
C H A P T E R

3 Interpolation and Polynomial Approximation

Introduction

A census of the population of the United States is taken every 10 years. The following

table lists the population, in thousands of people, from 1950 to 2000, and the data are also

represented in the figure.

Year 1950 1960 1970 1980 1990 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422

(in thousands)
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In reviewing these data, we might ask whether they could be used to provide a rea-

sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of

this type can be obtained by using a function that fits the given data. This process is called

interpolation and is the subject of this chapter. This population problem is considered

throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of

Section 3.5.

105

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



106 C H A P T E R 3 Interpolation and Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers

into itself is the algebraic polynomials, the set of functions of the form

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where n is a nonnegative integer and a0, . . . , an are real constants. One reason for their

importance is that they uniformly approximate continuous functions. By this we mean that

given any function, defined and continuous on a closed and bounded interval, there exists

a polynomial that is as “close” to the given function as desired. This result is expressed

precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1
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Theorem 3.1 (Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a, b]. For each ǫ > 0, there exists a polynomial

P(x), with the property that

|f (x) − P(x)| < ǫ, for all x in [a, b].

The proof of this theorem can be found in most elementary texts on real analysis (see,

for example, [Bart], pp. 165–172).

Another important reason for considering the class of polynomials in the approximation

of functions is that the derivative and indefinite integral of a polynomial are easy to determine

and are also polynomials. For these reasons, polynomials are often used for approximating

continuous functions.

Karl Weierstrass (1815–1897) is

often referred to as the father of

modern analysis because of his

insistence on rigor in the

demonstration of mathematical

results. He was instrumental in

developing tests for convergence

of series, and determining ways

to rigorously define irrational

numbers. He was the first to

demonstrate that a function could

be everywhere continuous but

nowhere differentiable, a result

that shocked some of his

contemporaries.

The Taylor polynomials were introduced in Section 1.1, where they were described

as one of the fundamental building blocks of numerical analysis. Given this prominence,

you might expect that polynomial interpolation would make heavy use of these functions.

However this is not the case. The Taylor polynomials agree as closely as possible with

a given function at a specific point, but they concentrate their accuracy near that point.

A good interpolation polynomial needs to provide a relatively accurate approximation

over an entire interval, and Taylor polynomials do not generally do this. For example,

suppose we calculate the first six Taylor polynomials about x0 = 0 for f (x) = ex.

Since the derivatives of f (x) are all ex, which evaluated at x0 = 0 gives 1, the Taylor

polynomials are
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.

Very little of Weierstrass’s work

was published during his lifetime,

but his lectures, particularly on

the theory of functions, had

significant influence on an entire

generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the

higher-degree polynomials, the error becomes progressively worse as we move away from

zero.)

Figure 3.2
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Although better approximations are obtained for f (x) = ex if higher-degree Taylor

polynomials are used, this is not true for all functions. Consider, as an extreme example,

using Taylor polynomials of various degrees for f (x) = 1/x expanded about x0 = 1 to

approximate f (3) = 1/3. Since

f (x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,

f (k)(x) = (−1)kk!x−k−1,

the Taylor polynomials are

Pn(x) =

n∑

k=0

f (k)(1)

k!
(x − 1)k =

n∑

k=0

(−1)k(x − 1)k .

To approximate f (3) = 1/3 by Pn(3) for increasing values of n, we obtain the values in

Table 3.1—rather a dramatic failure! When we approximate f (3) = 1/3 by Pn(3) for larger

values of n, the approximations become increasingly inaccurate.

Table 3.1 n 0 1 2 3 4 5 6 7

Pn(3) 1 −1 3 −5 11 −21 43 −85
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