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VIEW MATERIAL

e definition of the derivativ
2ules of differentiation

yerivative as a rate of change :
“onnection between the first derivativ :
~onncction between the second derivatly

¢ and incrcasing'/dccrcasl‘n
cand concavity
. other function $'(x) -
the interval
A1 on the

2 o is itsclf an
derivative dv/dx of 8 funection ¥ -’e" "'f)'::sdii‘;l'crcntiﬂblc of
¢, The cxponential function y = 5 Al 1 we roplace
s first derivative is dy/cl..r - 0.2x¢ .cs
by the symbol y. the derivative becomcs

TRODUCTION The

nd by an appropriate rul '
0, o), and, by the Chain Rule, it
wt-hand side of the last cquation 5
. : “

dy (
- = (,2.)
dx’ :

ou have no idea how it was

tion (1)~
you equation (1)= Yw You arc now face to fice

w imagine that a fricnd of yours simply hands %
structed—and asks, What is the fimction rcpu'smlc-d by the symbo

I one of the basic problems in this courser © o,

How do you salve such an equation Jor the Sunctiony = d’(x)?‘ ‘

== A Definltlon The cquation that we made up in (1) is called a differential
equation. Before procecding any further, let us consider a more precisc definition of

this concept,

/

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or mare unknown functions (or

|}

To talk about them, we shall ¢l Tt '
and lincarlty, ansify differential ceuutions according to tvpo, orgler,

== Classification by Type If
: ud
rivatives of one or more unknown ﬂﬂﬁ::le:r:lln‘wolql:muon kAl ordinary de

varinble, {t {a suld 1o b an g th renpeet to n wi )
volving partinl derlvatjves o'f'::::"y differentia) Squation (OI)E):‘K‘I"\ L'::'fmu‘\hmt

pendent varl OF more unkn
I “rogl;lr:? Lurcnnod & partinl dlrroromlm":m funotionn of twe or more indes
. ouch type of differantin «ma?l::““ (PDE). Our firwi exnmple

Typosof DIfforens ) miuntlonl

ks / (n) Tlmqtm!l«mf
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2
2_1-( % 62u azu ()ZU By du v
axz 2 = O’ T e - 2____ B b i
N oy Ox - an T dy dx
Otice in the third equari
Quation that ther ;
ent varjab]eg in the pp € 8re two unknown functions and twe indeps

n Throughoy this text ording derivatives will be written by usi
either the Lgibplz Rotation ay/dx, d?y/dx?, d’r,?t/dx’, -+ . or the prime notltlm)lly’.)
beas B?r uSing the latter p t.. 1 ntial equations in (2) can |
YV =)y + 6ym 0, Actually,
A iy fote only the first three derivatives; the fourth derivatiy
Yrtten y ingteag of " In general, the nth derjvative of y is written d"y/dx"
, less Convenient o write and to typeset, the Leibniz notation has an ac

Vantage oyer the prime Notation |

: n that it clearly displays both the dependent an
independent variables, For €Xemple, in the equation |

Boknoveyt 1'un‘.:ti<m
[ dependent Vasiublp
dix :
-‘;;5- + 16x = (
1]

e i S L‘lmTupondum Varinble

it is immediately seen tha??ﬁ;?yfﬁbbl x
- Whereas the independent variable i 4 You
sciences and engineering, Newton's dot not :
as the “flyspeck” notation) is sometimes used to denote derivatives with respect
to time 1. Thus the differential equation ds/dt* = —32 becomes § m ~32. Partial
derivatives are often denoted by a subscript notation indicating the indepen-

dent variables, For example, with the subscript notation the seconc equation in
(3) becomes u,, = W = 2u, :

now rép?ese;xts a depeddem variable,
should also be aware that in physical

/ == Classification by Order The order of n differential equation (either ODE
e :)TPDE) is the order of the highest derivative in the equation. For axunple.l

sovand order 3 r Lst urder

& e -0

- ' equation, In Example 1, the first and thind
iss “°°nz;°g; r::dé?-:z;ﬂgb ggtél.l‘ vshmll in (3) the firat two 'qudfm ‘;t:
-q“'“"md PDES, First-order erdinary differentisl squations are i ooy that
Beryors ooy i kg Wlds oty
g t;;l dependenit variable in (y = x) dx + dxdy = 3’ '.?o-y -y
e g B uation In one
dlvldxiﬂl:‘:ml' we oan express an mtheorder ordinary differential eq
ne '

¢ variable by the general form |
d.p.'nd'n Fx, 5 ¥y 000 ") m 0, (4)

v 111 ¥, Ror both prace
tion of n + 2 varlables: x, %, %', . ., iy
wn:"&‘:;.::::;::ll ‘:2,?::“ shall also make the assumption hereafier thet
ticsl 8

ly for the
Ible to solve an ordinary differentisl equation in m form (4) m?lqu. y
possinie

(lone are sonsiderad in 4 et %"‘
g wtlon, only dlmﬁ;l‘ o I Ut 1K1 the wrd egumvion
" ”‘g’“w%ﬁ?ﬂ m-wm, LI A tidond o e
oxpandad volume !
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dinary differential equations. For CXa,.vﬁI;,

.order Or oy :
eral ﬁl’S“andS » Ly vy & sy’ = (x ¥)/4x; the nom

of the SR o yt + by = 0is y" =y — 6. See () in 1
nd-Ordér cqua : P )

whcl’cfls

Thus whc /’)L, / ‘)
:':-_ o - ‘-‘1)
(rX

Remarks. th-order ordinary differential equation

— classification by Linearity A7 (W This means that an nth-order ODE

oA 3 ', s o ,yL ’
| ‘fil;; l(‘"r;cir;n }:’(:)y("‘” 40 - Fa@)y’ T aolx)y —glx) =0
(4) is adx)y it

2 d
dry g ly o o0 + a](X)?i')_;' + aG(x)y i g(x)' {
- 1 .

Two important special cases of (6) are lincar first-order (n = 1) and linear secor
wo im : ,

order (n = 2) DEs: |
a|<x)% + o)y =gk) * and @()7G ¥ ay(x) . 12 + ap(x)y = g(x). (

In the additive combination on the left-hand side of equation (6) we see that the che
acteristic two properties of a lincar ODE are as follows: :

+ The dependent variable y and all its derivatives y',y", ..., ¥" are of the
first degree, that is, the power of each term involving y is 1,

* The coefficientsay, @y, .. ., ay 0f 3, »', .. . , " depend at most on the
independent variable ¥, o

A nonlinear ordinary differential equati ' : | .
 functions of the de quation is simply one that is not linear. Nonline

, pendent variable or g :
BPPEAT in 8 lincar equation, o I derivatives, such as sin y or ¢, e

m Linear and Nonlinear ODEs

SCSLLATR Linear v Noniinear

(y"x)d;...h '
RO e ol d

ll'e; *h mm‘ ”
have Justd Abay ﬂ"t'p fecond. :
emongt » &nd third.g _
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% 1 DEFINITIONS AND TERMINOLOGY »

-

P CENIONG 1.2 S of 2n ODE

Any functj :
that are con?nfc;:;eﬁned (" an mterval / and possessing at least # derivatives
on/, which when substituted into an mth-orde: ordinary dif-

ferential equat
¥ on reduces the uati : e e : v
the equation on e G €quation to an 1Jenf1ty, 18 said to be a solution of

e st 3

'y SO]QUO @
tlo t tl 1 0 m ,zu]..’o . ‘rol l dl , n , K»l IU‘ ( ') lb “ f’" '

P, ), (v, ... ¢x)) =0  forallxiny/

W ; 3 \ :
as: uS;t’ ::m b sansﬁe thF dx erential equation on /. For our purposes we shai] als
Raai af_ a so'lgt.lon ¢ is a'feal-valued funhction. In our introductory discussion w
O:éc)l)si; :Llol "st * s_(::ug: . ofdy [dx = O-ZXJ’ on the interval (—0, ), :
nally, 1t wi convenient to dc i ) :
symbol y(x). d@otc & solution | by the alternativ,

=I r?terv'al of P'eflnltion You cannot think sofution of an ordinary difTerentia
¢quation without simultaneously thinking /nérval, The interval / in Definition 1.1
1§ variously called the interval of definition the interval of existence, the interval
pf validity, or the domaln of the solution and can be an open interval (a, b), a closeg
interval [a, b], an infinite interval a, o), and so on.

/ EXAMPLE 3 RSN Solutio

Verify that the indicated. iwwciion is a solution of the given dilferentia] equation on
the interval (=00, ), _
@) dy/dx =xg% ymgpd )y =Y by=0; ym e

SOLUTION One way of verifying that the given function s a solution s 1o see,
after substituting, whether euch slde of the equation 1y the sune %t cvery x in e

interval. ‘

(») From

' dy | 1
left-hand side: ;f “s(ir)=gp,

. _ A i
Fight-hand side: xy”'ax-(-l-ax‘) ﬁx-(z.ﬁ) 33",

| y real numiber x Note thal
that each side of the equation is the same for every rea
;;‘ii.:w {s, by definition, the nonnegative square toot of ' i
(b) From the dorivatives y =1 + e ind y* = xe' + 2e° we have,

1iber £ .» : ) 7 : . sot ® 0
m“"’?'“;“d'm__ ey ey (e #30) = Yre' # ) HIETH
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h differential equation possesses the constant so.

CHAPTER 1 _
differential equation that is identically

in Example 3 eac
Note, tm'_t}:ténx < ®, A solution of &

lution y = 0, d to be a trivial solution.

: i lution
lution ¢ of an ODE is called a so .
/ &2 Solutian Curve ﬂ::ﬁ,ble ;xz‘c-t;o: it is continuous on its interval J of defin;
v

ince i dlﬂCrc I ﬁl" ; t
tci:: e'E‘hsus m:;‘elsﬂ:ay be a difference be dc;thc in of t!?ef z;ctio;l:::;d‘ggt ::
the domain
i . Put another way, ' .
B ame st nteve  of defnton or doman) of the solution . Example 4

illustrates the difference.

Function versus Solution'

EXAMPLE 4,

l | The domain of y = 1/x, considzred simply as a functia.n, s tht; set o:' all rca-l
‘L Oy almbar except 0. When we graphy =.]/x, we p]Ol pomfs in the {y-p ane c?r
o5 ¥ x responding io a judicious sampling of numbers taken from I-IS domfim. The ratio-
AT nal function y = 1/x is discontinuous at 0, and its graph, in a nc}ghborl'food of
\ 4 the origin, is given in Figure 1.1.1(a). The function y = 1/x is not differentiable at
e 1 * = 0, $ince the y-axis (whose equation is x = 0) is a vertical asymptote of the
3 4 A gr...p;i.
meRon y = lx, x ¥ ( Now y = 1/x is also a soluticn of the linear first-order differential equation
Xy + y = 0. (Verify.) But when we say that y = 1/x is & solution of this DE, we
Y mean that it is a function defined on an interva] J on which it is differentiable and
\ i satisfies the equation. In other words, y = 1/x is a solution of the DE on any inter-
14 \\ val that does not contain 0, such as (-3, — D), (5', 10), (==, 0), or (0, =). Because
[ & ~—— the solution curves defined byy=1/xfor-3<y< ~] and% < x < 10 are sim-
| x ply segments, or pieces, of the solution curves defined by y = 1/xfor — < y < 0
and 0 <x < e, respectively, it makes sense to take the interval 7 to be as large as

+ possible. Thus we take / to be either (~ oo, 0) or (0, =). The solution curve on 0, =)
s shown in Figure L.1.1(b). ‘= !

=

ution y = 1/x (0, =)

o T B bt == Explicit and Implicit Solutions You should be famil; i terms

e 4 he | amiliar with the

,/“ i5 10t the game a3 the explicit funciions and implicit Junctions from your study of calculus, A solution in
. ' whfch the dependent variable is exprassed solely in terms of the independent

| €an manipulate,
- We have just scen in the Jagt two

ofdy/dy m xyln, ' i g 1 o 0, ad i i explicit solutions
: ' : +
tion y = 0 is an ‘explicit solution of a1 'z)’m .Vu'. : Moreover, the trivial goly.

:h: :;::::ines:h g‘t!" actually solving some ordinary differen Ry 0 We get down to
o me of solution do not alwa
- sy y. I“d di
itr - ThiS s particulurly gryg when we attempy :ctn':l o in explici
L otal equations, Qften We have to pe o ve nonlium,ﬂm.om

Clx, ») = 0 that defines a solution ¢ implicit]

f '-
INITION 1.1.3 lmglldt Solution of an ODE
A relation Blx, y) = o is

differentia] “quation (4) o, ha Implicit solutip 0
. n Pl R of an
Ction ¢ (hay - z : an in:’erval A provldodlmm.n exists a¢ rdltmy

e

I et

‘ |




% (2) implicit solution
,_ y ” .'
R x4yl w25

2. &
BE D gt Be i

(b) explicit solution

y o VAT g :;( ) (=5,75). The solution curyes given in Figures

Wy,
R 8 a2 o ‘!
T 1 il

(€) explicit solution

Y= -st—j” -‘5 <x<3§

FIGURE 1.1.2 An implicit solution
and two explieit solutions of (8) in
Example 5

X

J

1:3 DEFI‘N!T!ONS AND TERMINO

m Verification of an Implicit o1y

/ The relation

o —

o

2 Pop o T
+)? = 25 15 an implicit solutjon of !

. X

WAy

=5, 5). By implicit differentiation we obtain

e different. . aqu

on the open interva] (

d d d
dxXJ"‘;;y’:j‘EZS or

Solving the last

- - ‘;r}’ &
X+p==p, ,

J

equation for the syr;abol dy, 'dx

2 gives (8). Moreo
x Ty =25 for y in terms of x yields y = +1/25 "2 The 1
P @ = 23 T8 and R 10 R VAT e

5~ " satis Y the relat
X+ ¢f =25 and 52 4 ¢3 = 25) and are explicit solutions defined on

1.1.2(b) and 1.1.2(c) are
the graph of the implicit solution in Figure 1.1.2(a).

Any relation of the form x2 + ¥ = ¢ = 0 formally satisfies (B) for am
However, it is understood that the relation should always make sense in the
System; thus, for example, if ¢ = —25, we cannot say that x? +y2+2
implicit solution of the equation. (Why not?)

' Because the distinction between an explicit solution and an impti
should be intuitively clear, we will not belabor the issue by atways sayin
an explicit (implicit) solution.” '

== Families of Solutions The study of differential equations is simils
integral calculus. In some texts a solution ¢ is sometimes referred to as i
of the equation, and its graph is called an Integral curve. Wheo evaluati
derivative or indefinite integral in calculus, we use  single constant ¢ of ;
Aﬁalogouﬂy. when solving a first-order diﬂ‘mnpal equation Flx, y, y
usually obtain a solution containing s single arbitrary constant c;r-p:)r:
solution containing an arbitrary constant represents a set G{x, y'.';w |
called a one-parameter family of solutions. When :olvm:‘:: reeicp

tion F(x, 3, ¥y s ¥™) = 0, we seck an a-param o
e €1, €2 . .+, €n) = 0. This means (hltg:mgle du]'mnd‘aloqua P
aan(‘ t'q);;nilc; number of solutions corresponding to the lqlliwx S
for the parsmeter(s). A solution of a differcntial equation

parameters is called a particular solution.

: ficit ootudﬁﬁ*"
: family y = cx = xcos x is an exp
/(8) A one-parametes i

first-order equation » ~y=Psinx

¢ of some
igure 1.1,3 shows the graphe o
on the interval (—*: .)mpchoim of ¢. The solution y = =¥ 6%

: = 0
solutions in ': is M' :’; particular m mp“d i... " <~

/
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amily ¥ ce’ + caxe” is an explicit solution of the
sfer (Al
The /)_,1_\,4’11‘_'““&
p) The WP, .
d-order equation M U D 0

secO!

. | 4 » have chown eave .
YIn fli’un: 1.1.4 we O4Vve SH0wWn seéven of th(_‘ i
§ e solution curves in red, green, and

_\-'lt ) (L‘] - ()' "\: . :\\'«'v‘ - ﬁ‘-“ ('.”

of Example 3, (Venily ( o
' of solutions 1D the farmuly.
hs of the p.miuul.u'

s X :\! \ (.,l

in part (b) :
ple infinuty
are the H‘jp
= 0), {!Ihl,l

solutions ) ‘
5 c3=2), respectively.
= 5¢
: rential 60U pOSSESSeS 8 solution that 1s not a member
Sometimes a differentiat €4 hot ic 2 solution that cannot be obtain
e pal : of the oquation=—that 15, 8 SGIRROT EHIL SEITICR DS QDMined by |
family of solutions ¢ \ the family of solutions. Such an extra solution IS ca

. 2 meters 1
fthe parameters In {1 ¥ enthaty = —~x*and y = Qare s

Cineular solution. For example, we have seeri ‘mi e W : o,

;;léd:}?' rential equation dy/dx = Xy~ Of (=, ). In Section 2.2 we shall demonstr,

erential equation &y &8 = < wquation dv/dx = xv'2 possecs ‘

by actually solving it, that the differpntial equation @y'/dx = xy "= possesses the o
) Y u.« : _'I B 1 018 | — . e ' :

parameter family of solutions ) = @x ‘) When ¢ =0, the resulting particy

L 4. But notice that ,fi:?' trivial olution y = 0 1s a singular solution, i,

(._‘_;—- + ¢)’; there is no way of ass1grung a value

FIGURE 1.1.4 Some <C [utions
o |

DE inj yol Example © :

of DE in pait (b) oi LXar o S

solutionisy = 7;
it is not a member of the farmuly )

the constant ¢ to obtain y = 0.
In all the preceding examples we used x and y to denote the independent g

dcpcndcn[ \‘ln’ﬂb!c‘s ['L‘.\_.g\c‘:“\k&v;} E,H}! you “.‘H’.,,UJ‘L‘] b\'.‘\ ome ilL\TUsIUn];‘d o seernrn
and working with other symbols to denote these vanables. For example, we coul

p ; g ’ i“ WL Coul
denote the independent variable by ¢ and the dependent variable by x.

 EXAMPLE 7 Using Different Symbols

¢ [h fun-" "“S = o oS - e 21 ‘ , -\r A 2 14 by
N ] UG % ;Tlld. o * n I hc ’I ﬂl ar ‘A ‘{1‘ » CL 15[“ (%]
¢ Clio X = Sl “ ;CC a d C J '
’ 2 L , . y ’ l 2 c L

" + [6x = 0,

Forz=¢ ¢ ,
£ % ¢ cos 4r the first two derivati .
A" (6o cra s Q e denvatives with respect 0 ;
10¢) cos 4 Specttorare x’' = ~4-, cin 4
aubstztuung'\: and x ther gives C) Sin 4y

¥y
'r f’ " 4 yhr i 16¢ 4 .
' fos 2 X COS 41 + | ¢} COs 4)) =

/ In like manner, for X ¢4 5in 4 6( ! 4 ) 0.
-2 4

?ﬁ, ¢ + | “ehavex” = ~16c; sin 4y, and 50
. L “ =16¢,8in 4 + ]6(02,!»“4[) -0

/ i - be 1"
| \ ‘“HU!‘._ T, st .
/ ! Wy smaightforw v
/ tWO-p: , P OrWard 1o verify ,
R eqlmf’_:’mmcm family x w o, C(\;’;Q that the |inear combination of |
(8) w0 expi g soluti; ¥ ”/ S8+ exsin 4ar, is also g SOIU(anJ, or the
o0y o @ solution of the differential
) € next ey
y Plecewiseug Xample showy tha =
Pﬁ“ed Ainasl anag u S(ﬂ f "
Unction ution of a differen
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feun PIEWIsede firey gy, : - ®uatig Mial ﬁmctiom V= oot
k. ST W8 an expliolt solus
: ome 8ol g of I a the Ihite Xy : 4
Hlmwll,;“;?l(~ ) (VH W - V=
T g fhg o Oy
bhis g The blyg 00d red e
Ve o, - CUlitlen curves shown I

Corfesvongd to the cholces
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“ IREMINOLDCY

The pisces: |
PIREWIse dar od di & i

dcrm..d di fcrmtmb?: function

L ;
ym{ X, x<

¥, x>0
18 also

A Solution of g
y m il - \
- Y asingle o

'€ differeny
from the family by

el
WVice af 1A equation cannot be oh
QIce of ¢  S¢en in 1y

tained from (he family
choosmg 0=

“ lgurc I. I.S(h) the solution jg CONstrycsad
for,r <Oands = | fory = s
= Systems of Dj tial i =
i e 4 !a. Eq‘uauons Up to this point yya
1Al equationg Containing ope
& 10 mapy

Pave been
: unknown funct'on. But
dpphcauons, We must dea} with s

‘ SJA system of s e Systems of
U.“I NS i ? 21 { al . r lnnr} dj"-“,"—c"li. MTirads 5 4
SQuations iny ol\.,,,g the dl‘n\’atives o two L i al eq ..J}.On.ﬁ IS tWo or more

i "Nl var Y
ndependent Vanable, For Cxample, if » and
N : ; s i
otes the independeng Vanable, :

equations Pl ol then System of tyq first-orde differentia|
u'.x' -8
pr o ({5 R0
. & )
;]_l- !“l’ "’J J )

Al s SEMARKS sbiren
(1) A few last words about implicit solutions of differentia] equations are i
order. In Example 5 we were able 10 solve the relation x? + 2 = 75 f.
Yy In terms of x to get two explicit solutions, ¢ilx) = V25 — &2 and
Gy(x) = ~ V25 =2 of the differential €quation (8). But don't read too'much
into this one example. Unless it is e 'Sy or important or you are instructed to,
there is usually no need to try to solve an implicit solution G(x, ) = 0 for y
explicitly in terms o1 x. Also do not misinterpret the second senience following
Definition 1.1.3, An implicit solution G(x, y) = 0 can definc a perfectly good
differentiable function @ that is a salution of a DE, yet we might not be able 1o
solve G(x, y) = 0 using analytical methods such as algebra. The solution curve
of ¢ maybe a sagment or picce of the graph of Gx, ) = 0. Sccﬁl’roblcnb 45
end 46 1n Exercises 1.1 Also, read the discussion following Examnple 4 in
Section 2.2, .
(i) AJthough- the concept of a solution has been cmphas.ized m_ this SCCFl(fII).
you should also be aware that a DE does not necessarily have to1 p‘olss)css
a solution, See Problem 39 in EJ'(ercxscs Leks ﬂ'\c question of whether a
solution exists will be touched on in the next section, o gt
(i) It might not be apparent whether a tust-ordgr ODE wrﬂ"rct) mrdliﬂ?rcz}n‘lm,
)dx + Mx, y)dy = 0 is linear or nonlinear because ‘h(,'f.t. ia’ !I.l? gr:%
;mu?n:lt(';nf: that tells us which symbol denotes the dependent variable.

i ises 1.1.
blems 9 and 10 in Exercises | LM
iy ight not scem like a big deal to assume that F‘(x,y,y,.,'.,y .)C :O;asn
v m"’ but one should be a little bit careful ht':rc. Tﬁcn. are ex cgi Scc
b:dSOLY;S fc?;r{(nir;ly are some problems connected with this assumption.
and t

Problems 52 and 53 in Ex the term closed form solutions in DE texts or in
run across

(




R -7 o B 7 gl IRy wass W
famibiar)/ thmiC funcli

e & TRA) '),

tial 3ﬂd log ,ODE F(X. V. Y', . : y(,,)) . 00n L

_ fynctions: on of an nth-order : famﬂ'y' Glx, y, c1, i) 3
A [f even) 50 Uad from &0 mmcn,r' i A $Ca) = {
(‘I}’]Ca,ﬂbto of[hcpar&rncthan”' .it,...', ,O cﬂsayum
¥ ooriate choiceS { solution of the DE- In solving Linear ODEs, we shal
?f;:-,jh is the genera srgsmmous on the coeflicicats of 'h‘_ eq‘{ﬂhdn; With g
;xose relatively s:mi?::a assyred that not only docs a solution exist op ap inter

Ids all possible solutions. Nonlines, oD

but also that 3 fm}y{iﬁim first-order equations, are usually difficult o impy

with the exception ©
sibit‘ to solve 10 ferm :
y of solutio

obtain & faml

is family contains all SC
e oal solution” is applied onl

"gcncral 5

: ¢ at this point, but s ; . :
s conCCP—-wc will comc back to this notion in Section 2.3 and again |

your mind
Chapter 4.

s of elementary functions. I':unljer'more. if we happen
ns for a nonlinear equation, it 1s not obvioys wheth
iI solutions. On a practical level, then, the designay,
y to lincar ODBs. Den’t be concemed abo
ore the words ““general solution™ in the back

BN EXERCISES 1.1 91 2

Answers fo selected odd-numbered problems begin on page AN

In Problems 1-8 state the order of the given ordinary differ-
it equat on: Determine whether the equation is hnear or
nlincar by maiching it with (6)

L0 -2 - 4oy’ Sy = ey

/'d) a8
Lxag- td&,’ a2

N
!
N
5
: ]
—
S
St
~

\‘/ R;J‘)(
6 &R "SR '
dr y
1. (sip ] (cos g
By =9
- [ 2 D .
s‘ 4 - f | l-:\ ¢
) ¢amg
In Problcnu ’
first-ordey dnﬂ‘: 10 i
_ . “Tmip,
dependen, ‘»‘umg:ﬂ:l Quatigy i l? Whethe :
“Quatio Biven ip (n hing it Wi:::rh > ndigwen
e ﬁfst Cated
9 erent;
U ) dy 4 - i
v 4 ¢, . "MYiing
ue”) dy = 0 ;
N[]u

In Problems 11-14 verify that the indicated function is
explicit solution of the given differential equation. Assu
an appropriate interval / of definition for each solution

1. 2y’ +y =, y = g2

dy 6
12, = 4+ ey TR L
dr 20}’ 24, y= r e 20y

Ll K

13. y" - 6y + By=0;, y=e¥cos2r

14, "~ - .
Y +y=tanx; y= —(cos x)In(sec x + tan x)

I .
y“::‘(’fle{ns 15-18 verify that the indicated functio
fiifferentiaisc 20 explicit solution of the given first-orde

ing  simp] quation. Proceed as in Example 2, by consider
€ring ¢ asp P a' unction, give its domain. Then by consid
S 4 solution of the differential equation, give at leas
Nterval 7 of definition

= 1/(4 - x2

» Y=(1 - sinx)~12

*M$ 19 ang o . s
' :;':,,:‘"P“Cit Solugie. 20 Vrify that the indicated expressio”
ind

u ; .
leas;m of the given first-order differential equé _‘
On

© explicit solution y = ¢(x) in cach



-yaﬁi;'

Use # 87 ' “ﬁmymm‘h‘m&m

ion. Give an interval 1 of definition of gach ‘ohf’_‘Plicit soly.

Lon ¢,
: JX:‘ - 1X1 - ’ ln(zx“ 1
20. 2xydt+(xz.-)’) d}”‘:O; "232)'+y2a 1/
[n Problems 21-~24 verify that the indicated family po

Gons i8 3 soluﬁfm of the given differentia] equation
a0 appropriate interval / of definition for cach so!ut{on

s c,e
— = P(1 = P); P el
n ~ (1-P) L,

d x
T Ziuy=1 y=e-r’fa’d:+c,¢--=
0

dx

dy  dy bt
4T =0y = et e

dy d? '
U r-5+ 21‘._;5_1%1)_= 12

b b VN
s s

y=ext 4 czi +eoxlnx + 42

25, Verify that the piccewise-defined functio

y={-x’. x<0
2 zal

is a solution of the differential equation xy’ — 2y = 0
on (—o, oc), | ‘

2. In_FJLamplc 5 we saw that y = ¢y(x) = V25 — X and

{ = ¢,(x) ™ ~V25 — X are solutions of dy/dx =

*/y on the interval (=5, 5). Explain why the piccewise-
defined fupctio

ya{VZS-P, ~5<x<0
V25 -2, 0=x<5

' not g soluti : . ;
i on the
interval (—s, s), of the differential equation on

=30 find values of m so that the function

olution of the given differential cquation.
28. 5y’ =2y
3.2+ 7 -4=0

?3""%31 :
Mita e 284 32 find values of m'so that the function
& Pltion of the given differential equation. |

V*Zy
# Vwg
1 g"’y*u,

B3 4 5w
. J"‘y‘+2yh3
4, (y.. ”)’"l

*

dx

37- T S ﬁx
Rl 33-"d*;°5==4y+
dy. o
dl_51+3y’ #-4:—
B X = cos 2t 4
= W

Sk y®™ —cos

Discussion Problems

39. Make up a differential equation that d
any real solutions.

- 40. Make up a differential equation that Yol

possesses only the trivial solution y = (
reasoning.

41. What function do you know from calcu
its first derivative is itself? Its first

constant multiple & of itself? Write ¢
the form of a first-order differenfial e

solution.
42, What function (or ﬁm’.ﬂﬂl)déyw.kg
. lus is such that its second derivative 1s it
derivative is the negative of itself? Write
' thefomofasecond—ordﬂdiﬂ'crmuale
solution.

43 Givcﬁ that y=sinxiswe;;licitsoluti
order differentisl equuiong; =V l'-
terval ] of definition [Hint: Is nof the ink
‘ intuitive sense 1€

44. D;scuﬁwhyamaka : y':fZ);"

::MO{MM.Y’;:‘” .

oA i m’;wniu!

ndﬂnmﬂr"‘“”*

vion of the DE- :



aing ‘ L |
(d) On the same coordinate AXES, sketch (ha N'”AL-VALUE 5

the two constant solutiong fbundbin l;)xlx]: Eraphs of 4 ROBLEMS o 13
constant solutions Partition the Xy-plane (iu). Mhese Puter Lab A, slgnments
regions. In eagh region, Skctfth the G 1 nto lhrcc n }mblc:nu, 59
constant solution y - BX) Whoen PR Of & oy, =" And 60 use y cog "

. PX) Whose ¢ pe is ¢ e Y out the gimn; Compute ull derivy(jyeg
gested by the results in parts (b) ang © 18 sl Indicated function | Plificationg needed 10 verify thy th

- * i l.; " ’ c

Consider the differentia] e uation y* = ,,2
) 1 il o " 59,

! a . -
(a) Explain why there exist o Constar : 200" + 158, . $80,
the DE. L solutiong of Y= xe%ogga, 0" + 841y = ¢
(b) Describe the graph of a solution Y=é@). | 60, 1y~ | A, o0 E.
example, can a solution curve hg - For / Uy’ - 28y =

Ve an : snatmn
extrema? Y relative y = 90 $08(5 In x)

(c) Explain why y = 0 is the yrcop
inflection of & solution curye

(d) Sketch the graph of a solytion y=
differential equation whose shape ig
parts (a)—(c).

rdinate of , point of

1.2 INITIAL-VALUE PROBLEMS | :

REVIEW MATERIAL

¢ Normal form of a DE
e Solution of a DE
e Family of solutions

INTRODUCTION We are often interested in problems in which we seek g solution y{(x) of a
differential equation so that (x) also satisfies certain prescribed side conditions—that is, conditions
that are imposed on the unknown function MNx) and its derivatives at a point xo. On some interval /
oontaining xo the problem of solving an nth-order differential equation subject to » side conditions
specified at xo:
d"y p "
Solve: ;;”":f(x)y’yv'-'ry‘ . ‘)) ([)

Subjectto:  Y(x) = Yo Y'%) =y -y YTAR) = ey,

I‘:’::;:zez o(’I\'}}ll”). The values of y(x) and its first s — 1 derivatives at xo, y(x0) = y0.5'(x0) =1, - -

“N(xg) = initial conditions (1C). e S ot

5 )(XO)' i atr c::llccrd initial-value problem such as (1) ﬁvcgucntl):j cat:ulbusf?’t [f;']fcldtsﬁl:l“
Solving an A -of Jutions of the given differential equation and t t‘nf 'ulz’:r o

b 05 famllydotcmuns0 ” e the n constants in this family. The resulting partic

conditions at xp to de ' '

il P it
defined on some interval / containing the initial point Xo.

= 2in{l).
etation of IVPs The cases n = 1 and n 2in(1)

= Geometric Interpr
' 3 i! = /(X .V)
Solve: dx

Subject toi  ¥X) =)0

yn—i are arbitrary real constants, is called an sth-order initial-value
yJn=| ’

(2




UATIONS
ENTIAL -
e ODUCTION TO DIFFEA £y et 3)
e CHAPTER1 INTR , 22 w fin30)

SURE 1.2.1 Solution curve of
r-orde IVP

sohutions of the DE
¥y . o al

SURE 1.2.2  Solution curve of
ond-order IVP

SURE 1.2.3  Solution curves of two
s in Example 1

Solve: ds”

and v(%)

s YV, .v'(""l)'“ ‘vi
Subject 10 '

respectively. These

gl s mkm‘gma{oluuon
cxamples of first and ret in gEO ’FI a,“(zl)wcmmm_ xg %0 that its
< v £ ¥ )’)on&ﬂ"oluﬁoimchshowninblm
yix) of the mu the specified Wﬁ‘:; (::o)l:t)ioﬂ y(x) of the differential mgh!

i ,o,odmitslnphm‘““ypm_ throu /

terval / containinip Xo ¢ is the pumber y;. A polution curve is
pml"al conditions derive from physical sys-
d where y(to) = yoand y'(fo) = y, rep-

; in Fi . 9 i B A 7 phs
shown in blue in Figure ot variable is time / man object at some beginning, or initial,

lh'c ! . . f
::I:;u the position and velocity, respectively, ©
time fo-

: ises 1.1 you were asked to deduce that y " ce” is a one-
i l:ml;‘]:nr:‘ll;l (:: E(J)(Ifxrt‘::)s:: (l>f l'}rllc simiple first-order oquation. e A.""!"c
s‘,);lnuti”::in this family are defined on the interval (—°°: ). If S Rppeey S initial
condition, say, y(0) = 3, then substituting x = 0, y = 3 in the family determines the
constant 3 = ce® = ¢. Thus 3 = 3¢* is a solution of the IVP

2

y =y y0)=3.

(b) Now if we demand that a solution curve pass through the point (1, —2) rather

than (0, 3), then y(1) = 2 will yield =2 = ce or ¢ = =2¢~!. In this case 1o

- 2¢* ' is a solution of the IVP

yl ny) y(l) o "2‘

The two solution curves are shown in dark blue and dark red in Figure 1.2.3.

. 1 ::::g 0 show that a one-parameter family

p e it iy on y' o O

0 the iy initia] condition y(0) = . theﬁ s: b’;g: b Oisy =1/(x* + ).

HOW emphagize sglves"“""l/corc-w“.. BR A Qand y = ]
i g three dis‘incﬁons- 1. Thus 3 == | xe ~ 1), We

* Conside ‘

ﬂumbz:rgr :-df:: A function, domain of

CXCept x = wh'chJ’(x) is defineg: thiy.a 1/(x?

Considcred * =i See 18\!]" 518 the set

‘:nfcrv“ Vi S?I‘Nﬁon of 1 { damhd -2.4(‘).

de € differe
Nterval gye Mition of , 1/(x2 Mial equarion Y' + 2xy? = 0, the
e

q i l).could be taken to be any
=1, (1 ©st interyg s ! f_ercntlable. As can be seen in
v 1), ang (1, %), o1 which Y5 /6 = 1) is a solution

= 1) is the set of real
of all real number
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sohution of the initial-value problem

5 - x e
o '(3)"“’* ‘(5),"‘- )

. =2 10 the given family of sohutions: 2w 4
3(?/%':‘1—:.i"lumh- landsin iy = O wefindthmic, = -2 ‘;'l:;pfy
s Whﬂyx‘(o-—lmu+qﬁuw

S ! = w/2mnd x’ = | gives 8 5in 27 + 4cy con 2w = 1, from which we
sce thate, = ; Hemce r = “2eosdr = am 4f is a sohution of (4). =

= Existence and Two fundamental questi ise i ideri
& A m wo questions arise in considering

Does a solution of the probiem exist?
If @ solurion exists, is it wmique”

For the first-order initial-value problem (2) we ask

Exdubemcn {M&cwmdy,f'ﬁ-ﬂx.y)mm?
Do amy of the solution curves pass through the poini (x5 ¥, )"
Whern con we be certain that there s precisely one sobation curve
W . M*wu’)_.)‘_’

in Examples 1 and 3 the “g solution” is used rather than “the sok-
{::':?ﬁ:pwim;hdhdcﬁm'fu@&hmmﬂmk
possibility that other solutions may cxist. At this poiat i has not been demonsiried
thatthere is 8 single solution of cach problem. The next cxampic il 4%
value problem with two solutions.




In Problems | and 2, y = 1/(1 4 ere™*) is a one-parec

¢ 4 €8 us
t:unmglm l’)ul " .

Problem 54

|.2 - “*l' "VA' ‘ Pn‘. M ® li

on exi . ,
.“Jluhqm ““tfym” EXIst on some interval 1y con.
Ulm of [he

(XQ) =
2e8 of inu:rvu]:, Y ”m/cvcn Theorem 1,2,

» the interval [ o
oa R, and the Interval Iy of existence ung

';::v that
t ()nly
wvtdany indica

' %6 % h) could e

" alocal senge. 4ll, 80 it ig beg

: 1at | :
in i‘-&crci;cg i 18, 2 olution defi

. REMARKS
m ey ¢ et srssensay -u......«,.,.A.._,__.,.A.A,.,._.,,,,,,_,,, —
o Hons in Theorem 1.2.1 are sufficient byt - : e
en /(x, y) and /by s b bri e ey Ul not necessary, This means
::':mlyif t}ﬂlpw that a soly - v~ r::mmgl\:;m mwm; i
nt interior 15 p enever (xq, yg) is a
Theorem ].'2" » & Ho I . stated in the hyputhc?.w of
id, then anything could happen: Problem (2) may siil

§ mlumm may be unique, or (2) may have several soly-
&Tlgl;(z(r;al all.lA rereading of Example $ reveals that the
e 41 do not hold on the line y = 0 for the differentis
:zgt‘.mon ;/y/(lx = xy"2 30 it is not surprising, as we il:nw in Example :L“l’l)‘llfi
sec lon, that there are two solutions defined on a common interval ~h < x <
satisfying y(0) = 0. On the other hand, the hypotheses of Theorem 1.2.1 do
not hold on the line y = | for the differential equation dy/dx = |y - 1|*
Nevertheless it can be proved that the solution of the initial-value problem
dyfdx = [y = 1|, p(0) = 1, is unique. Can you guess this solution?

(if) You are encouraged to read, think abo
Probleimn 49 in Exercises 1,2,

wever, if the conditions
do not he

h.h‘[c a solution and (his
Lions, or it may have no
hypotheses of Theorem

ut, work, and then keep in mind

(/if) Initial conditions are prescribed at a single point xy. But we are also inter-
ested in solving differential equations that are subject to conditions specifie
on y{(x) or its derivative at two different points x; and x;. Conditions such as

A1)=0, 5 =0 ym[2) =0, y(m)= |

and called boundary conditlons. A differential equation together with bound-
ary conditions is culled a boundary-valuc problem (BVP). For example,

Yok hy=0, y(0) =0, y(m=0

, 3 9-44 in Exercises 1.2.

undary-value problem. See Problems 39 » .

v b‘;’lhcn we start tF:: solve differentiul equations in Chuptl:l:r 2 \m.T ‘wnl r;(:}l“:.

i init] ) 1w mathe-

- uations and first-order initial-value pro ems, The

onl){ ‘ﬁrs:‘ ?'rflr(i:rt‘i::}n of many problems in science und engineering mvglve

mﬁ“;ﬁ‘ rt!:.“t" lg/l’s or two-point BYPs. We will examide sume of these prob-
pecond-0

lems in Chupters 4 and 5.

or

s i il A

EXERCISES 1.2

on page ANS-1.

—

Angwers 1o selected odd-numbered problems begin

e
s o

R

“'” t { " Of ul‘ ‘ 'l’ ' I 'l | 0 “‘ ‘ ’” v uli! (‘.“rt!h'ﬂ"l"\
& "urd‘ l [)‘ r‘.' " 8 ‘Jl . ' ‘ :

{44 m aalihion 18 \L". !"”
A tily of solutions of the Arsieordet DEY =y = ),1, [-‘in;:i (nterval f over which the golition bs defingt
sUIUTIONS . ' Ha =Y u
Wlutlon of e frst-order VP consisting of 1113 rfiﬂ'm" 3, () =} & —”(' Che
®ustion and the ¢iven initial condition. oy 6, y}) = =4
. fameter
b y{0) = = 2, H=1)=2 problems =10, % = ¢ 608 [ + (2 slnt;tl!uxu”t:vo;i::l e
araete fumily X oo of the sesond-orde -
I Problamy 3 -6, o 1/ ) I8 O 0 pind 0 Y
W wolutivrs of the first-otder DE ¥
“
I —
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Q124

ENTIAL E
CHAPTER 1 mﬁucnw 70 DIFFER

isti is differ-
sion of the second-order VP consisting of this di
equation and the given initial conditions.

©=-1, x'(0)=8
(w/2)=0, x'(w/2)=1
(m/6) =4, x'(w/6)=0
(m/4) = V3, x(u]4)=2V2

-3 iS a two_pgmmc(ﬂ
y" -— y = 0 Find
s differ-

oblems 11-14, y = ¢,&' + 02€
y of solutions of the sccond-ordch_E' '
ution of the second-order IVP consisting of thi
1 equation and the given initial conditions.

p(0) =1, y'(0)=2

y()=0, y(1)=e

y(—-1)=5§, y'(-1)=-3

y(o) e 0| _)"'(0) = 0 »

roblems 15 and 16 determine by inspection at least two
tions of the given first-order IV ._

Y =3, y0)=0

xy'=2, y0)=0

'roblems 17-24 determine a region of the xy-plane for
ch the given differential equation would have & unique

ition whose graph passes through a point (xo, yo) in the |

jon. j
dy o ‘dy
- g 18. === Vay
d d
Ueptymad 0N 2 0P g

.(x?-o-yl)x--y?' 24.0’_1)},:.,’_“:

Problems 2528 determine whether The
ces that the differential equation y' -o N\Gm 1.3__9..1 P
ses & unique solution through the given point, i

(1, 4) 26, (5,3) :
‘SN 8. (-1,1)

« (») By inspection find & one- arame
tions of the differentia] oqsatlon ;e' family of o1y,

each member of the Y = 3 Verify thag

fi
initial-value problem ,;'m"y s a :%utlon of the

(b) Explain part () by determin| '
S)"P:;M fos which the dlftcu:t?ll.:ummml 'n the
would have a unique solution throy Xy -y
in R ¥h 4 point (.

pl

QUATIONS o
: ‘ee-defined functio
! he lgCCW]sc
(€) Verify that the P e 0
- x, X =0
13 0) = 0. Determine whether
satisfies the condition yﬁogu'jo" of the initial-value

this function i also &

Ky /.. pﬂ)blm in plﬂ (') f
T1 ‘fy that y = tan (x * ‘C) is 8 om?mﬂ:dﬂ f‘mlIZy
o Vcnf? ions of the differential equation y =1+

: °'“° " yu |+ y; and 8f/dy = 2y arc continu-

) Since f/(x, ¥ R in Theorem 1.2.1 can

here, the region ;
ous cvcf)':)"’bc the entire xy-plane. Use the family of
solution of

be taken t to find an explicit

solutions in part (a) o :
the first-order initial-value pl'oblcm y 'l + y2,
y(0) = 0. Even though xo = 0 15 1n the interval
(=2, 2), explain why the solution is not defined on

this interval. S
.(¢) Determine the largest interval / of definition for the
../ solution of the igitial-value problem in part (b).
| L ad / 4

31, (n) Verify tJhat y'.. —l/(x + ¢) is ‘& onec-parameter
family of solutions of the differential equation
y =y '

(b) Since f(x, y) = y*'and 8f/dy = 2y are continuous
everywhere, the region R in Theorem 1.2.1 can be
taken to be the entire xy-plane. Find a solution from
the family in part (a) that satisfies y(0) = 1, Then
find a solutica from the family in part (a) that
satisfies y(0) = — 1. Determine the largest interval /
of definition for the solution of each initial-value
problem,

(c) Detcrminc the largest interval I of definition for the
M'ﬂutlozn of the first-order initial-value problem
i; Y"1 ¥(0) = 0. [Hint: The solution is not a mem-

r of the family of solutions in part (a).]
32. () Show that a solution fro

of Problem 31 that
sati
y=1/(2 - ) :

o I:;::\T W that a solution from the family in pait (a)
v/

m the family in part (a)
fies y' = »2, y(1) = 1, is

Y=1/Q2 - ),

soluti Y=oy & one-parameter fam-
Ons of the differentia] equation

v 8k
s ;“;h ln:u"mph of the implicit solution
A v explicit solutions y = ¢h(x) of

Part (a) defined this relation. Give the

Interval / of g
(¢) The point (- 2?:“"" of each explicit solution
- y’ - 3 N

but whigh oy ) 1 90 the graph of 3,2
fies y(~ 2) ?_f gr *Xpliclt solutiong jn ’p':n (b) satis-

(I) U“ the

10 find '::"}Y of sol

3,

Wmlnm( of
mpliciy Solution of l.h)o lmll-ﬁl::
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SURB—

17 y 4

'll
th
=
-
=
=

2] - -
em 23 become when s is very small in
et
f

companson to R? [Hint: Tb; 1k binomial ser

+ 5/R)™2)

CHAPT& 1IN PF\’IFW

T A, e i Db M R

A i i e

ns | and 2 fill blank and then write this result

as a lincar t st-order mﬂcrcn(:a! equation that is free of the
symbol ¢; and has the form dy/dx = f(x, ). The symbol ¢
represents a constant,

g

/ '
./}_ — et =

ax

n Problems 3 and 4 fill in the blank and then write this result

as a linear second-order differential equation that is free of

-

the symbols ¢; and é; and has the form F(y, ") = 0. The
symbols ¢y, ¢, and k represent constants.

Fe

d? ‘
v{dl(”w” + ¢4 sin kx) =
.

/ g
‘/4 Jo (¢ cosh kx + ¢; sinh AX) = e

e

virga refers to falling NEW’ ops .)?~ w
¢vaporate before they reach the ground.
typical mindrop is :-,p‘.u::ne;.;d Starting
which we can de signate ¢ = 0, the rai
ro falls from rest from a ¢ ";,J:.;f*/, and begis
(2) If it is assumed that a raindron

er that its shape re k
to assume th
drop evaporates—that is

mann

make:

§ SCnse

Nass——1is& Mre

INnass 15 "..'r'\ hr)'tn I to i1t
¥ Yoild ik s : 1
s latter assumption implies

(b) If the positive direction is downwa
mathematical model for the velocity
raindrop at time ¢ > 0. Ignore air re:
Use the form of "

i 37! ]
37. y er
ntizl

was {fu Dpan € Iamous b

- J,_, .
{ 1 :d) ( (¥
iie 4 SO (o] C
he first hour and I mile the
did it start snowing?

Find the textbook Differential Equation

Agnew, McGraw wa ':-" ok Co., and th

construction and solution of the mather

38. Reread this section and classify each
model as linear or nonlinear.

e
oyt - . T R ——

——— e ——

Answers to selecisd odd-numbered probles

adn Problems S and 6 compute y' and y* snd
these derivatives with y as ‘
equation that is free of the S}'_T:*.fgo‘:-. €

y;’ /V' y") = (), The S:y"!’l’l(ty)‘." ¢; and 3 repre
S X ce” + caxe’ 6. y = ¢1€" cos

o
CUS

In Problems 7<12 match each of'*hr tri\'-':‘: di
tions with one or more of these solutions:
) y=\, (b) y=2,
1o xy' =2y “ By =]
J?. y=2=4
AL y"4+ 9 =18

(€) y = 2x.

10, ' =y

AT

In Problems 13 and 14 determine by inspcct

joiunon of the given differential e quation.
]‘ ' / !

iy =y 14, y = y(y =




