

Introduction to

Microsoft Access 2010
v. 2.0

October 2012

nikos dimitrakas

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 2

Table of contents

1 Introduction .. 4

1.1 Microsoft Access .. 4

1.2 Prerequisites .. 4
1.2.1 Literature .. 4

1.3 Structure .. 5

2 The Case ... 5

3 The Access Environment .. 8

3.1 Configuration .. 10

3.2 SQL ... 10

4 Creating A Database .. 11

4.1 Creating Tables ... 11
4.1.1 Design ... 11

4.1.2 DDL .. 18

4.1.3 Defining Other Restrictions .. 20

4.2 Working With Relationships .. 24
4.2.1 Simple Foreign Keys .. 27

4.2.2 ISA Inheritance ... 30

4.2.3 Composite Foreign Keys .. 33

4.2.4 Multiple Relationships Between The Same Two Tables .. 35

4.2.5 Recursive Relationships ... 35

5 Querying A Database - Working With Data .. 37

5.1 Preparing The Database With Data .. 37
5.1.1 Using SQL .. 37

5.1.2 Using Datasheets .. 39

5.1.3 Using Forms ... 41

5.2 Writing SQL .. 41

5.3 Reusing Queries ... 43

6 Forms .. 45

6.1 Simple Forms ... 45

6.2 Lookups .. 52

6.3 Master-Detail Constructs ... 65

6.4 Forms Based On Queries .. 77

6.5 Non-Data Forms .. 83

7 Reports .. 85

7.1 Simple Reports .. 85

7.2 Reports That Combine Many Tables .. 86

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 3

7.3 Reports Based On Queries ... 90

7.4 Grouping And Sorting .. 91

7.5 Subreports ... 97

8 Macros .. 103

9 Other Useful Tips ... 107

9.1 Tip 1 - Lookups For Tables .. 107

9.2 Tip 2 - Viewing Subtables ... 108

9.3 Tip 3 - Sorting And Filtering ... 112

9.4 Tip 4 - SQL Parameters .. 112

9.5 Tip 5 - Nesting SELECT Statements – COUNT(DISTINCT) ... 113

9.6 Tip 6 - Application Start-Up .. 114

9.7 Tip 7 - Concatenating Columns ... 115

9.8 Tip 8 - Using Forms To Find Records ... 116

9.9 Tip 9 - Keys And Indexes ... 116

9.10 Tip 10 - Multiple Subforms .. 117

9.11 Tip 11 - Division In Access ... 118

9.12 Tip 12 - Object Dependencies... 119

9.13 Tip 13 - Copying Objects Between Databases .. 119

9.14 Tip 14 - Handling NULL .. 120

9.15 Tip 15 - Business Rules ... 120

9.16 Tip 16 - Set Operators .. 122

9.17 Tip 17 - Multimedia .. 122
9.17.1 Storage Outside The Database .. 128

9.18 Tip 18 - Compacting And Repairing A Database .. 129

9.19 Tip 19 - Linking External Data .. 130
9.19.1 Creating An ODBC Alias ... 131

9.19.2 Linking To The MySQL Tables From Access ... 133

9.19.3 Working With Linked Tables ... 135

9.20 Tip 20 - Working With Dates And Times ... 138

10 Other Resources ... 140

10.1 Web Sites .. 140

10.2 Books .. 140

11 Epilogue .. 141

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 4

1 Introduction

This compendium contains an introduction to the most commonly used functionalities found
in Microsoft Access 2010, from how to create a database and define referential integrity to
how to create forms and reports. As an added bonus, most of the information in this
compendium also applies to earlier versions of Microsoft Access.

It is strongly recommended that you read through (or at least look through) the entire
compendium before you start working with it in front of a computer. There are many
references back and forth in this compendium, and therefore you should find it quite helpful
to have acquired an idea beforehand of what is coming in later chapters.

Any comments or feedback that you may have about this compendium are greatly
appreciated. Send any such comments or feedback to the author at nikos@dsv.su.se.

The latest version of this compendium, all the files needed to complete the tutorial, relevant
links and other information are available at http://coursematerial.nikosdimitrakas.com/access/.

1.1 Microsoft Access

Microsoft Access integrates a database management system and a rapid application
development environment in the same package. It provides almost all basic relational
database functionalities, and it extends this with facilities for rapid application development.
Advanced development can also be done in Microsoft Access by using the also integrated
Visual Basic environment.

Microsoft Access 2010 is included in the list of software offered by Microsoft within the
MSDN Academic Alliance agreement. This means that any student at KTH/ICT or SU/DSV
is entitled to one free licence for MS Access 2010. If you want to download Microsoft Access
2010 (or any other Microsoft software covered by Microsoft Dreamspark), go to
https://msdn60.e-academy.com/kgth_ite/ or https://msdn60.e-academy.com/su_ids/.

From now on in this compendium we will refer to Microsoft Access 2010 as Access.

1.2 Prerequisites

This is a tutorial about Access, so the reader must already be familiar with conceptual
modeling, relational database theory and some basic programming. Later in this compendium
we will start working with a small case. We will skip to having a ready conceptual model, so
we will assume that some conceptual modeling of our case was already done. The translation
of the conceptual schema into a relational database schema will be shown, but not in any
detail.

1.2.1 Literature

While working with this compendium it is recommended that you have some sort of reference
literature on relational databases and SQL. Here are some recommended books:
 Connolly, Begg: Database Systems A Practical Approach to Design, Implementation and

Management, Addison Wesley
 Elmasri, Navathe, Fundamentals of Database Systems, Addison-Wesley

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 5

There are many more books that will do just fine, but these two are mentioned here since they
are the ones used for courses at SU/DSV and KTH/ICT.

1.3 Structure

This compendium has the following simple structure:
1. A short introduction (which you are reading right now)
2. A description of the case used throughout the compendium (chapter 2)
3. Creating a database for our case in Access (chapter 4)

a. Defining and creating the tables (section 4.1)
b. Defining relationships and referential integrity (section 4.2)

4. Querying the database (chapter 5)
a. Populating (putting some data in) the database so that we have something to

query about (section 5.1)
b. Writing SQL statements to query the database (section 5.2)
c. Creating and using views (section 5.3)

5. Creating forms for input and for working with the data in the database (in a more user-
friendly way) (chapter 6)

6. Creating reports for presenting data from the database (chapter 7)
7. Creating macros to do things that can't be done with just queries, forms and reports

(chapter 8)
8. Finally there are some more tips and links to more information (chapters 9, 10 and 11)

2 The Case

The case used in this compendium has been specifically designed in order to be both small
and cover all the things to be discussed in the chapters to follow. The same case will be used
for all the exercises in the rest of the compendium.

The system we are going to build will manage the following information:
 There are many artists, and for each of them we know their name and age. No two artists

have the same name.
 Some of the artists are also composers.
 Composers compose songs. A composer never composes two songs with the same name.
 For each composed song we know its name and length (in seconds).
 Each song can be performed on particular dates. Each song performance can involve

many different artists. The same song cannot be performed twice on the same date.
 A particular performance of a song can be included on a CD. A CD can contain many

different songs performed by different artists.
 For each CD we know the order of the songs.
 Each CD has a title and a year (when it was released). No two CDs released the same year

have the same title.
 A CD can only contain songs performed the same year or earlier (for obvious reasons).
 Many artists have a mentor, who is another artist. The mentor must be older than the

artist.
 An artist can have a favorite composer.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 6

The information above has been modeled into the following conceptual model:

Figure 1 Conceptual model of the case

The arrows on the conceptual model are only there to help read the associations, for example
“A song is composed by a composer” instead of “A composer is composed by a song”. The
only two things not modeled are the facts that “A CD can only contain songs performed the
same year or earlier” and that "The mentor must be older than the artist". These will be
handled as business rules, and we will see how we can add such restrictions in our database
system later.

Before we can implement our database, the conceptual model has to be translated into a
logical relational database schema. In this schema we will still not specify any Access specific
information. We will specify primary keys, foreign keys, data types, and other restrictions.

The following figure shows the logical database schema created from the conceptual model.
Primary keys are shown as underlined columns, while an asterisk (*) indicates columns that
constitute foreign keys. The columns CD.Title, Song.Name and Artist.Name are of data type
STRING (or VARCHAR). The columns CD.ID, CD.Year, Artist.Age, Song.ID and
Song.Length are of data type INTEGER. The column SongPerfrormance.Date is of data type
DATE. All foreign key columns are automatically of the same data type as the referenced
columns. Remember that keys can be composite, i.e. consist of more than one column, and
that there can be several foreign keys in a table, possibly even sharing some column(s).

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 7

Figure 2 Logical relational database schema of the case

The schema of Figure 2 can also be shown in the following textual notation. The advantage of
this textual notation is that the foreign keys are specified explicitly and there is no room for
confusion.

Tables (primary keys are underlined):
Artist (Name, Age, FavouriteComposer, Mentor)
Composer (Name)
Song (ID, Name, Length, Composer)
SongPerformance (Date, Song)
ArtistPerformance (Name, Date, Song)
CD (ID, Title, Year)
CDSongPosition (Position, CDID, Date, Song)

It is also possible to include the data types in this notation. The table Artist could be written
instead as follows:
Artist (Name STRING, Age INTEGER, FavouriteComposer STRING, Mentor STRING)

Foreign keys (foreign key on the left, referenced primary (or alternate) key on the
right):
Artist.FavouriteComposer << Composer.Name
Artist.Mentor << Artist.Name
Composer.Name << Artist.Name
Song.Composer << Composer.Name
SongPerformance.Song << Song.ID
ArtistPerformance.Name << Artist.Name
ArtistPerformance.(Date, Song) << SongPerformance.(Date, Song)
CDSongPosition.CDID << CD.ID
CDSongPosition.(Date, Song) << SongPerformance.(Date, Song)

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 8

The first row says that the column FavouriteComposer of the table Artist is a foreign key to
the column Name of the table Composer. For composite keys there is no difference: The last
row, for example, says that the columns Date and Song of the table CDSongPosition
constitute together a foreign key to the primary key of the table SongPerformance, namely the
columns Date and Song.

Other constraints:
UNIQUE (CD.Title, CD.Year)
UNIQUE (Song.Name, Song.Composer)

In the next chapter we will see how we can create an Access database based on the relational
database schema that we acquired earlier.

Our case also includes the following information needs and user interface:
1. Show all CD titles produced in 1999!
2. Show all songs in a particular CD!
3. Which CDs include songs written by Jerry Goldsmith?
4. Which song has been performed the most times?
5. How many distinct songs has each artist performed in?
6. Which artist has performed in at least one song of each CD?
7. Which artist has performed in at least one song of each composer?
8. Which songs has each composer composed?
9. A form for registering a new CD in the database.
10. A form for registering a new Artist in the database.
11. A form for registering song performances and artists performing them.
12. A report that shows the content of each CD (back cover style).
13. A report that shows information about each CD including which artists and composers

that are related to the CD.
14. A report that shows for each composer the songs that they have composed and which

performances of them exist and in which CDs these performances are included.

3 The Access Environment

As we mentioned in section 1.1, Access is both a database management system and an
application development environment. Access uses the basic philosophy of the other products
in Microsoft Office, which means that a database (and accompanying application) is stored in
a file (similar to Word, Excel and PowerPoint). Access files use the extension "accdb".
Creating such a file is the equivalent to creating a database (done in other products with the
SQL command CREATE DATABASE).

Starting Access without opening a particular file shows a welcome menu for creating a new
file (a new database):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 9

On the left side of the window there is the main menu and under "New" we have the Blank
database template (and some other templates) which will create a new file. The file name can
be specified on the right side before pressing "Create".

Once a new database has been created, Access will automatically suggest that we create a
table:

On the top of the window we have the menu (File, Home, Create, etc.). Each option has its
own toolbar and options will be active or inactive based on the current selection. The menu
and correspondning toolbars is called "Ribbon". On the left side we have the object browser.
Objects are not to be confused with objects in object-oriented programming. In Access we
have six types of objects: Tables, Queries (views), Forms, Reports, Macros and Modules. All
objects of these types will be shown in the object browser. The object browser is the control
center of our database and is also known as the "Navigation Pane". From here we can open
any table, query or other object in order to use it or modify it. The main area of the window
(to the right of the object browser) is where we work with any objects we may open.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 10

3.1 Configuration

Access and the current database can be configured from File > Options. Some interesting
settings are available under Current Database and under Object Designers.

3.2 SQL

Access is a relational database management system and thus supports SQL. But Access seems
to encourage users to use wizards and graphical tools, so SQL is not really up, front and
center. In order to write and execute SQL, we have to first create a query and then switch to
the SQL view. A query can be created from Create > Query Design. Access will immediately
suggest that we add tables to a graphical design of our query:

 After ignoring the "Show Table" pop-up window, we will have the option of switching to the
SQL view either by pressing "SQL" on the ribbon (under Design) or by right-clicking on the
query's tab selector and selecting "SQL View":

Querys can be saved as database objects and each query can contain one SQL statement
(SELECT, UPDATE, INSERT, DELETE, CREATE TABLE, etc). Saving SELECT
statements as queries is equivalent to creating views using CREATE VIEW, which is not
supported in Access.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 11

4 Creating A Database

Given the relational database schema created in chapter 2, we will now create a database in
Access. We will start by creating the tables, defining their columns, data types and primary
keys, and alternate keys if any. When all the tables are in place we will move on to
establishing the relationships between tables, i.e. the foreign key relationships.

Before we can start creating tables though, we have to create a database. A database in Access
is a file with the extension "accdb". Note that, with the exception of Access 2007, the
previous versions use a different format and the extension "mdb".
Start Access from the start menu and create a blank database as described in the previous
chapter. Place the new file at a suitable location. You can always move the file later if you
want.

Access starts by suggesting that a new table be created. Close the new table without saving.

4.1 Creating Tables

There are many ways to create tables in Access, but we will only look at two of them. The
first way is using a special design view where we can specify the names of the columns, the
data types, primary keys and other field restrictions (for example NOT NULL, alternate keys,
unique fields, etc.). The second way that we will look at, is specifying a DDL statement (i.e. a
CREATE TABLE statement) for each table and then simply running the DDL statements.

4.1.1 Design

To create a table in design view, select Create > Table Design from the menu. This will open
a new tab in the main area of the Access window:

In this window we can specify the structure of a new table. We start by specifying the
columns of the table Artist. The columns that we have in this table are Name, Age,
FavouriteComposer, and Mentor. They are all strings except from the column Age. So we can
fill in the fields in the table design tab:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 12

The word "Name" is a reserved word in Access, so a warning may appear when naming a
column "Name". We can ignore the warning and continue. When using column names that are
reserved words, we may have to enclose the column names within “[“ and “]” in SQL and in
other contexts where Access may otherwise get confused.

Access has a data type called Text, which is equivalent to String, and a data type Number,
which can be used as an integer.

For each column (called “field” in Access) of the table we can specify more details. The Field
Properties shown in the lower half of the tab belong to the field that is selected in the upper
half. The active field is highlighted with a different color. So in the image above the field
properties shown apply to the field Name.

The available field properties depend on the data type of the selected field. For example a
Text field has a property Field Size. If you want to see help on a particular field property,
simply place the cursor on that field property. The text to the right will give you a short
explanation of that field property. In the image below, the cursor has been placed in the first
field property (Field Size) (and the ribbon and the object browser have been minimized):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 13

A field of data type Number has different properties:

A Number field has also a property Field Size, but here we can only select one of the
available choices:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 14

Now that we have specified all the columns of the table, we can also specify the primary key
for the table. We can simple select the field that we want to use as primary key and press the
Primary Key button on the ribbon (under Design). The selected field will then be marked with
a key symbol (on the left of the field name) to indicate that it has been selected as primary
key:

When specifying each field's data type, we can also specify whether this field should accept
NULL. By setting the property Required to Yes, we specify the field as NOT NULL. The
column Name is set as primary key, so it is implicitly NOT NULL. The column Age on the
other hand must be explicitly set as Required. The remaining columns should allow NULL
according to our model.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 15

We can specify the table name now by either trying to save the table or trying to close the
table design. To save the table press Ctrl-S or select File > Save from the menu, or right-click
on the table tab selector and select Save. Access will ask you to specify the name of the new
table:

Specify the table name (Artist) and press OK.

The table name is now visible in the tab selector and the table has appeared in the object
browser: (under “Tables”):

Now, let's create the table Song. This table has a surrogate primary key called ID. We decided
previously to let this be an integer field. Access provides a data type AutoNumber, which can
be quite useful in this case. An AutoNumber column is managed by Access. Whenever a new
row is added, Access calculates a new unique value for this column. An AutoNumber is
actually a Long Integer so this is important to remember when we later create foreign key
columns that must refer to AutoNumbers. We can create the table Song according to the
following screenshot:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 16

As you can see in the image above, it is also possible to write comments for each field. This
can be useful, especially when the name of a field is not very intuitive, but generally, we
should strive to have informative field names. When you have defined all four columns, their
data types and the primary key, you can save the table and close the table design window.

We have now two tables in our database window:

Now let's create a table with a composite primary key. SongPerformance is such a table.

Once again we start by selecting “Create" and "Table Design”. We define the columns of our
table and their data types as we did before. The column Date can be defined to be of data type
Date/Time. We can then define in the field property “Format” that this field should be a
“Short Date”. We should now have the following:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 17

The only thing missing now is the primary key. In order to define a composite primary key,
we must select all the primary key columns and then press the primary key button on the
ribbon. We can do this by holding down the Ctrl-key and clicking on the square on the left of
the relevant fields.

When all primary key columns have been highlighted, we can press the primary key button to
indicate that all these columns together constitute the table's primary key. A primary key
symbol will be shown next to each of the fields:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 18

4.1.2 DDL

Another way to create a table in Access is by writing a CREATE TABLE statement and then
executing it.

We can for example create the table CD with the following statement:

CREATE TABLE CD (ID AUTOINCREMENT PRIMARY KEY, Title TEXT(50), Year
INTEGER)

AUTOINCREMENT is equivalent to the AutoNumber that we used in the design view in the
previous section.
TEXT(50) is a text field that is up to 50 characters long.
INTEGER is equivalent to a Number field of type Long Integer.

The only thing we need now is a Query object which we can use to execute SQL (as we saw
in section 3.2). Once we have a Query object in SQL view we can write our CREATE
TABLE statement:

You can now either execute the statement directly by pressing the Run button () on the
toolbar, or save the statement as a query object in order to execute it later. Press the Run

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 19

button to execute the statement. A new table (CD) will immediately appear in the object
browser:

By right-clicking on the new table and selecting "Design View", we can examine the table
and possibly make changes:

By repeating the same steps we can create the table ArtistPerformance with the following
SQL statement:

CREATE TABLE ArtistPerformance (Name TEXT(50), [Date] DATE, Song INTEGER,
PRIMARY KEY (Name, [Date], Song))

Observe that the word “Date” is a reserved word in Access. In order to indicate that we want
to have a column with that name, we must enclose the column name within “[“ and “]”.

After running this CREATE TABLE statement, we can examine our new table in the design
view:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 20

We may for example choose "Short Date" as the format of the column Date, since this was
not specified in the CREATE TABLE statement.

4.1.3 Defining Other Restrictions

Just defining the columns of a table and its primary key is most of the times not enough.
There are often other restrictions that have to be specified. For example we may want to
define that the columns Title and Year in the table CD should not be left empty (cannot
contain the value null). We may even want to restrict the value of the column Year to a
specific interval, for example between 1980 and 2050. Simple rules like these can be defined
in the table design view. Let's fix the table CD to include the restrictions mentioned above.

Open the table CD in the table design view. Now activate the field Title to show its field
properties:

As we said earlier, we want to make sure that there is always a value in this column. The
property Required can take care of that. Change the property value to Yes.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 21

ⓘ You can shift property values quickly by simply double clicking on them. Double click on

Yes to turn it into a No, and vice versa.

Now activate the field Year and do the same as for Title, i.e. set its Required property to Yes.
For the column Year we also want to restrict the possible values. For this we can use the
property Validation Rule. Activate the property (by placing the cursor there) and then you
will see a little button on the right side of the property:

Press it and a new window will appear. This is the Expression Builder that allows us to create
small logical/mathematical formulas:

Under Operators we can find what we need, namely Between:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 22

Double click on Between to add it into your formula and then substitute the two «Expr» with
the appropriate values:

ⓘ It is of course possible to write your expression directly, without having to find the

keywords in the menus.

Now press OK and the newly created expression will appear as the field property value:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 23

ⓘ It is of course also possible to write the expression directly in the field property without

opening the Expression Builder

When a user enters a value, Access will always check if it is correct in respect to the
validation rule. If the value breaks the rule, then an error message will be signaled to the user.
Access has a default message, but also allows us to specify what message should be
displayed. We can specify a better message in the property Validation Text:

You can now create the rest of the tables with any of the two techniques described in this
chapter. You can also add the appropriate restrictions on columns of all the tables (like
specifying that Song.Length must be greater than zero and that Artist.Age must be between 1
and 200). In order to create composite alternate keys (two or more columns that together don't
allow duplicates) you will need to create an index as described in section 9.9. The next section
assumes that all the tables have been created. A ready database with all the tables created
exists at http://coursematerial.nikosdimitrakas.com/access/.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 24

If you choose not to create the tables yourself, then download the database that contains them
before continuing to the next section.

4.2 Working With Relationships

All the tables are now created, but they are not in any way related to each other. There is no
referential integrity specified, and no foreign key rules either.

In Access, relationships between tables can be created graphically with a simple drag-and-
drop principle. Relationships in Access are more than just foreign key relationships. They are
also used by the system when working with wizards for creating forms and reports; more
about this in later chapters. In this section we will focus on defining referential integrity and
referential actions. The five subsections that follow describe the most common types of
relationships that we can have in a relational database.

In order to create table relationships in Access we must use the Relationships window. This
can be invoked from the ribbon under "Database Tools":

When you open the Relationships button for the first time, Access will automatically open the
Relationships tab and show the Show Table dialog:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 25

This dialog can also be invoked later by pressing the Show Table button on the ribbon while
the Relationships tab is active:

This dialog allows us to choose which tables to show on the Relationships tab. The
relationships view in Access is like a diagram that shows graphically all the relationships
between the different tables; not unlike the graphical relational schema shown in chapter 2.
Highlight the first table in the list, hold down Shift and click on the last table name on the list
to highlight them all:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 26

Press Add to add them to the diagram and press Close to return to the relationships diagram:

We can now resize and move the tables as needed. We can for example put them in the same
way as they were in the graphical database schema in chapter 2:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 27

ⓘ Observe that the tables shown here are just graphical representations of the tables in our

database. Deleting a table here does not delete the table from the database, just from the
relationships diagram.

We are now ready to create relationships.

4.2.1 Simple Foreign Keys

The first type of relationship, and probably the most common one, is when we have one
column in one table that is a foreign key to another table (with a one-column primary key1).
For example the column Composer in the table Song is a foreign key to the primary key of the
table Composer. In order to define this relationship, we have to select the primary key column
and drag and drop it on the foreign key column2. So, just drag the column Name of the table
Composer to the column Composer of the table Song. The Edit Relationships dialog will then
appear:

1 Or alternate key
2 Dragging and dropping the foreign key onto the primary key will also have the same effect if the
multiplicity is one-to-many.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 28

This dialog suggests a relationship based on the columns that we dragged and dropped. The
foreign key is automatically placed on the right side and the referenced primary key on the
left side. If we want the database to check that the values of the foreign key exist as values of
the referenced primary key, then we should check the Enforce Referential Integrity check box.
There are some rare cases that we would not want referential integrity, but in this
compendium we will always have referential integrity for all relationships we create. Any
relationship created without referential integrity would not formally be a foreign key
relationship.

When we activate the referential integrity, a selection of referential actions becomes available:

The two choices correspond to “ON UPDATE CASCADE” and “ON DELETE CASCADE”
of standard SQL. Setting these options depends on the behavior we want our database to
exhibit. In this case we could say that the first one is appropriate while the second one is not.
This means that we want the value of the column Song.Composer to be changed whenever the
value of the column Composer.Name is changed, but we do not want to delete all the songs of
a composer every time a composer is deleted (or there is an attempt to delete a composer).
Instead the system will restrict deletion of composers that have composed at least one song.
Should we want to remove a composer, we would have to remove all of their songs first.

The Edit Relationships dialog shows us, as a bonus, what the relationship type is for the
selected tables and columns. This is derived by the definition of the columns (whether they
are candidate keys, unique, etc). If the Relationship type is not as you intended it to be then

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 29

the tables have not been defined correctly. In this case One-To-Many is just fine. One
composer can compose many songs and one song has to be composed by one composer.

When we are done specifying the relationship, we press Create and then Access will show the
new relationship graphically:

The same way, we can create the relationship between Artist and Composer (the artist's
favorite composer):

and then:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 30

ⓘ Should we want to edit an already existing relationship, we can simply double-click on it

and the Edit Relationships dialog we show up.

4.2.2 ISA Inheritance

ISA relationships are also quite common. An ISA relationship is not different from any other
relationship in relational databases. The implied inheritance is not managed automatically and
the relationship is nothing more than a simple One-To-One relationship. When defining an
ISA relationship in Access (and any other relational database), it is important to define the
relationship in the right direction. In our case we have an ISA relationship that says that a
composer is an artist. It would be wrong to create a relationship that says instead, that an artist
is a composer, since this would require that all artists must be composers. It is therefore
important to create the relationship from the general to the specific, i.e. from the artist to the
composer. We can create this relationship by dragging the primary key of the table Artist and
dropping it onto the primary key of the table Composer (that also serves as foreign key).
Access will then detect that there is already a relationship between these tables and will ask us
if we want to edit the old relationship or create a new one:

We, of course, want to create a new relationship and answer therefore No. The Edit
Relationships dialog will then suggest the following relationship:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 31

We can see that the table Artist is on the left side (at this stage, when creating relationships,
always double check that the tables are placed correctly left-to-right), which indicates that it is
the master table of this relationship, i.e. a composer cannot be created unless there is a
corresponding Artist. The Relationship Type is detected to be One-To-One, which is exactly
what we expected it to be. We must not forget to activate the referential integrity and also
choose the appropriate referential actions. In this case both of them seem reasonable, so we
check both boxes:

We create the relationship and return to the relationships diagram:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 32

We can now see a strange new table Artist_1 in our diagram. It is nothing to worry about.
This is simply a second graphical representation of the table Artist in the relationships view
and not an additional table in the database. Access created this automatically because the
tables Artist and Composer already had a relationship. In this way we can distinguish between
the two relationships.

It is also possible to create two graphical representations of the table Composer instead. Even
though the diagram looks a little different, the relationship is identical to the one we created
previously:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 33

If we don't want to see the same table twice we can simply move the two graphical
representations of the same table to the same position (so that the one hides the other):

Artist_1 is now behind Artist, or Composer_1 is behind Composer.

4.2.3 Composite Foreign Keys

Tables sometimes have composite primary keys (and perhaps also composite alternate keys).
When such tables need to be referred to then the foreign key needs also be composite. In our
case we have such an example with the table SongPerformance. SongPerformance has a
composite primary key (columns Date and Song). The table ArtistPerformance has a foreign
key to the table SongPerformance (columns Date and Song). The procedure of creating this
relationship is not different than before. Highlight the referenced primary key (use the
Control-key to select all the columns of the primary key) and drag and drop it onto the table
that contains the foreign key. The Edit Relationship dialog will open, but this time the
columns of the related table are not automatically filled in:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 34

Select the correct columns by using the drop-down list or simply write the column names:

Then activate the referential integrity and create the new relationship.

The relationship is now visible in the relationships diagram:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 35

Since there are two columns that are linked, Access draws two lines for the same relationship.
This can be confusing, but both lines together indicate one and the same relationship. If they
were two different relationships, then Access would have created a new graphical
representation of one of the two tables as it did in the previous section.

4.2.4 Multiple Relationships Between The Same Two Tables

As we saw in section 4.2.2, when we create more than one relationship between the same two
tables, Access will automatically add a new graphical representation of one of the two tables
in the relationships diagram. This is to help us distinguish between the two relationships. This
is especially useful when we have overlapping foreign keys and generally composite keys.

4.2.5 Recursive Relationships

In some cases a table may need to refer to itself. In our case we have the table Artist that has a
column Mentor. This column is intended to point out another Artist who is this artist's mentor.
It is not a problem to define this relationship in Access. In order to do this we need to have
two graphical representations of the table Artist in our diagram. In our case there is already a
second graphical representation of the table Artist (that was created when we created the ISA
relationship between Artist and Composer in section 4.2.2). If there isn't one, we can create
one by opening the Show Table dialog (from the Design toolbar on the ribbon or by
right/clicking on the diagram area).

Drag and drop the referenced primary key column (Name) from the one graphical
representation of the table Artist to the foreign key column (Mentor) in the other graphical
representation of the same table (probably labeled Artist_1). The Edit Relationship dialog will
then show up:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 36

The suggested relationship is as we expected: One artist has one mentor and the same artist
can be the mentor of many artists. We activate the referential integrity and create the
relationship:

In this case it is probably preferable to let both Artist and Artist_1 be visible. If we place
Artist_1 behind Artist then we will not be able to see the new relationship.

We have now looked at all the types of relationships that are common in relational databases
and how to create them in Access. Complete the database with the rest of the relationships
(they are all defined in chapter 2). A version of the database including all the relationships is
available at http://coursematerial.nikosdimitrakas.com/access/.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 37

5 Querying A Database - Working With Data

In this chapter we will look at how to work with queries in Access. We will look at different
ways of querying the database, but before we do that we have to populate, i.e. prepare, the
database with data. With no data there is no way to verify that our queries work. It is not only
important to have data in the database. It is equally important to have both enough, and
varying data. It is important that the data in the database can represent all possible classes of
cases that can occur. For example it is important to have an artist with no performance, an
artist with just one performance, an artist with many performances, an artist with many
performances of the same song, an artist with many performances in different years and so on.
In order to achieve this kind of variation we need to have at least 5-10 rows in the strong
entity tables3 (for example: Artist, Composer, CD), 10-20 rows in tables that reference those
tables (for example: Song), and 20+ rows in the tables that reference more than one strong
entity table directly or indirectly (for example: CDSongPosition, SongPerformance,
ArtistPerformance). In general, the weaker the table, the more variation can occur in it.

In the next section we will look at some ways for adding data into the database.

5.1 Preparing The Database With Data

In this section we will look at three ways of adding data in an Access database. The data
inserted into the tables in this section are just a fraction of what we should have in order to
fulfill the requirements described above.

Since it would be a time consuming process to input all the data, a database with data has
been prepared and is available at http://coursematerial.nikosdimitrakas.com/access/.

The following subsections describe three basic ways of adding data to an Access database.

5.1.1 Using SQL

For those that dislike the graphical facilities provided in Access, there is the possibility of
writing SQL statements to add data to the database tables. For example we could write the
following INSERT statement in order to add a new Artist in our database:

INSERT INTO Artist (Name, Age) VALUES ('Jerry Goldsmith', 75)

In order to run this in Access we have to create a new query and then go to the SQL mode (as
we saw in section 3.2): Create a new query in design mode, close the Show Table dialog and
press the SQL button the toolbar. We can now add our SQL statement in the text area:

3 By strong entity tables, we mean here strong entities as described in, for instance, Database Systems.
They are tables whose data is not dependent on the existence of data in other tables. Kind of like parent
tables.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 38

By simply clicking the Run button () on the toolbar the INSERT statement will be
executed and a new row will be inserted in the table Artist (as long as the data does not
contradict any integrity rules). Depending on the Access settings, Access may ask you to
confirm the insertion:

If it does, simply press Yes.

The new row is now in the table. If we try to execute the same INSERT statement again the
database will detect the value 'Jerry Goldsmith' already exists and will inform us that the
primary key rule of this table prohibits the insertion of the new row:

(Pressing Yes or No in this case will not make any difference, but the sensible answer is No)

We can also try to add another Artist with an illegal Age value (say 300). We write the
following SQL statement:

INSERT INTO Artist (Name, Age) VALUES ('Vangelis', 300)

If we run this query, then Access will tell us that there was a validation rule violation. Sadly
(and strangely) Access will not show us the specific text message in this mode. The error
message looks like this:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 39

The message that we defined: (“No way. The age must be between 1 and 200”), is not shown
when we work in the SQL mode, but it will show up when working in the other modes
described in the two following sections.

5.1.2 Using Datasheets

A more common way to work with table data in Access is working with datasheets. A
datasheet looks just like an Excel sheet, but each column is a column of the table and each
row is a row in the table. Let's continue adding artists in our table Artist. Open the table Artist
by double clicking on it in the object browser (or right click and choose "Open"). The table
Artist will open in the datasheet mode:

We can see now that a row is already in the table. It is the row we added earlier with the
INSERT statement.

This view provides also other user-friendly features:
 On the top of the datasheet we can see the names of the columns.

 On the bottom we can see a navigator () which shows us the
total number of records in the table, the number of the current record and also allows us to

move to other records or create a new one (the button).
 On the status bar we can see the comment about the active filed of the table. Place the

cursor to the field Age and the status bar will change.
 In this mode Access will also recommend the default value for fields that have a default.

Numerical fields have by default the default value 0. If this is not appropriate, it can be
changed in the table design view (see section 4.1.1).

 In this mode we have the possibility to sort and filter the rows of the table. There are
options for this under Home on the ribbon.

 It is also possible to add new columns to the table, but this should be avoided and done
through the design view instead. To deactivate this option uncheck File > Options >
Current Database > Enable design changes for tables in Datasheet view.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 40

Let's now add a new row in the table. Simply place the cursor on the last row (the one with
the star on the left) and type in the appropriate values at each cell:

and then

We can now try to add a new artist with an invalid age (300 as before):

The moment we try to leave the cell, Access will try to validate the value and will show the
appropriate error message:

We can now change the value to the correct one (50).

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 41

ⓘ It is important to know that the new row is not stored in the table until we move out of it.
We can move to the next row or to any old row in order to force Access to store the newly
created row.

5.1.3 Using Forms

Another way to feed data into the database is by using forms. Creating forms can be from
extremely simple to extremely advanced, depending on the functionality of the form. Chapter
6 discusses forms in detail so we are not going to create any form in this section. Below you
can see an example of a form that can be used to input values in the table Artist:

We will see how to create this form in sections 6.1 and 6.2. The forms created in chapter 6
can be quite useful for inputting data in the database. Working with forms can actually save a
lot of time, especially when the table we are filling in has many foreign keys.

In this section (section 5.1) we looked at different ways of putting data in the database. We
barely created any rows in this section, and as we mentioned earlier it is important to have a
database with enough data before we can start querying it. The rest of the sections of this
chapter are about querying the database, so for that purpose there is a ready-made database
with a bunch of data. It can be downloaded from
http://coursematerial.nikosdimitrakas.com/access/. The data in this database has been created
through both forms and datasheets, but all the forms have been removed so that the database
is exactly as it was before, except from the data in the tables.

5.2 Writing SQL

With our database now populated with data, we can run some queries, and get some
meaningful answers. In this section we will just create a couple of simple SQL SELECT
statements and run them in Access. If we look back at chapter 2, we can see that one of the
information needs defined is: “Show all CD titles produced in 1999!”

This can easily be solved with the following SELECT statement:

SELECT title
FROM CD
WHERE year=1999

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 42

We can now execute this SQL statement by creating a new query in design view and then
switching to the SQL mode (as we did in section 4.1.2). We can insert our SQL statement in
the text area and we are ready to receive the result:

There are three ways to show the result. We can press the Run button on the ribbon (), we

can press the View button () on the ribbon, or we can right click on the query name and
choose "Datasheet View". They will all switch to a datasheet view that presents the result:

We can from this view return to the SQL edit mode by clicking the SQL View button on the
ribbon or by right clicking on the query name and selecting "SQL View".

We can even save this query if we want. We can either press the Save button () above the
ribbon, we can right click on the query name and choose "Save" or we can just close the query
tab and let Access ask us whether to save or not. In any case Access will ask for a name for
the new query:

We can call it something intuitive; for example “CDs from 1999” (and press OK). The new
query object is now available in object browser:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 43

ⓘ If you want to edit the SQL statement of the query, right click on it in the object browser

and press the "Design View" and Access will open the query automatically in the SQL
editing mode.

ⓘ If you want to see the result of the query, double click on it in the object browser and
Access will automatically run the query and show the result.

ⓘ Queries in Access are what other products call views.

5.3 Reusing Queries

In the case description in chapter 2, there was also the following information need: “Which
CDs include songs written by Jerry Goldsmith?”

This can be done with the following SQL statement:

SELECT DISTINCT title
FROM CD, CDSongPosition cdsp, SongPerformance sp, Song s
WHERE CD.ID = cdsp.CDID
AND cdsp.Song = sp.Song
AND cdsp.Date = sp.Date
AND sp.Song = s.ID
AND s.Composer = 'Jerry Goldsmith'

But let's assume either that this is too big and confusing, or that a part of it is very commonly
used. We can therefore create a view of one part of the query and then use this view in order
to create the final result. Let's say that we often need to know the composer of the song
performances. It can therefore be good to create a view that can give as this information
without having to join Song and SongPerformance every time. We could easily create this
view in standard SQL (which does not work in Access):

CREATE VIEW SongPerformanceComposer AS
SELECT sp.Song AS Song, sp.Date AS Date, s.Composer AS Composer
FROM SongPerformance sp, Song s
WHERE sp.Song = s.ID

Then we could write a simpler SELECT statement in order to produce the final result. We can
in this statement's FROM clause include the view we created earlier:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 44

SELECT DISTINCT title
FROM CD, CDSongPosition cdsp, SongPerformanceComposer spc
WHERE CD.ID = cdsp.CDID
AND cdsp.Song = spc.Song
AND cdsp.Date = spc.Date
AND spc.Composer = 'Jerry Goldsmith'

In Access, creating a view is the same as creating a query. A query is a view. So we can create
a query for the following SQL statement and save it as "SongPerformanceComposer". This
query would be the equivalent to the view that the CREATE VIEW statement earlier creates.

SELECT sp.Song AS Song, sp.Date AS [Date], s.Composer AS Composer
FROM SongPerformance sp, Song s
WHERE sp.Song = s.ID

The query is now visible in the object browser:

We can also open it and see the result:

We can now create a new query (in the usual way) for the following SQL statement, which
uses the other query in order to produce the final result:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 45

SELECT DISTINCT Title
FROM CD, CDSongPosition cdsp, SongPerformanceComposer spc
WHERE CD.ID = cdsp.CDID
AND cdsp.Song = spc.Song
AND cdsp.Date = spc.Date
AND spc.Composer = 'Jerry Goldsmith'

In the FROM clause of the statement we have now an object that is not a table. Instead, it is a
query.

We can now run our latest query and receive the result:

We can save this query as "CDs With Jerry Goldsmith".

A database including all the progress so far is available to download at
http://coursematerial.nikosdimitrakas.com/access/.

6 Forms

Forms can be used both for adding and editing data, as well as for browsing and presenting
data. In section 5.1 and especially in subsection 5.1.3, we discussed entering data in the
database and also doing it with forms. An example of a form was shown there, but we did not
see how we could create it. In this chapter we will see how to create forms. We will look at
some common types of forms, from the simplest possible to more complex master-detail
forms.

6.1 Simple Forms

By simple form, we mean a form that only has simple input fields for adding data to a
particular table. Such forms should only be used with tables that have no foreign keys, since
then all the columns of the table can be filled in by the user and the values are independent of
any values in other tables. In our case description in chapter 2, we had the following user
interface need: "A form for registering a new CD in the database". The table CD is
independent of all other tables. No column of the table CD depends on values of other tables.
We can therefore create a simple form for this table.

Under the Create option in the ribbon, there is an option "Form". This will create a simple
form for the object selected in the object browser. Select the table CD in the object browser

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 46

and press Create > Form. Access will create a new (unsaved) form with one field for each
column in the table. Access has also created a subform based on the foreign key relationship
that CD has to CDSongPosition:

On the right side we have the Field List and the ribbon has automatically switched to Design.
The Field List shows the columns that are available in the table selected as the source of the
form. In this case it is the table CD. On the ribbon we have the option to show the Property
Sheet instead of the Field List. The Property Sheet shows all the properties of the selected
form object:

On the ribbon we have a set of controls. These are objects that can be added to a form. Every
control has specific properties. Some controls are meant to be linked to database columns so
that the data in the database can be visualized in a specific way in the form. For example, an
Image control can be used to display an image stored in the database.

A form can be viewed in three different ways: Form View, Design View and Layout View.
The Form View is for when the form is being used. The Design View and the Layout View
are used to create the form, add controls, configure them, layout them, etc. The Design View
and the Layout View are very similar, but in Layout View, live data from the tables is used to
show what the form will look like. The ribbon has three tabs that together constitute the

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 47

"Form Design Tools". There is the Design tab with all the controls and some general options
for configuring forms, there is the Arrange tab which is used to manage the layout of the
controls on the form, and there is the Format tab that is used to select fonts and colors.

All automatically generated forms offer basic browsing functionality with a record navigator
and a record selector, as well as the possibility to edit existing records or add new records.

The created form looks like this in Form View and we may edit any field:

When a record is being edited, Access marks this with a little pencil symbol () on the left.

We can also add a new CD by creating a new record (by pressing the -button at the
bottom):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 48

The ID field is automatically set by Access, so we only need to fill in the Title and the Year:

We can see that even in this view, Access shows the comment for the activated field in the
status bar of the window.

We can also try to add another row but with an invalid Year value (say 1850):

The moment we try to move the cursor out of the Year field, Access will detect the violation
and show the specified Validation Text:

We can cancel the new record by simply pressing the Escape key (twice) after we press OK at
the pop-up message dialog. The record will return to each original blank state:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 49

If we don't like the layout of this automatically generated form, we have the possibility to
switch to the Design View and change it. To switch to the Design View, press the Design
View button on the right side of the status bar or select Design View from the ribbon on the
Home tab. In the Design View (or in the Layout View) we move around the controls, add or
remove controls, configure their format, etc. We could for example remove the grid showing
all the CDSongPositions and change the width of the fields.

There are two basic ways of changing the design of the form and the form controls: Through
the ribbon and through the Property Sheet. When a form object (a control or a section of the
form) is selected, the Property Sheet will show all the relevant properties and their current
values. Most values can be changed and the Property Sheet will offer all applicable options.
The same applies to the options provided directly on the ribbon. For example the Font
property shows the font in use and offers a list of possible fonts to choose from.

After playing around for a bit, the form may look like this:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 50

A form can be saved at any time, but Access will ask if we try to close an unsaved form. We
save our form as "CD Simple Form". The form will now be available in the object browser
under Forms:

We can also create a form without using Access' AutoForms. We can create an empty form in
Design View and then manually add all the components we want. Create a new empty form
by selecting Create > Form Design from the ribbon. An empty form will appear and it is now
up to us to design it:

The first thing we have to do is to specify the table that is going to be the data source for this
form (i.e. the table that contains the columns and data that will appear in the form). We can do
this in the Property Sheet. Select the table CD as the Record Source for the form. The

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 51

property Record Source is available under Data (and under All) when the Property Sheet
shows the properties of the form:

When a Record Source has been selected the Field List becomes available. The Field List
shows the columns of the selected Record Source and we can drag and drop them into the
form. This will create a label and a text field (Text Box) for the selected column of the table.
Drag and drop the fields Title and Year onto the free area of the form so that it looks
something like this:

The column ID is not visible in the form, but it exists of course in the table. Since the column
ID is an Autonumber, Access will take care of the values for new rows automatically.

Now activate the Title Text Box and look at the Property Sheet under Data:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 52

The value of the property Control Source is Title. This means that this Text Box is linked to
the column Title of the form's Record Source (the table CD). This means that whatever we see
or type in this field is stored in the Title column of the current row of the table CD.

We may also improve the layout of the form by choosing an appropriate layout from the
Arrange tab of the ribbon.

Switch to the Form View to see and use the form:

We can now save this form as "CD Designed Simple Form".

6.2 Lookups

In this section we will see how we can create forms for tables that have one or more foreign
keys. The main difference from the forms created in the previous chapter is that some of the
columns of the table may not accept just any value. The value of a foreign key column is
dependent on the values that exist in the referenced table.

We can start with a form that was required in the case in chapter 2: “A form for registering a
new Artist in the database”. The table Artist has two foreign keys. One of them
(FavouriteComposer) references the primary key of the table Composer, while the other
(Mentor) references the primary key of the table Artist. Our form should therefore provide a

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 53

possibility of selecting one of the existing composers as the favourite composer and one of the
existing artists as the mentor.

We can either create a form from scratch (as we did in the previous section), or we can let
Access create a standard form for us and then modify it. In this example we will do the latter.

Select the table Artist in the object browser and select Create > Form from the ribbon:

Access has created one Text Box per column in the table. If we try to use this form, we must
specify the values of every column manually. This is of course not practical because we need
to remember exactly which values are available in the referenced primary keys to maintain
referential integrity.

The first two Text Boxes are fine because it is up to the user to write the name and age of the
artist. The third and fourth, though, are not so good. They require that the user knows exactly
which composers and artists there are in the system and requires that the user doesn't make
any spelling mistakes. We will therefore switch them to Combo Boxes. To do this we need to
switch to the Design View and then remove the Text Boxes, and add Combo Boxes (from the
ribbon). There is also an option to change a Text Box to a Combo Box (by right-clicking on
the Text Box, but then we will need to configure the Combo Box manually. By adding a new
Combo Box from the ribbon, a wizard will assist us in the configuration. First remove the two
Text Boxes (and their associated Labels):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 54

The dotted lines that remain are part of the selected layout. The default layout is a Stacked
layout where all the Labels are on the left and all the Text Boxes are on the right and they all
have the same width and spacing. When we add a new control, we may add it in the existing
layout by dropping it at the right place.

We can now add two Combo Boxes: one for the column FavouriteComposer and one for the
column Mentor. To do this we need to locate the Combo Box control under Design on the
ribbon. When adding complicated controls, Access will provide a wizard for configuring the
new control, but only if the option "Use Control Wizards" is selected:

Now, we are ready to add our first Combo Box onto the form. Press the Combo Box button
(). Move the mouse to the place on the form where you want to place the new Combo Box
(the mouse cursor will change to indicate that you are about to add a new Combo Box). The
position is probably not so important, since we can add it to the existing layout later. As soon
as we have clicked to create the new Combo Box, the Combo Box Wizard will appear:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 55

There are three alternatives, but the first one is what we want in this case. We want to fill the
Combo Box with values of a table. Select the first alternative and press Next.

The wizard will now ask us to select which table or query we want to use. We want to use this
Combo Box to let the user select an existing composer as the new artist's favourite composer.
We choose therefore the table Composer:

We can now press Next again and the wizard will ask us to select which columns of the table
Composer that we want to include in the combo box. There is only one column, so there is not
so much to think about. Just add the column Name to the selected fields:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 56

Press Next and the wizard will ask us to choose how the items of the combo box should be
ordered. We can, for example, order the composers alphabetically:

Press next and Access will display the available values in the defined order:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 57

Here we can also modify the width of the column(s) of the Combo Box. This looks fine so we
move on to the next step. This is where we finally connect our Combo Box to the table of the
form. Here we can instruct Access to place the selected value of the Combo Box in a
particular field of the table Artist. As we said earlier this Combo Box will help us choose the
favourite composer, so the selected value should be stored in the column FavouriteComposer
of the table Artist:

We can now move on to the final step of the wizard where we just need to define the text of
the Label of the new Combo Box:

We can now press Finish and look at the form:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 58

We can see the Label on the left and the Combo Box on the right. They were not placed
exactly where we wanted, so we can drag and drop the Combo Box into the existing layout.
The Label will follow automatically:

We can now add one more Combo Box for the column Mentor. The process is exactly the
same, but this time we select the table Artist, we store the value in the column Mentor, and we
can also set the Label to "Mentor". Here is the form with both Combo Boxes in place:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 59

We can now switch to the Form View and see how our form works. Browse through the
records. Notice that any change you make here is immediately stored in the table (as soon as
you leave the current record). So if you want to add a new record, you must first move to a
new record and then input the new values. Otherwise you will be changing an existing record
in the table. We can at this point also save our new form as "Artist":

ⓘ Queries and tables may not have the same name, but a form can without problem have the

same name as a table or query.

We will modify this form a little bit later to add the business rule restriction: "The mentor
must be older than the artist". We will do this in section 9.15.

What we saw above is a very simple case where the primary key of the referenced table was
what the user saw in each Combo Box. But there is also the possibility that a foreign key
references a surrogate key that is not so useful for the user to see in a combo box. This can be
illustrated with another form required in our case: A form for registering song performances
and artists performing them.

We can start by making a form for only the first half of the sentence above: A form for
registering song performances. In this case the form will be able to register a new row in the
table SongPerformance. This table has a foreign key (column Song) that references the
primary key of the table Song (column ID). But it would be useless for a user to see a bunch
of ID values in a combo box. We will therefore show in the combo box the name and the
composer of the song, and let Access link the ID values.

We start by creating a new form for the table SongPerformance. We can use an AutoForm to
get a form quickly. We can then remove the Song Text Box so that we can add a combo box
instead. Our form should now look like this (before adding the Combo Box):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 60

We can now add a Combo Box under the Date field and go through the wizard.

First we say that we want to look up the values in a table:

Then we specify the table Song as the value provider:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 61

Next we have to say which fields we want to include in our combo box. It is important to take
both the columns that we want to show to the user, and the columns that are referenced by the
foreign key. This means that we have to take the columns Name, Composer and ID:

Next we can decide the order. For example by name and then by composer (when more songs
have the same name):

The next step now provides an extra possibility, namely to hide the primary key column. If we
unhide the primary key then all three columns will be visible in the combo box.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 62

We can also rearrange the order and width of the columns if necessary. But we leave the ID
column first and hidden, because the wizard may get confused otherwise:

Since the ID column is a surrogate key for the table Song, it is best to hide it from the user.
Even though the column ID is not visible to the user, Access can still place the ID value in the
applicable column of the table SongPerformance. Choose therefore to store the value of the
Combo Box in the column Song (which is the foreign key). Access will automatically place
the ID value of the selected song in the column Song of the current row of the table
SongPerformance.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 63

Press next to specify the label for the new combo box:

Press Finish to return to the form design view where we can modify the position and size of
our new combo box and label:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 64

We can now switch to the Form View and browse through the records to see how the Combo
Box works:

Access has also automatically added a little icon next to the Text Box for the Date column.
This icon allows us to choose a date from a special pop-up calendar. Access added this
because the column was defined to be a Short Date. This so called "Date Picker" can be
configured through the property "Show Date Picker".

Sadly Access only shows the first visible column when the combo box is closed, while it
shows all visible columns when the combo box is open:

There are some ways to fix this. One simple solution is to transform the Combo Box to a List
Box. This can easily be achieved be right-clicking on the Combo Box control (while in
Design View) and selecting Change To List Box. Access will then transform the Combo
Box into a List Box while preserving all other settings of the control. If you open the form
now it should look much better:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 65

It is also possible to keep the combo box style and make sure that both the composer's name
and song's name show. This can be done by specifying a query as the source of the Combo
Box, which is described partly in section 6.4 and in section 9.7.

The width of the individual columns inside the List Box or Combo Box is configured in the
property Column Widths. The properties Column Count, Column Widths, Row Source,
Control Source and Bound Column must of course not contradict each other.

We can save our form as "SongPerformance". We have now 4 forms:

This technique of using Combo Boxes or List Boxes is quite useful, but it has some
limitations. The main problem is that it cannot manage composite keys. For example, if we
were to try to make an ArtistPerformance form with a Combo Box for selecting a
SongPerformance then we would reach a dead-end because there is no way to tell Access to
link both the column Date and the column Song. There are several ways to work around this
problem. One way is by using a master-detail form (presented in the next section), another is
to use a macro (presented in chapter 8).

6.3 Master-Detail Constructs

Sometimes it is useful to create forms that contain other forms. The content of the subform is
then dependent on the current row of the main form. This kind of structure is very common
and not at all difficult to create. The form Access created automatically in section 6.1 used
such a construct.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 66

In our case in chapter 2 we had the following information need: Show all songs in a
particular CD. We could of course solve this as an SQL statement, but we could also create a
form for this. Access has a form wizard that can produce a master-detail form structure for
this kind of scenarios. We will look at the wizard way first, and then we will look at how we
can make the same structure manually.

From the Create tab of the ribbon, choose "Form Wizard". The Form Wizard will then appear
to guide us through the process of defining our form:

In this first step we must specify which columns that we are interested in having in the form.
In our case we want to see the CD's title and year and the song names with their composer's
name and the performance date. We shall show the songs in the correct order (as they appear
on the CD). We must therefore specify in the wizard that we want to include these columns.
We can start by selecting the table CD and then adding the columns Title and Year:

Then we can select the table Song and add the columns Name and Composer:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 67

And we can also add the columns position and date from the table CDSongPosition:

We can press Next, and Access will give us some suggestions of how to organize the selected
columns. This is done based on the relationships that we have defined in our database (in
section 4.2). The alternative that fits our needs is the first one ("by CD") and we want to
realize this as "Form with subforms":

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 68

If Access does not suggest the structure we want, we can still achieve it, but it will have to be
done manually as we will see later in this section. In the next step we can define the layout of
the subform. Any of the two choices will do fine, but let's take Datasheet:

Finally we can define the names of the forms. We can call them "CD master" and "CD songs
detail". We can also let Access open the form directly after we press Finish:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 69

We can now improve the layout if necessary. The form created by the wizard may look like
this:

We can quickly go to the Design View to resize the subform, and change and move the Label,
etc. The subform is actually just another form control of the main form. Access also allows us
to edit the subform directly here, but we can also open the subform separately if we want. The
subform is now bigger and with better column widths so the layout is improved:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 70

We can see here that there are two sets of record navigation buttons. The lower one is for
browsing CDs, while the other one is for moving among songs.

This kind of form has some limitations as well. For example we cannot add or change the
songs of a CD. This is because not all the required fields are available on the form. But we
can use the form for adding new CDs in the table CD:

Adding songs in this CD requires that we add rows in the table CDSongPosition, and to do
that we have to identify a particular SongPerformance, and this form has not been designed to
do this.

Creating the same form manually (no wizard) can be a little more time consuming, but can
help you in understanding how the master form and the detail form are connected. Since the
subform in this case is a form based on a query we will look at this example in the next
section. In this section we will look at a simpler case of a master-detail form structure.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 71

In our case in chapter 2 we asked the following: Which songs has each composer composed?
This can of course be solved as a query, but we will try to make a form with a subform. The
main form will allow us to browse through the composers in our database, while the subform
will show the songs composed by the selected composer. We can start by making two forms
(independent of each other) and then connecting them.

The first form is a very simple form for the table Composer. You can create this by selecting
the table Composer in the object browser and press Create > Form on the ribbon. Save it as
"Composer master".

The second form is also a simple form for the table Song. You can create this as a Datasheet
form by selecting the table in the object browser and then pressing Create > More Forms >
DataSheet on the ribbon. Save this form as "Composer Song detail". This form looks just like
when opening the table:

Compare it to the table:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 72

Now that we have both forms ready and saved, we can see how we can combine them. To do
this we have to open the master form in design mode. It is the master form that will contain
the detail form. Select the master form and open it in design mode:

We can see that there is not so much space, so we have to make more space. Use the mouse to
expand the "Detail" part of this form:

We have now enough space to add our subform. On the ribbon there is a special form control
named Subform/Subreport. Make sure that the "Use Control Wizards" option is pressed and

click to activate the Subform/Subreport button (). Now click on the form at the place you
want to have the subform. The Subform Wizard will then appear:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 73

In the first step we are asked to select either a table or query, or an existing form. If we select
a table or query then the wizard will create a form for that table or query. Since we have
already created a form we can select that instead:

In the next step we can select the option "Show Song for each record in Composer using
Name" (which for some strange reason appears twice):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 74

ⓘ The options available here are based on the relationships between tables that we defined in

section 4.2. If the option you were expecting is not available here it is most probably
because that relationship has not been defined.

The final step of the wizard asks us to define the name of the subform. This name is also the
text of the label created next to the subform. We can therefore give it the name "Composed
songs":

We press Finish and our subform is now linked. We can also see how the linking is done, by
examining the properties of the subform in the property sheet. Select the subform component
and look under "Data":

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 75

The Link Child Fields property specifies the fields of the subform to be linked (in this case
the field Composer). The Link Master Fields specifies the fields of the main form to be linked
(in this case the field Name). This means that every time the value of the field Name of the
main form is changed, the subform will be refreshed to only show records that have the same
value in the field Composer.

ⓘ If the two forms are linked with two or more columns, then they must all be specified in

the Link Child Fields and Link Master Fields properties in the same order and separated
by semicolon (;).

We can now view our form:

One thing that we can fix here is removing the ID column and the Composer column from the
subform. The ID column is not interesting for the user, and the Composer column is always
the same as the name of the current composer (in the master form). Here is the final version:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 76

This form can actually be used for adding both composers and songs (but a composer has to
already be an existing artist). There is one problem though. There is a bug in Access and the
form gets confused just because the column Name in composer is called “Name”. The word
“Name” is a special keyword, so when the subform refers to a field called Name Access gets
confused. The only way to fix this is by changing the name of the column to something else
(for example CName). Close the forms (save if necessary), open the table Composer in design
view and change the column Name to CName:

Access will update all references to the column, so the form should now work fine. Try
adding a new song (“More Joy” – 239 seconds) for Danny Elfman:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 77

6.4 Forms Based On Queries

So far we have only created forms that are based on tables (except from the one that we
created with the Form Wizard). But it can also be necessary to create forms that are based on
queries. We can either let the Form Wizard create the form query or we can create the query
ourselves in advance. This is what we are going to do here. We will create and save a query,
and then we will create a form that is based on that query. As we mentioned previously, we
will create the same structure we created in the beginning of section 6.3, but this time we will
do it manually.

What we want to have is a form that allows us to browse through the rows in the table CD,
and then in a subform we want to see the songs included in the selected CD. The main form
will therefore be based on the table CD (nothing strange about that). The subform has to have
a source that contains all the information we want to show and all the columns needed to
make the connection to the current row the main form. So we need the columns Name and
Composer from the table Song and then we also need the column CDID from the table
CDSong position. We can do this with one of the following two SQL statements:

The first version is what you may be more used to:

SELECT CDSongPosition.CDID, Song.Name, Song.Composer
FROM Song, SongPerformance, CDSongPosition
WHERE SongPerformance.Song = CDSongPosition.Song
AND SongPerformance.Date = CDSongPosition.Date
AND Song.ID = SongPerformance.Song

The second version is what Access generates when this is done through the Form Wizard:

SELECT CDSongPosition.CDID, Song.Name, Song.Composer
FROM Song INNER JOIN (SongPerformance INNER JOIN CDSongPosition ON
(SongPerformance.Song = CDSongPosition.Song) AND (SongPerformance.Date =
CDSongPosition.Date)) ON Song.ID = SongPerformance.Song

You can use whichever you like best. Create a new query, switch to the SQL mode, write the
SQL statement and save the query as “CD songs”.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 78

We can now use this query to create a form. Create a Form for the table CD and a Datasheet
Form for the query CD songs. Save the forms as “CD master 2” and “CD songs detail 2”
respectively. The two forms are now available in the object browser:

We can also open them individually and see that they work and adjust their layout if
necessary:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 79

We can also see that they have some unnecessary fields. The ID and CDID fields are not
relevant for showing. We need them for linking the two forms, but not for showing to the
user. Edit the forms to remove them.

We can now do the linking. This time we will try to do it without the SubForm Wizard. We
can start by opening the form “CD master 2” in the design mode. Make some space for the
subform, but don’t add a subform yet. Before adding a subform, make sure to turn off the
Control Wizards. We do that by pressing the Use Control Wizards button (on the ribbon) so
that it is not active. We can now add a subform to our form. The wizard will not appear and
we will just have an unbound subform component:

We can start by fixing the subform’s label to “Songs in this CD” and fixing the layout. We
can do this directly on the form:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 80

Or of course we can use the property sheet and edit the property Caption:

Now, select the unbound subform component and look at its properties (under Data):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 81

We have three properties than need to be specified before the form “CD songs detail 2” has
been linked as the subform. The first one is the property Source Object. In this property we
can specify which form should be used as the subform. We can simply select the “CD songs
detail 2” from the drop down list:

Next we must define the fields that should be used to link the main form to the subform. The
Link Child Fields property must be set to the name of the column in the subform that should
be linked, i.e. CDID. The Link Master Fields property must similarly be set to ID. We can do
this manually or we could press the little ellipsis () to open the Subform Field Linker:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 82

Either way the properties should look like this:

We can now try our form:

It works just like the one we created with the wizard in the previous section.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 83

6.5 Non-Data Forms

Forms can also be used for menus and navigation in a bigger application. We can for example
make a form that has two buttons: One for opening the form created in section 6.4 and one for
opening the form created in section 6.2. This form is different from the ones we created in
previous sections in that it does not have a record source. All the other forms had a record
source, i.e. a table or a query from where the form retrieved data (and also saved data to). The
form we will create now will not have any link to data. We can start by creating a blank form
in design mode (by selecting Create > Blank Form on the ribbon). We can then add a Button
control to this form (available on the ribbon under Design). The Command Button Wizard
will pop up as soon as we add a button on our form (provided that Control Wizards are
activated):

In this wizard we can select an action and a layout (from a predefined list of functions and
layouts) for our new button. We want a “Form Operation” to open another form:

The wizard will then ask us to specify the form to be opened:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 84

The rest of the steps are mostly about layout and giving your button a name and can also be
skipped by selecting Finish.

We can now add a second button for the second form.

The default layout of the buttons is just a little icon, but this can be changed either in the
wizard or later in the property sheet. The properties Picture, Caption, and ControlTip Text are
relevant to this. See if you can make the form look like this:

A database with all the forms that we created in this chapter is available at
http://coursematerial.nikosdimitrakas.com/access/.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 85

7 Reports

Reports are very similar to forms, but they are more static. You can think of a report as
something that would be a preview of a printout. Creating reports is similar to creating forms.
A report can be based on a table or query and we can have subreports, just like with forms. In
the sections that follow, we will look at some examples of reports. Since we already worked a
lot with forms, we will not go into the same level of detail in this chapter.

7.1 Simple Reports

A report can be created by selecting Create > Report on the ribbon. The table or query that is
selected in the object browser when we press Create > Report will become the record source
of the report. As with forms, reports can be created in other ways (as blank reports or with the
help of a wizard). In this section we will just look at the simplest type which is a report based
on one table.

We can select the table Artist in the object browser and press Create > Report on the ribbon.
The new report will look like this:

We can save this as "List of Artists". The report can also be viewed in Design View and in
Layout View. These views can be used to modify the report and all the report controls on it.

Access can make many different types of simple reports. It can for example make mailing
labels. Just select the Create > Labels (with the table Artist selected in the object browser):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 86

Answer the questions of the wizard and Access will create the report. It can look something
like this:

7.2 Reports That Combine Many Tables

We can also make reports that combine many tables. This is exactly the same as it was for
forms. In our case in chapter 2 we had the following need: A report that shows the content of
each CD (back cover style).

To do this we need the tables CD, CDSongPosition and Song. The table SongPerformance is
also needed for the connection between Song and CDSongPosistion, but we have nothing to
show from it.

We can start by selecting to make a new report with a wizard. The wizard will ask us to add
all the relevant fields. We can add CD.Title, CDSongPosition.Position, Song.Name,
Song.Length and Song.Composer:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 87

Next, we have to choose the structure of our report. This is similar to what we did in the Form
Wizard in section 6.3. We can select the option "by CD"4:

We don’t need any more grouping level so we move on to sorting. The important thing is that
the songs appear in the correct order, so we can sort them by Position:

4 The wizard actually creates grouping levels and sorts the data accordingly. In section 7.4 we will see how
we can do this manually.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 88

On this window we also have the option to create summary information. We can use this to
add a total of seconds per CD in our form. Press the Summary Options… button to see the
available options. Choose the Sum of Length and the option Detail and Summary:

The next step is about layout, so choose something that you like. Finally give a name to the
report to be generated; for example "CD back cover". Press Finish and Access will generate
the report:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 89

We can see that the wizard has generated all the things we wanted, but there are some things
we may want to change or remove. We can do that in design view. We can for example
remove the "Summary for 'ID' = …". We may also want to remove some of the field labels.
We can start by doing that. Our report can now look like this:

There is one more thing that we might want to change. We might want every CD to appear on
a new page. We switch back to the design view and select the ID Header. In the property
sheet we can now set the property "Force New Page" to "Before Section":

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 90

We can now look at our report and browse between the pages:

7.3 Reports Based On Queries

Making a report that is based on a query instead of a table is no different than making a report
with a table. The wizard in the previous section actually generated a query for the report. The
query was:

SELECT CD.Title, CDSongPosition.Position, Song.Name, Song.Length,
Song.Composer, CD.ID FROM (Song INNER JOIN SongPerformance ON
Song.ID=SongPerformance.Song) INNER JOIN (CD INNER JOIN CDSongPosition
ON CD.ID=CDSongPosition.CDID) ON

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 91

(SongPerformance.Date=CDSongPosition.Date) AND
(SongPerformance.Song=CDSongPosition.Song);

The query can be accessed in the report properties under Data. To see the entire SQL
statement, right click on it and select Zoom:

And a new window will appear with the query. Table names and column name are inside []
which ensures the query works even if table names or column names use special characters or
reserved words:

If we had this query as a stored query (a view) in our database, we could then just write the
name of the query object in the Record Source property.

7.4 Grouping And Sorting

In section 7.2, we let the wizard take care of the grouping and sorting in our report. But it is
also possible to specify the grouping and sorting manually. To illustrate this we can create a
query and then make a report in design view (no wizards) based on that query. We can try to
satisfy the following need that was in our case: “A report that shows for each composer the
songs that they have composed and which performances of them exist and in which CDs these
performances are included”.

We can first create a query that gathers all the necessary data:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 92

SELECT Composer.CName, Song.Name, SongPerformance.Date, CD.Title, CD.Year
FROM CD, Composer, Song, SongPerformance, CDSongPosition
WHERE Composer.CName = Song.Composer
AND Song.ID = SongPerformance.Song
AND SongPerformance.Song = CDSongPosition.Song
AND SongPerformance.Date = CDSongPosition.Date
AND CD.ID = CDSongPosition.CDID

Save the query as “Composed Songs Info”.

The result of this query looks like this:

As we can see the same composer appears many times, and the same song may have been
performed many times and each performance may be included in many different CDs. It can
therefore be good to add some grouping levels in our report so that the same information
doesn’t appear over and over again.

We can start by creating a report in design view based on the new query. Press Create >
Report Design on the ribbon and a new blank report will appear:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 93

The new report has no Record Source specified and has by default a Page Header, a Detail,
and a Page footer.

We can start by selecting our stored query as the Record Source. The columns of the query
are now available in the Field List:

No fields have been placed anywhere on the report yet. Before we add any fields, we can open
the Sorting and Grouping dialog by either pressing the Sorting and Grouping button on the
ribbon (under Design) or by right-clicking anywhere on the report and selecting “Sorting and
Grouping”. Either way the "Group, Sort, and Total" pane will come up:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 94

Here we can define the three grouping levels that are relevant in our case. First we group by
composer, then we group by song, and then we group by song performance. For a composer
we have the column CName, for the song we have the column Name, and for the Performance
we have the column Date. We can also specify whether we want a group header or a group
footer, whether to sort in ascending or descending order and how to handle page breaks. If all
group levels have a group header and no group footer (which is the default) the report should
look like this:

Our report now has many levels. We can now place the appropriate fields on each level (drag
and drop from the Field List). We can also adjust the fields’ size, colour, etc. We can also add
necessary labels. The report could now look like this:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 95

We can now switch to the Report View and see if we are satisfied:

It looks fine, but maybe it would be better to change page for each new composer. We can
switch back to the design view, select the CName Header and change its property Force New
Page to Before Section:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 96

Our report is now better, but we can notice that if one composer doesn’t fit on one page, the
page break can be anywhere (for example after the label “Performed at:”). We can instruct
Access to make better choices on page breaks by going back to the Sorting and Grouping and
selecting the option "keep whole group together on one page" (for example at the song level):

This will make sure that if a song doesn’t fit on a page it will not start on that page. So now
we have the following effect:

When a composer’s songs are spread over more than one page, we can only see the composer
name on the first page. To fix this we can select the CName Header and change its property
Repeat Section to Yes.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 97

This will make sure that the composer’s name appears on every page about this composer:

Save the report as “Song Performances on CDs by Composer”.

7.5 Subreports

Similarly to the way we created forms with subforms in section 6.3, we can create reports
with subreports. This possibility can be especially useful when our report contains many
aspects of one concept. As an example we will create a report that shows the different artists
and the different composers for every CD. We can also define the report to include the
number of songs and total length of each CD. Each CD will be shown on a new page. Here is
how a page of the report should look like:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 98

In order to achieve this we must create one main report and then place in it two subreports;
one for the composers and one for the artists.

Each of the reports must have a source (a table or a query). In this case we need to have three
queries since the data is spread over several tables. The queries must contain one or more
columns that can be used to connect the corresponding reports. This linking column will in
this case be the id of the CD. We can create the following three queries in advance so that we
can use them later when creating the reports:

Query for main report (CD info for Report):
SELECT CD.ID, CD.Title, CD.Year, COUNT(*) AS songcount, SUM(Length) AS
cdlength
FROM CD, CDSongPosition, Song
WHERE CD.ID=CDSongPosition.CDID
AND SONG.ID=CDSongPosition.Song
GROUP BY CD.ID, CD.Title, CD.Year

Query for composer subreport (CD composers for Report):
SELECT DISTINCT CDSongPosition.CDID, Song.Composer
FROM Song, SongPerformance, CDSongPosition
WHERE SongPerformance.Song=CDSongPosition.Song
AND SongPerformance.Date=CDSongPosition.Date
AND Song.ID=SongPerformance.Song

Query for artist subreport (CD artists for Report):
SELECT DISTINCT CDSongPosition.CDID, ArtistPerformance.Name
FROM SongPerformance, ArtistPerformance, CDSongPosition
WHERE SongPerformance.Song=ArtistPerformance.Song
AND SongPerformance.Date=ArtistPerformance.Date
AND SongPerformance.Song=CDSongPosition.Song
AND SongPerformance.Date=CDSongPosition.Date

With these queries created, we can start creating the reports. The three queries have been
given the names within the parentheses.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 99

We can, of course, create the three reports independently and link them later, but here we will
create the subreports from within the main report. This means that we have to start with the
main report. Select the query for the main report in the object browser and press Create >
Form on the ribbon. A standard report will be created:

Make the necessary modifications to the layout and it could look like this:

Now make some space to put the subreports (also in the detail part of the report). Click on the
subform/subreport button on the ribbon (under Design) to select it. Then click on the report to
create a subreport. Alternatively, drag and drop the relevant query from the object browser
onto the report (in Design View). The SubReport Wizard should appear. If you dragged and
dropped the query onto the report, the first to steps will be skipped.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 100

As we decided earlier we will create the subreports based on the queries that we created in
advance. Select "Use existing Tables and Queries" and press Next. Now select the relevant
query and the relevant columns:

At the next step the wizard suggests possible ways to link the subreport to the main report.
The only suggestion is the one we intended to use:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 101

Alternatively, we can define it ourselves:

Either way the result will be the same.

At the last step of the wizard we can define a name for the subreport (which will show up as a
normal report in the object browser.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 102

We can now repeat the process for the second subreport. We can of course also edit the layout
of the subreports. Our report should now contain two subreports that are both linked to the
main report using the id of the CD. This is also visible in the Property Sheet:

So if you want to link two reports without using the wizard, you can open the Property Sheet
and set the appropriate properties.

Finally, we can define that we only want one CD per page. To do this we specify that there
should be a page break before each CD (i.e. each Detail block):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 103

8 Macros

Macros can be used in order to do something a little more complicated, but not that
complicated that it would require writing code. A macro can for example execute a query,
activate or refresh a form or form component, etc.

In this chapter we will look at a very simple macro that refreshes a Combo Box when another
Combo Box has changed value. What we want to do is to have two Combo Boxes, one for
composers and one for songs. We want the song Combo Box to be inactive until we have
selected a composer, and then activate it and let it contain only the songs composed by the
selected composer. This can be combined with other stuff to make a form for, for example,
registering new song performances. We will only look at the macro related parts though.

Create a blank form in Design View. Place a Combo Box based on the table Composer on the
form. Now place a second Combo Box on the form, this one getting its values from the table
Song. It is enough to include the column Name from the table Song. We have now a form that
looks like this:

We can switch to the Form View and see that all the composers and all the song are visible.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 104

We can switch back to Design View. We can start by deactivating the second Combo Box.
We can deactivate it by setting its property Enabled to No:

The Combo Box will still be visible, but the user won’t be able to use it until we activate it:

We can now see how we can activate it when the first Combo Box has been changed. We
look at the properties of the first Combo Box (the one with the composers). Under Event we
can find the property (event) On Change. Activate the property and click on the ellipsis to
show the Choose Builder dialog:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 105

We can select between the Expression Builder (which we can also use to create validation
rules as we saw in chapter 4), the Macro Builder, and the Code Builder (where we can write
Visual Basic code). Highlight the Macro Builder and press OK. Access will create a new
macro and show it in Design View:

Here we can define a bunch of actions that should occur when this macro is run. We can
select any of the many predefined actions, and then, dependent on the selected action, specify
the applicable properties. In order to activate our Combo Box we need to set its Enabled
property to Yes (or true). So the action that can help us do that, is the action SetProperty.
Select this action and its properties will become available:

The properties we need to specify for this action are: The name of the control whose property
we want to change (in this case Combo2), the name of the property (in this case Enabled), and
the new value for the property (in this case true). Access will provide suggestions when
possible. We can save and close the macro and try the form. As soon as we select a value in
the first ComboBox, the second one becomes active. However, the songs in the second combo
box are still not filtered based on the selected composer. To do that, we need to alter some
properties of the second Combo Box. Under Data there is a property Row Source. We can
zoom into it and edit the automatically generated SQL statement (right click and select
Zoom…). We can now see the Zoom window where we can edit our SQL statement:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 106

The SQL statement as it is now has no connection to the current value of the first Combo
Box. We can add this as a condition in the WHERE clause. The full SQL statement should be
changed to the following:

SELECT Song.ID, Song.Name
FROM Song
WHERE Song.Composer = Combo1
ORDER BY Song.Name

Combo1 is the name of the first Combo Box. Both these names can be changed to other more
intuitive names in the Property Sheet. Instead of Combo1, we could write
Forms!Form1!Combo1 which would be the qualified name of the Combo Box control. But
since this query will only be used in the context of this form, Combo1 is enough. If we later
change the name of the control or the form, we will have to change the query manually, as
Access will not automatically update it. It is therefore good practice to specify the names of
components and objects before starting referring to them.

We have now instructed the second Combo Box to select value from the table Song where the
composer is the composer currently selected in the first Combo Box. Let's try out our form!

Well, the first time we selected a composer the list of songs got updated, but when we choose
another composer then the list of songs remained unchanged. This is where our macro comes
in handy. We can go back to the property On Change of the first Combo Box and then go
back to the macro editor by clicking on ellipsis next to the property. We can now add a
second action to our macro. This time we want to refresh a component, so we can use the
action Requery for this. The action Requery has only one property. This property must be set
to the name of the form control whose Row Source is to be refreshed (in our case Combo2):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 107

We can now save the macro and return to our form. We can now try our form again and we
will conclude that it works as we want it to.

We can now save our form, perhaps giving it a better name like “Songs based on composer”.

A version with the database with everything created so far is available, as usual, at
http://coursematerial.nikosdimitrakas.com/access/.

9 Other Useful Tips

The tips presented in this chapter can be useful in many situations. There are many things in
Access that can be useful, but not that easy to know how to do them. The following tips cover
things that many find useful when working with Access.

9.1 Tip 1 - Lookups For Tables

When inserting values to a table using the datasheet mode, it can be useful to have a Combo
Box that helps us select a value for foreign keys. This is similar to what we did when we
created forms, but it can also be done without having a form. What we have to do is to define
in the Table Design View where Access should look up values for a particular column. We
could for example do this for the table SongPerformance, so that we can select the song like
this:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 108

In order to do this we must look at the lookup properties of the column Song in the Table
SongPerformance. We have to set the Display Control property and then the Source Row,
Bound Column and Column Count properties (perhaps even Column Widths and List Rows):

The Bound Column value tells Access which column from the table Song that should be
linked to the column Song. The Column Count tells Access how many columns from the table
Song that should be displayed in the combo box.

9.2 Tip 2 - Viewing Subtables

Another way to speed up data input and viewing without making forms, reports or queries, is
by browsing the data in tree structures. We can for example open the table Composer and then
see the songs composed by each composer and the performances of each song. This would
look like this:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 109

To do this we can click on the little plus-sign () next to the name of a composer. When we
open the table it looks just like this:

When we press on any of the plus-signs next to the composer names, Access will
automatically open a tree based on the relationships that this table has. If there are many
relationships, then Access will ask us to choose which one we want to use:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 110

By just clicking on the table Song, Access will suggest the columns used for this connection:

The songs of the selected composer will now be visible:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 111

We can do the same thing to go deeper into the structure, and see for example song
performances. In this structure we can also insert new rows (on any level/table). We can for
example add a new song performance of the song Flashback:

If we want to close a tree structure and then select a different subtable we must place the
cursor on the relevant level and then select, on the ribbon, Home > Records > More >
Subdatasheet > Remove. If this option is unavailable, the subdatasheet can be configured in
the Property Sheet while the table is in Design View.

When working with subdatasheets, Access will automatically hide the columns that are
visible in the upper level (in the example above, the foreign key column Song in the table
SongPerformance is hidden). If a column is hidden but we still want to see it, then we can

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 112

unhide it by opening the Unhide Columns dialog from the Home > Records > More menu on
the ribbon. The Unhide Columns dialog should appear and we can select what we want to see:

9.3 Tip 3 - Sorting And Filtering

When we are looking at the contents of a table, or the result of a query, it can be interesting to
do some quick sorting or filtering (which of course can also be done in the query). There are
many options for filtering and sorting in Access on the ribbon under Home in the Sort &
Filter group. By simply pressing the Filter button while a particular column is selected, a filter
pop-up menu will appear:

There are also buttons for sorting that will sort the table (or query result) on the active
column. Note, that sorting settings may become permanent if we save the changes to the
design of the query or table. The sorting can then be removed by selecting Home > Remove
Sort.

9.4 Tip 4 - SQL Parameters

A quite cool feature in Access is the possibility to specify parameters in queries. Access will
then ask the user to provide the values of the parameters when the query is executed. For
example we may want to see which songs are composed by a specific composer, but we don’t
want to hardcode a particular composer's name in our query. We can write a SELECT
statement like this:

SELECT Name, Length
FROM Song
WHERE Composer = [Which composer?]

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 113

We can save this query as “Songs with parameterized composer” and then try to execute it.
Access will immediately detect that there is a parameter and ask the user for a value:

We can type “Will Smith” and see the result:

Anything that is not a column, table, query or other database object is considered a parameter.
Access will try to match any name to column, table, etc in the current scope, then it will move
to the next scope and the user will be the final scope.

ⓘ The same principle can be used to connect the value of a form component to a query (as

we did in chapter 8).

9.5 Tip 5 - Nesting SELECT Statements – COUNT(DISTINCT)

In Access it is possible to have nested SELECT statements in the FROM clause. Generally,
we would then like to write the code straightforward like this:

SELECT Name, Age
FROM (SELECT * FROM Artist WHERE Age>40) AS newtable
WHERE Age<60

However, in some cases this notation, i.e. using normal parentheses, may not work
(depending on the number of nested levels or the operations performed on each level). In
order to get around this problem we may have to use the following notation:

SELECT Name, Age
FROM [SELECT * FROM Artist WHERE Age>40]. AS newtable
WHERE Age<60

The nested SELECT statement is now placed within “[“ and “]” followed by a full stop (.).

For the above SQL statement it is not necessary to have a nested SELECT. It is only used as
an example.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 114

One particular situation when we may need to use a nested SELECT statement is when we
want to do a COUNT(DISTINCT). As this is not supported in the current version of Access,
we must first have a nested SELECT DISTINCT in order to later (in the outer SELECT) do a
normal COUNT(). Here is an example:

We would like to know how many artists that are featured in each CD. We would normally do
this using a COUNT(DISTINCT), in accordance with standard SQL, like this:

SELECT CD.ID, CD.Title, COUNT(DISTINCT ap.Name) AS ArtistAmount
FROM CD, CDSongPosition sp, ArtistPerformance ap
WHERE CD.ID = sp.CDID
AND sp.Date = ap.Date
AND sp.Song = ap.Song
GROUP BY CD.ID, CD.Title

This statement is correct, but not supported by Access. In order to achieve the same thing in
Access, we would have to split the statement into two, according to this:

SELECT ID, Title, COUNT(Name) AS ArtistAmount
FROM (SELECT DISTINCT CD.ID, CD.Title, ap.Name
 FROM CD, CDSongPosition sp, ArtistPerformance ap
 WHERE CD.ID = sp.CDID
 AND sp.Date = ap.Date
 AND sp.Song = ap.Song) AS innertable
GROUP BY ID, Title

9.6 Tip 6 - Application Start-Up

When we create an Access application with many forms it is often so that we want a
particular form to automatically open at start up. We may also want to control which menus
that should be available in the Access window (so that the users don’t get access to the
database other than through forms). All of this can be arranged in the Access Options under
Current Database:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 115

If we choose to hide or deactivate certain options and menus and then open the database file,
we will no longer have access to the options. To bypass these startup settings, we must press
and hold the shift button while opening the database file. Then we can open the options and
reconfigure the settings.

9.7 Tip 7 - Concatenating Columns

When we work with forms, it can sometimes be useful to have one column instead of many.
We can in such cases concatenate columns in the SELECT clause of our SQL statement. We
can for example write the following SELECT statement:

SELECT Name & ' – ' & Age AS ArtistInfo
FROM Artist
The result would be just one column:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 116

ⓘ This is actually nothing specific for Access. This is included in standard SQL. The actual

keyword or symbol used for concatenation may vary from product to product.

9.8 Tip 8 - Using Forms To Find Records

A combo box can be used in a form as a search field for finding a record. The form will
automatically move to the first record that matches the value of the combo box. To add such
functionality, add a combo box to your form and select the appropriate choice in the wizard.

9.9 Tip 9 - Keys And Indexes

When designing a table it is possible to define primary keys and other rules. But it is also
possible to do this in the Indexes window. In this window we can also see other keys and
indexes that Access has created. These may be created due to table relationships or orderings
that we have applied to the table. For example the indexes of the table Song may look like this
(open the Indexes window by pressing the Indexes button on the ribbon under Design while in
Table Design View):

Here we can add our own indexes and keys. For example we can add the alternate key (shown
above as AltKey1) for the table Song. This is a composite key that combines the column
Composer and the column Name, that is to say, a composer may not compose two songs with
the same name. To add a new index, we must specify an Index Name and then the fields

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 117

(columns) that are included in this index. The first row specifies the index name and the first
field in the index, as well as the sort order. Any field in a row without an Index Name
immediately under that, will also belong to that index definition. We must also define the
appropriate property values for our new index (in this case Unique Yes):

If we try to add a new song with a combination of Composer and Name that already exists,
the database will stop us:

ⓘ If you experience that a table behaves strangely, then check that there are no unwanted

indexes. Note that Access creates non-unique indexes automatically for fields with certain
names, such as id or name.

9.10 Tip 10 - Multiple Subforms

We saw how we can create forms with subforms in sections 6.3 and 6.4. But sometimes we
may want to have a multiple subform structure. This kind of structure is not different to make
than when we have a single subform. That is, there is no difference when making them
manually, but the wizard cannot manage this kind of forms. The following form is a single
form based on the table Artist with three subforms. One that shows the artists that have the
current artist as mentor, one that shows the composers that this artist has performed songs of,
and one that shows the CDs that this artist has performed in:

We may want to have more than two levels of forms, i.e. subforms in subforms. This is
possible to achieve and really no different from just working with two levels.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 118

9.11 Tip 11 - Division In Access

In Access division works with both NOT EXISTS and NOT IN. In our case we had two
examples of information needs that require a division. Here are three possible solutions for
the need "Which artist has performed in at least one song of each composer?":

The double NOT EXISTS variant:

SELECT Artist.Name
FROM Artist
WHERE NOT EXISTS (SELECT *
 FROM Composer
 WHERE NOT EXISTS (SELECT *
 FROM ArtistPerformance ap, SongPerformance sp, Song s
 WHERE s.ID=sp.Song
 AND sp.Date = ap.Date
 AND sp.Song = ap.Song
 AND ap.Name = Artist.Name
 AND s.Composer = Composer.CName));

The NOT EXISTS – NOT IN variant:

SELECT Artist.Name
FROM Artist
WHERE NOT EXISTS (SELECT *
 FROM Composer
 WHERE CName NOT IN (SELECT Composer
 FROM ArtistPerformance ap, SongPerformance sp, Song s
 WHERE s.ID=sp.Song
 AND sp.Date = ap.Date
 AND sp.Song = ap.Song
 AND ap.Name = Artist.Name));

And the hard way:

SELECT innertable.Name
FROM [SELECT DISTINCT a.Name, Composer

FROM Artist a, Song s, SongPerformance sp, ArtistPerformance ap
WHERE s.ID=sp.Song
AND sp.Date = ap.Date
AND sp.Song = ap.Song
AND ap.Name = a.Name]. AS innertable

GROUP BY innertable.Name
HAVING COUNT(innertable.Composer) = (SELECT Count(*) FROM Composer);

The nested table in the FROM clause is required because Access does not support
COUNT(DISTINCT column) that is specified in standard SQL.

All three variants are equivalent and their result is a list of the five artists that have performed
songs of all composers:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 119

9.12 Tip 12 - Object Dependencies

Another interesting feature of Access is the possibility to see all dependencies between
objects. This can be useful when we want to delete an object. We can look at its dependences
and then decide if it is okay to remove it or not. Let’s say for example that we would want to
see if the table SongPerformance has any dependencies. We can highlight the table in the
Object browser and select Object Dependencies from the ribbon under Database Tools. We
can now see all the dependencies of the table:

We can see that there are other tables, queries, forms and reports that depend on this table. We
can also switch to see what this table depends on by selecting “Objects that I depend on”
instead of “Objects that depend on me”.

9.13 Tip 13 - Copying Objects Between Databases

When working in groups, it is often so that some queries, forms, and reports are developed by
one person in one database (.accdb or .mdb file), while others are in a separate database. At
the end the goal is to have all the database objects in one file. This is not a problem when
working in Access. We can copy and paste objects between databases. We must first open the
database that contains the object to be copied, copy it, open (in the same Access Window) the
other database and paste. It is also possible to just do a drag and drop (or copy-paste) between
two databases open in different Access windows. When copying forms and reports, make sure
that all the queries, macros, etc. are also available in the target database; otherwise the form or
report will not function properly.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 120

9.14 Tip 14 - Handling NULL

Sometimes it is necessary to return something where there is NULL in the database. For
example we may not want to just have an empty field in a form or report when an artist
doesn't have a mentor. The function NZ (in other products called COALESCE) can help us
with that. In the following SQL statement we tell Access to return a specific value whenever
the value of the column Mentor is null:

SELECT Artist.Name, NZ(Artist.Mentor, "Self-inspired") as Mentor
FROM Artist;

The result would look like this:

9.15 Tip 15 - Business Rules

It is considered a good idea by many, perhaps most, database theorists and practitioners to
always model business rules as close to the database as possible. Some simple rules were
already included in our database in section 4.1.3. Using the Validation Rule property for
columns is not always possible though. Some rules are too complex to be expressed there.
The next level is adding the business rules as validation rules in forms. This way, the user
interface will restrict the user from making an invalid choice. We already saw a few ways of
controlling the available data in forms in chapter 6 (for example by look-up Combo Boxes
and query based forms) and in chapter 8 (by macros). In this section we will look at a very
useful function, namely DLookUp. This function can be used to look up a value in another
table or query. We can now modify the form we created in section 6.2 so that we can restrict
the user from choosing a mentor that is not older than the artist. Remember the form?

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 121

We can now add a validation rule for the Mentor combo box. We switch to the Design View
and look at the properties of the Combo Box. The property we want to change is the
Validation Rule (and maybe also the Validation Text so that we can give a custom error
message to the user).

The property Validation Rule can have the following value:

[Age]<DLookUp("Age";"Artist";"MentorCombo=Name")

This checks that the Age of the current artist is smaller than the Age of the Artist whose Name
is equal to the current artist's Mentor. MentorCombo is the name of the Combo Box control.

We can also add an error message so the properties will look like this:

Try the form now! Will Smith, for example, who is young, will not be allowed to be the
Mentor of Jerry Goldsmith, who is older:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 122

Another way to achieve this restriction would be to make the Row Source of the Combo Box
dependent on the value of the column Age. Perhaps deactivate the mentor Combo Box until a
value has been entered in the age Text Box. This could be similar to what we did in chapter 8.

9.16 Tip 16 - Set Operators

Access does not support all set operators. In fact, the only one supported is the UNION
operator. Intersection and difference must therefore be implemented by combining other
operators like OR, AND, EXISTS, IN, NOT, etc.

9.17 Tip 17 - Multimedia

The database that we have seen so far uses only simple data types, i.e. text, numbers and
dates. But Access supports other, more complex, types as well. For example we can store
images and sounds in an Access database. Apart from storing multimedia in the database,
Access also offers us the possibility to show and use the multimedia data in forms and reports.

In this section we will have a look at how to both store an image in the database, and show it
in a form. To do this we will modify the table composer and add a field for the composer's
image. To do this we simply open the table in design mode and create a new field of type
OLE Object:

If we now open the table (after saving it), we will see that there is a field called Image, but we
cannot edit it directly:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 123

What we can do is right-click on a cell where we want to place an picture (a picture file) and
select "Insert Object…":

We will then see this dialog where we will choose "Create from File"

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 124

Simply point to the file:

Press OK:

And then press OK again!

In the table view we can now see that there is a value in that cell:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 125

Note that if the value is "Package" then the picture may not be displayed correctly in forms
and reports. The value should be instead, "Bitmap Image" for a bmp file or for example
"Microsoft Photo Editor 3.0 Photo" for jpg or gif files. If we insert an image file and the value
is just "Package", this indicates that there is no support in Access for that file type. If we get
the value "Package" when inserting a jpg or gif file, then we probably need to install
Microsoft Photo Editor, which is included in earlier versions of Microsoft Office (for example
Office XP). When the pictures have been identified correctly by Access, the table should look
like this:

We can repeat the process for all composers that we want to store their picture in our
database.

Another possibility is to use the data type Attachment. In that case the column Image will be
able to contain the image files as attachments. This data type is supposed to be more flexible
than OLE Object and uses storage more efficiently. However, it is not available in older
versions of Access. We can remove the Image column and create it again with the data type
Attachment:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 126

Adding data in the column Image is similar to when we had OLE Object as data type. We
start by opening the table and the new column will show how many attachments each row
has:

We can now right-click on a particular cell and and choose Manage Attachments. The
Attachments dialog will appear where we can add and remove attachments:

We can add the appropriate file as an attachment:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 127

We can repeat this until all the rows have one attachment.

We can now make a quick form that will allow us to browse the composers with their
pictures. We can create a new form in Design View based on the table Composer:

This will create a blank form, which will be connected to the table Composer. By default the
created form will have a subform with the composed songs and the image will be too small:

We can modify the layout:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 128

The component that shows the image is an Image control that is associated to the column
Image (through its property Control Source). It can also be configured to zoom or stretch the
picture (property "Picture Size Mode").

9.17.1 Storage Outside The Database

If the ways of embedding images into the database described earlier are not suitable to our
needs, storing the images in the file system and storing the filenames in the database could be
an option. In such case, the database will not have control of the images, so if an image (or a
folder) is moved or renamed, the database will not find the image (or images). We could try
this solution by adding a column to the table Composer:

We can now update the content of the table:

If we now create a form or report and want to show the images, we will need to have a
component that can load the image from the file system, given a filename. The Image control
can do exactly that. We can create a form that looks like this (in Print Preview):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 129

In Design View we have a report that has the table Composer as Record Source and an Image
control that has a Control Source that is a filename. We take the value of the column
ImageURL and append it to the full path to the directory:

The Control source is the concatenation of "d:\MS Access\pictures" and the value of the
column ImageURL. If the directory or file does not exist, Access will simply display nothing.

9.18 Tip 18 - Compacting And Repairing A Database

Databases built in Access are stored in one single file. This file can for different reasons
become unnecessarily big or sometimes inconsistent. One reason why a file can grow in size
is the use of multimedia. All the multimedia content that we add to the database will be stored
inside the database file. Removing values and multimedia objects from the database may not
automatically mean that the file becomes smaller. Working with different versions of Access

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 130

can also be a cause of inconsistencies in the database. If you have reasons to believe that there
is something strange with your database, you can always use the Compact and Repair
Database tool in Access (found under Database Tools on the ribbon).

9.19 Tip 19 - Linking External Data

In certain cases, it may be useful to use Access together with some other database manager.
This could be the case when the entire database is implemented in another database manager
and you want to use Access to build a user interface. You may also want to combine data
from several databases build in different systems. This can easily be achieved with Access
and ODBC (Open DataBase Connectivity).

An ODBC database can be any database for which there is an ODBC driver. There are ODBC
drivers for most database management systems. In this section we will work with a test
database in MySQL. The process is the same for any database manager though. We will work
with a database called testdb. This database has two tables: person and car, where a car is
owned by a person. The database tables are created according to the following SQL
statements:
CREATE TABLE Person (name VARCHAR(20) NOT NULL PRIMARY KEY, birthdate
DATE, salary REAL)
CREATE TABLE Car (carID VARCHAR(10) NOT NULL PRIMARY KEY, color
VARCHAR(12) NOT NULL, owner VARCHAR(20) NOT NULL, FOREIGN KEY (owner)
REFERENCES Person(name))

We will assume that the tables have been created and populated.

In the "External Data" tab on the ribbon, press "ODBC Database". The "Get External Data"
dialog will appear:

We can now choose whether to import data or link to some other database. We would like to
link to the database described earlier through ODBC. This requires that the database has an
ODBC alias. The next section describes how to create an ODBC alias.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 131

9.19.1 Creating An ODBC Alias

In order to link a database we must have an ODBC alias. This is basically a name we can use
to refer to the original database without knowing what that database is called or what database
manager it is implemented in. We can create an ODBC alias (also known as DSN – Data
Source Name) either in advance, or while trying to link or import data in Access. To do this in
advance, we must open the ODBC manager (ODBC Data Source Administrator). We can
open the ODBC manager directly by executing the command "odbcad32.exe" or by locating
the corresponding icon in the Windows Control Panel. When we open the ODBC manager it
looks something like this:

There are several tabs here, but the interesting ones are the first two. The System DSN tab
contains any DSNs created to be available to all the users of the computer, while the User
DSN contains DSNs that are available only to the current user. As long as you use the same
Windows account there won't be any difference.

We can press Add… And a Wizard will appear to help us create a new DSN. We can start by
selecting the appropriate driver:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 132

Press Finish, and the Wizard will initiate another wizard specific to the selected driver:

We select the correct database and give it a name, and also specify the server details:

Press OK, and the new DSN is ready:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 133

We can press the Configure… button to see the configuration and change it if necessary.

9.19.2 Linking To The MySQL Tables From Access

Now that the ODBC DSN is ready, we can link our two tables (from MySQL to Access).
Back in Access, we have the "Get External Data" dialog:

We select "Link to the data by creating a linked table", and press OK. Access will show a new
dialog allowing us to select an existing ODBC DSN (or create a new one):

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 134

We can select the correct DSN and press OK. A new dialog appears showing all the available
tables (and views):

We can select the ones we want to link (both of them) and press OK. The linked tables are
now visible in the Object browser (with a special icon indicating that they are linked tables).
We can also open them and see their data:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 135

If we try to design a linked table, we will not be allowed to change anything:

Press yes to see the table definition:

We can see that Access has retrieved all the details about the columns including data types,
primary keys, NOT NULL restrictions, etc.

9.19.3 Working With Linked Tables

We can now open the table person, and modify some data (add two rows):

If we now ask MySQL to show the content of the table person we will see that the two new
rows are there:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 136

All the data is stored in the MySQL database. Access uses and modifies the data, but nothing
is stored in Access.

When linking tables, foreign key rules are not imported to Access. But they are still
maintained in the linked database. This means that if we try to add a car with an owner that
does not exist, it will be MySQL that complains about it, and not Access.

We can try to insert the following car:

The moment we try to insert this new row, MySQL will send an error that Access kindly
shows:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 137

As you can see from the message, Access has no idea what the problem is. It just knows that
there was an error.

When working with linked tables, it can, however, be useful to also link the tables in Access.
This will enable the wizards to identify relationships to be used when automatically building
queries, forms and reports. This kind of linking will not have any effect on referential
integrity. It is only useful for the Access wizards. We can add the linked tables in the
relationships window and link them:

Try to create a query using the Simple Query Wizard with both tables. Access will
automatically use the relationship in order to make a JOIN condition:

Try the same without the relationship and you will receive the following message:

So if we want to use the Access wizards efficiently, we will have to define all the
relationships between the linked tables.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 138

9.20 Tip 20 - Working With Dates And Times

Access, as well as all other database management systems, offers special data types for
working with dates and times. In Access there is a data type called Date/Time, which can be
configured for different formats of just the date, just the time or both date and time. In the
database created in chapter 4, we used this data type to represent the date of a specific song
performance.

Dates and times can be used for many operations. We can calculate the difference between
dates or times in years, days, hours, etc. In order to do things like that, we must be able to
convert the date or time value to the appropriate value. Access offers several functions that
can be used for such purposes. Date and time representations are dependent on the regional
settings of your Windows, and possibly the installation language of Access. You may
therefore experience that your system does not behave exactly as described in this section.
The configuration used while composing this section is based on an English version of
Windows and Access with regional settings set to Swedish.

The function DatePart is a very useful function that makes it possible to retrieve only one
part of a date or time:
DatePart("yyyy", "2003-2-15") returns the year: 2003
DatePart("m", "2003-2-15") returns the month: 2
DatePart("d", "2003-2-15") returns the day of the month: 15
DatePart("y", "2003-2-15") returns the day of the year: 46
DatePart("w", "2003-2-15") returns the day of the week: 7
DatePart("ww", "2003-2-15") returns the week of the year: 7
DatePart("h","14:23:47") returns the hour: 14
DatePart("n","14:23:47") returns the minute: 23
DatePart("s","14:23:47") returns the second: 47

The function DateDiff can be used to retrieve the difference between two date/time values.
You can choose to retrieve the difference in years, months, weeks, days, hours, etc.:
DateDiff("h","14:23:47", "19:21:33") returns the difference in hours (ignoring the minutes): 5
DateDiff("n","14:23:47", "19:21:33") returns the difference in minutes: 298
DateDiff("s","14:23:47", "19:21:33") returns the difference in seconds: 17866
DateDiff("yyyy", "1999-2-13","2003-10-4") returns the difference in years: 4
DateDiff("m", "1999-2-13","2003-10-4") returns the difference in months: 56
DateDiff("d", "1999-2-13","2003-10-4") returns the difference in days: 1694
DateDiff("w", "1999-2-13","2003-10-4") returns the difference in weeks: 242

If the first date/time value is greater than the second, then the result will be negative:
DateDiff("n", "19:21:33","14:23:47") : -298

The function DateAdd can be used to manipulate a date/time value. The function can be used
to add (or subtract) years, months, hours, etc.:
DateAdd("yyyy", 5,"2003-10-4") adds 5 years to the specified date. Returns 2008-10-04
DateAdd("m", 5,"2003-10-4") adds 5 months to the specified date. Returns 2004-03-04
DateAdd("d", 5,"2003-10-4") adds 5 days to the specified date. Returns 2003-10-09
DateAdd("h", 5,"11:00") adds 5 hours to the specified time. Returns 16:00:00
DateAdd("h", -5,"11:00") adds -5 hours to the specified time. Returns 06:00:00

It is of course possible to combine several functions:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 139

DateAdd("h", 5, DateAdd("n", 20, DateAdd("d", 5,"2003-10-4")))
Adds 5 hours, 20 minutes and 5 days to the specified date. Returns 2003-10-09 05:20:00

The functions Year(value), Month(value), Day(value), Hour(value), Minute(value),
Second(value) and Weekday(value), return the year, month, day, hour, minute, second and
weekday of the specified parameter. The parameter must of course be a valid date/time value.

The function Now() returns the current timestamp (time and date), the function Date() returns
the current date and the function Time() returns the current time. Note: use Date() or Time(),
if you only need the date or time respectively, but not both. Using Now() might create
unexpected results in some cases when doing comparisons.

The function DateSerial can be used to create a new date. This function requires that you
specify the year, month and day:

DateSerial(2004, 10, 12) creates and returns the following date: 2004-10-12

There is an equivalent function TimeSerial for time values.

There is also a possibility to create date/time values from string representations of dates and
times. This is in most cases not necessary though, since Access accepts the string
representation directly. However, it can still be useful to mention this possibility. For this,
there are two functions DateValue and TimeValue:

TimeValue("4:35:17 PM") returns a new time value: 16:35:17
TimeValue("14:12") returns a new time value: 14:12:00
DateValue("2004-12-13") returns a new date value: 2004-12-13
DateValue("12/13/2004") returns a new date value: 2004-12-13

The two can be combined:
DateValue("12/13/2004") + TimeValue("4:35:17 PM") returns 2004-12-13 16:35:17

The expression above would be equal to this one:
TimeValue("12/13/2004 4:35:17 PM") + DateValue("12/13/2004 4:35:17 PM")

If you just try to use DateValue("12/13/2004 4:35:17 PM"), then the time part will be ignored.
The result would only contain the date part: 2004-12-13

The functions MonthName and WeekdayName can be used to retrieve the name of the
specified month and weekday as a string:

MonthName(Month("2003-12-14")) returns: December, december, diciembre etc. based on
your regional settings.
WeekdayName(Weekday("2003-12-14")) returns: Monday, måndag, lunes etc. based on your
regional settings.

All of the functions described in this section can of course be combined with each other and
with other functions and SQL operators. You can for example write a query to retrieve the
number of songs performed per month during 2002:

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 140

SELECT MonthName(Month(date)), COUNT(*) AS Songs
FROM songperformance
WHERE Year(Date) = 2002
GROUP BY MonthName(Month(date))

Another more direct way to use dates in SQL in Access is to use square brackets around the
string representation of the date as follows. Here is the same query as above, but with the
WHERE condition defined in an alternative way:

SELECT MonthName(Month(date)), COUNT(*) AS Songs
FROM songperformance
WHERE Date BETWEEN #2002-01-01# AND #2002-12-31#
GROUP BY MonthName(Month(date));

10 Other Resources

In the sections that follow, there are some references to interesting web sites and books about
Access. Not all of them are for Access 2010, but most of the information applies to most
versions of Access.

10.1 Web Sites

There are many good websites with information about Access. Just use a search engine to find
a page relative to a specific Access issue.

The MSDN site is one of the best resources on the Internet for developers using any Microsoft
product or technology. The main site can be reached at http://msdn.microsoft.com/ from
where one can search for Access. This is the official site for Access.

10.2 Books

There are hundreds of books about the different Microsoft Access versions out there and you
will probably do fine with most of them. The different versions don't have so many
differences (not in the basic functionality anyway), so a book about Access 2007 will do fine
when working with any version from Access 2007 to Access 2010. Access 97 - Access 2003
have a different user interface, but most functionality remains the same.

SU/DSV Introduction to MS Access 2010 October 2012
KTH/ICT/SCS v 2.0 nikos dimitrakas

 141

It is not at all necessary to have a book. The resources in the Access help and on the Internet
should be more than enough.

11 Epilogue

This covers the most commonly used functionality of Access. I would like to encourage you
all to play around with Access. This is the best way to learn all the tricks. It is also important
that you are not afraid to try to combine techniques covered in different chapters. You can for
example combine something that we discussed in the chapter about forms with something that
was first introduced when we were working with reports and also combine that with a macro.

I hope you have enjoyed this tutorial. Please give me feedback!

The Author

nikos dimitrakas

