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Newton’s divided-difference formula can be expressed in a simplified form when the

nodes are arranged consecutively with equal spacing. In this case, we introduce the notation

h = xi+1 − xi, for each i = 0, 1, . . . , n − 1 and let x = x0 + sh. Then the difference x − xi

is x − xi = (s − i)h. So Eq. (3.10) becomes

Pn(x) = Pn(x0 + sh) = f [x0] + shf [x0, x1] + s(s − 1)h2f [x0, x1, x2]

+ · · · + s(s − 1) · · · (s − n + 1)hnf [x0, x1, . . . , xn]

= f [x0] +

n
∑

k=1

s(s − 1) · · · (s − k + 1)hkf [x0, x1, . . . , xk].

Using binomial-coefficient notation,

(

s

k

)

=
s(s − 1) · · · (s − k + 1)

k!
,

we can express Pn(x) compactly as

Pn(x) = Pn(x0 + sh) = f [x0] +

n
∑

k=1

(

s

k

)

k!hkf [x0, xi, . . . , xk]. (3.11)

Forward Differences

The Newton forward-difference formula, is constructed by making use of the forward

difference notation � introduced in Aitken’s �2 method. With this notation,

f [x0, x1] =
f (x1) − f (x0)

x1 − x0

=
1

h
(f (x1) − f (x0)) =

1

h
�f (x0)

f [x0, x1, x2] =
1

2h

[

�f (x1) − �f (x0)

h

]

=
1

2h2
�2f (x0),

and, in general,

f [x0, x1, . . . , xk] =
1

k!hk
�kf (x0).

Since f [x0] = f (x0), Eq. (3.11) has the following form.

Newton Forward-Difference Formula

Pn(x) = f (x0) +

n
∑

k=1

(

s

k

)

�kf (x0) (3.12)

Backward Differences

If the interpolating nodes are reordered from last to first as xn, xn−1, . . . , x0, we can write

the interpolatory formula as

Pn(x) = f [xn] + f [xn, xn−1](x − xn) + f [xn, xn−1, xn−2](x − xn)(x − xn−1)

+ · · · + f [xn, . . . , x0](x − xn)(x − xn−1) · · · (x − x1).
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130 C H A P T E R 3 Interpolation and Polynomial Approximation

If, in addition, the nodes are equally spaced with x = xn + sh and x = xi + (s +n− i)h,

then

Pn(x) = Pn(xn + sh)

= f [xn] + shf [xn, xn−1] + s(s + 1)h2f [xn, xn−1, xn−2] + · · ·

+ s(s + 1) · · · (s + n − 1)hnf [xn, . . . , x0].

This is used to derive a commonly applied formula known as the Newton backward-

difference formula. To discuss this formula, we need the following definition.

Definition 3.7 Given the sequence {pn}
∞
n=0, define the backward difference ∇pn (read nabla pn) by

∇pn = pn − pn−1, for n ≥ 1.

Higher powers are defined recursively by

∇kpn = ∇(∇k−1pn), for k ≥ 2.

Definition 3.7 implies that

f [xn, xn−1] =
1

h
∇f (xn), f [xn, xn−1, xn−2] =

1

2h2
∇2f (xn),

and, in general,

f [xn, xn−1, . . . , xn−k] =
1

k!hk
∇kf (xn).

Consequently,

Pn(x) = f [xn] + s∇f (xn) +
s(s + 1)

2
∇2f (xn) + · · · +

s(s + 1) · · · (s + n − 1)

n!
∇nf (xn).

If we extend the binomial coefficient notation to include all real values of s by letting

(

−s

k

)

=
−s(−s − 1) · · · (−s − k + 1)

k!
= (−1)k s(s + 1) · · · (s + k − 1)

k!
,

then

Pn(x) = f [xn]+(−1)1

(

−s

1

)

∇f (xn)+(−1)2

(

−s

2

)

∇2f (xn)+· · ·+(−1)n

(

−s

n

)

∇nf (xn).

This gives the following result.

Newton Backward–Difference Formula

Pn(x) = f [xn] +

n
∑

k=1

(−1)k

(

−s

k

)

∇kf (xn) (3.13)
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Illustration The divided-difference Table 3.12 corresponds to the data in Example 1.

Table 3.12
First divided Second divided Third divided Fourth divided

differences differences differences differences

1.0 0.7651977

−0.4837057

1.3 0.6200860 −0.1087339

−0.5489460 0.0658784

1.6 0.4554022 −0.0494433
✿✿✿✿✿✿✿✿

0.0018251

−0.5786120
✿✿✿✿✿✿✿✿✿

0.0680685

1.9 0.2818186
✿✿✿✿✿✿✿✿

0.0118183

✿✿✿✿✿✿✿✿✿✿

−0.5715210

2.2
✿✿✿✿✿✿✿✿

0.1103623

Only one interpolating polynomial of degree at most 4 uses these five data points, but we

will organize the data points to obtain the best interpolation approximations of degrees 1,

2, and 3. This will give us a sense of accuracy of the fourth-degree approximation for the

given value of x.

If an approximation to f (1.1) is required, the reasonable choice for the nodes would

be x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2 since this choice makes the

earliest possible use of the data points closest to x = 1.1, and also makes use of the fourth

divided difference. This implies that h = 0.3 and s = 1
3
, so the Newton forward divided-

difference formula is used with the divided differences that have a solid underline ( ) in

Table 3.12:

P4(1.1) = P4(1.0 +
1

3
(0.3))

= 0.7651977 +
1

3
(0.3)(−0.4837057) +

1

3

(

−
2

3

)

(0.3)2(−0.1087339)

+
1

3

(

−
2

3

) (

−
5

3

)

(0.3)3(0.0658784)

+
1

3

(

−
2

3

) (

−
5

3

) (

−
8

3

)

(0.3)4(0.0018251)

= 0.7196460.

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, we

would again like to make the earliest use of the data points closest to x. This requires using

the Newton backward divided-difference formula with s = − 2
3

and the divided differences

in Table 3.12 that have a wavy underline (
✿✿✿✿

). Notice that the fourth divided difference

is used in both formulas.

P4(2.0) = P4

(

2.2 −
2

3
(0.3)

)

= 0.1103623 −
2

3
(0.3)(−0.5715210) −

2

3

(

1

3

)

(0.3)2(0.0118183)

−
2

3

(

1

3

) (

4

3

)

(0.3)3(0.0680685) −
2

3

(

1

3

) (

4

3

) (

7

3

)

(0.3)4(0.0018251)

= 0.2238754. �
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