where R is the resistance in the circuit and i is the current. Suppose we measure the current for several values of t and obtain:

t	1.00	1.01	1.02	1.03	1.0
i	3.10	3.12	3.14	3.18	3.24

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the resistance is 0.142 ohms. Approximate the voltage $\mathcal{E}(t)$ when $t=1.00,1.01,1.02,1.03$, and 1.04.
27. All calculus students know that the derivative of a function f at x can be defined as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Choose your favorite function f, nonzero number x, and computer or calculator. Generate approximations $f_{n}^{\prime}(x)$ to $f^{\prime}(x)$ by

$$
f_{n}^{\prime}(x)=\frac{f\left(x+10^{-n}\right)-f(x)}{10^{-n}},
$$

for $n=1,2, \ldots, 20$, and describe what happens.
28. Derive a method for approximating $f^{\prime \prime \prime}\left(x_{0}\right)$ whose error term is of order h^{2} by expanding the function f in a fourth Taylor polynomial about x_{0} and evaluating at $x_{0} \pm h$ and $x_{0} \pm 2 h$.
29. Consider the function

$$
e(h)=\frac{\varepsilon}{h}+\frac{h^{2}}{6} M,
$$

where M is a bound for the third derivative of a function. Show that $e(h)$ has a minimum at $\sqrt[3]{3 \varepsilon / M}$.

4.2 Richardson's Extrapolation

Lewis Fry Richardson

(1881-1953) was the first person
to systematically apply
mathematics to weather prediction while working in England for the Meteorological Office. As a conscientious objector during World War I, he wrote extensively about the economic futility of warfare, using systems of differential equations to model rational interactions between countries. The extrapolation technique that bears his name was the rediscovery of a technique with roots that are at least as old as Christiaan Hugyens
(1629-1695), and possibly
Archimedes (287-212 в.C.E.).

Richardson's extrapolation is used to generate high-accuracy results while using loworder formulas. Although the name attached to the method refers to a paper written by L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique is much older. An interesting article regarding the history and application of extrapolation can be found in [Joy].

Extrapolation can be applied whenever it is known that an approximation technique has an error term with a predictable form, one that depends on a parameter, usually the step size h. Suppose that for each number $h \neq 0$ we have a formula $N_{1}(h)$ that approximates an unknown constant M, and that the truncation error involved with the approximation has the form

$$
M-N_{1}(h)=K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\cdots,
$$

for some collection of (unknown) constants $K_{1}, K_{2}, K_{3}, \ldots$.
The truncation error is $O(h)$, so unless there was a large variation in magnitude among the constants $K_{1}, K_{2}, K_{3}, \ldots$,

$$
M-N_{1}(0.1) \approx 0.1 K_{1}, \quad M-N_{1}(0.01) \approx 0.01 K_{1}
$$

and, in general, $M-N_{1}(h) \approx K_{1} h$.
The object of extrapolation is to find an easy way to combine these rather inaccurate $O(h)$ approximations in an appropriate way to produce formulas with a higher-order truncation error.

Suppose, for example, we can combine the $N_{1}(h)$ formulas to produce an $O\left(h^{2}\right)$ approximation formula, $N_{2}(h)$, for M with

$$
M-N_{2}(h)=\hat{K}_{2} h^{2}+\hat{K}_{3} h^{3}+\cdots
$$

for some, again unknown, collection of constants $\hat{K}_{2}, \hat{K}_{3}, \ldots$. Then we would have

$$
M-N_{2}(0.1) \approx 0.01 \hat{K}_{2}, \quad M-N_{2}(0.01) \approx 0.0001 \hat{K}_{2}
$$

and so on. If the constants K_{1} and \hat{K}_{2} are roughly of the same magnitude, then the $N_{2}(h)$ approximations would be much better than the corresponding $N_{1}(h)$ approximations. The extrapolation continues by combining the $N_{2}(h)$ approximations in a manner that produces formulas with $O\left(h^{3}\right)$ truncation error, and so on.

To see specifically how we can generate the extrapolation formulas, consider the $O(h)$ formula for approximating M

$$
\begin{equation*}
M=N_{1}(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\cdots \tag{4.10}
\end{equation*}
$$

The formula is assumed to hold for all positive h, so we replace the parameter h by half its value. Then we have a second $O(h)$ approximation formula

$$
\begin{equation*}
M=N_{1}\left(\frac{h}{2}\right)+K_{1} \frac{h}{2}+K_{2} \frac{h^{2}}{4}+K_{3} \frac{h^{3}}{8}+\cdots \tag{4.11}
\end{equation*}
$$

Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving K_{1} and gives

$$
\begin{equation*}
M=N_{1}\left(\frac{h}{2}\right)+\left[N_{1}\left(\frac{h}{2}\right)-N_{1}(h)\right]+K_{2}\left(\frac{h^{2}}{2}-h^{2}\right)+K_{3}\left(\frac{h^{3}}{4}-h^{3}\right)+\cdots \tag{4.12}
\end{equation*}
$$

Define

$$
N_{2}(h)=N_{1}\left(\frac{h}{2}\right)+\left[N_{1}\left(\frac{h}{2}\right)-N_{1}(h)\right] .
$$

Then Eq. (4.12) is an $O\left(h^{2}\right)$ approximation formula for M :

$$
\begin{equation*}
M=N_{2}(h)-\frac{K_{2}}{2} h^{2}-\frac{3 K_{3}}{4} h^{3}-\cdots \tag{4.13}
\end{equation*}
$$

Example 1 In Example 1 of Section 4.1 we use the forward-difference method with $h=0.1$ and $h=0.05$ to find approximations to $f^{\prime}(1.8)$ for $f(x)=\ln (x)$. Assume that this formula has truncation error $O(h)$ and use extrapolation on these values to see if this results in a better approximation.
Solution In Example 1 of Section 4.1 we found that

$$
\text { with } h=0.1: f^{\prime}(1.8) \approx 0.5406722, \quad \text { and } \quad \text { with } h=0.05: f^{\prime}(1.8) \approx 0.5479795
$$

This implies that

$$
N_{1}(0.1)=0.5406722 \text { and } \quad N_{1}(0.05)=0.5479795
$$

Extrapolating these results gives the new approximation

$$
\begin{aligned}
N_{2}(0.1) & =N_{1}(0.05)+\left(N_{1}(0.05)-N_{1}(0.1)\right)=0.5479795+(0.5479795-0.5406722) \\
& =0.555287
\end{aligned}
$$

The $h=0.1$ and $h=0.05$ results were found to be accurate to within 1.5×10^{-2} and 7.7×10^{-3}, respectively. Because $f^{\prime}(1.8)=1 / 1.8=0 . \overline{5}$, the extrapolated value is accurate to within 2.7×10^{-4}.

Extrapolation can be applied whenever the truncation error for a formula has the form

$$
\sum_{j=1}^{m-1} K_{j} h^{\alpha_{j}}+O\left(h^{\alpha_{m}}\right)
$$

for a collection of constants K_{j} and when $\alpha_{1}<\alpha_{2}<\alpha_{3}<\cdots<\alpha_{m}$. Many formulas used for extrapolation have truncation errors that contain only even powers of h, that is, have the form

$$
\begin{equation*}
M=N_{1}(h)+K_{1} h^{2}+K_{2} h^{4}+K_{3} h^{6}+\cdots . \tag{4.14}
\end{equation*}
$$

The extrapolation is much more effective than when all powers of h are present because the averaging process produces results with errors $O\left(h^{2}\right), O\left(h^{4}\right), O\left(h^{6}\right), \ldots$, with essentially no increase in computation, over the results with errors, $O(h), O\left(h^{2}\right), O\left(h^{3}\right), \ldots$.

Assume that approximation has the form of Eq. (4.14). Replacing h with $h / 2$ gives the $O\left(h^{2}\right)$ approximation formula

$$
M=N_{1}\left(\frac{h}{2}\right)+K_{1} \frac{h^{2}}{4}+K_{2} \frac{h^{4}}{16}+K_{3} \frac{h^{6}}{64}+\cdots
$$

Subtracting Eq. (4.14) from 4 times this equation eliminates the h^{2} term,

$$
3 M=\left[4 N_{1}\left(\frac{h}{2}\right)-N_{1}(h)\right]+K_{2}\left(\frac{h^{4}}{4}-h^{4}\right)+K_{3}\left(\frac{h^{6}}{16}-h^{6}\right)+\cdots
$$

Dividing this equation by 3 produces an $O\left(h^{4}\right)$ formula

$$
M=\frac{1}{3}\left[4 N_{1}\left(\frac{h}{2}\right)-N_{1}(h)\right]+\frac{K_{2}}{3}\left(\frac{h^{4}}{4}-h^{4}\right)+\frac{K_{3}}{3}\left(\frac{h^{6}}{16}-h^{6}\right)+\cdots .
$$

Defining

$$
N_{2}(h)=\frac{1}{3}\left[4 N_{1}\left(\frac{h}{2}\right)-N_{1}(h)\right]=N_{1}\left(\frac{h}{2}\right)+\frac{1}{3}\left[N_{1}\left(\frac{h}{2}\right)-N_{1}(h)\right],
$$

produces the approximation formula with truncation error $O\left(h^{4}\right)$:

$$
\begin{equation*}
M=N_{2}(h)-K_{2} \frac{h^{4}}{4}-K_{3} \frac{5 h^{6}}{16}+\cdots \tag{4.15}
\end{equation*}
$$

Now replace h in Eq. (4.15) with $h / 2$ to produce a second $O\left(h^{4}\right)$ formula

$$
M=N_{2}\left(\frac{h}{2}\right)-K_{2} \frac{h^{4}}{64}-K_{3} \frac{5 h^{6}}{1024}-\cdots
$$

Subtracting Eq. (4.15) from 16 times this equation eliminates the h^{4} term and gives

$$
15 M=\left[16 N_{2}\left(\frac{h}{2}\right)-N_{2}(h)\right]+K_{3} \frac{15 h^{6}}{64}+\cdots
$$

Dividing this equation by 15 produces the new $O\left(h^{6}\right)$ formula

$$
M=\frac{1}{15}\left[16 N_{2}\left(\frac{h}{2}\right)-N_{2}(h)\right]+K_{3} \frac{h^{6}}{64}+\cdots .
$$

We now have the $O\left(h^{6}\right)$ approximation formula

$$
N_{3}(h)=\frac{1}{15}\left[16 N_{2}\left(\frac{h}{2}\right)-N_{2}(h)\right]=N_{2}\left(\frac{h}{2}\right)+\frac{1}{15}\left[N_{2}\left(\frac{h}{2}\right)-N_{2}(h)\right] .
$$

