## **INVESTIGATION OF REACTION MECHANISM: EVIDENCES**

- Actual pathway of reaction is called reaction mechanism
- Mechanism is only suggestive not conclusive
- Mechanism is based on available evidences

# **EVIDENCES**

1. Nature of Products

- 2. Thermodynamics and Kinetic Requirements
- 3. Study of Intermediates
  - (i) Isolation of intermediates
  - (ii) Detection of intermediates
  - (iii) Trapping of Intermediates
  - (iv) Addition of Suspected intermediates
- 4. Stereochemical studies
- 5. Isotopic Studies
  - (i) Isotopic labelling
  - (ii) Isotopic effect
  - (iii) Isotopic scrambling

## 1. Nature of Products

- All major and minor products must be identified correctly
- A mechanism must account for all major and minor products of the reaction
- Any mechanism that failed to account for all products would be incorrect.

### Example 1: Halogenation of Methane

- Small amount of ethane is also produced as minor product.
- A mechanism must account for the formation of ethane.

### **Example 2: Dimerization of triphenyl methyl free radical**



Example 3:



## 2 (i) Thermodynamic Requirements

ENTHALPY (H), ENTROPY (S) ,

**GIBBS FREE ENERGY (G)** 

### ENTHALPY CHANGE ( $\Delta$ H):

It is the difference in stability (bond strength) of the reactants and products

### ENTROPY CHANGE ( $\Delta$ S):

It is the difference between the disorder of the reactants and that of the products



## **Examples:**







| Entry | Reaction                                                              | $\Delta S$ of activation | Rate-determining/<br>rate-limiting step      |
|-------|-----------------------------------------------------------------------|--------------------------|----------------------------------------------|
| 1     | Acid-catalyzed hydrolysis<br>of ethyl acetate in water                | -26 eu                   |                                              |
| 2     | Acid-catalyzed ring opening of ethylene oxide in water                | -6 eu                    | H <sup>O</sup> H                             |
| 3     | Acid-catalyzed hydrolysis of $\alpha$ -methylglucopyranoside in water | +4.5 eu                  | HO<br>HO<br>OH<br>OH<br>H <sup>O</sup><br>Me |
| 4     | Displacement of iodide from<br>methyliodide by pyridine               | 31 eu                    | CH <sub>3</sub> -1                           |
| 5     | Hydrolysis of <i>t-</i> butyl chloride in water                       | +10 eu                   | CI CI                                        |
| 6     | A conjugate addition reaction                                         | –17 eu                   | PhS: CI OEt                                  |
| 7     | Peroxide homolysis                                                    | +11 eu                   | 0-0                                          |

## Examples of Common Reactions and Representative $\Delta S^{\ddagger}$ Values

**Energy Diagram** 

### **GIBBS FREE ENERGY (G):**

The **energy** associated with a chemical reaction that can be used to do work

The **free energy** of a system is the enthalpy (H) minus the product of the temperature (Kelvin) and the entropy (S) of the system

i.e. G = H - TS

For a change in system at constant temperature it can be written as

 $\Lambda G = \Lambda H - T \Lambda S$ 

where

 $\Delta G$  = Gibb's Free Energy Change  $\Delta H$  = Enthalpy Change

 $\Delta S$  = Entropy Change

Free Energy of Activation ( $\Delta G^*$ ) Enthalpy of Activation ( $\Delta H^*$ ) Entropy of Activation ( $\Delta S^*$ )



#### **Reaction coordinate**

### Free Energy and Equilibrium

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$   $\Delta G^{\circ} = -RT \ln K_{eq}$ 

The sign of  $\Delta G^{\circ}$  tells us whether products or reactants are favoured at equilibrium



 $\Delta G^{\circ} = -RT \ln K_{eq} = -8.315 \times 298 \times \ln(0.5) = +1.7 \text{ kJ mol}^{-1}$ 

### $\Delta G^{\circ}$ tells us about the position of equilibrium

- If  $\Delta G^{\circ}$  for a reaction is *negative*, the *products* will be favoured at equilibrium
- If  $\Delta G^{\circ}$  for a reaction is *positive*, the *reactants* will be favoured at equilibrium
- If ΔG° for a reaction is *zero*, the equilibrium constant for the reaction will be 1

| ∆G°,<br>klmol−1 | Keq   | % of more stable<br>state at equilibrium |
|-----------------|-------|------------------------------------------|
| 0               | 1.0   | 50                                       |
| 1               | 1.5   | 60                                       |
| 2               | 2.2   | 69                                       |
| 3               | 3.5   | 77                                       |
| 4               | 5.0   | 83                                       |
| 5               | 7.5   | 88                                       |
| 10              | 57    | 98                                       |
| 15              | 430   | 99.8                                     |
| 20              | 3 200 | 99.97                                    |





### Thermodynamics for the organic chemist

- The free energy change  $\Delta G^{\circ}$  in a reaction is proportional to  $\ln K$  (that is,  $\Delta G^{\circ} = -RT \ln K$ )
- $\Delta G^{\circ}$  and *K* are made up of enthalpy and entropy terms (that is,  $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$ )
- The enthalpy change ΔH° is the difference in stability (bond strength) of the reagents and products
- The entropy change ΔS° is the difference between the disorder of the reagents and that of the products



Free Energy of Reaction ( $\Delta$ G) Enthalpy of Reaction ( $\Delta$ H) Entropy of Reaction ( $\Delta$ S)

Free Energy of Activation ( $\Delta G^*$ ) or  $\Delta G^{\ddagger}$ Enthalpy of Activation ( $\Delta H^*$ ) or  $\Delta H^{\ddagger}$ Entropy of Activation ( $\Delta S^*$ ) or or  $\Delta S^{\ddagger}$ 

**Reaction coordinate**