31

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04 2.00 1.96 1.91 1.88 1.84 1.82 1.79 1.77 1.76

7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78 2.70 2.62 2.53 2.48 2.41 2.37 2.32 2.28 2.26

24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02 1.98 1.94 1.89 1.86 1.82 1.80 1.76 1.74 1.73

7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74 2.66 2.58 2.49 2.44 2.36 2.33 2.27 2.23 2.21

25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.16 2.11 2.06 2.00 1.96 1.92 1.87 1.84 1.80 1.77 1.74 1.72 1.71

7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70 2.62 2.54 2.45 2.40 2.32 2.29 2.23 2.19 2.17

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99 1.95 1.90 1.85 1.82 1.78 1.76 1.72 1.70 1.69

7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66 2.58 2.50 2.41 2.36 2.28 2.25 2.19 2.15 2.13

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97 1.93 1.88 1.84 1.80 1.76 1.74 1.71 1.68 1.67

7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63 2.55 2.47 2.38 2.33 2.25 2.21 2.16 2.12 2.10

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96 1.91 1.87 1.81 1.78 1.75 1.72 1.69 1.67 1.65

7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 2.80 2.71 2.60 2.52 2.44 2.35 2.30 2.22 2.18 2.13 2.09 2.06

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94 1.90 1.85 1.80 1.77 1.73 1.71 1.68 1.65 1.64

7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57 2.49 2.41 2.32 2.27 2.19 2.15 2.10 2.06 2.03

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93 1.89 1.84 1.79 1.76 1.72 1.69 1.66 1.64 1.62

7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 2.74 2.66 2.55 2.47 2.38 2.29 2.24 2.16 2.13 2.07 2.03 2.01

32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91 1.86 1.82 1.76 1.74 1.69 1.67 1.64 1.61 1.59

7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51 2.42 2.34 2.25 2.20 2.12 2.08 2.02 1.98 1.96

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89 1.84 1.80 1.74 1.71 1.67 1.64 1.61 1.59 1.57

7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47 2.38 2.30 2.21 2.15 2.08 2.04 1.98 1.94 1.91

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87 1.82 1.78 1.72 1.69 1.65 1.62 1.59 1.56 1.55

7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43 2.35 2.26 2.17 2.12 2.04 2.00 1.94 1.90 1.87
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df (numerator)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 1
38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85 1.80 1.76 1.71 1.67 1.63 1.60 1.57 1.54 1.53

7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40 2.32 2.22 2.14 2.08 2.00 1.97 1.90 1.86 1.84

40 4.07 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84 1.79 1.74 1.69 1.66 1.61 1.59 1.55 1.53 1.51

7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37 2.29 2.20 2.11 2.05 1.97 1.94 1.88 1.84 1.81

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82 1.78 1.73 1.68 1.64 1.60 1.57 1.54 1.51 1.49

7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35 2.26 2.17 2.08 2.02 1.94 1.91 1.85 1.80 1.78

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81 1.76 1.72 1.66 1.63 1.58 1.56 1.52 1.50 1.48

7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32 2.24 2.15 2.06 2.00 1.92 1.88 1.82 1.78 1.75

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80 1.75 1.71 1.65 1.62 1.57 1.54 1.51 1.48 1.46

7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30 2.22 2.13 2.04 1.98 1.90 1.86 1.80 1.76 1.72

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79 1.74 1.70 1.64 1.61 1.56 1.53 1.50 1.47 1.45

7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28 2.20 2.11 2.02 1.96 1.88 1.84 1.78 1.73 1.70

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78 1.74 1.69 1.63 1.60 1.55 1.52 1.48 1.46 1.44

7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26 2.18 2.10 2.00 1.94 1.86 1.82 1.76 1.71 1.68

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75 1.70 1.65 1.59 1.56 1.50 1.48 1.44 1.41 1.39

7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20 2.12 2.03 1.93 1.87 1.79 1.74 1.68 1.63 1.60

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72 1.67 1.62 1.56 1.53 1.47 1.45 1.40 1.37 1.35

7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15 2.07 1.98 1.88 1.82 1.74 1.69 1.62 1.56 1.53

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70 1.65 1.60 1.54 1.51 1.45 1.42 1.38 1.35 1.32

6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11 2.03 1.94 1.84 1.78 1.70 1.65 1.57 1.52 1.49

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68 1.63 1.57 1.51 1.48 1.42 1.39 1.34 1.30 1.28

6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06 1.98 1.89 1.79 1.73 1.64 1.59 1.51 1.46 1.43

125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.95 1.90 1.86 1.83 1.77 1.72 1.65 1.60 1.55 1.49 1.45 1.39 1.36 1.31 1.27 1.25

6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 2.23 2.15 2.03 1.94 1.85 1.75 1.68 1.59 1.54 1.46 1.40 1.37

150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.76 1.71 1.64 1.59 1.54 1.47 1.44 1.37 1.34 1.29 1.25 1.22

6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30 2.20 2.12 2.00 1.91 1.83 1.72 1.66 1.56 1.51 1.43 1.37 1.33

200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 1.74 1.69 1.62 1.57 1.52 1.45 1.42 1.35 1.32 1.26 1.22 1.19

6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 2.17 2.09 1.97 1.88 1.79 1.69 1.62 1.53 1.48 1.39 1.33 1.28

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.91 1.78 1.72 1.67 1.60 1.54 1.49 1.42 1.38 1.32 1.28 1.22 1.16 1.13

6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23 2.12 2.04 1.92 1.84 1.74 1.64 1.57 1.47 1.42 1.32 1.24 1.19

1000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 1.70 1.65 1.58 1.53 1.47 1.41 1.36 1.30 1.26 1.19 1.13 1.08

6.66 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20 2.09 2.01 1.89 1.81 1.71 1.61 1.54 1.44 1.38 1.28 1.19 1.11

1 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57 1.52 1.46 1.40 1.35 1.28 1.24 1.17 1.11 1.00

6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87 1.79 1.69 1.59 1.52 1.41 1.36 1.25 1.15 1.00

Source: Reprinted with permission from George W. Snedecor and William G. Cochran, Statistical Methods, 6th ed., # 1967, by the Iowa State University Press, Ames, Iowa.
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Significance Points of dL and dU : 5% Significance Points of dL and dU : 1%

k0 ¼ 1 k0 ¼ 2 k0 ¼ 3 k0 ¼ 4 k0 ¼ 5 k0 ¼ 1 k0 ¼ 2 k0 ¼ 3 k0 ¼ 4 k0 ¼ 5
n dL dU dL dU dL dU dL dU dL dU n dL dU dL dU dL dU dL dU dL dU
15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21 15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15 16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10 17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06 18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80

19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02 19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77

20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99 20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96 21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71

22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69

23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90 24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89 25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88 26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86 27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85 28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84 29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83 31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82 32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81 33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81 34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80 35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78 45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77 50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77 55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77 60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77 65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77 70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77 75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77 85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78 90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78 95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78 100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Note: k0 ¼ number of explanatory variables excluding the constant term.
Source: J. Durbin and G. S. Watson, ‘‘Testing for Serial Correlation in Least Squares Regression,’’ Biometrika, 38, 159–177 (1951). Reprinted with the permission of the author and the

Biometrika trustees.



Wilcoxon W

Wilcoxon Signed Rank Test: Left- and Right-Tail Critical Values

Two-Tail Test

Probability: 0.2 0.1 0.05 0.02 0.01

n One-Tail Test

Probability: 0.1 0.05 0.025 0.01 0.005

4 1, 9 0, 10 0, 10 0, 10 0, 10

5 3, 12 1, 14 1, 15 0, 15 0, 15

6 4, 17 3, 18 1, 20 0, 21 0, 21

7 6, 22 4, 24 3, 25 1, 27 0, 28

8 9, 27 6, 30 4, 32 2, 34 1, 35

9 11, 34 9, 36 6, 39 4, 41 2, 43

10 15, 40 11, 44 9, 46 6, 49 4, 51

11 18, 48 14, 52 11, 55 8, 58 6, 60

12 22, 56 18, 60 14, 64 10, 68 8, 70

13 27, 64 22, 69 18, 73 13, 78 10, 81

14 32, 73 26, 79 22, 83 16, 89 13, 92

15 37, 83 31, 89 26, 94 20, 100 16, 104

16 43, 93 36, 100 30, 106 24, 112 20, 116

17 49, 104 42, 111 35, 118 28, 125 24, 129

18 56, 115 48, 123 41, 130 33, 138 28, 143

19 63, 127 54, 136 47, 143 38, 152 33, 157

20 70, 140 61, 149 53, 157 44, 166 38, 172

Source: R. L. McCormack, ‘‘Extended Tables of the Wilcoxon Matched Pairs Signed Rank Statistics.’’ J. Am. Stat. Assoc. 60
(1965), pp. 864–871.

For larger sample sizes, standard normal tables can be used for the test statistic

z ¼
W � nðnþ 1Þ

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ

24

r
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320 WILCOXON W [APPENDIX 9

Wilcoxon Signed Rank Test: Left- and Right-Tail Critical Values (Two Sample Test) 5% and 10% significance levels

(2.5% and 5% for One-Tail Test, n1 is the smaller sample)

n1 ¼ 3 4 5 6 7 8 9 10

n2 ¼ 3 5, 16 6, 18 6, 21 7, 23 7, 26 8, 28 8, 31 9, 33

6, 15 7, 17 7, 20 8, 22 9, 24 9, 27 10, 20 11, 31

4 6, 18 11, 25 12, 28 12, 32 13, 35 14, 38 15, 41 16, 44

7, 17 12, 24 13, 27 14, 30 15, 33 16, 36 17, 39 18, 42

5 6, 21 12, 28 18, 37 19, 41 20, 45 21, 49 22, 53 24, 56

7, 20 13, 27 19, 36 20, 40 22, 43 24, 46 25, 50 26, 54

6 7, 23 12, 32 19, 41 26, 52 28, 56 29, 61 31, 65 32, 70

8, 22 14, 30 20, 40 28, 50 30, 54 32, 58 33, 63 35, 67

7 7, 26 13, 35 20, 45 28, 56 37, 68 39, 73 41, 78 43, 83

9, 24 15, 33 22, 43 30, 54 39, 66 41, 71 43, 76 46, 80

8 8, 28 14, 38 21, 49 29, 61 39, 73 49, 87 51, 93 54, 98

9, 27 16, 36 24, 46 32, 58 41, 71 52, 84 54, 90 57, 95

9 8, 31 15, 41 22, 53 31, 65 41, 78 51, 93 63, 108 66, 114

10, 29 17, 39 25, 50 33, 63 43, 76 54, 90 66, 105 69, 111

10 9, 33 16, 44 24, 56 32, 70 43, 83 54, 98 66, 114 79, 131

11, 31 18, 42 26, 54 35, 67 46, 80 57, 95 69, 111 83, 127

Source: F. Wilcoxon and R. A. Wilcox. Some Approximate Statistical Procedures, American Cyanamid Company, 1964.

For larger sample sizes, standard normal tables can be used for the test statistic:

z ¼
W � n1ðnþ 1Þ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðnþ 1Þ

12

r



Kolmogorov–Smirnov
Critical Values

Kolmogorov-Smirnov Critical Values for Various Significance Levels

n 0.1 0.05 0.01

1 0.950 0.975 0.995

2 0.776 0.842 0.929

3 0.642 0.708 0.828

4 0.564 0.624 0.733

5 0.510 0.565 0.669

6 0.470 0.521 0.618

7 0.438 0.486 0.577

8 0.411 0.457 0.543

9 0.388 0.432 0.514

10 0.368 0.410 0.490

11 0.352 0.391 0.468

12 0.338 0.375 0.45

13 0.325 0.361 0.433

14 0.314 0.349 0.418

15 0.304 0.338 0.404

16 0.295 0.328 0.392

17 0.286 0.318 0.381

18 0.278 0.309 0.371

19 0.272 0.301 0.363

20 0.264 0.294 0.356

25 0.24 0.27 0.32

30 0.22 0.24 0.29

35 0.21 0.23 0.27

>35 1.22 1.36 1.63ffiffiffi
n

p ffiffiffi
n

p ffiffiffi
n

p

Source: F. J. Massey, Jr., ‘‘Kolmogorov-Smirnov Test for Goodness-of-Fit,’’ J. Am. Stat. Assoc. 46 (1951), pp 68–78.
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ADF Critical Values

Augmented Dickey-Fuller (ADF) Test Left-Hand Critical Values (t test)
and Right-Hand Critical Values (F Test): 5% Level of Significance

n

No Intercept,

No Trend

Intercept,

No Trend

Intercept,

Trend

F

Statistic

25 �2.26 �3.33 �3.95 7.24

50 �2.25 �3.22 �3.80 6.73

100 �2.24 �3.17 �3.73 6.49

250 �2.23 �3.14 �3.69 6.34

500 �2.23 �3.13 �3.68 6.30

1 �2.23 �3.12 �3.66 6.25

Source: W. A. Fuller, Introduction to Statistical Time Series, Wiley, New York, 1976; D. A. Dickey and W. A. Fuller, ‘‘Likelihood
Ratio Statistics for Autoregressive Time Series with a Unit Root,’’ Econometrica 49 (1981), pp. 1057–1072.
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Data Sources on theWeb

The following are selected data sources on the Web used in this text*.

Sachs and Warner Openess Dates

http://www.nuff.ox.ac.uk/Economics/Growth/datasets/sachs/sachs.htm

World Bank Data and Current World Development Indicators

http://www.worldbank.org/data/

St. Louis Federal Reserve, Economic Time-Series Data Base

http://www.stls.frb.org/fred/

Bureau of Labor Statistics

http://www.bls.gov/

Federal Reserve Board of Governors

http://www.federalreserve.gov/releases/

Statistical Abstract of the United States

http://www.census.gov/prod/www/statistical-abstract-us.html

Economic Report of the President

http://www.gpo.ucop.edu/catalog/

Penn-World Tables

http://cansim.epas.utoronto.ca:5680/pwt/pwt.html

NASA Goddard Institute for Space Studies

http://www.giss.nasa.gov/data/update/gistemp/station_data/

New York Stock Exchange

http://www.nyse.com

Yahoo.com Stock Quotes

http://quote.yahoo.com

*Since Websites often change, we will keep an updated list on the textbook Website.
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A priori (classical) probability, 37,
42–44, 51

A priori theoretical criteria, 6
Absolute dispersion, 29
Acceptance region:
in hypothesis testing, 87–89, 95–104
in multiple regression analysis,

171–172
Adjusted R2 (R, adjusted coefficient of

multiple determination), 157,
170–171

Aikake’s information criteria (AIC),
244, 248, 253–254, 261–262, 265

Almon lag model, 183, 194–196, 205
Alternative hypothesis:
in hypothesis testing, 87–89, 95–96,

99–101
in multiple regression analysis, 171
in simple regression analysis, 143

Analysis of variance (see ANOVA)
ANOVA (analysis of variance) tables,

92–93, 109–115
Arithmetic mean (average), 11
ARMA, 242–245, 249–254
Asymptotic unbiasedness, 148–149
Augmeted Dickey-Fuller (ADF),

246–247, 257
Autocorrelation (serial correlation):
and errors in variables, 217
as problem in regression analysis,

208–209, 215–220, 242
Autoregression function (ACF),

244–245, 251–253
Autoregression, 242, 249–251
Average (arithmetic mean), 11
Average deviation, 13, 24–25

Bayes’ theorem, 39, 49–50
Behavioral (structural) equations, 228,

231–233
Best linear unbiased estimators (see

BLUE)
Best unbiased (efficient) estimators,

133–134, 147–149
Bias, 133–134, 147–149, 228, 231
Biased estimates, 147–149, 183
and errors in variables, 221
heteroscedasticity and, 207
Koyck lag model and, 194

Bimodal distribution, 20
Binary choice models, 184–185, 198–200
Binomial distribution,
as discrete probability distribution,

39–40, 51–55, 64–65
in estimation, 70, 79–81
in hypothesis testing, 88–89, 90–92,

98–99, 105–106
normal distribution and, 60

Binomial distribution (Cont.):
Poisson distribution distinguished

from, 55–56
Binomial probabilities, 300–305
BLUE (best linear unbiased estimators):
in multiple regression analysis, 162
in simple regression analysis, 133–134,

147–149
Box-Pierce statistic, 244, 253

Causality, 248–249, 260–262, 264–265
Central-limit theorem, 68, 75, 84
Central tendency, 19–24, 34
Chebyshev’s theorem (inequality), 42,

62, 66, 71, 83–84, 86
Chi-square test:
of goodness of fit and independence,

90–92, 104–109, 120–122
proportions of area of, 311–312

Class boundaries (exact limits), 18
Class intervals:
in descriptive statistics, 9, 11, 16–18
in hypothesis testing, 106–107

Classical (a priori) probability, 37,
42–44, 51

Cluster sampling, 72
Cobb-Douglas production function, 187,

210–211
Coding, 22, 27
Coefficients, 5–7
(See also specific coefficients)

Cointegration, 247–248, 258–260, 264
Collection of data, 2
Collinear independent variable, 210
Column (sample) mean, 92, 109–114
Combinations, 50
Conditional forecast, 197
Conditional probability, 38, 47–48
Confidence intervals:
autocorrelation and, 208, 216
and efficient estimator, 147–148
in estimation, 69–70, 76–81, 83–85
in forecast, 183–184, 197–198
for the mean using t

distribution,70–71, 81–84, 86
in multiple regression analysis,

165–169
in simple regression analysis, 144

Confidence level:
in estimation, 69, 76–80, 83–85
in forecast, 197–198
in hypothesis testing, 87–88, 95–99

Confidence limits, 77
Consistency, 148–149
Consistent estimators, 134, 148–149,

186–187
Contingency-table tests, 90–92
Continuity, correction for, 92

Continuous distribution, 41, 57–62, 105
Continuous probability distribution,

41–42, 57–62, 65–66
Continuous random variables (see

Probability distribution)
Continuous variables, 41, 51, 57, 61
Correlation, coefficient of:
multicollinearity and, 210–211
partial, in multiple regression analysis,

158–159, 172–173, 179
rank, 132–133, 146–147
simple, in multiple regression analysis,

158–159
in simple regression analysis, 132–133,

132, 144–147
Correlogram, 244
Counting techniques, 39, 50, 64
Covariance, 16, 129, 145
Critical region (see Rejection region)
Cross-sectional analysis, 135
Cross-sectional data, 6, 213
Cumulative frequency distribution, 9, 19
Cumulative normal function (probit

model), 184, 199

Data formats, 266, 271, 292
Deciles, 23–24
Degrees of freedom
in distributed lag model, 193
in dummy variable, 189–190
in estimation, 70–71, 81–84
in forecast, 183–184, 197
heteroscedasticity and, 207, 213
in hypothesis testing, 88, 92–93,

102–103, 109–115
in multiple regression analysis, 158,

171–172
in simple regression analysis, 131, 143

Delimiters, 266, 271
Demand function, 5–7
Density function (see Probability

distribution)
Dependent variables, 1, 3–6, 44, 49
autocorrelation and, 216–217
in distribution lag model, 193
endogenous variable as, 228–229
and errors in variables, 221–222
in forecasting, 197
(See also Forecasting)

in multiple regression analysis, 154
(See also Multiple regression
analysis)

multiplication for, 38, 44–49
qualitative, 184, 198–199
in simple regression analysis, 128,

134–136
(See also Simple regression
analysis)
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Dependent variables (Cont.):
(See also Simultaneous-equations
methods)

Descriptive statistics, 1–3, 9–35
frequency distributions in, 9–10,

16–19, 33
measures of central tendency in,

11–12, 19–24, 34
measures of dispersion in, 13–15,

24–29, 35
Determination, coefficient of ðR2Þ:
and autocorrelation, 218
multicollinearity and, 206, 210
in multiple regression analysis, 157,

169–171, 179
in simple regression analysis, 132–133,

144–145
Discrete distribution, 17, 39–40, 51–57,

64–65
Discrete random variables, 39, 51
Disjoint (mutually exclusive) events,

37–38, 44–46, 63
Dispersion, 13–15, 24–29, 35
Distributed lag models, 182–183,

193–196, 204–205
Distribution: central tendency of, 11
in simple regression analysis, 143
(See also specific distributions)

Distribution curve (ogive), 9, 17, 19
Disturbance (see Error term)
Double-lag form (model), 181–182,

186–187, 202
Double-lag linear model (form),

181–182, 186–189
Dummy variables, 182, 189–193,

203–204
Durbin two-stage method, 217
Durbin-Watson statistic, 208, 216–217,

318

Econometric criteria, 6–7
Econometrics:
methodology of, 1, 2, 5–8
statistics and, 1–5, 7–8

Econometrics examination, 294–299
Economic theory, 1, 4
Efficient (best unbiased) estimators,

147–149, 183
Empirical probability (see Relative

frequency distribution)
Empirical sampling distribution of the

mean, 74
Endogenous variables, 228–229
Error correction, 247–248, 258–260, 264
Error sum of squares (ESS), 110–115
heteroscedasticity and, 207–208,

213–214
in simple regression analysis, 132, 144

Error term (stochastic term,
disturbance), 1, 3–6

autocorrelation and, 208–209,
215–220

in distributed lag model, 193–194
and errors in variables, 209
forecasting errors and, 197
in multiple regression analysis, 165
and qualitative dependent variable,

199
in recursive models, 232–233
in simple regression analysis, 128,

134–136, 137–138

Error term (Cont.):
variance of, and heteroscedasticity,

207, 212
(See also Standard deviation)

Errors in variables, 209–210, 221–222,
226–227

ESS (see Error sum of squares)
Estimate(s)
defined, 76
in descriptive statistics, 25, 27
error of the, 79, 130–131, 155
in simple regression analysis, 128–130
(See also specific types of estimates and

estimators)
Estimated demand function, 6
Estimated parameters:
functional form and, 186–187
in multiple regression analysis,

172–173
Estimation, 1, 2, 67–86
confidence intervals for the mean

using t distribution, 70–71, 81–84,
86

indirect least squares, 229–230,
235–237, 240–241

sampling, 67, 71–72, 84
sampling distribution of the mean,

67–69, 72–76, 84
two-stage least squares in, 230,

237–238, 241
using normal distribution, 69–70,

76–81, 85
(See also Forecasting)

Estimator(s):
defined, 76
in multiple regression analysis, 154
in simple regression analysis, 140–141
(See also specific types of estimates and

estimators)
Eviews, 268–269, 277–282, 292
Exact limits (class boundaries), 18
Exact linear relationship, 128, 172–173
Exactly identified equations, 229–230,

233–235
Exogenous variables, 228–230
Expected frequencies, 90–92, 104–109
Expected value:
in binomial distribution, 40, 51, 54–55,

64
of continuous probability distribution,

57
of error term in simple regression

analysis, 128
of Poisson distribution, 55, 65

Explained variation (regression sum of
squares), 110–115, 132, 144, 157

Explanatory variables (see Independent
variables)

Exponential distribution, 42, 61–62

F , value of, 313
F distribution, 110
heteroscedasticity and, 207–208
in hypothesis testing, 92–93, 109–110
in multiple regression analysis, 158

F ratio, 92–93, 109–110, 158, 171–172
Finite correlation factor, 68, 73
Finite population, 67, 73
First-order autocorrelation, 208–209,

215–220
Fitting a line, 128–129, 134–135

Fixed format, 266, 271
Forecast-error variance, 183–184,

197–198
Forecasting, 4, 6, 7, 183–184, 197–198,

205
Fourth moment, 15
Frequency distributions, 1, 9–10, 16–19,

33, 104–106
(See also Relative frequency

distribution)
Frequency polygon, 1, 9, 17–19
Functional form, 181–182, 186–189, 202

Gauss-Markov theorem, 133, 148
Geometric mean, 11, 22–23
Goldfield-Quandt test for

heteroscedasticity, 213
Goodness of fit:
chi-square test of independence and,

90–92, 104–109, 120–121
in hypothesis testing, 109
in simple regression analysis, 132–133,

144–147, 153
Grand mean, 92, 109–115
Granger causality, 248–249, 260–262,

264–265
Grouped data, 11–14, 19–29, 51–52

Harmonic mean, 11, 23
Heteroscedasticity, 207–208, 212–215,

223–225
High multicollinearity, 210
Histogram, 1, 9, 16–19
Homoscedastic disturbances, 212
Hypergeometric distribution, 40, 55
Hypothesis testing, 71–72, 87–127
analysis of variance in, 92–93,

109–115, 122
chi-square test of goodness of fit and

independence in, 90–92, 104–109,
120–122

defined, 1, 2, 71–72, 87, 95–96, 119
for differences between two means or

proportions, 89–90, 101–104, 120
overall significance of regression in,

171
about population mean and

proportion, 87–89, 96–101,
119–120

(See also Multiple regression analysis;
Simple regression analysis)

Identification, 229, 233–235, 239–240
ILS (indirect least squares), 229–230,

235–237, 240–241
Income elasticity, 140–141, 175–178,

181–182, 187
Inconsistent estimators (see Biased

estimates)
Independent (explanatory) variables, 1,

4, 6, 38
autocorrelation and, 208, 216–217
binomial and Poisson distributions

and, 55–56
in distributed lag models, 193
and errors in variables, 221-222
exogenous variables as, 228–229
in forecasting, 197
(See also Forecasting)

heteroscedasticity and, 207–208,
212–215
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Independent (explanatory) variables
(Cont.):

hypothesis testing and, 90–92,
104–105

lagged, 209–210, 221–222
(See also Simultaneous-equations
methods)

multicollinearity and, 206–207,
210–212

multiple regression analysis, 154, 161
(See also Multiple regression
analysis)

multiplication for, 38, 44–49
qualitative, dummy variables as, 182,

189–193, 203–204
qualitative dependent variables and,

184
in simple regression analysis, 128,

134–136
(See also Simple regression
analysis)

Indirect least squares (ILS), 229–230,
235–237, 240–241

Inductive reasoning, 2
Inferential statistics, 1–3
(See also Estimation; Hypothesis

testing)
Infinite population, 74, 84
Instrumental variables, 209–210,

221–222
Interquartile range, 13, 24
Interval estimates, 69–70, 76–81
Inverse least squares, 222

Joint moment, 16
Joint probability, 38

Kolmogorov-Smirnov test, 94–95,
118–119, 123

Koyck lag model, 183, 193–194, 204
Kruskal-Wallis test, 94, 117–118, 123
Kurtosis, 15–16, 31, 35

Lack of bias, 147–149
Lagged variables, 209–210, 221–222
(See also Simultaneous-equations

methods)
Left-tail test, 88, 98, 102
Leptokurtic curve, 15, 31
Likelihood function, 199
Likelihood ratio index, 185–186, 200
Linear regression analysis, 128, 134
(See also Regression analysis)

Linear relationship, 154
Log-likelihood function, 184, 198–199
Logistic function (logit), 184–185
Logit model (logistic function), 184–185,

199–200

Marginal effect, 185, 200, 205
Mathematics, 1, 4, 7
Matrix notation, 159–160, 173–175, 179
Maximum likelihood, 184, 199
Mean(s), 11, 12
and analysis of variance, 92
in binomial distribution, 39, 54–55
confidence interval for the, using t

distribution, 70–71, 81–84, 86
in descriptive statistics, 15–16, 19–24

Mean(s) (Cont.):
of error term in simple regression

analysis, 128
hypothesis testing for differences

between two proportions or,
89–90, 101–104, 120

in normal distribution, 41–42
of normal distribution as a continuous

probability distribution, 57–58
in Poisson distribution, 40, 57–58
sampling distribution of the (see

Sampling distribution of the
mean)

in simple regression analysis, 141–142
(See also Estimation, Expected value;

specific means)
Mean absolute deviation (MAD), 13
Mean-square error (MSE):
in hypothesis testing, 92, 110–113
in simple regression analysis, 134,

148–149
Measurement errors, 221–222
Median, 11, 12, 15, 19–24
Mesokurtic curve, 15, 57
Microsoft Excel, 267–268, 272–276, 292
Mode, 11, 12, 15, 19–24
Moving average, 242–244, 249–251
MSE (see Mean-square error)
Multicollinearity, 206–207, 210–212,

222–223
Multiple events, 37–39, 44–50, 63–64
Multiple regression analysis, 4, 134,

154–180
coefficient of multiple determination

in, 157, 169–171, 179
forecasting in, 183–184
partial-correlation coefficient in,

158–159, 172–173, 179
test of overall significance of the

regression in, 158, 171–172, 179
tests of significance of parameter

estimates in, 155, 165–169, 179
three-variable linear model as,

154–155, 161–165, 178
Multiplication:
for dependent events, 38, 45–50
for independent events, 38, 45, 46, 49

Mutually exclusive (disjoint) events,
37–38, 44–46, 63

Negative correlation, 132–133, 144–145
Negative linear relationship, 172–173
Negatively skewed distribution, 15,

29–30
Nonlinear estimators, 147–148
Nonlinear functions, 181
Nonlinear regression analysis, 134
Nonoccurrence probability, 36
Nonparametric testing, 94–95, 115–119,

122–123
Normal distribution:
as continuous probability distribution,

41–42, 57–62, 65–66
or error term in simple regression

analysis, 128
in estimation, 69–70, 85
in hypothesis testing, 88, 90, 92,

94–95, 96–99, 106–107
in simple regression analysis, 131, 143

Normal distribution (Cont.):
standard, 41–42, 307

Normal equations, 128–129
Null hypothesis:
in hypothesis testing, 87–89, 90,

93–94, 98, 108, 110, 113–115
in multiple regression analysis,

171–172
in simple regression analysis, 143

Observed frequencies, 90–92, 104–109
OC (operating-characteristic) curve, 89,

100–101, 120
Ogive (distribution curve), 9, 17–19
OLS (see Ordinary least-squares

method)
One-factor (one-way) analysis of

variance, 93
One-tail test, 88, 98, 102, 104
One-way (one-factor) analysis of

variance, 93
One-way ANOVA table, 109–115
Operating-characteristic (OC) curve, 89,

100–101, 120
Order condition, 233
Ordinary least-squares estimators,

133–134, 147–149, 153
(See also BLUE)

Ordinary least-squares method (OLS),
128–130, 136–141, 148, 152, 183

Almon lag model and, 196
autocorrelation and, 215–216
distributed lag model and, 193–195
errors in variables and, 209–210,

221–222
forecast and, 198
functional form and, 186–189
heteroscedasticity and, 207–209,

212–215
indirect least squares and, 229–230
multicollinearity and, 206, 210
in multiple regression analysis,

161–171
nonlinear functions and, 181
qualitative dependent variable and,

184
simultaneous equations methods and,

228, 232–233, 237–238, 239
Overidentified equations, 229–230,

233–235

Parameter(s), 1, 5–8, 67
estimation of, 67–69
in simple regression analysis, 135
statistic and, 71–72
(See also specific parameters)

Parameter estimations:
in multiple regression analysis,

154–155, 161–165, 178
test of, in simple regression analysis,

130–132, 141–144, 152–153
(See also Estimated parameters)

Partial autocorrelation function
(PACF), 244–245, 251–253

Partial-correlation coefficients, 158–159,
172–173, 179

Pearson’s coefficient of skewness (see
Skewness, coefficient of)

Percentiles, 23–24

326 INDEX



Perfect linear relationship, 172–173
Perfect multicollinearity, 210
Permutations, 50
Personalistic (subjective) probability,

42–43
Platykurtic curve, 15
Point estimates, 69, 76
Poisson distribution, 40, 55–57, 61, 65
Polynomial function, 181, 186–187
Population, 1–3
defined, 71
grouped, 11–14, 19–29, 51–52
ungrouped, 11–14, 20–28

Population mean, 19
in estimation, 67–69, 72–84
hypothesis testing, 87–89, 96–101,

119–120
Population parameters
functional form and, 186–187
in simple regression analysis, 148

Positive linear correlation, 132–133,
144–145

Positive linear net relationship, 172–173
Positively skewed distribution, 15
Power curve, 89, 100–101, 120
Predetermined variables, 231–232
Prediction:
and forecasting, 197–198
(See also Forecasting)

in multiple regression analysis, 154
(See also Multiple regression
analysis)

simple regression analysis for, 128
(See also Simple regression
analysis)

Price elasticity, 175–178, 181–182, 187
Probability, 1, 36–66
of multiple events, 37–39, 44–50,

63–64
of single events, 36–37, 42–44, 62–63

Probability distribution (density
function, continuous random
variable), 41–42, 57–58

binomial distribution as discrete,
39–40, 54, 64

(See also binomial distribution)
normal distribution as continuous,

41–42, 57–58, 65
Poisson distribution as, 40, 55–57, 65

Probability theory, 3
Probit model (cumulative normal

function), 184, 199

Qualitative dependent variable, 184–185
Qualitative explanatory variable, 182,

189–193, 203–204
Quartile deviation, 13, 24
Quartiles, 23–24

R2 (see Determination, coefficient of)
Random disturbance (see Error term)
Random-number table, 309
Random samplings, 3
in estimation, 67–39, 72–81, 84
in hypothesis testing, 67, 87–89, 95–96
and sampling distribution of the

mean, 67–68
simple, defined, 72
in simple regression analysis, 147–148

Random variables:
in binomial distribution, 39, 51
continuous, 41–42, 57–58
discrete, 39–40, 54

Random walk, 246
with drift, 246

Randomized design, completely, 111
Range, 13, 24
coefficients in multiple regression

analysis, 172
in simple regression analysis, 144

Rank condition, 233
Rank (Spearman’s) correlation

coefficient, 132–133, 146
Reciprocal function, 181, 186–187
Recursive models, 232–233
Reduced-form coefficients, 232–237
Reduced-form equations, 228–230,

231–237
Reduced-form parameters, 233
Regression analysis, 1, 3–4, 128–227
autocorrelation as problem in,

208–209, 215–220, 242
distributed lag models in, 182–183,

193–196, 204–205
dummy variables in, 182, 189–193,

203–204
errors in variables as problems in,

209–210, 221–222, 226–227
forecasting, 183–184, 197–198, 205
functional form in, 181–182, 186–189,

202
heteroscedasticity as problem in,

207–208, 212–215, 223–225
multicollinearity as problem in,

206–207, 210–212, 222–223
multiple regression analysis in (see

Multiple regression analysis)
simple regression analysis in (see

Simple regression analysis)
Regression sum of squares (RSS),

110–115, 132, 144, 157
Rejection region:
in autocorrelation, 208, 217
in hypothesis testing, 87–89, 95–104
in multiple regression analysis,

171–172
in simple regression analysis, 143
type I and type II errors and, 87,

95–96, 100, 119
Relative dispersion, 29
Relative frequency (empirical

probability) distribution, 9, 42–44
probability or theoretical
probability distribution distinguished

from, 51
Representative sample, 1–3, 67, 72
[See also Sample(s)]

Residual variance, 111–113, 130
in multiple regression analysis, 126,

165, 171
in simple regression analysis, 130

Right-tail test, 88–90, 97–98, 104,
110–111

Row mean, 111–115
RSS (regression sum of squares),

110–115, 132, 144, 157

Sample(s), 1, 3, 72, 92

Sample (Cont.):
in estimation, 67, 72–76, 84
representative, 1–3, 67, 72
(See also Random samplings)

Sample (column) mean, 92, 109–114
Sample size:
in estimation, 78–81, 85
in hypothesis testing, 87–88

Sample space, 47
Sample variance, 109–110
Sampling distribution of biased

estimator, 147
Sampling distribution of consistent

estimator, 149
Sampling distribution of the mean, 67
empirical, 74
in estimation, 67–69, 72–76, 84
in hypothesis testing, 87, 96–97
theoretical, 72–74, 78, 81, 83

Sampling distribution of unbiased
estimator, 147

SAS, 269–271, 282–292, 293
Scatter diagram, 128, 134
Semilog function, 181–182, 186–189
Sequential (tree) diagram, 47–48
Serial correlation (see Autocorrelation)
Set theory, 38, 47
Significance level:
in autocorrelation, 208–209, 215–220
heteroscedasticity and, 214–215
in hypothesis testing, 87, 95
in multiple regresssion analysis, 158,

171–172, 179
in simple regression analysis, 130–132,

143–144
Simple regression analysis, 4, 128–153
ordinary least-squares method in (see

Ordinary least-squares method)
properties of ordinary least-squares

estimators in, 133–134, 147–149,
153

test of goodness of fit and correlation
in, 132–133, 144–147, 153

tests of significance of parameter
estimates in, 130–132, 141–144,
152–153

two-variable linear model of, 128,
134–136, 151

Simultaneous-equations bias, 228,
231–232

Simultaneous-equations methods
(models, system), 1, 3–4, 228–241

identification and, 229, 233–235,
239–240

indirect least squares and, 229–230,
235–237, 240–241

Single events, 36–37, 42–44, 62–63
Skewness, coefficient of (Pearson’s

coefficient of skewness), 15–16,
29–30

binomial distribution and, 39, 54, 64
in shape of distribution, 14–15

Spearman’s (rank) correlation
coefficient, 132–133, 144–145

Specification of model, 2
SSA (sum of suqares), 92–93, 110–115
Standard deviation (error), 13–15, 26–29
autocorrelation and, 208
in binomial distribution, 39, 54–55
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Standard deviation (error) (Cont.):
of continuous probability distribution,

57–58
of the estimates, 79, 130–131, 155
in estimation, 67–71, 72–76, 77–84
in hypothesis testing, 88–90, 97–99,

101–104
indirect least squares, 229, 236
of lagged values, 197
in multipe regression analysis, 165
in Poisson distribution, 56
probability, 62
sampling distribution of the mean,

67–71
in simple regression analysis, 141

Statistic, 67–69, 71–72
Statistical criteria, 6
Statistical inference, 1, 3, 67, 70–71, 84
(See also Estimation, hypothesis

testing)
Statistics, 1, 2, 84
and econometrics, 1, 3–5, 7–8
nature of, 1–3, 7

Statistics examination, 124–127
Stepwise multiple regression analysis,

172–173
Stochastic disturbance (see Error term)
Stochastic equation, 1, 5, 7–8
Stochastic explanatory variables (see

Independent variables)
Stochastic term (see Error term)
Stratified sampling, 72
Structural coefficients, 223–235
Structural (behavioral) equations,

228–233
Structural parameters, 228–231, 233–237
Student’s t distribution (see t

distribution)
Subjective (personalistic) probability,

42–43
sum of absolute deviations, 136–137
Sum of deviations, 136–137
Sum of squared deviations, 136–137
Sum of squares (SSA), 92–93, 110–115
Symmetry:
of binomial distribution, 39, 54, 64
of continuous probability distribution,

57–58
of distribution, 15
of normal distribution, 41, 57–58
of t distribution, 70

Systematic sampling, 72

t (Student’s t) distribution:
confidence intervals for the mean

using, 70–71, 81–84, 86
in estimation, 81–82
in forecast, 184, 197–198
in hypothesis testing, 88, 98
proportions of area for, 310
in simple regression analysis, 131,

143–144
Text formats, 266
Theorem 1 (sampling distribution of the

mean), 67
Theorem 2 (sampling distribution of the

mean), 68, 75
Theoretical sampling distribution of the

mean, 72–74, 78, 81, 83
Third movement, 15, 30
Three-variable linear model, 154–155,

161–165, 178
(See also Multiple regression analysis)

Time-series analysis, 136, 208, 215,
242–265

Time-series data, 6
Trend stationary, 246
Total sum of squares (TSS)
in hypothesis testing, 92, 110–114
in multiple regression analysis, 157
in simple regression analysis, 132, 144

Tree (sequential) diagram, 47–48
TSS (see Total sum of squares)
Two-factor ANOVA table, 113–115
2SLS (two-stage least squares), 230,

237–238, 241
Two-stage least squares (2SLS), 230,

237–238, 241
Two-tail test, 87–8, 96–97, 101, 103, 143,

167
Two-variable linear model, 128,

134–136, 151
(See also Simple regression analysis)

Two-way (two-factor) analysis, 113
ANOVA table, 113–115

Type I error, 87, 95–96, 100, 119
Type II error, 87, 95–96, 100, 119

Unbiased estimate(s):
in forecast, 184, 197
of forecast-error variance, 197
in functional form, 181

Unbiased estimate(s) (Cont.):
in hypothesis testing, 103
in multiple regression analysis, 155,

163
in simple regression analysis, 141, 147

Unbiased estimators, 147–148
in estimation, 76–77
qualitative dependent variable and,

184
Unbiased point estimate, 69, 85
Underidentified equation, 229–230,

233–235
Unexplained residual, 111–115
Ungrouped data, 118
Uniform distribution, 245
Unit root, 11–14, 20–28

Variables (see specific variables)
Variance, 26–29
analysis of, 92–93, 109–115
ANOVA tables, 109–115
best unbiased or efficient, 133–134
binomial distribution and, 51–55
constant, of error term in simple

regression analysis, 128
of continuous probability distribution,

57
defined, 13–14
as equal mean-square error plus

square of bias of estimator, 148
forecast error, 183–184, 197–198, 205
heteroscedasticity and error term of,

207–208, 212–215, 223–225
in multiple regression analysis, 155,

165–169, 179
in Poisson distribution, 40, 56, 61
residual (see Residual variance)
in simple regression analysis, 141, 148

Variation, coefficient of, 13, 14, 29
Venn diagram, 36, 45
Vertical deviations, 136

Weighted average (mean), 11, 22
Weighted mean (average), 11, 22
Weighted regression, 213
White noise, 246
Wilcoxon signed rank, 94, 115, 122
for two samples, 118
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