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212 AUTONOMOUS FIRST-ORDER DEs

== Autonomous First-Order DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica

tion that is of particular importance in thg qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous.JIf the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as

Sy, ¥") = 0 or in normal form as
St

-

g e ©)
We shall assume throughout that the function fin (2) and its derivative J' are contin-
uous functions of y on some interval 7, The first-order equation

1) : (. ¥)

d 1 '
--y— = d
rak B SRR :I-i’- = 0.2xy

are a:dt:nnorx;mm and nonautonomous, respectively.
Viany differential equations encountered in applicati i

' pplications or equati-~< thdt are

;xlwdcls of ph.ymcnl laws Lhat do not change over time are autonomous, As we have

ready seen in Section 1.3, in an applied context, symbols other than y

'lf!ly ummwmdeplnj t : 2
‘epresents time then inspection of wl independent variables. For example, if

S 4 Legetich @ wer
a7 SR = K- Lol
threk,n dt 100"

shows that each fon ia tirma 4
indeed, all of the first-order differential equations inerh - O 18 time independent
independent and s0 are autoromous, > Toduced in Section l-;?mn time

= Cfitical Points The o
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LIt is o zero of f—that At of the autonomeyg dipecial importance, We

i8, f(c) = () . fferential equati
‘;“- of stations jﬂf#uﬁ‘oﬁ‘mg .y wmt 1$ ulso called an ¢ qu::|;,°n ‘52)
%; ¢into (2), then %&'h sides of the equatiop u: Substitute the constan

fcisa critical point of @), 1 2ero, This means;

; hen ¥
Aulanomous differential equation, W) =cis q constant solution of the
A constant solution

Yx) = ¢ of (2) |
only constant solutions of * called an ¢quilib
(2), rum solution; equilibrig
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cals (b)
emical Reactions Whancoﬂllnkindwfmzﬁnd is
42, Ch combined, the rate at which the new .co;g_omm
gﬁ’ s modeled by the sutonomous ©
on
%’ - k(a = X)B = X)

where ' jonality and
k>0 is a constant of proportio
p>a>0.HemX(t)denotuthcnumberofmmof

the new compound formed in time .
(a) Use a phase portrait of the differential equation to
predict the behavior of XTf) as 1 = %,

SEPARABLE EQUATIONS

REVIEW MATERIAL
* Basic integration fomuulas (See inside front cover)

2.2

i whma-ﬂ.Uuuphmpq
%dg&hemm equation to predict the beh
of X(7) s ¢ = when X(0) < a. When X(0)
Verify that an explicit solution of the DE in the
when k=1 and a-ﬂ is X(‘)-av- l/(,
Find a solution that satisfies X{0) = /2. Then
a solution that satisfies X{0) = 2a, Omph. i
ewo solutions. Does the behavior of the solution
¢ —» o ngree with your answers to part (b)?

¢ Techniques of integration: integration by parts and partial fraction decomposition

* See also the Student Resource Manual,

INTRODUCTION  We begin our study of how to solve differential equations with the simplest

of all differential equations; first-order equations with separable variables,

this section and many techniques

urged to refresh your memary on important

Because the method in

for solving differential equations involve integration, you are
formulas (such as [du/u)

and techniques (such as

integration by parts) by consulting a calculus text,
== Solution by Integration Consider the first-order di
ook fferential equation dy/dx
:q Sk J does not depend on the variable y, tha i8,/(x, y) = g(x), the differe
d
—_ = = g(x) (1
can pe soly integration, If 8x) is
de " & continuous functi
o izifg‘f“’:'fy m{ﬂ;gr da:x . G(f:) -:-fc‘.i\vhm G(x) is 32’.'3.‘&.',’257.?}33 'c'gug:g
=0 ey o € 14 2 e
== A Definition Equation (1), g wcl‘
) I
case when the function fin the pon, 5 nl:‘ i‘;; ;neth-od of solution, is just specia
nction of x times & function of it e ¥) can be factored into g
DEFINITION 2.2.1 g, arable Equation
A first-order di ferentiy equation of the form,
%
dx = 8Wh()
is said to be foparable
or to ha
Ve §eparable Variables,




2.2 SEPARABLE EQUATIONS

;(:' ;p:nb: ’lrng,x:nnpmble. respectively. In the first equation we
| .tf) 1.?-;
S&)) = Préty m (xee)yien),

but in the second equation there is no way of expressing y + sin x as 8
pr
function of x times a function of y. il

Observe that by dividing by the fnction A(y), we can write  separebl
dy/dx-g(x)h(y)bz. "lbivf ion h(y), we can write a (

b .
P(J')d; 8(x),
where, for convenience, we have denoted 1/h(y) by p(y). From this last for

8e0 iMmly that (2) reduces to (1) when A(y) = 1,
- | . X
" ¥ = ¢(x) represents a solution of (2), we must hlvcip(ﬂ"))'ﬁ (

e f 80) dx.

. Butdy = ¢'(x) dx, and 80 (3) is the same as
IP(v)d)"IB(X)dx o H(y) =Gk +ec,

where /1(y) and G(x) are antiderivatives of p(y) = 1/A(y) and g(x), respec

== Method of Solution Equation (4) indicates the procedure for solving
equations. A one-parameter family of solutions, usually given implicitly, i
by integrating both sides of p(y) dy = g(x) dx.

== Note There is no need to use two constants in the integration of a
equation, because if we write H(y) + ¢| = G(x) + ¢3, then the difference ¢
be replaced by a single constant ¢, as in (4). In many instances throughou
ters that follow, we will relabel constants in a manner convenient to a giver
For example, multiples of constants or combinations of coristants can son

replpcodbyadnghcmnm.‘

‘Xm Solving a Separable DE
A Solve(l +x)dy = ydx =0, .

SOLUTION Dividing by (1 + x)y, we can write dy/y = dx/(1 + x), frc

foliows that
fé.!. _dx .
y l+x

In|y| = In|] +x| + ¢
y= gl 4al+e m glital | g o-hmofulpmm
=1+ x|en [L#x|mlex
wap(l 4x), 0 UIHaecd

Relabeling " as ¢ then gives y = ¢(1 + x).
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FIGURE 2.2.1
[VP in Example 2

Solution curve for the

FIRST-ORDER DIFFERE

NTIAL EQUATIONS

i ults in & logarithm, a judicious
; mtc!g:tlhr::m e. Rewriting the second
o1 + x| + In|c| enables us to combine the terms on

-+ From Inly| = Infe(] +,"f)] we
4 loganM: integrals are not a/l logarithms,

Pl
forie

no firm rule can be given,. ==

OLUTION Becsuse cac

ALTERNATIVE 5 integration is Injc

choice for the c'on;tan]tnlc;fl -
line of the solution &5 {7 :
the right-hand gide by the prOpcl:‘lcS;fmc o
immediately gety = e(1 + x). BY c? | Howeves
it may still be advantageous to use Injc|.

of
may be only & sgment Or an arc

[n Section 1.1 we saw that a solution curve

the graph of an implicit solution G(x,y) = 0.

m Solution Curve

) . = ~3.
Solve the initial-value problem Zi—x = "v, y(4)
SOLUTION Rewriting the equation as y dy = =x dx, we get
,2 x2

j)’dy”'*‘fxa'x and )-2'-=—”2"+Cn-
We can write the result of the integration as »* + v7 = * by repiac.ing the constant
2¢, by ¢, This solution of the differential equation represents a family of concentric
circles centered at the origin. :

Now whenx =4,y = ~3,50 16 + 9 = 25 = ¢2, Thus the initial-value problem -
determines the circle «* + )~ = 25 with radius 5. Because of its simplicity we can
solve this implicit solution for an explicit solution that satisfies the initial condition.
We saw this solutionasy = dy(x)ory = ~ V34w 3 w8 « y ¢ Kip Example 3 of
Section 1.1. A solution curve is the graph of a differentiable function. In this case the

solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing
the point (4, ~3), : =

== Losing a Solution Some care should be exercised in separating variables, since
the variablg- divisors could be zero at a point. Specificall , if r is a zero
of the function h(y), then substituting y = r into dy/dx = g(x)h(y) makes both sides
zero; in other words, y=r is a constant solution of the di

‘ fferential equation.
But after variables are separated, the left-hand side of % = o(x) dx is undefined at r.

y of so!utions that are obtained
2 solution is called a singular

As a consequence, y = » might not show up in the famil

after integration and simplification. Recall that such
solytion.

m Losing a Solution

ek y+2]dy'dx. )
of using partia) ;
"8 5 1495 Of lgarithy gieg 2" $1de
]
zhly + 2| mze €y

y-zl :
2 0
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(. ORDER DIFFERENTIA tors) to relax and be content.

nstructors) , ,
inclination for most ;mdmts (and o not be unique. Nl it T

solution of an init
f Section k.

FiEN } B

a natural
HUW‘V“! i
fxample 4 0

©®)

We ar¢ now in o position 1o solve the

b ;
has at least WO solutions, ¥ =0ondy = 16% " _yp dy=%x dx gives

equation. Separating variables and integrating y

2 ' c=z0
2y”1-'§+6| or ys(-4'.'+c ’ c 0
= 1 The trivial solution
'ty o = 0, Thereforey = g% -
Fd Whenx = 0, tbeny = 0, SODECEIIN o L o niial-value problem () PRSI
13 --s()wmluslbythvuhngbyy .In : er @ = 0 the
: ‘ i i choice of the parame
k3 jnfinitely many more s_oluuonl. since for any
- piecewise-defined functio
Q) ,. % 0, P
! - I%(xz_azy' x=a
¢ initial condition. See Figure 2.2.4.

4 P ~Jdefine : :

) o catisfies both the di ferential equation and th
== Solutions Defined by Integrals Ifgisa function continuous on an 6pen in-
werval / containing a, then for every x in/,

d.ifs
. Z;Lg(t)dl"g(x). .

You might récall that the foregoing result is one of the two forms of the fundamental
theorem of calculus. In other words, [5g(f) dt is an antiderivative of the function g.
There are times when this form is convenient in solving DEs. For example, if g is
continuous on an interval I containing xo and x, then a solution of the simple initial-
value problem dy/dx = g(x), ¥(xo) = yu, that is defined on I1is given by

W)=y + Js(f)dt
o
You should verify that y(x) defined in this manner satisfies the initial conditi i
an antiderivative of a continuous function g cannot always be expressed it:xmi'

clementary functions, this might be the best we can do i ¥ B
solution of an IVP. The next example illustrates this idea. S i o

195 SN EEE  An Initial-Value Problem

Solve % = c"‘f, y(3) -

s

= --I'I . ]
tive is not an el gy continuous on (—“’ a8 4
el ot 0 ety i, Uiog 4y v o et o

f:%"‘ » J:""dt
)(l)]: = L '0"'43

) = y3) = J’ o
3

IR v ot « k
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Using the initial condition y(3)

The procedure demonstrated in

equations dy/dy = g /() where, sa
but g(x) does not possess an ele

Exercises 2.2.

(#) As we have just seen in
an antiderivative that is an
functions are called noncle

?.2 SEPARABLE EQUATIONS  «

= 5, we obtain the solution
x) =35+ fe'"” dt.
3

Example § works equally well 'on s,
¥, S () possesses an elementary antider
mentary antiderivative. See Problems 29 an

Example S, some simple functions do not pos

clementary function. Integrals of these kind
mentary. For example, f3 e~ dr and [sin x? dx

nonelementary integrals. We will run into this concept again in Section 2.3.

{i7) In some of the preceding examples we saw that the constant in the ¢
parameter family of solutions for a first-order differential equation can be 1

beled when con

venient, Also, it can easily happen that two individuals solving

same equation correctly arrive at dissimilar expressions for their answers,
example, by separation of variables we can show that one-parameter familie
solutions for the DE (1 + )?) dx + (1+x})dy=0are

. +
arctanx + arctan y = ¢ or En

‘l-xy=c'

As you work your way through the next several sections, bear in mind that f:
lies of solutions may be equivalent in ‘he sense that one family may be obta
from another by either relabeling the constant or applying algebra and trigon

iy
Ay 2

etry. See Problems 27 and 28 in Exercises 2.2.

EXERCISES 2.2

Answers (o selected odd-numbered problems begin on page

~ Ip Problems 1-22 solve the given differential equation by

separation of variables.
(l-j—i’ime 2.%=(x+1)2
3. dx+e¥dy=0 4, dy—(y=1)%dx=0
5.x%=4y 6.%+2xy’=0
22 e b ey = e+ et

11, cscyds + sectxdy =0

12. sin 3x dx + 2y cos¥3x dy = 0

13, (¥ + )%V dx + (& + 1)’e™dy =0
4. x(1 +yY)V2 dx = y(1 +x})'2dy

ds _ 40 e
18, — =S 16. ==
d w. X E
—_— —_ . = Nttt
17. 7 P-P 18 = +N te’

B BEEoy=3 b may-
l'dx xy=2&x+4p -8 " dx xy—3y+

% v
22, (& +e™) >
In Problems 23-28 find an explicit solutien of th
initial-value problem, -

2. %"-’- =402 + 1), X(m/d)=1

1 L5002

25, B%-y-xy. H=1) = ~1
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.
d) v = ] ‘,/U;‘ :5
26. - T £ 3
di V3
ey L ot 0)=—
R 471 o= ,L'( /j)’ e (" d') -
2 "'i“)',d"_'l .
le V
p 4.2 y &= () ¥ i
-~ (1 +o*) L‘Iv‘/f“l' .;/IA v “." ) & \“l
28. (1 +«0)dy. % x( sadel
4 =

Fyamnle § :'JI{; fin
; : 29 and 30 proceed as 1 Exampic -
-In Problems 2% and 5U | et
¢ F‘"‘“ Sed d

] the given initial-value
explicit solution of the given inl

'(_1/_' T vid) = .

,
29 - SN el
29. 3
dx
d
-7 i i
ady R, W=7 ==
30. —=y‘smx’, y(—2) 3
dx

(=

i it o e
: g e nhivio v to olo
nition by analytical methods Use a grapam nL.llr’ Pl
AdAL i V) S 1) UL

- AT
the graph of the solutior

i, e s

2 v
dx Ly
d&y e
1% 2y )= = 12 4 4x + M —
by e ) ¢
dx

Loedr —eFdy =0, H0) =0
34. sinxdx + ydy =0, ¥0) = |

S. (a) Find a solution of the initial-valye problem consist-
ing of the differential ¢quation in Example 3 and
each of the initial-conditions: ¥(0) =2, y(0)= -2
andy(;‘;) = ],

(b) Find the solution of the differential equation in
Example 4 when In ¢y is used as the constant of
integration on the left-hand side in the solution and
4Inc is replaced by In ¢. Then solve the same

initial-value problems in part (a).

: : d
36. Find a solution ofxd—y = )2 — y that passes through
the indicated points,

BOD moo ©E) @@y

37. Find a singular solution of Problem 21 Of Problem 22

38, Show that an implicit solution of

s’y dy - (x2 4 10)cos y dy =
is given by In(x? + 10) + cs¢
solutions, ifany, th
ferential equation,

Often a radical change in the form of the so
tial equation correY}»’onds
initial condition or {he equation itself, Jn
an explicit solution of the given inin'nl-vnlue

ey problem, U,
graphing utility to ;?lot the graph of cach lion, Con, s:r:
each solution curve in a neighborhoogd of (0, 1 e

Y = ¢ Find the constant
at were lost in the solution of the dif-

9 ZLag-1p 0.
dr

3 01
- ¥ WU}
i ==
x
Y {
3 ! i
&) ( {{
gf. ==
a@) ) 0.01, (0)
£ - = ()
LS ..“’
: ¥ | §
sde equalion
", sytAanMTIOUS NITSt 4t s “J
k! B RLULLOHE RIS 1
44 L,\ sk
i )
‘
|
{
'( 2
1]
1 1pane i
I H 10 £1 SO 1RO
3 obiem 19 of Fxercise
sdirted in Problen
graphs with those predicted i Probi
rraphs I dimn e ;
C al of definut Oor ¢ach &
Gi act inter f definitio
Give the exact interva!l of def
» 3 Farant:al
> ymous first-order differential «
44, (a) The autonomous first-order ¢

-
|
ot
1
|
.
-
"ad
—

: 5

A

. )

5, : . .

% o ) ~ line
Nevertheless, place 3 on the phase lin
& phase portrait of the equation. Com

& 3 w——" . f CUTVEC 81
to determine where solution curve (
and where they are concave dowi {sce |
18 ¥ : 2 tha nha
35 and 36 in Exercises 2.1). Use the p!

: 3 YNy ¥ ¥ N

and concavity to sketch, by hand. some tvp
solution curves.

(b) Find explicit solutions yy(x), y3(x), ¥s(x), and va(y)
of the differential equation in part (a) that satisfy,
in tumn, the initial conditions y,(0) = 4, 3}0) = 2,
»(1) =2, and Yd{=1) =4, Graph each solution
and compare with your

sketches in part (2). Give
the exact intery

al of definition for cach solution

In Problems 45-50 use a technique of integration or a substi
tution to find ap explicit solution of the given differenti

al
equation or initial-value problem,
45, é = -_.1_,_,__ 46 ffi. = 5"11,1
& 1+ siny " ax Vy
dy -~ ‘
47, (\/;+.r)-;~ "Vy+y 48 ﬂ -y
dx TR & \
\ a‘y e\’; P " 3 |
o 5. 8- . d Xtan™' y
P y v W)= 4 50, ;;; == ‘“‘“‘-‘-l" — \\ﬂ) -

Discussion Problems

5 , .
L. (a) fy;p:fxin Why the interyal of definition of the explieit
Eo ution y = @) of the initial-valye problem in
Xample 2 is the apen intervy) (=5, 95
(b) Can any solution

dx = ~x/y, ¥(1) = g9
52. () It g 0, discuss the differe

: _ , ! noes, if an y bet
in: :’orh:;:om' of the inuhl-vnlue blu:u r:\:::
differentiy fquation @y /dy w x/y and
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o on of the solution y = O e se'ution

sl th
v ytility of @ CAS © graph
J-‘L;‘vl‘ng b

- * F i
¢ - the IVP on this 1nieny al.
Q\..."\c ol u i

1AL EQUAT‘GNS

with the aid of a root-finding application
’ imate largest inter.
~aQ determine the appf‘oxn larges
Dflark-' Jf\dsc;ﬁmtion of the solution @. [Hint: First fin
‘8ii¢ :
::e points on the cUrve in part (a) where the tangent

i vertical.]

condition.

al condition W0) = -2,

s 1evel curves W

~ = COon Dt '.AC‘ L :
(a) Use s CAS and the ;or;:?“l_ embers df the
jot representglive grapns to . e
?‘(1 ,”TT“ 5‘11.‘“3?5 ot. [h{ d[ffcrm(ldl ch

(c) Repeat part (b) for the it

anuly _ \Meren / ks
dy _‘_\_{_:_:L _ Experiment with o ¥ 7 ™
dx H-2t)y ' tan- | X
bl rves as well as various 1ec
numbers of level cury our result | =

qular regiony in the x-plane until ¥ ! .
resembles Figure 2.2.6. ,

(h) On separate coordinate axes, plot the .gtjaph of Lhc
implicit solution corresponding to the initial condi-
tion (0) = 1. Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion cunve of a solution ¢ that satisfies the initial

$IGURE 2.2.6 Level curves in Problem 60

2.3 LINEAR EQUATIONS

REVIEW MATERIAL
® Review the definitions of Lincar DEs in (6) and (7) of Section 1.1
INTRODUCTION We continue our quest for solutions of fi

R : ‘ est for | irst-order differential equations by
next examining linear equations. Linear differential equations are an especially “fnendly” family

DEFINITION 2.3.1 Linear Equation

A first-order di ferentia] equation of the form,

A &
T e dalx)y . ki),

s 8aid t0 be u linear eqution in the variable )
& Standarg Form p Y |
it dividing b

Bliin s mora ygefy) fos : 8 Doth sidey of (| b
0q
iy
W dy P g
¢k Ut g ﬂ)

[y SO g ) i

-



We match each equation with (2). In the

the

first equation Ax) = 25, /S') = 0and s

second Nx) = <1, f(x)m §

See Problem 50
inFxe cises 2.3

fe

>

2.3 LINEAR EQUATIONS ®

d
. ' 4 2y = 7
dr+ "‘0 ﬂnd -—V"-'),'-{-S

are & |
both linear and Separable, but that the Jinear equation

I8 not Separable,

fz'::'fl,hm o 59|Uti0n ﬁ‘?‘l}wmod for solving (2) hi Nges on a renwkabl
; Ak the loft-hand side of the equation can be recast into the form of the exact de
tVe ot a product by multiplying the both sides of (2) by a special function plv)
relatively easy (o find the function M(x) because we want

lefr hand side of

.‘;milun product tule  (2) winlupled by i)
’ d r"u(;);\] dy+ g .y ; .uP‘
--l ) == — - -«-—Il = (RS al ‘D.
dx o T N
t

these st b ARV ITRL|

The equality is true provided that
du
B

The last equation can be .olved by separation of variables. Integrating

! ‘
£ - Px and solving x| = fl’(l)ui\ T
s

BIVES ufx) = ¢yelPiM Eyep though there are an infinite choices of w(x) (al! cons
multiples of A=) alj produce the same desired result. Hence we can sunplify
and choose ¢; = |. The function

Mhx) = v

is called an [niegrating factor for equation (2) 7 _ ‘
Here is what we have 5o far: We multiplied both sides of (2) by (3) and
construction, the left-hund side is the derivative of a product of the integrating tu

and y:
aimw% + Plx)elt ) LJ"'*“:)(.\')

u%’ [‘J!\M y] w pll1 {(;s\\

Finally, we discover why (3) is ealled an buegrating factor. We ean integriie |
sides of the lnst equation,

,Immy -~ j,ﬂh‘mm) e
and solve for v The result 16 8 onespanimeer l‘m_nﬂy af soolutlons of (2)
)y i PRAUT f gl M Side + e Minhs.

' 1
W erniphiuslee it yau shiould nos memoetee foola (4). T faljowing
diite sliould be worked ihrough each tise,



© SOLVING A il (B S e Standard form (2).
“’&“Eato;;t:uhncsﬂ’q“‘.‘}gﬂls%in ufyP(x) ool then find th .
(”) ‘ Fﬂ'\ﬂ! q,c slan T -‘,"T. No\mn%mtnceg?c) e, 2 ln'[scw_rahmn‘lzgthf - _V‘V
“indefimte integrl. ®h uation by the integratin
©2ia “Multiply the both sides of the smm o ’cctl'onis automatically thc'g
() Mulinyh Rt o of the resulting equati cally
{actor. X \ ‘

i i or eIP@¥ and y~
derivative of the product of thc mtcgraungfactf)r T B s

\ AR e ; :
‘ . ", \w L o ~, \‘ > & S ;
RO L "
‘:“‘(." -"*.'.:}'.‘.x e .L»’ﬂ-f!%‘ :'f{:.-,_.

iy

(ix ; .
() ln(;cgnllc both sides of the last cguation and solve for y

-

m Solving a Linear Equation

h.
Solve i; -3y =0

SOLUTION This linear equation can be solved by separation -of variables
Alternatively, since the differential equation is already in standard form (2), we iden-
tify P(x) = =3, and so the integrating factor is /(-3 = ¢=3* We then multiply the
given equation by this factor and recognize that

Ax La™ar i 3 d
c‘;—:c*‘)"—"e,"-ﬂ is the same as Z:[e""y]=0.
Integration of the last equation,
J-i a
& [e ‘ ylde= |0dx
then yields e™3y = ¢ or T e, —m <y <
m Solving a Linear Equation
d\’
Solve = - 3, =
2 dx =6
SOLUTION ' This linear ion, 1i
foum itk Bt equation, like the one in Example 1 is :
i ) -3, Thus.thc Integrating factor is agajn ¢~ alr_caqy In standard
equation by this facior gives 82310 e, This time multiply-
¢°"‘Q - 3g~M
dx € Ty= G 3
G e and so Z[e ) = Gemix
fitcgrating the Jast equation, -

d
[E[e‘hy]dx = GJG“"&

m‘“ e, e ¥
ij?c-n.‘_.é.,'&,\: e y= - +c'
g ¥ £ 0, 3

o mmvm com“n“vthedi ;
tntical point : fy from the ﬂircmul equation i
and (m. mal form @/dx-aui‘:mOnom
repeller), Thus a soh ) (htt;:hu a
lution curve an
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dz p
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oM this / / /
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< 3 LINEAR EQUATION® “ 54

aa'x preen 1in B % =
SV T Figure 2 32 Thic
i - LG ud 18 BSVTivirst _—
b ab B, “ 1 D1LE ASYMPRone pehavior of solutions s due the Lt
Ui Mrthution of fe—3 :
9 .‘Jyh?‘]k‘ Cé : { becomes flt"'l“ bl fOr increasing | |
C S8 't =X | . L Finereasmyg vilues al
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i 8 tansient Mtes
2UCEN 18 Ofien impot 1 Bpn| i bl
HED important n apDUed probleims

- ‘!‘-3lsxr\=.:=minucms Coefficlents In applications. the coeflicients /X yand 712 in
: Yﬂl{ bvc" F“:’\\C“A IS¢ continuous In the next ¢ xample /(1) s DIGCew ;. ¢ continuous
"f\"‘.‘\.“-fw’ t‘;‘ttlyz‘;“lii“"!& \:1:[‘”1;“(\' namely, a (fimte) jump discontinuity at x = |
defined. It is then possible r\ paris corresponding to the two intervals over which / 1y

L (0 piece together the two solutions
~ontinuous on [0, «),

it A |«H.||(\)l‘

P

P,

An Initlal-Vilue Problem

v dy
il Lo g o US X '
Solve o +ty=f(x), »0)=0 where f(x) = { l
; 1 0, \ |

SGLUT‘ION The graph of the discontinuous function £'is shown in | Juie 230 W
solve the DE for y(x) first on the interval [0, | | and then on the 1 .crval (I
0 =<x=1wehave

ay l ival l d
—— \_v = (“-' » \“A » 7 - RN o
o e equivalently, = [e'y] :

, &), For

Integrating this last equation and solving for y gives y = | « ¢je . Since () = 0,
we must have ¢; = —1, and therefore y = | — ¢™ 0% x = 1. Then for v > | the

'

equation

e Co8 v ]

By appealing to the definition of continuity ut a point, it 1s possible to determine
¢ so that the foregoing function 18 continuous at L. The requir¢ment that
lim,;- y(x) = (1) UHMI(,‘& that ¢.e™! ! "' Or ¢3 ™ ¢ L. Ay sgen in
s I e A 8 ’i
Figure 2.3.4, the function T /’ v 1

[1 = e, 0sxs1,

/

) = /) in i D .:.',L)"A'
V= le-ne,  x>1 SJal. ve MW

is continuous on (0, ®).
“ IS WOﬁhWhllc tO unnk EbOU‘ (()) u“d }‘!‘“UTC . 14 z“’l\ lw!. YOu e !li\‘.‘.“l\ (8]

a3

read and answer Problem 48 in Exercises 2.

== Functlons Defined by Integrals At the end of Section 22 we discu ed
:hc fact that some simple continuous fum'unn\_; do not Possess l;uLllxi"m&«wu *;?""‘
are elementary functions and that integrals of these kinds of Im‘t-‘nw!,‘. wre | mlh‘ 1
nonelementary. For example, you may have seen in calculus sl ¥ - N
fsin.r’dxmnonelcmenmxy integrals. In ul?phcd nmt‘htrm;u c§ some in o s
tions are define interms of nonelementary m!cglmls vo such spec a1 functions &
the error function and complementary error function;

iportant i

) i * T g “ v 4. (10)



2.3 LINEAR EQUATIONS »

Answers 1o selected odd-numbered problems begin on page AN

- —n

In Problems 1-24 find the general solution of the given dif-
ferential equation. Give the largest interval / over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

d
18. cos’x sin x ;{- + (cos’x)y = 1

19. (x + l)% + (x + 2)y = 2xe~*

d d WS F S
1,3_1’.5},/ z.ﬁnygo 20 (x+ 2 === 5 - 8 - dxy i
P :
21, — + rsec 6 = cos
!Z = éz + 12y =4 de
L-tymer o 43—+ 12y g o
5.y + 3xdy = 57 6.y'+2xy=x3 22.E+2tp,P+4’-2
' - 2
7. X% +xy=) 8 ) 2}'”5 3 23.‘x§}',+(3x+1)y=¢“'
9.x£2-y-;'zsinx 1o.x-43+2y=3 A dy
dx : dx 4. (¢ = 1)=2 + 2y = (x + 1)
“ 5 g :
ll.xgz+4yux’-x 12. (vl+x)jf“"xy"x+x2 .

.oe In Problems 25-36 solve the given initial-valug prot
B2 4xx + 2y = e : Give the largest interval J over which the solution is def
Woy+(1 +x)y=e*sin2e (28 Q.x+‘5y. »0) =13
15, ydx - a(x + y9)dy = 0 Cdx
lc.yd,..w-z;)dy ey 26. %—2::-3)*. n0) = §

l’.coﬂx%*('inx)y—] . 27."?'4-)?“3‘. J’(l)-2



Sk L ax .
R Y A o -
& )"‘ ..-i/ » {
- M o
T | v
& 7 2 4 ‘
it
= G
dl
| =
‘f“; - Wi & - v 8w 5 S ]
Wi ) ) = 7
"h R4 V| m) F | \V) 405
£48

2.y + 4oy =0, W0) = =1
N

34,

S
—

d)’ ‘
WrHDEZ+y =1 K

35, y' - (sin X)y =

In Problems 37
Eiven initial-va)ye
the continuoyg function

. (x + 1}-‘; Ty =Ingx, 1) =

; r ™ A .
J & | & s Fasrcete -3
vy 4Ny Loy $() VA ISLdrnis

k, I, T, constants

10

]

Wcad Zsinx, Hmf2) = |
‘_/)’ + (tﬂﬂx)y = CUSIX' )‘(0) =




§3. Heart Pagemaker A heyet

: Pacemaker cony
switch, a battery of constant Valtage £, o “ﬂu:: "f .
constant capaggance C, and the | -

. ‘ the switch is ¢
capacitor g'hnrgq; when the switch is tch is U;M the
discharges, sending an electrical stimyyg 1o te et
Dhring the time the heart is being s heart

timul '
E ucross the heart satisfies the linear diﬂ::xl‘ﬁglw equ::d“en
@«
o EE‘E'

Solve the DE, subject to £4) = Eo

Computer Lab Assignments

54. (8) Express the solution of the initial-value problem
y' -~ zxy S == I,)(O) - \/-‘5'/2, mmorm).
(b) Use tables or a CAS 1o find the valye of »(2). Use a

CAS to graph the solution curve for the IVP on
(=00, @),

S5, (8) The sine integral function 18 defined by
Si(x) = [i(sint/0) dy, where the integrand s

2.4 EXACT EQUATIONS

REVIEW MATERIAL
* Multivariate calculus

24 EXACT LQUATIONS

definedto be | at ¢ = 0 Express the solut
the initlal-value problem 27y + 2y o
Yil)=0in levms of Six).

(b) Use s CAS 1o wraph the sulution curve {
forx >0,

(¢) Use s CAS find the value of thesgbw,
mum of the solution y(x) for x > 0

5. () The Fremnd sine integral » &

' Sx) = [sindkwé/2) de. Express the wi
of the mitial-value problem y -~ (sin
NO) =5, in terms of Nx).

(b) Use 2 CAS o graph the solution curve
m(-u.ar,)'

(c) lti:kmdmﬁx)-ﬂiax—*-tmd.
uz—’-ﬂb,\‘ﬂmdcn;bcwlmmyu
as x — o) Ag x ~» —x

(d)UuaCASwﬁmm:»dmo{dn

maximum and the asbsolute T T
solution y(x).

e Partial differentiation and partial integration

* Differential of a function of two variables

INTRODUCTION  Although the simple first-order equation

ydx +xdy=0

ianpmblc,wecmwlwdwequaﬁminmdmﬁwmyymuhm
on the left-hand side of the equality is the difforential of the function x, ¥) = 1y, that is,

dxy) = ydx + x dy

In this section we examine first-order equations in differential form M(x, ») dy N NEry)dy = |
applying a simple test to A and N, we can determine whether M(x, ») &1 * N ) oy s a il
tial of a function f{x, y). If the answer is yes, we can construct /by partial integeanon,

rentlal of a Function of Two Variables 10z = /(v 0 u s
i%wmmmmmmmmmmm&w

then its differential is

**%ﬁ*gﬂ -

hﬁcMuM!)*e.MtﬁuMMtum

!ﬁ%!@uﬁ



dons f(x, ¥) = €, We ORN génidnm

iy of fune
.pmuncter farnily © the differential of both sides of %4

wo : ' computing , _
order differentia ::quftl::t; ‘? Y =e then (2) gives the first-order [2

s+ ydy =0

rst-order DE written in differsntial fany,

a8 A pefinition n differential of f(x, y) = ¢. 5o for aw

Mx, ) d’{+N(" )) .dy b ant to tum the foregoing example around; aamely ¢
urposes 1t i h as (3), 18 there some way we can PACOIRI A

: E suc & . .
we are given 8 first-order D ~ §y) dx + (=5x + 3y2) dy is the diffarsntial

R ('lcxrcssion( . dd g x & o
?(frﬁlesiff;[;)l; Ifthpcrc is, then an implicit solution of (3) is x” = Sxy * ' = 4

We answer this question after the next definition

e

o

DEFINITION 2.4.1 _Exact Equation

A differential expression M(x, y) dx + N(x,)) dy is an exact differential in 4
region R of the xy-plane if it corresponds to the differential of some function

f(x, y) defined in R. A first-order di ferential equation of the form

.\'l“ Xs )‘ CjY . ,'\j(l_ % },) “'ll\v ] (;

is said to be an exact equation if the expression on the left-hand side & an
exact differential. -y

For example, x?y* dx + x*y? i i
: 3 ’ y dy - 0 1§ an €x : 1 :
side is an exact differential: act equation, because its left-nand

; dG‘JJ")'x’y’dx+£fdy'

Notice that if we make the identi
identifications

a::t/ialy = }x’_y’ = dN/dx. Theorem 2.4.1

partial derivatives 9M/dy and N /ox is né

Mx, y) = 2y* and N(x, y) = =", then
given next, shows that the equality of e

coincidence.
THE
OREM 2.4.1 Criterfon for an Exact Differential *
Let Msx, | : et
dcﬁvntivesyi)n:nd N(x, ,r) be continuous and have continuous |
- N mmunmci;\:umlonkdcﬂmdbya‘: <l - then |
dxmmﬁni. condition that Mx, y) -: ;(:: e)<y a ;
' ¥) dy e wa aan
ar  ay
"o W
PROOF of
) v e NECESSITY simp




2.4 EXACT EQUATIONS o 65

dy

Oy ay\ax dy dx Ax ax

The equality of the mixq

! ‘ d partials is a cons
tial derivatives of M(x

v V) and N(x, y),

T_'hc suf'ﬁcicpcy part of Theorem 2.4.1 consists of showing that there exists a
funcllon[for which df/gx = M(x, y) and af/dy = N(x, ¥) whenever (4) holds. The
construction of the function ¥ actually reflects a basic procedure for solving exact
equations,

equence of the continuity of the first par-

== Method of Solution Given an cquation in the differential form

M(x, y) dx + N(x, y) dy = 0, determine whether the equality in (4) holds. If it does,
then there exists a function 1 for which

d
**-/ = M(x, y).
ox

We can find /by inlcgraling M(x, y) with respect to x while holding y constant:

Jxy) = f M(x,y) dx + g(y), (5)

where the arbitrary function £(y) is the “constant” of integration. Now differentiate
(5) with respect to y and assume that of /8y = N(x, y):

Y . _"_f M(x,y) dx + g'(y) = N(x, y).
dy dy

: } |
This gives £'(y) = N(x,y) - ajM(x,y) dx. (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit
ion of the equation is f(x, y) = c. R it .
somgomc observations are in order. First, it is important to realize that the expres.

sion Mx, y) = (8/dy) | M(x, y) dx in (6) is independent of x, because

oN oM
: ___aN__a_(_an’ dx)z—, 1)
-;-l-N(x,)’) I -;fM(xvy) dX] dx ay ax (x y) ox ay

x -

d, we could just as well start the foregoing procedure with m;ﬂ’wu?i:ggz t;:
50;;" - N(x, y). After integrating N with respect to y and thc? ; eren
z‘sul{ we wo'uld find the analogues of (5) and (6) to be, respectivel ,

3 &,
f(,ry)-chr.y)dyH(x) and h'(x)'W,)’)-axJNb‘.Y)y

In either case none of these formulas should be memorized,

W Solving an Exact DE 5

Solve 2xy dx + (x* = 1) dy = 0. | :
- ve
SOLUTION  With M(x, y) = 2xy and N(x, y) = x" = 1 we ha




i |
QENTIAL by Thearem 3 4.1 there exists a function f(y, )
s e caion 8 €15 s
such thal ,-
| 3 - |
:‘ elry WM 3y - X
ling
gons we obtain, afler integra
From the first o these oqud
fx, ¥ = £y + g
. : A ‘ . ¥ ) ‘ “.“"“ n ”
f the last expression with respect 10 v ang 4 the
Taking the parnal derivative O
result equal 10 Mx, ) VS

.‘.Y;.f+x'0-)ﬂ.t"- 1. w A\ 1)
éy

it follows that g'() = —1and g0) = ~¥ Hence /(x, ) = &’y = y, 80 the Solution

of the equation in imphcit form 18 2%y =y = . The explicit form of the solution i
casily seentobe y = ¢/(1 = ) and is defined on any interval not containing either
y=lorx=~-l S

= Note The solution of the DE in Example 1 is not f(x, y) = xy = y Rather, i
is flx, ¥) = ¢ if 2 constant is used in the integration of g'(»), we can then write the

solution s f1x, ) = 0. Nate, 100, that the equation could be solved by separation of
vanabies.

m Solving an Exact DE

Salve (¢** - y cos xy) dx + (e - x cosxy + 2y) dy = 0,

dy eV + Xysinxy - cosxy = M

Hence » function f1x, y) exists for which

Ml, y) = ﬂl
ax




In Problems 1-20 determine whether the given differential

o o B H £ p - . b
A g : e -
-
:gy sk
w8 J . i e K AR
Wy . 3 i R Ry P L e A

; BB EXERCISES 2.4

Answers 1o selecied oldd rumbered ﬂm ‘mf‘ o

equation is exact. If it is exact, solve it.

/1

. @x=1)dx+ 3y + Ndy=0
2.

(Zx~y)dx— (x + 6y)dy = 0

3, (5x~ 4}-) dx + (4x — 8y’)dy =

» »

10.

11

12.

13,

(sin y -—ysmx)dx - (cosx+xcosy y)dy = ()

(212 = 3)dx + (% + 4)dy =0

dy

(2_)‘—l+ cos3x)dx+;--—4r‘+3ysm3x—0

P 4

(= y)dx+ (x* — 2y)dy = 0
(l ’ Inx + )dx-—(l - Inx)dy

(x — y* + y? sinx) dx = (3xy* + 2y cos x) dy
(=) dx + 3xy’ dy = 0

(yiny - ¢"’)dx+G+xlny)dy-0
(3% + &) dx + (x* + x& — 2y)dy =0

:%-w-y'i'ﬁr"

3 3
, y" dx*y.x ,

t&(.:y-TT‘g)%...,:,a.o .
16 (S = 20)y' = 2y = 0 '
1. (n  ~ sin x sin y) dx + cos x cos y dy = 0

”‘WMW-@#W

uﬁ*lﬂ"@""

S A RS e Tl o e e s

19. (4°y ~ 157 ~ ;,4:-1. (v ~dy=

. P — “/ . '
20. (’ 4 Y | f’# y}d’ -,')'( "‘ ‘v)"f;‘.

In Problems 21-26 solve e grven mutul-val
2. x+yPdx+ (2ey+ 2 ~ V)dy=0, »i
R (F+y)ds+ 2 +2+pf)dy=0, yi)
23, (dy+ U~ S)dr + (by+ &~ 1)dy=1,

-(yf )E; = 1=

28. ()* cosx — 3r'y — Lrjdx
+(2ysinx—x3+hu"ja'r=& Wi =«

] \ &
- - — = gy + sz
16.(‘4-’.‘ cosy 2“14 ¥

lnProblansZ’lndZ!Huwhn & sodh
differential equation s cxact

27. (P + ko' — ) dx + (® + 207y )
25(6:?’+mx)-rx+eh5—‘--mmi~.
In Problems 29 and 30 venfy that Se pve
thmw&m&‘fc

tion by the indicated intograting factor s (x. ) &
the new equation is exact Sodve.

7:9. (=xysinx + dvoos x) dr + 2xcos x &y

pley) = xp

30, (P + 2y = P+ f + 2y -1
)= @+

In Problems 3138 solve the gives & farens
finding, a4 in Example 4, an approprists 1010
M@+ d o=
Nyt NasaeH="




In Problems 37 and 38 solve the given in
finding as in Example 4, an appropriat

by

2 FIRST-ORDER DIFFERENTIAL EC

& & ﬁ AP E.;( -

e v A ? ey
. Gxydx + (4y + xV)dy =0

\

| bJ

T

cosxdx+ |1 +=)sinxdy =0

\

¢

-

c(10-6p+ e )dx~2dy=0
" ()*3 + ,1"}3} dx + (5_y2 e ;. y3 sin y) dy =0

itial-value prol
€ integratin gfa

31 xdx + (x2y + 4y) dy = 0, yd)=0

38.
v
39.

21 = 9de= o ey
(2) Show that a gpe ‘ | |
the €quation

(b) Show that the Initia] o
y(1) = determipe the s
(¢) Find EXphiciy e,

ferential equati-. s

U



2.3 SOLUTIONS BY SUBSTITUTIONS e

v 5" o 13 R R s i e S St O e
4> SOLUTIONS BY SUBSTITUTIONS # d6 e #aths
REVIEW MATERIAL & 0 ot T 5
* Techniques of integration W e T e e | 7 & o g
* Separation of variables' - ¢ ¥ip % el Pt odi E 7

» Solurinnoflincarl)l'is . 5 _ ' g b Aok L e

INTR'ODUCTIQN We usually solve 2 differential equation by recognizing it as a certain Kindof
equation (say, separable, linear, or exact) and then carrying out a procedure, consisting of equation-
specific mathematical Sieps, that yields a solution of the equation. But it is not uncommoa to, be

situation.

= Substitutions Often the first step in solving a differential equation consis
of transforming it into another differential equation by means of a substitutio;
For example, Suppose we wish to transform the ~ - -order differential equatio
dy/dx = f(x, y) by the substitution y = &(x, ), v is regarded as a function ¢
the variable x. If g possesses first-partial derivatives, then the Chain Rul

dy _0gdx dgdu

& o Ve R X, SulAy M) T,
dx axdx odudr B'° =&+ gixu 3

X
If we replace dy /dx by the foregoing derivative and replace y in f(x, y) by g(x, u), the;
the DE dy/dx = f(x, y) becomes &:(x, u) + g,(x, u) Z—: = f(x, g(x, u)), which, solve
for du /dx, has the form C% = F(x, u). If we can determine a solution ¥ = ¢(x) of thi

last equation, then a solution of the original differential equation isy = g(x, $(x)).
In the discussion that follows we examine three different kinds of first-orde
differential equations that are solvable by means of a substitution.

= Homogeneous Equations Ifa function £ possesses the property fizy. rv)
713, v) for some real number a, then f'is said to be a homogeneous function o

degree a. For example, f(x, y) = x> + % is a homogeneous function of degree 3
since

Sltx, = (1x)* + (1y)* = PR3 + ) = flx, y),

whereas f(x, y) = x* + y? + 1 is not homogeneous. A first-order DE ix difforendia
form

Miavidr + Nixov)dy = 0 (1]

is said to be homogeneous’ if both coefficient functions M and N are v s, 2 e
functions of the same degree. In other words, (1) is homogeneous if

M, 1y) = £M(x,y)  and  N(tz, 1y) = oM, x)
In addition, if M and N are homogeneous functions of degres @, we can alsw wiky
Mex,y) = M1, u)  and  Nx,y) = x*N(1,u), whemu=y/n @

"Here the word Aomogeneous does not mesn the same as |1 did in the Remarks st the end o{f?ul 13
Recall that & linear first-order squation ay(x)y’ + ap(x)y = g(r) Is homogencous when g(x)
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gaNTIAL EQUATR N

» y ad Nk, ) = YN 1) wherev '™ x/y. @)
y) = _\"' MY, ! T

- t the substitutions that can

: &
WNC_S @ ‘“d,( );ﬁﬁz“ﬂ , either of the subst-

fon. ¢
* are NEW dependent variables, will reduce a

| ] i ' this, ob-
1o differential equation: To show this,
b equation Mx, y) dx + NMx,y)dy =0

a0 &
See Prodiem 1} o Exert 1868 2.

w0 solve 8 homOgEneous

be usad
::\\ e \\sm‘\\uﬁ. cq\ﬂﬁt‘l\ o a
can B¢ rewnifion a8

M, W dx N1, w) dy = 0,

eM(1, w) dx + N1, W) dy = 0
aldv-ud.'x+xduimo(hc

By substituting the differenti : ' .
ung timu, we obtain 8 separable DE in the variables  and x:

M), W) dx + NQ, w)[udx + xdu] =0
(ML, W) + uN(1, w)] dx + xN(1, w) du = 0

dx b N(1, w) du
» x Mlu+t uN(1, w)

or

where u = y/xory™

last equation and gatheri

preceding sections: Do not memorize

At this point we offer the same advice as in the
h the procedure each

anything here (especially the last formula); rather, work throug
sime. The proof that the substitutions x = vy and dx = v dy + y dv also lead to a
separable equation follows in an analogous manner from (3). e )

m Solving 8 Homogeneous DE

Solve (x* + \‘) dx + (x* = xp)dy = 0.

S specti

) ?;U?ooc:i .ln.pcctmn of M(x, y) = x? + »? and N(x, ») = x? — xy shows that

j‘= = :m:;s‘ are homogcnc.ou§ functions of degree 2. If we let y = wx, then
) x du, so after substituting, the given cquation becomes : 3

(x2+uzlz)dx+(x"—uxl)[udx+xdu]20
21+ ) de + 20 - Wydu = 0

St dx
l+udu+.;-=0

[....‘ s 2 ']du+dx-o S—
. o) — = (), v longdivision
After integration the last line gives 3 :
-¥$
21n[1 + u| + In|x| = Inje|

4
£ 1ln‘l + S\ + Injx| = i“‘°|-

' U'!n' ﬁlﬂ M o 5 gt ot
es of lo resphatiating v 0V
..I'Nlllll, We can write 'h. p“m‘
In |M| z : \ aing solution as

I8 simplor thap *quation, in pracy| Substitutions can be s
ncone 30N 1), Alko It gould e I ¥ Do used for every homo®
Ing mg:“' Intograls that aye “m‘d blfm thit :ﬂ:!? \V?mm the M:gw MY
i TP e o ot s

lem, 0 j awhiel’
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=5 i i i i
ernoulli’s N The differential equation

ay !
";; + P = a0y, D)

e

where n is any real number, is called Bernoulli’s equation. Note that for » = 0 and

n=1, cqt}ation (4) is linear. For n # 0 and n # 1 the substitution « = ' * reduces
any equation of form (4) to a linear equation.

m Solving a Bernoulli DE

ay
S] e —
Olve x y—-x:y:.

SOLUTION We first rewrite the equation a
dy 1

— e -y = A
dx x} X

by dividing by x. With n = 2 we have u = y~! or y = »~'. We then substitute

_dl—ﬂ?u_—_ -2.2‘”_ e Chain Rule

dx  dudx dx
" into the given equation and simplify. The result is
-
gx . X s

The integrating factor for this linear equation on, say, (0, %) is

e~ Jdxs = p~Bbr = ehx“' =y~ 1

d
g & et
Integrating 5 [x~'u) 1
givesx lu=—x+coru= —x? + cx. Since w = y~!, we have y = 1/, 50 a solu-
tion of the given equation is 3 = 1/7{-x* = &x). =

Note that we have not obtained the general solution of the original nonlincar ‘ditl :
ferential equation in Example 2, since y = 0is 8 singular solution of the equation.

= Reduction to Separation of Variables A differential equation of the form

g : ; :
Lo far+ By + Q) &)
X

can always be reduced to an equation with separable variables by means of the subd-

stitutiont = Ax + Bv + C, B # 0. Example 3 illustrates thc technique.

W An Initial-Value Problem

Solve %- (=2x +y)=17 »0) =0

. : L
SOLUTION Ifwelctw = —2x + y, then du/dx = =2 + dy/dx, so the different

equation is transformed into

du
T




\*

: ‘elds '
: ting Y1€

en integrd
sod =3 = o1t
R R o,

. or

——
u+t3

] nx+cl
- In

6

et acestion for v and then resubstituting gives the “-"ution
. as
Solving the

iy
\
GURE 2.5.1 Solutions of DE in

ample 3

3(1 + ce®)

e ym 2y 30+ coty
6x O . - l - 0: S
] = ce ¢

A ot (0) = 0 to the last equatian |
: ing the initial condition )( | t equation
il Fmallyl. ;_F;pb;;“?s 1, obtained with the aid of a graphing utility, shows 'hc(
( e= =l.rigure .0.4, i

- fan
3] - o) |
2.

fi T

the particular solution ) » Jx - =t i ddrk blue, along with the iy

some other members of the family of solutions (6).

N EXERCISES 2.5

——

Answers to selected odd-numbered problems begin on page AN

ch DE in Problems 1- 14 is homogeneous,

"8 an appropriate substitution.

(x-y)dx+xdy=0 2.(x+y)dx+xdy=‘0
xd{-f-(y-Zx)dy=0 4.ydx_==2(.t+’y)dy
O +ymdr— 20 g |
(y’+yx)dx+x’dy=o
=
E-—-—__.
ax  y4
D x+y
dx 3x+y
~yd
y x+(x+\/5)dy==0
x-‘-izaj..}.\
dx v’?‘\ﬂ. x>
oble
ms 11<) $olve the Yan o
& Nitig) 7, B
dx ’ y(l)-z
Lt
dy % y(':‘l)-]
+J’ew‘) dx ~ xers 5 'y
dy‘o
pE TR SORY)
l)tbno

- ll fn
’f’?"’/ ‘

Problems 1-10 solve the given differential equation by

S ———
Each DE in Problems 15~ 22 Is a Bernoulli equation,

In Problems 15-20 solve the given differential equation |
using an appropriate substitution,

lS.X%*’-yul 16.%—}».1:(')"
”~%‘=y(xy’-— 1) 18.1%-—(1 + x)y = xy

- 19, r’%+y=,y ¢ 2, 3(1 +F)%-2ry(f"”
In ?roblcms 21 and 22 solye the given initial-value problé®
21, 2 &

alie 2xy = 3, ¥(1) -4

Inp lems 23“30[30_/'!’!6_/'0’7"8[””!”(‘3“” :
r [}

| Priate substitution.
-z
24 2 1

R
: de"(“"'.i""l)’ s g

is, &

dx " ‘ln’(x +y) ‘ 26. ;ﬂ = gin(x +)’)
27. Q - - X

ot "l
s 2 Fe14070 §

i




