Considering the interpolation polynomial of degree n + 1 on x_0, x_1, \ldots, x_n, x , we have

$$f(x) = P_{n+1}(x) = P_n(x) + f[x_0, x_1, \dots, x_n, x](x - x_0) \cdots (x - x_n).$$

21. Let i_0, i_1, \ldots, i_n be a rearrangement of the integers $0, 1, \ldots, n$. Show that $f[x_{i_0}, x_{i_1}, \ldots, x_{i_n}] = f[x_0, x_1, \ldots, x_n]$. [*Hint:* Consider the leading coefficient of the *n*th Lagrange polynomial on the data $\{x_0, x_1, \ldots, x_n\} = \{x_{i_0}, x_{i_1}, \ldots, x_{i_n}\}$.]

3.4 Hermite Interpolation

The Latin word *osculum*, literally a "small mouth" or "kiss", when applied to a curve indicates that it just touches and has the same shape. Hermite interpolation has this osculating property. It matches a given curve, and its derivative forces the interpolating curve to "kiss" the given curve. *Osculating polynomials* generalize both the Taylor polynomials and the Lagrange polynomials. Suppose that we are given n + 1 distinct numbers x_0, x_1, \ldots, x_n in [a, b] and nonnegative integers m_0, m_1, \ldots, m_n , and $m = \max\{m_0, m_1, \ldots, m_n\}$. The osculating polynomial approximating a function $f \in C^m[a, b]$ at x_i , for each $i = 0, \ldots, n$, is the polynomial of least degree that has the same values as the function f and all its derivatives of order less than or equal to m_i at each x_i . The degree of this osculating polynomial is at most

$$M = \sum_{i=0}^{n} m_i + n$$

because the number of conditions to be satisfied is $\sum_{i=0}^{n} m_i + (n+1)$, and a polynomial of degree *M* has M + 1 coefficients that can be used to satisfy these conditions.

Definition 3.8

Charles Hermite (1822–1901) made significant mathematical discoveries throughout his life in areas such as complex analysis and number theory, particularly involving the theory of equations. He is perhaps best known for proving in 1873 that *e* is transcendental, that is, it is not the solution to any algebraic equation having integer coefficients. This lead in 1882 to Lindemann's proof that π is also transcendental, which demonstrated that it is impossible to use the standard geometry tools of Euclid to construct a square that has the same area as a unit circle.

Let x_0, x_1, \ldots, x_n be n + 1 distinct numbers in [a, b] and for $i = 0, 1, \ldots, n$ let m_i be a nonnegative integer. Suppose that $f \in C^m[a, b]$, where $m = \max_{0 \le i \le n} m_i$.

The osculating polynomial approximating f is the polynomial P(x) of least degree such that

$$\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k}, \text{ for each } i = 0, 1, \dots, n \text{ and } k = 0, 1, \dots, m_i.$$

Note that when n = 0, the osculating polynomial approximating f is the m_0 th Taylor polynomial for f at x_0 . When $m_i = 0$ for each i, the osculating polynomial is the *n*th Lagrange polynomial interpolating f on x_0, x_1, \ldots, x_n .

Hermite Polynomials

The case when $m_i = 1$, for each i = 0, 1, ..., n, gives the **Hermite polynomials**. For a given function f, these polynomials agree with f at $x_0, x_1, ..., x_n$. In addition, since their first derivatives agree with those of f, they have the same "shape" as the function at $(x_i, f(x_i))$ in the sense that the *tangent lines* to the polynomial and the function agree. We will restrict our study of osculating polynomials to this situation and consider first a theorem that describes precisely the form of the Hermite polynomials.

Theorem 3.9

If $f \in C^1[a, b]$ and $x_0, \ldots, x_n \in [a, b]$ are distinct, the unique polynomial of least degree agreeing with f and f' at x_0, \ldots, x_n is the Hermite polynomial of degree at most 2n + 1 given by

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x)$$

Hermite gave a description of a general osculatory polynomial in a letter to Carl W. Borchardt in 1878, to whom he regularly sent his new results. His demonstration is an interesting application of the use of complex integration techniques to solve a real-valued problem.

where, for $L_{n,j}(x)$ denoting the *j*th Lagrange coefficient polynomial of degree *n*, we have

$$H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x)$$
 and $\hat{H}_{n,j}(x) = (x - x_j)L^2_{n,j}(x)$

Moreover, if $f \in C^{2n+2}[a, b]$, then

$$f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \dots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi(x)),$$

for some (generally unknown) $\xi(x)$ in the interval (a, b).

Proof First recall that

$$L_{n,j}(x_i) = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$$

Hence when $i \neq j$,

$$H_{n,j}(x_i) = 0 \qquad \text{and} \qquad \hat{H}_{n,j}(x_i) = 0,$$

whereas, for each *i*,

$$H_{n,i}(x_i) = [1 - 2(x_i - x_i)L'_{n,i}(x_i)] \cdot 1 = 1$$
 and $\hat{H}_{n,i}(x_i) = (x_i - x_i) \cdot 1^2 = 0$.

As a consequence

$$H_{2n+1}(x_i) = \sum_{\substack{j=0\\j\neq i}}^n f(x_j) \cdot 0 + f(x_i) \cdot 1 + \sum_{j=0}^n f'(x_j) \cdot 0 = f(x_i),$$

so H_{2n+1} agrees with f at x_0, x_1, \ldots, x_n .

To show the agreement of H'_{2n+1} with f' at the nodes, first note that $L_{n,j}(x)$ is a factor of $H'_{n,j}(x)$, so $H'_{n,j}(x_i) = 0$ when $i \neq j$. In addition, when i = j we have $L_{n,i}(x_i) = 1$, so

$$H'_{n,i}(x_i) = -2L'_{n,i}(x_i) \cdot L^2_{n,i}(x_i) + [1 - 2(x_i - x_i)L'_{n,i}(x_i)]2L_{n,i}(x_i)L'_{n,i}(x_i)$$

= $-2L'_{n,i}(x_i) + 2L'_{n,i}(x_i) = 0.$

Hence, $H'_{n,j}(x_i) = 0$ for all *i* and *j*.

Finally,

$$\hat{H}'_{n,j}(x_i) = L^2_{n,j}(x_i) + (x_i - x_j)2L_{n,j}(x_i)L'_{n,j}(x_i)$$
$$= L_{n,j}(x_i)[L_{n,j}(x_i) + 2(x_i - x_j)L'_{n,j}(x_i)],$$

so $\hat{H}'_{n,i}(x_i) = 0$ if $i \neq j$ and $\hat{H}'_{n,i}(x_i) = 1$. Combining these facts, we have

$$H'_{2n+1}(x_i) = \sum_{\substack{j=0\\j\neq i}}^n f(x_j) \cdot 0 + \sum_{\substack{j=0\\j\neq i}}^n f'(x_j) \cdot 0 + f'(x_i) \cdot 1 = f'(x_i).$$

Therefore, H_{2n+1} agrees with f and H'_{2n+1} with f' at x_0, x_1, \ldots, x_n .

The uniqueness of this polynomial and the error formula are considered in Exercise 11.