CHAPTER

3

Interpolation and Polynomial Approximation

Introduction

A census of the population of the United States is taken every 10 years. The following table lists the population, in thousands of people, from 1950 to 2000, and the data are also represented in the figure.

Year	1950	1960	1970	1980	1990	2000
Population (in thousands)	151,326	179,323	203,302	226,542	249,633	281,422

In reviewing these data, we might ask whether they could be used to provide a reasonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of this type can be obtained by using a function that fits the given data. This process is called interpolation and is the subject of this chapter. This population problem is considered throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of Section 3.5.

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers into itself is the algebraic polynomials, the set of functions of the form

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where n is a nonnegative integer and a_{0}, \ldots, a_{n} are real constants. One reason for their importance is that they uniformly approximate continuous functions. By this we mean that given any function, defined and continuous on a closed and bounded interval, there exists a polynomial that is as "close" to the given function as desired. This result is expressed precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1

Theorem 3.1 (Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on $[a, b]$. For each $\epsilon>0$, there exists a polynomial $P(x)$, with the property that

$$
|f(x)-P(x)|<\epsilon, \quad \text { for all } x \text { in }[a, b] .
$$

The proof of this theorem can be found in most elementary texts on real analysis (see, for example, [Bart], pp. 165-172).

Another important reason for considering the class of polynomials in the approximation of functions is that the derivative and indefinite integral of a polynomial are easy to determine and are also polynomials. For these reasons, polynomials are often used for approximating continuous functions.

The Taylor polynomials were introduced in Section 1.1, where they were described as one of the fundamental building blocks of numerical analysis. Given this prominence, you might expect that polynomial interpolation would make heavy use of these functions. However this is not the case. The Taylor polynomials agree as closely as possible with a given function at a specific point, but they concentrate their accuracy near that point. A good interpolation polynomial needs to provide a relatively accurate approximation over an entire interval, and Taylor polynomials do not generally do this. For example, suppose we calculate the first six Taylor polynomials about $x_{0}=0$ for $f(x)=e^{x}$. Since the derivatives of $f(x)$ are all e^{x}, which evaluated at $x_{0}=0$ gives 1 , the Taylor polynomials are

Very little of Weierstrass's work was published during his lifetime, but his lectures, particularly on the theory of functions, had significant influence on an entire generation of students.

$$
\begin{aligned}
& P_{0}(x)=1, \quad P_{1}(x)=1+x, \quad P_{2}(x)=1+x+\frac{x^{2}}{2}, \quad P_{3}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} \\
& P_{4}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}, \quad \text { and } \quad P_{5}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}
\end{aligned}
$$

The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the higher-degree polynomials, the error becomes progressively worse as we move away from zero.)

Figure 3.2

Although better approximations are obtained for $f(x)=e^{x}$ if higher-degree Taylor polynomials are used, this is not true for all functions. Consider, as an extreme example, using Taylor polynomials of various degrees for $f(x)=1 / x$ expanded about $x_{0}=1$ to approximate $f(3)=1 / 3$. Since

$$
f(x)=x^{-1}, f^{\prime}(x)=-x^{-2}, f^{\prime \prime}(x)=(-1)^{2} 2 \cdot x^{-3}
$$

and, in general,

$$
f^{(k)}(x)=(-1)^{k} k!x^{-k-1}
$$

the Taylor polynomials are

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(1)}{k!}(x-1)^{k}=\sum_{k=0}^{n}(-1)^{k}(x-1)^{k}
$$

To approximate $f(3)=1 / 3$ by $P_{n}(3)$ for increasing values of n, we obtain the values in Table 3.1-rather a dramatic failure! When we approximate $f(3)=1 / 3$ by $P_{n}(3)$ for larger values of n, the approximations become increasingly inaccurate.

Table 3.1

n	0	1	2	3	4	5	6	7
$P_{n}(3)$	1	-1	3	-5	11	-21	43	-85

