3. Study of Intermediates

(i) Isolation of Intermediates

Example-1: Hoffmann Rearrangement

Example-2: Nebber Rearrangement

(ii) Detection of Intermediates

Example-1

$$R$$
 $C=O$
 $\xrightarrow{NH_2OH}$
 R
 $C=N$
 $C=$

Example-2

$$\begin{array}{c} H \\ & \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

NHOH

[®]NO₂ Nitronium ion intermediate was detected by Raman Spectroscopy spectroscopy

Example-3: Free radicals are detected by ESR spectroscopy

(iii) Trapping of Intermediates

Example-1: Carbene Trapping

Example-2: Aryne Trapping

Example-3: Spin Trapping

2-(Diethylphosphino)-5,5-dimethyl-1-pyrroline-N-oxide (Spin Trap)

Trapping a Phosphorane Legitimizes Its Existence

Techniques to Study Radicals: Clocks and Traps

Various Radical Clocks and Their Rate Constants for Rearrangements*

Clock	Rate constant for rearrangement (s ⁻¹), 25 °C	Clock	Rate constant for rearrangement (s ⁻¹), 25 °C
° · → ○ · ·	10		1.3 × 10 ⁵
→	59	+ co	5.2 × 10 ⁷
N. → >=N +	71	✓.→ .∕/	1.3×10 ⁸
	7.8 × 10 ²	$A \rightarrow 0$	2×10 ⁹
\(\frac{1}{2}\).	1.3×10 ³	RO₂C → RO₂C	(5-8) × 10 ¹⁰
Å. → .Å	9.8 × 10 ³	Ar Ar	(1−4) × 10 ¹¹
→	3.3 × 10 ⁴		

*Griller, D., and Ingold, K. U. "Free Radical Clocks." Acc. Chem. Res., 13, 317 (1980). Newkomb, M., and Toy, P. H. "Hypersensitive Radical Probes and the Mechanisms of Cytochrome P450-Catalyzed Hydroxylation Reactions." Acc. Chem. Res., 33, 449 (2000).