5. Neville's method is used to approximate $f(0.4)$, giving the following table.

$x_{0}=0$	$P_{0}=1$			
$x_{1}=0.25$	$P_{1}=2$	$P_{01}=2.6$		$P_{0,1,2}$
$x_{2}=0.5$	P_{2}	$P_{1,2}$		
$x_{3}=0.75$	$P_{3}=8$	$P_{2,3}=2.4$	$P_{1,2,3}=2.96$	$P_{0,1,2,3}=3.016$

Determine $P_{2}=f(0.5)$.
6. Neville's method is used to approximate $f(0.5)$, giving the following table.

$x_{0}=0$	$P_{0}=0$		
$x_{1}=0.4$	$P_{1}=2.8$	$P_{0,1}=3.5$	
$x_{2}=0.7$	P_{2}	$P_{1,2}$	$P_{0,1,2}=\frac{27}{7}$

Determine $P_{2}=f(0.7)$.
7. Suppose $x_{j}=j$, for $j=0,1,2,3$ and it is known that

$$
P_{0,1}(x)=2 x+1, \quad P_{0,2}(x)=x+1, \quad \text { and } \quad P_{1,2,3}(2.5)=3 .
$$

Find $P_{0,1,2,3}(2.5)$.
8. Suppose $x_{j}=j$, for $j=0,1,2,3$ and it is known that

$$
P_{0,1}(x)=x+1, \quad P_{1,2}(x)=3 x-1, \quad \text { and } \quad P_{1,2,3}(1.5)=4 .
$$

Find $P_{0,1,2,3}(1.5)$.
9. Neville's Algorithm is used to approximate $f(0)$ using $f(-2), f(-1), f(1)$, and $f(2)$. Suppose $f(-1)$ was understated by 2 and $f(1)$ was overstated by 3 . Determine the error in the original calculation of the value of the interpolating polynomial to approximate $f(0)$.
10. Neville's Algorithm is used to approximate $f(0)$ using $f(-2), f(-1), f(1)$, and $f(2)$. Suppose $f(-1)$ was overstated by 2 and $f(1)$ was understated by 3 . Determine the error in the original calculation of the value of the interpolating polynomial to approximate $f(0)$.
11. Construct a sequence of interpolating values y_{n} to $f(1+\sqrt{10})$, where $f(x)=\left(1+x^{2}\right)^{-1}$ for $-5 \leq x \leq 5$, as follows: For each $n=1,2, \ldots, 10$, let $h=10 / n$ and $y_{n}=P_{n}(1+\sqrt{10})$, where $P_{n}(x)$ is the interpolating polynomial for $f(x)$ at the nodes $x_{0}^{(n)}, x_{1}^{(n)}, \ldots, x_{n}^{(n)}$ and $x_{j}^{(n)}=-5+j h$, for each $j=0,1,2, \ldots, n$. Does the sequence $\left\{y_{n}\right\}$ appear to converge to $f(1+\sqrt{10})$?
Inverse Interpolation Suppose $f \in C^{1}[a, b], f^{\prime}(x) \neq 0$ on $[a, b]$ and f has one zero p in $[a, b]$. Let x_{0}, \ldots, x_{n}, be $n+1$ distinct numbers in $[a, b]$ with $f\left(x_{k}\right)=y_{k}$, for each $k=0,1, \ldots, n$. To approximate p construct the interpolating polynomial of degree n on the nodes y_{0}, \ldots, y_{n} for f^{-1}. Since $y_{k}=f\left(x_{k}\right)$ and $0=f(p)$, it follows that $f^{-1}\left(y_{k}\right)=x_{k}$ and $p=f^{-1}(0)$. Using iterated interpolation to approximate $f^{-1}(0)$ is called iterated inverse interpolation.
12. Use iterated inverse interpolation to find an approximation to the solution of $x-e^{-x}=0$, using the data

x	0.3	0.4	0.5	0.6
e^{-x}	0.740818	0.670320	0.606531	0.548812

13. Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree polynomial approximations at a specific point. Divided-difference methods introduced in this section are used to successively generate the polynomials themselves.

As in so many areas, Isaac
Newton is prominent in the study of difference equations. He developed interpolation formulas as early as 1675 , using his Δ notation in tables of differences. He took a very general approach to the difference formulas, so explicit examples that he produced, including Lagrange's formulas, are often known by other names.

Suppose that $P_{n}(x)$ is the nth Lagrange polynomial that agrees with the function f at the distinct numbers $x_{0}, x_{1}, \ldots, x_{n}$. Although this polynomial is unique, there are alternate algebraic representations that are useful in certain situations. The divided differences of f with respect to $x_{0}, x_{1}, \ldots, x_{n}$ are used to express $P_{n}(x)$ in the form

$$
\begin{equation*}
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right), \tag{3.5}
\end{equation*}
$$

for appropriate constants $a_{0}, a_{1}, \ldots, a_{n}$. To determine the first of these constants, a_{0}, note that if $P_{n}(x)$ is written in the form of Eq. (3.5), then evaluating $P_{n}(x)$ at x_{0} leaves only the constant term a_{0}; that is,

$$
a_{0}=P_{n}\left(x_{0}\right)=f\left(x_{0}\right)
$$

Similarly, when $P(x)$ is evaluated at x_{1}, the only nonzero terms in the evaluation of $P_{n}\left(x_{1}\right)$ are the constant and linear terms,

$$
f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right)=P_{n}\left(x_{1}\right)=f\left(x_{1}\right)
$$

so

$$
\begin{equation*}
a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \tag{3.6}
\end{equation*}
$$

We now introduce the divided-difference notation, which is related to Aitken's Δ^{2} notation used in Section 2.5. The zeroth divided difference of the function f with respect to x_{i}, denoted $f\left[x_{i}\right]$, is simply the value of f at x_{i} :

$$
\begin{equation*}
f\left[x_{i}\right]=f\left(x_{i}\right) . \tag{3.7}
\end{equation*}
$$

The remaining divided differences are defined recursively; the first divided difference of f with respect to x_{i} and x_{i+1} is denoted $f\left[x_{i}, x_{i+1}\right]$ and defined as

$$
\begin{equation*}
f\left[x_{i}, x_{i+1}\right]=\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}} . \tag{3.8}
\end{equation*}
$$

The second divided difference, $f\left[x_{i}, x_{i+1}, x_{i+2}\right]$, is defined as

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}} .
$$

Similarly, after the $(k-1)$ st divided differences,

$$
f\left[x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}\right] \quad \text { and } \quad f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}, x_{i+k}\right]
$$

have been determined, the $\boldsymbol{k} \mathbf{t h}$ divided difference relative to $x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k}$ is

$$
\begin{equation*}
f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}, x_{i+k}\right]=\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}} . \tag{3.9}
\end{equation*}
$$

The process ends with the single nth divided difference,

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, x_{2}, \ldots, x_{n}\right]-f\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}} .
$$

Because of Eq. (3.6) we can write $a_{1}=f\left[x_{0}, x_{1}\right]$, just as a_{0} can be expressed as $a_{0}=$ $f\left(x_{0}\right)=f\left[x_{0}\right]$. Hence the interpolating polynomial in Eq. (3.5) is

$$
\begin{aligned}
P_{n}(x)= & f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right) .
\end{aligned}
$$

