Canadian Journal of Forest Research

Revue canadienne de recherche forestière

A new method for capturing stem taper variation for trees of diverse morphological types

Journal:	Canadian Journal of Forest Research
Manuscript ID	cjfr-2016-0018.R1
Manuscript Type:	Article
Date Submitted by the Author:	18-Mar-2016
Complete List of Authors:	MacFarlane, David; Michigan State University Weiskittel, Aaron; University of Maine
Keyword:	taper, form, branching architecture, mixed-effects modeling, morphology

Manuscripts

A new method for capturing stem taper variation for trees of diverse morphological types.

David W. MacFarlane ${ }^{1 *}$ and Aaron R. Weiskittel ${ }^{2}$
${ }^{1}$ Department of Forestry, Michigan State University, East Lansing Michigan, 48840
${ }^{2}$ University of Maine, School of Forest Resources, Orono, ME 04469
*corresponding author; email: macfar24@msu.edu

Abstract

Understanding variation in tree stem form is fundamental to both ecological and economic assessments of forest ecosystem structure and function. Stem taper models (STMs) are widely used to describe tree form, but it can be challenging to apply them to trees with stems that diverge from an idealized norm, often leading to exclusion of many trees from stem taper studies. Here, new 'whole-tree' form type classes are advanced, as simple and useful groupings for capturing stem form variation of trees of diverse morphological types, and tested with a large tree data set without exclusion criteria. New form type classes explained much more of main stem form variation than knowledge of tree species, while 'merchantable form types' explained most stand-to-stand level variation. Broad-leaved species were much more likely to have complex stem forms than needle-leaved, but species 'evergreeness' was a very weak predictor of stem form variation, when tree and stand -level form variation was accounted for. A new, generalized framework for stem taper modeling is demonstrated, using both species and merchantable form types to capture tree-level random effects. New form types and the STM approach are relatively easy to apply and should be relatively simple to integrate into any conventional forest inventory system. Overall, the study demonstrates the importance of including and accounting for the diversity of observed stem forms in developing STMs.

Keywords: taper, form, branching architecture, mixed-effects modeling, morphology

1. Introduction

Stem taper models (STMs) describe the changing shape of the 'main' stem of a tree, from ground to tree top. This enables them to be used to explore and predict variation in stem morphology for trees of diverse species, because stem taper reflects factors such as ecological conditions and forest management history (Assmann 1970, Muhairwe et al. 1994, Niklas 1995, Valentine and Gregoire, 2001, Bravo-Oviedo et al. 2014). STMs have long been applied to forest inventory data, because they allow for estimation of merchantable stem volume to a variable top diameter as well as merchandizing the stem into various products (Kozak et al. 1969). More recently, they have been applied to simultaneously estimate tree volume and biomass (Jordan et al. 2006, Zakrzewski and Duchesne 2012, Ver Planck and MacFarlane 2015), which can allow for extension of timber volume inventories to ecological studies and provide quantitative data for understanding synergies and tradeoffs between different types of forest ecosystem services, such as carbon storage versus timber production. For example, the US Forest Inventory and Analysis program currently links national timber stocks inventory data to the national forest carbon inventory, by using a component ratio method (Domke et al. 2012) that predicts both total tree and tree component biomass (e.g., branches, leaves), as ratios of a tree's merchantable main stem volume.

Despite the long and successful history of development and application of STMs, it can be challenging to apply them to trees with complex stem forms, namely trees that fork to some significant degree or have major limbs that otherwise distort the idealized, continuous main stem form that is typically assumed in STMs. For example, MacFarlane (2010) and Ver Planck and MacFarlane (2014) showed that taper may drop precipitously at branch nodes, especially if the branches are large relative to the main stem. Tree modelers have taken two general approaches to address this challenge: (1) exclude trees which do not conform well to the assumed model, or (2) incorporate different tree branching architectures into STMs.

The prevailing approach is to fit STMs to a sample population of trees that have been censored to some degree by excluding trees which diverge from some idealized stem form. Many research papers report excluding 'irregular' trees from data sets used to fit STMs. For example, Burkhart (1977) reported including only single-stemmed trees, while others excluded trees with forks (Forslund 1982, Barrio Anta et al. 2007) or trees with multiple stems or crooked boles (Özçelik 2008). McTauge and Bailey (1987) excluded trees with forks, ramicorn branches (large, high-angled branches) or 'foxtails' (sections of the stem which grow without producing any lateral branches) and Newnham (1992) reported excluding 2293 of 7367 (31\% of) trees, which had 'defects', when fitting taper models to four Alberta tree species, without specifying what those defects were. Sometimes, entire types of stands have been excluded from STM studies. For example, Burkhart and Walton (1985) chose plantations that had not been thinned, burned, or pruned, and were free of severe insect or disease damage, to assess the influence of crown variation on the taper of loblolly pine (Pinus taeda L.). Such censoring could be a significant problem whenever STMs fit to censored data are later applied to populations of trees covering a larger range of tree forms or stand conditions, which is generally the case.

Some researchers have sought approaches which recognize that a model of the main stem of a tree should be referenced somehow to the whole tree it is part of, whose other parts (namely branches) influence its form (MacFarlane 2010, Ver Planck and MacFarlane 2014). Muhairwe (1994) demonstrated that simply including a measure of crown size as a predictor variable could help explain some of the variation in tree shape, in even-aged, fully-stocked, lodgepole pine (Pinus contorta) stands, where we would expect fairly uniform crown geometry. One solution offered for teak (Tectona grandis) explicitly parameterized the heights of forks and the relative change in diameter at forking points into the STM (Adu-Bredu et al. 2008). While effective, this latter model requires a number of additional measurements on every tree, which would be time consuming and prone to measurement error, and the model allows for only two
forks in a tree. Two other approaches model continuous shifting allocation between a main stem and branches, above and below a relative crown height, but require some prior estimate of volume (Ver Planck and MacFarlane 2014) or the centroid of volume (MacFarlane 2010) for each tree. Zakrzewksi (2011) modeled the cumulative distribution of volume from a taper model, including wood in both the main stem and branches, but his approach did not allow for separation of main stem volume from branch volume; the two components were treated as a composite sum.

Our literature review revealed that, despite a long history of applying STMs in forestry and recent efforts to link changes in tree form to changes in tree biomass and forest carbon storage (e.g., Chave et al. 2014, MacFarlane 2015), little research has been conducted to document the potential problem of excluding trees with diverse forms, when fitting STMs. Further, no generalized, low-cost, simply-to-apply solution has been advanced to model stem taper over the very broad range of tree forms that can be observed. A simple, and possibly effective approach would be to identify 'whole-tree' form types (meaning ones that reference both the main stem and branches), which trees could be relatively easily assigned to and would capture major differences in main stem form variation, with specific reference to the relative 'branchiness' of the tree. To address these issues, we: (1) develop whole-tree form type classes that provide useful groupings for capturing stem form variation; (2) assess the relative abundance of trees of different form type classes, within and between species, from a large tree data set with no specific exclusion criteria; (3) explore the hierarchical structure of variation in tree form at the tree, stand and species levels over a large spatial domain, and (4) discuss implications of the former on development and application of STMs to trees of diverse stem form and branching architecture.

2. Materials and Methods

2.1. Study area and tree data

The study area included public forest lands in the state of Michigan, USA. These forests cover about 1.7 million ha of Michigan's 14.7 million ha land area and encompass a diverse array of glacial landforms and forest community types, within temperate broad-leaf and mixed needle-leaf-broad-leaf biomes (Dickmann, 2004). Stands were selected at 31 test locations to cover a diverse set of species, tree sizes and stand conditions and involved all Michigan Department of Natural Resources (MDNR) management regions across the state. Trees were selected from 12 of the locations using horizontal point sampling on a 64 m square grid. At the other 19 locations, trees were selected systematically, sequentially selecting sample trees of desired species within size classes, until the desired size range of target species were sampled from the stand. In all cases, trees were selected without exclusion of trees with complex or irregular stem forms. In total, 1828 trees of 21 species were destructively sampled covering a wide range of sizes, from a minimum size of 11.7 cm to a maximum of 101.6 cm diameter at breast height (DBH; 1.3 m) (Table 1).

Trees were felled and dissected by professional loggers and measured. Stem diameter at breast height (DBH, cm) was measured before felling and total height (H, m) was measured after felling (species averages are shown in Table 1). The main stem and branches of each tree were cut into approximately 2.5 m sections to a 10 cm top diameter outside bark (DOB), although shorter and longer section lengths were occasionally included. Beginning with the stump, the main stem diameter outside bark was measured at the ends of cut sections along with the length of each section all the way to the top of the tree. The main stem was followed to the top of the tree, selecting the largest and most vertical stem at a fork to be the main stem (aka the "dominant" stem, sensu VerPlanck and MacFarlane 2014). Any branch with a basal
diameter of at least 10 cm with at least 2.5 m long, sound section was measured to a 10 cm top DOB, in the same manner as the main stem.

2.2. Whole-tree form types defined

Botanists have worked for decades to define generalized architectural models for plant form, based on the relative arrangement of plant parts, which reflect both endogenous (genetic) and exogenous (environmental) processes that define plant form at any point in time (Barthélémy and Caraglio 2007). Here, we sought to define analogous architectural form types for trees, to capture major, visually-apparent differences in the allocation of wood to the main stem versus branches. The form classes were also designed to be consistent with common forest inventory practices, to give them practical as well as scientific value for tree form evaluation.

2.2.1. Large Branch Type (LBTs)

MacFarlane (2010) theorized that only relatively large branches should have a significant impact on main stem form, so the simplest classification is binary, determining whether a tree has relatively large branches, or not. This Large Branch Type (LBT) takes on a value of zero if the tree has no large branches and a value of one if it does. The definition of a 'large' branch may vary from region to region, but can be made consistent within a forest inventory system by linking it to merchantability standards applied within that system. Here, the minimum size of a 'large' branch is one with a minimum basal diameter $=10 \mathrm{~cm}$ and containing at least one sound, pulp-sized \log to a minimum top $D O B=10 \mathrm{~cm}$. This standard meets the average minimum specifications for a merchantable section of a tree in Michigan forestry practices (MDNR 2013) and the USA in general (e.g., Clark et al. 1991, Jenkins et al. 2003, Woodall et al 2011). For this study, trees were assigned an LBT = 1 if they contain a branch with at least 2.5 m long
branch section, with a minimum basal diameter of 10 cm and a minimum top DOB also $=10$; or LBT $=0$, otherwise. All study trees were assigned an LBT (see Table 2).

2.2.2. Merchantable Branch Type (MBTs)

The LBT can be made more descriptive and useful for volume inventory by differentiating between large and very large branches, which can correspond in size to branches that could be used for the two major types of wood products: pulp and saw products, respectively. To be classed as having branch saw wood present, a tree needed to have at least one branch section at least 2.5 m long, with a minimum basal diameter $=20 \mathrm{~cm}$ and at least one sound \log to a minimum top $D O B$ also $=20 \mathrm{~cm}$; this is also consistent with regionally and nationally -used minimum merchantability standards cited above. Trees are assigned to MBTs using a two-digit code system, with the first digit representing the absence / presence of pulp log-sized branches and the second indicting the absence / presence of saw log-sized branch sections. So, there are four possible MBTs for a tree: 0-0 $=$ no merchantable branch wood; 1-0 = pulp wood in branches, but no saw wood in branches; 0-1 = no pulp wood in branches, but saw wood in branches; and 1-1 both pulp and saw wood in branches. All study trees were assigned an MBT (see Table 2).

2.2.3. Merchantable Form Types (MFTs)

LBTs and MBTs allow for identification of trees with or without large, merchantable branches, or of different branch types, but have no code representing the main stem. Since trunk taper is expected to change as a tree increases in size (Niklas 1995), form types can be further differentiated by categorizing the main stem into two merchantable types, just as the branches were under the MBT system. So, a four-digit Merchantable Form Types (MFT) code was developed to create a variety of tree form types relevant to forest inventory methods, depending on whether or not the tree contains merchantable wood in some or all of the
following four categories: (1) main stem pulp, (2) main stem saw, (3) branch pulp, or (4) branch saw. A value of " 1 " is recorded when that part-product is present and " 0 " when it is not. So, a tree with a code of "1-0-1-0", would have pulp wood volume in both the main stem and branches, but would not have any saw wood volume in either tree component. All study trees were assigned an MFT (see Table 3).

2.3. Analytical Methods

Our data set consisted of measurements of the change in main stem cross-sectional area, as a function of height above ground from the stump to the top of the tree, computed from the stem diameter measurements taken along the stem. We used a multi-level mixed-effects modeling framework for analysis (Venables and Ripley 2002), recognizing the hierarchical structure of our data, where correlated within-tree variation in stem cross-sectional area (computed from the stem diameter measurements of the stem) represented the finest level of variation. When specifying the hierarchy, we sought to investigate tree-level form variation from the most general to the most specific effects on tree form, which was, from top to bottom: evergreeness > spp > form type > stand > tree. Since genetics has a top-down effect constraining tree form (Barthélémy and Caraglio 2007, Dardick et al. 2013), 'evergreeness' (e.g., Ducey 2012) was used as a the coarsest group, which species were nested in, reflecting the expected difference between trees with a decurrent (broadleaf) versus excurrent (needleleaf) stem form due to expected differences in apical dominance between conifers and angiosperms (Wilson 2000). Species-level effects were further refined by form type groupings (LBT, MBT, MFT), which represented within-species variation in form. Finally, the random effect of local environment on tree form (Xiong et. al. 2010) was captured by the specific stand conditions the trees were drawn from.

In our first analytical step, we computed main stem volume for each tree from the taper measurements using tree-specific mixed-effects B-spline regression; a semi-parametric method described by Kublin et al. (2013), that was fit using the TapeR package (Kublin and Breidenbach 2013) in R v3.2.3 (R Core Team 2015). Then, we estimated the relative contribution of each grouping variable in the hierarchy to stem form variation, using main stem volume as an integrating variable to capture stem form differences. This was accomplished with the varcomp function within the APE package (Paradis et al. 2004) in R, which computes the variance components from a fitted mixed-effects model object.

Our next step was to use non-linear mixed effects modeling (nlme, Venables and Ripley 2002) to fit a parametric taper model to the whole data set (all trees) and then adjust model coefficients based on random effects, which were allowed to vary based on how each individual tree diverged from the trend over all the diverse tree types represented in our data. There were several reasons for this approach. First, there was insufficient data to fit a separate model for every combination of species and form type, despite the very large data set we had (see Tables 2 and 3). A combined model with dummy variables for each species and form type would have created an enormous number of parameters and coefficients to estimate; even a reduced version with only evergreeness and LBT failed to converge on a solution. Simply allowing the intercept to vary by species or form type resulted in grossly oversimplified effects of form type or species.

We chose the highly flexible segmented polynomial model of Max and Burkhart (1976) to explore how well the form types captured major differences in tree form, within and between species, because this model is well-tested, it has been previously been shown to work with predicted random effects (Cao and Wang 2011), and allowed for evaluating the influence of tree form on various stem segments.

The segmented polynomial model we used was in the form:

$$
\begin{equation*}
Y=\beta_{1}(X-1)+\beta_{2}\left(X^{2}-1\right)+\beta_{3}\left(\alpha_{1}-X\right)^{2} I_{1}+\beta_{4}\left(\alpha_{2}-X\right)^{2} I_{2} \tag{eq. 1}
\end{equation*}
$$

where Y is the relative squared diameter outside bark $\left(d^{2}, \mathrm{~cm}^{2}\right)$ at a height above ground $h(\mathrm{~m})=$ $\left(d_{\mathrm{h}} / D B H\right)^{2}$, which hereafter is referred to as relative cross-sectional area outside bark (relcob); X is the relative height above ground $(r e l h)=h / H$; and α_{i} and β_{i} are coefficients to be estimated, with α_{i} representing the joining points of the segments of the equation. I_{1} and I_{2} are indicator variables denoting the relative position of the joints with respect to the $i^{\text {th }}$ cross-sectional position in the upper and bottom portions of the tree, respectively.

$$
\begin{aligned}
& I_{1}=1, \text { if } \alpha_{1} \geq X, \text { else } I_{1}=0 \\
& I_{2}=1, \text { if } \alpha_{2} \geq X, \text { else } I_{2}=0
\end{aligned}
$$

Max and Burkhart (1976) allow for α_{i} to be specified or estimated as free coefficients. We tested a model where we set the value of α_{2} at the relative height of $\mathrm{DBH}(\overline{r b h})$, because this simplified model fitting procedures, and because α_{2} is typically very close to $\overline{r b h}$ point when estimated independently (α_{1} by contrast is highly variable, typically occurring somewhere between 50 to 90% of total tree height). Additionally, since the general form of the taper model (eq. 1) is relative to $D B H$ there is a natural inflection point at $D B H$, where $Y=1$; points below that are generally $Y>1$ and above that $Y<1$.

The DBH-segmented Max and Burkhart (1976) model is:

$$
\begin{gather*}
Y=\beta_{1}(X-1)+\beta_{2}\left(X^{2}-1\right)+\beta_{3}\left(\alpha_{1}-X\right)^{2} I_{1}+\beta_{4}(\overline{r b h}-X)^{2} I_{2} \tag{eq. 2}\\
I_{1}=1, \text { if } \alpha_{1} \geq X, \text { else } I_{1}=0 \\
I_{2}=1, \text { if } \overline{r b h} \geq X, \text { else } I_{2}=0
\end{gather*}
$$

We fit both models (eq. 1 and eq. 2) to the data and used a likelihood ratio test to determine if leaving α_{2} as a free coefficient was superior to assigning it to $\overline{r b h}$.

To fit the models above, we used the NLME package (Bates et al. 2015) in R, specifying tree-level random effects nested within each stand. In addition, hierarchical data tend to have within-subject correlation and are also likely to have within subject residual heteroscedasticity. We dealt with both by inclusion of a continuous first-order autoregressive (CorCAR1) correlation structure and a variance power (varPower) weighting structure as a both function of relative height to address within-subject correlation and heteroscedasticity, respectively. However, both were found to not significantly improve model fit (tested using a likelihood ratio comparison) and consequently, not included in the final model.

We explored different combinations of model coefficients α_{i} and β_{i} as random effects to determine which was contributing the most to unexplained variation. We looked for the best combination of coefficients to assign random effects to, which allowed models to converge and which improve the model fit as indicated by a likelihood ratio test. In the final stage of modeling, we predicted the random effects for each tree within each stand from the best model, as linear functions of species and form types.

3. Results

3.1. Diversity in tree form types

A broad range of tree form types were found within and among species over a range of tree sizes (Tables 2 and 3). As expected most needle-leaf trees had few branches large enough to meet minimum merchantability standards (only 3\% of trees examined had an LBT = 1, Table 2). Pinus strobus, however, was the exception among conifers, with about 14%
containing large branches (Table 3). By contrast, almost half of all broad-leaved trees we observed had at least one large, merchantable branch and about 17% of those were large enough to produce saw logs (Table 2).

Over all trees, the five most common MFTs were: 1-0-0-0: which corresponds roughly to smaller ("pole"-sized) trees (smallest DBH = 12 cm) without relatively large branches; 1-0-1-0: smaller trees ($\mathrm{DBH} \geq 15 \mathrm{~cm}$) with a major fork; 1-1-0-0: larger (saw-timber-sized trees without large branches, smallest with DBH = 21 cm); 1-1-1-0: larger trees with large branches (DBH \geq 21 cm); and 1-1-1-1: large trees with saw-log sized branches (smallest individual had DBH $=31$ $\mathrm{cm})$. Allometrically, a tree has to be large enough to grow a relatively large branch, and the bigger the ratio of the largest branch to the main stem, the more dramatic the fork (MacFarlane 2010). For example, the smallest tree with a pulp-sized branch (category 1-0-1-0) had a branch fork with a basal diameter almost as large as the main stem.

3.2. The relative contribution of form types to explaining tree form variation

Analysis of variance components of main stem volume showed that knowing the species or species group ('evergreenness') explained very little of the difference in main stem form and volume, when compared to tree-to-tree and within-stand variation, suggesting a very high level of intra-specific variation in stem form, across a broad range of species and forest communities (Fig. 1a). Knowing that a tree, within a species, has a relatively large branch (LBT), large enough to be merchantable, added considerably to explaining tree to tree variation (Fig. 1b). Furthermore, including information related to the saw timber potential of the branch (MBT), increased the degree of variation explained (Fig. 1b). MFTs were the most informative; knowing the MFT of a tree explained about half of the tree-to-tree variation in main stem volume, but it also helped considerably to clarify intra-specific variation, such that they combine to explain about two-thirds of within-tree form variability (Fig. 1d). Further, with trees assigned to a MFT
much of the variation between stands was accounted for (note the relatively shallow slope from 'MFT' to 'stand' in Fig. 1d, relative to that for species, LBT and MBT, Fig. 1 a-c, respectively).

3.3. Divergence of trees of different form type and species from a general all-species STM

The DBH-segmented Max and Burkhart (1976) model (eq. 2) was superior by all metrics to the standard model (eq. 1, Table 4), so it was used for all subsequent model fittings. Only having to estimate one joining point simplified estimation of fixed and random effects on other model coefficients. The best model that converged was one with random effects on coefficients β_{1}, β_{2}, and β_{4}, as indicated by AIC, BIC, and a likelihood ratio test (Table 5). Both MFT and species were significantly ($\mathrm{p}<0.0001$) and linearly correlated with all three coefficients and model fitting generated using linear adjustment factors for each coefficient depending on the species and MFT (Table 6).

The final generalized model selected for all trees of all species and form types was:

$$
\begin{gathered}
Y=\left(\beta_{1}+\mu_{1(i j k)}\right)(X-1)+\left(\beta_{2}+\mu_{2(i j k)}\right)\left(X^{2}-1\right)+\beta_{3}\left(\alpha_{1}-X\right)^{2} I_{1}+\left(\beta_{4}+\mu_{4(i j k)}\right)(\overline{r b h}-X)^{2} I_{2} \\
I_{1}=1, \text { if } \alpha_{1} \geq X, \text { else } I_{1}=0 \\
I_{2}=1, \text { if } \overline{r b h} \geq X, \text { else } I_{2}=0
\end{gathered}
$$

where $\mu_{1(i j k)}, \mu_{2(i j k)}$, and $\mu_{4(i j k)}$ are the predicted random effects for a tree in stand k of MFT j and species i. Coefficients and fit statistics for eq. 3 area shown in Table 6.

After fitting, eq. 3 was used to explore model behavior. To apply the model, stand-level random effects were set to zero and the predicted random effects terms for both MFT and species were added to the random effects intercepts which were then added to the fixed effects terms in the models (Table 6).

For example, the predicted random effect term μ_{1} was added to the fixed effect coefficient β_{1} (eq. 3). The intercept for the predicted random effect $=0.0710$ (Table 6). If the tree was an Acer saccharum tree with a MFT of 1-0-1-0 we added -0.1606 (for species, Table 6) plus -0.1714 (for MFT, Table 6), meaning $\mu_{1}=0.0710+[-0.1606]+[-0.1714]=-0.3320$, which is added to the fixed-effect coefficient $\beta_{1}(=-3.9845$, Table 6$)+[-0.3320]=-4.3165$.

Looking at form variation within a species, against the background of variation in all species (Fig. 2), it can be seen that e.g., Q. rubra trees with relatively large branches had considerably more taper than Q. rubra trees without them, such that saw-sized trees with sawsized branches (MFT = 1-1-1-1) were more similar in stem form to pole-sized trees with polesized branches (1-0-1-0) than the latter were to pole-sized trees without large branches (1-0-00). Comparing two species, e.g., A. saccharum and T. americana, which tend to co-occur on a variety of mesic upland sites in the region, we can see a case where species differences were important, but only in magnifying differences caused by branching (Fig. 3). According to our model (eq. 3) and the underlying data (see Fig. 3), the main stem of T. Americana tends to taper less than that of sugar maple, on average, even when forks or other major branching effects are accounted for. However, the "regular" form stems (1-0-0-0) of both species are more similar to each other than "forked" individuals (1-0-1-0) of the same species, further demonstrating that intraspecific stem form variation tended to be much greater than interspecific variation (as shown in Fig. 1). The model (eq. 3) clearly shows that the net effect of branching is to divert volume from the main stem into branches, increasing stem taper and reducing accumulated volume in the main stem.

4. Discussion

4.1. The value of form type classes which consider both stem and branches

Foresters have long recognized that trees have different stem forms and have sought ways to capture this, as a way to improve stem volume estimation, but also to fundamentally understand variability in tree form. For example, Assmann (1970) chronicled almost a century of theories which attempt to describe tree-to-tree stem form variation, and noted (on p. 64) "the problem of form and form factor", which is simply the fact that tree-to-tree stem form varies within wide limits and, for each tree, it responds dynamically to changing environments (e.g., thinning, see Assmann 1970, p. 61). Much of the early research on form resulted in the advent of 'form classes', which look at the ratio of some upper stem diameter, typically to top of the first \log (e.g., Girard Form Class, Avery and Burkhart 2015) to DBH. These early form classes generally differ from modern STMs, because they focus mainly on modeling taper lower down in the tree's stem, where the most economically valuable parts are. Since STMs seek to profile stem form from the base to the top of the tree using a continuous mathematical function (Zakrzewski 1999), they should require more complex form type classifications, unless they are applied only to trees with regular form, where it might be reasonable to assume that form differences captured lower extend all the way to the top of the tree.

Here, we experimented with multiple new form-type classes, which recognize that the main stem is embedded in, and an inextricable part of, a complex tree branching network (Barthélémy and Caraglio 2007). Our results suggest that 'regular' stem form might even reflect a special case for many species. Again quoting Assmann's (1970) seminal text: "As compared with the many diverse and, in some cases, bizarre outlines of broad-leaved trees, conifers present regular forms." Our study generally supports Assmann's (1970) assertion, with a large amount of data collected over a range of species and forest conditions, although Pinus strobus
appears to diverge considerably from the general pattern for conifers. This species is a midtolerant conifer that often regenerates naturally under an intolerant hardwood canopy (Bebber et al 2004) and tends to have excessive forking due to a white pine weevil (Pissodes strobe), which kills terminal shoots and releases branches from apical dominance (Stiel 1979). Thus, while observed differences between needle-leaved and broad-leaved, could be expected due to coarse-level taxonomic differences in apical dominance (Wilson 2000), needle-leaved species may not have regular form under natural forest conditions. For example, Xiong et. al. (2010) showed that genetics is important in determining forking in Pinus taeda, but also that local environmental / silvicultural factors tended to explain most of the forking variation. The other two pine species we examined (P. resinosa and P. banksiana) were drawn mainly from only a few plantations, where spacing and density were kept more uniform during growth, so our data set may actually underestimate how branchy pines are. Certainly, the fact that so many published STM studies of needle-leaved species report excluding forking or branchy trees (e.g., McTauge and Bailey 1987), suggests that such trees are not uncommon in the general population.

Our study demonstrates that the new form type classes: LBT, MBT, and MFT, provide a highly useful system for capturing variation in stem form, within and between species, and MFTs appear to explain most of the variation caused by different stand / site conditions. MFTs offer the most flexible system for classifying trees, because they explicitly consider the size of both main stem and branches. Additionally, the MFT coding allows some unusual tree forms to be specifically identified. For example, our data set also included some very large individuals of Pinus strobus (up to 100 cm DBH), which had a unusual form type, MFT $=0-1-0-0$, which characterizes a tree with only saw-timber-sized sections of the main stem, which rises up to a top that breaks into many small branches (Table 3). A STM would typically predict that a large tree with saw timber lower in the stem, would also have pulp wood higher up in the main stem above it.

MFTs might also allow for the possibility of capturing trees with defects, with consideration of the size of the tree. For, example a tree with a code of "0-0-0-0" could either be too small to meet merchantability requirements (< 10 cm DBH) or a large-enough tree (typically $\geq 12 \mathrm{~cm}$ DBH by US standards), but with significant defects which limited the merchantability of the section. So, aside from helping to better predict stem volume these new form types can be used to better characterize form diversity in growing stock, which could be related to growth and mortality trends.

A potential problem with any classification system is misclassification, but the form type classes described here are easy to implement. In fact, the Michigan DNR already implements a more complex system in their forest volume inventory, in that foresters are already trained to count the number of saw and pulp logs in both the main stem and branches of trees (MDNR 2013). MFTs are a simplification, in that those log counts are reduced to a binary, presence or absence assessment for each category of wood products. Consequently, this classification system could be implemented right away in Michigan, USA and a similar system could likely be developed for any forest inventory system that encounters trees of diverse form. Even simpler are the MBT or LBT classes. They provide less information for differentiating trees, but may have lower misclassification error, but could be used in lieu of MFTs, if misclassification error were to outweigh gains of using a more complex form type.

One limitation of the form types presented here is that there is only one MFT that can accommodate trees smaller than 10 cm DBH: 0-0-0-0. Previous studies have suggested that small / young trees have different forms than mature trees (Niklas 1991, Ter-Mikaelian et al. 2004), but it should be acknowledged that small-tree form can be influenced by branching too. Kerr and Boswell (2001), e.g., surveyed regenerating forests across the United Kingdom and found that 69\% of young Fraxinus excelsior trees had at least one fork and 29% had more than one. The level of forking varied widely from site to site and was hypothesized to be related to
terminal bud damage from frost and bud moths. Kerr and Boswell (2001) also noted that such forks tend to persist, leading to a reduction in the saw timber volume produced in the lower stem of these trees later in life. So, clearly small trees can have complex forms that warrant more than a simple taper modeling approach and the form types of larger trees often reflect the evolution of form types set early in the life of the tree. In combination with other results, this highlights the potential benefits of a more generalized classification approach, where, e.g., branch size is expressed relative to the size of the main stem, instead of in absolute terms.

4.2. Hierarchical structure of variation in tree form at the tree, stand and species levels

Our data and analyses indicate that tree-to-tree variation in form is enormous over the wide range of species and stand conditions we examined. It was surprising how little 'evergreeness' and species mattered as grouping variables, in light of this variation. The practical implication is that if a tree is randomly drawn from the landscape and measured for stem form and volume, knowing whether it is a needle leaved vs. broad-leaved tree, or even its species, does not tell us much more about its form. By contrast, knowing the particular stand it was drawn from tells us quite a lot, because the ecological conditions and historic stand dynamics have an apparently large effect on how that tree grew. This supports the idea that species-specific volume models are not superior to 'composite' or mixed species ones, because so-called species effects are often confounded with effects of the stand conditions from which the species data were drawn; "taper is greatly influenced by the past history of the stand" (Gevorkiantz and Olsen 1955). Here, we used mixed effects modeling to disarticulate species and stand effects and used our new form types to capture growth-history effects at the individual tree level, which explained most of the stand-level influence on tree form.

Since MFTs did not capture all the stand-to-stand variation in stem form, our hierarchical analysis indicated other residual uncertainty from stand level factors. Stand density should
affect taper to some degree and also act to reduce lateral branching when density is high (Neilsen and Gerrand 1999). Garber and Maguire (2003) showed that including height-diameter ratios as a model predictor could to some extent account for stand to stand variation in stem taper, because it tends to be correlated with stand density and it is a good proxy for crown ratio, at least in stands with simple crown architecture. However, they also concluded that spacing had little appreciable influence on the taper of some species (e.g., Abies grandis) and underscored the importance of developing site and species-specific equations. By contrast, our goal was to reduce the need for stand / site specific equations. Muhairwe et al. (1994) explored the explanatory power of site productivity class and age into STMs developed for several species, but concluded that the variables contributed only marginally to improving the model. Stand-to-stand / site-to-site variation in stem form may be confounded with other factors, such as local genetic effects on taper (Sherill et al. 2004, Gomat et al. 2011), but we would expect these to be evident in the form type and species combinations represented in the stand. Ultimately, it simply may not be possible to explain all the stand-to-stand variation in tree form.

4.3. Implications for development and application of STMs to trees of diverse form and branching architecture.

The results of this study suggest that STM approaches would benefit more from fitting them by form type, then by species, but that it would be most useful to fit MFT-specific models for every species. In terms of this study, that would mean filling a data matrix of trees covering 21 species by 16 MFTs. Over even larger spatial domains, such as a national forest inventory, fitting at set of form-by-species models would require an enormous data set, where trees with a variety of non-regular forms were sought out. Such data sets are currently rare and will likely remain so given the high cost of sampling for stem taper/volume.

Instead of trying to fit a model for every combination of species and form type, we chose to use a universal hierarchical modeling approach, which could draw from the strength of all our data. This method also respects and accounts for within-tree and within-stand variation in taper measurements, by treating them as deviation from the general population (i.e. random effects). After accounting for this hierarchical variation, our universal model predicts how each tree diverges from the all-tree trend, based on its species and MFT. This approach bears similarities to the STM approach of Cao and Wang (2011), except that an actual stem measurement was needed at the mid-point of the stem to localize the model for each tree under their approach. Indeed, calibrating taper models in a mixed-effects modeling framework is a promising new approach (Sabatia and Burkhart 2015), but often relies on upper stem diameter measurements which can be difficult to measure accurately. Our approach, in a sense, estimates the random divergence of members of a species from the all-species trend, but also independently captures the average form deviation of a tree of any species, depending on a simple assignment of trees to categories related to the relative size of the main stem and branches. This novel approach appears to be quite effective for exploring intra- and inter-specific variation in stem form, but likely needs more testing before it is implemented operationally for forest volume estimation. Certainly, there appears to be an opportunity to further explore stand-level predictors of form, with the opportunity to account for tree-level differences, captured by form type classes.

Another major implication of this study is that the exclusion of trees without 'regular' form represents a significant omission from the STM literature, and also likely translates into a significant bias in many published STMs and most historical data sets relating to stem taper. Our results show that STMs based on censored data will overestimate main stem volume for the general population of trees, with the magnitude of the bias dependent upon what proportion of trees in the general population are 'irregular' in form. If STMs are used to compute stem volumes that are later extrapolated to whole-tree mass estimates, e.g., biomass expansion
factors (Lehtonen et al. 2004, Jalkanen et al. 2005, Skovsgaard and Nord-Larsen 2012, Domke et al. 2012), censoring bias could significantly skew forest biomass and carbon stock inventories estimated from stem volume. Overestimation of main stem volume would presumably then cause over-estimation in whole-tree biomass (Lehtonen et al. 2004). Biomass expansion factors should be particularly sensitive to the relative proportion of volume in the main stem versus the branches (MacFarlane 2011).

Given the high degree of plasticity in tree morphology, despite species-specific constraints on branching architecture (Dardick et al. 2013, MacFarlane 2015), and given significant influences of silvicultural practices (e.g., thinning, Assmann 1970) and environment (e.g., frost, bud moths, Kerr and Boswell 2001) on tree form, it is not unreasonable to suppose that the idealized trees that modelers seek for STM development may not actually represent the typical tree encountered during forest inventory. This means that for STMs fit with exclusions to be applied without bias, trees would need to be categorized as belonging to, or not belonging to, the exclusion group. We recommend that future studies should eschew exclusion criteria and expand taper data sets to include so-called irregular trees. This would allow model developers to either fit a general STM to trees of all forms, or take an approach, such as the one described here, to categorize form differences between different types of trees. Minimally, one could fit the taper model to a population of "included" vs. "excluded" trees and report the difference.

Acknowledgements

The authors would like to thank the Michigan Department of Natural Resources (MDNR) for contributing significant resources to amassing the data used in this study. In particular Doug Heym, who has been an advocate for innovation in forest inventory in Michigan. Part of DWM's time was supported with funds from Michigan AgBioResearch, through the USDA National

Institute of Food and Agriculture, with additional support from the MDNR. A portion of ARW's time was supported by the Maine Agricultural and Forest Experimental Station. Both DWM and ARW received support from the USDA Forest Service, Northern Research Station, Forest Inventory and Analysis Program, NRS-05 (FIA).

References

Adu-Bredu, S., Bi. A.F.T., Bouillet, J-P., Me, M.K., Kyei, S.Y., and Saint-Andre, L. 2008. An explicit stem profile model for forked and un-forked teak (Tectona grandis) trees in West Africa. Forest Ecology and Management, 255: 2189-2203.

Assmann, E. 1970. The Principles of Forest Yield Study. Pergamon Press, Oxford, U.K. 506. p.

Barrio Anta, M., Diéguez-Aranda, U., Castedo-Dorado, F., González, J.G.A., and von Gadow, K. 2007. Merchantable volume system for pedunculate oak in northwestern Spain. Annals of Forest Science, Volume 64 (5): 511-520.

Barthelemy, D. and Caraglio, Y. 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99, 375-407.

Bebber, D.P., Thomas, S.C., Cole, W.G., Balsillie, D. 2004. Diameter increment in mature eastern white pine Pinus strobus L. following partial harvest of old-growth stands in Ontario, Canada. Trees, 18:29-34.

Bravo-Oviedo A, del Río M, Calama R, Valentine HT. 2014. New approaches to modelling cross-sectional area to height allometry in four Mediterranean pine species. Forestry, 87:399406.

Burkhart, H. E. 1977. Cubic foot volume of loblolly pine to any merchantable top limit. Southern Journal of Applied Forestry, 1: 7-9.

Burkhart , H.E.and Walton, S.B. 1985. Incorporating crown ratio into taper equations for loblolly pine trees. Forest Science, 31, 478-484.

Cao, Q.V., and J. Wang. 2011. Calibrating fixed- and mixed-effects taper equations. Forest Ecology and Management, 262: 671-673.

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C, Duque, A., Eid, T., Fearside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, A., OrtizMalavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20: 3177-3190.

Clark, Alexander, III; Souter, Ray A.; Schlaegel, Bryce E. 1991. Stem Profile for Southern Equations for Southern Tree Species. Res. Pap. SE-282. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 117 p.

Dardick, C., Callahan, A., Horn, R., Ruiz, K.B., Zhebentyayeva, T., Hollender, C., Whitaker, M., Abbott, A., and Scorza, R. 2013. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. The Plant Journal, 75: 618-630.

Domke, G.M., Woodall, C.W., Smith, J.E., Westfall, J.A., McRoberts, R.E., 2012. Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates. Forest Ecology and Management, 270, 108-116.

Ducey, M.J. 2012. Evergreenness and wood density predict height-diameter scaling in trees of the northeastern United States. Forest Ecology and Management, 279, 21-26.

Forslund, R.R. 1982. A geometrical volume model based on the location of the centre of gravity of the bole. Canadian Journal of Forest Research, 12: 215-221.

Neilsen, W.A., and Gerrand, A.M. 1999. Growth and branching habit of Eucalyptus nitens at different spacing and the effect on final crop selection. Forest Ecology and Management, 123 : 217-229.

Gevorkiantz, S.R., and Olsen, L.P. 1955. Composite volume tables for timber and their application in the Lake States. Technical Bulletin No. 1104, Jan., 1955, USDA, Washington, D.C.

Gomat, H.Y., Deleporte P., Moukini R., Mialounguila G., Ognouabi N., Saya A.R., Vigneron P., Saint André L.. 2011. What factors influence the stem taper of Eucalyptus: Growth, environmental conditions, or genetics? Annals of Forest Science, 68: p. 109-120.

Jalkanen, A., Mäkipääb, R., Ståhl, Göran, Lehtonen, 2005. A. and Petersson, H. Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals or Forest Science, 62: 845-851.

Jordan, L., Souter, R., Parresol, B., and Daniels, R.F. 2006. Application of the algebraic difference approach for developing self-referencing specific gravity and biomass equations. Forest Science, 52: 81-92.

Kerr, G.and Boswell , R.C. 2001 The influence of spring frosts, ash bud moth (Prays fraxinella) and site on forking of young ash (Fraxinus excelsior) in southern Britain. Forestry. 74, 29-40 .

Kozak, A, Munro, D.D. and Smith, J. H. G. 1969. Taper functionsa and their application in forest inventory. Forestry Chronicle, 45: 1-6.

Kublin E, Breidenbach (2013) TapeR—Flexible tree taper curves based on semiparametric mixed models. R-package version 0.3.0. Available on CRAN: http://cran.rproject.org/web/packages/TapeR/.

Lehtonen, A., Ciencialia, E., Tatarinov, F., and Mäkipää, R. 2007. Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Annals of Forest Science, 64: 133-140.

MacFarlane, D.W. 2010. Predicting branch to bole volume scaling relationships from varying centroids of tree bole volume. Canadian Journal of Forest Research, 40: 2278-2289.

MacFarlane, D.W. 2015. A generalized tree component biomass model derived from principles of variable allometry. Forest Ecology and Management, 354: 43-55.

MacFarlane, D.W. 2011. Allometric scaling of branch volume in hardwood trees in Michigan, USA: implications for improvements in above-ground forest carbon biomass inventories. Forest Science, 57: 451-459.

MacFarlane, D.W., Kuyah, S., Mulia, R., Dietz, J., Muthuri, C., and Van Noordwijk, M. 2014. Evaluating a non-destructive method for calibrating tree biomass equations derived from tree branching architecture. Trees, 28: 807-817.

Max, T.A. and Burkhart, H.E. 1976. Segmented polynomial regression applied to taper equations. Forest Science, 22, 283-289.

McTague, J.P., and Bailey, R.L. 1987. Simultaneous total and merchantable volume equations and a compatible taper function for loblolly pine. Canadian Journal of Forest Research, 17: 8792.

MDNR. 2013. Product Standards and Cruising Manual. IC4057, Michigan Department of Natural Resources, Forest Resources Division. 07/03/2013. 44 p.

Muhairwe, C.K. 1994. Tree form and taper variation over time for interior lodgepole pine. Canadian Journal of Forest Research, 24:1904-1913.

Muhairwe, C.K., LeMay, V.M., and Kozak, A. 1994. Effects of adding tree, stand, and site variables to Kozak's variable-exponent taper equation. Canadian Journal of Forest Research, 24: 252-259.

Newnham, R.M. 1992. Variable form taper functions for four Alberta tree species. Canadian Journal of Forest Research, 22: 210-223.

Niklas, K.J. 1995. Size-dependent allometry of tree height, diameter and trunk-taper. Annals of Botany, 75: 217-227.

Ozcelik, R. 2008. Comparison of formulae for estimating tree bole volumes of Pinus sylvestris. Scandinavian Journal of Forest Research, 23(5): 412-418.

Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2015). nlme: Linear and nonlinear mixed effects models. R package version 3.1-122, http://CRAN.R-project.org/package=nIme.

Paradis E., Claude J. \& Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20: 289-290.

R Development Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Sabatia, C.O., and Burkhart, H. E. 2015. On the use of upper stem diameters to localize a segmented taper equation to new trees. Forest Science, 61: 411-423.

Skovsgaard, J.P. and Nord-Larsen, T. 2012. Biomass, basic density and biomass expansion factor functions for European beech (Fagus sylvatica L.) in Denmark. European Journal of Forest Research, 131:1035-1053.

Stiell W.M. 1979. Releasing unweevilled white pine to ensure first log quality of final crop. Forestry Chronicle, 55:142-143.

Sherill, J.R. Mullin, T.R., Bullock, B.P., McKeand, S.E. and Purnell, R.C. 2004. Forest Genetics and Tree Breeding in the Age of Genomics: Progress and Future, IUFRO Joint Conference of Division 2, Conference Proceedings. 1-5 November 2004, editied by B. Li and S.E. McKeand, Volume: Pp. 457

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S (Fourth Edition). New York: Springer-Verlag.

Valentine, H.T., and Gregoire, T.G. 2001. A switching model of bole taper. Canadian Journal of Forest Research, 31: 1400-1409.

Ver Planck N.R., MacFarlane, D.W. 2015. A vertically integrated whole-tree biomass Model. Trees, 29: 449-460.

Ver Planck N.R., MacFarlane, D.W. 2014. Modelling vertical allocation of tree stem and branch volume for hardwoods. Forestry; 00, 1-16 doi:10.1093/forestry/cpu007.

Wilson, B.F. 2000. Apical control of branch growth and angle in woody plants. American Journal of Botany 87(5): 601-607.

Xiong, J.S., Isik, F., McKeand, S.E., and Whetten. R.W. 2010. Genetic variation of stem forking in loblolly pine. Forest Science, 56(5):429-436.

Zakrzewski, W.T. 2011 Estimating wood volume of the stem and branches of sugar maple (Acer saccharum marsh.) using a stem profile model with implicit height. Forest Science, 57, 117-133.

Zakrzewski. W.T., and Duchesne, I. 2012. Stem biomass model for jack pine (Pinus banksiana Lamb.) in Ontario. Forest Ecology and Management, 279:112-120, 2012.

Table 1. Study tree attributes, listed by species.

species	$\#$ stands	\# trees	mean DBH (cm) $[\mathrm{sd}, \mathrm{min}, \mathrm{max}]$	mean Height (m) $[\mathrm{sd}, \mathrm{min}, \mathrm{max}]$
Abies balsamea	1	37	$20.7[5.7,11.9,39.4]$	$16.3[3.5,11.6,25.6]$
Picea glauca	1	2	$35.8[14.3,18.0,46.7]$	$20.5[6.2,12.9,25.2]$
Pinus banksiana	2	152	$20.6[5.7,11.7,41.4]$	$13.2[2.3,6.9,20.1]$
Pinus resinosa	2	198	$35.2[4.4,17.5,48.3]$	$22.2[1.9,12.7,26.5]$
Pinus strobus	5	56	$51.9[25.7,14.7,101.6]$	$23.8[7.0,12.0,34.0]$
All Needle-leaved	7	445	$30.3[14.8,11.7,101.6]$	$19.2[5.5,6.9,34.0]$
Acer rubrum	14	219	$33.0[12.2,11.9,69.6]$	$21.6[3.7,8.9,32.1]$
Acer saccharhinum	1	2	$37.0[6.6,30.2,43.2]$	$24.9[1.5,23.3,26.2]$
Acer saccharum	14	397	$35.3[11.8,11.9,73.7]$	$23.7[3.2,13.1,31.7]$
Amelenchier arborea	1	1	$34.3[-, 34.3,34.3]$	$23.4[-, 23.4,23.4]$
Betula alleghaniensis	4	46	$33.5[12.2,16.5,63.8]$	$20.7[2.9,12.0,27.5]$
Betula papyrifera	6	70	$27.3[9.1,12.4,57.4]$	$21.3[2.8,13.2,26.2]$
Fagus grandifolia	7	96	$32.7[12.0,11.7,57.2]$	$20.8[3.9,12.3,30.4]$
Fraxinus americana	9	80	$38.4[14.7,15.0,77.7]$	$26.5[3.9,16.6,34.5]$
Ostrya virginiana	1	2	$24.4[1.7,22.9,26.2]$	$19.2[0.3,18.9,19.6]$
Populus balsamifera	1	2	$30.6[3.6,27.2,34.3]$	$24.0[1.3,22.8,25.3]$
Populus grandidentata	5	113	$29.0[7.6,14.7,54.6]$	$23.5[3.0,15,31.7]$
and P. tremuloides ${ }^{1}$	5	36	$30.7[7.2,15.2,43.9]$	$22.1[3.3,11.2,26.7]$
Prunus serotina	9	$35.7[9.2,11.9,58.7]$	$21.8[3.2,7.8,25.7]$	
Quercus alba	4	60	35.7	
Quercus ellipsoidalis	3	9	$34.2[6.6,23.4,44.7]$	$16.7[3.1,12.6,22.9]$
Quercus rubra	5	112	$33.5[9.2,13.2,56.9]$	$24.7[3.6,14.8,32.4]$
Tilia americana	9	138	$37.2[9.8,15.2,78.5]$	$24.3[3.2,13.2,30.2]$
All broad-leaved	29	1383	$32.9[11.4,11.7,78.5]$	$23.2[3.7,7.8,34.5]$
All trees				

[^0]Table 2. Study trees classified into Large Branch Types (LBT) and Merchantable Branch-Types (MBT), listed by species.

species	$\begin{gathered} \# \\ \text { trees } \end{gathered}$	Large Branch Type (LBT)		\% in LBT		Merchantable Branch Type (MBT)			
		0	1	0	1	0-0	0-1	1-0	1-1
Abies balsamea	37	37	-	100\%	0\%	37	-	-	-
Picea glauca	2	2	-	100\%	0\%	2	-	-	-
Pinus banksiana	152	149	3	98\%	2\%	149	-	3	-
Pinus resinosa	198	194	4	98\%	2\%	194	-	3	1
Pinus strobus	56	48	8	86\%	14\%	48	-	2	6
All conifers	445	430	15	97\%	3\%	430	-	8	7
Acer rubrum	219	127	92	58\%	42\%	127	1	69	22
Acer saccharhinum	2	1	1	50\%	50\%	1	-	1	-
Acer saccharum	397	161	236	41\%	59\%	161	-	210	26
Amelenchier arborea	1	-	1	0\%	100\%	-	-	1	-
Betula alleghaniensis	46	18	28	39\%	61\%	18	1	20	7
Betula papyrifera	70	47	23	67\%	33\%	47	1	19	3
Fagus grandifolia	96	63	33	66\%	34\%	63	1	28	4
Fraxinus americana	80	36	44	45\%	55\%	36	-	27	17
Ostrya virginiana	2	2	-	100\%	0\%	2	-	-	-
Populus balsamifera	2	2	-	100\%	0\%	2	-	-	-
Populus grandidentata and P. tremuloides ${ }^{1}$							-		-
	113	102	11	90\%	10\%	102		11	
Prunus serotina	36	18	18	50\%	50\%	18	-	17	1
Quercus alba	60	12	48	20\%	80\%	12	-	38	10
Quercus ellipsoidalis	9	7	2	78\%	22\%	7	-	1	1
Quercus rubra	112	40	72	36\%	64\%	40	-	52	20
Tilia americana	138	80	58	58\%	42\%	80	1	49	8
All hardwoods	1383	716	667	52\%	48\%	716	5	543	119
All trees	1828	1146	682	63\%	37\%	1146	5	551	126

[^1]Table 3. Study trees classified into Merchantable Form Types (MFT), listed by species.

		Merchantable Form Type (MFT)									
species	\# trees	0-0-0-0	0-1-0-0	0-1-1-0	0-1-1-1	1-0-0-0	1-0-1-0	1-1-0-0	1-1-0-1	1-1-1-0	1-1-1-1
Abies balsamea	37	-	-	-	-	36	-	1	-	-	-
Picea glauca	2	-	-	-	-	1	-	1	-	-	-
Pinus banksiana	152	1	-	-	-	126	-	22	-	3	-
Pinus resinosa	198	-	-	-	-	75	1	119	-	2	1
Pinus strobus	56	-	16	-	1	16	-	16	-	2	5
All needle-leaved	445	1	16	-	1	254	1	159	-	7	6
Acer rubrum	219	-	-	1	1	67	16	60	1	52	21
Acer saccharhinum	2	-	-	-	-	-	-	1	-	1	-
Acer saccharum	397	1	1	1	2	94	26	65	-	183	24
Amelenchier arborea	1	-	-	-	-	-	-	-	-	1	-
Betula alleghaniensis	46	-	-	-	4	9	-	9	1	20	3
Betula papyrifera	70	-	-	-	-	25	1	22	1	18	3
Fagus grandifolia	96	-	8	1	-	33	2	22	1	25	4
Fraxinus americana	80	-	-	-	-	11	2	25	-	25	17
Ostrya virginiana	2	-	-	-	-	2	-	-	-	-	-
Populus grandidentata and P. tremuloides ${ }^{1}$	113	-	5	1	-	50	1	47	-	9	-
Populus balsamifera	2	-	-	-	-	1	-	1	-	-	-
Prunus serotina	36	-	-	-	-	9	3	9	-	14	1
Quercus alba	60	-	-	1	-	6	1	6	-	36	10
Quercus ellipsoidalis	9	-	-	-	-	2	-	5	-	1	1
Quercus rubra	112	-	-	-	1	17	-	23	-	52	19
Tilia americana	138	-	2	2	1	21	2	57	1	45	7
All broad-leaved	1383	1	16	7	9	347	54	352	5	482	110
All trees	1828	2	32	7	10	601	55	511	5	489	116
\% trees		0.1\%	1.8\%	0.4\%	0.5\%	32.9\%	3.0\%	28.0\%	0.3\%	26.8\%	6.3\%

[^2]Table 4. Model fit statistics for the standard Max and Burkhart (1976) taper model with two free joining points (eq. 1) and a DBH-segmented version that fixes one joining point at the mean relative breast height for the population (eq. 2).

Model	df	AIC	BIC	log.lik.	like.ratio	p-value
eq. 1	9	-16203	-16133.54	8110.775		
eq. 2	8	-26587	-26525.39	13301.807	10382.07	<0.0001

Table 5. Fit statistics using the Max and Burkhart (1976) taper model with various random effects on eq. 2 coefficients. The best model is presented in bold.

Coef.	AIC	BIC	LogLik
β_{1}	-16980	-16918	8498
β_{2}	-16647	-16585	8331
β_{3}	below step halving factor		
β_{4}	-26587	-26525	13301
α_{1}	below step halving factor		
$\beta_{1}+\beta_{4}$	-29392	-29299	14708
$\beta_{2}+\beta_{4}$	-30395	-30302	15209
$\beta_{1}+\beta_{2}+\beta_{4}$	$\mathbf{- 3 3 0 3 4}$	$\mathbf{- 3 2 8 9 4}$	$\mathbf{1 6 5 3 5}$

Table 6. Model coefficients with standard error in parentheses and fit statistics for eq. 3 (ME = mean error, $\mathrm{MAE}=$ mean absolute error, $\mathrm{RMSE}=$ root mean square error). Abies balsamea with Merchantable Form Type (MFT) 0-0-0-0 was used as the reference level (Intercept) for comparing random effects of the other species and MFTs to.

	ME	MAE	RSME
eq. 3	0.0005	0.0726	0.1419
Fixed effects	β_{1}	β_{2}	β_{3}
	$-3.9846(0.2055)$	$2.0105(0.1242)$	$-1.865(0.1093)$
	β_{4}	α_{1}	α_{2}
	$138.4753(7.7222)$	$0.7001(0.0124)$	$0.0673(0.0001)$

Random effects

	μ_{1}	μ_{2}	μ_{4}
Intercept	$0.0710(0.1927)$	$-0.0785(0.1903)$	$15.0346(90.9481)$
MFT	μ_{1}	μ_{2}	μ_{4}
$0-0-0-0$	-	-	-
$0-1-0-0$	$0.2305(0.1915)$	$-0.2163(0.1896)$	$6.7301(91.1553)$
$0-1-1-0$	$-0.0294(0.2079)$	$0.0192(0.2059)$	$40.2638(99.1691)$
$0-1-1-1$	$-0.1827(0.2026)$	$0.1888(0.2005)$	$-80.5889(96.3921)$
$1-0-0-0$	$0.2306(0.1833)$	$-0.2228(0.1815)$	$45.3814(87.4401)$
$1-0-1-0$	$-0.1714(0.1877)$	$0.1777(0.1858)$	$-13.1429(89.4219)$
$1-1-0-0$	$0.1748(0.1837)$	$-0.1652(0.1819)$	$11.8544(87.6034)$
$1-1-0-1$	$0.3186(0.2189)$	$-0.3000(0.2166)$	$1.1661(104.0487)$
$1-1-1-0$	$0.0183(0.1837)$	$-0.0147(0.1819)$	$-10.3019(87.6118)$
$1-1-1-1$	$-0.2473(0.1847)$	$0.2461(0.1830)$	$-14.9249(88.1492)$

species	μ_{1}	μ_{2}	μ_{4}
Abies balsamea	-	-	-
Picea glauca	-0.1740 (0.1858)	0.1781 (0.1840)	-3.7965 (88.8311)
Pinus banksiana	-0.1447 (0.0807)	0.1364 (0.0788)	-46.5734 (34.6997)
Pinus resinosa	-0.0192 (0.1077)	0.0192 (0.1032)	-59.9879 (41.3147)
Pinus strobus	-0.3074 (0.0825)	0.312 (0.0806)	-61.4255 (35.8098)
Acer rubrum	-0.3478 (0.0585)	0.3472 (0.0576)	-52.9227 (26.8991)
Acer saccharhinum	-0.5638 (0.1950)	0.5741 (0.1930)	-185.2351 (92.4421)
Acer saccharum	-0.2317 (0.0564)	0.2271 (0.0557)	-9.9501 (26.1222)
Amelenchier arborea	-0.4268 (0.2638)	0.4318 (0.2613)	-154.4622 (125.8714)
Betula alleghaniensis	-0.3238 (0.0788)	0.3097 (0.0775)	75.5961 (35.7510)
Betula papyrifera	-0.0152 (0.0655)	0.0189 (0.0646)	7.9239 (30.1749)
Fagus grandifolia	-0.1753 (0.0681)	0.1694 (0.0670)	17.6663 (30.9635)
Fraxinus americana	-0.0883 (0.0655)	0.0946 (0.0645)	-24.8026 (30.0410)
Ostrya virginiana	-0.2719 (0.1916)	0.2549 (0.1897)	211.1978 (91.2025)
Populus balsamifera	-0.0299 (0.1858)	0.0458 (0.1840)	-116.2716 (88.8311)
Populus grandidentata	0.1431 (0.0545)	-0.1294 (0.0538)	-67.1723 (25.5528)
and P. tremuloides ${ }^{1}$			
Prunus serotina	-0.0344 (0.0764)	0.0392 (0.0752)	-58.874 (34.9918)
Quercus alba	-0.3668 (0.0708)	0.3648 (0.0697)	6.1543 (32.5058)
Quercus ellipsoidalis	-0.1890 (0.1145)	0.1716 (0.1126)	-16.5648 (52.2819)
Quercus rubra	-0.1243 (0.0650)	0.1272 (0.0640)	16.3635 (29.9453)
Tilia americana	-0.0098 (0.0560)	0.0230 (0.0553)	-38.9422 (26.2258)

Figure captions

Figure 1. Relative components of variation in observed main stem outside bark volume from stem taper data from different grouping variables. Variance components are relative to tree to tree variation which describes 100% of the variation (variance component $=1$) in the data used to fit the model. (a) shows a case when form types are omitted and (b-d) show the contribution of adding LBT (Large Branch Types), MBT (Merchantable Branch Types) and MFT (Merchantable Form Types) as grouping variables.

Figure 2. A scatter plot of the relative cross-sectional area outside bark (relcob) at different relative height locations (relh), from 1828 trees of 21 species (light gray circles), with data from Quercus rubra (Quru) trees superimposed (dark gray circles). The predicted taper curves from DBH-segmented polynomial stem taper model with variable random effects are shown for Quru for four different MFTs (Merchantable Form Types), representing a range of forms. The solid line is the fixed effects model for the entire population of trees, from which Quru trees of differing form diverge (eq. 3).

Figure 3. A scatter plot of the relative cross-sectional area outside bark (re/cob) at different relative height locations (relh), with data from Acer saccharum (Acsa)(light gray circles) Tilia americana (Tiam) trees superimposed (asterisks). The predicted taper curves from DBHsegmented polynomial stem taper model with variable random effects are shown for Acsa and Tiam for two different MFTs (Merchantable Form Types): 1-0-0-0 and 1-0-1-0. The solid line is the fixed effects model for the entire population of trees, from which each diverges based on predicted random effects (eq. 3).

Fig. 1

c

b

Fig. 2

Fig. 3

[^0]: ${ }^{1}$ these two Populus species were not consistently differentiated in the field so they were combined.

[^1]: ${ }^{1}$ these two Populus species were not consistently differentiated in the field so they were combined.

[^2]: ${ }^{1}$ these two Populus species were not consistently differentiated in the field so they were combined.

