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Symmetries

When one does not know the principles or the fundamental equations that govern
the phenomena one observes, one often obtains clues to them by looking at the
symmetries or selection rules they exhibit. Historically, Maxwell constructed his
unified theory of electromagnetism by assuming the existence of the displacement
current, which was required by current conservation. Discovery of special relativity
was inspired by Lorentz invariance of Maxwell’s equations. History also shows that
disclosed symmetries, more often than not, turn out to be approximate. Isospin and
flavor S U(3), which led to the discovery of the quark model, are such examples. To-
day what people believe to be strictly conserved are based on gauge symmetries.
Energy-momentum, angular momentum and charge conservations are in this cat-
egory. The conservation of baryon and lepton numbers, although phenomenolog-
ically valid, are not considered as strict laws. Their mixing is an essential feature
of the grand unified theories (GUTs). Symmetries and conservation laws are inti-
mately connected. Whether based on gauge symmetry or not, apparent symmetries
and conservation laws can be powerful tools for discovering new physics.

Symmetry means one cannot tell the difference before and after a certain trans-
formation. For the case of continuous space-time translation, this means there
is no special position or absolute coordinate system in setting space-time coordi-
nates for describing a physical phenomenon. The same experiments done at two
different places (say in Tokyo and in New York) or done at different times (today
or tomorrow) should produce the same result. In other words, translational in-
variance means the existence of certain nonobservables, i.e. absolute position and
time. So far, we have elaborated on the relation between space-time translation-
al symmetry and the resultant energy-momentum conservation. However, it is a
common feature of symmetry. Similar relations can be derived for a variety of sym-
metry transformations. We list some of them here in Table 9.1 before proceeding
further.

Symmetries come in two categories, first, those related to space-time structure,
which are often referred to as external, and second, those related to internal sym-
metries, such as electric charge, isospin and color charge. Mathematically speak-
ing, the latter leave the Lagrangian density invariant after the symmetry operation
apart from a total derivative. It gives a surface integral that vanishes under normal
circumstances. Space-time symmetries change the coordinate values, so only the
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Table 9.1 Example symmetries and conservation laws.

Nonobservables Symmetry Conserved observables
transformation or selection rules

Space-time symmetry

Absolute position x ! x C a Momentum

Absolute time t ! t C b Energy

Absolute direction θ ! θ C α Angular momentum

Absolute velocity Lorentz transformation Lorentz invariance

Right or left x !�x Parity

Internal symmetry

Particle identity Permutation Bose–Einstein

or Femi–Dirac statistics

Charge + or � Q!�Q C invariance

Absolute phase '! e�iQα ' Charge

– among quarks S U(3) gauge transformation Color charge

Approximate symmetry

– among leptons a ψ ! e�iLα ψ Lepton number

– among quarks ψ ! e�iBα ψ Baryon number
Near equal mass of u, d Flavor S U(2) Isospin

– of u, d, s Flavor S U(3) Unitary spin

a Phenomenologically, lepton and baryon numbers are conserved.

action, which is an integral of a Lagrangian over all space-time, remains invari-
ant. In other classifications, they are either continuous or discrete. We discuss the
continuous space-time symmetries first.

9.1
Continuous Symmetries

Where there is a symmetry, there exists a corresponding conservation law. What
this means is that when an equation of motion or the Lagrangian is invariant under
some symmetry operation, there exists a physical observable that does not change
as a function of time. We have already shown some examples in Sect. 5.1.4 in the
form of Noether’s theorem. Here, we start by comparing how the symmetry and the
invariance of the equation of motion are related in classical, quantum mechanical
and quantum field theoretical treatments.
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9.1.1
Space and Time Translation

Classical Mechanics In the Lagrangian formalism, the equation of motion is given
as the Euler–Lagrange formula

d
d t

�
@L(qi , Pqi )

@ Pqi

�
�

@L(qi , Pqi)
@qi

D 0 (9.1)

If the Lagrangian is translationally invariant, namely,

L(qi) D L(qi C ai ) (9.2)

or equivalently @L/@qi D 0, the Euler–Lagrange formula Eq. (9.1) tells us that the
conjugate momentum defined by

pi D
@L
@ Pqi

(9.3)

is a constant of time. Therefore, translational invariance in space coordinates leads
to the existence of the conjugate momentum, which is time invariant. Since the
Lagrangian formalism is valid in a general coordinate system, this statement is
general. If qi is an angular variable, the conservation of angular momentum fol-
lows. The time derivative of the Hamiltonian is expressed as
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(9.4)

where the Euler–Lagrange equation was used to arrive at the last equation. The
above expression tells us that the Hamiltonian is a constant of motion if the La-
grangian does not contain time variables explicitly. Namely, translational invariance
in time leads to energy conservation.

Quantum Mechanics Observables in quantum mechanics are expressed as matrix
elements of hermitian operators. If there is a unitary operator OU 1) that does not
have explicit time dependence, and if the transformed wave function ψ0 D OU ψ
obeys the same Schrödinger equation, then

i
@

@t
ψ D OH ψ ! i

@

@t
OU ψ D OU OH OU�1 OUψ

) i
@

@t
ψ0 D OH ψ0 ! OU OH OU�1 D OH or [ OH , OU ] D 0

(9.5)

1) The symmetry operation has to be unitary because the transition probability of the state before
and after symmetry transformation has to be the same. (hψ0jψ0i D hψj OU† OUjψi D hψjψi).
We attach a hat O to differentiate operators from numbers when we discuss objects in quantum
mechanics.
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The operator OU commutes with the Hamiltonian. If OU is a continuous function of
some parameter ε and OU ! 1 when ε ! 0, then for infinitesimal ε

OU ' 1� i ε OQ (9.6)

As OU is unitary, OQ is hermitian. The operator OQ in OU D e�i OQα , where α is a contin-
uous parameter, is called the generator of the transformation. Since, the hermitian
operator in quantum mechanics is an observable, OQ is an observable. As OQ com-
mutes with the Hamiltonian, the time derivative of the expectation value is given
by

dh OQi
d t
D

d
d t
hψj OQjψi D ihψj[ OH , OQ]jψi D 0 (9.7)

Therefore, if there is a continuous symmetry represented by a unitary operator OU
that leaves the equation of motion invariant, its generator OQ is a constant of time.

The hamiltonian is a time translation operator. This is obvious from

ψ(t) D e�i OH t ψ(0)! ψ(t C a) D e�i a OH ψ(t) (9.8)

To find the corresponding space translation operator OU(a) D e�i a OQ that is defined
by

ψ(x )! ψ(x C a) D OU(a)ψ(x ) (9.9a)

we make the displacement infinitesimal:

OU(�)ψ(x ) D [1 � i� OQC O(�2)]ψ(x ) D ψ(x C �)

D ψ(x )C �
@

@x
ψ(x )C O(�2)

) OQ D i
@

@x
D � Op

(9.9b)

A Lorentz invariant expression can be obtained by combining Eqs. (9.8) and (9.9):

ψ(x μ C aμ) D e�i aμ Pμ ψ(x μ) (9.10a)

Pμ D i(@0,r) (9.10b)

Problem 9.1

For a translational operator Op where O(x ) is a function of Op and x:

O(x C a) D e i a Op O(x )e�i a Op (9.11a)

where O(x ) is a function of Op and x, prove

rO(x ) D i [ Op , O(x )] (9.11b)
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Translational Invariance in Quantum Field Theory
Covariant version of the Heisenberg equation of motion is expressed as

@μ O D i [Pμ , O ] (9.12a)

O(x C a) D e i aμ Pμ O(x )e�i aμ Pμ (9.12b)

The field theoretical version of the energy momentum operator is given by

P μ D

Z
d3x T μ0 (9.13)

where T μν is the energy-momentum tensor that can be derived from the La-
grangian using Noether’s theorem. Here, P μ and O(x ) are functions of the
field operators. Note, corresponding to the negative sign of space variables in
the Lorentz-invariant expression (aμ Pμ D a0P0 � a � P ), Pμ D (P0,�P) is used.

We first prove that Eq. (9.12b) is equivalent to the Heisenberg equation (9.12a).
To prove the equivalence, it is enough to show that one can be derived from the
other and vice versa. Consider aμ in Eq. (9.12b) as a small number εμ , expand both
sides of the equation and compare terms of O(ε):

(1C i εμ Pμ)O(x )(1� i εμ Pμ) ' O(x )C εμ@μ O (9.14a)

) i [Pμ , O(x )] D @μ O(x ) (9.14b)

Conversely, to derive Eq. (9.12b) from Eq. (9.12a), we use the Baker–Campbell–
Hausdorff (BCH) formula.

Baker–Campbell–Hausdorff formulae Let A, B be operators.

Theorem 9.1

eAB e�A D B C [A, B ]C
1
2!

[A, [A, B ]]C � � �

C
1
n!

nA0 s‚ …„ ƒ
[A, [A, [A, � � � [A, B ]]]]C � � �

(9.15)

Corollary 9.1

[B, e�A] D e�A
�

[A, B ]C
1
2

[A, [A, B ]]C � � �
�

(9.16a)

[eA, B ] D
�

[A, B ]C
1
2

[A, [A, B ]]C � � �
�

eA (9.16b)
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Theorem 9.2

Assuming [A, [A, B ]] D [B, [B, A]] D 0

eACB D e� 1
2 [A, B ]eAeB D eAeB e� 1

2 [A,B ] (9.17a)

eAeB D e[A,B ]eB eA (9.17b)

Corollary 9.2

eA/2eB eA/2 D eACB (9.18)

Problem 9.2

Prove Theorem 9.1 and Theorem 9.2

Replace A by i Pμ aμ , B by O, and make use of Eq. (9.12a), then

e i Pμ aμ
O(x )e�i Pμ aμ

D O(x )C aμ@μ O(x )C � � � C
an

n!
@

(n)
μ O(x )C � � �

D O(x C a)
(9.19)

It remains to prove Eqs. (9.12) with Pμ expressed as Eq. (9.13). We consider the
case of a complex scalar field. Generalization to other fields is straightforward. The
energy-momentum operator is given in Eq. (5.93).

H D
Z

d3 x
��

@'†

@t

��
@'

@t

�
C (r'† � r')C m2'†'

�
(9.20a)

P D �
Z

d3 x
�

@'†

@t
r' Cr'† @'

@t

�
(9.20b)

Using the equal time commutation relation

['(x ), π(y )]txDt y D ['(x ), P'†(y )]txDt y D i δ3(x � y ) (9.21)

it is easy to verify Eq. (9.12a) if O D '(x ) or O D π(x ).
Then for any operators A, B that satisfy

@μ A D i [Pμ , A] , @μ B D i [Pμ , B ] (9.22a)

i [Pμ, AB ] D i [Pμ , A]B C Ai [Pμ, B ] D (@μ A)B C A@μ B D @μ(AB) (9.22b)

it follows that the equation is valid if (AB) is replaced with any polynomials of
A and B. Since Pμ is a conserved operator that does not include any space-time
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coordinates, applying any function of space-time differentiation g(@) on both sides
of the equation gives

i [Pμ , fg(@)O(A, B)g] D @μfg(@)O(A, B)g (9.23)

Therefore, if O is a local operator, i.e. a polynomial of '(x ), π(x ) and their differen-
tials, it satisfies

@μ O D i [Pμ O ] (9.24)

q.e.d.
In summary, the notion that for the space-time translational symmetry there ex-

ists a corresponding conserved quantity, the energy-momentum, is valid in quan-
tum field theory as it was in classical field theory. In quantum field theory, the en-
ergy-momentum operators are the generators of the translational transformation.
Note also that the Heisenberg equation holds even if the fields are interacting, be-
cause the equal time commutation relation, which was the basis of the proof, is
also valid for interacting fields. The validity is ensured by the fact that they are
connected by a unitary transformation [see Eq. (6.7)].

9.1.2
Rotational Invariance in the Two-Body System

Discussions in the previous section have shown that energy-momentum conser-
vation is a result of translational invariance in Cartesian coordinates. As the La-
grangian formalism is valid for a general coordinate system, translational invari-
ance in polar coordinates φ ! φ C α results in another conserved quantity, the
angular momentum. Expressed in the original Cartesian coordinates

pφ D �i@φ D �i(x@y � y@x ) D r �
r

i
D l z (9.25)

In Chap. 3 we have shown that Lorentz invariance leads to the existence of spin an-
gular momentum, which acts on spin components of the field and is an intrinsic
property of particles, the quanta of the field. Determining the spin is an essential
step in the study of elementary particle physics and the method is based on the
consideration of rotational invariance. Experimentally, the most frequently used
reactions are two-body scatterings. If rotational invariance holds, angular momen-
tum is conserved. Then the scattering amplitude can be decomposed into partial
waves of definite angular momentum, and by analyzing the angular distributions
of the two-body scattering state the spin of the system can be determined. We have
already learned in quantum mechanics that the scattering amplitude in the center
of mass (CM) frame can be expanded in partial waves:

dσ
dΩ
D j f (θ )j2 (9.26a)

f (θ ) D
1

2 i p

X
J

(2 J C 1)[S J (E )� 1]PJ (θ ) (9.26b)
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where p is the momentum in CM, S J (E ) is the partial element of the scattering
matrix with angular momentum J and PJ (θ ) is the Legendre function of cos θ .
The above formula is valid for a spinless particle. It can be extended to particles
having spin [217]. For the treatment, it is convenient to work in the eigenstates
where the incoming and outgoing states are specified by their helicity

h D
J � p
jp j

(9.27)

instead of Jz , which is a component of the angular momentum along the fixed
z-axis. The helicity is by its definition rotationally invariant.

What we are dealing with is a two-particle system having momentum and helicity
p1, λ1 and p2, λ2, respectively:

jΨ i D jp1 λ1I p 2λ2i D ψ1(p1, λ1)ψ2(p2, λ2) (9.28)

Let us first separate the motion of the two-body reaction

A(p1)C B(p2)! C(p3)C D(p4) (9.29)

into that of the CM frame itself and the relative motion in it. Defining the mo-
mentum of the CM system P and the relative momentum p in the initial and final
states by

P i D p1 C p2 , P f D p3 C p 4 (9.30a)

p i D
1
2

(p1 � p 2) , p f D
1
2

(p3 � p4) (9.30b)

and working in the CM frame, in which Pi D P f D (E , 0), state vectors in CM can
be expressed by their relative momentum in polar coordinates. We rewrite the two-
particle state as

jp θ φI λ1λ2i D ψ1(p λ1)ψ2(p λ2) (9.31)

where particle 1 has momentum p D (p , θ , φ) in polar coordinates and helicity λ1

and particle 2 has �p and helicity λ2. Sometimes we will use the total helicity

λ D λ1 � λ2 , μ D λ3 � λ4 (9.32)

to denote the two-particle helicity state, i.e. jλi D jλ1λ2i, when there is no danger
of confusion. Expanding the plane-wave state in terms of those that have angular
momentum J, M is the center of discussion.

If rotational invariance holds, angular momentum is conserved and the scatter-
ing matrix elements can be expressed as

h J 0M 0λ3λ4jS j J M λ1λ2i D δ J J 0 δM M 0hλ3 λ4jS J jλ1 λ2i (9.33)



9.1 Continuous Symmetries 229

where j J M λ1λ2i is a state of definite angular momentum constructed out of states
containing particles of definite helicity. The essence of the partial-wave expansion
is condensed in this equality.

We note that the final state, where the particle is scattered by angle θ , can be
obtained by rotation from the initial state, where the momentum is along the z-
axis (θ D φ D 0). The rotation in this case is around the y-axis by θ and then
around the z-axis by φ:

jp θ φI λi D e�i JZ φ e�i Jy θ jp00I λi � R(θ , φ)jp00I λi (9.34)

where R(θ , φ) denotes the rotation operator. Conventionally the alternative form

R(θ ) D e�i JZ φ e�i Jy θ e i JZ φ (9.35)

is often used, which we will adopt here. It differs from Eq. (9.34) only in the phase.
Now we define the rotation matrix by

h J 0M 0λjR(θ , φ)j J M λi D δ J J 0 e�i(M 0�M)φh J M 0λje�i θ Jy j J M λi

D δ J J 0 e�i(M 0�M)φ d J
M 0 M (θ )

(9.36)

The two states have the same helicity, as it is conserved by rotation. The rotation
matrix d J

M M 0 (θ ) satisfies the orthogonality condition and is normalized by

Z 1

�1
d cos θ d J

M M 0 (θ )d J 0
M M 0 (θ ) D δ J J 0

2
2 J C 1

(9.37)

General properties and expressions for d J
M 0 ,M (θ ) are given in the Appendix E. Mul-

tiplying Eq. (9.34) by h J M I λj from the left gives

h J M λjp θ φI λi D
X
J 0 M 0
h J M λjR(θ , φ)j J 0M 0ih J 0M 0jp00I λi

D
X
M 0

e i(M 0�M)φ d J
M M 0 (θ )h J M 0λjp00I λi

D e i(λ�M)φd J
M λ(θ )h J M λjp00I λi

� N J ei(λ�M)φ d J
M λ(θ ) (9.38)

The penultimate equality follows because the momentum of the state jp00I λi is
along the z axis and its total helicity λ D λ1 � λ2 is exactly the same as M D Jz ,
hence

h J M 0λjp00I λi D δM 0 λ N J (9.39)
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N J is calculated to be

N J D

r
2 J C 1

4π
(9.40)

To derive N J , we use the normalization conditions

h J 0M 0λ0j J M λi D δ J J 0 δM M 0 δλ0
1λ1

δλ0
2λ2

(9.41a)

hp 0θ 0φ0I λ0jp θ φI λi D δ(cos θ � cos θ 0)δ(φ � φ0)δλ0
1λ1

δλ0
2λ2

(9.41b)

and apply them to

1 D h J M λj J M λi D
X

μ

Z
d cos θ dφh J M λjp θ φI μihp θ φI μj J M λi

(9.38)(9.37)
D

4π
2 J C 1

jh J M λjp00I λij2 D
4π

2 J C 1
N 2

J (9.41c)

Next we expand the state Eq. (9.34) in terms of angular momentum eigenstates:

jp θ φλi D
X
J,M

j J M λih J M λjp θ φI λi D
X
J M

N J d J
M λ e i(λ�M)φj J M λi

(9.42)

Then the scattering matrix between the two states expressed in polar coordinates
can be written

hp f θ φI μjS jpi00I λi
(9.33)
D

X
J M

2 J C 1
4π



e i(μ�M)φd J

M μ

��
hμjS J (E )jλi



e i(λ�M)φd J

M λ

�
jθDφD0

D
X
J M

2 J C 1
4π

hμjS J (E )jλid J
λμ(θ )e i(λ�μ)φ

hμjS J (E )jλi � hλ3 λ4jS J (E )jλ1λ2i , λ D λ1 � λ2 , μ D λ3 � λ4

(9.43)

To normalize the scattering amplitude, we compare the scattering matrix in linear
momentum space and in polar coordinates in the CM system:

hp3 p4I μjS jp1 p2I λi D δ i f � (2π)4 i δ4

X

pi �
X

p f

�
M f i

D (2π)4δ4(Pi � P f ) � (4π)2

s
s

p i p f

� hp f θ φI μjS jpi00I λi (9.44)
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where s D (p1C p2)2. The factor in the second line results from the normalization
conditions Eq. (9.41). To prove it, set S D 1 and use

hp3 p4jp1 p2i D (2π)6(16E1E2E3E4)1/2δ3(p1 � p3)δ3(p2 � p4)

δ3(p1 � p3)δ3(p2 � p4)d3 p3d3 p4 D δ3(P i � P f )δ3(p i � p f )d3P f d3 p f

D δ4(Pi � P f )δ(cos θ � cos θ 0)δ(φ � φ0)
�

@E f

@p f

��1

p f
2d4P f d cos θ dφ

(9.45)

and symmetrize between the initial and the final state. We define the scattering
matrix T J (E ) by2)

hλ3λ4jS J (E )jλ1λ2i D δλ1λ3 δλ2λ4 C ihλ3λ4jT J (E )jλ1λ2i (9.46)

Then using Eq. (9.44) and comparing with the cross section formula (6.90) for
dσ/dΩ jCM, we obtain

dσ
dΩ
D j f λ3λ4,λ1 λ2 j

2 (9.47a)

f λ3λ4,λ1 λ2 D

r
p f

p i

M f i

8π
p

s
(9.47b)

D
1

2 i p i

X
J

(2 J C 1)hλ3λ4j
�
S J (E )� 1

�
jλ1λ2id

J
λμ(θ )e i(λ�μ)φ

(9.47c)

The equation is an extension of Eq. (9.26). In fact, referring to Eq. (E.21) in Ap-
pendix E,

d J
00 D PJ (θ ) (9.48)

This agrees with Eq. (9.26) when the particles have no spin.

Unitarity of S-matrix
From the unitarity of the scattering matrix we have

S S† D S†S D 1 (9.49)

Sandwiching it between an initial and final state gives

δ f i D
X

n

S�
n f Sni (9.50)

In terms of the T matrix defined in Eq. (9.46)

i(T �
i f � T f i ) D

X
n

T �
n f Tni (9.51)

2) T J D (S J � 1)/2i is also often used in the literature.
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If it is a helicity amplitude, time reversal invariance requires S f i D Si f

[Eq. (9.121)],

2 Im (T f i) D
X

n

T �
n f Tni (9.52)

For forward scattering (i D f ),

2 Im (Ti i) D
X

n

jTni j
2 (9.53)

The right hand side (rhs) is proportional to the total cross section and the left hand
side (lhs) to the imaginary part of the forward scattering amplitude. The relation is
general in the sense that it is valid for inelastic as well as elastic scattering. Namely,

σTOT D k Im
�

f (θ D 0)
	

(9.54)

To obtain the proportionality constant, we use Eq. (9.47) and

T f i D �(2π)4δ4(Pi � P f )M f i (9.55)

Referring to the cross section formula in terms of M f i [see (6.86)]

σTOT D
X

f

(2π)4δ4(Pi � P f )
jM f i j

2

2sλ(1, x1, x2)
D

2 Im (M f i )
4p
p

s

D
4π
p

Im f f (0)g

(9.56)

where we have used the relation pCM D λ(s, m2
1, m2

2)/(2
p

s) D
p

sλ(1, x1x2)/2
[Eq. (6.56)].

Problem 9.3

Using Eq. (9.47), calculate the total cross section for the elastic scattering

σTOT D

Z
dΩ

X
λ3λ4

j f λ3λ4,λ1 λ2 j
2 (9.57)

and then prove that

σTOT(λ1, λ2) D
4π
p

Im ( f λ3λ4,λ1 λ2 ) (9.58)

assuming there is no inelastic scattering.
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9.2
Discrete Symmetries

Discrete symmetries are not functions of a continuous parameter and no infinitesi-
mal variation or differentiation is possible. Parity transformation, time reversal and
charge conjugation to exchange particles and antiparticles are such examples.

9.2.1
Parity Transformation

General Properties Parity, or P operation for short, is often referred to as “mirror-
ing” (reflection) of an object, but the exact definition is reversal of signs on all space
coordinates:

x
P
! �x (9.59)

Performing the parity transformation again brings the state back to the original
one, that is P2 D 1. Therefore the corresponding unitary transformation UP satis-
fies

UP UP D 1 ) UP D U�1
P D U†

P (9.60)

The parity transformation is at the same time unitary and hermitian, hence an ob-
servable by itself. Its eigenvalue is˙1. It is known that parity is violated maximally
in the weak interaction, but that it is conserved in the strong and electromagnetic
interactions, at least within experimental limits.

Momentum and Angular Momentum There are many observables that have their
own parity. Classically, the momentum p is mv D mdx/d t and quantum me-
chanically �ir; it changes its sign under parity transformation. Orbital angular
momentum, on the other hand, has positive parity since it is given by x � p . The
parity of the spin angular momentum S is not clear, but we can assume it has the
same property as its orbital counterpart. The above examples show that there are
two kinds of (three-dimensional space) vectors. Those that change their sign un-
der the parity transformation are called polar vectors and the others, which do not,
axial vectors. Similarly, a quantity that is rotationally invariant but changes its sign
under the P operation is called a pseudoscalar. One example is the helicity operator
σ � p/jp j, the spin component along the momentum direction.

Intrinsic Parity of a Particle When the Hamiltonian is a function of the distance
r D jxj

H D
p 2

2m
C V(r) (9.61)

it is invariant under parity operation, and if ψ(x ) is a solution then ψ(�x ) is also a
solution:

ψ0(�x ) D UP ψ(x) D ˙ψ(x ) (9.62)
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Generally, a particle has its own intrinsic parity. When operated on a one particle
state,

P jqi D ˙ηP jP qi (9.63)

Here, q is a quantum number that specifies the state, and ηP is a phase that accom-
panies the parity transformation. The phase degree of freedom is allowed because
the expectation value of an observable is always sandwiched by a state and its con-
jugate. Usually, the phase is taken to be 1 for simplicity.

Parity of Fields The parity of the Dirac bilinears was already given in Sect. 4.3.3.
The parity of the scalar, vector and tensor fields are the same as the corresponding
Dirac bilinears. We reproduce in Table 9.2 the parity transformation properties of
the fields.

Parity of the Photon Now let us consider the parity of the photon. Since the time
component of a charged current (� D j 0) is a scalar with positive parity and the
space component is a polar vector, the Maxwell equations

r � E D q�,
@B
@t
D �r � E (9.64)

tell us that

E (x)! E 0(�x) D �E (x) , B(x )! B 0(�x) D B(x ) (9.65)

Since the electromagnetic potential is connected to the field by

E D rφ �
@A
@t

, B D r � A (9.66)

the transformation property of the potential is given by

φ(x)! φ0(�x) D φ(x) , A(x )! A0(�x) D �A(x) (9.67)

This means the photon is a polar vector and has negative parity.

Table 9.2 Property of Dirac bilinears under parity transformation.

S(t, x ) P(t, x ) V μ (t, x ) Aμ (t, x ) T μν (t, x )

P S(t,�x ) �P(t,�x ) Vμ (t,�x ) �A μ (t,�x ) Tμν (t,�x )

Note 1: S D ψ ψ, P D iψ γ5 ψ, V μ D ψ γ μ ψ, Aμ D ψ γ μ γ5 ψ, T μν D ψ σμν ψ
Note 2: V μ D (V 0, V ), Vμ D (V 0,�V )



9.2 Discrete Symmetries 235

Parity of Many-Particle Systems
The quantum number of a many-particle system is additive for those correspond-
ing to continuous symmetry and multiplicative for those corresponding to discrete
symmetry, provided they are independent. The wave function of a many-particle
system when there are no interactions between the particles is described by

Ψ (x1, x2, � � � , xn) D ψ1(x1)ψ2(x2) � � � ψn(xn) (9.68a)

Ψ 0 D U Ψ D ψ0
1 ψ0

2 � � � ψ
0
n D U ψ1U ψ2 � � �U ψn(xn) (9.68b)

When U D e i Qα

e i Qα Ψ D Π e i Qi α ψ i D e i(Q1CQ2C��� )α Π ψ i

) Q D Q1 C Q2 C � � � C Q n
(9.69)

When the transformation is discrete, U itself is converted to its quantum number,
the rhs becomes Π η i Π ψn and

η D η1η2 � � � ηn (9.70)

Parity of a Two-Body System
Consider the case where the intrinsic parity of spinless particles 1, 2 is P1, P2 and
the wave function of the relative motion is Φ (x ) D f (r)YLM (θ , φ), where YLM is
a spherical harmonic function. Under the parity operation θ ! π � θ and φ !
φCπ. Using the property of the spherical harmonic function YLM (π�θ , φCπ) D
(�1)L YLM (θ , φ),

U Ψ (x1, x2) D U
�
φ1(x1)Φ (x1 � x2)ψ2(x2)

	
D P1 P2(�1)L Ψ (9.71)

The parity of a three-body system can be determined similarly as P1P2P3(�1)`CL,
where ` is the relative angular momentum between the particles 1, 2 and L is that
of the particle 3 relative to the CM of the 1 C 2 system. Now consider a reaction
a C b ! c C d, which has relative angular momentum `, `0 before and after the
reaction, respectively:

hcdjS jabi D hcdjP�1P S P�1P jabi D Pa Pb(�1)`Pc Pd (�1)`0
hcdjS jabi

)
˚
1 � Pa Pb(�1)`Pc Pd (�1)`0�

hcdjS jabi D 0 (9.72)

If hcdjS jabi ¤ 0 and [P, S ] D 0, the parity before and after the reaction is con-
served:

Pa Pb(�1)` D Pc Pd (�1)`0
(9.73)

When the parity of the particles a, b, c is known, that of d can be determined using
the above equation. We shall determine the parity of the pion in the next section
this way. Equation (9.73) does not hold if hcdjS jabi D 0 by some other selection
rules. Therefore, there are as many ambiguities in the determination of the parity



236 9 Symmetries

assignment as the number of selection rules. For instance, to determine the parity
of π0, one can use a process p ! p C π0 or n ! n C π0, but to determine that of
πC one cannot use p ! p C πC, because it is forbidden by charge conservation.
The process p ! n C πC is allowed, but one needs to know the relative parity of
n to p. Similarly one cannot determine the parity of KC using the process p !
n C KC as it is forbidden by strangeness conservation. p ! Λ C KC is allowed,
then again the parity of KC and Λ cannot be determined independently. The usual
assumption is that all the quarks u, d, s, etc. have relatively positive parities. Since
all the hadrons are made of quarks, the parities of the hadrons can be determined in
principle once the relative angular momentum among the quarks is specified. The
parity of the familiar baryons (p , n, Λ, � � � ), therefore, is assumed to be positive.

Parity Transformation of Helicity States*
The parity transformation property of the helicity amplitude is a bit complicated,
because it does not use the orbital angular momentum explicitly. Those who are
not interested in the complication of the derivation may skip this part and use only
the relevant formula Eq. (9.87). The following arguments follow closely those of
Jacob and Wick [217].

To determine the parity of a partial wave state j J M λi in the helicity formalism,
we must go back to the beginning and evaluate the effect on the helicity states
Eq. (9.31)

jp00λ1 λ2i D ψ1(p λ1)ψ2(p λ2) (9.74)

where particles 1 and 2 are moving in Cz and �z directions, respectively. ψ1 is
obtained by Lorentz boost from its rest frame. Since the eigenvalues of the pari-
ty operation are only phases, we need to fix the relative phases of various states
beforehand. They can be determined from a requirement that ψ(0λ) satisfies the
usual angular momentum formula

J˙jsλi D ( Jx ˙ Jy )jsλi D [(s � λ)(s ˙ λ C 1)]1/2js, λ ˙ 1i (9.75)

The parity operation does not change the spin direction and at rest Jz D λ

P ψ(0λ) D ηψ(0λ) (9.76)

where η is the particle’s intrinsic parity. It is convenient to define a mirror operation
with respect to the x z-plane:

Y � e�i π Jy P (9.77)

Using the relations

e�i θ Jy j J M λi D
X
M 0

d J
M 0 M (θ )j J M 0λi (9.78a)

d J
M 0 M (π) D (�1) j CM 0

δM 0 ,�M (9.78b)
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we obtain

Yψ1(p λ1) D η1(�1)s1�λ1 ψ1(p ,�λ1) (9.79)

Similarly

Yψ2(p λ2) D η2(�1)s2Cλ2 ψ2(p ,�λ2) (9.80)

The reason for �λ2 in the exponent is that the particle’s momentum is �p , hence
M D Jz D �λ. Combining the two equations

Y jp00λ1λ2i D η1η2(�1)s1Cs2�λ1Cλ2 jp00,�λ1,�λ2i (9.81a)

) P jp00λ1 λ2i D η1η2(�1)s1Cs2�λ1Cλ2 e i π Jy jp00,�λ1,�λ2i (9.81b)

Now, what we want is the phase that appears in

P j J M λ1λ2i D e i αj J M,�λ1,�λ2i (9.82)

Since the parity and the angular momentum operators commute, the phase α does
not depend on M. Therefore, without loss of generality, we can set M D λ D
λ1� λ2. For the same reason, we can confine our argument to the case θ D φ D 0.
Expanding the rhs in Eq. (9.81b) in partial waves

e i π Jy jp00,�λ1,�λ2i D
X

J M μ1 μ2

X
J 0 M 0 ν1 ν2

j J M μ1μ2i

� h J M μ1μ2je i π Jy j J 0M 0ν1 ν2ih J 0M 0ν1ν2jp00,�λ1,�λ2i

(9.39)
D

X
J M

j J M,�λ1,�λ2iN J d J
M,�λ (�π)

D
X

J

N J (�1)λ� J j J λ,�λ1 � λ2i

(9.83)

Inserting this into Eq. (9.81b) gives

P jp00λ1 λ2i D
X

J

N J η1η2(�1)s1Cs2� J j J λ,�λ1,�λ2i (9.84)

On the other hand, expanding the lhs of Eq. (9.81b) directly using Eq. (9.42) gives

P jp00λ1λ2i D
X
J M

P j J M λ1λ2ih J M λ1 λ2jp00λ1λ2i

D
X

J

N J P j J λλ1λ2i
(9.85)
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Comparing Eq. (9.84) and Eq. (9.85)

P j J λλ1λ2i D η1η2(�1)s1Cs2� J j J λ,�λ1,�λ2i (9.86)

Noting s1 C s2 � J is an integer, we finally obtain

P j J λλ1λ2i D η1η2(�1) J�s1�s2 j J λ,�λ1,�λ2i (9.87)

When the parity is conserved, applying Eq. (9.87) to the scattering matrix,

h�λ3,�λ4jS J j � λ1,�λ2i D ηS hλ3λ4jS J jλ1λ2i

ηS D η1η2η3η4(�1)s3Cs4�s1�s2
(9.88)

Using Eq. (9.47) and d J
nm(π � θ ) D (�1) JCn d J

n,�m (θ ), a similar formula for the
scattering amplitude can be obtained:

h�λ3,�λ4j f (θ , φ)j � λ1,�λ2i D ηS hλ3λ4j f (θ , π � φ)jλ1 λ2i (9.89)

Parity Violation in the Weak Interaction
We will describe the detailed dynamics of the weak interaction in Chap. 15. Here,
we describe only the essence of parity violation. The momentum p is an observable
with negative parity, but it does not mean that parity is violated, since particles with
�p exist equally. However, if the S-matrix contains an observable that has negative
parity, it means parity is violated in the scattering. For instance,

J � p D J p cos θ (9.90)

is such an observable. In the strong magnetic field at ultra-low temperatures, a
nucleus can be polarized along the magnetic field. An asymmetry in the angular
distribution of the decay particles from the nuclei means that parity is violated in
the decay. Here, the angle of the particle is defined relative to the magnetic field, i.e.
the spin orientation of the parent nuclei and the asymmetry is relative to a plane
perpendicular to the polarization axis, i.e. whether θ is ? π/2. The experiment of
Wu et al. [392] that proved parity violation in the weak interaction was determined
this way.

In π-p scattering where the initial proton is unpolarized, the final proton can
be polarized perpendicular to the plane of scattering, namely σ � k1 � k2 ¤ 0;
where k1, k2 are the pion momenta before and after scattering, respectively. This
is because the parity of σ � k1 � k2 is positive. However, if the recoiled proton
is longitudinally polarized, i.e. polarized along its momentum, which means
σ � p ¤ 0, conservation of parity is violated.

The origin of the parity-violating transition can be traced back to the Hamilto-
nian. If parity is conserved in an interaction, the parity operator commutes with
the Hamiltonian. Since the scattering matrix is made from the Hamiltonian, it
commutes with the S-matrix, too. In order for the S-matrix to contain the parity-
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violating term, the Hamiltonian must contain a parity-violating component, too:

H D H0 C HPV (9.91a)

P H0P�1 D H0, P HPV P�1 D �HPV (9.91b)

where H0 and HPV are a scalar and a pseudoscalar, respectively. HPV is the origin
of the parity-violating transition. We shall see how the parity-violating observable
is related to HPV.

Let us pause to consider the meaning of the extra parity-violating term in the
Lagrangian. There are observables that change sign by the parity transforma-
tion P. The momentum p and helicity σ � p are examples. Their existence
alone does not mean parity violation. We claim that parity is violated if a phe-
nomenon exhibits a different behavior in the mirror world than in ours. This
means the dynamical motion in the mirror world is different for a given ini-
tial state. Namely, it happens if the transition amplitude includes a term that
behaves differently in the mirror world, in other words, if it includes odd-par-
ity terms such as σ � p . As the transition amplitude is a matrix element of
the Hamiltonian for given initial and final states, the Hamiltonian itself has
to include an odd-parity term to induce the parity-violating phenomenon. In
mathematical language, it simply means [P, H ] ¤ 0. Calculations of the tran-
sition amplitude will show that if C 0 is the coefficient of the odd-parity term
in the Hamiltonian, the parity-violating observables always appear multiplied
by C 0.

The weak interaction is known to violate parity. Beta decay, (A, Z ) ! (A, Z C
1) C e� C ν e or in the quark model d ! u C e� C ν e , is mediated by a charged
force carrier, the W � vector boson, but in the low-energy limit, the interaction
Hamiltonian is well described by the four-Fermi interaction, which can be written
as

HINT D (uγμ d)
˚

e
�
CV γ μ C C 0

Vγ 5� ν e
�

C (uγμ γ 5d)
˚

e
�
CA γ μ γ 5 C C 0

Aγ μ� ν e
�
C h.c.

(9.92)

where u, d, ν e , e� stand for the Dirac fields and h.c. means the hermitian con-
jugate of the preceding term. Referring to Table 9.2, we see that terms with CV,
CA, which contain Vμ V μ , A μ Aμ , are parity conserving, while those with C 0

V, C 0
A,

which contain Vμ Aμ , A μV μ , are parity violating. Namely, CV, CA and C 0
V, C 0

A are
the strengths of the parity-conserving and parity-violating terms, respectively. Since
the observed rate is proportional to the square of the amplitude, the effect of the
parity violation appears as the interference term. The total rate Γ is proportional to
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jH0j
2 C jHPVj

2. By preparing suitable initial and final states of the nucleus, it can
be arranged to pick up only the CA, C 0

A part.3) Then the angular distribution of the
electron is shown to have the form

dΓ
dΩ
� 1C α

( J � p e)
me

D 1C αP v cos θ (9.93a)

α D
2 Re (C�

A C 0
A)

jCAj2 C jC 0
Aj

2
(9.93b)

P is the polarization of the parent nucleus. This shows clearly that the origin of
the parity-violating observable J � p e is the parity-violating Hamiltonian HPV. The
effect is maximal when jCAj D jC 0

Aj, and experimental data have shown this is the
case (C 0

A ' �CA). Experimental data have fixed the strengths as well as the phases
of the coupling constants (C 0

V D �CV, C 0
A D �CA, CA D CV) and excluded other

types (i.e. S, P, T) of quadrilinear forms. The Hamiltonian for beta decay has been
shown to be

HINT D
GF
p

2
fuγμ(1 � γ 5)dgfeγ μ(1 � γ 5)ν eg (9.94)

Here, CV was replaced by the universal Fermi coupling constant GF/
p

2, GF D

10�5 � m2
p, where mp is the mass of the proton. This is called the V–A interac-

tion and was the standard phenomenological Hamiltonian before the advent of the
Standard Model.

9.2.2
Time Reversal

Time Reversal in Quantum Mechanics
Time reversal of a process means to make it proceed backward in time. In a macro-
world, when a glass is dropped on the floor, the reverse process is that the broken
pieces fly back to where the glass was broken and amalgamate to shape the original
glass. Everybody knows this does not happen. But in the micro-world, Newton’s
equation of motion under the influence of a force F(x) that does not depend on
time

m
d2x
d t2
D F (x) (9.95)

is invariant under the time reversal operation t ! �t, and this is indeed realized.
Physical objects that are dependent on time, for example the velocity v D dx/d t,
the momentum p D mv , the angular momentum L D x � p change their sign
under time reversal and are suitable observables to test the hypothesis. Take the
typical example of π–p scattering:

π(p1)C p (p2)! π(p3)C p (p4) (9.96)

3) If the so-called Gamow–Teller nuclear transitions with jΔ J j D 1 and no parity change are
selected, the vector interaction does not contribute (CV D C 0

V D 0).
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Figure 9.1 Time reversal. (a) Particles having momenta p1 and p2 enter, and exit as two parti-
cles with momenta p3 and p4. (b) Time-reversed reaction of (a). Particles with momenta �p3
and �p4 enter, and exit as particles with momenta �p1 and �p2.

The time-reversed process is a reaction where the outgoing particles reverse their
momenta, go back to where they were scattered, undergo the reverse interaction
and recover the initial states with their momenta reversed (Fig. 9.1):

π(�p3)C p (�p4)! π(�p1)C p (�p2) (9.97)

Namely, their positions are unchanged, but their momenta reversed and the initial
and final states are interchanged. Expressing this in terms of the transition ampli-
tude

hT φ(p f )jT ψ(p i )i D hψ
0(p 0

i )jφ
0(p 0

f )i D hφ(�p f )jψ(�p i )i
� (9.98)

The time-reversal operation seems to include the complex conjugate operation in
addition to ordinary unitary transformation. Let us see if the notion is valid in
quantum mechanics. Consider a Schrödinger equation

i
@ψ(t)

@t
D H ψ(t) (9.99)

and reverse the time direction of the wave function (H is independent of time)

t ! t0 D �t , ψ(t)! ψ0(t0) D T ψ(t) (9.100)

Then

i
@ψ0(t0)

@t0 D H 0ψ0(t0) , H 0 D T H T �1 (9.101)

If H 0 D H ,

�i
@(T ψ)

@t
D H(T ψ) (9.102)

This shows that in order for the transformed wave function T ψ to satisfy the same
equation as Eq. (9.99), requiring T H T �1 D H is not enough; it is also necessary
to take the complex conjugate of both sides. The process is known as Wigner’s
time reversal. In other words, Eq. (9.98) is a necessary condition for the time re-
versal operation in quantum mechanics. Under time reversal, the wave function is
transformed to

ψ(t)
T
! ψ0(t0) D T ψ(t) D ψ�(�t) (9.103)



242 9 Symmetries

When ψ represents a plane wave with momentum p

ψ(t, x I p ) � e i p�x�i E t T
! e i p�x�i E t 0

j�t 0D�t D e�i p �x�i E t (9.104)

time reversal reverses the momentum of the state to �p as expected. In general, a
transformation of the form

ψ(t) D aφ1(t)C bφ2(t)

! ψ0 D a�φ0
1(t0)C b�φ0

2(t0) D a�φ�
1 (�t)C b�φ�

2 (�t)
(9.105)

is called an antiunitary transformation. This means the T operation is expressed
as a product of a unitary transformation U and complex conjugate operation K.
Time-reversal invariance means the observables do not change under the opera-
tion Eq. (9.98). As the observables are expressed as the square of the transition
amplitude, their antiunitarity does not produce any contradiction.

In fact, the necessity as well as consistency of complex conjugation can be shown

in many examples. For instance, in classical mechanics p D mdx/d t
T
! �p , but

in quantum mechanics p is a space differential operator and has no t dependence.
By complex conjugation it obtains the right sign. Besides, the quantum condition

[xi , p j ] D i δ i j (9.106)

and the commutator of the angular momentum

[L i , L j ] D i ε i j k L k (9.107)

are not invariant for the change p ! �p , L ! �L but are invariant after an
additional complex conjugate operation. In conclusion, the time-reversal operation
requires, in addition to flipping the time, the complex conjugate to be taken of all
c-numbers in the equation.

Problem 9.4

Show the transformation properties under the time-reversal operation.

Electric field E (t) ! E 0(�t) D E (t)
Magnetic field B(t) ! B0(�t) D �B(t)
Potential Aμ D (φ, A) ! Aμ 0(t0) D (φ0(�t), A0(�t))

D (φ(t),�A(t)) D A μ(t)

(9.108)

Time Reversal of the S-Matrix
The S-matrix is defined as lim t!1

t 0!�1
U(t, t0) [Eqs. (6.11), (6.12)]. Since T U(t)T �1D

U(�t), it is obvious that T S T �1 D S†. Another way of seeing this is to use

hout W q f jqi W ini D hout W q f jS jqi W outi D hin W q f jS jqi W ini (9.109)
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From the first expression, we obtain

hout W q f jqi I ini D hout W q f jT �1T jqi W ini D hin W T(q f )jT(qi) W outi�

D hout W T(qi)jT(q f )I ini D hout W T(qi)jS jT(q f )I outi

(9.110a)

where we have used T jini D jouti, T jouti D jini to go to the third equality. From
the last expression in Eq. (9.109), we obtain

hin W q f jS jqi W ini D hin W q f jT �1T S T �1T jqi W ini

D hout W T(q f )j(T S T �1)jT(qi) W outi�

D hout W T(qi )j(T S T �1)†jT(q f ) W outi

(9.110b)

Comparing the last expressions of Eq. (9.110a) and Eq. (9.110b), we conclude

T S T �1 D S† (9.111)

Time Reversal of Partial Waves
As the spin operator has no correspondence in classical mechanics, we are not sure
how it transforms under the T operation. Let us assume its transformation property
is the same as that of the orbital angular momentum, then s � x � p changes its
sign, too. Therefore

T Ji T �1 D � Ji , T J˙T �1 D � J� (9.112a)

Jz T j J Mi D �T Jz j J Mi D �M T j J Mi

) T j J Mi D η( J, M )j J,�Mi (9.112b)

The second equality of the first line follows from complex conjugation of i. To deter-
mine the phase η, we use the conventional relation among the angular momentum
eigenstates:

T J�j J Mi D [( J C M )( J � M C 1)]1/2T j J M � 1i

D [( J C M )( J � M C 1)]1/2η( J, M � 1)j J,�M C 1i

D � JCT j J, Mi D �η( J, M ) JCj J,�Mi

D �η( J, M )[( J C M )( J � M C 1)]1/2j J,�M C 1i

) η( J, M ) D �η( J, M � 1) (9.113a)

This equation means

η( J, M ) D η( J )(�1)M (9.114)

η( J ) is a factor independent of M, and can be chosen considering the rotational
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invariance of the S-matrix and the antiunitarity of the T reversal. By choosing

η( J ) D (�1) J 4) (9.115)

we can fix the phase as

T j J Mi D (�1) J�M j J,�Mi (9.116)

The phase of the helicity state can be determined similarly:

T j J M λi D (�1) J�M j J,�M λi (9.117)

To prove the equality, we use the fact that the helicity does not change its sign under
T and that the T-transformed one-particle state jp λi is ηj� p λi which is equivalent
to 180ı rotation on the y axis. Namely

T jp00λ1λ2i D εe�i π Jy jp00λ1 λ2i (9.118)

where ε is a phase factor. The rest of the argument uses the same logic as we
derived the parity of the state in Eq. (9.87).

Problem 9.5

Prove that the T-operated helicity eigenfunctions for a spin 1/2 particle given by
Eq. (4.14)

�C D
�

cos θ
2 e�i φ/2

sin θ
2 e i φ/2

�
, �� D

�
� sin θ

2 e�i φ/2

cos θ
2 e i φ/2

�
(9.119)

are given by

T �˙ D �i σ2��
˙ D (�1)S�M �� (9.120)

Finally, as to the helicity scattering amplitude, using the antiunitarity of the T
transformation and Eq. (9.117) we find

hλ3λ4jS J jλ1 λ2i D hλ1 λ2jS J jλ3λ4i (9.121)

Time Reversal of Fields
Scalar and Vector Fields We define the T reversal of a scalar field that obeys the
Klein–Gordon equation by

'(t, x )
T
! '0(x 0) D T'T �1 D '0(�t, x ) (9.122)

Since the free-field Lagrangian is bilinear in form in ' and '†, both choices

'0 D ' and '0 D '† (9.123)

4) The conventional spherical harmonic function YLM is defined with η( J ) D 1. To be consistent
with our definition, it has to be changed to YLM ! iL YLM , but this is not a problem in this book.
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are possible. But here we impose a constraint by requiring that the wave function
(denoted as ψ D c-number) should respect the rule we saw in quantum mechanics.
As the field ' can be expanded in terms of plane waves as

' D
X

k

1
p

2ω

�
ak e�i k �x C b†

k e i k �x	 (9.124)

the wave function ψ(t, x ) describing a particle with momentum p can be extracted
by

ψ(t, x ) D h0j'(t, x )jp i (9.125)

Similarly, the T-reversed state should be able to be extracted by

ψ0(�t, x ) D hT 0j'(t, x )jTp i (9.126)

But for a c-number wave function, it obeys the rule of Eqs. (9.98) and (9.103)

ψ0(�t, x ) D ψ(�t, x )� Eq. (9.98)
D h0j'(�t, x )jp i�

D hT 0jT f'(�t, x )pgi D hT 0jT'(�t, x )T �1jTp i
(9.127)

Comparing Eqs. (9.126) and (9.127), we can choose the T-transformed field as

T'(t, x )T �1 D '(�t, x ) (9.128)

subject to the additional constraint of taking the complex conjugate of all the
c-numbers.5) Referring to the expansion formula of ', the transformation proper-
ties of the annihilation and creation operators are

ak ! Tak T �1 D a�k , b†
k ! T b†T �1 D b†

�k (9.129)

The transformation is consistent with the expression

jki D
p

2ω a†
k j0i

T
!
p

2ω a†
�k j0i D j � ki (9.130)

Under T reversal, the current operator of the scalar field

j μ D i q('†@μ' � @μ'†') (9.131)

changes its argument t ! �t and i ! �i . Therefore the transformation is

T j 0(t, x )T �1 D j 0(�t, x ) , T j (t, x )T �1 D � j (�t, x )

i.e. j μ(t, x )
T
! j μ(�t, x )

(9.132)

As the vector field obeys Proca’s equation

@μ f μν C m2V ν D j ν , f μν D @μ V ν � @ν V μ (9.133)

the consistency argument tells us that

V μ(t, x )
T
! Vμ(�t, x ) (9.134)

5) As a matter of fact, an alternative definition of the reversal accompanied by the hermitian
conjugation operation '(t, x )! '†(�t, x ) exists, but we will not elaborate on it in this book.
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Dirac Field As the component of angular momentum changes its sign under time
reversal, rearrangement of the spin component is necessary for the Dirac field.
What we have to do is to find a transformation such that

ψ(x )
T
! T ψ(x )T �1 D ψ0(t0, x ) D B ψ(�t, x ) (9.135)

satisfies the same Dirac equation. Here, B is a c-number 4� 4 matrix that operates
on spin indices. Consider the Dirac equation for the wave field

(γ μ i@μ � m)ψ(t, x ) D 0
T
! (γ μ i@0

μ � m)�ψ0(t0, x ) D 0 (9.136)

where @0
μ D (�@0,r). Substituting Eq. (9.135) in Eq. (9.136) and multiplying B�1

from the left, we obtain

B�1[γ 0 �(�i)(�@0)C γ� � (�ir)� m]B ψ(�t, x )

D [B�1 γ 0 �B(i@0)C B�1 γ�B � (�ir)� m]ψ(�t, x ) D 0
(9.137)

Therefore, if B which satisfies the following relations exists

B�1γ 0 �B D γ 0 , B�1γ k �B D �γ k (9.138)

the time reversed field ψ satisfies the same equation and T transformation invari-
ance holds. Considering γ 2 � D �γ 2, γ μ � D γ μ(μ ¤ 2), we can adopt as B

B D i γ 1γ 3 D �i γ 5C D �Σ2 D

�
�σ2 0

0 �σ2

�
(9.139)

Then

ψ0(t0) D T ψ(t)T �1 D B ψ(�t) D i γ 1γ 3ψ(�t) (9.140a)

ψ0(t0) D T ψ(t)T �1 D ψ(�t)B�1 D ψ(�t)i γ 1γ 3 . (9.140b)

The matrix B has the property that

B D B† D B�1 D �B�

B�1γ μ �B D γμ
(9.141)

Therefore, the transformation property of the Dirac bilinear vector is given by

ψ1(t)γ μ ψ2(t)
T
! ψ0

1(�t)γ μ �ψ0
2(�t) D ψ1 B�1γ μ �B ψ2

D ψ1(�t)γμ ψ2(�t) (9.142a)

ψ1(t)γ μ γ 5ψ2(t)
T
! ψ1(�t)γμ γ 5 ψ2(�t) (9.142b)

The transformation properties of other Dirac bilinears are given similarly and we
list them in Table 9.3.
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Table 9.3 Properties of Dirac bilinears under T transformation.

S(t, x ) P(t, x ) V μ (t, x ) Aμ (t, x ) T μν (t, x )

T S(�t, x ) �P(�t, x ) Vμ (�t, x ) A μ (�t, x ) �Tμν (�t, x )

Note 1: S D ψ ψ, P D iψ γ5 ψ, V μ D ψγ μ ψ, Aμ D ψγ μ γ5 ψ, T μν D ψ σμν ψ
Note 2: V μ D (V 0, V ), Vμ D (V 0,�V )

Experimental Tests
Principle of Detailed Balance: The amplitude of a scattering process from a initial
state jii to a final state j f i and its inverse f ! i are related by Eq. (9.121). The
cross section of a process ACB! CCD, assuming both A and B are unpolarized
is expressed as

dσ
dΩ

(AB! CD) D
1

(2SA C 1)(2SB C 1)

X
λ

j f λCλD,λA λB j
2 (9.143)

On the other hand the cross section of the inverse process is, again assuming both
C and D are unpolarized,

dσ
dΩ

(CD! AB) D
1

(2SC C 1)(2SD C 1)

X
λ

j f λA λB,λC λD j
2 (9.144)

As Eqs. (9.121) and (9.47) mean

p 2
AB

X
λ

j f λCλD,λA λB j
2 D p 2

CD

X
λ

j f λA λB ,λC λD j
2 (9.145)

where pAB and pCD are the momenta of particles in CM of AB and CD, respectively.
we obtain

dσ(AB! CD)
dσ(CD! AB)

D
pCD

2(2SC C 1)(2SD C 1)
pAB

2(2SA C 1)(2SB C 1)
(9.146)

The equation is referred to as the “principle of detailed balance”.

Strong Interaction As an example of the application of the principle of detailed bal-
ance to test time-reversal invariance, we show both cross sections of the reactions
p C 27Al• αC 24Mg in Fig. 9.2. The data show T-reversal invariance is preserved
in the strong interaction to better than 10�3.

Weak Interaction
There is evidence that small CP violation exists in the kaon and B-meson decays
(see Chap. 16), hence the same amount of T violation is expected to exist as long
as CPT invariance holds, which is discussed in Sect. 9.3.3. In fact, a T-violation
effect consistent with CPT invariance has been observed in the neutral K meson
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decays [107], which will be described in detail in Chap. 16. With this one exception,
there is no other evidence of T violation. As it offers some of the most sensitive tests
for models of new physics, we will discuss some of the experimental work below.

Observables that violate T invariance can be constructed as a triple product of
T-odd variables like σ � p1� p2, p1 � p2� p3. In the first example, σ can be prepared
by a polarized beam, polarized targets or spin of scattered/decayed particles.

KC ! π0 C μC C νμ : In the decay KC ! π0 C μC C νμ , the transverse
component of muon polarization relative to the decay plane determined by p μ� p π
(which is σμ � p μ � p π) was determined to be 1.7 ˙ 2.5 � 10�3 [225, 226]. The
imaginary (i.e. T-violating) part of the decay amplitude was also determined to be
Im (� ) D �0.006˙ 0.008 (see Sect. 15.6.3 for the definition of � ).

n! pC e� C Nνe: Another example is the triple correlation D of the neutron
polarization and the momenta of electron and antineutrino in the beta decay n !
p e�ν e . It is defined as

d W / 1C D P n � p e � p ν (9.147a)

where P n is the polarization of the neutron. The experimental value is given as
D D �4˙ 6� 10�4 [350]. The data can be used to define the imaginary part of the
coupling constant. The relative phase φAV is related to D by

λ D
ˇ̌̌
ˇ gA

gV

ˇ̌̌
ˇ , φAV D Arg

�
gA

gV

�
(9.147b)

sin φAV D D
(1C 3λ2)

2λ
(9.147c)

where gA, gV are axial and vector coupling constants of the weak interaction [CV

and CA of Eq. (9.92)]. φAV is given as 180.06ı ˙ 0.07ı.

Figure 9.2 Test of detailed balance and time reversibility in the reaction 27AlC p • 24MgC α.
The intensity of the T-violating effect (� D j fT-violating/ fT-invj

2) is smaller than 5� 10�4 [66].
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The Electric Dipole Moment of the Neutron
The definition of the electric dipole moment (EDM) is classically

d D
Z

�(x )x d3x (9.148)

which is nonzero if the charge distribution within an object is polarized, in other
words, not distributed evenly. When the object is a particle like the neutron, re-
gardless of whether of finite or point size, its only attribute that has directionality
is the total spin σ. If the particle has a finite d, it has to be proportional to σ. While
the transformation property of σ under P, T isC,�, respectively, that of d is �,C,
as can be seen from Eq. (9.148). Therefore the existence of the EDM of a particle
violates both P and T. As the neutron is a neutral composite of quarks, its EDM can
be a sensitive test of T-reversal invariance in the strong interaction sector as well as
the weak interaction. The interaction of the magnetic and electric dipole moments
with the electromagnetic field is given by

HINT D �μ � B � d � E (9.149)

Its relativistic version can be expressed as

HINT D �qψγ μ ψA μ C
i
2

dψγ 5σμν ψFμν (9.150)

Problem 9.6

Show that in the nonrelativistic limit, Eq. (9.150) reduces to Eq. (9.149).

For an s D 1/2 particle, depending on the magnetic quantum number m D
˙1/2, the energy level splits in the electromagnetic field. When an oscillating field
is injected, a resonance occurs corresponding to the Larmor frequency

ΔE D 2μB ˙ 2dE D h(ν ˙ Δν) (9.151)

Here ˙ corresponds to the directions of the magnetic and electric fields being
either parallel or antiparallel to each other. Therefore from the deviation Δν of
the resonance frequency when the electric field is applied, one can determine the
strength of the EDM. What has to be carefully arranged experimentally is the par-
allel alignment of the electric field relative to the magnetic field, because if there
exists a perpendicular component E? a magnetic field of γ v � E? for a moving
system with velocity v is induced and gives a false signal.

An example material used for the experiment is the ultra cold neutron (UCN) of
T � 0.002 K, which has energy � 2 � 10�7 eV and velocity v � 6 ms�1. This is
the energy the neutron obtains in the earth’s gravitational field when it drops 2 m.
The de Broglie wavelength is very long (λ � 670 Å), and consequently the neutron
interferes coherently with material, allowing the index of refraction n to be defined:

n D
�

1 �
λ2N acoh

π
˙

μB
M v2/2

�1/2

(9.152)
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Figure 9.3 (a) The neutron EDM experimen-
tal apparatus of the RALySussex experiment
at ILL [37, 198]. The bottle is a 20 liter stor-
age cell composed of a hollow upright quartz
cylinder closed at each end by aluminum elec-
trodes that are coated with a thin layer of car-
bon. A highly uniform 1 μT magnetic field B0
parallel to the axis of the bottle is generated by
a coil and the electric field (E0) is generated
by applying high voltage between the elec-
trodes. The storage volume is situated within

four layers of mu metal, giving a shielding fac-
tor of about 10 000 against external magnetic
fluctuations. (b) A magnetic resonance plot
showing the UCNs with spin-up count after
the spin precessing magnetic field has been
applied. The peak (valley) corresponds to the
maximum (minimum) transmission through
the analyzing foil. The measured points to de-
tect the EDM effect are marked as four cross-
es. The corresponding pattern for spin down
is inverted but otherwise identical.

where N is the number of nuclei per unit volume, acoh is the coherent forward
scattering amplitude and M v2/2 is the kinetic energy of the neutron. The ˙ sign
depends on whether the magnetic moment and the field are parallel or antiparallel.
Inserting the actual values, we obtain a total reflection angle � 5ı for v � 80 m�1,
but for a velocity v < 6 m�1 the angle exceeds 90ı and total reflection is obtained at
any angle. Namely, the neutron, if it is slow enough, can be transported through a
bent tube just like light through an optical fiber and also can be confined in a bottle
for a long duration of time (referred to as a magnetic bottle or a neutron bottle).
That the refractive index differs depending on the polarization is used to separate
neutrons of different polarization.

Thermal neutrons emerging from the deuterium moderator of a reactor are
transported through a curved nickel pipe and further decelerated by a totally re-
flecting turbine before arriving at the entrance of the apparatus. Figure 9.3 shows
the apparatus for the experiment [37, 198].

A magnetized iron–cobalt foil of 1 μm thickness is used to block neutrons of one
spin orientation using the principle of total reflection stated above. The neutron
bottle, a cylindrical 20-liter trap within a 1 μT uniform magnetic field B0, is able to
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store neutrons for more than 100 s. The electric field, of approximately 10 kV/cm,
was generated by applying high voltage (HV) to the electrode. After application of a
resonant oscillating magnetic field (� 30 Hz) perpendicular to B0, which turns the
neutron spin perpendicular to the magnetic field and makes it precess freely, the
shutter is opened, and the neutrons leave the bottle, dropping and passing through
the iron–nickel foil again, which this time acts as an analyzer of the polarization.
Only those that remain in the initial spin state can reach the detector, which is
located below the UCN polarizing foil. The ratio of the two spin states is determined
by the exact value of the applied frequency, as shown in Eq. (9.151).

Four points, marked with crosses, slightly off resonance, are measured where
the slope is steepest. The existence of the EDM should appear as a frequency shift
when the electric field is applied. The measurement did not detect any shift, giving
the upper limit of the dipole moment of the neutron as

dn < 2.9 � 10�26 e cm (9.153)

Let us pause and think of the sensitivity that the measurement represents. Crudely
speaking, the neutron is spatially spread to the size of the pion Compton wave-
length (� 10�13 cm). If the T violation effect is due to the weak interaction, it is
probably reasonable to assume that the relative strength of emission and reabsorp-
tion of the W boson is � (g2

w/m2
w)/(g2

s /m2
π ). Here, gw, gs are the strength of the

weak and strong interactions. If we assume gw � gs, following the spirit of the
unified theory, then the strength of the EDM induced by the weak interaction is
expected to be roughly of the order 10�13 � (mπ/mW )2 � 10�19e cm. Since the
experimental value is 6 orders of magnitude smaller than the expectation, we can
consider the EDM of the neutron a good test bench for T-reversal invariance. At
present, the expected value of the Standard Model using the Kobayashi–Maskawa
model is 10�33–10�34 e cm. The probability of detecting the finite value of the EDM
is small as long as the Standard Model is correct. However, there are models that
predict a value just below the present experimental upper limit [2, 129], and an
improved experimental measurement is desired.

9.3
Internal Symmetries

9.3.1
U(1) Gauge Symmetry

Conserved Charge
We have already introduced the most fundamental result of the internal symmetry,
the conserved charge current Eq. (5.38), in Chap. 5:

J μ D i q
�
'†@μ' � @μ'†'

	
(9.154)
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This was the result of the Lagrangian’s symmetry, namely invariance under the
phase transformation

' ! e�i qα' , '† ! '†e i qα (9.155)

which generally holds when the Lagrangian is bilinear in complex fields, including
Dirac fields. The transformation Eq. (9.155) has nothing to do with the space-time
coordinates and is an example of internal symmetry, referred to as U(1) gauge sym-
metry of the first kind.6) The space integral of the time component of Eq. (9.154) is
a conserved quantity and generically called a charge operator:

Q D �i q
Z

d3 x
X

r

�
π r(x )'r (x )� π†

r (x )'†
r (x )

	
(9.156a)

D i q
Z

d3 x
h
'† P' � P'†'

i
(9.156b)

The first expression is a more general form, while the second one is specific to the
complex Klein–Gordon field. It is easy to show that Q satisfies the commutation
relations

[Q, '] D �q' , [Q, '†] D q'† (9.157)

This means that ' and '† are operators to decrease and increase the charge of the
state by q. Then using the BCH formulae Eq. (9.15),

eAB e�A D B C [A, B ]C
1
2!

[A, [A, B ]]C � � � C
1
n!

[A, [A, [A � � � [A, B ]]]]C � � �

(9.158)

we can show that

e i αQ' e�i αQ D e�i qα' , e i αQ'† e�i αQ D eCi qα'† (9.159)

Namely, the charge operator is the generator of the gauge transformation. In sum-
mary, we rephrase Noether’s theorem in quantum field theory. If there is a contin-
uous symmetry, i.e. a unitary transformation that keeps the Lagrangian invariant,
a corresponding conserved (Noether) current exists. The space integral of its 0th
component is a constant of time and is also the generator of the symmetry trans-
formation.

9.3.2
Charge Conjugation

Charge conjugation (CC for short or C transformation) is an operation to exchange
a particle and its antiparticle, or equivalently an operation to change the sign of

6) It is also called a global symmetry. When the phase is a function of space-time, i.e. α D α(x ), it is
called a gauge transformation of the second kind or a local gauge transformation, which plays a
key role in generating the known fundamental forces (See Chapter 18).

7) Here we use the word “charge” in a general sense. It includes not just electric charge, but also
strangeness, hypercharge, etc.
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the charge Q.7) Examples of the C transformation are exchanges of an electron
and positron e� $ eC, proton and antiproton p $ p , and πC $ π�. The
photon and the neutral pion are not changed since they are charge neutral and
the particles are their own antiparticles. The charge conjugation operation deals
with variables in internal space, but because of the CPT theorem, it is inseparably
connected with PT, space-time symmetry. This is because the antiparticle can be
considered mathematically as a particle with negative energy-momentum traveling
backward in time.

Charge Conjugation of the Field Operators
We learned in Chap. 4 that the charge conjugation operation generally involves
taking the complex (hermitian for the operator) conjugate of the wave function or
the field. This resulted from the fact that the interaction with the electromagnetic
field is obtained by the gauge principle, which means replacement of the derivative
by its covariant derivative

@μ ! Dμ D @μ C i qA μ (9.160)

Charge conjugation means essentially changing the sign of the charge, and the
above form suggests it involves complex conjugation. Let us see if this is true.

We start by considering the charge eigenstate

Qjq, p , szi D qjq, p , szi (9.161)

By definition, charge conjugation means

C jq, p , szi D ηC j � q, p , szi (9.162)

ηC is a phase factor. Then

QC jq, p , szi D ηC Qj � q, p , szi D �ηC qj � q, p , szi

C Qjq, p , szi D qC jq, p , szi D qηC j � q, p , szi

Therefore

C Q D �QC or C QC�1 D �Q (9.163)

As a particle state is constructed from the creation operator a† and its antiparticle
from b†, we define the charge conjugation operator C with the properties

Caq C�1 D ηC bq , C b†
q C�1 D ηCa†

q (9.164a)

C bq C�1 D η†
Caq , Ca†

q C�1 D η†
Cb†

q (9.164b)

C C† D C†C D 1, ηCη†
C D 1 (9.164c)

Applying the charge conjugation twice brings the field back to its original form,
hence its eigenvalue is ˙1 and is referred to as C parity. The definition Eq. (9.164)
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of charge conjugation means the exchange ' $ '† for the Klein–Gordon field, as
we guessed from a simple argument. Namely

C'C�1 D ηC'† , C'†C�1 D η†
C' (9.165)

The expression for the charge operator Eq. (9.156) shows clearly that the inter-
change ' • '† changes the sign of the charge operator. With the above proper-
ty, it can easily be shown that the charge operator defined by Eq. (9.156) satisfies
Eq. (9.163).

Problem 9.7

Prove

C D exp

"
i

π
2

X
k

�
b†

k � a†
k

�
(bk � ak )

#
(9.166)

has the required properties for the charge conjugation operator.

Charge Conjugation of the Dirac Field
For a field with spin, an additional operation is required to flip the spin component.
For instance, for the Dirac field,

C ψ(x )C�1 D ηCC 0ψT(x ) D ηCC 0γ 0ψ�(x )

C ψ(x )C�1 D �η�
C ψT(x )C 0 �1

(9.167)

where C 0 on the rhs is a 4 � 4 matrix that acts on the spin components as given in
Eq. (4.101). Using Eq. (9.167) and the property of the C 0 matrix [see Eq. (4.98)],

C 0 �1γ μ C 0 D �(γ μ)T (9.168)

the bilinear form of the Dirac operators is changed to

ψ2γ μ ψ1
C
!
˚
�η�

C ψT
2 C 0 �1� γ μ

n
ηCC 0ψT

1

o
D ψT

2 (γ μ)TψT
1 D �

�
ψ1γ μ ψ2

�T

D �ψ1 γ μ ψ2 D �
�
ψ2 γ μ ψ1

�† (9.169)

The minus sign in the last equality of the second line comes from the anticommu-
tativity of the field and the removal of the transpose in the last equality is allowed
because it is a 1 � 1 matrix. By setting ψ2 D ψ1 D ψ, we have a C-transformed
current

j μ
C D C(qψγ μ ψ)C�1 D �qψγ μ ψ D � j μ (9.170)

In quantum mechanics, the change of the sign is a part of the definition and had
to be put in by hand, but it is automatic in field theory. Transformation properties
of other types of bilinear Dirac fields can also be obtained by using Eq. (9.168), see
Table 9.4.
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Table 9.4 Property of Dirac bilinears under C transformation.

S(t, x ) P(t, x ) V μ (t, x ) Aμ (t, x ) T μν (t, x )

C S†(t, x ) P†(t, x ) �V μ †(t, x ) Aμ †(t, x ) �T μν †(t, x )

Note 1: S D ψ ψ, P D iψ γ5 ψ, V μ D ψγ μ ψ, Aμ D ψγ μ γ5 ψ, T μν D ψ σμν ψ
Note 2: V μ D (V 0, V ), Vμ D (V 0,�V )

Charge Conjugation of Vector Fields
As the vector and the scalar field satisfy the same Klein–Gordon equation, the
charge conjugation operation transforms them as follows:

' ! C'C�1 D ηC'† , V μ ! C V μ C�1 D ηCV μ † (9.171)

The phase factor ηC cannot be determined for the free field. But if the field inter-
acts, for instance, with the Dirac field, a Lorentz-invariant interaction Lagrangian
has the form

LINT D f ψ1ψ2' C gψ1γ μ ψ2Vμ C (h.c.) (9.172)

The second term (h.c.) is the hermitian conjugate of the first term, and by its pres-
ence the Lagrangian becomes hermitian. The requirement of C invariance for the
Lagrangian fixes the phase. Using Table 9.4 for the transformation of the Dirac
bilinears, we obtain

'
C
! '† , V μ C

! �V μ† (9.173a)

f D f � , g D g� (9.173b)

As we noted earlier, by C operation, in addition to the electric charge, the strange-
ness, baryon number, lepton number and all other additive quantum numbers
change their sign, and therefore the eigenstate of the charge conjugation has to
be truly neutral in the sense that all the quantum numbers have to be zero.

C Parity of the Photon The photon is a massless vector boson and is described by
the Maxwell equation.

@μ@μ Aν D q j ν (9.174)

The interaction Lagrangian of the electromagnetic interaction is given by LINT D

�q j μA μ. Since the electric current changes its sign by C transformation, A μ must
also change sign to keep the Lagrangian invariant. Therefore, the C parity of the
photon is �1. This can also be derived from Eq. (9.173) when applied to a real
vector field. The C parity of an n-photon system is (�1)n . This is independent of
both the orbital and the spin angular momentum.
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Experimental Tests
C in the Strong Interaction: Let us consider a process

p C p ! πC(π0)C X
C
 ! p C p ! π�(π0)C X (9.175)

If the strong interaction conserves the charge conjugation symmetry, the angular
distribution measured relative to the incoming antiprotons should exhibit a sym-
metry between θ and π � θ , as shown in Fig. 9.4 and in the following equations.
The energy spectrum should be identical in both cases, too:

dσ
dΩ

(πCI θ ) D
dσ
dΩ

(π�I π � θ ) (9.176a)

dσ
dΩ

(π0I θ ) D
dσ
dΩ

(π0I π � θ ) (9.176b)

dσ
dE

(πC) D
dσ
dE

(π�) (9.176c)

These relations have been confirmed experimentally within the errors.

C Parity of the Neutral Two-Particle System: A two-particle system consisting of a
particle and its antiparticle is neutral and can be a C eigenstate. We consider them
as identical particles in different states. If the spin and orbital angular momentum
of the system are L, S , the C parity of the system is expressed as

C D (�1)LCS (9.177)

Proof: If they are fermions ( f f D e�eC, p p , etc.) they change sign by a par-
ticle exchange because of Fermi statistics. The exchange consists of that of the
charge (C), space coordinates and spin coordinates. Therefore

�1 D C(�1)L(�1)SC1 (9.178)

Here, we have used the fact that the spin wave function is symmetric when S D 1
and antisymmetric when S D 0. The case for the boson system can be proved
similarly. �

p p

π+

θ p p

π-

π θ

C.C.

(a) (b)

Figure 9.4 (a) p C p ! πC C X , (b) p C p ! π� C X . If C is conserved, dσ(p C p !
πC) D dσ(p C p ! π�), where dσ stands for either dσ/dΩ or dσ/dE . If the pion angle is
measured relative to the incident antiprotons, dσ/dΩ (θ ) D dσ/dΩ (π � θ ).
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Problem 9.8

The �0 meson is a vector particle with J P D 1� and decays into πC C π�. Prove
it cannot decay into 2π0.

C in Electromagnetic Interactions: The most stringent test of C symmetry in elec-
tromagnetic interactions comes from the nonexistence of the π0 ! 3γ decay [311]:

Γ (π0 ! 3γ )
Γtotal

< 3.1 � 10�8 90%CL (CL D confidence level) (9.179)

The following decays are known to occur via the electromagnetic interaction
through their strength (the decay rate). Asymmetry tests are not as stringent as
that of decay branching ratios, but we list them here as another test. As η(548)
is a neutral scalar meson having 0� and mass of 548 MeV, it changes to itself by
C operation and so do π0 and γ . Since πC and π� are interchanged, the energy
spectrum of the decays

η ! πC C π� C π0 (9.180a)

η ! πC C π� C γ (9.180b)

should be identical. Experimentally, the asymmetry is less than 0.1%.
As π0, η decay into 2γ , their C parity is positive and they cannot decay into 3γ .

Conversely, if a particle decays into 3γ or π0γ , ηγ its C parity is negative.

Problem 9.9

Positronium is a bound state of an electron and a positron connected by the
Coulomb force. For the L D 0 ground state, there are two states, with S D 0, 1.
Show that the S D 0 state decays into 2γ and the S D 1 state into 3γ , but not vice
versa.

C Violation in Weak Interactions: Next we consider weak interactions, for example

μ� ! e� C ν C ν (9.181)

If C symmetry is respected, the helicity of the electron and that of the positron
should be the same provided other conditions are equal. The helicity can be mea-
sured first by making the electron emit photons by bremsstrahlung and then let-
ting the photons pass through magnetized iron. The transmissivity of the photon
depends on its polarization, which in turn depends on the electron helicity. The
result has shown that h(e�) ' �1, h(eC) ' C1 [111, 267]. Therefore charge con-
jugation symmetry is almost 100% broken in weak interactions. The origin lies in
the Hamiltonian. The parity-violating weak interaction Hamiltonian was given in
Eq. (9.92). If we take into account the C transformation property of the axial vector
(see Table 9.4) we have

ψ2 γ μ γ 5ψ1
C
! ψ1 γ μ γ 5ψ2 (9.182)
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This and Eq. (9.173) mean under C transformation

CV ! C�
V , CV

0 ! �CV
0 �

CA ! C�
A , C 0

A ! �C 0 �
A

(9.183)

Namely, if C invariance holds, CV, CA have to be real and C 0
V, C 0

A have to be pure-
ly imaginary. But the decay asymmetry of a polarized nucleus that was discussed
following Eq. (9.93) has shown C 0

A D �CA D real. Therefore, C is also maximally
violated. But the combined CP symmetry does not change the V–A Hamiltonian of
Eq. (9.94) and is conserved.

The chirality operator (1 � γ 5) in front of the lepton field operator in Eq. (9.94)
is the origin of h(e�) ' h(ν e) D �1, h(eC) ' h(ν e) D C1 as we discussed in
Sect. 4.3.5. The latter is typical of the weak interaction where the weak boson W μ

couples only to the left-handed field (i.e. (1� γ 5)ψ). This will be discussed in detail
in Chap. 15.

The V–A interaction Eq. (9.94) respects T invariance as well as CP invariance. In
principle, CP invariance and T invariance are independent. However, the combined
CPT invariance is rooted deeply in the structure of quantum field theory and is the
subject of the next section.

As long as CPT invariance holds, CP violation means T violation. There is ev-
idence that small CP violation exists in the kaon and B-meson decays, hence the
same amount of T violation is expected to exist. In fact, a T-violation effect consis-
tent with CPT invariance has been observed in the neutral K meson decays [107],
which will be described in detail in Chap. 16.

9.3.3
CPT Theorem

CPT is a combined transformation of C, P and T. All the coordinates are inverted
(t, x )! (�t,�x ) and the operation is antiunitary because of the T transformation.
All c-numbers are changed to their complex conjugates. Writing the combined op-
erator as Θ , its action is summarized as

(t, x )
CPT
��! (�t,�x)

c-numbers ! (c-numbers)*
houtjH jini ! hΘ injH jΘouti
Θ jq, p , σi ! jq, p ,�σi

(9.184)

The CPT combined transformation property of the Dirac bilinears is given by

ψ1Γ ψ2
CPT
��!

(
ψ2Γ ψ1 Γ D S, P, T

�ψ2 Γ ψ1 Γ D V, A
(9.185)

independent of the order of the C, P, T operations. If we take the hermitian con-
jugate of the bilinears, the original form is recovered except for the sign of the co-
ordinates. Transformation properties of the scalar, pseudoscalar, vector fields, etc.
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are shown to be the same as the corresponding Dirac bilinears. It follows that any
Lorentz scalar or second-rank tensor made of any number of fields are brought
back to their original form by a combined operation of (CPT C hermitian conju-
gate). Therefore the Lagrangian density (a scalar) and the Hamiltonian density (a
second rank tensor) transform under CPT

L(t, x )
CPT
��! L†(�t,�x) (9.186a)

H (t, x )
CPT
��! H †(�t,�x ) (9.186b)

Since L and H are hermitian operators and the action is their integral over all
space-time, we conclude that the equations of motion are invariant under CPT
transformation. The Hamiltonian H D

R
d3xH changes the sign of time t, but as

H is a conserved quantity and does not depend on time, the transformed Hamilto-
nian is the same as before it is transformed. As the scattering matrix is composed
of the Hamiltonian, it is invariant, too. Unlike individual symmetry of C, P or T,
the combined CPT invariance theorem can be derived with a few fundamental as-
sumptions, such as the validity of Lorentz invariance, the local quantum field theo-
ry and the hermitian Hamiltonian. The violation of CPT means violation of either
Lorentz invariance or quantum mechanics.8) Theoretically it has firm foundations.
Experimental evidence of CPT invariance is very strong, too.

We list a few examples of the CPT predictions:
(1) The mass of a particle and its antiparticle is the same.

Proof: Let H be the CPT-invariant Hamiltonian. As the mass is an eigenstate of
the Hamiltonian in the particles rest frame

m D hq, σjH jq, σi D hq, σjΘ�1Θ H Θ�1Θ jq, σi D hΘ q, σjH jΘ q, σi�

D hq,�σjH jq,�σi (9.187)

The spin orientation of jq,�σi is different from jq, σi, but the mass does not
depend on the spin orientation (see Poincaré group specification for a particle state
in Sect. 3.6). Therefore the masses of the particle and antiparticle are the same.

�

(2) The magnetic moment of a particle and its antiparticle is the same but its
sign is reversed.

(3) The lifetime of a particle and its antiparticle is the same.

Proof: Writing the S-matrix as

S
α D 1C i2πδ(Mα � E f )h
IoutjT jαIouti (9.188)

8) It is pointed out that CPT might be violated in quantum gravity [130, 210].
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Table 9.5 Summary of transformation properties under C, P and T.

S(t, x ) P(t, x ) V μ (t, x ) Aμ (t, x ) T μν (t, x )

P S(t,�x ) �P(t,�x ) Vμ (t,�x ) �A μ (t,�x ) Tμν (t,�x )

C S†(t, x ) P†(t, x ) �V μ †(t, x ) Aμ †(t, x ) �T μν †(t, x )
T S(�t, x ) �P(�t, x ) Vμ (�t, x ) A μ (�t, x ) �Tμν (�t, x )

CP S†(t,�x ) �P†(t,�x ) �Vμ
†(t,�x ) �A μ

†(t,�x ) �Tμν
†(t,�x )

CPT S†(�t,�x ) P†(�t,�x ) �V μ †(�t,�x ) �Aμ †(�t,�x ) T μν †(�t,�x )

Note 1: S D ψ ψ, P D ψγ5 ψ, V μ D ψγ μ ψ, Aμ D ψγ μ γ5 ψ, T μν D ψ σμν ψ
Note 2: The differential operator @μ transforms exactly the same as the vector field Vμ except it does
not change sign under C-operation.

the total decay rate of α is given by

Γ (α, qα) D 2π
X

, q


δ(Mα � E f )jh
, q
I outjT jα, qαI outij2

D 2π
X

, q


δ(Mα � E f )jh
, q
I outjΘ�1Θ T Θ�1Θ jα, qαI outi�j2

D 2π
X
N
, Nq


δ(MNα � E f )jh N
, Nq
I injT j Nα, NqαI ini�j2

D Γ ( Nα, Nqα) (9.189)

where, qα , q
 denote quantum numbers other than particle species. We have used
the fact that for one particle state, jα, qαI ini D jα, qαI outi, Mα D MNα and that
both “in” and “out” states form complete sets of states, i.e.X


, q


j
, q
I inih
, q
I i nj D
X

, q


j
, q
I outih
, q
I outj D 1 (9.190)

�

Finally, in Table 9.5 we give a summary list of the transformation properties of C,
P and T.

9.3.4
SU(2) (Isospin) Symmetry

Isospin Multiplets
Among hadrons there are many small groups in which members having different
electric charge share some common properties. For instance, in the following ex-
ample members have almost the same mass values (given in units of MeV) within
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groups.

2
4 p

n

3
5 938.272

939.565

2
4πC

π0

π�

3
5 139.570

134.977
139.570

2
4KC

K0

3
5 493.68

497.65

2
4Σ C

Σ 0

Σ �

3
5 1189.37

1192.64
1197.45

δm/m 0.14 % 3.3 % 0.8 % 0.33 %

(9.191)

In addition, it is known that the strength of the interaction is almost the same with-
in the accuracy of a few percent. Because they have different electric charges, the
difference can be ascribed to the electromagnetic interaction, which is weaker by
� O(α) D 1/137. Therefore, if we neglect the small mass difference, there is no
distinction among the members of the groups as far as the strong interaction is
concerned. They constitute multiplets but are degenerate. In analogy to spin multi-
plets, which are degenerate under a central force, we call them “isospin multiplets”.
Just as the degeneracy of the spin multiplets is resolved by a magnetic field (the
Zeeman effect), that of the isospin multiplets is resolved by turning on the electro-
magnetic force. We conceive of an abstract space (referred to as internal space in
contrast to external or real space) and consider the strong interaction as a central
force with the electromagnetic force violating the rotational invariance just like the
magnetic field in external space. If we identify the isospin as the equivalent of spin
in real space, the mathematical structure of isospin is exactly the same as that of
spin, which is the origin of the name.

Charge Independence
Historically, the concept of isospin was first proposed by Heisenberg in 1932 to
consider the proton and the neutron as two different states of the same particle
(nucleon) when he recognized the fact that the energy levels of mirror nuclei are
very similar. Consider the potentials between the nucleons V. When

Vp p D Vnn charge symmetry (9.192)

we call it charge symmetry and when

Vp p D Vnn D Vp n charge independence (9.193)

we call it charge independence. To formulate the mathematics of the charge inde-
pendence, we consider transformation of the proton wave function ψp and that of
the neutron ψn and define the doublet function ψ by

ψ �
�

ψp

ψn

�
! ψ0 D

�
ψp

0
ψn

0

�
D

�
αψp C 
ψn

γ ψp C δψn

�
D U ψ (9.194)

Charge independence means the expectation value of the potential does not change
under the transformation U. Conservation of probability requires U to be a unitary
matrix

UU† D U†U D 1 (9.195)
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Under this restriction, U should have the form

U D e i φ
�

α 

�
� α�

�
, jαj2 C j
j2 D 1 (9.196)

If we further require U to be unimodular (det U D 1), we have φ D 0. Generally,
any transformation that keeps the norm of N complex numbers

ψ†ψ D jψ1j
2 C jψ2j

2 C � � � C jψN j
2 (9.197)

invariant makes a group that is called a unitary group U(N ), and when det U D 1
it is called a special unitary group SU(N ). An SU(N ) matrix can be expressed as

U D exp

2
4� i

2

N2�1X
iD1

λ i θi

3
5 (9.198)

where λ i are traceless hermitian matrices (Appendix G) called generators of the
SU(N) transformation. For N D 2, there are three traceless hermitian matrices
and we can adopt the Pauli matrices for them:

τ1 D

�
0 1
1 0

�
, τ2 D

�
0 �i
i 0

�
, τ3 D

�
1 0
0 �1

�
(9.199)

Since I D τ/2 satisfies the same commutation relation

[Ii , I j ] D i ε i j k Ik (9.200)

as the angular momentum, the SU(2) transformation is mathematically equivalent
(holomorphic) to the rotational operation. The difference is that the operand is not
a spin state in real space, but a multiplet consisting of particles of roughly the
same mass as those in Eq. (9.191). Namely, the act of rotation is performed not in
a real space but in a kind of abstract space (referred to as isospin space) and the
state vector ψ denotes p when its direction is upward and n when downward. Such
symmetry in the internal space is called an internal symmetry. External symmetries
refer to those in a real space such as spin and parity. If we denote the difference
of the states like p or n by a subscript r as φ r (x ), the internal symmetry operation
acts on r, while the external symmetry acts on the space-time coordinate x and legs
(components) of Lorentz tensors. They are generally independent operations, but
sometimes connected like CPT.

As the mathematics of SU(2) is the same as that of angular momentum, it is
convenient to express various physical quantities using the same terminology as
used in space rotation. For instance, p and n make a doublet; we say the nucleon
has isospin I D 1/2. The three kinds of pions π˙, π0 constitute a triplet, or a vector
in isospace, and have I D 1. The term “charge independence” of the nuclear force
means the interaction between the nucleon and the pion is rotationally invariant in
isospin space, namely the interaction Hamiltonian is an isoscalar.
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Conserved Isospin Current
We consider the proton and the neutron as the same particle, but they have dif-
ferent projections in the abstract isospin space and constitute a doublet, called an
isospinor:

ψ D
�

p
n

�
(9.201)

Here we have adopted the notation p , n to denote ψp , ψn . The Lagrangian density
is written as

L D ψ(i γ μ@μ � m)ψ

D p (i γ μ@μ � m)p C n(i γ μ@μ � m)n
(9.202)

They should have the same mass because of the isospin symmetry. Note, p is a
spinor with four components in real space, and ψ a two-component spinor in
isospin space. Therefore, ψ has 8 independent components. In exactly the same
manner as a rotation in real space, a rotation in isospin space can be carried out by
using a unitary operator

UI D e�i
P

i α j I j D e�i α�I (9.203)

where I D (I1, I2, I3) satisfies Eq. (9.200). Let us consider transformations defined
as

ψ ! ψ0 D e� i
2 τ j α j ψ � e� i

2 τ�α ψ, (9.204a)

and

ψ ! ψ0
D ψ e

i
2 τ�α where ψ D (p , n) (9.204b)

where α D (α1, α2, α3) is a set of three independent but constant variables. Since
τ i , α i are independent of space-time, the transformation does not change any
space-time structure of the spinors p , n, and the Lagrangian density is kept in-
variant under the continuous isospin rotation. Equations (9.204) have exactly the
same form as the U(1) phase transformation of Eq. (9.155) and is called the (global)
SU(2) gauge transformation. Now consider an infinitesimal rotation

ψ ! ψ C δψ , ψ ! ψ C δψ

δψ D �
i
2

τ i ψε i D �
i
2

[τ i ]ab ψb ε i , δψ D
i
2

ψτ i ε i D
i
2

ψ a [τ i ]ab ε i

(9.205)

Applying Noether’s formula Eq. (5.32) to the transformation, we obtain

J μ D
δL

δ(@μ φ r)
δφ r

φ rDψ ,ψ
D

δL

δ(@μ ψ)
δψ C δψ

δL

δ(@μ ψ)

D

�
�

δL

δ(@μ ψa )
i
2

[τ i ]ab ψb C
i
2

ψ a [τ i ]ab
δL

δ(@μ ψ b)

�
ε i

D
1
2

ψγ μ τ i ψε i

(9.206)
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The second term in the second line vanishes because there is no @μ ψ in the La-
grangian. Since ε i is an arbitrary constant, Eq. (9.206) defines a conserved current
referred to as isospin current:

( J μ) j D ψγ μ τ j

2
ψ (9.207)

It is easy to check that an isospin operator defined by

OI j D

Z
d3x ψγ 0 τ j

2
ψ (9.208)

satisfies the relations

[I j , ψ] D �I j ψ , [I j , ψ†] D I j ψ , e i α�OI ψ e�i α OI D e�i α�I ψ (9.209)

Therefore the operator OI is the generator of the isospin rotation which appeared in
Eq. (9.203). The isospin current differs from the Dirac current only in the presence
of the isospin operator τ/2 sandwiched between the isospinors ψ and ψ.

In a similar vein, when we have three identical real Klein–Gordon fields φ D
(φ1, φ2, φ3), we can also establish the rotational invariance of φ �φ D φ1

2Cφ2
2C

φ3
2 and that of the Lagrangian, which can be expressed as

L D @μ φ† � @μ φ � m2φ† � φ (9.210)

leading to the existence of conserved isospin angular momentum, for which φ is
a I D 1 triplet. Since the pions have spin 0 and constitute a triplet of almost the
same mass, we can identify them with the field φ.9) In analogy to Eq. (9.208), it
can be expressed as

I π D �i
Z

d3 x πa [t]ab φb (9.211a)

t1 D

2
40 0 0

0 0 �i
0 i 0

3
5 , t2 D

2
4 0 0 i

0 0 0
�i 0 0

3
5 , t3 D

2
40 �i 0

i 0 0
0 0 0

3
5 ,

(9.211b)

However, to identify (jπCi, jπ0i, jπ�i) as the T3 D (C1, 0,�1) state, it is more
convenient to use a slightly different representation:

t1
0 D

1
p

2

2
40 1 0

1 0 1
0 1 0

3
5 , t2

0 D
1
p

2

2
40 �i 0

i 0 �i
0 i 0

3
5 ,

t3
0 D

2
41 0 0

0 0 0
0 0 �1

3
5 ,

(9.212)

9) Note, the pion field is a I D 1 triplet representation of the SU(2) group. If the fundamental
representation with I D 1/2 does not exist, we may have to consider the pion as the fundamental
representation of the SO(3) group, as π j ’s are real fields.
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Problem 9.10

Prove that I , I 0, satisfy

[Ii , I j ] D i ε i j k Ik , [Iπ i , Iπ j ] D i ε i j k Iπk (9.213a)

[Ii , ψ j ] D i ε i j k ψk , [Iπ i , φ j ] D i ε i j k φk (9.213b)

Problem 9.11

Prove �
Iπ3,

φ1 ˙ i φ2
p

2

�
D ˙

φ1 ˙ i φ2
p

2
, [Iπ3, φ3] D 0 (9.214)

This equation can be used to define

φ1 ˙ i φ2
p

2
j0i D α p jπ˙i D �jπ˙i , φ3 D jπ0i (9.215)

The phase α p was chosen to produce

Iπ˙jI D 1, I3 D 0i D
p

2j1,˙1i (9.216)

which is a special case of the usual convention adopted from the angular momen-
tum operator:

Iπ˙jI, I3i D [(I � Iπ3)(I ˙ I3 C 1)]1/2jI, I3 ˙ 1i (9.217)

The real nucleon and the pion do not have exactly the same mass within the multi-
plet. The isospin rotation is not an exact symmetry, but as long as the difference is
small we can treat the isospin as a conserved quantity.

Isospin of the Antiparticle
In order to find the isospin of the antiparticle, we apply the charge conjugation op-
eration to Eq. (9.194). Then the field represents the antiparticle. As the C operation
contains complex conjugation, the transformation matrix becomes

p 0 D α� p C 
�n (9.218a)

n0 D �
 p C α n (9.218b)

here, p , n denote the fields of the antiparticles p , n. In general, if the symmetry
transformation matrix is U, that of the antiparticle is given by its complex conju-
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gate U�. Rearranging Eq. (9.218), we obtain

(�n0) D α (�n)C 
 p (9.219a)

p 0 D �
�(�n)C α� p (9.219b)

which means�
�n0

p 0
�
D

�
α 

�
� α�

��
�n

p

�
D U

�
�n

p

�
(9.220)

The equation means that if (p , n) is an isodoublet, (�n, p ) is also an isodoublet that
transforms in the same way.

Charge Symmetry We mentioned charge symmetry in Eq. (9.192). It can be de-
fined more explicitly as the rotation in isospin space by π on the y-axis. For a dou-
blet its operation is

e�i π I2 D e�i(π/2)τ2 D �i τ2 D

�
0 �1
1 0

�
(9.221)




