Newton's divided-difference formula can be expressed in a simplified form when the nodes are arranged consecutively with equal spacing. In this case, we introduce the notation $h=x_{i+1}-x_{i}$, for each $i=0,1, \ldots, n-1$ and let $x=x_{0}+s h$. Then the difference $x-x_{i}$ is $x-x_{i}=(s-i) h$. So Eq. (3.10) becomes

$$
\begin{aligned}
P_{n}(x)= & P_{n}\left(x_{0}+s h\right)=f\left[x_{0}\right]+\operatorname{sh} f\left[x_{0}, x_{1}\right]+s(s-1) h^{2} f\left[x_{0}, x_{1}, x_{2}\right] \\
& +\cdots+s(s-1) \cdots(s-n+1) h^{n} f\left[x_{0}, x_{1}, \ldots, x_{n}\right] \\
= & f\left[x_{0}\right]+\sum_{k=1}^{n} s(s-1) \cdots(s-k+1) h^{k} f\left[x_{0}, x_{1}, \ldots, x_{k}\right] .
\end{aligned}
$$

Using binomial-coefficient notation,

$$
\binom{s}{k}=\frac{s(s-1) \cdots(s-k+1)}{k!}
$$

we can express $P_{n}(x)$ compactly as

$$
\begin{equation*}
P_{n}(x)=P_{n}\left(x_{0}+s h\right)=f\left[x_{0}\right]+\sum_{k=1}^{n}\binom{s}{k} k!h^{k} f\left[x_{0}, x_{i}, \ldots, x_{k}\right] . \tag{3.11}
\end{equation*}
$$

Forward Differences

The Newton forward-difference formula, is constructed by making use of the forward difference notation Δ introduced in Aitken's Δ^{2} method. With this notation,

$$
\begin{aligned}
f\left[x_{0}, x_{1}\right] & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{1}{h}\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)=\frac{1}{h} \Delta f\left(x_{0}\right) \\
f\left[x_{0}, x_{1}, x_{2}\right] & =\frac{1}{2 h}\left[\frac{\Delta f\left(x_{1}\right)-\Delta f\left(x_{0}\right)}{h}\right]=\frac{1}{2 h^{2}} \Delta^{2} f\left(x_{0}\right),
\end{aligned}
$$

and, in general,

$$
f\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\frac{1}{k!h^{k}} \Delta^{k} f\left(x_{0}\right)
$$

Since $f\left[x_{0}\right]=f\left(x_{0}\right)$, Eq. (3.11) has the following form.

Newton Forward-Difference Formula

$$
\begin{equation*}
P_{n}(x)=f\left(x_{0}\right)+\sum_{k=1}^{n}\binom{s}{k} \Delta^{k} f\left(x_{0}\right) \tag{3.12}
\end{equation*}
$$

Backward Differences

If the interpolating nodes are reordered from last to first as $x_{n}, x_{n-1}, \ldots, x_{0}$, we can write the interpolatory formula as

$$
\begin{aligned}
P_{n}(x)= & f\left[x_{n}\right]+f\left[x_{n}, x_{n-1}\right]\left(x-x_{n}\right)+f\left[x_{n}, x_{n-1}, x_{n-2}\right]\left(x-x_{n}\right)\left(x-x_{n-1}\right) \\
& +\cdots+f\left[x_{n}, \ldots, x_{0}\right]\left(x-x_{n}\right)\left(x-x_{n-1}\right) \cdots\left(x-x_{1}\right) .
\end{aligned}
$$

If, in addition, the nodes are equally spaced with $x=x_{n}+\operatorname{sh}$ and $x=x_{i}+(s+n-i) h$, then

$$
\begin{aligned}
P_{n}(x)= & P_{n}\left(x_{n}+s h\right) \\
= & f\left[x_{n}\right]+\operatorname{sh} f\left[x_{n}, x_{n-1}\right]+s(s+1) h^{2} f\left[x_{n}, x_{n-1}, x_{n-2}\right]+\cdots \\
& +s(s+1) \cdots(s+n-1) h^{n} f\left[x_{n}, \ldots, x_{0}\right] .
\end{aligned}
$$

This is used to derive a commonly applied formula known as the Newton backwarddifference formula. To discuss this formula, we need the following definition.

Definition 3.7 Given the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$, define the backward difference $\nabla p_{n}\left(\right.$ read nabla $\left.p_{n}\right)$ by

$$
\nabla p_{n}=p_{n}-p_{n-1}, \quad \text { for } n \geq 1
$$

Higher powers are defined recursively by

$$
\nabla^{k} p_{n}=\nabla\left(\nabla^{k-1} p_{n}\right), \quad \text { for } k \geq 2
$$

Definition 3.7 implies that

$$
f\left[x_{n}, x_{n-1}\right]=\frac{1}{h} \nabla f\left(x_{n}\right), \quad f\left[x_{n}, x_{n-1}, x_{n-2}\right]=\frac{1}{2 h^{2}} \nabla^{2} f\left(x_{n}\right),
$$

and, in general,

$$
f\left[x_{n}, x_{n-1}, \ldots, x_{n-k}\right]=\frac{1}{k!h^{k}} \nabla^{k} f\left(x_{n}\right)
$$

Consequently,
$P_{n}(x)=f\left[x_{n}\right]+s \nabla f\left(x_{n}\right)+\frac{s(s+1)}{2} \nabla^{2} f\left(x_{n}\right)+\cdots+\frac{s(s+1) \cdots(s+n-1)}{n!} \nabla^{n} f\left(x_{n}\right)$.
If we extend the binomial coefficient notation to include all real values of s by letting

$$
\binom{-s}{k}=\frac{-s(-s-1) \cdots(-s-k+1)}{k!}=(-1)^{k} \frac{s(s+1) \cdots(s+k-1)}{k!},
$$

then
$P_{n}(x)=f\left[x_{n}\right]+(-1)^{1}\binom{-s}{1} \nabla f\left(x_{n}\right)+(-1)^{2}\binom{-s}{2} \nabla^{2} f\left(x_{n}\right)+\cdots+(-1)^{n}\binom{-s}{n} \nabla^{n} f\left(x_{n}\right)$.
This gives the following result.

Newton Backward-Difference Formula

$$
\begin{equation*}
P_{n}(x)=f\left[x_{n}\right]+\sum_{k=1}^{n}(-1)^{k}\binom{-s}{k} \nabla^{k} f\left(x_{n}\right) \tag{3.13}
\end{equation*}
$$

Illustration The divided-difference Table 3.12 corresponds to the data in Example 1.

Table 3.12

		First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	0.7651977				
		$\underline{-0.4837057}$			
1.3	0.6200860		$\underline{-0.1087339}$		
		-0.5489460		0.0658784	
1.6	0.4554022		-0.0494433		$\underline{0.0018251}$
		-0.5786120		0.0680685	
1.9	0.2818186		0.0118183		
		-0.5715210			
2.2	0.1103623				

Only one interpolating polynomial of degree at most 4 uses these five data points, but we will organize the data points to obtain the best interpolation approximations of degrees 1 , 2 , and 3 . This will give us a sense of accuracy of the fourth-degree approximation for the given value of x.

If an approximation to $f(1.1)$ is required, the reasonable choice for the nodes would be $x_{0}=1.0, x_{1}=1.3, x_{2}=1.6, x_{3}=1.9$, and $x_{4}=2.2$ since this choice makes the earliest possible use of the data points closest to $x=1.1$, and also makes use of the fourth divided difference. This implies that $h=0.3$ and $s=\frac{1}{3}$, so the Newton forward divideddifference formula is used with the divided differences that have a solid underline (\qquad) in Table 3.12:

$$
\begin{aligned}
P_{4}(1.1)= & P_{4}\left(1.0+\frac{1}{3}(0.3)\right) \\
= & 0.7651977+\frac{1}{3}(0.3)(-0.4837057)+\frac{1}{3}\left(-\frac{2}{3}\right)(0.3)^{2}(-0.1087339) \\
& +\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)(0.3)^{3}(0.0658784) \\
& +\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)(0.3)^{4}(0.0018251) \\
= & 0.7196460
\end{aligned}
$$

To approximate a value when x is close to the end of the tabulated values, say, $x=2.0$, we would again like to make the earliest use of the data points closest to x. This requires using the Newton backward divided-difference formula with $s=-\frac{2}{3}$ and the divided differences in Table 3.12 that have a wavy underline (~~). Notice that the fourth divided difference is used in both formulas.

$$
\begin{aligned}
P_{4}(2.0)= & P_{4}\left(2.2-\frac{2}{3}(0.3)\right) \\
= & 0.1103623-\frac{2}{3}(0.3)(-0.5715210)-\frac{2}{3}\left(\frac{1}{3}\right)(0.3)^{2}(0.0118183) \\
& -\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)(0.3)^{3}(0.0680685)-\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)\left(\frac{7}{3}\right)(0.3)^{4}(0.0018251) \\
= & 0.2238754 .
\end{aligned}
$$

