STUDY OF REACTION MECHANISM: SUBSTITUTION REACTIONS

$$R \xrightarrow{f} X + Y$$
: \longrightarrow $R \xrightarrow{} Y + X$:

Types of Nucelophilic Substitution Reactions

-

Type I	R—I	+	OH-		R-OH	+	I^-
Type II	R—I	+	NMe ₃		⊕ R−NMe ₃	+	I^-
Type III	$R-NMe_3$	+	OH^-		R-OH	+	NMe ₃
Type IV	$R-Me_3$	+	H ₂ S	>	$R-\overset{\oplus}{SH_2}$	+	NMe ₃

NUCLEOPHILIC SUBSTITUTION BIMOLECULAR REACTIONS (S_N2)

1. Kinetic Evidence

Rate = k[RX] If nucleophile is in excess e.g. solvent (Pseudo-First Order Reaction) Rate = k[RX][Y]Mee → MeS—Me ıΘ ate rate slope 2 rate = k_2 [MeSNa][MeI] If [MeSNa] is constant, the equation becomes [Mel] [NaSMe] rate = k_a [MeI] where $k_a = k_2$ [MeSNa] If [MeI] is constant, the equation becomes energy diagram for an S_N2 reaction rate = k_b [MeSNa] where $k_b = k_2$ [MeI] nergy If you examine the graphs you will see that the slopes are different because transition state: ighest energy state on reaction pathway slope $1 = k_a = k_2$ [MeSNa], but slope $2 = k_b = k_2$ [MeI] starting materials nucleophile products: + MeX Θ Me-Nu + X

progress of reaction

The rate of $S_N 2$ reaction depends upon

(I) The nucelophile

(ii) The carbon skeleton (Structure of substrate)

(iii) The leaving group

2. Stereochemical Evidence

• Inversion of Configuration occurs

NUCLEOPHILIC SUBSTITUTION UNIMOLECULAR REACTIONS (S_N1)

2. Stereochemical Evidence

ion pair

ion pair

Complete Racemization to Partial Racemization

ion pair

 It is because carbocation is sp²-hybridized and therefore must be planar. However, planarity cannot be achieved at bridgehead

4. Mass Law Effect or Common Ion Effect

Step 1
$$R-X \xrightarrow{slow} R^+ + \overline{X}$$

Step 2 $R^+ + \overline{Y} \xrightarrow{fast} R-\overline{Y}$

- Adding a salt having common ion, X⁻, would push the first step in backward direction.
- Hence, the rate of S_N1 reaction will decrease.

5. Salt Effect

- Since polar ions are produced in this reaction, therefore, increase in polarity of solvent increases the rate of reaction.
- The ionic strength or the polarity of the medium can be increased by adding salts that don't have common ion.

 The S_N2 reaction goes with inversion of configuration at the carbon atom under attack but the S_N1 reaction generally goes with racemization

NUCLEOPHILIC SUBSTITUTION INTERNAL REACTIONS (S_Ni)

A variety of pathways for $S_{\text{N}}2$ and $S_{\text{N}}1$ reactions.

• Adding pyridine shifts the reaction to normal S_N2 mechanism.

Nucleophilic Substitution at an Allylic Carbon: Allylic Rearrangements

S_N2'

S_Ni'

S_N1cA or A1 mechanism & S_N2cA or A2 mechanism

- The First step above incorporate the symbol cA (conjugate acid)
- The next step will decide whether it is $S_N 1$ or $S_N 2$ mechanism