
Chapter 10

Analysis of Covariance
An analysis procedure for looking at group effects on a continuous outcome when
some other continuous explanatory variable also has an effect on the outcome.

This chapter introduces several new important concepts including multiple re-
gression, interaction, and use of indicator variables, then uses them to present a
model appropriate for the setting of a quantitative outcome, and two explanatory
variables, one categorical and one quantitative. Generally the main interest is in
the effects of the categorical variable, and the quantitative explanatory variable is
considered to be a “control” variable, such that power is improved if its value is
controlled for. Using the principles explained here, it is relatively easy to extend
the ideas to additional categorical and quantitative explanatory variables.

The term ANCOVA, analysis of covariance, is commonly used in this setting,
although there is some variation in how the term is used. In some sense ANCOVA
is a blending of ANOVA and regression.

10.1 Multiple regression

Before you can understand ANCOVA, you need to understand multiple regression.
Multiple regression is a straightforward extension of simple regression from one to
several quantitative explanatory variables (and also categorical variables as we will
see in the section 10.4). For example, if we vary water, sunlight, and fertilizer to
see their effects on plant growth, we have three quantitative explanatory variables.
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In this case we write the structural model as

E(Y |x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3.

Remember that E(Y |x1, x2, x3) is read as expected (i.e., average) value of Y (the
outcome) given the values of the explanatory variables x1 through x3. Here, x1 is
the amount of water, x2 is the amount of sunlight, x3 is the amount of fertilizer, β0

is the intercept, and the other βs are all slopes. Of course we can have any number
of explanatory variables as long as we have one β parameter corresponding to each
explanatory variable.

Although the use of numeric subscripts for the different explanatory variables
(x’s) and parameters (β’s) is quite common, I think that it is usually nicer to
use meaningful mnemonic letters for the explanatory variables and corresponding
text subscripts for the parameters to remove the necessity of remembering which
number goes with which explanatory variable. Unless referring to variables in a
completely generic way, I will avoid using numeric subscripts here (except for using
β0 to refer to the intercept). So the above structural equation is better written as

E(Y |W,S, F ) = β0 + βWW + βSS + βFF.

In multiple regression, we still make the fixed-x assumption which indicates
that each of the quantitative explanatory variables is measured with little or no
imprecision. All of the error model assumptions also apply. These assumptions
state that for all subjects that have the same levels of all explanatory variables
the outcome is Normally distributed around the true mean (or that the errors are
Normally distributed with mean zero), and that the variance, σ2, of the outcome
around the true mean (or of the errors) is the same for every other set of values of
the explanatory variables. And we assume that the errors are independent of each
other.

Let’s examine what the (no-interaction) multiple regression structural model is
claiming, i.e., in what situations it might be plausible. By examining the equation
for the multiple regression structural model you can see that the meaning of each
slope coefficient is that it is the change in the mean outcome associated with (or
caused by) a one-unit rise in the corresponding explanatory variable when all of
the other explanatory variables are held constant.

We can see this by taking the approach of writing down the structural model
equation then making it reflect specific cases. Here is how we find what happens to
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the mean outcome when x1 is fixed at, say 5, and x2 at, say 10, and x3 is allowed
to vary.

E(Y |x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3

E(Y |x1 = 5, x2 = 10, x3) = β0 + 5β1 + 10β2 + β3x3

E(Y |x1 = 5, x2 = 10, x3) = (β0 + 5β1 + 10β2) + β3x3

Because the βs are fixed (but unknown) constants, this equation tells us that when
x1 and x2 are fixed at the specified values, the relationship between E(Y ) and x3

can be represented on a plot with the outcome on the y-axis and x3 on the x-axis
as a straight line with slope β3 and intercept equal to the number β0 + 5β1 + 10β2.
Similarly, we get the same slope with respect to x3 for any combination of x1 and
x2, and this idea extends to changing any one explanatory variable when the others
are held fixed.

From simplifying the structural model to specific cases we learn that the no-
interaction multiple regression model claims that not only is there a linear rela-
tionship between E(Y ) and any x when the other x’s are held constant, it also
implies that the effect of a given change in an x value does not depend on what the
values of the other x variables are set to, as long as they are held constant. These
relationships must be plausible in any given situation for the no-interaction mul-
tiple regression model to be considered. Some of these restrictions can be relaxed
by including interactions (see below).

It is important to notice that the concept of changing the value of one ex-
planatory variable while holding the others constant is meaningful in experiments,
but generally not meaningful in observational studies. Therefore, interpretation of
the slope coefficients in observational studies is fraught with difficulties and the
potential for misrepresentation.

Multiple regression can occur in the experimental setting with two or more
continuous explanatory variables, but it is perhaps more common to see one ma-
nipulated explanatory variable and one or more observed control variables. In that
setting, inclusion of the control variables increases power, while the primary in-
terpretation is focused on the experimental treatment variable. Control variables
function in the same way as blocking variables (see 8.5) in that they affect the
outcome but are not of primary interest, and for any specific value of the control
variable, the variability in outcome associated with each value of the main exper-
imental explanatory variable is reduced. Examples of control variables for many
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Figure 10.1: EDA for the distraction example.

psychological studies include things like ability (as determined by some auxiliary
information) and age.

As an example of multiple regression with two manipulated quantitative vari-
ables, consider an analysis of the data of MRdistract.dat which is from a (fake)
experiment testing the effects of both visual and auditory distractions on reading
comprehension. The outcome is a reading comprehension test score administered
after each subject reads an article in a room with various distractions. The test is
scored from 0 to 100 with 100 being best. The subjects are exposed to auditory
distractions that consist of recorded construction noise with the volume randomly
set to vary between 10 and 90 decibels from subject to subject. The visual dis-
traction is a flashing light at a fixed intensity but with frequency randomly set to
between 1 and 20 times per minute.

http://www.stat.cmu.edu/~hseltman/309/Book/data/MRdistract.dat
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Unstandardized
Coefficients 95% Confidence Interval for B

B Std. Error t Sig. Lower Bound Upper Bound
(Constant) 74.688 3.260 22.910 <0.0005 68.083 81.294
db -0.200 0.043 -4.695 <0.0005 -0.286 -0.114
freq -1.118 0.208 -5.38 <0.0005 -1.539 -0.697

Table 10.1: Regression results for distraction experiment.

Adjusted Std. Error of
R R Square R Square the Estimate

0.744 0.553 0.529 6.939

Table 10.2: Distraction experiment model summary.

Exploratory data analysis is difficult in the multiple regression setting because
we need more than a two dimensional graph. For two explanatory variables and
one outcome variable, programs like SPSS have a 3-dimensional plot (in SPSS
try Graphs/ChartBuilder and choose the “Simple 3-D Scatter” template in the
Scatter/Dot gallery; double click on the resulting plot and click the “Rotating 3-D
Plot” toolbar button to make it “live” which allows you to rotate the plot so as to
view it at different angles). For more than two explanatory variables, things get
even more difficult. One approach that can help, but has some limitations, is to plot
the outcome separately against each explanatory variable. For two explanatory
variables, one variable can be temporarily demoted to categories (e.g., using the
visual bander in SPSS), and then a plot like figure 10.1 is produced. Simple
regression fit lines are added for each category. Here we can see that increasing the
value of either explanatory variable tends to reduce the mean outcome. Although
the fit lines are not parallel, with a little practice you will be able to see that given
the uncertainty in setting their slopes from the data, they are actually consistent
with parallel lines, which is an indication that no interaction is needed (see below
for details).

The multiple regression results are shown in tables 10.1 10.2, and 10.3.
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Sum of
Squares df Mean Square F Sig.

Regression 22202.3 2 1101.1 22.9 <0.0005
Residual 1781.6 37 48.152

Total 3983.9 39

Table 10.3: Distraction experiment ANOVA.

Really important fact: There is an one-to-one relationship between the
coefficients in the multiple regression output and the model equation
for the mean of Y given the x’s. There is exactly one term in the
equation for each line in the coefficients table.

Here is an interpretation of the analysis of this experiment. (Computer reported
numbers are rounded to a smaller, more reasonable number of decimal places –
usually 3 significant figures.) A multiple regression analysis (additive model, i.e.,
with no interaction) was performed using sound distraction volume in decibels and
visual distraction frequency in flashes per minute as explanatory variables, and
test score as the outcome. Changes in both distraction types cause a statistically
significant reduction in test scores. For each 10 db increase in noise level, the test
score drops by 2.00 points (p<0.0005, 95% CI=[1.14, 2.86]) at any fixed visual
distraction level. For each per minute increase in the visual distraction blink rate,
the test score drops by 1.12 points (p<0.0005, 95%CI=[0.70,1.54]) at any fixed
auditory distraction value. About 53% of the variability in test scores is accounted
for by taking the values of the two distractions into account. (This comes from
adjusted R2.) The estimate of the standard deviation of test scores for any fixed
combination of sound and light distraction is 6.9 points.

The validity of these conclusions is confirmed by the following assumption
checks. The quantile-normal plot of the residuals confirms Normality of errors,
the residual vs. fit plot confirms linearity and equal variance. (Subject 32 is a
mild outlier with standardized residual of -2.3). The fixed-x assumption is met
because the values of the distractions are precisely set by the experimenter. The
independent errors assumption is met because separate subjects are used for each
test, and the subjects were not allowed to collaborate.

It is also a good idea to further confirm linearity for each explanatory variable
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with plots of each explanatory variable vs. the residuals. Those plots also look
OK here.

One additional test should be performed before accepting the model and anal-
ysis discussed above for these data. We should test the “additivity” assumption
which says that the effect (on the outcome) of a one-unit rise of one explanatory
variable is the same at every fixed value of the other variable (and vice versa). The
violation of this assumption usually takes the form of “interaction” which is the
topic of the next section. The test needed is the p-value for the interaction term
of a separate multiple regression model run with an interaction term.

One new interpretation is for the p-value of <0.0005 for the F statistic of
22.9 in the ANOVA table for the multiple regression. The p-value is for the null
hypothesis that all of the slope parameters, but not the intercept parameter, are
equal to zero. So for this experiment we reject H0 : βV = βA = 0 (or better yet,
H0 : βvisual = βauditory = 0

Multiple regression is a direct extension of simple regression to mul-
tiple explanatory variables. Each new explanatory variable adds one
term to the structural model.

10.2 Interaction

Interaction is a major concept in statistics that applies whenever there are two
or more explanatory variables. Interaction is said to exist between two or more
explanatory variables in their effect on an outcome. Interaction is never between
an explanatory variable and an outcome, or between levels of a single explanatory
variable. The term interaction applies to both quantitative and categorical ex-
planatory variables. The definition of interaction is that the effect of a change in
the level or value of one explanatory variable on the mean outcome depends on the
level or value of another explanatory variable. Therefore interaction relates to the
structural part of a statistical model.

In the absence of interaction, the effect on the outcome of any specific change
in one explanatory variable, e.g., a one unit rise in a quantitative variable or a
change from, e.g., level 3 to level 1 of a categorical variable, does not depend on
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difference
Setting xS xL E(Y) from baseline

1 2 4 100-5(2)-3(4)=78
2 3 4 100-5(3)-3(4)=73 -5
3 2 6 100-5(2)-3(6)=72 -6
4 3 6 100-5(3)-3(6)=67 -11

Table 10.4: Demonstration of the additivity of E(Y ) = 100− 5xS − 3xL.

the level or value of the other explanatory variable(s), as long as they are held
constant. This also tells us that, e.g., the effect on the outcome of changing from
level 1 of explanatory variable 1 and level 3 of explanatory variable 2 to level 4 of
explanatory variable 1 and level 2 of explanatory variable 2 is equal to the sum
of the effects on the outcome of only changing variable 1 from level 1 to 4 plus
the effect of only changing variable 2 from level 3 to 1. For this reason the lack
of an interaction is called additivity. The distraction example of the previous
section is an example of a multiple regression model for which additivity holds
(and therefore there is no interaction of the two explanatory variables in their
effects on the outcome).

A mathematic example may make this more clear. Consider a model with
quantitative explanatory variables “decibels of distracting sound” and “frequency
of light flashing”, represented by xS and xL respectively. Imagine that the param-
eters are actually known, so that we can use numbers instead of symbols for this
example. The structural model demonstrated here is E(Y ) = 100 − 5xS − 3xL.
Sample calculations are shown in Table 10.4. Line 1 shows the arbitrary starting
values xS = 2, xL = 4. The mean outcome is 78, which we can call the “base-
line” for these calculations. If we leave the light level the same and change the
sound to 3 (setting 2), the mean outcome drops by 5. If we return to xS = 2, but
change xL to 6 (setting 3), then the mean outcome drops by 6. Because this is
a non-interactive, i.e., additive, model we expect that the effect of simultaneously
changing xS from 2 to 3 and xL from 4 to 6 will be a drop of 5+6=11. As shown
for setting 4, this is indeed so. This would not be true in a model with interaction.

Note that the component explanatory variables of an interaction and the lines
containing these individual explanatory variables in the coefficient table of the
multiple regression output, are referred to as main effects. In the presence of an
interaction, when the signs of the coefficient estimates of the main effects are the
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same, we use the term synergy if the interaction coefficient has the same sign.
This indicates a “super-additive” effect, where the whole is more than the sum of
the parts. If the interaction coefficient has opposite sign to the main effects, we
use the term antagonism to indicate a “sub-additive” effects where simultaneous
changes in both explanatory variables has less effect than the sum of the individual
effects.

The key to understanding the concept of interaction, how to put it into a struc-
tural model, and how to interpret it, is to understand the construction of one or
more new interaction variables from the existing explanatory variables. An inter-
action variable is created as the product of two (or more) explanatory variables.
That is why some programs and textbooks use the notation “A*B” to refer to the
interaction of explanatory variables A and B. Some other programs and textbooks
use “A:B”. Some computer programs can automatically create interaction vari-
ables, and some require you to create them. (You can always create them yourself,
even if the program has a mechanism for automatic creation.) Peculiarly, SPSS
has the automatic mechanism for some types of analyses but not others.

The creation, use, and interpretation of interaction variables for two quanti-
tative explanatory variables is discussed next. The extension to more than two
variables is analogous but more complex. Interactions that include a categorical
variable are discussed in the next section.

Consider an example of an experiment testing the effects of the dose of a drug
(in mg) on the induction of lethargy in rats as measured by number of minutes
that the rat spends resting or sleeping in a 4 hour period. Rats of different ages
are used and age (in months) is used as a control variable. Data for this (fake)
experiment are found in lethargy.dat.

Figure 10.2 shows some EDA. Here the control variable, age, is again cate-
gorized, and regression fit lines are added to the plot for each level of the age
categories. (Further analysis uses the complete, quantitative version of the age
variable.) What you should see here is that the slope appears to change as the
control variable changes. It looks like more drug causes more lethargy, and older
rats are more lethargic at any dose. But what suggests interaction here is that the
three fit lines are not parallel, so we get the (correct) impression that the effect of
any dose increase on lethargy is stronger in old rats than in young rats.

In multiple regression with interaction we add the new (product) interaction
variable(s) as additional explanatory variables. For the case with two explanatory

http://www.stat.cmu.edu/~hseltman/309/Book/data/lethargy.dat
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Figure 10.2: EDA for the lethargy example.
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variable, this becomes

E(Y |x1, x2) = β0 + β1x1 + β2x2 + β12(x1 · x2)

where β12 is the single parameter that represents the interaction effect and (x1 ·x2)
can either be thought of a the single new interaction variable (data column) or as
the product of the two individual explanatory variables.

Let’s examine what the multiple regression with interaction model is claim-
ing, i.e., in what situations it might be plausible. By examining the equation for
the structural model you can see that the effect of a one unit change in either
explanatory variable depends on the value of the other explanatory variable.

We can understand the details by taking the approach of writing down the
model equation then making it reflect specific cases. Here, we use more meaningful
variable names and parameter subscripts. Specifically, βd*a is the symbol for the
single interaction parameter.

E(Y |dose, age) = β0 + βdosedose + βageage + βd*adose · age

E(Y |dose, age = a) = β0 + βdosedose + aβage + aβd*a · dose

E(Y |dose, age = a) = (β0 + aβage) + (βdose + aβd*a)dose

Because the βs are fixed (unknown) constants, this equation tells us that when
age is fixed at some particular number, a, the relationship between E(Y ) and dose
is a straight line with intercept equal to the number β0 + aβage and slope equal
to the number βdose + aβd*a. The key feature of the interaction is the fact that
the slope with respect to dose is different for each value of a, i.e., for each age.
A similar equation can be written for fixed dose and varying age. The conclusion
is that the interaction model is one where the effects of any one-unit change in
one explanatory variable while holding the other(s) constant is a change in the
mean outcome, but the size (and maybe direction) of that change depends on the
value(s) that the other explanatory variable(s) is/are set to.

Explaining the meaning of the interaction parameter in a multiple regression
with continuous explanatory variables is difficult. Luckily, as we will see below, it
is much easier in the simplest version of ANCOVA, where there is one categorical
and one continuous explanatory variable.

The multiple regression results are shown in tables 10.5 10.6, and 10.7.
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Unstandardized
Coefficients 95% Confidence Interval for B

B Std. Error t Sig. Lower Bound Upper Bound
(Constant) 48.995 5.493 8.919 <0.0005 37.991 59.999
Drug dose 0.398 0.282 1.410 0.164 -0.167 0.962
Rat age 0.759 0.500 1.517 0.135 -0.243 1.761
DoseAge IA 0.396 0.025 15.865 <0.0005 0.346 0.446

Table 10.5: Regression results for lethargy experiment.

Adjusted Std. Error of
R R Square R Square the Estimate

0.992 0.985 0.984 7.883

Table 10.6: Lethargy experiment model summary.

Sum of
Squares df Mean Square F Sig.

Regression 222249 3 1101.1 22.868 <0.0005
Residual 3480 56 48.152

Total 225729 59

Table 10.7: Lethargy experiment ANOVA.
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Here is an interpretation of the analysis of this experiment written in language
suitable for an exam answer. A multiple regression analysis including interaction
was performed using drug dose in mg and rat age in months as explanatory vari-
ables, and minutes resting or sleeping during a 4 hour test period as the outcome.
There is a significant interaction (t=15.86, p<0.0005) between dose and age in
their effect on lethargy. (Therefore changes in either or both explanatory variables
cause changes in the lethargy outcome.) Because the coefficient estimate for the
interaction is of the same sign as the signs of the individual coefficients, it is easy to
give a general idea about the effects of the explanatory variables on the outcome.
Increases in both dose and age are associated with (cause, for dose) an increase in
lethargy, and the effects are “super-additive” or “synergistic” in the sense that the
effect of simultaneous fixed increases in both variables is more than the sum of the
effects of the same increases made separately for each explanatory variable. We
can also see that about 98% of the variability in resting/sleeping time is accounted
for by taking the values of dose and age into account. The estimate of the standard
deviation of resting/sleeping time for any fixed combination of dose and age is 7.9
minutes.

The validity of these conclusions is confirmed by the following assumption
checks. The quantile-normal plot of the residuals confirms Normality of errors,
the residual vs. fit plot confirms linearity and equal variance. The fixed-x assump-
tion is met because the dose is precisely set by the experimenter and age is precisely
observed. The independent errors assumption is met because separate subjects are
used for each test, and the subjects were not allowed to collaborate. Linearity is
further confirmed by plots of each explanatory variable vs. the residuals.

Note that the p-value for the interaction line of the regression results (coeffi-
cient) table tells us that the interaction is an important part of the model. Also
note that the component explanatory variables of the interaction (main effects) are
almost always included in a model if the interaction is included. In the presence
of a significant interaction both explanatory variables must affect the outcome, so
(except in certain special circumstances) you should not interpret the p-values of
the main effects if the interaction has a significant p-value. On the other hand,
if the interaction is not significant, generally the appropriate next step is to per-
form a new multiple regression analysis excluding the interaction term, i.e., run an
additive model.

If we want to write prediction equations with numbers instead of symbols, we
should use Y ′ or Ŷ on the left side, to indicate a “best estimate” rather than the
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true but unknowable values represented by E(Y ) which depends on the β values.
For this example, the prediction equation for resting/sleeping minutes for rats of
age 12 months at any dose is

Ŷ = 49.0 + 0.398(dose) + 0.76(12) + 0.396(dose · 12)

which is Ŷ = 58.1 + 5.15(dose).

Interaction between two explanatory variables is present when the
effect of one on the outcome depends on the value of the other. In-
teraction is implemented in multiple regression by including a new
explanatory variable that is the product of two existing explanatory
variables. The model can be explained by writing equations for the
relationship between one explanatory variable and the outcome for
some fixed values of the other explanatory variable.

10.3 Categorical variables in multiple regression

To use a categorical variable with k levels in multiple regression we must re-code
the data column as k − 1 new columns, each with only two different codes (most
commonly we use 0 and 1). Variables that only take on the values 0 or 1 are called
indicator or dummy variables. They should be considered as quantitative
variables. and should be named to correspond to their “1” level.

An indicator variable is coded 0 for any case that does not match the
variable name and 1 for any case that does match the variable name.

One level of the original categorical variable is designated the “baseline”. If
there is a control or placebo, the baseline is usually set to that level. The baseline
level does not have a corresponding variable in the new coding; instead subjects
with that level of the categorical variable have 0’s in all of the new variables. Each
new variable is coded to have a “1” for the level of the categorical variable that
matches its name and a zero otherwise.
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It is very important to realize that when new variables like these are con-
structed, they replace the original categorical variable when entering variables into
a multiple regression analysis, so the original variables are no longer used at all.
(The originals should not be erased, because they are useful for EDA, and because
you want to be able to verify correct coding of the indicator variables.)

This scheme for constructing new variables insures appropriate multiple regres-
sion analysis of categorical explanatory variables. As mentioned above, sometimes
you need to create these variables explicitly, and sometime a statistical program
will create them for you, either explicitly or silently.

The choice of the baseline variable only affects the convenience of presentation
of results and does not affect the interpretation of the model or the prediction of
future values.

As an example consider a data set with a categorical variable for favorite condi-
ment. The categories are ketchup, mustard, hot sauce, and other. If we arbitrarily
choose ketchup as the baseline category we get a coding like this:

Indicator Variable
Level mustard hot sauce other

ketchup 0 0 0
mustard 1 0 0

hot sauce 0 1 0
other 0 0 1

Note that this indicates, e.g., that every subject that likes mustard best has a 1
for their “mustard” variable, and zeros for their “hot sauce” and “other” variables.

As shown in the next section, this coding flexibly allows a model to have no
restrictions on the relationships of population means when comparing levels of the
categorical variable. It is important to understand that if we “accidentally” use a
categorical variable, usually with values 1 through k, in a multiple regression, then
we are inappropriately forcing the mean outcome to be ordered according to the
levels of a nominal variable, and we are forcing these means to be equally spaced.
Both of these problems are fixed by using indicator variable recoding.

To code the interaction between a categorical variable and a quantitative vari-
able, we need to create another k − 1 new variables. These variables are the
products of the k − 1 indicator variable(s) and the quantitative variable. Each of
the resulting new data columns has zeros for all rows corresponding to all levels of
the categorical variable except one (the one included in the name of the interaction
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variable), and has the value of the quantitative variable for the rows corresponding
to the named level.

Generally a model includes all or none of a set of indicator variables that cor-
respond with a single categorical variable. The same goes for the k− 1 interaction
variables corresponding to a given categorical variable and quantitative explana-
tory variable.

Categorical explanatory variables can be incorporated into multiple
regression models by substituting k − 1 indicator variables for any k-
level categorical variable. For an interaction between a categorical
and a quantitative variable k − 1 product variables should be created.

10.4 ANCOVA

The term ANCOVA (analysis of covariance) is used somewhat differently by dif-
ferent analysts and computer programs, but the most common meaning, and the
one we will use here, is for a multiple regression analysis in which there is at least
one quantitative and one categorical explanatory variable. Usually the categorical
variable is a treatment of primary interest, and the quantitative variable is a “con-
trol variable” of secondary interest, which is included to improve power (without
sacrificing generalizability).

Consider a particular quantitative outcome and two or more treatments that we
are comparing for their effects on the outcome. If we know one or more explanatory
variables are suspected to both affect the outcome and to define groups of subjects
that are more homogeneous in terms of their outcomes for any treatment, then we
know that we can use the blocking principle to increase power. Ignoring the other
explanatory variables and performing a simple ANOVA increases σ2 and makes it
harder to detect any real differences in treatment effects.

ANCOVA extends the idea of blocking to continuous explanatory variables,
as long as a simple mathematical relationship (usually linear) holds between the
control variable and the outcome.
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10.4.1 ANCOVA with no interaction

An example will make this more concrete. The data in mathtest.dat come from
a (fake) experiment testing the effects of two computer aided instruction (CAI)
programs on performance on a math test. The programs are labeled A and B,
where A is the control, older program, and B is suspected to be an improved
version. We know that performance depends on general mathematical ability so
the students math SAT is used as a control variable.

First let’s look at t-test results, ignoring the SAT score. EDA shows a slightly
higher mean math test score, but lower median for program B. A t-test shows no
significant difference with t=0.786, p=0.435. It is worth noting that the CI for
the mean difference between programs is [-5.36, 12.30], so we are 95% confident
that the effect of program B relative to the old program A is somewhere between
lowering the mean score by 5 points and raising it by 12 points. The estimate of
σ (square root of MSwithin from an ANOVA) is 17.1 test points.

EDA showing the relationship between math SAT (MSAT) and test score sep-
arately for each program is shown in figure 10.3. The steepness of the lines and
the fact that the variation in y at any x is smaller than the overall variation in y
for either program demonstrates the value of using MSAT as a control variable.
The lines are roughly parallel, suggesting that an additive, no-interaction model is
appropriate. The line for program B is higher than for program A, suggesting its
superiority.

First it is a good idea to run an ANCOVA model with interaction to verify that
the fit lines are parallel (the slopes are not statistically significantly different). This
is done by running a multiple regression model that includes the explanatory vari-
ables ProgB, MSAT, and the interaction between them (i.e, the product variable).
Note that we do not need to create a new set of indicator variables because there
are only two levels of program, and the existing variable is already an indicator
variable for program B. We do need to create the interaction variable in SPSS. The
interaction p-value is 0.375 (not shown), so there is no evidence of a significant
interaction (different slopes).

The results of the additive model (excluding the interaction) are shown in tables
10.8 10.9, and 10.10.

Of primary interest is the estimate of the benefit of using program B over
program A, which is 10 points (t=2.40, p=0.020) with a 95% confidence interval
of 2 to 18 points. Somewhat surprisingly the estimate of σ, which now refers to

http://www.stat.cmu.edu/~hseltman/309/Book/data/mathtest.dat
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Figure 10.3: EDA for the math test / CAI example.

Unstandardized
Coefficients 95% Confidence Interval for B

B Std. Error t Sig. Lower Bound Upper Bound
(Constant) -0.270 12.698 -0.021 0.983 -25.696 25.157
ProgB 10.093 4.206 2.400 0.020 1.671 18.515
Math SAT 0.079 0.019 4.171 <0.0005 0.041 0.117

Table 10.8: Regression results for CAI experiment.
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Adjusted Std. Error of
R R Square R Square the Estimate

0.492 0.242 0.215 15.082

Table 10.9: CAI experiment model summary.

Sum of
Squares df Mean Square F Sig.

Regression 4138 2 2069.0 0.095 <0.0005
Residual 12966 57 227.5

Total 17104 59

Table 10.10: CAI experiment ANOVA.

the standard deviation of test score for any combination of program and MSAT is
only slightly reduced from 17.1 to 15.1 points. The ANCOVA model explains 22%
of the variabilty in test scores (adjusted r-squared = 0.215), so there are probably
some other important variables “out there” to be discovered.

Of minor interest is the fact that the “control” variable, math SAT score, is
highly statistically significant (t=4.17, p<0.0005). Every 10 additional math SAT
points is associated with a 0.4 to 1.2 point rise in test score.

In conclusion, program B improves test scores by a few points on average for
students of all ability levels (as determined by MSAT scores).

This is a typical ANOVA story where the power to detect the effects of a
treatment is improved by including one or more control and/or blocking variables,
which are chosen by subject matter experts based on prior knowledge. In this
case the effect of program B compared to control program A was detectable using
MSAT in an ANCOVA, but not when ignoring it in the t-test.

The simplified model equations are shown here.

E(Y |ProgB,MSAT ) = β0 + βProgBProgB + βMSATMSAT

Program A: E(Y |ProgB = 0,MSAT ) = β0 + βMSATMSAT

Program B: E(Y |ProgB = 1,MSAT ) = (β0 + βProgB) + βMSATMSAT
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To be perfectly explicit, βMSAT is the slope parameter for MSAT and βProgB
is the parameter for the indicator variable ProgB. This parameter is technically a
“slope”, but really determines a difference in intercept for program A vs. program
B.

For the analysis of the data shown here, the predictions are:

Ŷ (ProgB,MSAT ) = −0.27 + 10.09ProgB + 0.08MSAT

Program A: Ŷ (ProgB = 0,MSAT ) = −0.27 + 0.08MSAT

Program B: Ŷ (ProgB = 1,MSAT ) = 9.82 + 0.08MSAT

Note that although the intercept is a meaningless extrapolation to an impossible
MSAT score of 0, we still need to use it in the prediction equation. Also note, that
in this no-interaction model, the simplified equations for the different treatment
levels have different intercepts, but the same slope.

ANCOVA with no interaction is used in the case of a quantitative
outcome with both a categorical and a quantitative explanatory vari-
able. The main use is for testing a treatment effect while using a
quantitative control variable to gain power.

10.4.2 ANCOVA with interaction

It is also possible that a significant interaction between a control variable and
treatment will occur, or that the quantitative explanatory variable is a variable of
primary interest that interacts with the categorical explanatory variable. Often
when we do an ANCOVA, we are “hoping” that there is no interaction because
that indicates a more complicated reality, which is harder to explain. On the other
hand sometimes a more complicated view of the world is just more interesting!

The multiple regression results shown in tables 10.11 and 10.12 refer to an
experiment testing the effect of three different treatments (A, B and C) on a
quantitative outcome, performance, which can range from 0 to 200 points, while
controlling for skill variable S, which can range from 0 to 100 points. The data
are available at Performance.dat. EDA showing the relationship between skill and

http://www.stat.cmu.edu/~hseltman/309/Book/data/Performance.dat


10.4. ANCOVA 261

0 20 40 60 80

0
50

10
0

15
0

Skill

P
er

fo
rm

an
ce

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

RxA
RxB
RxC

Figure 10.4: EDA for the performance ANCOVA example.
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performance separately for each treatment is shown in figure 10.4. The treatment
variable, called Rx, was recoded to k−1 = 2 indicator variables, which we will call
RxB and RxC, with level A as the baseline. Two interaction variables were created
by multiplying S by RxB and S by RxC to create the single, two column interaction
of Rx and S. Because it is logical and customary to consider the interaction between
a continuous explanatory variable and a k level categorical explanatory variable,
where k > 2, as a single interaction with k − 1 degrees of freedom and k − 1
lines in a coefficient table, we use a special procedure in SPSS (or other similar
programs) to find a single p-value for the null hypothesis that model is additive
vs. the alternative that there is an interaction. The SPSS procedure using the
Linear Regression module is to use two “blocks” of independent variables, placing
the main effects (here RxB, RxC, and Skill) into block 1, and the going to the
“Next” block and placing the two interaction variables (here, RxB*S and RxC*S)
into block 2. The optional statistic “R Squared Change” must also be selected.

The output that is labeled “Model Summary” (Table 10.11) and that is pro-
duced with the “R Squared Change” option is explained here. Lines are shown
for two models. The first model is for the explanatory variables in block 1 only,
i.e., the main effects, so it is for the additive ANCOVA model. The table shows
that this model has an adjusted R2 value of 0.863, and an estimate of 11.61 for the
standard error of the estimate (σ). The second model adds the single 2 df interac-
tion to produce the full interaction ANCOVA model with separate slopes for each
treatment. The adjusted R2 is larger suggesting that this is the better model. One
good formal test of the necessity of using the more complex interaction model over
just the additive model is the “F Change” test. Here the test has an F statistic of
6.36 with 2 and 84 df and a p-value of 0.003, so we reject the null hypothesis that
the additive model is sufficient, and work only with the interaction model (model
2) for further interpretations. (The Model-1 “F Change test” is for the necessity
of the additive model over an intercept-only model that predicts the intercept for
all subjects.)

Using mnemonic labels for the parameters, the structural model that goes with
this analysis (Model 2, with interaction) is

E(Y |Rx, S) = β0 +βRxBRxB +βRxCRxC +βSS +βRxB*SRxB · S +βRxC*SRxC · S

You should be able to construct this equation directly from the names of the
explanatory variables in Table 10.12.

Using Table 10.12, the parameter estimates are β0 = 14.56, βRxB = 17.10, βRxC =
17.77, βS = 0.92, βRxB*S = 0.23, and βRxC*S = 0.50.
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Adjusted R Std. Error of
Model R R Square Square the Estimate
1 0.931 0.867 0.863 11.61
2 0.941 0.885 0.878 10.95

Change Statistics
R Square

Model Change F Change df1 df2 Sig. F Change
1 0.867 187.57 3 86 <0.0005
2 0.017 6.36 2 84 0.003

Table 10.11: Model summary results for generic experiment.

Unstandardized
Coefficients

Model B Std. Error t Sig.
1 (Constant) 3.22 3.39 0.95 0.344

RxB 27.30 3.01 9.08 <0.0005
RxC 39.81 3.00 13.28 <0.0005
S 1.18 0.06 19.60 <0.0005

2 (Constant) 14.56 5.00 2.91 0.005
RxB 17.10 6.63 2.58 0.012
RxC 17.77 6.83 2.60 0.011
S 0.92 0.10 8.82 <0.0005
RxB*S 0.23 0.14 1.16 0.108
RxC*S 0.50 0.14 3.55 0.001

Table 10.12: Regression results for generic experiment.
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To understand this complicated model, we need to write simplified equations:

RxA: E(Y |Rx=A, S) = β0 + βSS

RxB: E(Y |Rx=B, S) = (β0 + βRxB) + (βS + βRxB*S)S

RxC: E(Y |Rx=C, S) = (β0 + βRxC) + (βS + βRxC*S)S

Remember that these simplified equations are created by substituting in 0’s
and 1’s for RxB and RxC (but not into parameter subscripts), and then fully
simplifying the equations.

By examining these three equations we can fully understand the model. From
the first equation we see that β0 is the mean outcome for subjects given treatment
A and who have S=0. (It is often worthwhile to “center” a variable like S by
subtracting its mean from every value; then the intercept will refer to the mean of
S, which is never an extrapolation.)

Again using the first equation we see that the interpretation of βS is the slope
of Y vs. S for subjects given treatment A.

From the second equation, the intercept for treatment B can be seen to be
(β0 +βRxB), and this is the mean outcome when S=0 for subjects given treatment
B. Therefore the interpretation of βRxB is the difference in mean outcome when
S=0 when comparing treatment B to treatment A (a positive parameter value
would indicate a higher outcome for B than A, and a negative parameter value
would indicate a lower outcome). Similarly, the interpretation of βRxB*S is the
change in slope from treatment A to treatment B, where a positive βRxB*S means
that the B slope is steeper than the A slope and a negative βRxB*S means that
the B slope is less steep than the A slope.

The null hypotheses then have these specific meanings. βRxB = 0 is a test of
whether the intercepts differ for treatments A and B. βRxC = 0 is a test of whether
the intercepts differ for treatments A and C. βRxB*S = 0 is a test of whether the
slopes differ for treatments A and B. And βRxC*S = 0 is a test of whether the
slopes differ for treatments A and C.

Here is a full interpretation of the performance ANCOVA example. Notice
that the interpretation can be thought of a description of the EDA plot which uses
ANCOVA results to specify which observations one might make about the plot
that are statistically verifiable.

Analysis of the data from the performance dataset shows that treatment and
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skill interact in their effects on performance. Because skill levels of zero are a gross
extrapolation, we should not interpret the intercepts.

If skill=0 were a meaningful, observed state, then we would say all of the things
in this paragraph. The estimated mean performance for subjects with zero skill
given treatment A is 14.6 points (a 95% CI would be more meaningful). If it were
scientifically interesting, we could also say that this value of 14.6 is statistically
different from zero (t=2.91, df=84, p=0.005). The intercepts for treatments B and
C (mean performances when skill level is zero) are both statistically significantly
different from the intercept for treatment A (t=2.58,2.60, df=84, p=0.012, 0.011).
The estimates are 17.1 and 17.8 points higher for B and C respectively compared
to A (and again, CIs would be useful here).

We can also say that there is a statistically significant effect of skill on per-
formance for subjects given treatment A (t=8.82, p< 0.0005). The best estimate
is that the mean performance increases by 9.2 points for each 10 point increase
in skill. The slope of performance vs. skill for treatment B is not statistically
significantly different for that of treatment A (t=1.15, p=0.108). The slope of
performance vs. skill for treatment C is statistically significantly different for that
of treatment A (t=3.55, p=0.001). The best estimate is that the slope for subjects
given treatment C is 0.50 higher than for treatment A (i.e., the mean change in
performance for a 1 unit increase in skill is 0.50 points more for treatment C than
for treatment A). We can also say that the best estimate for the slope of the effect
of skill on performance for treatment C is 0.92+0.50=1.42.

Additional testing, using methods we have not learned, can be performed to
show that performance is better for treatments B and C than treatment A at all
observed levels of skill.

In summary, increasing skill has a positive effect on performance for treatment
A (of about 9 points per 10 point rise in skill level). Treatment B has a higher
projected intercept than treatment A, and the effect of skill on subjects given
treatment B is not statistically different from the effect on those given treatment
A. Treatment C has a higher projected intercept than treatment A, and the effect
of skill on subjects given treatment C is statistically different from the effect on
those given treatment A (by about 5 additional points per 10 unit rise in skill).
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If an ANCOVA has a significant interaction between the categorical
and quantitative explanatory variables, then the slope of the equation
relating the quantitative variable to the outcome differs for different
levels of the categorical variable. The p-values for indicator variables
test intercept differences from the baseline treatment, while the in-
teraction p-values test slope differences from the baseline treatment.

10.5 Do it in SPSS

To create k− 1 indicator variables from a k-level categorical variable in SPSS, run
Transform/RecodeIntoDifferentVariables, as shown in figure 5.16, k−1 times. Each
new variable name should match one of the non-baseline levels of the categorical
variable. Each time you will set the old and new values (figure 5.17) to convert
the named value to 1 and “all other values” to 0.

To create k− 1 interaction variables for the interaction between a k-level cate-
gorical variable and a quantitative variable, use Transform/Compute k − 1 times.
Each new variable name should specify what two variables are being multiplied. A
label with a “*”, “:” or the word “interaction” or abbreviation “I/A” along with
the categorical level and quantitative name is a really good idea. The “Numeric
Expression” (see figure 5.15) is just the product of the two variables, where “*”
means multiply.

To perform multiple regression in any form, use the Analyze/Regression/Linear
menu item (see figure 9.7), and put the outcome in the Dependent box. Then put
all of the main effect explanatory variables in the Independent(s) box. Do not
use the original categorical variable – use only the k − 1 corresponding indicator
variables. If you want to model non-parallel lines, add the interaction variables
as a second block of independent variables, and turn on the “R Square Change”
option under “Statistics”. As in simple regression, add the option for CI’s for
the estimates, and graphs of the normal probability plot and residual vs. fit plot.
Generally, if the “F change test” for the interaction is greater than 0.05, use “Model
1”, the additive model, for interpretations. If it is ≤0.05, use “Model 2”, the
interaction model.


