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Considering the interpolation polynomial of degree n + 1 on x0, x1, . . . , xn, x, we have

f (x) = Pn+1(x) = Pn(x) + f [x0, x1, . . . , xn, x](x − x0) · · · (x − xn).]

21. Let i0, i1, . . . , in be a rearrangement of the integers 0, 1, . . . , n. Show that f [xi0 , xi1 , . . ., xin ] =

f [x0, x1, . . ., xn]. [Hint: Consider the leading coefficient of the nth Lagrange polynomial on the

data {x0, x1, . . . , xn} = {xi0 , xi1 , . . . , xin }.]

3.4 Hermite Interpolation

Osculating polynomials generalize both the Taylor polynomials and the Lagrange polyno-

mials. Suppose that we are given n + 1 distinct numbers x0, x1, . . . , xn in [a, b] and nonneg-

ative integers m0, m1, . . . , mn, and m = max{m0, m1, . . . , mn}. The osculating polynomial

approximating a function f ∈ Cm[a, b] at xi, for each i = 0, . . . , n, is the polynomial of

least degree that has the same values as the function f and all its derivatives of order less

than or equal to mi at each xi. The degree of this osculating polynomial is at most

M =

n
∑

i=0

mi + n

because the number of conditions to be satisfied is
∑n

i=0 mi + (n + 1), and a polynomial of

degree M has M + 1 coefficients that can be used to satisfy these conditions.

The Latin word osculum, literally

a “small mouth” or “kiss”, when

applied to a curve indicates that it

just touches and has the same

shape. Hermite interpolation has

this osculating property. It

matches a given curve, and its

derivative forces the interpolating

curve to “kiss” the given curve.

Definition 3.8 Let x0, x1, . . . , xn be n + 1 distinct numbers in [a, b] and for i = 0, 1, . . . , n let mi be a

nonnegative integer. Suppose that f ∈ Cm[a, b], where m = max0≤i≤n mi.

The osculating polynomial approximating f is the polynomial P(x) of least degree

such that

dkP(xi)

dxk
=

dkf (xi)

dxk
, for each i = 0, 1, . . . , n and k = 0, 1, . . . , mi.

Note that when n = 0, the osculating polynomial approximating f is the m0th Taylor

polynomial for f at x0. When mi = 0 for each i, the osculating polynomial is the nth

Lagrange polynomial interpolating f on x0, x1, . . . , xn.

Charles Hermite (1822–1901)

made significant mathematical

discoveries throughout his life in

areas such as complex analysis

and number theory, particularly

involving the theory of equations.

He is perhaps best known for

proving in 1873 that e is

transcendental, that is, it is not

the solution to any algebraic

equation having integer

coefficients. This lead in 1882 to

Lindemann’s proof that π is also

transcendental, which

demonstrated that it is impossible

to use the standard geometry

tools of Euclid to construct a

square that has the same area as a

unit circle.

Hermite Polynomials

The case when mi = 1, for each i = 0, 1, . . . , n, gives the Hermite polynomials. For a given

function f , these polynomials agree with f at x0, x1, . . . , xn. In addition, since their first

derivatives agree with those of f , they have the same “shape” as the function at (xi, f (xi)) in

the sense that the tangent lines to the polynomial and the function agree. We will restrict our

study of osculating polynomials to this situation and consider first a theorem that describes

precisely the form of the Hermite polynomials.

Theorem 3.9 If f ∈ C1[a, b] and x0, . . . , xn ∈ [a, b] are distinct, the unique polynomial of least degree

agreeing with f and f ′ at x0, . . . , xn is the Hermite polynomial of degree at most 2n + 1

given by

H2n+1(x) =

n
∑

j=0

f (xj)Hn, j(x) +

n
∑

j=0

f ′(xj)Ĥn, j(x),
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where, for Ln, j(x) denoting the jth Lagrange coefficient polynomial of degree n, we have

Hn, j(x) = [1 − 2(x − xj)L
′
n, j(xj)]L

2
n, j(x) and Ĥn, j(x) = (x − xj)L

2
n, j(x).

Hermite gave a description of a

general osculatory polynomial in

a letter to Carl W. Borchardt in

1878, to whom he regularly sent

his new results. His

demonstration is an interesting

application of the use of complex

integration techniques to solve a

real-valued problem.

Moreover, if f ∈ C2n+2[a, b], then

f (x) = H2n+1(x) +
(x − x0)

2 . . . (x − xn)
2

(2n + 2)!
f (2n+2)(ξ(x)),

for some (generally unknown) ξ(x) in the interval (a, b).

Proof First recall that

Ln, j(xi) =

{

0, if i �= j,

1, if i = j.

Hence when i �= j,

Hn, j(xi) = 0 and Ĥn, j(xi) = 0,

whereas, for each i,

Hn,i(xi) = [1 − 2(xi − xi)L
′
n,i(xi)] · 1 = 1 and Ĥn,i(xi) = (xi − xi) · 12 = 0.

As a consequence

H2n+1(xi) =

n
∑

j=0
j �=i

f (xj) · 0 + f (xi) · 1 +

n
∑

j=0

f ′(xj) · 0 = f (xi),

so H2n+1 agrees with f at x0, x1, . . . , xn.

To show the agreement of H ′
2n+1 with f ′ at the nodes, first note that Ln, j(x) is a factor

of H ′
n, j(x), so H ′

n, j(xi) = 0 when i �= j. In addition, when i = j we have Ln,i(xi) = 1, so

H ′
n,i(xi) = −2L′

n,i(xi) · L2
n,i(xi) + [1 − 2(xi − xi)L

′
n,i(xi)]2Ln,i(xi)L

′
n,i(xi)

= −2L′
n,i(xi) + 2L′

n,i(xi) = 0.

Hence, H ′
n, j(xi) = 0 for all i and j.

Finally,

Ĥ ′
n, j(xi) = L2

n, j(xi) + (xi − xj)2Ln, j(xi)L
′
n, j(xi)

= Ln, j(xi)[Ln, j(xi) + 2(xi − xj)L
′
n, j(xi)],

so Ĥ ′
n, j(xi) = 0 if i �= j and Ĥ ′

n,i(xi) = 1. Combining these facts, we have

H ′
2n+1(xi) =

n
∑

j=0

f (xj) · 0 +

n
∑

j=0
j �=i

f ′(xj) · 0 + f ′(xi) · 1 = f ′(xi).

Therefore, H2n+1 agrees with f and H ′
2n+1 with f ′ at x0, x1, . . . , xn.

The uniqueness of this polynomial and the error formula are considered in

Exercise 11.
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