2 (ii) Kinetic Requirements

Order	Differential Form	Integrated Form		
Zero Order	$\frac{dx}{dt} = k$	x = k t		
First Order	$\frac{dx}{dt} = k(a - x)$	$k = \frac{2.303}{t} \log \frac{a}{(a-x)}$	$\frac{dx}{dt}$	
Second Order	$\frac{dx}{dt} = k(a-x)^2$	$k = \frac{1}{t} \frac{x}{a(a-x)}$	((a-x)

Example 1

 $NO_3 + CO \xrightarrow{fast} NO_2 + CO_2$

Rate = $k [NO_2]^2$

Kinetic evidence is a <u>NECESSARY CONDITION</u> for reaction mechanism but <u>NOT A SUFFICIENT CONDITION</u>

Example 2: Formation of thioethers

rate = k_2 [MeSNa][MeI]

If [MeSNa] is constant, the equation becomes

rate = k_a [MeI] where $k_a = k_2$ [MeSNa]

If [MeI] is constant, the equation becomes

rate = k_b [MeSNa] where $k_b = k_2$ [MeI]

If you examine the graphs you will see that the slopes are different because

slope $1 = k_a = k_2$ [MeSNa], but slope $2 = k_b = k_2$ [MeI]

The rate of S_N **2 reaction depends upon** (I) The nucelophile (ii) The car

(ii) The carbon skeleton (Structure of substrate)

[NaSMe]

Example 3: Hydrolysis of *t*-butyl bromide

rate = $k_1[t-BuBr]$

Example 4: Conversion of acid chlorides into esters

Intermediates and transition states

A transition state represents an energy maximum—any small displacement leads to a more stable product. An intermediate, on the other hand, is a molecule or ion that represents a *localized* energy minimum—an energy barrier must be overcome before the intermediate forms something more stable. As you have seen in Chapter

Example 5: Hydrolysis of Amides

The rate of the reaction is the rate of the rate-determining step

rate = k[dianion]

We don't know the concentration of the dianion but we do know that it's in equilibrium with the monoanion so we can write

$$K_2 = \frac{[\text{dianion}]}{[\text{monoanion}][\text{HO}^-]}$$

and so [dianion] = K_2 [monanion][HO⁻]

In the same way we don't want the unknown [monoanion] in our rate expression and we can get rid of it using the first equilibrium

$$K_{1} = \frac{[\text{monoanion}]}{[\text{amide}][\text{HO}^{-}]}$$
and so [monoanion] = K_{1} [amide][HO^{-}] Hore [dianion] = $K_{1}K_{2}$ [amide][HO^{-}][HO^{-}]
Substituting these values in the simple rate equation we discover that rate = k [dianion] becomes rate = $kK_{1}K_{2}$ [amide][HO⁻]²

Steady State Approximation

$$Rate = -\frac{d[A]}{dt} = k[A][B]$$

$$Rate = -\frac{d[A]}{dt} = k[I][B]$$

Rate of appearance of $I = k_1[A][B]$ Rate of dissapearnance of $I = k_1[I]+k_2[I][B]$

Rate of appearance of I = Rate of dissapearnance of I

$$i.e.\frac{d[I]}{dt} = 0$$

$$k_{1}[A][B] = k_{1}[I] + k_{2}[I][B]$$

or $[I] = \frac{k_{1}[A][B]}{k_{1} + k_{2}[B]}$
$$Rate = \frac{k_{1}[A][B][B]}{k_{1} + k_{2}[B]} = \frac{k_{1}[A][B]2}{k_{1} + k_{2}[B]}$$

first step was faster than the second, $k_1[\mathbf{A}][\mathbf{B}] \gg k_2[\mathbf{I}][\mathbf{B}]$ Rate = $k_1[\mathbf{A}][\mathbf{B}]2$ Third Order

if the first step is rate determining $k_2[\mathbf{B}] \gg k_{-1}$ $Rate = \frac{k_1[\mathbf{A}][\mathbf{B}]2}{k_2[\mathbf{B}]} = k[\mathbf{A}][\mathbf{B}]$ Second Order

Kinetic vs Thermodynamic control

Kinetic and thermodynamic control

- The product that forms faster is called the kinetic product
- The product that is the more stable is called the thermodynamic product Similarly,
- Conditions that give rise to the kinetic product are called kinetic control
- Conditions that give rise to the thermodynamic product are called thermodynamic control

extent of reaction