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where R is the resistance in the circuit and i is the current. Suppose we measure the current for several

values of t and obtain:

t 1.00 1.01 1.02 1.03 1.0

i 3.10 3.12 3.14 3.18 3.24

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the

resistance is 0.142 ohms. Approximate the voltage E(t) when t = 1.00, 1.01, 1.02, 1.03, and 1.04.

27. All calculus students know that the derivative of a function f at x can be defined as

f ′(x) = lim
h→0

f (x + h) − f (x)

h
.

Choose your favorite function f , nonzero number x, and computer or calculator. Generate approxi-

mations f ′
n(x) to f ′(x) by

f ′
n(x) = f (x + 10−n) − f (x)

10−n
,

for n = 1, 2, . . . , 20, and describe what happens.

28. Derive a method for approximating f ′′′(x0) whose error term is of order h2 by expanding the function

f in a fourth Taylor polynomial about x0 and evaluating at x0 ± h and x0 ± 2h.

29. Consider the function

e(h) = ε

h
+ h2

6
M,

where M is a bound for the third derivative of a function. Show that e(h) has a minimum at 3
√

3ε/M.

4.2 Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while using low-

order formulas. Although the name attached to the method refers to a paper written by

L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique is much older.

An interesting article regarding the history and application of extrapolation can be found

in [Joy].
Lewis Fry Richardson

(1881–1953) was the first person

to systematically apply

mathematics to weather

prediction while working in

England for the Meteorological

Office. As a conscientious

objector during World War I, he

wrote extensively about the

economic futility of warfare,

using systems of differential

equations to model rational

interactions between countries.

The extrapolation technique that

bears his name was the

rediscovery of a technique with

roots that are at least as old as

Christiaan Hugyens

(1629–1695), and possibly

Archimedes (287–212 b.c.e.).

Extrapolation can be applied whenever it is known that an approximation technique

has an error term with a predictable form, one that depends on a parameter, usually the step

size h. Suppose that for each number h �= 0 we have a formula N1(h) that approximates an

unknown constant M, and that the truncation error involved with the approximation has the

form

M − N1(h) = K1h + K2h2 + K3h3 + · · · ,

for some collection of (unknown) constants K1, K2, K3, . . . .

The truncation error is O(h), so unless there was a large variation in magnitude among

the constants K1, K2, K3, . . . ,

M − N1(0.1) ≈ 0.1K1, M − N1(0.01) ≈ 0.01K1,

and, in general, M − N1(h) ≈ K1h .

The object of extrapolation is to find an easy way to combine these rather inaccu-

rate O(h) approximations in an appropriate way to produce formulas with a higher-order

truncation error.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



186 C H A P T E R 4 Numerical Differentiation and Integration

Suppose, for example, we can combine the N1(h) formulas to produce an O(h2)

approximation formula, N2(h), for M with

M − N2(h) = K̂2h2 + K̂3h3 + · · · ,

for some, again unknown, collection of constants K̂2, K̂3, . . . . Then we would have

M − N2(0.1) ≈ 0.01K̂2, M − N2(0.01) ≈ 0.0001K̂2,

and so on. If the constants K1 and K̂2 are roughly of the same magnitude, then the N2(h)

approximations would be much better than the corresponding N1(h) approximations. The

extrapolation continues by combining the N2(h) approximations in a manner that produces

formulas with O(h3) truncation error, and so on.

To see specifically how we can generate the extrapolation formulas, consider the O(h)

formula for approximating M

M = N1(h) + K1h + K2h2 + K3h3 + · · · . (4.10)

The formula is assumed to hold for all positive h, so we replace the parameter h by half its

value. Then we have a second O(h) approximation formula

M = N1

(

h

2

)

+ K1

h

2
+ K2

h2

4
+ K3

h3

8
+ · · · . (4.11)

Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving K1 and gives

M = N1

(

h

2

)

+
[

N1

(

h

2

)

− N1(h)

]

+ K2

(

h2

2
− h2

)

+ K3

(

h3

4
− h3

)

+ · · · . (4.12)

Define

N2(h) = N1

(

h

2

)

+
[

N1

(

h

2

)

− N1(h)

]

.

Then Eq. (4.12) is an O(h2) approximation formula for M:

M = N2(h) − K2

2
h2 − 3K3

4
h3 − · · · . (4.13)

Example 1 In Example 1 of Section 4.1 we use the forward-difference method with h = 0.1 and

h = 0.05 to find approximations to f ′(1.8) for f (x) = ln(x). Assume that this formula has

truncation error O(h) and use extrapolation on these values to see if this results in a better

approximation.

Solution In Example 1 of Section 4.1 we found that

with h = 0.1: f ′(1.8) ≈ 0.5406722, and with h = 0.05: f ′(1.8) ≈ 0.5479795.

This implies that

N1(0.1) = 0.5406722 and N1(0.05) = 0.5479795.

Extrapolating these results gives the new approximation

N2(0.1) = N1(0.05) + (N1(0.05) − N1(0.1)) = 0.5479795 + (0.5479795 − 0.5406722)

= 0.555287.

The h = 0.1 and h = 0.05 results were found to be accurate to within 1.5 × 10−2 and

7.7×10−3, respectively. Because f ′(1.8) = 1/1.8 = 0.5, the extrapolated value is accurate

to within 2.7 × 10−4.
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Extrapolation can be applied whenever the truncation error for a formula has the form

m−1
∑

j=1

Kjh
αj + O(hαm),

for a collection of constants Kj and when α1 < α2 < α3 < · · · < αm. Many formulas used

for extrapolation have truncation errors that contain only even powers of h, that is, have the

form

M = N1(h) + K1h2 + K2h4 + K3h6 + · · · . (4.14)

The extrapolation is much more effective than when all powers of h are present because the

averaging process produces results with errors O(h2), O(h4), O(h6), . . . , with essentially

no increase in computation, over the results with errors, O(h), O(h2), O(h3), . . . .

Assume that approximation has the form of Eq. (4.14 ). Replacing h with h/2 gives the

O(h2) approximation formula

M = N1

(

h

2

)

+ K1

h2

4
+ K2

h4

16
+ K3

h6

64
+ · · · .

Subtracting Eq. (4.14) from 4 times this equation eliminates the h2 term,

3M =
[

4N1

(

h

2

)

− N1(h)

]

+ K2

(

h4

4
− h4

)

+ K3

(

h6

16
− h6

)

+ · · · .

Dividing this equation by 3 produces an O(h4) formula

M = 1

3

[

4N1

(

h

2

)

− N1(h)

]

+ K2

3

(

h4

4
− h4

)

+ K3

3

(

h6

16
− h6

)

+ · · · .

Defining

N2(h) = 1

3

[

4N1

(

h

2

)

− N1(h)

]

= N1

(

h

2

)

+ 1

3

[

N1

(

h

2

)

− N1(h)

]

,

produces the approximation formula with truncation error O(h4):

M = N2(h) − K2

h4

4
− K3

5h6

16
+ · · · . (4.15)

Now replace h in Eq. (4.15) with h/2 to produce a second O(h4) formula

M = N2

(

h

2

)

− K2

h4

64
− K3

5h6

1024
− · · · .

Subtracting Eq. (4.15 ) from 16 times this equation eliminates the h4 term and gives

15M =
[

16N2

(

h

2

)

− N2(h)

]

+ K3

15h6

64
+ · · · .

Dividing this equation by 15 produces the new O(h6) formula

M = 1

15

[

16N2

(

h

2

)

− N2(h)

]

+ K3

h6

64
+ · · · .

We now have the O(h6) approximation formula

N3(h) = 1

15

[

16N2

(

h

2

)

− N2(h)

]

= N2

(

h

2

)

+ 1

15

[

N2

(

h

2

)

− N2(h)

]

.
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