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5. Neville’s method is used to approximate f (0.4), giving the following table.

x0 = 0 P0 = 1

x1 = 0.25 P1 = 2 P01 = 2.6

x2 = 0.5 P2 P1,2 P0,1,2

x3 = 0.75 P3 = 8 P2,3 = 2.4 P1,2,3 = 2.96 P0,1,2,3 = 3.016

Determine P2 = f (0.5).

6. Neville’s method is used to approximate f (0.5), giving the following table.

x0 = 0 P0 = 0

x1 = 0.4 P1 = 2.8 P0,1 = 3.5

x2 = 0.7 P2 P1,2 P0,1,2 = 27

7

Determine P2 = f (0.7).

7. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = 2x + 1, P0,2(x) = x + 1, and P1,2,3(2.5) = 3.

Find P0,1,2,3(2.5).

8. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = x + 1, P1,2(x) = 3x − 1, and P1,2,3(1.5) = 4.

Find P0,1,2,3(1.5).

9. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose

f (−1) was understated by 2 and f (1) was overstated by 3. Determine the error in the original

calculation of the value of the interpolating polynomial to approximate f (0).

10. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose

f (−1) was overstated by 2 and f (1) was understated by 3. Determine the error in the original

calculation of the value of the interpolating polynomial to approximate f (0).

11. Construct a sequence of interpolating values yn to f (1 +
√

10), where f (x) = (1 + x2)−1 for

−5 ≤ x ≤ 5, as follows: For each n = 1, 2, . . . , 10, let h = 10/n and yn = Pn(1 +
√

10), where Pn(x)

is the interpolating polynomial for f (x) at the nodes x
(n)

0 , x
(n)

1 , . . . , x(n)
n and x

(n)

j = −5 + jh, for each

j = 0, 1, 2, . . . , n. Does the sequence {yn} appear to converge to f (1 +
√

10)?

Inverse Interpolation Suppose f ∈ C1[a, b], f ′(x) �= 0 on [a, b] and f has one zero p in [a, b].
Let x0, . . . , xn, be n + 1 distinct numbers in [a, b] with f (xk) = yk , for each k = 0, 1, . . . , n. To

approximate p construct the interpolating polynomial of degree n on the nodes y0, . . . , yn for f −1.

Since yk = f (xk) and 0 = f (p), it follows that f −1(yk) = xk and p = f −1(0). Using iterated

interpolation to approximate f −1(0) is called iterated inverse interpolation.

12. Use iterated inverse interpolation to find an approximation to the solution of x − e−x = 0, using the

data

x 0.3 0.4 0.5 0.6

e−x 0.740818 0.670320 0.606531 0.548812

13. Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree

polynomial approximations at a specific point. Divided-difference methods introduced in

this section are used to successively generate the polynomials themselves.
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Suppose that Pn(x) is the nth Lagrange polynomial that agrees with the function f at

the distinct numbers x0, x1, . . . , xn. Although this polynomial is unique, there are alternate

algebraic representations that are useful in certain situations. The divided differences of f

with respect to x0, x1, . . . , xn are used to express Pn(x) in the form

Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · · + an(x − x0) · · · (x − xn−1), (3.5)

for appropriate constants a0, a1, . . . , an. To determine the first of these constants, a0, note

that if Pn(x) is written in the form of Eq. (3.5), then evaluating Pn(x) at x0 leaves only the

constant term a0; that is,

a0 = Pn(x0) = f (x0).

Similarly, when P(x) is evaluated at x1, the only nonzero terms in the evaluation of

Pn(x1) are the constant and linear terms,

f (x0) + a1(x1 − x0) = Pn(x1) = f (x1);

so

a1 =
f (x1) − f (x0)

x1 − x0

. (3.6)

As in so many areas, Isaac

Newton is prominent in the study

of difference equations. He

developed interpolation formulas

as early as 1675, using his �

notation in tables of differences.

He took a very general approach

to the difference formulas, so

explicit examples that he

produced, including Lagrange’s

formulas, are often known by

other names.

We now introduce the divided-difference notation, which is related to Aitken’s �2

notation used in Section 2.5. The zeroth divided difference of the function f with respect

to xi, denoted f [xi], is simply the value of f at xi:

f [xi] = f (xi). (3.7)

The remaining divided differences are defined recursively; the first divided difference

of f with respect to xi and xi+1 is denoted f [xi, xi+1] and defined as

f [xi, xi+1] =
f [xi+1] − f [xi]

xi+1 − xi

. (3.8)

The second divided difference, f [xi, xi+1, xi+2], is defined as

f [xi, xi+1, xi+2] =
f [xi+1, xi+2] − f [xi, xi+1]

xi+2 − xi

.

Similarly, after the (k − 1)st divided differences,

f [xi, xi+1, xi+2, . . . , xi+k−1] and f [xi+1, xi+2, . . . , xi+k−1, xi+k],

have been determined, the kth divided difference relative to xi, xi+1, xi+2, . . . , xi+k is

f [xi, xi+1, . . . , xi+k−1, xi+k] =
f [xi+1, xi+2, . . . , xi+k] − f [xi, xi+1, . . . , xi+k−1]

xi+k − xi

. (3.9)

The process ends with the single nth divided difference,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn] − f [x0, x1, . . . , xn−1]

xn − x0

.

Because of Eq. (3.6) we can write a1 = f [x0, x1], just as a0 can be expressed as a0 =
f (x0) = f [x0]. Hence the interpolating polynomial in Eq. (3.5) is

Pn(x) = f [x0] + f [x0, x1](x − x0) + a2(x − x0)(x − x1)

+ · · · + an(x − x0)(x − x1) · · · (x − xn−1).
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