As might be expected from the evaluation of a_{0} and a_{1}, the required constants are

$$
a_{k}=f\left[x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right]
$$

for each $k=0,1, \ldots, n$. So $P_{n}(x)$ can be rewritten in a form called Newton's DividedDifference:

$$
\begin{equation*}
P_{n}(x)=f\left[x_{0}\right]+\sum_{k=1}^{n} f\left[x_{0}, x_{1}, \ldots, x_{k}\right]\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right) . \tag{3.10}
\end{equation*}
$$

The value of $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ is independent of the order of the numbers $x_{0}, x_{1}, \ldots, x_{k}$, as shown in Exercise 21.

The generation of the divided differences is outlined in Table 3.9. Two fourth and one fifth difference can also be determined from these data.

Table 3.9

x	$f(x)$	First divided differences	Second divided differences	Third divided differences
x_{0}	$f\left[x_{0}\right]$	$f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}$		
x_{1}	$f\left[x_{1}\right]$	$f\left[x_{1}, x_{2}\right]=\underline{f\left[x_{2}\right]-f\left[x_{1}\right]}$	$f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}$	$f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\underline{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}$
x_{2}	$f\left[x_{2}\right]$		$f\left[x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{2}, x_{3}\right]-f\left[x_{1}, x_{2}\right]}{x_{3}-x_{1}}$	$x_{3}-x_{0}$ $f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=\underline{f\left[x_{2}, x_{3}, x_{4}\right]-f\left[x_{1}, x_{2}, x_{3}\right]}$
x_{3}	$f\left[x_{3}\right]$	$f\left[x_{3}, x_{4}\right]=\frac{f\left[x_{4}\right]-f\left[x_{3}\right]}{x}$	$f\left[x_{2}, x_{3}, x_{4}\right]=\frac{f\left[x_{3}, x_{4}\right]-f\left[x_{2}, x_{3}\right]}{x_{4}-x_{2}}$	
x_{4}	$f\left[x_{4}\right]$	$f\left[x_{4}, x_{5}\right]=\frac{f\left[x_{5}\right]-f\left[x_{4}\right]}{x_{5}-x_{4}}$	$f\left[x_{3}, x_{4}, x_{5}\right]=\frac{f\left[x_{4}, x_{5}\right]-f\left[x_{3}, x_{4}\right]}{x_{5}-x_{3}}$	$x_{5}-x_{2}$
x_{5}	$f\left[x_{5}\right]$			

Newton's Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the $(n+1)$ distinct numbers $x_{0}, x_{1}, \ldots, x_{n}$ for the function f :

INPUT numbers $x_{0}, x_{1}, \ldots, x_{n}$; values $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ as $F_{0,0}, F_{1,0}, \ldots, F_{n, 0}$.
OUTPUT the numbers $F_{0,0}, F_{1,1}, \ldots, F_{n, n}$ where

$$
P_{n}(x)=F_{0,0}+\sum_{i=1}^{n} F_{i, i} \prod_{j=0}^{i-1}\left(x-x_{j}\right) . \quad\left(F_{i, i} \text { is } f\left[x_{0}, x_{1}, \ldots, x_{i}\right] .\right)
$$

Step 1 For $i=1,2, \ldots, n$

$$
\begin{aligned}
& \text { For } j=1,2, \ldots, i \\
& \qquad \operatorname{set} F_{i, j}=\frac{F_{i, j-1}-F_{i-1, j-1}}{x_{i}-x_{i-j}} . \quad\left(F_{i, j}=f\left[x_{i-j}, \ldots, x_{i}\right] .\right)
\end{aligned}
$$

Step $2 \operatorname{OUTPUT}\left(F_{0,0}, F_{1,1}, \ldots, F_{n, n}\right)$;
STOP.

The form of the output in Algorithm 3.2 can be modified to produce all the divided differences, as shown in Example 1.

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and

Table 3.10

x	$f(x)$
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

Table 3.11 reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.
Solution The first divided difference involving x_{0} and x_{1} is

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}=\frac{0.6200860-0.7651977}{1.3-1.0}=-0.4837057
$$

The remaining first divided differences are found in a similar manner and are shown in the fourth column in Table 3.11.

i	x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i-1}, x_{i}\right]$	$f\left[x_{i-2}, x_{i-1}, x_{i}\right]$	$f\left[x_{i-3}, \ldots, x_{i}\right]$	$f\left[x_{i-4}, \ldots, x_{i}\right]$
0	1.0	0.7651977				
1	1.3	0.6200860	-0.4837057		-0.1087339	
2	1.6	0.4554022	-0.5489460		-0.0494433	0.0658784
3	1.9	0.2818186	-0.5786120		0.0680685	0.0018251
4	2.2	0.1103623	-0.5715210			

The second divided difference involving x_{0}, x_{1}, and x_{2} is

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{-0.5489460-(-0.4837057)}{1.6-1.0}=-0.1087339 .
$$

The remaining second divided differences are shown in the 5th column of Table 3.11. The third divided difference involving x_{0}, x_{1}, x_{2}, and x_{3} and the fourth divided difference involving all the data points are, respectively,

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] & =\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}}=\frac{-0.0494433-(-0.1087339)}{1.9-1.0} \\
& =0.0658784
\end{aligned}
$$

and

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right] & =\frac{f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]-f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]}{x_{4}-x_{0}}=\frac{0.0680685-0.0658784}{2.2-1.0} \\
& =0.0018251 .
\end{aligned}
$$

All the entries are given in Table 3.11.
The coefficients of the Newton forward divided-difference form of the interpolating polynomial are along the diagonal in the table. This polynomial is

$$
\begin{aligned}
P_{4}(x)= & 0.7651977-0.4837057(x-1.0)-0.1087339(x-1.0)(x-1.3) \\
& +0.0658784(x-1.0)(x-1.3)(x-1.6) \\
& +0.0018251(x-1.0)(x-1.3)(x-1.6)(x-1.9) .
\end{aligned}
$$

Notice that the value $P_{4}(1.5)=0.5118200$ agrees with the result in Table 3.6 for Example 2 of Section 3.2, as it must because the polynomials are the same.

We can use Maple with the NumericalAnalysis package to create the Newton DividedDifference table. First load the package and define the x and $f(x)=y$ values that will be used to generate the first four rows of Table 3.11.

$$
x y:=[[1.0,0.7651977],[1.3,0.6200860],[1.6,0.4554022],[1.9,0.2818186]]
$$

The command to create the divided-difference table is
$p 3:=$ PolynomialInterpolation(xy, independentvar $=$ ' x ', method $=$ newton)
A matrix containing the divided-difference table as its nonzero entries is created with the

DividedDifferenceTable(p3)

We can add another row to the table with the command
$p 4:=\operatorname{AddPoint}(p 3,[2.2,0.1103623])$
which produces the divided-difference table with entries corresponding to those in Table 3.11.

The Newton form of the interpolation polynomial is created with

Interpolant(p4)

which produces the polynomial in the form of $P_{4}(x)$ in Example 1, except that in place of the first two terms of $P_{4}(x)$:

$$
0.7651977-0.4837057(x-1.0)
$$

Maple gives this as $1.248903367-0.4837056667 x$.
The Mean Value Theorem 1.8 applied to Eq. (3.8) when $i=0$,

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

implies that when f^{\prime} exists, $f\left[x_{0}, x_{1}\right]=f^{\prime}(\xi)$ for some number ξ between x_{0} and x_{1}. The following theorem generalizes this result.

Theorem 3.6 Suppose that $f \in C^{n}[a, b]$ and $x_{0}, x_{1}, \ldots, x_{n}$ are distinct numbers in $[a, b]$. Then a number ξ exists in (a, b) with

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{f^{(n)}(\xi)}{n!} .
$$

Proof Let

$$
g(x)=f(x)-P_{n}(x)
$$

Since $f\left(x_{i}\right)=P_{n}\left(x_{i}\right)$ for each $i=0,1, \ldots, n$, the function g has $n+1$ distinct zeros in $[a, b]$. Generalized Rolle's Theorem 1.10 implies that a number ξ in (a, b) exists with $g^{(n)}(\xi)=0$, so

$$
0=f^{(n)}(\xi)-P_{n}^{(n)}(\xi)
$$

Since $P_{n}(x)$ is a polynomial of degree n whose leading coefficient is $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$,

$$
P_{n}^{(n)}(x)=n!f\left[x_{0}, x_{1}, \ldots, x_{n}\right],
$$

for all values of x. As a consequence,

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{f^{(n)}(\xi)}{n!} .
$$

