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Natural convection flow in a fluid-saturated porous medium enclosed
by non-isothermal walls with heat generation
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Abstract

Unsteady laminar natural convection flow has been considered in a rectangular enclosure formed by non-isothermal walls, filled with a
fluid-saturated porous medium and with internal heat generation. The top horizontal wall and right vertical wall of the enclosure are cold,
the bottom wall is heated at a constant temperature and the left vertical wall is considered to be non-isothermal. The equations are non-
dimensionalized and solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique.
The effects of heat generation and the porosity of the medium on the streamlines and isotherms are presented, as well as on the rate of heat
transfer from the walls of the enclosure. The fluid has Prandtl numberPr = 0.7 while the value of the Rayleigh number is 105.  2002
Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The characteristics of heat and fluid flow for a configu-
ration of isothermal vertical walls, maintained at different
temperatures and with adiabatic horizontal walls, are well
understood (Ostrach [1,2]). Less work has been carried out
for more complex thermal boundary conditions, such as an
imposed thermal gradient that is neither purely horizontal
nor purely vertical. Shiralkar and Tien [3] investigated, nu-
merically, natural convection in an enclosure with temper-
ature gradients imposed in both the horizontal and vertical
directions simultaneously. A stabilizing vertical temperature
gradient was found to result in lower vertical velocities and
generation of secondary vortices at opposite corners. On the
other hand, a destabilising vertical gradient leads to the de-
struction of stratification in the core and the formation of
unstably stratified thermal layers adjacent to the upper and
lower surfaces. Chao and Ozoe [4] investigated the prob-
lem of natural convection in an inclined box with half the
bottom surface heated and half insulated, while the top sur-
face was cooled. Anderson and Lauriat [5] analysed experi-
mentally as well as theoretically the natural convection due
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to one isothermal cold vertical wall and a hot bottom wall.
Kimura and Bejan [6] studied numerically the convection
flow in a rectangular enclosure with the entire lower surface
cooled and one of the vertical walls heated. November and
Nansteel [7] and Nicolas and Nansteel [8] performed experi-
ments and numerical investigations on convection in a water
filled enclosure with a single cold isothermal vertical wall
and a partially heated bottom wall. Granzarolli and Milanez
[9] computed the case of a heated bottom wall and isother-
mally cooled vertical walls. Recently, Velusamy et al. [10]
investigated the steady two-dimensional natural convection
flow in a rectangular enclosure with a linearly-varying sur-
face temperature on the left vertical wall, cooled right ver-
tical and top walls and a uniformly-heated bottom wall. In
this latter investigation, mild natural convection was found
to reduce the heat load to the cold walls, and for any value
of aspect ratio it was also found that there exists a critical
Rayleigh number for which heat load is a minimum.

Here we investigate the problem posed by the above au-
thor [10] for an enclosure filled with a fluid-saturated porous
medium, along with generation of heat depending on the
fluid temperature. In recent years, flow in a confined porous
medium has received considerable attention from experi-
mentalists as well as theoreticians. This has importance for
applications in developing technology and industry, such
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Nomenclature

Cp specific heat at constant pressure . . J·kg−1·K−1

Da Darcy parameter
g gravitational acceleration . . . . . . . . . . . . m·sec−2

Ra Rayleigh number
H enclosure hight . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k effective thermal conductivity of

the media . . . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

K permeability of the porous media. . . . . . . . . . m2

p fluid pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number
t time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
u velocity inx-direction. . . . . . . . . . . . . . . . . m·s−1

U0 = ν/H reference velocity
v velocity iny-direction. . . . . . . . . . . . . . . . . m·s−1

x, y Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . H
X,Y dimensionless coordinates

Greek symbols

β coefficient of thermal expansion of fluid . . K−1

θ dimensionless temperature
γ porosity parameter= 1/Da
λ dimensionless heat absorption/generation

parameter
µ effective dynamic viscosity . . . . . . . . . . . . Pa·s−1

ν effective kinematic viscosity= µ/ρ
ρ fluid density at reference temperatureTc
τ dimensionless time
ψ streamfunction . . . . . . . . . . . . . . . . . . . . . . m2·s−1

Ω dimensionless vorticity

as prevention of sub-oil water pollution, storage of nuclear
waste and geothermal energy systems (for which Cheng [11]
provides an extensive review).

In early works on flow in porous media, the Darcy law
has been used which is applicable to slow flows and does
not account for inertial and boundary effects (termed as
non-Darcy effects). These effects are important when the
flow velocity is relatively high and in the presence of a
boundary, as reported first by Vafai and Tien [12]. Recently,
Khanafer and Chamkha [13] investigated numerically the
Brinkman-extended Darcy unsteady mixed convection flow
in an enclosure, with internal heat generation and with
inclusion of the convective terms in the governing equations,
by using the control volume method developed by Patankar
[14].

A detailed development of the present investigation is
given in the subsequent sections.

2. Mathematical formulation

Consider a rectangular enclosure of heightH filled with
a fluid-saturated porous medium as shown in Fig. 1. The
right and the top walls are maintained at a constant cold
temperatureTC. The temperature of the left wall isTH at the
bottom and reduces linearly toTC at the top. The bottom wall
of the enclosure is isothermal atTH. The boundary condition
at the right bottom corner deserves some explanation. In
the reactor on which this model is based, a small gap of
heighth (5–10 mm) between the bottom and the right walls
is filled with a sodium deposit. The temperature in the gap
is expected to vary linearly fromTH to TC over a small
non-dimensional distanced . We also bring into account the
effect of temperature-dependent heat generation in the flow

Fig. 1. The flow configuration and coordinate system.

region. The volumetric rate of heat generation,q ′′′ [W·m−3],
is assumed to be:

q ′′′ =
{
Q0(T − TC), T � TC
0, T < TC

(1)

where Q0 is the heat generation constant. The above
relation, as explained by Vajravelu and Hadjinicolaou [15],
is valid as an approximation of the state of some exothermic
process, which means that heat flows from the surface to the
enclosure.

We further assume unsteady laminar flow of a viscous
incompressible fluid having constant properties. The effect
of buoyancy is included through the well-known Boussinesq
approximation. Finally, the direction of the gravitational
force is as indicated in Fig. 1.

Under the above assumptions, the conservation equations
for mass, momentum and energy in a two-dimensional
Cartesian co-ordinate system are:

∂u

∂x
+ ∂v
∂y

= 0 (2)
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∂u

∂t
+ u∂u
∂x

+ v ∂u
∂y

= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂
2u

∂y2

)
− ν

K
u (3)

∂ν

∂t
+ u∂v
∂x

+ v ∂v
∂y

= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2 + ∂
2v

∂y2

)
− ν

K
v + gβT(T − TC) (4)

∂T

∂t
+ u∂T

∂x
+ v ∂T

∂y

= α
(
∂2T

∂x2 + ∂
2T

∂y2

)
+ Q0

ρCp
(T − TC) (5)

whereu andν are the fluid velocity components in thex-
and y-direction, respectively.T is the time,p is the fluid
pressure,β is the volumetric thermal expansion coefficient,
K is the permeability of the porous medium, andρ, α and
Cp are, respectively the density of the fluid, the thermal
diffusivity and the specific heat at constant pressure. In
the present investigation, porous medium inertia effects
have been neglected in the momentum equations, and the
effects of viscous dissipation are neglected from the energy
equation.

In Eqs. (3) and (4)K is the measure of the permeability
of the porous medium (a packed bed of spheres), defined by

K = ε+3

180(1− ε+)2d
2 (6a)

where,d is the diameter of the solid sphere andε+ is known
as the porosity of the media and is defined by

ε+ = Vf

Vc
(6b)

HereVf is the volume of the fluid andVc is the control
volume.

The following dimensionless variables are constructed:

X = x

H
Y = y

H
τ = tU0

H

U = u

U0
V = v

U0
θ = T − TC

TH − TC

(7)

Introducing the above dimensionless dependent and inde-
pendent variables in the governing Eqs. (3)–(5) the following
equations are obtained:

∂Ω

∂τ
+ ∂(UΩ)

∂X
+ ∂(VΩ)

∂Y

=
(
∂2

∂X2 + ∂2

∂Y 2 − γ
)
Ω + Ra

Pr

∂θ

∂X
(8)

∂θ

∂τ
+ ∂(Uθ)

∂X
+ ∂(V θ)

∂Y

= 1

Pr

(
∂2

∂X2
+ ∂2

∂Y 2
+ Pr λ

)
θ (9)

where

Ω = −
(
∂2

∂X2 + ∂2

∂Y 2

)
ψ (10)

is the vorticity function andψ is the stream function defined
by:

U = ∂ψ
∂Y
, V = −∂ψ

∂X
(11)

In the above equations

Ra = gβT(TH − TC)H
3

αν
, Pr = ν

α
,

γ = 1/Da = H
2

K
, λ= Q0H

2

ρνCp

(12)

The dimensionless initial and boundary conditions are:

U = V = θ = 0 for τ = 0
U = V = 0 for 0� Y � 1 atX = 1
U = V = θ = 0 for 0�X � 1 atY = 1
U = V = 0, θ = 1 for 0�X � 1 atY = 0
θ = 1− Y for 0 � Y � 1 atX = 0
θ = 1− Y/L for 0 � Y � L and
θ = 0 forL< Y � 1 atX = 1

(13)

whereL is the width of the gap near the bottom-right corner.
An upwind finite-difference method, together with a

successive over-relaxation (SOR) iteration technique has
been employed to integrate the model Eqs. (7) and (8)
governing the flow. It is clear that the non-dimensional
parameters of interest are the Rayleigh number,Ra, the
Prandtl number,Pr, the porosity parameter,γ (= 1/Da), and
the heat generation number,λ. In the present investigation,
pertaining to argon gas, the value of the Prandtl number
is chosen as 0.7 and the Rayleigh number is taken to be
105. The aspect ratio considered is unity and the value of
h = 1/(n − 1), n is the number of grid points in theY
direction) is 0.02.

The corresponding problem for pure fluid without the
effect of heat-generation has been investigated by Velusamy
et al. [10] using the control volume method for different
values of the Rayleigh number and two values of the aspect
ratio (1 and 2), also forPr = 0.7.

Once we know the numerical values of the temperature
function we may obtain the rate of heat flux from each of
the walls. The non-dimensional heat flux from any surface is
given by−(∂T /∂n), wheren is the direction normal to the
wall. For example, the non-dimensional heat transfer rate,q ,
per unit length in the depthwise direction for the left vertical
surface is:

q = −
1∫

0

(
∂T

∂X

)
X=0

dY (14)

The results shown and discussed in the following section
have been calculated from zero initial velocities and mean
values of temperature. A grid dependence study has been
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Table 1
Comparison of numerical values of stream-function against different
meshes forRa = 105 andPr = 0.7

Meshes h= 1/(n− 1) ψmax ψmin

41× 41 1/40 0.807008 −34.6537
51× 51 1/50 0.813292 −34.97759
61× 61 1/60 0.812256 −35.23735

carried out for a thermally-driven cavity flow for the above
mentioned parameter values with meshes of 41×41, 51×51
and 61×61 points, and resulting flow quantities are listed in
Table 1. For computational economy, a 51× 51 mesh has
been used throughout for the simulations described below.
With this mesh, for the case withλ = γ = 0, Pr = 0.7 and
Ra = 105, the maximum and minimum values ofψ were
found to be 0.81 and−34.98. The corresponding values
obtained by Velusamy et al. [10] using the control volume
method are 0.85 and−34.95. Thus the present results
agree sufficiently well with the previous solution. Finally,
simulations were carried out until steady state solutions were
obtained.

3. Results and discussions

Numerical results for natural convection heat transfer
for a heat-generating fluid in a rectangular cavity filled
with a saturated porous medium with uniform porosity
are described, subject to a non-uniformly heated left wall
and heated bottom wall. As mentioned above, the non-
dimensional controlling parameters are the Rayleigh num-
ber, Ra, the Prandtl number,Pr, the porosity parameter,γ
(= 1/Da) and the heat generation parameter,λ. In the ab-
sence of heat generation and for a pure fluid(γ = 0.0) the ef-
fect of Rayleigh number for a rectangular cavity with aspect
ratio in the range 1 to 5 has been investigated by Velusamy
et al. [10], for fluid havingPr = 0.7. Here therefore we
have used fixed values ofPr (= 0.7), Rayleigh numberRa

(= 105) and aspect ratio (= 1) and have obtained solutions
for different values of the porosity parameter,γ , and the heat
generation parameter,λ.

We first show the streamlines and isotherms for values of
λ equal to 0.0, 10.0 and 20.0 in Figs. 2–4. Fig. 2 shows the
streamlines and isotherms for the case studied by Velusamy
et al. [10]. Now comparing Figs. 3(a) and 4(a) we see that
the size of the secondary cell that develops at the left top
corner increases with increasing value of the heat generation
parameter. It may further be seen that the value ofψmax
also increases asλ increases. Also, for non-zero values
of λ, the centre of the primary vortex moves towards the
bottom right corner and the magnitude ofψmin decreases
considerably. It may be anticipated that further increase of
the heat generation parameter would create two vortices of
equal strength.

In Fig. 2(b) it can be seen that the isotherms are
clustered close to the bottom surface, which points to the
existence of steep temperature gradients in the vertical
direction in this region. In the bulk of the cavity, away
from this localized area, the temperature gradients are weak.
Comparing Figs. 3(b) and 4(b) with Fig. 2(b) it can be seen
that in the presence of heat generation and for increasing
value of the heat generation parameter,λ, the region of
clustered isotherms moves to the right and towards the top
cold surface of the enclosure. The temperature gradient in
the middle of the cavity also appears to increase. It may
also be expected that further increase of the heat generation
parameter will force the isotherms to become clustered in
the region near the top surface.

The effects of internal heat generation on the rate of heat
transfer from the sidewalls are illustrated in Fig. 5. In these
figures all the curves forλ = 0 are for the flow of a pure
fluid in the absence of internal heat generation, and agree
qualitatively with the results of Velusamy et al. [10]. In
Fig. 5(a) we see that the rate of heat transfer from the heated
bottom surface decreases with increase in the value of the
heat generation parameter. This is expected, since the heat

(a) (b)

Fig. 2. (a) Streamlines and (b) Isotherms forλ= 0.0 while Ra = 105, Pr = 0.7 andγ = 0.0.
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(a) (b)

Fig. 3. (a) Streamlines and (b) Isotherms forλ= 10.0 while Ra = 105, Pr = 0.7 andγ = 0.0.

(a) (b)

Fig. 4. (a) Streamlines and (b) Isotherms forλ= 20.0 while Ra = 105, Pr = 0.7 andγ = 0.0.

generation mechanism will increase the fluid temperature
near the bottom surface, resulting in increased resistance
to the transfer of heat in the verical direction. The heat
transfer distribution for the top wall is shown in Fig. 5(b).
The top corner regions are inactive zones and heat transfer is
mainly by conduction. For all values of the heat generation
parameter, the flux of heat is unity at the left end and zero
at the right end due to the boundary conditions. In between
there is a peak value, where fluid issuing from near the
left wall meets the top surface. This peak value increases
with increasing addition of heat due to heat generation
phenomena. Now we look to Fig. 5(c) for the effect of
heat generation on the heat flux from the left wall, the
temperature of which increases linearly with height from the
bottom to the top. Looking at the distribution corresponding
to λ= 0, it can be seen that there exists one full wave pattern
with one maximum and one minimum. A similar pattern can
be observed whenλ = 10.0, with the difference that for the
first part of the surface the heat flux is lower and for the
remainder is higher than forλ = 0. We further observe that

a double trough develops in the heat flux distribution for the
highest value ofλ. Finally, Fig. 5(d) shows the effect of the
heat generation parameter on the heat–flux from the right
wall of the enclosure. The heat transfer at the bottom of the
wall is purely due to conduction and, forY < L (= 0.1), the
heat flux is high for all values ofλ. A local minimum in the
heat flux distribution develops in the region 0.1< Y < 0.3
for all values ofλ. The local maximum in the heat flux
for Y > 0.3 increases with increase of the heat generation
parameter.

Now, we discuss the effect of the porosity of the medium
on the streamlines and isotherms through Figs. 6–8. The
figures show results for values ofγ = 10.0, 20, and 30 but
in the absence of heat generation in the flow. Comparing
Figs. 6(a)–8(a) it can be seen that the volume flow rate in the
primary as well as in the secondary vortex regimes decreases
as γ increases, as the resistance to fluid flow increases.
(The flow-rate would become much higher at porosity values
closer to zero.) Figs. 6(b)–8(b) show the effect of this
increasing resistance on the temperature distributions.
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(a) (b)

(c) (d)

Fig. 5. Rate of heat transfer from the side walls for different values ofλ while Ra = 105, Pr = 0.7, γ = 0.0 (a) bottom wall, (b) topsurface, (c) left wall and
(d) right wall.

(a) (b)

Fig. 6. (a) Streamlines and (b) Isotherms forγ = 10.0 while Ra = 105, Pr = 0.7 andλ= 0.0.

Now we discuss the effect of the porosity of the medium
on the heat transfer from the walls of the enclosure, again
in the absence of heat generation. In Figs. 9(a)–(d) we

display the heat–flux distributions for values of the porosity
parameterγ = 0.0, 10.0, 20.0 and 30.0, forPr = 0.7 and
Ra = 105. From these figures it can be seen that, as the value
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(a) (b)

Fig. 7. (a) Streamlines and (b) Isotherms forγ = 20.0 while Ra = 105, Pr = 0.7 andλ= 0.0.

(a) (b)

Fig. 8. (a) Streamlines and (b) Isotherms forγ = 30.0 while Ra = 105, Pr = 0.7 andλ= 0.0.

of the porosity parameter increases, the heat transfer from
the bottom wall decreases, Fig. 9(a), and the peak value of
heat transfer also decreases with increasingγ at the top and
right walls. For the linearly-varying temperature left wall,
the heat flux is lower near the bottom and higher near the
top for the cases withγ > 0 than for the pure fluid case
(γ = 0), and a limiting distribution of (comparatively low)
heat transfer is approached asγ increases.

4. Conclusions

We have investigated numerically the separate effects of
heat generation in a fluid and the porosity of the medium
on the natural convection laminar flow and heat transfer
in an enclosure with non-isothermal walls, using a finite-
difference solution technique and with buoyancy effects
treated using the Boussinesq approximation. The studies

have been carried out for a fluid having Prandtl number 0.7
and for a Rayleigh number of 105. For the case of a pure fluid
(i.e., flow in a non-porous medium) without heat generation
the solutions are in agreement with other results published
in the literature.

The top horizontal wall of the enclosure is cold and
the bottom wall is heated. Increasing heat generation in
the fluid (as a function of the local fluid temperature)
reduces thermal gradients near the heated bottom wall of
the enclosure, leading to higher gradients (and thus higher
surface heat flux) at the cold top and right walls. The strength
of the dominant vortex induced by bouyancy is reduced
due to increasing internal heat generation, and a more
nearly equal double vortex structure develops. Increasing the
porosity of the medium (in the absence of heat generation)
reduces the volume flow rate of fluid in the dominant vortex
and leads to a general reduction in heat transfer at the
walls.
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(a) (b)

(c) (d)

Fig. 9. Rate of heat transfer from the side walls for different values ofγ while Ra = 105, Pr = 0.7, λ= 0.0 (a) bottom wall, (b) topsurface, (c) left wall and
(d) right wall.
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