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Abstract Hoyer, Gerald E. Tree form quotients as variables in volume estimation. Res. Pap. 
PNW-345.  Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific 
Northwest Forest and Range Experiment Station; 1985. 16 p. 

The study reviews Hohenadl's procedure for defining form quotients and tree volume 
from diameters measured at fixed proportions of total tree height. Modifications of 
Hohenadl's procedure were applied to two sets of data for western hemlock (Tsuga 
heterophylla (Raf.) Sarg.) from the Pacific Northwest. The procedure was used to define 
volume differences in thinned stands, and selected form quotients were used as 
variables to improve accuracy and precision of standard tree volume equations. 
Estimating form quotients on standing trees requires less time than complete stem 
dendrometry. The technique has application to other tree species. 

Keywords: Volume estimation, volume equations, form factors, form quotient, 
western hemlock. 



Summary The study briefly reviews Hohenadl's procedure for defining form quotients and 
estimating tree volume using stem diameters at fixed proportions of total tree height. 
Hohenadl's procedure was modified to improve accuracy and the modified procedure 
was used to define volume differences in thinned western hemlock (Tsuga heterophylla 
(Raf.) Sarg.) stands. Selected form quotients were used as variables in tree volume 
equations. 

Young western hemlock stands, 20 feet tall, were thinned to 4-, 9- and 22-foot spacings. 
Upper stem diameters were measured on standing trees four times during an 8-year 
period following thinning. A standard volume equation using only tree diameter at breast 
height and total height overestimated tree volume when compared with that measured 
using upper stem diameters. 

The form quotients (D.5/D.9), (D.9/DBH), (D.7/D.9), and others were calculated for 638 
western hemlock sample trees by interpolating for unknown upper stem diameters when 
measurements at D.5, D.7, and D.9 were missing. Form quotients contributed signifi-
cantly to accuracy of equations for estimating known tree volume. The quotients 
identified tree form differences and led to more precise estimates of tree volume than 
did use of diameter at breast height and tree height alone. 

Estimating the form quotients required less time than complete stem dendrometry. The 
technique described could be used with other species for which stem measurement data 
are available and for which the specific form quotient measurements may not have been 
recorded. 
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Introduction 

Review of Tree 
Volume Equations 

Standard volume tables (equations) are often used to estimate tree volume as a function 
of tree diameter and height for both routine forest measurement and for forest research 
purposes. A recognized shortcoming is that a standard volume table (equation) may fail 
to estimate the volume of sample trees in a specific stand (Evert 1968, Grosenbaugh 
1954, Hazard and Berger 1972). This may happen if the actual taper of the sample trees 
of a stand differs from the average taper of the trees used in construction of the volume 
equation. Use of these volume equations ignores the variation that occurs because of 
taper (that is, form) differences. 

One solution is to estimate tree volumes with a standard volume equation, then directly 
measure the volume of a sample of the population of interest using intensive 
dendrometry. A regression fitted to the data corrects the estimate made by the standard 
equation. The final result can be thought of as an adjusted local volume table (equation). 
A complex volume estimation procedure such as three-P sampling (Grosenbaugh 1965) 
is an efficient specialized parallel to this general procedure. Another parallel uses the 
results of intensive dendrometry or felled sample tree measurements as access to the 
tarif volume system (Turnbull and others 1963). The average stand tarif so derived 
defines the correct local volume equation. 

One way to simplify the volume estimating procedure and at the same time improve 
accuracy of tree volume estimates is to make the standard volume equation sensitive to 
variation of stem form. 
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Hohenadl's Technique 

Objectives 

The German mensurationist Hohenadl developed a technique for estimating tree 
volume from diameters measured at proportional distances along the tree bole (Altherr 
1960, Assmann 1970, Heger 1965). The measurements lead to form quotients, which 
describe tree form and also estimate tree volume with a minimum of effort. The 
technique divides the total tree bole into segments of five lengths, each one-fifth of total 
height. Diameters measured at midpoints of the five segments are referred to as 
D.1, D.3, D.5, D.7, and D.9. D.5 is at half the total tree height and D.9 is at 90 percent 
of the height from the tree tip to the ground. From these stem diameters Hohenadl 
develops form quotients and tree volume. The rationale of Hohenadl's method is given 
in the appendix. 

Altherr (1960) and Assmann (1970) identify an approximate 4-percent underestimate of 
tree volume as calculated by Hohenadl's method. Five measurements failed to properly 
account for flare near the tree base. The underestimate can be corrected by using 
additional diameters measured at other proportions of tree height near the base of the 
tree. With nine diameters, tree volume can be estimated within 1 percent of volume 
estimates that use measurements every 6.6 feet along the total tree stem (Altherr 1960). 
The rationale of Hohenadl's method holds when additional proportional diameters are 
used to increase volume precision. 

The important point is that several of the form quotients defined by Hohenadl's method 
are highly correlated with volume (Assman 1970, Heger 1965, Pollanshiitz 1966). The 
form quotients are simple dimensionless ratios of the diameters at selected proportional 
heights. 

It follows logically that if diameters are estimated at several of Hohenadl's proportional 
heights in an existing body of tree measurements, quotients that characterize tree form 
can be defined and might allow the existing data to be more useful. 

There were two objectives for this study: 

1. To determine if there is a significant change of lower bole form quotient and volume 
as the result of initial spacing treatment of young western hemlock (Tsuga heterophylla 
[Raf.] Sarg.). 

2. To produce and evaluate volume equations that allow lower bole form quotients to be 
used along with height and diameter at breast height (DBH) for computing tree volume 
of western hemlock. 
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Data Bases 

Study of Form 
Quotient Change 

Methods 

Separate sets of data were used in the two portions of the study. The first set of data 
was for a spacing study in which stem measurements were made on standing sample 
trees. The measurements were (1) total tree height, in feet; (2) Hohenadl's (Heger 1965) 
five diameters at fixed proportions of total tree height, plus (3) four additional diameters 
as proposed by Altherr (1960). The points of bole diameter measurement, expressed as 
fractions of the distance from the tree tip down, were: D.1, D.3, D.5, D.7, D.82, D.86, 
D.9, D.94, and D.98 as well as DBH (4.5 feet above ground). Diameters were measured 
both outside and inside bark. 

The second set of data was for trees collected for volume table construction. Data for 
638 sample trees were collected by the Pacific Northwest Forest and Range Experiment 
Station, USDA Forest Service; the Weyerhaeuser Company; and the State of 
Washington, Department of Natural Resources. The data were pooled to improve the 
standard volume equation for western hemlock, and results have been reported 
(Chambers and Foltz 1979, Wiley and others 1978). The trees had been measured for 
diameter outside and inside bark beginning at the stump and at 8- to 20-foot intervals 
thereafter to the tree tip. Tree DBH and total height were also measured. 

Sample tree description.—Initial spacing treatments might cause form quotient and 
volume differences that would be undetected by tree height and diameter measurements 
alone. By using special instruments and climbing standing trees, nine bole measure-
ments were made periodically for 4 years of an 8-year period on each of nine trees on 
two plots in three spacings. Height and DBH were measured annually for the 8 years. 
The three spacings were 4, 9, and 22 feet. All plots had been spaced to about 4 feet 2 
years prior to treatment. Trees averaged 20 feet tall at first treatment and grew to about 
45 feet after 8 years. 

The use of mean tarif number for volume calculations.—The sample trees are the 
basis for assigning volume to all trees in a plot at each remeasurement. The procedure 
for assigning plot volume is the tarif system (Turnbull and others 1963), which uses the 
recognized linear relationship of tree volume to basal area in even-aged stands 
(Hummel 1955). From the assortment of volume lines provided by the tarif system, the 
appropriate volume-basal-area line is selected for each sample tree at each remeasure-
ment. (Established mathematical relationships describe the selection process. Either 
direct tree measurements or height-diameter-volume equations may be used to 
estimate tree volume for use in the process.) Each line so selected has a unique, 
representative tarif number. The average tarif number for all the sample trees on a plot 
identifies the average volume-basal-area line for each plot. 

Mean tarif number at each plot remeasurement is a direct index to the volume line. In 
this study the tarif procedure was used to compare two sources of the volume line; one 
was assigned from a standard volume equation and the other was calculated from stem 
measurements. Expressing the volume lines in terms of mean tarif number allows direct 
comparison of the sources of volume estimates. Significant differences of mean tarif 
number between the two sources imply that there is a difference in the underlying 
relationship of volume to basal area for the sources. 
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The mean treatment tarif number was calculated for each spacing at each remeasure-
ment and trends were smoothed over time. Smoothing required estimation of the likely 
trends for years for which upper stem measurements were missing. The missing points 
are obvious on figure 1. The smoothed lines were drawn proportional to the smoothed 
lines derived from the annual measurements assigned from the standard volume 
equation. 

 
Figure 1.—Mean tarif number for early spacing treatments and 
two methods of volume estimation. 



Results Differences illustrated in figure 1 resulted from differences in method of volume 
estimation. Volumes were lower when using upper stem measurements than when 
using the standard volume equation (equation 10 in tables 1 and 2) applied to height 
and diameter of the plot sample trees. The general trends of the two sets of tarif numbers 
were similar, but the rate of change was more abrupt when using upper stem measure-
ments. The reduction followed by an increase of tarif number shown for the 9- and 
22-foot spacings in year 1973 and later (fig. 1) is typical of the trend of tarif number 
following thinning. As tree diameter increased in response to thinning, subsequent tarif 
numbers became less than that of nonthinned trees of the same height. 

Table 1—Equation variables, R2, and standard error of estimate for computing the logarithm of total cubic-foot 
volume, western hemlock trees 

 
log = logarithm to base 10; 

H = total tree height above ground, in feet; 

DBH = diameter outside bark at 4.5 feet above ground; and 

D.5, D.7, D.9 = diameter outside bark at 0.5, 0.7, and 0.9 of total tree height from the tip down. 
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Table 2—The most useful tree volume equations with coefficients 
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CVTS = total tree cubic foot volume inside bark; 

log = logarithm to base 10; 

H = total tree height above ground; in feet; 

DBH = diameter outside bark at 4.5 feet above ground; and 

D.5, D.7, D.9 = diameter outside bark at 0.5, 0.7, and 0.9 of total tree height from the tip 

down. 



Conclusions 

Measured Form 
as a Third Variable 
in Diameter-Height 
Volume Equations 

Background 

Change of tarif number with treatment and time.—Estimates of mean tarif number 
from stem measurements and the standard volume equation were nearly the same in 
1972. Average differences were 0.5, 0.1, and 1.1 tarif units for the three treatments and 
were statistically nonsignificant. Mean tarif numbers became statistically significant (at 
the 5-percent confidence level) with time and developed different trends (fig. 1). The two 
techniques produced significantly different volume relationships for treatments. 

Influence of volume estimation method on volume.—The standard volume equation 
overestimated volume derived from upper stem measurements by an amount that was 
in direct proportion to the difference in tarif number. By 1978 the standard volume 
equation overestimated the 9-foot spacing by 7 percent and the 22-foot spacing by 12 
percent. 

The standard volume equation, by its insensitivity to differences in tree form, significantly 
overestimated volume in these young stands. 

It is uncertain what the future course of treatment differences will be; therefore, future 
measurements should allow evaluation of tree form. Dendrometer measurements along 
the full bole of well-crowned western hemlock trees will be difficult. A method is needed 
that includes form quotients in the volume estimating process. The next section 
describes development of such a method. 

Volume equations, which depend just on height and diameter, account for tree form 
differences only to the extent that form is predictable from height and diameter. Volume 
depends on a combination of diameter, height, and form, yet only rarely is form included 
as an additional variable in standard volume equations. In the Pacific Northwest, tree 
volume tables often use a fixed point on the upper bole, usually 16 or 32 feet above 
ground, as a basis for a form measurement. 

Heger (1965) in his application of Hohenadl's method reemphasizes that tree shape can 
be characterized using form quotients for diameters selected at proportional points of 
reference on the tree bole. As shown in the appendix, (D.5/D.9) is a form quotient that 
represents shape of the tree and is highly correlated with tree volume. Reukema (1971) 
uses D.5 as a basis for form-volume estimation and Roebbelen and Smith (1981) find 
that a diameter measurement at half height improves the precision of volume estimation. 
To some extent, the lower bole form quotient, (D.9/DBH), represents the influence of 
measuring diameters at proportional heights among short and tall trees. 

Pollanschultz (1966) examines form functions and volume equations derived from them. 
He uses the variables DBH, total height, and stem diameters at "0.1, 0.3, and 0.5 of total 
height"—the equivalent of D.9, D.7, and D.5, respectively, as defined here. He finds that 
combinations of these primary variables effectively reduce standard deviation of 
form-function equations. Schmid-Haas and Winzeler (1981) find that including upper 
stem diameter is very important for tree volume estimation. They use either diameter 
D.7, as defined here, or the diameter at a fixed height of 23 feet. They find that volume 
functions using only diameter at breast height provided volume estimates with standard 
deviations 30 to 110 percent higher than volume functions with form included when the 
same instruments were used for both. It is clear that including a form variable increases 
the precision of tree volume equations. 
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Methods 

Based on these findings, it was expected that (D.5/D.9), (D.7/DBH), (D.7/D.9), (D.9/ 
DBH), or their transformations would provide direct estimates of tree form that would 
serve as variables together with diameter and height in a tree volume equation. These 
quotients are easily measured on standing trees with a Spiegel relaskop, provided the 
points are visible, and require less time to estimate than does complete stem den-
drometry. 

The most recent effort (Chambers and Foltz 1979) to strengthen the standard volume 
tables for western hemlock combined existing tree data with additional data for felled 
large trees. In all, 638 trees with detailed stem measurements were available for 
analysis. 

Computing tree volume and interpolating for missing diameters.—Cubic foot 
volume of each section was computed as that of a frustum of a neiloid or of a paraboloid 
for sections of the bole between the stump and the tip section. A plotted sample of 19 
representative trees showed that the paraboloid was appropriate for tree sections 
occurring at distances up to 93 percent of the distance from the tree tip to the ground. 
The neiloid was appropriate for tree sections occurring in the remaining 7 percent of the 
distance. Exceptions to this were trees less than 45 feet tall, which were treated as 
neiloids from stump to DBH. The inflection point at 93 percent of the distance from the 
tip is lower than the 75 to 80 percent for all species that Demaerschalk and Kozak (1977) 
note. 

Volume of the tip section was computed as that of a cone, and volume of the stump as 
that of a cylinder using stump diameter. The volume computed from each section was 
summed to total wood volume, inside bark. 

Only a small part of the data base had direct measurements for D.5, D.7, and D.9. These 
missing measurements were estimated by interpolating for diameters using both 
paraboloidal and neiloidal equations for appropriate cross section areas of each tree. 
Diameters that resulted from using these formulas were the same as those produced 
using a direct linear interpolation of section diameters because the tree sections were 
relatively short. 

Grosenbaugh (1966) states that it matters little which formula is used for interpolation 
provided the distance between measured points is short. He recommends distances 
such that the one measured diameter is within 20 percent of the diameter of the other. 
A random sample of 25 trees in this study showed that only 7 percent of the three lower 
bole interpolations exceeded Grosenbaugh's recommendation; 5 of that 7 percent were 
measurements on short trees where the interpolation was between measurements only 
4 feet apart. 

The following form quotients were computed using outside bark measurements: 
(D.5/D.9), (D.7/D.9), (D.9/DBH), and (D.7/DBH). In addition, the logarithm, the square, 
and the square root of each form quotient were computed and each multiplied by tree 
height and included as variables in regression analysis. The variables and transforma-
tions selected by step-wise multiple regression appear in table 1. 
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Testing results using the measured range of form quotient values.—Original tree 
data were arrayed in order by values of height and diameter, listing log (D.9/DBH), log 
(D.7/DBH), and log (D.5/D.9)2.From this array, maximum and minimum values of the 
three form quotients were plotted over height for similar sample trees having diameters 
within 0.8 inch and heights within 0.5 foot of each other. 

The data had distinct trends, but because there were never more than two to four trees 
with similar diameter and height, the plotted points of maximum and minimum values for 
the form quotients were erratic. Trends of the average high and average low values for 
the appropriate form quotients were smoothed by hand and used to estimate volume in 
equation 12. (Equation 12 is directly comparable to equation 10, the form most 
commonly used in the Pacific Northwest.) These volumes are practical estimates of the 
influence of the form quotients on volume accuracy when diameter and height are held 
constant. The smoothed values are summarized in table 3. 

Table 3—Smoothed high and low values of 3 form quotients; sample tree diameter 
at breast height and total tree height are held constant 
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The trees used earlier in the study were also examined to determine the range of form 
quotients as they occur in comparable stands subjected to early spacing treatment. The 
results are in table 4. 

Table 4—Range of values of individual tree form quotients, paired stands,1 

thinned to different early spacings 

1 Data from two ages of stands described in the first part of the study. 

Twenty-three pairs of trees representing the total range of diameters and heights in the 
data base had nearly identical height and diameter. Volume differences of the paired 
trees ranged from 4 to 30 percent and averaged 11 percent. They were examined to see 
if the form of the lower bole (D.9/DBH) had greater influence on volume than did upper 
tree form (D.5/D.9). Of the 23 cases, (D.9/DBH) alone had greater influence on volume 
in 8 cases; (D.5/D.9) predominated in 3 cases and the two ratios shared influence in 10 
cases. In 2. cases it was unclear which had more influence. 

Useful equations were desired to supplement the main purposes of the study. The tarif 
volume-estimating procedure (Turnbull and others 1963) allows direct estimation of tree 
volume in a stand by averaging sample-tree tarif numbers. This avoids the need for 
fitting tree height-diameter curves. Estimates of tree height are often desired, however, 
for each tree on a plot. The data in this study allow, derivation of equations for estimating 
tree height when volume and average tarif number are known. 



Results and Discussion 

Trees in the data base were assigned a tarif number based on actual tree volume 
according to the equations given by Brackett (1977). The data were then arrayed in 
ascending order of tarif number, and sequential groups of 20 trees were selected 
beginning with the tree of lowest tarif number. The two groups with the highest mean 
tarif number and the two with the lowest all had ranges of four to seven tarif number units 
within their respective group. The remaining groups had a range of about two tarif units. 
These ranges are not unusual for natural even-aged stands. Mean tarif was computed 
for each group of 20 trees and tree volume was estimated from mean tarif number. This 
estimated volume was used in equations for estimating tree height. 

Tree volume equations.—The 12 equations for predicting total cubic foot volume, and 
appropriate statistics, are in table 1. Selected equations complete with coefficients are 
in table 2. All variables included in each equation were significant at the 5 percent level 
of probability or higher. 

Form quotients contributed significantly to increased precision of the cubic-foot volume 
estimate. Equations 2, 3, 4, and 5 added form quotients to the variable log (DBH2 x H) 
used alone in equation 1. In a similar way, equations 7 and 8 added form quotients to 
log (D.92 x H) used in equation 6. Equations 11 and 12 added to log (DBH) and log (H) 
used in equation 10. The contribution of each variable is visible in terms of increased 
value of R2 and in decreased value of the standard error of estimate in both logarithmic 
and antilog form, as shown in table 1. 

Several form quotients including the variable D.5 were required to minimize the standard 
error of estimate (equation 4). Equations 5, 9, and 11 in table 1 exclude the variable D.5 
and can be used on standing trees with relatively long crowns where D.5 is not visible. 
Equations 5 and 9 have lower standard errors of estimate than does equation 11. 
Equation 5 uses all the form variables as quotients, which makes it more convenient for 
field use than the variables in equation 9. For these reasons, equation 5 was considered 
as the most useful and was examined more thoroughly. 

The residuals of equation 5 (in logarithmic form), when plotted with respect to its 
variables, had neither trends nor imbalanced variance. The residuals also had no bias 
when converted from the logarithmic form to actual values of each variable. Variance 
was not homogeneous, however. When trees were less than 45 feet tall, and D.9 was 
at or below the tree DBH, and the quotient (D.9/DBH) was 1.00 or larger, there was 
less variance than when the quotient was less than 1.00. Also, most of the volume 
variance with respect to form quotient (D.5/D.9) occurred between quotient values of 
0.6 to 0.8. For values above and below this range, there was less variance. Using the 
logarithmic form of the variables balanced the variance and maintained the requirements 
of regression analysis. 

The value of the form variable related slightly to values of other independent variables; 
however, not to an extent that multicollinearity was considered to be a problem. Even 
with some multicollinearity, the equation parameters would provide unbiased estimates 
of volume. 
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The single form variable in equation 2 was stable with respect to tree diameter and 
height. Logarithm of volume was plotted over log (DBH2 x H) for four equal divisions of 
the total range of value of the form variable log (D.7/DBH). Generally, for each given 
level of log (DBH2 x H), log (D.7/DBH) related clearly and consistently with volume. This 
illustrated the reliable behavior of the form variable within the range of the highly 
correlated relationship of tree volume to diameter and height. 

Equation 10 was the equivalent of the equation given by Chambers and Foltz (1979); 
however, the coefficients were not identical. The coefficients differed because for this 
study the shape of the tree bole was treated as a neiloid up to one-tenth of tree height 
from the ground; Chambers and Foltz use the neiloid only as far as DBH. The difference 
between the two equations is trivial. 

The range of form quotient values and their effect on volume accuracy.—Volume 
computed from tests of equation 12 shows that the influence of form has practical 
significance. The equation was solved using smoothed values for the average high and 
average low of the two form quotients while holding height and diameter constant. 

Tree volume computed from the average high form quotients differed by about 9 percent 
from volume computed from the average lows for trees over 45 feet tall. Differences in 
volume in percent were 24, 40, 30, and 20 for trees 25, 30, 35, and 40 feet tall, 
respectively. Half the sample trees in the study had form quotient values outside the 
average highs and lows used in this test. If extreme values of form quotient are used, 
two trees over 45 feet tall with the same diameter and height could differ in cubic volume 
by as much as 18 percent. This difference, definable by using form quotients, would be 
unidentified when only tree diameter and height are known. 

The smoothed high and low values of three form quotients (table 3) conservatively 
estimate form quotient variation when tree diameter and height are held constant. There 
was limited data to test the range of form quotient values on the treated stands described 
in the first part of this study. These ranges (table 4) are greater than those listed in table 
3. The form values define differences among trees in widely and closely spaced stands. 
The values in table 4 in their respective equations translate into volume differences 
similar to those discussed in the first part of this study. In short, tree volume estimated 
by the equation was similar to volume that had been calculated originally from carefully 
measured tree stem diameters on trees not included among those used to generate the 
volume equations. 

The examination of effects of (D.9/DBH) and (D.5/D.9) on the volume of matched trees 
with identical DBH and height confirms a fact that can be deduced by considering the 
significant variables of the equations in table 1: That is, differences in form on the portion 
of a tree between DBH and D.9 and differences in form between D.9 and D.5 are both 
important in accounting for volume difference of trees with the same DBH and height. 



Conclusions 

Useful supplemental equations—Two equations given below estimate tree height 
when tree volume and average tarif are known. All variables in each equation had 
significant F-values at the 95-percent confidence level or higher. Plotted residuals for 
each variable showed neither bias nor imbalanced variance. Lowest standard error of 
estimate per given number of values was obtained when form quotients were included 
in the regression. An equation was derived for use when form quotients are unknown. 

log H = 1.10955627 + 0.25628328 log (volume) 
+ 0.57283175 log (mean tarif) -0.78736802 
log (D.9/DBH) - 0.29643368 (D.7/DBH)2 
- 0.07043974 (DBH).5 

where: R2 = 0.994 and standard error of estimate, log form = 0.0208. 

log H = 0.70413539 + 0.24535889 log (volume) 
- 0.01412038 (volume).5 + 0.59564993 log (mean tarif) 
+ 0.00010283 DBH2 

where: R2 = 0.982 and standard error of estimate = 0.0372. 

Mean tarif is the average of 20 trees. Volume in cubic feet for the total tree bole is 
estimated from mean tarif. Log is logarithm to base 10 and form quotients are as defined 
previously. 

As expected, using one or more form quotients increased the precision of volume 
computation beyond that given by standard volume equations that exclude a form 
variable. With height and diameter held constant, differences in stem form can lead to 
tree volume differences between 9 and 18 percent in trees over 45 feet tall. This is 
important, especially in cases where stand treatment can cause extreme differences in 
tree form. 

Equation 8 is one of the two most precise of those given in table 2, but it requires 
estimates of D.9, D.7, and D.5 as well as height. Equation 5 is less precise than equation 
8 but eliminates stem measurement at D.5, a point that is frequently not visible on 
standing trees. All form quotients are easily measured on standing trees with a Spiegel 
relaskop if the measurement points are visible from the ground. 

Both equations 5 and 8 allow direct use of a form quotient when estimating tree volume. 
The added field measurement effort required is relatively small compared with taking 
multiple relaskop bole measurements up the whole tree stem length or felling trees for 
stem measurements. The equations adequately estimate the influence of stem form in 
treated western hemlock stands at a reasonable cost in time and effort. One needs to 
understand the influence of upper stem form to properly interpret results of spacing 
treatments. Such information is frequently lacking. 

The procedure used here has other potential applications. Numerous collections of data 
on tree volume exist for various species but few, if any, have direct measurements of 
diameter at desired proportions of height. Because the interpolated estimates of these 
diameters proved to be effective in this study, similar success is likely if the method were 
applied to other tree species. 
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Appendix A. GIVEN: TREE DIMENSIONS WITH STEM MEASUREMENT AT 5 PROPORTIONAL POINTS: 
  

B. IT FOLLOWS THAT: 
1. LOG VOLUME FOR EACH OF THE FIVE SECTIONS USING SECTION MID-POINTS AND WITH DIAMETER 

AND LENGTH IN THE SAME UNITS OF MEASURE IS: 
 

2. TOTAL TREE VOLUME, CVTS, IS THE SUM OF THE VOLUME OF THE FIVE SECTIONS: 
 

3. THE RATIO OF TREE VOLUME TO VOLUME OF A CYLINDER OF DIAMETER D.9 AND LENGTH H IS 
CALLED LAMBDA.9 AND IS A REDUCTION FACTOR THAT ADJUSTS CYLINDER VOLUME TO VOLUME 
OF THE TREE SHAPE AND HENCE IS A "NATURAL" OR "TRUE" FACTOR. 

 

4. LAMBDA.9 IS HIGHLY CORRELATED WITH 

16 

 
5. Fbh = CVTS/(DBH)2(H) = BREAST HEIGHT FORM FACTOR. 

Fbh = LAMBDA.9/(DBH/D.9)2 = (D.9/DBH)2 (LAMBDA.9) —— PRODAN, 1965, PAGE 50 

C. THEREFORE: 
1. (D.5/D.9)2 REPRESENTS SHAPE OF STEM, THAT IS, THE "TRUE" FORM FACTOR. 

2. (D.9/DBH)2 REPRESENTS, AT LEAST IN PART, THE EFFECT OF DIFFERING PROPORTIONAL HEIGHTS 
OF MEASUREMENTS ON TREES OF DIFFERENT HEIGHT. 

3. Fbh THE BREAST HEIGHT FORM FACTOR, IS A COMBINATION OF (1) AND (2). 

THE SQUARE.ROOT OF (1) IS IDENTIFIED AS A "TRUE" FORM FACTOR (HEGER, 1965) AND THE SQUARE 
ROOT OF (2), INVERTED, AS HOHENADL'S FORM QUOTIENT.  (ASSMANN, 1970). 



Hoyer, Gerald E. Tree form quotients as variables in volume estimation. Res. Pap. 
PNW-345.  Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific 
Northwest Forest and Range Experiment Station; 1985. 16 p. 

The study reviews Hohenadl's procedure for defining form quotients and tree volume 
from diameters measured at fixed proportions of total tree height. Modifications of 
Hohenadl's procedure were applied to two sets of data for western hemlock (Tsuga 
heterophylla (Raf.) Sarg.) from the Pacific Northwest. The procedure was used to define 
volume differences in thinned stands, and selected form quotients were used as 
variables to improve accuracy and precision of standard tree volume equations. 
Estimating form quotients on standing trees requires less time than complete stem 
dendrometry. The technique has application to other tree species. 

Keywords: Volume estimation, volume equations, form factors, form quotient, 
western hemlock. 
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