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Abstract We present a deterministic algorithm, which, for any given 0 < ε < 1 and
an n × n real or complex matrix A = (

ai j
)
such that

∣∣ai j − 1
∣∣ ≤ 0.19 for all i, j

computes the permanent of A within relative error ε in nO(ln n−ln ε) time. The method
can be extended to computing hafnians and multidimensional permanents.
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1 Introduction and Main Results

The permanent of an n × n matrix A = (
ai j

)
is defined as

per A =
∑

σ∈Sn

n∏

i=1

aiσ(i),

where Sn is the symmetric group of permutations of the set {1, . . . , n}. The problem
of efficient computation of the permanent has attracted a lot of attention. It is #P-
hard already for 0–1 matrices [18], but a fully polynomial randomized approximation
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scheme, based on theMarkov ChainMonte Carlo approach, is constructed for all non-
negative matrices [14]. A deterministic polynomial time algorithm based on matrix
scaling for computing the permanent of non-negative matrices within a factor of en is
constructed in [15], and the bound was recently improved to 2n in [13]. An approach
based on the idea of “correlation decay” from statistical physics results in a determin-
istic polynomial time algorithm approximating per A within a factor of (1 + ε)n for
any ε > 0, fixed in advance, if A is the adjacency matrix of a constant degree expander
[11].

There is also interest in computing permanents of complex matrices [1]. The well-
known Ryser’s algorithm (see, for example, [16, Chapter 7]) computes the permanent
of a matrix A over any field in O (n2n) time. A randomized approximation algorithm
of Fürer [10] computes the permanent of a complex matrix within a (properly defined)
relative error ε in O

(
3n/2ε−2

)
time. The randomized algorithm of Gurvits [12], see

also [1] for an exposition, computes the permanent of a complex matrix A in polyno-
mial in n and 1/ε time within an additive error of ε‖A‖n , where ‖A‖ is the operator
norm of A.

In this paper, we present a new approach to computing permanents of real or com-
plex matrices A and show that if

∣
∣ai j − 1

∣
∣ ≤ γ for some absolute constant γ > 0 (we

can choose γ = 0.19) and all i and j , then, for any ε > 0 the value of per A can be
computed within relative error ε in nO(ln n−ln ε) time (we say that α ∈ C approximates
per A within relative error 0 < ε < 1 if per A = α(1 + ρ) where |ρ| < ε). We also
discuss how the method can be extended to computing hafnians of symmetric matrices
and multidimensional permanents of tensors.

1.1 The Idea of the Algorithm

Let J denote the n × n matrix filled with 1s. Given an n × n complex matrix A, we
consider (a branch of) the univariate function

f (z) = ln per
(
J + z(A − J )

)
. (1.1)

Clearly,

f (0) = ln per J = ln n! and f (1) = ln per A.

Hence, our goal is to approximate f (1) and we do it by using the Taylor polynomial
expansion of f at z = 0:

f (1) ≈ f (0) +
m∑

k=1

1

k!
dk

dzk
f (z)

∣∣∣
z=0

. (1.2)

It turns out that the right hand side of (1.2) can be computed in nO(m) time. We present
the algorithm in Sect. 2. The quality of the approximation (1.2) depends on the location
of complex zeros of the permanent.
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Lemma 1.1 Suppose that there exists a real β > 1 such that

per
(
J + z(A − J )

) �= 0 for all z ∈ C satisifying |z| ≤ β.

Then for all z ∈ C with |z| ≤ 1 the value of

f (z) = ln per
(
J + z(A − J )

)

is well defined by the choice of the branch of the logarithm for which f (0) is a real
number, and the right hand side of (1.2) approximates f (1) within an additive error
of

n

(m + 1)βm(β − 1)
.

In particular, for a fixed β > 1, to ensure an additive error of 0 < ε < 1, we can
choose m = O (ln n − ln ε), which results in the algorithm for approximating per A
within relative error ε in nO(ln n−ln ε) time. We prove Lemma 1.1 in Sect. 2.

Thus, we have to identify a class of matrices A for which the number β > 1 of
Lemma 1.1 exists. We prove the following result.

Theorem 1.2 There is an absolute constant δ > 0 (we can choose δ = 0.195) such
that if Z = (

zi j
)
is a complex n × n matrix satisfying

∣∣zi j − 1
∣∣ ≤ δ for all i, j

then

per Z �= 0.

We prove Theorem 1.2 in Sect. 3.
For any matrix A = (

ai j
)
satisfying

∣∣ai j − 1
∣∣ ≤ 0.19 for all i, j,

wecan chooseβ = 195/190 inLemma1.1 and thus obtain an approximation algorithm
for computing per A.

The sharp value of the constant δ in Theorem 1.2 is not known to the author. A
simple example of a 2 × 2 matrix

A =
( 1+i

2
1−i
2

1−i
2

1+i
2

)

for which per A = 0 shows that in Theorem 1.2 we must have

δ <

√
2

2
≈ 0.71.
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What is also not clear is whether the constant δ can improve as the size of the matrix
grows.

1.2 Question

Is it true that for any 0 < ε < 1 there is a positive integer N (ε) such that if Z = (
zi j

)

is a complex n × n matrix with n > N (ε) and
∣∣zi j − 1

∣∣ ≤ 1 − ε for all i, j

then per Z �= 0?
In geometric terms, Theorem 1.2 asserts that the 	∞-distance from the matrix J

of all 1s to the complex hypersurface per Z = 0 in C
n×n is bounded from below

by a positive absolute constant, independent on n. The 	2-distance from a point to a
complex algebraic variety has been studied recently in [8].

We note that for any 0 < ε < 1, fixed in advance, a deterministic polynomial time
algorithm based on scaling approximates the permanent of a given n × n real matrix
A = (

ai j
)
satisfying

ε ≤ ai j ≤ 1 for all i, j

within a multiplicative factor of nκ(ε) for some κ(ε) > 0 [6].

1.3 Ramifications

In Sect. 4, we discuss how our approach can be used for computing hafnians of sym-
metric matrices and multidimensional permanents of tensors. The same approach can
be used for computing partition functions associated with cliques in graphs [5] and
graph homomorphisms [7], although the most general framework under which our
approach works is still not quite clear. In each case, the main problem is to come up
with a version of Theorem 1.2 bounding the complex roots of the partition function
away from the vector of all 1s. Isolating zeros of complex extensions of real parti-
tion functions is a problem studied in statistical physics and also in connection to
combinatorics, see, for example, [17].

An anonymous referee asked what “basepoint” matrices other than J can be used
in the algorithm. As follows from Sect. 2, such a base matrix (call it X ) should have
the property that the permanents of its square submatrices are efficiently computable.
One candidate for such an X would be a matrix of a small (fixed in advance) rank, cf.
[3]. On the other hand, the way we prove Theorem 1.2 in Sect. 3 would require that the
arguments of entries of X (as complex numbers) are close to each other. The current
choice of J appears to be the easiest to handle and produces the best estimates.

2 The Algorithm

2.1 The Algorithm for Approximating the Permanent

Given an n × n complex matrix A = (
ai j

)
, we present an algorithm which computes

the right hand side of the approximation (1.2) for the function f (z) defined by (1.1).
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Let

g(z) = per
(
J + z(A − J )

)
, (2.1)

so f (z) = ln g(z). Hence

f ′(z) = g′(z)
g(z)

and g′(z) = g(z) f ′(z).

Therefore, for k ≥ 1 we have

dk

dzk
g(z)

∣
∣∣
z=0

=
k−1∑

j=0

(
k − 1

j

)(
d j

dz j
g(z)

∣
∣∣
z=0

) (
dk− j

dzk− j
f (z)

∣
∣∣
z=0

)
(2.2)

(we agree that the 0th derivative of g is g).
We note that g(0) = n!. If we compute the values of

dk

dzk
g(z)

∣
∣∣
z=0

for k = 1, . . . ,m, (2.3)

then the formulas (2.2) for k = 1, . . . ,m provide a non-degenerate triangular system
of linear equations that allows us to compute

dk

dzk
f (z)

∣∣∣
z=0

for k = 1, . . . ,m.

Hence our goal is to compute the values (2.3).
We have

dk

dzk
g(z)

∣∣∣
z=0

= dk

dzk
∑

σ∈Sn

n∏

i=1

(
1 + z

(
aiσ(i) − 1

))∣∣∣
z=0

=
∑

σ∈Sn

∑

1≤i1,...,ik≤n

(
ai1σ(i1) − 1

) · · · (aikσ(ik ) − 1
)

=(n − k)!
∑

1≤i1,...,ik≤n
1≤ j1,..., jk≤n

(
ai1 j1 − 1

) · · · (aik jk − 1
)
,

where the last sum is over all pairs of ordered k-subsets (i1, . . . , ik) and ( j1, . . . , jk)
of the set {1, . . . , n}. Since the last sum contains

(
n!/(n − k)!)2 = nO(k) terms, the

complexity of the algorithm is indeed nO(m).
As an anonymous referee pointed out, the kth number in (2.3) is k!(n − k)! times

the sum of permanents of all k × k submatrices of A− J and hence one can apply the
algorithm of Friedland and Gurvits [9] to speed up the computation of (2.3). If one
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uses the algorithm of Friedland and Gurvits [9], the complexity of computing (2.3)
becomes

(n
m

)
nO(1) provided m � n, which is still nO(m).

In the bit model of computation (assuming that the input matrix A is complex
rational), the complexity of the algorithm is LO(m), where L is the length of the input.
Indeed, the complexity of computing (2.3) is obviously bounded by LO(m) and the
system (2.2) of linear equations is well conditioned, since the matrix of the system is
lower triangular with diagonal entries equal to g(0) = n!.
Proof of Lemma 1.1 The function g(z) defined by (2.1) is a polynomial in z of degree
d ≤ n with g(0) = n! �= 0, so we factor

g(z) = g(0)
d∏

i=1

(
1 − z

αi

)
,

α1, . . . , αd are the roots of g(z). By the condition of Lemma 1.1, we have

|αi | ≥ β > 1 for i = 1, . . . , d.

Therefore,

f (z) = ln g(z) = ln g(0) +
d∑

i=1

ln

(
1 − z

αi

)
for |z| ≤ 1, (2.4)

where we choose the branch of ln g(z) that is real at z = 0. Using the standard Taylor
expansion, we obtain

ln

(
1 − 1

αi

)
= −

m∑

k=1

1

k

(
1

αi

)k

+ ζm,

where

|ζm | =
∣∣∣∣∣

+∞∑

k=m+1

1

k

(
1

αi

)k
∣∣∣∣∣

≤ 1

(m + 1)βm(β − 1)
.

Therefore, from (2.4) we obtain

f (1) = f (0) +
m∑

k=1

(

−1

k

d∑

i=1

(
1

αi

)k
)

+ ηm,

where

|ηm | ≤ n

(m + 1)βm(β − 1)
.
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It remains to notice that

−1

k

d∑

i=1

(
1

αi

)k

= 1

k!
dk

dzk
f (z)

∣∣∣
z=0

.

�
As an anonymous referee pointed out, it follows from the proof of Lemma 1.1 that

choosing m = O(ln n − ln ε) we achieve an additive error of ε/(ln n − ln ε) in (1.2),
which is slightly better than just ε claimed in Sect. 1.1.

3 Proof of Theorem 1.2

Let us denote by Un×n(δ) ⊂ C
n×n the closed polydisc

Un×n(δ) =
{
Z = (

zi j
) : ∣∣zi j − 1

∣∣ ≤ δ for all i, j
}
.

Thus Theorem 1.2 asserts that per Z �= 0 for Z ∈ Un×n(δ) and δ = 0.195.
First, we establish a simple geometric lemma.

Lemma 3.1 Let u1, . . . , un ∈ R
d be nonzero vectors such that for some 0 ≤ α < π/2

the angle between any two vectors ui and u j does not exceed α. Let u = u1+ . . .+un.
Then

‖u‖ ≥ √
cosα

n∑

i=1

‖ui‖.

Proof We have

‖u‖2 =
∑

1≤i, j≤n

〈ui , u j 〉 ≥
∑

1≤i, j≤n

‖ui‖‖u j‖ cosα = (cosα)

(
n∑

i=1

‖ui‖
)2

,

and the proof follows. �
We prove Theorem 1.2 by induction on n, using Lemma 3.1 and the following two

lemmas.

Lemma 3.2 For an n×n matrix Z = (
zi j

)
and j = 1, . . . , n, let Z j be the (n−1)×

(n − 1) matrix obtained from Z by crossing out the first row and the j th column of Z.
Suppose that for some δ > 0 and for some 0 < τ < 1, for any Z ∈ Un×n(δ) we

have per Z �= 0 and

|per Z | ≥ τ

n∑

j=1

∣
∣z1 j

∣
∣
∣
∣per Z j

∣
∣ .
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Let A, B ⊂ Un×n(δ) be any two n×n matrices that differ in one column (or in one
row) only. Then the angle between two complex numbers per A and per B, interpreted
as vectors in R2 = C does not exceed

θ = 2δ

(1 − δ)τ
.

Proof Since per Z �= 0 for all Z ∈ Un×n(δ), we may consider a branch of ln per Z
defined for Z ∈ Un×n(δ).

Using the expansion

per Z =
n∑

j=1

z1 j per Z j , (3.1)

we conclude that

∂

∂z1 j
ln per Z = per Z j

per Z
for j = 1, . . . , n.

Therefore, since
∣∣zi j

∣∣ ≥ 1−δ for j = 1, . . . , n, we conclude that for any Z ∈ Un×n(δ),
we have

n∑

j=1

∣∣∣
∣

∂

∂z1 j
ln per Z

∣∣∣
∣ ≤ 1

(1 − δ)τ
. (3.2)

Since the permanent is invariant under permutations of rows, permutations of columns
and taking the transpose of the matrix, without loss of generality we may assume that
the matrix B ∈ Un×n(δ) is obtained from A ∈ Un×n(δ) by replacing the entries a1 j
by numbers b1 j such that

∣∣b1 j − 1
∣∣ ≤ δ for j = 1, . . . , n.

Then

|ln per A − ln per B| ≤
⎛

⎝ sup
Z∈Un×n(δ)

n∑

j=1

∣∣∣∣
∂

∂z1 j
ln per Z

∣∣∣∣

⎞

⎠
(

max
j=1,...,n

∣∣a1 j − b1 j
∣∣
)

.

Since

∣∣b1 j − a1 j
∣∣ ≤ 2δ for all j = 1, . . . , n,

the proof follows from (3.2). �
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Lemma 3.3 Suppose that for some

0 ≤ θ <
π

2
− 2 arcsin δ

and for any two matrices A, B ∈ Un×n(δ) which differ in one row (or in one column),
the angle between two complex numbers per A and per B, interpreted as vectors in
R
2 = C does not exceed θ . Then for any matrix Z ∈ U (n+1)×(n+1)(δ), we have

|per Z | ≥ τ

n+1∑

j=1

∣∣z1 j
∣∣ ∣∣per Z j

∣∣

with

τ = √
cos (θ + 2 arcsin δ),

where Z j is the n× n matrix obtained from Z by crossing out the first row and the j th
column.

Proof We use the first row expansion (3.1) and observe that any two matrices Z j and
Zk , can be obtained from one from another by replacing one column and a permutation
of columns. Therefore, the angle between any two complex numbers per Z j and
per Zk does not exceed θ . Since

− arcsin δ ≤ arg z1 j ≤ arcsin δ for j = 1, . . . , n,

the angle between any two numbers z1 j per Z j and z1k per Zk does not exceed θ +
2 arcsin δ. The proof follows by Lemma 3.1. �
Proof of Theorem 1.2 One can see that for a sufficiently small δ > 0, the equation

θ = 2δ

(1 − δ)
√
cos(θ + 2 arcsin δ)

(3.3)

has a solution 0 < θ < π/2. Numerical computations show that we can choose
δ = 0.195 and

θ ≈ 0.7611025121.

Let

τ = √
cos(θ + 2 arcsin δ) ≈ 0.6365398112.

We proceed by induction on n. More precisely, we prove the following three state-
ments (3.4)–(3.6) by induction on n:

(3.4) For every Z ∈ Un×n(δ), we have per Z �= 0;
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(3.5) Suppose A, B ∈ Un×n(δ) are two matrices which differ by one row (or one
column). Then, the angle between two complex numbers per A and per B, interpreted
as vectors in R2 = C, does not exceed θ ;

(3.6) For a matrix Z ∈ Un×n(δ), Z = (
zi j

)
, let Z j be the (n − 1) × (n − 1) matrix

obtained by crossing out the first row and the j th column. Then

|per Z | ≥ τ

n∑

j=1

∣∣z1 j
∣∣ ∣∣per Z j

∣∣ .

For n = 1, the statement (3.4) is obviously true. Moreover, the angle between any
two numbers a, b ∈ U1×1(δ) does not exceed

2 arcsin δ ≈ 0.3925149004 < θ,

so (3.5) holds as well. The statement (3.6) is vacuous.
Lemma 3.3 implies that if the statement (3.5) holds for n × n matrices then the

statement (3.6) holds for (n + 1) × (n + 1) matrices.
The statement (3.6) for (n+1)× (n+1) matrices together with the statement (3.4)

for n × n matrices implies the statement (3.4) for (n + 1) × (n + 1) matrices.
Finally, Lemma 3.2 implies that if the statement (3.6) holds for (n + 1) × (n + 1)

matrices then the angle between two complex numbers per A and per B, where A, B ∈
U (n+1)×(n+1)(δ) are two matrices that differ in one row (or in one column) does not
exceed

2δ

(1 − δ)τ
= 2δ

(1 − δ)
√
cos(θ + 2 arcsin δ)

= θ

and hence the statement (3.5) holds for (n + 1) × (n + 1) matrices.
This concludes the proof of (3.4)–(3.6) for all positive integer n. �

4 Ramifications

A similar approach can be applied to computing other quantities of interest.

4.1 Hafnians

Let A = (
ai j

)
be a 2n × 2n symmetric real or complex matrix. The quantity

haf A =
∑

{i1, j1},...,{in , jn}
ai1 j1 · · · ain jn ,

where sum is taken over all (2n)!/n!2n unordered partitions of the set {1, . . . , 2n} into
n pairwise disjoint unordered pairs {i1, j1}, . . . , {in, jn}, is called the hafnian of A,
see for example, [16, Section 8.2]. For any n × n matrix A we have
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haf

(
0 A
AT 0

)
= per A

and hence computing the permanent of an n × n matrix reduces to computing the
hafnian of a symmetric 2n × 2n matrix. The computational complexity of hafnians
is understood less well than that of permanents. Unlike in the case of the permanent,
no fully polynomial (randomized or deterministic) polynomial approximation scheme
is known to compute the hafnian of a non-negative real symmetric matrix. Unlike in
the case of the permanent, no deterministic polynomial time algorithm approximating
the hafnian of a 2n × 2n non-negative symmetric matrix within a factor of cn , where
c > 0 is an absolute constant, is known. On the other hand, there is a polynomial time
randomized algorithm based on the representation of the hafnian as the expectation
of the determinant of a random matrix, which approximates the hafnian of a given
non-negative symmetric 2n × 2n matrix within a factor of cn , where c ≈ 0.56 [4].
Also, for any 0 < ε < 1 fixed in advance, there is a deterministic polynomial time
algorithm based on scaling, which, given a 2n × 2n symmetric matrix A = (

ai j
)

satisfying

ε ≤ ai j ≤ 1 for all i, j,

computes haf A within a multiplicative factor of nκ(ε) for some κ(ε) > 0 [6].
With minimal changes, the approach of this paper can be applied to computing

hafnians. Namely, let J denote the 2n × 2n matrix filled with 1s and let us define

f (z) = ln haf
(
J + z(A − J )

)
.

Then

f (0) = ln haf J = ln
(2n)!
n!2n and f (1) = ln haf A

and one can use the Taylor polynomial approximation (1.2) to estimate f (1). As in
Sect. 2, one can compute the right hand side of (1.2) in nO(m) time. The statement and
the proof of Theorem 1.2 carries over to hafnians almost verbatim. Namely, let δ > 0
be a real for which the Eq. (3.3) has a solution 0 < θ < π/2 (hence one can choose
δ = 0.195). Then haf Z �= 0 as long as Z = (

zi j
)
is a 2n × 2n symmetric complex

matrix satisfying

∣∣zi j − 1
∣∣ ≤ δ for all i, j.

Instead of the row expansion of the permanent (3.1) used in Lemmas 3.2 and 3.3, one
should use the row expansion of the hafnian

haf Z =
2n∑

j=2

z1 j haf Z j ,

123



340 Found Comput Math (2016) 16:329–342

where Z j is the symmetric (2n − 2) × (2n − 2) matrix obtained from Z by crossing
out the first and the j th row and the first and the j th column. As in Sect. 2, we obtain
an algorithm of nO(ln n−ln ε) complexity of approximating haf Z within relative error
ε > 0, where Z = (

Zi j
)
is a 2n × 2n symmetric complex matrix satisfying

∣∣zi j − 1
∣∣ ≤ γ, for all i, j.

and γ > 0 is an absolute constant (one can choose γ = 0.19).

4.2 Multidimensional Permanents

Let us fix an integer ν ≥ 2 and let

A = (
ai1...iν

)
, 1 ≤ i1, . . . , iν ≤ n,

be an ν-dimensional cubical n×· · ·× n array of real or complex numbers. We define

PER A =
∑

σ1,...,σν−1∈Sn

n∏

i=1

aiσ1(i)...σν−1(i).

If ν = 2 then A is an n × n matrix and PER A = per A. For ν > 2, it is already
an NP-hard problem to tell PER A from 0 even if ai1...iν ∈ {0, 1} since the problem
reduces to detecting a perfect matching in a hypergraph, see, for example, [2, Problem
SP1]. However, for any 0 < ε < 1, fixed in advance, there is a polynomial time
deterministic algorithm based on scaling, which, given a real array A satisfying

ε ≤ ai1...iν ≤ 1 for all 1 ≤ i1, . . . , iν ≤ n

computes PER A within a multiplicative factor of nκ(ε,ν) for some κ(ε, ν) > 0 [6].
With some modifications, the method of this paper can be applied to computing

this multidimensional version of the permanent. Namely, let J be the array filled with
1s and let us define

f (z) = ln PER
(
J + z(A − J )

)
.

Then

f (0) = ln PER J = (ν − 1) ln n! and f (1) = ln PER A

and one can use the Taylor polynomial approximation (1.2) to estimate f (1). As
in Sect. 2, one can compute the right hand side of (1.2) in nO(m) time, where the
implicit constant in “O(m)” depends on ν. The proof of Theorem 1.2 carries to multi-
dimensional permanents with somemodifications. Namely, for some sufficiently small
δν > 0 the equation
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θ = 2δν

(1 − δν)

√
cos

(
(ν − 1)θ + 2 arcsin δν

)

has a solution θ ≥ 0 such that (ν − 1)θ + 2 arcsin δν < π/2. For ν = 2, we get
the Eq. (3.3) with a possible choice of δ2 = 0.195, while for ν = 3 we can choose
δ3 = 0.125 and for ν = 4 we can choose δ4 = 0.093. Then PER Z �= 0 as long as
Z = (

zi1...iν
)
is an array of complex numbers satisfying

∣
∣zi1...iν − 1

∣
∣ ≤ δν for all 1 ≤ i1, . . . , iν ≤ n.

We proceed as in the proof of Theorem 1.2, only instead of the first row expansion of
the permanent (3.1) used in Lemmas 3.2 and 3.3, we use the first index expansion

PER Z =
∑

1≤ j2,..., jν≤n

z1 j2... jν PER Z j2... jν ,

where Z j2... jν is the ν-dimensional array of size (n−1)×· · ·× (n−1) obtained from
Z by crossing out the section with the first index 1, the section with the second index
j2 and so forth, concluding with crossing out the section with the last index jν . As in
Sect. 2, we obtain at algorithm of nO(ln n−ln ε) complexity of approximating PER Z
within relative error ε > 0, where Z is a ν-dimensional cubic n × · · · × n array of
complex numbers satisfying

∣∣zi1...iν − 1
∣∣ ≤ γν for all 1 ≤ i1, . . . , iν ≤ n,

and 0 < γν < δν are absolute constants (one can choose γ2 = 0.19, γ3 = 0.12 and
γ4 = 0.09).
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