For the Taylor polynomials all the information used in the approximation is concentrated at the single number x_{0}, so these polynomials will generally give inaccurate approximations as we move away from x_{0}. This limits Taylor polynomial approximation to the situation in which approximations are needed only at numbers close to x_{0}. For ordinary computational purposes it is more efficient to use methods that include information at various points. We consider this in the remainder of the chapter. The primary use of Taylor polynomials in numerical analysis is not for approximation purposes, but for the derivation of numerical techniques and error estimation.

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is the same as approximating a function f for which $f\left(x_{0}\right)=y_{0}$ and $f\left(x_{1}\right)=y_{1}$ by means of a first-degree polynomial interpolating, or agreeing with, the values of f at the given points. Using this polynomial for approximation within the interval given by the endpoints is called polynomial interpolation.

Define the functions

$$
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \quad \text { and } \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

The linear Lagrange interpolating polynomial through $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ is

$$
P(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)=\frac{x-x_{1}}{x_{0}-x_{1}} f\left(x_{0}\right)+\frac{x-x_{0}}{x_{1}-x_{0}} f\left(x_{1}\right) .
$$

Note that

$$
L_{0}\left(x_{0}\right)=1, \quad L_{0}\left(x_{1}\right)=0, \quad L_{1}\left(x_{0}\right)=0, \quad \text { and } \quad L_{1}\left(x_{1}\right)=1,
$$

which implies that

$$
P\left(x_{0}\right)=1 \cdot f\left(x_{0}\right)+0 \cdot f\left(x_{1}\right)=f\left(x_{0}\right)=y_{0}
$$

and

$$
P\left(x_{1}\right)=0 \cdot f\left(x_{0}\right)+1 \cdot f\left(x_{1}\right)=f\left(x_{1}\right)=y_{1} .
$$

So P is the unique polynomial of degree at most one that passes through $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points $(2,4)$ and $(5,1)$.

Solution In this case we have

$$
L_{0}(x)=\frac{x-5}{2-5}=-\frac{1}{3}(x-5) \quad \text { and } \quad L_{1}(x)=\frac{x-2}{5-2}=\frac{1}{3}(x-2)
$$

so

$$
P(x)=-\frac{1}{3}(x-5) \cdot 4+\frac{1}{3}(x-2) \cdot 1=-\frac{4}{3} x+\frac{20}{3}+\frac{1}{3} x-\frac{2}{3}=-x+6 .
$$

The graph of $y=P(x)$ is shown in Figure 3.3.

Figure 3.3

To generalize the concept of linear interpolation, consider the construction of a polynomial of degree at most n that passes through the $n+1$ points

$$
\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)
$$

(See Figure 3.4.)

Figure 3.4

In this case we first construct, for each $k=0,1, \ldots, n$, a function $L_{n, k}(x)$ with the property that $L_{n, k}\left(x_{i}\right)=0$ when $i \neq k$ and $L_{n, k}\left(x_{k}\right)=1$. To satisfy $L_{n, k}\left(x_{i}\right)=0$ for each $i \neq k$ requires that the numerator of $L_{n, k}(x)$ contain the term

$$
\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right) .
$$

To satisfy $L_{n, k}\left(x_{k}\right)=1$, the denominator of $L_{n, k}(x)$ must be this same term but evaluated at $x=x_{k}$. Thus

$$
L_{n, k}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)} .
$$

A sketch of the graph of a typical $L_{n, k}$ (when n is even) is shown in Figure 3.5.

Figure 3.5

The interpolating polynomial is easily described once the form of $L_{n, k}$ is known. This polynomial, called the \boldsymbol{n} th Lagrange interpolating polynomial, is defined in the following theorem.

Theorem 3.2 If $x_{0}, x_{1}, \ldots, x_{n}$ are $n+1$ distinct numbers and f is a function whose values are given at
The interpolation formula named for Joseph Louis Lagrange (1736-1813) was likely known by Isaac Newton around 1675, but it appears to first have been published in 1779 by Edward Waring (1736-1798). Lagrange wrote extensively on the subject of interpolation and his work had significant influence on later mathematicians. He published this result in 1795.

The symbol Π is used to write products compactly and parallels the symbol \sum, which is used for writing sums.

Example 2

 these numbers, then a unique polynomial $P(x)$ of degree at most n exists with$$
f\left(x_{k}\right)=P\left(x_{k}\right), \quad \text { for each } k=0,1, \ldots, n
$$

This polynomial is given by

$$
\begin{equation*}
P(x)=f\left(x_{0}\right) L_{n, 0}(x)+\cdots+f\left(x_{n}\right) L_{n, n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x) \tag{3.1}
\end{equation*}
$$

where, for each $k=0,1, \ldots, n$,

$$
\begin{align*}
L_{n, k}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)} \tag{3.2}\\
& =\prod_{\substack{i=0 \\
i \neq k}}^{n} \frac{\left(x-x_{i}\right)}{\left(x_{k}-x_{i}\right)}
\end{align*}
$$

We will write $L_{n, k}(x)$ simply as $L_{k}(x)$ when there is no confusion as to its degree.
(a) Use the numbers (called nodes) $x_{0}=2, x_{1}=2.75$, and $x_{2}=4$ to find the second Lagrange interpolating polynomial for $f(x)=1 / x$.
(b) Use this polynomial to approximate $f(3)=1 / 3$.

Solution (a) We first determine the coefficient polynomials $L_{0}(x), L_{1}(x)$, and $L_{2}(x)$. In nested form they are

$$
\begin{aligned}
& L_{0}(x)=\frac{(x-2.75)(x-4)}{(2-2.5)(2-4)}=\frac{2}{3}(x-2.75)(x-4) \\
& L_{1}(x)=\frac{(x-2)(x-4)}{(2.75-2)(2.75-4)}=-\frac{16}{15}(x-2)(x-4)
\end{aligned}
$$

and

$$
L_{2}(x)=\frac{(x-2)(x-2.75)}{(4-2)(4-2.5)}=\frac{2}{5}(x-2)(x-2.75)
$$

Also, $f\left(x_{0}\right)=f(2)=1 / 2, f\left(x_{1}\right)=f(2.75)=4 / 11$, and $f\left(x_{2}\right)=f(4)=1 / 4$, so

$$
\begin{aligned}
P(x) & =\sum_{k=0}^{2} f\left(x_{k}\right) L_{k}(x) \\
& =\frac{1}{3}(x-2.75)(x-4)-\frac{64}{165}(x-2)(x-4)+\frac{1}{10}(x-2)(x-2.75) \\
& =\frac{1}{22} x^{2}-\frac{35}{88} x+\frac{49}{44} .
\end{aligned}
$$

(b) An approximation to $f(3)=1 / 3$ (see Figure 3.6) is

$$
f(3) \approx P(3)=\frac{9}{22}-\frac{105}{88}+\frac{49}{44}=\frac{29}{88} \approx 0.32955
$$

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor polynomial expanded about $x_{0}=1$ could be used to reasonably approximate $f(x)=1 / x$ at $x=3$.

Figure 3.6

The interpolating polynomial P of degree less than or equal to 3 is defined in Maple with

$$
\begin{aligned}
& P:=x \rightarrow \operatorname{interp}([2,11 / 4,4],[1 / 2,4 / 11,1 / 4], x) \\
& x \rightarrow \operatorname{interp}\left(\left[2, \frac{11}{4}, 4\right],\left[\frac{1}{2}, \frac{4}{11}, \frac{1}{4}\right], x\right)
\end{aligned}
$$

To see the polynomial, enter
$P(x)$

$$
\frac{1}{22} x^{2}-\frac{35}{88} x+\frac{49}{44}
$$

Evaluating $P(3)$ as an approximation to $f(3)=1 / 3$, is found with $\operatorname{evalf(P(3))}$

