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Abstract

Dendrochronology, the study of annual rings formed by trees and woody plants, has impor-

tant applications in research of climate and environmental phenomena of the past. Since its

inception in the late 19th century, dendrochronology has not had a way to quantify uncer-

tainty about the years assigned to each ring (dating). There are, however, many woody spe-

cies and sites where it is difficult or impossible to delimit annual ring boundaries and verify

them with crossdating, especially in the lowland tropics. Rather than ignoring dating uncer-

tainty or discarding such samples as useless, we present for the first time a probabilistic

approach to assign expected ages with a confidence interval. It is proven that the cumulative

age in a tree-ring time series advances by an amount equal to the probability that a putative

growth boundary is truly annual. Confidence curves for the tree stem radius as a function of

uncertain ages are determined. A sensitivity analysis shows the effect of uncertainty of the

probability that a recognizable boundary is annual, as well as of the number of expected

missing boundaries. Furthermore, we derive a probabilistic version of the mean sensitivity of

a dendrochronological time series, which quantifies a tree’s sensitivity to environmental vari-

ation over time, as well as probabilistic versions of the autocorrelation and process standard

deviation. A computer code in Mathematica is provided, with sample input files, as support-

ing information. Further research is necessary to analyze frequency patterns of false and

missing boundaries for different species and sites.

Introduction

Tree growth generally follows an annual cycle, shaped by the dominant climatic cycle through-

out a year. During reliably cold winters or dry periods, trees regularly cease to grow. If the cli-

matic impact is sufficiently strong and extended, such growth variation results in annual,

anatomically marked circular boundaries in a stem cross-section [1–4]. The circular bands

between two boundaries, whose width can be measured, are called “tree rings” (Fig 1). The sci-

entific field of dendrochronology (i.e., the study of time series of annual increments formed by

trees and woody plants) started in the late 19th century in Europe (chapter 1 in [5]). In dendro-

chronology, the ideal is to assign exact years to tree rings (page 96 in [6]). This is critical if the

goal is to associate ring widths with climate variables or a particular event in a given year, such
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as an insect outbreak or volcanic eruption (pages 10-12 in [3]). For this reason, a great deal of

attention has been paid in dendrochronology to verifying year assignments through crossdat-

ing [7]. In crossdating, the patterns of wide and narrow rings in samples from the same tree, as

well as from several trees of the same area in parallel, are aligned, to correctly assign the corre-

sponding year of formation. The idea is that the comparison amongst several samples reveals

inconsistencies in individual samples (pages 11-15 in [6]). Once a calendar year has been

assigned to a tree ring, a variety of statistical methods are used in dendrochronology to analyze

the ring-width time series, for example, to extract climate signals with as little noise as possible

[5].

As the field of dendrochronology grows, with more and more applications in tropical

regions and research questions focused on global change ecology, it is not always easy or possi-

ble to meet the traditional standards for verifying year assignments (pages 12-14 in [3]). Firstly,

a lack of variability in ring widths from one year to the next, known as “complacency”, can

make it difficult to verify year assignments even by the usual means of crossdating, which fun-

damentally relies upon shared patterns of interannual variability in ring widths between time

series (through visual inspection and high inter-series correlation). This is particularly a prob-

lem in “ecological” samples, i.e., from forest inventories or other efforts aimed at sampling for-

est ecosystems in an unbiased, representative manner. In these studies, the trees are chosen as

random samples from a larger statistical population of trees in a forest ecosystem, implying

that they are not necessarily growing on sites where one expects to see a high sensitivity of tree

growth to climate. The goal in these ecological sampling designs may be to detect trends in for-

est growth or understand forest dynamics, rather than to analyze the climate of the past.

Secondly, an increment core may include some clearly identifiable ring boundaries, as well

as other ring boundaries that are not clearly distinguishable, a situation that is frequent in the

lowland tropics with less pronounced dry periods [8, 9]. In addition, there can be false and

missing boundaries. For example, as part of Mexico’s national forest inventory we analyzed

1325 increment cores of different lengths, ranging from 3 to 14.5 cm (median length of 5.8

cm). The samples were taken from 190 hardwood species in 19 distinct Mexican States, at

Fig 1. Cross-section of the bole of a tree, with observable tree rings (a tropical hardwood from near

Coatzacoalcos, Veracruz, Mexico). Increment cores, such as the one in Fig 2, are taken with an increment borer from

the bark towards the tree´s center (for example, along the black line), without destroying or severely harming the tree.

https://doi.org/10.1371/journal.pone.0239052.g001
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elevations from 0 to 1000 meters above sea level (median elevation of 223 m). Amongst these

1325 samples, 6.6% had clearly recognizable growth ring boundaries, 9.4% no visible bound-

aries, and 84.1% had ring boundaries that fell somewhere between these two extremes. The

percentages refer to the “best” boundaries, when examining a complete core sample. In 31.4%

of these samples, however, the recognizability of ring boundaries varied also along the (quite

short) cores (unpublished data from coauthor DJG).

For these tropical collections, and in the case of unbiased, ecological samples, it would be

valuable to develop a statistical approach that explicitly accounts for uncertainty in year assign-

ments, rather than forcing a decision about the age of a ring boundary, or discarding such

samples as useless (which may create bias in the statistical sample). Questions about forest

growth, which translate into carbon sequestration, have taken on particular significance in the

21st century, as we grapple with the need to store carbon in forests. There are many applica-

tions, where the assignment of an estimated age, relative to a base year, with a statistical confi-

dence interval would be useful. For example, to create an average estimate of forest growth, or

detect trends in growth, often one wants to estimate the past, not necessarily deterministic,

growth curve of tree trunk radius as a function of time on a specific site. Even though the

increment borer was invented by foresters as a tool to measure and compare past tree growth,

a formal approach to statistical estimation of the corresponding tree-ring ages has never been

developed in the field of dendrochronology. Here we introduce a method for probabilistic age

estimation of tree-ring boundaries.

Methods to obtain the input data

First, we briefly explain the development of our time-series data from an increment core. Sam-

ples were obtained with a Pressler increment borer, yielding increment cores (wood cylinders)

of 5.08 mm in diameter and approximately 15 cm in length. The sample in Fig 2 was taken

from a canopy tree of Alchornea latifolia in a closed forest of Jaguaroundi park, a protected

area of Petróleos Mexicanos near Coatzacoalcos (Veracruz, Mexico). The park contains rem-

nants of tropical wet forest, and has a pronounced dry season approximately from March to

May. The first author (MR) had a collection permit for herbarium specimens and wood sam-

ples by Mexico’s SEMARNAT (Secretarı́a de Medio Ambiente y Recursos Naturales). In addi-

tion, the owner Petróleos Mexicanos had given permission to carry out the sampling.

Following standard dendrochronological sample preparation procedures, this increment

core was sanded with progressively finer sandpaper. The image of the sample in Fig 2 was then

taken under a stereo zoom microscope (Zeiss Axio Zoom.V16). The first visible ring boundary,

i.e., closest to the center of the tree trunk (at left in Fig 2) is designated the “base boundary”,

from which all other boundaries are counted. It receives the number 0. The ring between

boundaries 0 and 1 gets the number 1; thus, the tree-ring’s number is the same as the number

of its outer boundary. Towards the bark (on the right), a total of 49 boundaries are marked

and counted (from 0 to 48). The last boundary (48) corresponds to the cambium, a band of a

few cells width, from which wood (xylem) is formed to the inside, and bark (with phloem) to

the outside.

Fig 2. Increment core sample (labeled 81b), sampled from an Alchornea latifolia tree, with the enumeration of all

ring boundaries. The length between the base boundary (0) and the last boundary (48) is 11.7 cm. Ring widths are

marked with (red) diagonal lines that connect inner and outer boundaries, perpendicular to the ring’s inner boundary.

https://doi.org/10.1371/journal.pone.0239052.g002
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Often, an increment core does not include the center of the tree (the pith), for example,

when the pith is not where the sample taker expected it (in case of asymmetric growth); in that

case the true age of the base boundary (0) is unknown. Furthermore, a tree has more growth

rings at ground level than at greater heights (the difference being the number of years it took

to reach the height at which the sample was taken). Therefore, when we refer to age, it is not

the total age of the tree, but rather the age of the wood formed after the base boundary, whose

absolute age may be unknown.

An additional input for our statistical algorithm is the time series of ring widths (radial

increments). While ring widths are not needed as an input for the statistical age estimation

presented below, they are necessary for growth curve graphs, and they are critical for the pro-

cess of crossdating. Widths between inner and outer boundaries were measured along the con-

necting (red) line between any two boundaries, perpendicular to the ring’s inner boundary

(Fig 2). We used the Microsoft Paint software to measure the pixel coordinates of the endpoints

of each (diagonal) line that measures the width. The Pythagoras formula was then used to cal-

culate the length of the line. For example, for tree ring 3:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð246 � 233Þ
2
þ ð178 � 164Þ

2

q

¼

19:1 pixels. Furthermore, the direct distance between boundary 0 and the end-boundary was

measured to be 11.7 cm on the one hand, as well as 1738 pixels on the other, so that 19.1 pixels

correspond to 0.129 cm.

Originally, we had collected samples from six Alchornea latifolia canopy trees in the same

area, one of which is the sample in Fig 2, and attempted crossdating among them. The patterns

of recognizable boundaries, however, were such that it was not clear which boundaries to con-

sider annual in one sample and missing in the other, or false in the first place, i.e., crossdating

would result in a highly subjective result. Consequently, this was a case, where a new method

to assign tree ring boundaries probabilistically was necessary, if the samples were not to be dis-

carded for growth analysis.

Categories of tree-ring boundaries

When identifying and counting tree-ring boundaries, as those illustrated in Fig 2, we recognize

four categories of ring boundaries. In the first two categories, the ring boundary is “recogniz-

able”, i.e., characterized by recognizable changes in xylem (wood) cell characteristics associ-

ated with the slowing or complete cessation of tree growth, as caused by cold temperatures or

lack of soil moisture. These boundaries may range from clearly marked to more diffuse and

less distinguishable. Actually, it is a challenge to define objectively the term “recognizable

boundary”. How blurred may it be? Ideally, a computer algorithm should be able to identify

them with given sensitivity parameters.

There are two distinct, underlying causes for a recognizable ring boundary. One situation is

that a boundary is “annual”, i.e., it marks the end of one year’s growth at a typical, annual cli-

matic “interruption” (such as frost or dry period). Annual boundaries could also be called

“regular”, “valid” or “true” boundaries. In temperate regions, these boundaries are formed

before the frost period (“winter”). Second, recognizable boundaries can also be “false”. In that

case, they are intra-annual boundaries, caused by stressful climatic periods (for example, lack

of soil moisture) that divide an annual tree-ring artificially into at least two (page 47 in [6]).

This gives rise to at least one additional ring that cannot be accounted for in dating. Frequently

the term “false ring” is used, though it is more accurate to speak of a false boundary. Without

crossdating or information on intra-annual climate variability, it may not be possible to distin-

guish annual and false boundaries.

The third and fourth categories are missing boundaries and missing rings, representing

favorable versus unfavorable conditions for growth, respectively. A “missing” boundary may
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be suspected in unusually wide rings, and may be the result of a mild winter or a wetter-than-

usual dry period in lowland tropical or less seasonal regions, i.e., two years of growth that

appears as one year. A “missing ring” (page 21 in [3]) occurs when in extremely unfavorable

(for example, dry) years a tree does not form wood in all or some portions of the bole. A miss-

ing ring can also be interpreted as two overlapping boundaries, and thus as a special case of a

missing boundary.

Table 1 summarizes the four categories for the two boundary types “recognizable” and

“missing”, together with the definition of the corresponding probabilities, as employed subse-

quently as input probabilities.

Assigning years to ring boundaries probabilistically

Before using the data from Fig 2, we derive a general method for assigning years to ring

boundaries, employing a small hypothetical example with assumed input probabilities. Table 2

shows the input. There are five boundaries, of which two are annual (P = 1), two are recogniz-

able, but could be false (with two hypothetically different input probabilities), and there is also

a missing boundary with a low input probability. The input probability that a recognizable

boundary represents an annual boundary could vary if such boundaries are classified further,

for example, by distinguishing them according to different anatomical features.

To illustrate how a probability distribution of ages accumulates for each ring boundary, we

first consider the possible ages a given boundary could represent, without applying the input

probabilities. Furthermore, for the moment ages will be considered integers. The base bound-

ary is defined to have an age of 0 years. Boundary 1 is recognizable, so that it could be false

(and thus still being associated with an age of 0 years) or annual and be 1 year old. Boundary 2

Table 1. Types of growth ring boundaries for assigning probabilities (0< P� 1).

Boundary

type

Categories Definition of input probability Comment

Recognizable 1. Annual

boundary;

2. False

boundary

Probability P that a recognizable boundary represents an

annual, regular growth phenomenon and not a false boundary.

The probability for a false boundary is 1−P.

A boundary with input probability 1 is always an annual

boundary.

Missing 1. Missing

annual

boundary;

2. Missing ring

Probability P that a missing annual boundary is expected at a

specific location in a core sample. The number of missing

boundaries has to be calculated from the expected frequency F,

relative to the number of recognizable boundaries. For

example, F = 0.04 expected missing boundaries times 50

boundaries in a sample = 2 missing boundaries. Placing 2

boundaries in the sample, each would have P = 1.

Either a boundary is missing because of continuous growth for

more than one year, or a complete ring is missing because of a

lack of growth. Even though these are opposite causes, P
represents both situations, in terms of its effect of one less

boundary. The input probability itself does not imply anything

about the location of the missing boundary. A missing

boundary, if present, corresponds necessarily to an annual

boundary.

https://doi.org/10.1371/journal.pone.0239052.t001

Table 2. Hypothetical input data and assignation of possible ages with probabilities for five boundaries.

Boundary number Boundary type Input probability (P) as defined in Table 1 Possible ages of boundary (0-4 years) and their

calculated probabilities (L)

0 1 2 3 4

0 Annual (base boundary) 1 1

1 Recognizable (annual or false) 0.7 0.3 0.7

2 Annual 1 0.3 0.7

3 Missing 0.2 0.24 0.62 0.14

4 Recognizable (annual or false) 0.9 0.024 0.278 0.572 0.126

https://doi.org/10.1371/journal.pone.0239052.t002
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is annual, so that the two possible ages of boundary 1 become 1 year older. Boundary 3 is a

missing one, so that potentially a year could be added, but otherwise the two possible previous

ages would not change. Consequently, boundary 3 could be 1, 2, or 3 years old. Similarly, one

more possible year is added for the last one, boundary 4. It is evident that only with annual

boundaries or inclusion of missing boundaries with input probability 1, all previous ages

become one year older. For boundaries with an input probability smaller than 1, all previous

ages remain still possible, but one possible year is added.

Next, we apply the input probabilities. The base boundary (0) is defined to have an age of 0

years, and is the only boundary that is required to have an input probability of 1, i.e., to defini-

tively exist as an annual boundary. If even the base boundary were doubtful (i.e., P< 1), the

starting point for counting would be in question, which makes little sense. Furthermore, the

base boundary could be the center of a tree trunk, in which case it is a point, rather than a

boundary.

Boundary number 1 is annual with an input probability of 0.7. Therefore, with a probability

of 1−0.7 = 0.3 it is false, and thus is still associated with an age of 0 years. However, with a

probability of 0.7 it is annual, and in that case has an age of 1 year. Then follows the annual

boundary 2, and the two probabilities remain the same, just at one year older. The missing

boundary 3 follows. With probability 0.8, there is not a missing boundary, and with probability

0.2 the boundary demarks one year of growth (i.e., is annual). Under the first possibility, the

probabilities 0.3 and 0.7 of boundary 2 are each multiplied with 0.8, which results in 0.24 and

0.56 that the ages of boundary 3 are the same as the ages of boundary 2. On the other hand, the

probabilities 0.3 and 0.7 of boundary 2 are multiplied with 0.2 under the possibility that

boundary 3 is annual, and is either 2 or 3 years old. This results in 0.06 and 0.14. The probabili-

ties of the two possibilities are added, shifted by one year (Table 3):

Note that the sum of these three probabilities adds up to 1 again. The same procedure is car-

ried out for recognizable boundary 4 (Table 4):

The example from Table 2 of calculating the probabilities of year assignments to each

boundary can be generalized. First, we define the following symbols:

i: the boundary number;

Pi: the input probability that boundary i represents an annual boundary;

ni,a: the number of possible ages (in years) for a given boundary;

t: the youngest possible age (in years) for a given boundary i;

Li,t: the calculated probability that boundary i is of age t (in years); the letter “L” is used for “like-

lihood” to distinguish it from “P” (but has nothing to do here with a likelihood function).

Table 3. Boundary 3 in Table 2.

Boundary 3 in Table 2 1 year 2 years 3 years

For the case that there is no missing boundary: 0.3�(1−0.2) = 0.24 0.7�(1−0.2) = 0.56 0

For the case that there is a missing boundary: 0 0.3�0.2 = 0.06 0.7�0.2 = 0.14

Sum: 0.24 0.62 0.14

https://doi.org/10.1371/journal.pone.0239052.t003

Table 4. Boundary 4 in Table 2.

Boundary 4 in Table 2 1 year 2 years 3 years 4 years

For the case that the recognizable boundary is false: 0.24�(1−0.9) = 0.024 0.62�(1−0.9) = 0.062 0.14�(1−0.9) = 0.014 0

For the case that the recognizable boundary is annual: 0 0.24�0.9 = 0.216 0.62�0.9 = 0.558 0.14�0.9 = 0.126

Sum: 0.024 0.278 0.572 0.126

https://doi.org/10.1371/journal.pone.0239052.t004
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Generalizing the example from Table 2, for any number of calculated probabilities ni,a, the

recursive formula to calculate the probabilities Li+1 from Li becomes

ni;a ¼ 1)
Liþ1;t ¼ 1 � Piþ1;

Liþ1;tþ1 ¼ Piþ1;
ð1AÞ

(

ni;a ¼ 2)

Liþ1;t ¼ Li;t � ð1 � Piþ1Þ;

Liþ1;tþ1 ¼ Li;tþ1 þ Piþ1 � ðLi;t � Li;tþ1Þ;

Liþ1;tþ2 ¼ Li;tþ1 � Piþ1;

ð1BÞ

8
><

>:

ni;a > 2)

Liþ1;t ¼ Li;t � ð1 � Piþ1Þ;

Liþ1;tþ1 ¼ Li;tþ1 þ Piþ1 � ðLi;t � Li;tþ1Þ;

Liþ1;tþ2 ¼ Li;tþ2 þ Piþ1 � ðLi;tþ1 � Li;tþ2Þ;

. . .;

Liþ1;tþni;a � 1 ¼ Li;tþni;a � 1 þ Piþ1 � ðLi;tþni;a � 2 � Li;tþni;a � 1Þ;

Liþ1;tþni;a
¼ Li;tþni;a � 1 � Piþ1:

ð1CÞ

8
>>>>>>>>>><

>>>>>>>>>>:

Note that with Pi+1 = 1, Li+1,t becomes always 0, i.e., there is no probability that the next bound-

ary remains at the same year. For example, for the transition from i = 3 to i = 4 in Table 2,

ni,a = 3, so that (1C) applies; one has i= 3 and i = 1:

L3þ1;1 ¼ L3;1 � ð1 � P3þ1Þ;

L3þ1;1þ1 ¼ L3;1þ1 þ P3þ1 � ðL3;1 � L3;1þ1Þ;

L3þ1;1þ2 ¼ L3;1þ2 þ P3þ1 � ðL3;1þ1 � L3;1þ2Þ;

L3þ1;1þ3 ¼ L3;1þ3� 1 � P3þ1;

which parameterized yields the numbers from Table 2:

L4;1 ¼ L3;1 � ð1 � P4Þ ¼ 0:24 � ð1 � 0:9Þ ¼ 0:024;

L4;2 ¼ L3;2 þ P4 � ðL3;1 � L3;2Þ ¼ 0:62þ 0:9 � ð0:24 � 0:62Þ ¼ 0:278;

L4;3 ¼ L3;3 þ P4 � ðL3;2 � L3;3Þ ¼ 0:14þ 0:9 � ð0:62 � 0:14Þ ¼ 0:572;

L4;4 ¼ L3;3 � P4 ¼ 0:14 � 0:9 ¼ 0:126:

A computer code in Mathematica, to carry out these calculations for a whole tree-ring time

series, is provided as supporting information.

Note that for the case where the Pi for all boundaries (except the base boundary) are equal,

one can apply the formulas for the binomial distribution (chapter 5.2 in [10]). To calculate the

probabilities for boundary 4, one defines Q = 1−P, expands (Q+P)3, separates the summands,

and substitutes Q with 1−P, which yields (1−P)3, 3�P�(1−P)2, 3�P2�(1−P), and P3. Substituting,

for example, with P = 0.83 results in the probabilities for the ages of 1 to 4 years of 0.005, 0.072,

0.351, and 0.572. However, we will not treat the binomial distribution further here. Instead, we

continue with the general case of varying input probabilities (Pi) among boundaries.

Mean ages and standard deviations

First we calculate the mean (or expected) age Ai for each boundary i. If for a given boundary

number i, its true age Ai is considered a random variable of discrete type, the formula for the
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expectation E(Ai) is (page 132 in [11]):

Ai ¼ EðAiÞ ¼
Xni;a � 1

j¼0

½ðt þ jÞ � Li;tþj�: ð2Þ

For boundary 3, for the example in Table 2 on gets A3 ¼
X3� 1

j¼0

½ð1þ jÞ � L3;1þj� ¼ 1 � L3;1 þ 2 �

L3;2 þ 3 � L3;3 ¼ 1 � 0:24þ 2 � 0:62þ 3 � 0:14 ¼ 1:9 years. Next, the variance of Ai is calculated

(page 133 in [11]):

s2

Ai
¼ E½ðAi � AiÞ

2
� ¼ EðA2

i Þ � A2

i ¼
Xni;a � 1

j¼0

½ðt þ jÞ2 � Li;tþj� � A2

i ; ð3Þ

where E refers again to the expectation. In the example, with (3) one gets s2
A3
¼
X3� 1

j¼0

½ð1þ jÞ2 �

L3;1þj� � A2
3
¼ 12 � L3;1 þ 22 � L3;2 þ 32 � L3;3 � 1:722 ¼ 1 � 0:24þ 4 � 0:62þ 9 � 0:14�

1:92 ¼ 0:37. The standard deviation is sAi
¼

ffiffiffiffiffi
s2
Ai

q
, which in the example is

ffiffiffiffiffiffiffiffiffi
0:37
p

� 0.608. If

the input probabilities Pi in (1A)–(1C) are considered parametric (without uncertainty), then

A and s2
Ai

represent the true (not sample) parameters of a statistical population (typically

denoted as μ and σ2).

In this way, one calculates A1, A2, A3, etc. How does the estimated (expected) age develop,

when advancing from one tree-ring to the next, and the annual nature of the boundaries is

probabilistic?

Theorem 1: The age in a tree-ring time series advances by an annual proportion that is

numerically equal to the input probability Pi that the putative boundary i of a tree-ring is truly

annual; for example, a tree ring that represents an annual boundary with input probability 0.8

increases the cumulative age by 0.8 years.

Proof: Consider two calculated probabilities Li,t and Li,t+1 for ring-boundary i to have

formed either at age t or t+1, respectively. The probability that ring-boundary i+1 represents

an annual boundary is Pi+1. Then the calculated probabilities for boundary i+ 1 without a shift

in age become Li,t�(1−Pi+1) and Li,t+1�(1−Pi+1), and with a shift in age Li,t�Pi+1 and Li,t+1�Pi+1.

Summing as in Table 2 results in Li,t�(1−Pi+1) for age t, Li,t+1�(1−Pi+1)+Li,t�Pi+1 for age t+1, and

Li,t+1�Pi+1 for age t+2. According to (2), the corresponding expected age becomes:

Aiþ1 ¼ t � Li;t � ð1 � Piþ1Þ þ ðt þ 1Þ � ðLi;tþ1 � ð1 � Piþ1Þ þ Li;t � Piþ1Þ þ ðt þ 2Þ � Li;tþ1 � Piþ1;

which simplifies to

Aiþ1 ¼ Li;t � ðPiþ1 þ tÞ þ Li;tþ1 � ð1þ Piþ1 þ tÞ:

With two calculated probabilities, one has Li,t+Li,t+1 = 1)Li,t = 1−Li,t+1, so that one can substi-

tute Li,t and simplify further:

Aiþ1 ¼ t þ Li;tþ1 þ Piþ1:

The expected age (Aiþ1) is the age to start with (t), plus the calculated probability of the previ-

ous boundary (Li,t+1), plus the probability of the subsequent boundary (Pi+1).
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Estimation of the input probabilities for annual and missing

boundaries

The probability for a recognizable boundary to be an annual (and not a false) boundary, and

the probability that recognizable boundaries are accompanied by missing boundaries (Table 1)

are estimated from the frequencies with which these different boundaries are found in trees. If

one knows that there are 80 annual and 20 false boundaries in a sample of 100 recognizable

boundaries, then the probability of an annual boundary is 0.8. If one knows that in addition

there is one missing boundary, then the frequency F of a recognizable boundary being accom-

panied by a missing boundary is 1/100 = 0.01.

The frequencies of non-annual boundaries will vary according to species, site, habitat, and

other factors. Missing rings vary among species, genera, and also the individual tree’s position

in the forest canopy. In a synthesis of locally missing growth rings across the Northern Hemi-

sphere, based on 2359 publicly available tree ring-width time series, missing rings were most

common in Pinus (0.8% of all rings missing) and Pseudotsuga (0.6%), occasional in Larix
(0.2%), and rare in Picea (0.03%) and Quercus (0.01%) [12].

Suppressed trees may not form wood, and the corresponding ring will be missing, a situa-

tion observed in understory trees from temperate regions. In a study of 95 stem disks of Acer
saccharum from Wisconsin (USA), the number of ring anomalies was inversely related to

growth rate and vigor of the trees; the mean percentage of ring anomalies was 16.2% in over-

topped trees, and all of the overtopped trees had partial or missing rings [13]. Similarly, sup-

pressed trees of Fagus sylvatica in Southern Sweden presented 36 missing rings in a time series

of 226 years [14]. In Pinus banksiana in Michigan (USA), the trees’ early years were more likely

to contain false rings [15].

In the lowland tropics, however, boundaries do not form because of reliably cold winters;

rather they form in response to dry periods, which may or may not be reliably dry. Interannual

variability in intensity and length of the dry period can cause apparently continuous growth

over two years without a boundary (a “missing boundary”). We have not been able to find lit-

erature that reports frequencies of this latter phenomenon.

We hypothesize that in general, canopy trees in humid tropical regions will present a rela-

tively large number of false boundaries versus a relatively small number of missing rings or

missing boundaries, because of repeated interruptions of growth from short dry periods. How-

ever, we do not know how much this might vary across species and trees in different canopy

positions within species.

Several methods can be used to determine “true” frequencies of annual (versus false) and

missing boundaries:

1. Samples could be crossdated from the same tree species in another region, where crossdat-

ing works, and assuming that the environmental conditions are representative [16]. Alter-

natively, one could crossdate samples from another tree species in the same or at least a

similar region, assuming that the result from the other species is representative.

2. Intra-annual growth, and its relation with climate during at least one year, can be studied

either with dendrometers or more accurately with micro-cores [17].

3. Tree ages and ring ages can be determined from core samples by radiocarbon (14C) dating

[16, 18, 19], though in [19] the need to develop 14C calibration curves for South America is

noted to improve accuracy.

4. A more recent method to estimate tree ages, and ring or annual-increment ages (in case of

no distinct annual rings), is the use of stable isotopes of oxygen (δ18O), and to a lesser
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degree also carbon (δ13C) along the radius with samples from high-resolution wood sam-

pling [20–23]. The method detects primarily interannual changes in wet season precipita-

tion [20], and could serve to develop a number of representative input probabilities for

different species and environmental situations.

The objective here was to have a reasonable (though not necessarily very accurate) estimate

for the input probabilities to be able to demonstrate the method. One of the coauthors (GGG)

had crossdated core samples from Pinus oocarpa in the Los Tuxtlas region of Veracruz, at a

distance of about 50 km from Parque Jaguaroundi, with a similar climate. Analyzing 1861 tree

rings from 35 core samples of 29 trees, there were 313 false rings (16.8%) and 2 missing rings

(pages 120-121 in [24]). The corresponding probability that a recognizable boundary is an

annual boundary is

1861 � 313

1861
� 0:83:

The probability that a recognizable boundary is accompanied by a missing boundary is 2/

1861�0.001. Since for 48 tree rings 48�0.001�0.05, i.e., far below 1 expected missing boundary,

we will not consider missing boundaries in this example from Fig 2 until the sensitivity

analysis.

The probabilistic situation of missing boundaries is fundamentally different from recogniz-

able boundaries, because one cannot assign a probability to an observed boundary, but rather

one has to calculate a number of expected boundaries. If the probability for a missing bound-

ary were around 0.02, one would assume one missing boundary in our sample

(48�0.02 = 0.96). If crossdating does not provide clues, and without further analysis about cli-

mate fluctuations, one would have to place it at a reasonable location on the core sample, prob-

ably at the midpoint of an unusually wide ring. There is no probability available for the

correctness of the chosen location on the core sample, i.e., the uncertainty associated with

inserting a missing ring in any particular position in the time series of rings. One can check if

there are diffuse boundaries that are less-than-recognizable. If one assigns the exact expected

number of missing boundaries, then each one has an input probability of 1. If there are several

possible locations on the core sample, and thus one assigns more missing boundaries than

expected, then the input probability for each missing boundary decreases accordingly. For

example, if there were 2 expected missing boundaries, but 5 rings on the core samples are sus-

pected to contain missing boundaries, then each of 5 assigned missing boundaries would have

an input probability of 2/5 = 0.4.

Confidence curves

Now the expected ages of the ring boundaries in the sample from Fig 2 can be evaluated in

detail. Only the base boundary is certainly annual, whereas all subsequent boundaries are rec-

ognizable with an estimated input probability of 0.83 to be annual, and there are no missing

boundaries assumed (see previous section). Other possible scenarios will be shown in the sen-

sitivity analysis below. Once the input probabilities for all boundaries are estimated, it becomes

possible to examine the statistical distribution of possible ages for a given tree-ring boundary.

Fig 3 shows the result for the last boundary (number 48), with the input probabilities for 49

different ages, for ages above 26 years. The probability density function in Fig 3 is discrete, i.e.,

for integer years. It is a truncated statistical distribution, within an interval from the smallest

to the largest possible age of a given boundary. For each boundary, its statistical distribution

will be used to calculate confidence intervals for the age it may have.
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We are interested in calculating (95%-)confidence intervals for the expected age Ai, and

subsequently deriving confidence curves. Though we have formulated the problem in terms of

annual intervals between ring boundaries (because of annual seasonality), in principle time is a

continuous variable. It makes sense to consider non-integer confidence limits for estimated

ages of tree rings, and a continuous probability distribution function is necessary to calculate

them with accuracy. The probabilities of different ages for a given tree ring are added cumula-

tively, and the corresponding ages plotted as a continuous function of those cumulative proba-

bilities, with linear interpolation. Fig 4 shows the continuous inverse cumulative distribution

function (CDF), where the cut-off age is shown as a function of the cumulative probability,

corresponding to the discrete probability density function of Fig 3. From this interpolated

piecewise linear function, confidence limits are determined by searching for the ages that a

boundary would have with a probability of 2.5% and 97.5%, respectively. The only peculiarity

Fig 3. Discrete probability density function of the age of boundary 48, for ages above 26 years. The distribution is

limited to the range of 0 to 48 years. The estimated mean (or expected) age is 39.84 years. This is equal to the sum of

input probabilities after the base boundary, here 0.83�48, as expected from Theorem 1.

https://doi.org/10.1371/journal.pone.0239052.g003

Fig 4. The inverse cumulative distribution function for boundary 48. The calculated probabilities are piecewise

linearly connected to get a continuous function. It serves to find confidence limits for the estimated age, for a 95%

confidence interval at 2.5% and 97.5%. The age goes downwards to 0, and the cumulative probability on the left also

towards 0.

https://doi.org/10.1371/journal.pone.0239052.g004
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here is that for the first possible age of a given boundary, the probability could already be larger

than 2.5% (at early ages), so that one cannot interpolate to the left, and a corresponding confi-

dence limit does not exist. For example, in Table 2 boundary 2 is at a minimum 1 year old with

30% probability; so a confidence limit would be at less than the lower limit of 1 year, which

does not make sense. In these cases, the lower confidence limit can be substituted by the lower

bound, i.e., here 1 year.

Table 5 shows the resulting statistics for the possible ages of the first and last boundaries of

the data from Fig 2. The cumulative age increases according to the input probabilities (as pre-

dicted by Theorem 1), and the number of possible ages increases each time by one year in the

second column. Furthermore, for the first boundaries the difference between the range of pos-

sible ages (column 2) and the 95% confidence limits (last two columns) is trivial, but for

higher-numbered boundaries, the confidence interval is clearly smaller than the age range.

Estimated ages of all ring boundaries, with 95% confidence intervals, are shown in Fig 5A.

Note that the upper limit of possible ages lies on the 45˚ diagonal, because the maximum age is

always equal to the boundary number. Fig 5B subsequently shows cumulative radius, based on

the radial increments, as a function of age (linearly interpolated), together with confidence

curves that take into account the uncertainty about year assignments. In contrast to usual age-

radius curves, these curves are delimited horizontally at the maximum measured radius, not

vertically at the maximum measured age. Furthermore, there can be vertical lines, connecting

several radii that are associated with the same age.

Probabilistic mean sensitivity, autocorrelation, and process

standard deviation of a tree-ring series

An additional parameter of interest in dendrochronology and dendroclimatology is the mean
sensitivity of a tree-ring series. Douglass introduced it as “the average percentage increment

from year to year without regard to sign. A tree of high sensitivity is more datable and more

likely to make a contribution to our studies than a tree with a complacent series of rings” (page

9 in [25]). Fritts defined the mean sensitivity with the following formula (page 258 in [3]):

ms ¼
1

nw � 1
�
Xnw � 1

i¼1

Abs
2 � ðwiþ1 � wiÞ

wiþ1 þ wi

� �

; ð4Þ

where wi is the width (radial increment) of ring i, nw is the number of radial increments in the

time series, and Abs refers to the absolute value. For a sample with nb boundaries, there are nw
= nb−1 widths (radial increments). Note that (4) calculates the change of the width between

two rings wi+1−wi relative to the two rings’ mean width (wi+wi+1)/2. The value of ms ranges

Table 5. Statistics of age assignment for a subset of the ring boundaries from Fig 2.

Boundary number (input

probability)

Range of possible

ages

Mean age

(A)

Standard deviation

(sAi
)

Lower 95% confidence limit of age (or

lowest possible age)

Upper 95% confidence limit

of age

0 (1) 0-0 0 0 0 0

1 (0.83) 0-1 0.83 0.376 0 0.97

2 (0. 83) 0-2 1.66 0.531 0 1.96

3 (0. 83) 0-3 2.49 0.651 0.28 2.96

. . . . . . . . . . . . . . . . . .

46 (0. 83) 0-46 38.18 2.548 32.34 42.40

47 (0. 83) 0-47 39.01 2.575 33.15 43.26

48 (0. 83) 0-48 39.84 2.602 33.96 44.10

https://doi.org/10.1371/journal.pone.0239052.t005
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from 0, when all widths are the same, to 2, when rings are alternating (theoretically) between

zero and positive width.

We consider now

Xi ¼ Abs½ð2 � ðwiþ1 � wiÞÞ=ðwiþ1 þ wiÞ�

to be a random variable. A fundamental property in statistics is that “the expectation of a sum

of random variables is the sum of the expectations, no matter how the two variables are

related” (page 69 in [26]): E(X1+X2+. . .) = E(X1)+E(X2)+. . .. Furthermore, with the logic from

(2), E(Xi) = Xi�Pi+1, because Pi+1 represents the input probability that the boundary between

the ring with width wi and the next ring with width wi+1 is annual. Consequently, the probabi-

listic mean sensitivity of a tree-ring series fms becomes:

fms ¼
1

nw � 1
�
Xnw � 1

i¼1

Abs Piþ1 �
2 � ðwiþ1 � wiÞ

wiþ1 þ wi

� �

; ð5Þ

where the probabilistic version of the variable is indicated by a tilde. The division in (5) of the

expected sum E(X1+X2+. . .) by nw−1 results in a mean expected value for Xi.

Since σ2 = E(X2)−μ2 (page 133 in [11]), the estimated variance is s2

ems
¼ EðX2

i Þ � ðfmsÞ2; or

s2

ems
¼

1

nw � 1
�
Xnw� 1

i¼1

Piþ1 �
2 � ðwiþ1 � wiÞ

wiþ1 þ wi

� �2
" #

� ðfmsÞ2: ð6Þ

The corresponding standard error of the mean is SEems
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ems
=nw

q
(page 139 in [10]).

Fig 5. Uncertainty about ages of tree-ring boundaries. (a) estimated ages in years with 95% confidence limits (red)

points; the points cannot be above the (black) diagonal line, where the age is equal to the boundary number; (b) radius

as a function of estimated age, with 95% confidence limits (points are linearly interpolated). While the (black) thinner,

lower line represents the upper age limit, the lower age limit is given by the Y-axis.

https://doi.org/10.1371/journal.pone.0239052.g005
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The mean sensitivity of a tree-ring series has been used as an indicator for over 80 years,

but has also been criticized. Arguments against using it have been that the mean sensitivity, as

defined in (4), is proportional to the standard deviation of the ring width (or measured vari-

able), except in cases with strong autocorrelation [27], and that it is ambiguous, because it does

not separate variance and autocorrelation [28]. If this critique is warranted is debatable: To

think of mean sensitivity in terms of a combination of variance (or standard deviation) and

autocorrelation seems reasonable. Nevertheless, we take up the recommendation from [27],

and provide also formulas for the probabilistic standard deviation and autocorrelation of the

time series of ring widths.

The first-order autocorrelation for a stationary stochastic process is defined, here for the

ring widths, as (page 31 in [29]):

rac1 ¼

Xnw � 1

i¼1
½ðwi � wÞ � ðwiþ1 � wÞ�
Xnw

i¼1
½ðwi � wÞ2�

: ð7Þ

Strictly speaking, the ring widths should be standardized, before calculating the autocorrela-

tion, to account for the expected change of width with the tree’s age and thus comply with the

assumption of a stationary stochastic process (i.e., constant random noise around a constant

mean path) (page 24 in [29]). A linear regression of the widths from Fig 2, however, results in

a nonsignificant regression coefficient of 0.00048 and a reasonably constant variance with

time, so that standardization is not important here.

The variance of the time series of ring widths is (page 28 in [30]):

s2

ts ¼
1

nw
�
Xnw

i¼1

ðwi � wÞ2; ð8Þ

where in contrast to the usual formula for the variance the division is by nw (not nw−1). Fur-

thermore, the variance of the first-order autoregressive (Markov) process is s2
proc ¼ s2

ts=ð1 �

r2
ac1Þ (page 61 in [29]), and consequently the process standard deviation becomes:

sproc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ts

1 � r2
ac1

s

: ð9Þ

The process standard deviation could be a useful, alternative indicator of the mean sensitivity,

as it takes into account both variance and autocorrelation.

Next, we wish to include the input probabilities of the ring boundaries. If one considers

ðwi � wiÞ
2

or alternatively ðwi � wiÞ � ðwiþ1 � wiÞ to be a random variable, then one can follow

the same logic as above for deriving (5), and insert the input probabilities correspondingly in

(7) and (8), to get a probabilistic autocorrelation and time series’ variance:

erac1 ¼

Xnw � 1

i¼1
½Piþ1 � ðwi � wÞ � ðwiþ1 � wÞ�
Xnw

i¼1
½Pi � ðwi � wÞ2�

; ð10Þ

es2

ts ¼
1

nw
�
Xnw

i¼1

½Pi � ðwi � wÞ2�: ð11Þ
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With (10) and (11) in (9), one gets the probabilistic version of the process standard deviation:

esproc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2
ts

1 � er2
ac1

s

: ð12Þ

The difference between sproc from (9) andesproc from (12) is that sproc calculates a standard devia-

tion for widths of varying size, whose overall number is certain. In contrast,esproc adjusts the

expectation for the standard deviation, taking into account uncertainty if a given width corre-

sponds to an annual ring. Table 6 summarizes formulas (4) to (12).

Using the time series from Fig 2, the probabilistic estimate of mean sensitivity with (5) is

fms ¼ 0.511 (without any unit), and its standard error with (6) is SEems ¼ 0.0652 (n = 48). This

compares to a traditional (non-probabilistic) mean sensitivity of 0.616, calculated with (4).

Confidence limits can be estimated under the assumption that the mean sensitivity has an

approximately normal distribution (invoking the central limit theorem). The 95% confidence

limits are calculated consequently as fms � 1:96 � SEems and fms þ 1:96 � SEems (page 158 in [10]).

For the example in Fig 2, the 95% confidence limits of the probabilistic mean sensitivity are

then 0.384 and 0.639.

Turning to the autocorrelation, time series’ variance, and process standard deviation, the

resulting numerical values for our case study are rac1 = −0.494 (without any unit), s2
ts ¼

0:00989 cm2; and sproc = 0.114 cm. The probabilistic parameters, adjusted for the uncertainty

of ring boundaries, areerac1 ¼ � 0:490;es2
ts ¼ 0:00823 cm2; andesproc ¼ 0:104: The probabilistic

parameters are always smaller, because at least some Pi and Pi+1 are smaller than 1 in (6), (10),

and (11). While the autocorrelations are between minus and plus one, the variances and stan-

dard deviations are always positive, but unbounded.

Table 6. Standard and probabilistic formulas for mean sensitivity, autocorrelation, and process standard deviation.

Concept Standard formula Probabilistic formula

Mean sensitivity of a dendrochronological time series ms ¼
1

nw � 1

�
Xnw � 1

i¼1

Abs
2 � ðwiþ1 � wiÞ

wiþ1 þ wi

� �

fms ¼
1

nw � 1

�
Xnw � 1

i¼1

Abs Piþ1 �
2 � ðwiþ1 � wiÞ

wiþ1 þ wi

� �

Variance of the mean sensitivity No s2

ems
¼

1

nw � 1

�
Xnw � 1

i¼1

Piþ1 �
2 � ðwiþ1 � wiÞ

wiþ1 þ wi

� �2
" #

� ðfmsÞ2

Autocorrelation for a stationary stochastic process

rac1 ¼
Xnw � 1

i¼1

ðwi � wÞ

�ðwiþ1 � wÞ

" #

Xnw

i¼1
ðwi � wÞ2

erac1 ¼
Xnw � 1

i¼1

Piþ1 � ðwi � wÞ

�ðwiþ1 � wÞ

" #

Xnw

i¼1
½Pi � ðwi � wÞ2�;

Variance of a time series
s2
ts ¼

1

nw
�
Xnw

i¼1

ðwi � wÞ2 es2
ts ¼

1

nw
�
Xnw

i¼1

½Pi � ðwi � wÞ2�:

Process standard deviation of a first-order autoregressive (Markov) process
sproc ¼

ffiffiffiffiffiffiffiffiffi
s2ts

1� r2ac1

r

esproc ¼
ffiffiffiffiffiffiffiffiffi
es2
ts

1� er 2
ac1

r

:

https://doi.org/10.1371/journal.pone.0239052.t006
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Sensitivity analysis

How much does uncertainty about the exact input probabilities and locations of false and

missing boundaries in a time series affect statistical age determination? In the above section on

estimating the probabilities, we mentioned possible sources of uncertainty about them. There

is also methodological uncertainty. For example, the result of classifying the recognizability of

boundaries and crossdating with difficult-to-recognize boundaries can depend to a relatively

large degree on the analyst. In that regard, dendrochronological analysis can be as much an art

as a science. Some type of sensitivity analysis is highly recommendable, to evaluate how much

the uncertainty and possible ranges of the probabilities of different ring boundary types affect

estimated ages and growth curves.

For the expected age, Theorem 1 provides an easy way to judge the sensitivity of the

expected age to changes in the input probabilities Pi. In our case study, with 48 boundaries,

each representing one year’s growth with input probability 0.83, the mean age at the 48th

boundary is 0.83�48 = 39.84 years. If the 48 input probabilities increased, for example, from

0.83 to 0.95 (or 14.5%), the mean age would increase by 14.5% to 45.6 years. Thus, the mean

age changes by the same proportion as that of the input probabilities, i.e. the probabilities that

the boundaries are annual. As a consequence, at given radiuses for the analyzed boundaries

the growth decelerates with increasing input probabilities (but the confidence curves get nar-

rower, as explained below).

Fig 6 illustrates the sensitivity of the results to the input parameters in four simulations:

a. Four missing rings in the data of Fig 2: In Fig 2 one notes some ring widths that seem

unusually wide, and missing boundaries could be the reason. If one standardizes (“studen-

tizes”) the 48 ring widths, by subtracting from each value the mean width and dividing by

the standard deviation, the values can be compared against a t-distribution with 47 degrees

of freedom. Four widths (numbers 17, 19, 21, 38) result as statistically significant outliers,

Fig 6. Simulations to analyze the sensitivity of the curves of radius as a function of expected age. (a) Four missing

rings are assumed in the data of Fig 2; (b) The input probabilities are 0.5 instead of 0.83; (d) The input probabilities are

0.95 instead of 0.83; (d) Pseudorandom input probabilities between 0.5 and 1, and pseudorandom widths between 0

and 0.5 cm for 300 boundaries.

https://doi.org/10.1371/journal.pone.0239052.g006

PLOS ONE Statistical age determination of tree rings

PLOS ONE | https://doi.org/10.1371/journal.pone.0239052 September 22, 2020 16 / 20

https://doi.org/10.1371/journal.pone.0239052.g006
https://doi.org/10.1371/journal.pone.0239052


whose probability is smaller than 5% to belong to the t-distribution. The missing bound-

aries are assumed to divide these rings of widest width in two equal halves, each with an

input probability of 1, i.e., we assume to be certain about them. The curve of expected age

decelerates, and becomes a little bit smoother. The maximum radius is reached 4 years

later.

b. Input probabilities lower: To consider a wide possible range of uncertainty about the true

input probabilities, in this simulation Pi = 0.5 for i = 1 to 48, instead of 0.83 (39.8% lower).

The curve of expected age accelerates, and the confidence interval becomes wider, because

there is less certainty about a boundary to be annual. Technically, the variance decreases

with increasing Pi+1. This can be seen by applying (3) for the situation used in the above

proof:

s2

Aiþ1
¼ t2 � Li;t � ð1 � Piþ1Þ þ ðt þ 1Þ

2
� ðLi;tþ1 � ð1 � Piþ1Þ þ Li;t � Piþ1Þþ

ðt þ 2Þ
2
� Li;tþ1 � Piþ1 � ðt þ Li;tþ1 þ Piþ1Þ

2
:

Taking the derivative with respect to Pi+1, and simplifying results in

ds2

Aiþ1
=dPiþ1 ¼ Li;t þ Li;tþ1 þ 2 � t � Li;t þ 2 � t � Li;tþ1 � 2 � ðPiþ1 þ tÞ:

All variables are positive, so that an increase in Pi+1 causes a decrease in the change of the

variance s2

Aiþ1
; because of the term −2�(Pi+1+t).

c. Input probabilities higher: Now Pi = 0.95 for i = 1 to 48, instead of 0.83. The curve of

expected age decelerates, and the confidence interval becomes narrower.

d. Random input probabilities and random widths over 300 boundaries: The last simula-

tion shows a longer time series, where the input probabilities and ring widths were chosen

(pseudo)randomly, with input probabilities between 0.5 and 1, and widths between 0 and

0.5 cm. One sees that the confidence interval widens slightly with expected age, without any

unreasonable behavior.

Concluding remarks

For over a century, dendrochronology has operated with the goal of assigning an exact calen-

dar year to each tree ring detected in the trunk wood. Once years have been assigned, statistical

methods are generally used in dendrochronology to analyze the time-series of ring widths, for

example to extract climate signals with as little noise as possible, noise that can be caused by

different tree ages, tree-trunk geometry, and site differences [5]. While there is great value in

meeting such a level of certainty [7], it is not always possible to know the exact calendar year

when each growth ring was formed. In this context, it is valuable to develop a formal approach

to statistical (i.e., probabilistic) age determination, which has never been introduced into the

field. Here we offer such a statistical approach, assigning an input probability that each bound-

ary is indeed an annual growth ring, and thus provide a formal way to treat each boundary

with skepticism. A computer algorithm for facilitating all calculations in Mathematica is pro-

vided as supporting information.

Age and growth estimation of trees is basic to many fields, such as forest management and

ecology [31], carbon stock analysis [32], forest restoration and conservation [33], and forest

economics [34]. The uncertainty-intolerant approach would force one to discard many sam-

ples in which some ring boundaries are well marked, while others are doubtful. In tropical
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lowland forests with less pronounced annual climate seasonality, there is strong variation in

recognizability, as well as variability in the timing of formation of boundaries [9], and cross-

dating may become impossible. Even in temperate zones, sampling focused on ecological ques-

tions in closed-canopy forests will lead to many increment cores that must be discarded under

traditional standards for crossdating. In a study of Acer saccharum from Wisconsin (USA),

crossdating results were inconclusive in 32% of the overtopped trees, because of low ring-

width variability, multiple missing rings, and short duration of trouble-free segments [13].

Ecological sampling, particularly in tropical forests, will be important to quantify the role of

forests in the global carbon cycle, and project future carbon storage in forests. These applica-

tions make the need for uncertainty quantification more pressing.

Finally, growth analysis based on annual marks is not only possible for trees. The methods

of probabilistic age determination presented here could well be extended to study time series

of growth marks in roots of perennial herbs [35], fish scales and otoliths, bivalve shells, corals,

turtle scutes [36], bones of cervids and primates [37], and dental development data [38].

Supporting information

S1 File. The S1 File Statistical Age Determination.nb provides the computer code in a

Mathematica notebook to generate the output, explained in the article, also for other data.

The file cannot be run without the Mathematica software (www.wolfram.com/mathematica/),

but we provide the PDF S1 File Statistical Age Determination.pdf to be able to see the informa-

tion.

(ZIP)

S2 File. The sample input file with the data from Fig 2 is S2 Alchornea Input.csv. The files

S2a Alchornea Input with 4 missing boundaries.csv, S2b Alchornea Input with lower proba-
bility.csv, S2c Alchornea Input with higher probability.csv, and S2d 300 boundaries random.

csv contain the input for the sensitivity analyses, shown in Fig 6.

(ZIP)
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