3. Study of Intermediates #### (i) Isolation of Intermediates Example-1: Hoffmann Rearrangement Example-2: Nebber Rearrangement #### (ii) Detection of Intermediates Example-1 $$R$$ $C=O$ $\xrightarrow{NH_2OH}$ R $C=N$ $C=$ Example-2 $$\begin{array}{c} H \\ & \\ \end{array} \begin{array}{c} \\ \begin{array}{c}$$ **NHOH** [®]NO₂ Nitronium ion intermediate was detected by Raman Spectroscopy spectroscopy Example-3: Free radicals are detected by ESR spectroscopy ### (iii) Trapping of Intermediates Example-1: Carbene Trapping #### Example-2: Aryne Trapping #### Example-3: Spin Trapping 2-(Diethylphosphino)-5,5-dimethyl-1-pyrroline-N-oxide (Spin Trap) # Trapping a Phosphorane Legitimizes Its Existence ## Techniques to Study Radicals: Clocks and Traps #### Various Radical Clocks and Their Rate Constants for Rearrangements* | Clock | Rate constant for rearrangement (s ⁻¹), 25 °C | Clock | Rate constant for
rearrangement
(s ⁻¹), 25 °C | |------------------|---|-------------------|---| | ° · → ○ · · | 10 | | 1.3 × 10 ⁵ | | → | 59 | + co | 5.2 × 10 ⁷ | | N. → >=N + | 71 | ✓.→ .∕/ | 1.3×10 ⁸ | | | 7.8 × 10 ² | $A \rightarrow 0$ | 2×10 ⁹ | | \(\frac{1}{2}\). | 1.3×10 ³ | RO₂C → RO₂C | (5-8) × 10 ¹⁰ | | Å. → .Å | 9.8 × 10 ³ | Ar Ar | (1−4) × 10 ¹¹ | | → | 3.3 × 10 ⁴ | | | *Griller, D., and Ingold, K. U. "Free Radical Clocks." Acc. Chem. Res., 13, 317 (1980). Newkomb, M., and Toy, P. H. "Hypersensitive Radical Probes and the Mechanisms of Cytochrome P450-Catalyzed Hydroxylation Reactions." Acc. Chem. Res., 33, 449 (2000).