Binomial Theorem

In Chapter 4, when multiplying polynomials, we developed patterns for squaring and cubing binomials. Now we want to develop a general pattern that can be used to raise a binomial to any positive integral power. Let's begin by looking at some specific expansions that can be verified by direct multiplication. (Note that the patterns for squaring and cubing a binomial are a part of this list.)

$$
\begin{aligned}
& (x+y)^{0}=1 \\
& (x+y)^{1}=x+y \\
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& (x+y)^{5}=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
\end{aligned}
$$

First, note the pattern of the exponents for x and y on a term-by-term basis. The exponents of x begin with the exponent of the binomial and decrease by 1 , term by term, until the last term has x^{0}, which is 1 . The exponents of y begin with zero $\left(y^{0}=1\right)$ and increase by 1 , term by term, until the last term contains y to the power of the binomial. In other words, the variables in the expansion of $(x+y)^{n}$ have the following pattern.

$$
x^{n}, \quad x^{n-1} y, \quad x^{n-2} y^{2}, \quad x^{n-3} y^{3}, \quad \ldots, \quad x y^{n-1}, \quad y^{n}
$$

Note that for each term, the sum of the exponents of x and y is n.
Now let's look for a pattern for the coefficients by examining specifically the expansion of $(x+y)^{5}$.

As indicated by the arrows, the coefficients are numbers that arise as different-sized combinations of five things. To see why this happens, consider the coefficient for the term containing $x^{3} y^{2}$. The two y 's (for y^{2}) come from two of the factors of $(x+y)$, and therefore the three x^{\prime} 's (for x^{3}) must come from the other three factors of $(x+y)$. In other words, the coefficient is $C(5,2)$.

We can now state a general expansion formula for $(x+y)^{n}$; this formula is often called the binomial theorem. But before stating it, let's make a small switch in notation. Instead of $C(n, r)$, we shall write $\binom{n}{r}$, which will prove to be a little more convenient at this time. The symbol $\binom{n}{r}$, still refers to the number of combinations of n things taken r at a time, but in this context, it is called a binomial coefficient.

Binomial Theorem

For any binomial $(x+y)$ and any natural number n,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} y^{n}
$$

The binomial theorem can be proved by mathematical induction, but we will not do that in this text. Instead, we'll consider a few examples that put the binomial theorem to work.

EXAMPLE 1 Expand $(x+y)^{7}$.

Solution

$$
\begin{aligned}
(x+y)^{7}= & x^{7}+\binom{7}{1} x^{6} y+\binom{7}{2} x^{5} y^{2}+\binom{7}{3} x^{4} y^{3}+\binom{7}{4} x^{3} y^{4} \\
& +\binom{7}{5} x^{2} y^{5}+\binom{7}{6} x y^{6}+\binom{7}{7} y^{7} \\
= & x^{7}+7 x^{6} y+21 x^{5} y^{2}+35 x^{4} y^{3}+35 x^{3} y^{4}+21 x^{2} y^{5}+7 x y^{6}+y^{7}
\end{aligned}
$$

EXAMPLE 2 Expand $(x-y)^{5}$.

Solution

We shall treat $(x-y)^{5}$ as $[x+(-y)]^{5}$:

$$
\begin{aligned}
{[x+(-y)]^{5}=} & x^{5}+\binom{5}{1} x^{4}(-y)+\binom{5}{2} x^{3}(-y)^{2}+\binom{5}{3} x^{2}(-y)^{3} \\
& +\binom{5}{4} x(-y)^{4}+\binom{5}{5}(-y)^{5} \\
= & x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}
\end{aligned}
$$

EXAMPLE 3 Expand $(2 a+3 b)^{4}$.

Solution

Let $x=2 a$ and $y=3 b$ in the binomial theorem:

$$
\begin{aligned}
(2 a+3 b)^{4}= & (2 a)^{4}+\binom{4}{1}(2 a)^{3}(3 b)+\binom{4}{2}(2 a)^{2}(3 b)^{2} \\
& +\binom{4}{3}(2 a)(3 b)^{3}+\binom{4}{4}(3 b)^{4} \\
= & 16 a^{4}+96 a^{3} b+216 a^{2} b^{2}+216 a b^{3}+81 b^{4}
\end{aligned}
$$

EXAMPLE 4
 $$
\text { Expand }\left(a+\frac{1}{n}\right)^{5} \text {. }
$$

Solution

$$
\begin{aligned}
\left(a+\frac{1}{n}\right)^{5} & =a^{5}+\binom{5}{1} a^{4}\left(\frac{1}{n}\right)+\binom{5}{2} a^{3}\left(\frac{1}{n}\right)^{2}+\binom{5}{3} a^{2}\left(\frac{1}{n}\right)^{3}+\binom{5}{4} a\left(\frac{1}{n}\right)^{4}+\binom{5}{5}\left(\frac{1}{n}\right)^{5} \\
& =a^{5}+\frac{5 a^{4}}{n}+\frac{10 a^{3}}{n^{2}}+\frac{10 a^{2}}{n^{3}}+\frac{5 a}{n^{4}}+\frac{1}{n^{5}}
\end{aligned}
$$

