STUDY OF REACTION MECHANISM: ELIMINATION REACTIONS

* Two groups are lost without being replaced
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TYPES OF ELIMINATION REACTIONS

1. a-Eliminations: Both groups are lost from the same carbon to form carbene (or nitrene)
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2. B-Eliminations: Both groups are lost from adjacent atoms to form a double bond
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3. y-Eliminations: One groups is lost from a-carbon and other from y-carbon to form a ring
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TYPES OF ELIMINATION MECHANISMS

1. The E2 Mechanism
2. The E1 Mechanism
3. The E1cB Mechanism
4. Pyrolytic Eliminations

1. The E2 Mechanism: Elimination Bimolecular
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1. Kinetic Evidence
Rate =k [substrate][Base]
X
2. Stereochemistry
H X H
anti-Periplanar syn-Periplanar

anti-Elimination is preferred to syn-elimination
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Example-1

* meso-form gives trans-isomer only

H Me *  Each member of dl-pair give cis-isomer only
— C= C: * This behaviour shows that dehalogenation
Me” H is taking place via anti-Elimination
meso trans

H Me

Br Br or
Me” Me

H Me Me

dl pair cis

Example-2

* Hexachlorocyclohexane has 9 isomers.

* QOut of these only one isomer has no Cl and H-atoms anti-periplanar
to each other as shown in fig.

* This isomers shows unfavourable SYN-Elimination therefore, its rate
of dehydrohalogenation is almost 7000 times slower than other
isomers.




anti-Periplanar
(Low Energy Staggered Conformation)

The push created by back-side attack of breaking C-H bond
electrons (5,2 type) facilitate the removal of leaving group.

The groups are far away from each other,
therefore, less crowding, more stability.

3. Primary Kinetic Isotopic Effect
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syn-Periplanar
(High Energy Eclipsed Conformation)

(X
HO' %

The back-side push is not available since leaving group
is on same side (syn-periplanar conformation)
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The groups are comparitively close to each other,
therefore, more crowding, less stability.

—+>1 Since C-H bond breaking takes place in rate determining step
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2. The E1 Mechanism: Elimination Unimolecular
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Evidences
1. Kinetic Evidence
Rate =k [substrate]

2. Effect of Leaving Group

The substitution/elimination product ratio is decided by step-Il in which no leaving group is present.
Therefore, changing leaving group will not affect the ratio of substitution/elimination products
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3. Primary Kinetic Isotopic Effect
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» Since C-H bond breaking does not take place in rate determining step
» This effect can distinguish between E2 and E1 mechanisms since for E2 mechanism IIE—H >1
D

4. Rearrangements of Carbocations
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substrates that readily eliminats by E1
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3. The E1cB Mechanism: Carbanion Mechanism
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According to Steady State Approximation

dlP] _ kkJR-LGI[B |
dt ~ k,[BH] +k,

Types of E1cB Mehcanism

1. (E1cB),

2. (ElcB)

irr

3. (ElcB)

anion



1. (E1cB),
 Kinetic Evidence

dlP|  ko{R-LG][B]

_ ) dP] ki, [B] K K.k
dt k4 [BH]+k, If ka>>k. then it~ Tk, [R-LC] (ﬁBH]) = k—l—[ﬁ% [R-LG]
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2. (E1cB),,
e Kinetic Evidence

dlP] _ kklR-LG][B ]
At k4[BH] +k,

d[P
If ky, >> k., then % = k; [R-LG][B] e Second order

* Leaving Group Effect

Leaving group departure does not occur in slow step. So changing leaving group will not
greatly affect the rate of E1cB,,, reaction. However, the rate of E2 reaction is affected significantly.
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Generally . k_;>>k,  therefore second order like E2

However, primary kinetic isotopic effect is much less than that of E2 mechanism



Contrasting E2, E1, and E1cB
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ORIENTATION OF DOUBLE BOND: REGIOSELECTIVITY  Saytzev vs Hoffmann Elimination

1. Effect of Leaving group
Strong electron-withdrawing groups favour Hoffmann elimination over Saytzev elimination
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2. Effect of Size of Base
Increase in size of base favour Hoffmann elimination over Saytzev elimination due to steric hinderance
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3. Effect of Bridgehead
Double bond is not created at bridgehead because planarity cannot be achieved
so Hoffmann elimination dominates over Saytzev elimination

Saytzev Product Hoffmann Product




4. The Pyrolytic SYN Eliminations

e Rate =k [Substrate]
* Distinguished from E1 reactions by SYN Stereoselectivity

* Cyclic Transition State

(i) The Cope Reaction: Pyrolysis of Amine Oxide
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(iii) Pyrolysis of Carboxylate Ester




STUDY OF REACTION MECHANISM OF ELIMINATION REACTIONS

Eliminations to Form Carbonyls or
“Carbonyl-Like” Intermediates
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POSSIBLE MECHANISMS
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A. Specific-acid-catalyzed pathway for acctal hydrolysis that occurs with
poor leaving groups. B, A pathway seldom if ever seen. C. General-acid-
catalyzed pathway that occurs with good leaving groups.
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Stereoelectronic Effects
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