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For the Taylor polynomials all the information used in the approximation is concentrated

at the single number x0, so these polynomials will generally give inaccurate approximations

as we move away from x0. This limits Taylor polynomial approximation to the situation in

which approximations are needed only at numbers close to x0. For ordinary computational

purposes it is more efficient to use methods that include information at various points. We

consider this in the remainder of the chapter. The primary use of Taylor polynomials in

numerical analysis is not for approximation purposes, but for the derivation of numerical

techniques and error estimation.

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct

points (x0, y0) and (x1, y1) is the same as approximating a function f for which f (x0) = y0

and f (x1) = y1 by means of a first-degree polynomial interpolating, or agreeing with, the

values of f at the given points. Using this polynomial for approximation within the interval

given by the endpoints is called polynomial interpolation.

Define the functions

L0(x) =
x − x1

x0 − x1

and L1(x) =
x − x0

x1 − x0

.

The linear Lagrange interpolating polynomial through (x0, y0) and (x1, y1) is

P(x) = L0(x)f (x0) + L1(x)f (x1) =
x − x1

x0 − x1

f (x0) +
x − x0

x1 − x0

f (x1).

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, and L1(x1) = 1,

which implies that

P(x0) = 1 · f (x0) + 0 · f (x1) = f (x0) = y0

and

P(x1) = 0 · f (x0) + 1 · f (x1) = f (x1) = y1.

So P is the unique polynomial of degree at most one that passes through (x0, y0) and

(x1, y1).

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)

and (5, 1).

Solution In this case we have

L0(x) =
x − 5

2 − 5
= −

1

3
(x − 5) and L1(x) =

x − 2

5 − 2
=

1

3
(x − 2),

so

P(x) = −
1

3
(x − 5) · 4 +

1

3
(x − 2) · 1 = −

4

3
x +

20

3
+

1

3
x −

2

3
= −x + 6.

The graph of y = P(x) is shown in Figure 3.3.
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Figure 3.3
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To generalize the concept of linear interpolation, consider the construction of a poly-

nomial of degree at most n that passes through the n + 1 points

(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)).

(See Figure 3.4.)

Figure 3.4

y

xx0 x1 x2 xn

y � P(x)

y � f (x)

In this case we first construct, for each k = 0, 1, . . . , n, a function Ln,k(x) with the

property that Ln,k(xi) = 0 when i �= k and Ln,k(xk) = 1. To satisfy Ln,k(xi) = 0 for each

i �= k requires that the numerator of Ln,k(x) contain the term

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn).

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this same term but evaluated at

x = xk . Thus

Ln,k(x) =
(x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

A sketch of the graph of a typical Ln,k (when n is even) is shown in Figure 3.5.
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Figure 3.5

xx0 x1 xk�1 xk xk�1 xn�1 xn

Ln,k(x)

1

. . .. . .

The interpolating polynomial is easily described once the form of Ln,k is known. This

polynomial, called the nth Lagrange interpolating polynomial, is defined in the following

theorem.

The interpolation formula named

for Joseph Louis Lagrange

(1736–1813) was likely known

by Isaac Newton around 1675,

but it appears to first have been

published in 1779 by Edward

Waring (1736–1798). Lagrange

wrote extensively on the subject

of interpolation and his work had

significant influence on later

mathematicians. He published

this result in 1795.

Theorem 3.2 If x0, x1, . . . , xn are n + 1 distinct numbers and f is a function whose values are given at

these numbers, then a unique polynomial P(x) of degree at most n exists with

f (xk) = P(xk), for each k = 0, 1, . . . , n.

This polynomial is given by

P(x) = f (x0)Ln,0(x) + · · · + f (xn)Ln,n(x) =

n
∑

k=0

f (xk)Ln,k(x), (3.1)

where, for each k = 0, 1, . . . , n,

Ln,k(x) =
(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(3.2)

=

n
∏

i=0
i �=k

(x − xi)

(xk − xi)
.

The symbol
∏

is used to write

products compactly and parallels

the symbol
∑

, which is used for

writing sums.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Example 2 (a) Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the second

Lagrange interpolating polynomial for f (x) = 1/x.

(b) Use this polynomial to approximate f (3) = 1/3.

Solution (a) We first determine the coefficient polynomials L0(x), L1(x), and L2(x). In

nested form they are

L0(x) =
(x − 2.75)(x − 4)

(2 − 2.5)(2 − 4)
=

2

3
(x − 2.75)(x − 4),

L1(x) =
(x − 2)(x − 4)

(2.75 − 2)(2.75 − 4)
= −

16

15
(x − 2)(x − 4),

and

L2(x) =
(x − 2)(x − 2.75)

(4 − 2)(4 − 2.5)
=

2

5
(x − 2)(x − 2.75).
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Also, f (x0) = f (2) = 1/2, f (x1) = f (2.75) = 4/11, and f (x2) = f (4) = 1/4, so

P(x) =

2
∑

k=0

f (xk)Lk(x)

=
1

3
(x − 2.75)(x − 4) −

64

165
(x − 2)(x − 4) +

1

10
(x − 2)(x − 2.75)

=
1

22
x2 −

35

88
x +

49

44
.

(b) An approximation to f (3) = 1/3 (see Figure 3.6) is

f (3) ≈ P(3) =
9

22
−

105

88
+

49

44
=

29

88
≈ 0.32955.

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor

polynomial expanded about x0 = 1 could be used to reasonably approximate f (x) = 1/x

at x = 3.

Figure 3.6
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The interpolating polynomial P of degree less than or equal to 3 is defined in Maple

with

P := x → interp([2, 11/4, 4], [1/2, 4/11, 1/4], x)

x → interp

([

2,
11

4
, 4

]

,

[

1

2
,

4

11
,

1

4

]

, x

)

To see the polynomial, enter

P(x)

1

22
x2 −

35

88
x +

49

44

Evaluating P(3) as an approximation to f (3) = 1/3, is found with

evalf(P(3))

0.3295454545
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