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R e l a t e d  D e s i g n s

4.1 The Randomized Complete Block Design

In any experiment, variability arising from a nuisance factor can affect the results. Generally,
we define a nuisance factor as a design factor that probably has an effect on the response,
but we are not interested in that effect. Sometimes a nuisance factor is unknown and uncon-
trolled; that is, we don’t know that the factor exists, and it may even be changing levels while
we are conducting the experiment. Randomization is the design technique used to guard
against such a “lurking” nuisance factor. In other cases, the nuisance factor is known but
uncontrollable. If we can at least observe the value that the nuisance factor takes on at each
run of the experiment, we can compensate for it in the statistical analysis by using the analy-
sis of covariance, a technique we will discuss in Chapter 14. When the nuisance source of
variability is known and controllable, a design technique called blocking can be used to sys-
tematically eliminate its effect on the statistical comparisons among treatments. Blocking is
an extremely important design technique used extensively in industrial experimentation and
is the subject of this chapter.

To illustrate the general idea, reconsider the hardness testing experiment first described in
Section 2.5.1. Suppose now that we wish to determine whether or not four different tips produce
different readings on a hardness testing machine. An experiment such as this might be part of a
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gauge capability study. The machine operates by pressing the tip into a metal test coupon, and
from the depth of the resulting depression, the hardness of the coupon can be determined. The
experimenter has decided to obtain four observations on Rockwell C-scale hardness for each tip.
There is only one factor—tip type—and a completely randomized single-factor design would
consist of randomly assigning each one of the 4 � 4 � 16 runs to an experimental unit, that
is, a metal coupon, and observing the hardness reading that results. Thus, 16 different metal test
coupons would be required in this experiment, one for each run in the design.

There is a potentially serious problem with a completely randomized experiment in this
design situation. If the metal coupons differ slightly in their hardness, as might happen if they
are taken from ingots that are produced in different heats, the experimental units (the
coupons) will contribute to the variability observed in the hardness data. As a result, the
experimental error will reflect both random error and variability between coupons.

We would like to make the experimental error as small as possible; that is, we would
like to remove the variability between coupons from the experimental error. A design that
would accomplish this requires the experimenter to test each tip once on each of four
coupons. This design, shown in Table 4.1, is called a randomized complete block design
(RCBD). The word “complete” indicates that each block (coupon) contains all the treatments
(tips). By using this design, the blocks, or coupons, form a more homogeneous experimental
unit on which to compare the tips. Effectively, this design strategy improves the accuracy of
the comparisons among tips by eliminating the variability among the coupons. Within a
block, the order in which the four tips are tested is randomly determined. Notice the similar-
ity of this design problem to the paired t-test of Section 2.5.1. The randomized complete block
design is a generalization of that concept.

The RCBD is one of the most widely used experimental designs. Situations for which
the RCBD is appropriate are numerous. Units of test equipment or machinery are often dif-
ferent in their operating characteristics and would be a typical blocking factor. Batches of raw
material, people, and time are also common nuisance sources of variability in an experiment
that can be systematically controlled through blocking.1

Blocking may also be useful in situations that do not necessarily involve nuisance fac-
tors. For example, suppose that a chemical engineer is interested in the effect of catalyst feed
rate on the viscosity of a polymer. She knows that there are several factors, such as raw mate-
rial source, temperature, operator, and raw material purity that are very difficult to control in
the full-scale process. Therefore she decides to test the catalyst feed rate factor in blocks,
where each block consists of some combination of these uncontrollable factors. In effect, she
is using the blocks to test the robustness of her process variable (feed rate) to conditions she
cannot easily control. For more discussion of this, see Coleman and Montgomery (1993).
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■ T A B L E 4 . 1
Randomized Complete Block Design for the Hardness Testing Experiment

Test Coupon (Block)

1 2 3 4

Tip 3 Tip 3 Tip 2 Tip 1

Tip 1 Tip 4 Tip 1 Tip 4

Tip 4 Tip 2 Tip 3 Tip 2

Tip 2 Tip 1 Tip 4 Tip 3

1 A special case of blocking occurs where the blocks are experimental units such as people, and each block receives the treatments own time
or the treatment effects are measured at different times. These are called repeated measures designs. They are discussed in chapter 15.



4.1.1 Statistical Analysis of the RCBD

Suppose we have, in general, a treatments that are to be compared and b blocks. The random-
ized complete block design is shown in Figure 4.1. There is one observation per treatment in
each block, and the order in which the treatments are run within each block is determined ran-
domly. Because the only randomization of treatments is within the blocks, we often say that
the blocks represent a restriction on randomization.

The statistical model for the RCBD can be written in several ways. The traditional
model is an effects model:

(4.1)

where � is an overall mean, �i is the effect of the ith treatment, �j is the effect of the jth block,
and �ij is the usual NID (0, �2) random error term. We will initially consider treatments and
blocks to be fixed factors. The case of random blocks, which is very important, is considerd in
Section 4.1.3. Just as in the single-factor experimental design model in Chapter 3, the effects
model for the RCBD is an overspecified model. Consequently, we usually think of the treat-
ment and block effects as deviations from the overall mean so that

It is also possible to use a means model for the RCBD, say

where �ij � � � �i � �j. However, we will use the effects model in Equation 4.1 throughout
this chapter.

In an experiment involving the RCBD, we are interested in testing the equality of the
treatment means. Thus, the hypotheses of interest are

Because the ith treatment mean �i � (1/b) (� � �i � �j) � � � �i, an equivalent way to
write the above hypotheses is in terms of the treatment effects, say

The analysis of variance can be easily extended to the RCBD. Let yi. be the total of all
observations taken under treatment i, y.j be the total of all observations in block j, y.. be the

H1��i Z 0 at least one i

H0��1 � �2 � Á � �a � 0

�b
j�1

H1�at least one �i Z �j

H0��1 � �2 � Á � �a

yij � �ij � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

�
a

i�1
�i � 0  and  �

b

j�1
�j � 0

yij � � � �i � �j � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b
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grand total of all observations, and N � ab be the total number of observations. Expressed
mathematically,

(4.2)

(4.3)

and

(4.4)

Similarly, is the average of the observations taken under treatment i, is the average of the
observations in block j, and is the grand average of all observations. That is,

(4.5)

We may express the total corrected sum of squares as

(4.6)

By expanding the right-hand side of Equation 4.6, we obtain

Simple but tedious algebra proves that the three cross products are zero. Therefore,

(4.7)

represents a partition of the total sum of squares. This is the fundamental ANOVA equation
for the RCBD. Expressing the sums of squares in Equation 4.7 symbolically, we have

(4.8)

Because there are N observations, SST has N � 1 degrees of freedom. There are a treat-
ments and b blocks, so SSTreatments and SSBlocks have a � 1 and b � 1 degrees of freedom, respec-
tively. The error sum of squares is just a sum of squares between cells minus the sum of squares
for treatments and blocks. There are ab cells with ab � 1 degrees of freedom between them,
so SSE has ab � 1 � (a � 1) � (b � 1) � (a � 1)(b � 1) degrees of freedom. Furthermore,
the degrees of freedom on the right-hand side of Equation 4.8 add to the total on the left; there-
fore, making the usual normality assumptions on the errors, one may use Theorem 3-1 to show

SST � SSTreatments � SSBlocks � SSE

� �
a

i�1
�
b

j�1
(yij � y.j � yi. � y..)

2

�
a

i�1
�
b

j�1
(yij � y..)

2 � b �
a

i�1
(yi. � y..)

2 � a �
b

j�1
(y.j � y..)

2

� 2 �
a

i�1
�
b

j�1
(yi. � y..)(yij � yi. � y.j � y..)

� 2 �
a

i�1
�
b

j�1
 (y.j � y..)(yij � yi. � y.j � y..)

� �
a

i�1
�
b

j�1
(yij � yi. � y.j � y..)

2 � 2 �
a

i�1
�
b

j�1
(yi. � y..)(y.j � y..)

�
a

i�1
�
b

j�1
 (yij � y..)

2 � b �
a

i�1
(yi. � y..)

2 � a �
b

j�1
 (y.j � y..)

2

� (y.j � y..) � (yij � yi. � y.j � y..]
2

�
a

i�1
�
b

j�1
 (yij � y..)

2 � �
a

i�1
�
b

j�1
 [(yi. � y..)

yi. � yi./b  y.j � y.j /a  y.. � y../N

y..

y.jyi.

y.. � �
a

i�1
�
b

j�1
yij � �

a

i�1
yi. � �

b

j�1
y.j

y.j � �
a

i�1
yij   j � 1, 2, . . . , b

yi. � �
b

j�1
yij   i � 1, 2, . . . , a

142 Chapter 4 ■ Randomized Blocks, Latin Squares, and Related Designs



that SSTreatments/�
2, SSBlocks/�

2, and SSE/�2 are independently distributed chi-square random vari-
ables. Each sum of squares divided by its degrees of freedom is a mean square. The expected
value of the mean squares, if treatments and blocks are fixed, can be shown to be

Therefore, to test the equality of treatment means, we would use the test statistic

which is distributed as Fa�1,(a�1)(b�1) if the null hypothesis is true. The critical region is the
upper tail of the F distribution, and we would reject H0 if F0  F	,a�1,(a�1)(b�1). A P-value
approach can also be used.

We may also be interested in comparing block means because, if these means do not
differ greatly, blocking may not be necessary in future experiments. From the expected mean
squares, it seems that the hypothesis H0 :�j � 0 may be tested by comparing the statistic 
F0 � MSBlocks/MSE to F�,b�1,(a�1)(b�1). However, recall that randomization has been applied
only to treatments within blocks; that is, the blocks represent a restriction on randomiza-
tion. What effect does this have on the statistic F0 � MSBlocks/MSE? Some differences in treat-
ment of this question exist. For example, Box, Hunter, and Hunter (2005) point out that the
usual analysis of variance F test can be justified on the basis of randomization only,2 without
direct use of the normality assumption. They further observe that the test to compare block
means cannot appeal to such a justification because of the randomization restriction; but if the
errors are NID(0, �2), the statistic F0 � MSBlocks/MSE can be used to compare block means.
On the other hand, Anderson and McLean (1974) argue that the randomization restriction pre-
vents this statistic from being a meaningful test for comparing block means and that this 
F ratio really is a test for the equality of the block means plus the randomization restriction
[which they call a restriction error; see Anderson and McLean (1974) for further details].

In practice, then, what do we do? Because the normality assumption is often question-
able, to view F0 � MSBlocks/MSE as an exact F test on the equality of block means is not a good
general practice. For that reason, we exclude this F test from the analysis of variance table.
However, as an approximate procedure to investigate the effect of the blocking variable,
examining the ratio of MSBlocks to MSE is certainly reasonable. If this ratio is large, it implies
that the blocking factor has a large effect and that the noise reduction obtained by blocking
was probably helpful in improving the precision of the comparison of treatment means.

The procedure is usually summarized in an ANOVA table, such as the one shown in
Table 4.2. The computing would usually be done with a statistical software package.
However, computing formulas for the sums of squares may be obtained for the elements in
Equation 4.7 by working directly with the identity

yij � y.. � (yi. � y..) � (y.j � y..) � (yij � yi. � y.j � y..)

F0 �
MSTreatments

MSE

E(MSE) � � 2

E(MSBlocks) � � 2 �

a �
b

j�1
�2

j

b � 1

E(MSTreatments) � � 2 �

b �
a

i�1
� 2

i

a � 1
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2 Actually, the normal-theory F distribution is an approximation to the randomization distribution generated by calculating F0 from
every possible assignment of the responses to the treatments.



These quantities can be computed in the columns of a spreadsheet (Excel). Then each column
can be squared and summed to produce the sum of squares. Alternatively, computing formu-
las can be expressed in terms of treatment and block totals. These formulas are

(4.9)

(4.10)

(4.11)

and the error sum of squares is obtained by subtraction as

(4.12)SSE � SST � SSTreatments � SSBlocks
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N
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■ T A B L E  4 . 2
Analysis of Variance for a Randomized Complete Block Design

Source Degrees
of Variation Sum of Squares of Freedom Mean Square F0

Treatments SSTreatments a � 1

Blocks SSBlocks b � 1

Error SSE (a � 1)(b � 1)

Total SST N � 1

SSE

(a � 1)(b � 1)

SSBlocks

b � 1

MSTreatments

MSE

SSTreatments

a � 1

E X A M P L E  4 . 1

A medical device manufacturer produces vascular grafts
(artificial veins). These grafts are produced by extruding
billets of polytetrafluoroethylene (PTFE) resin combined
with a lubricant into tubes. Frequently, some of the tubes in
a production run contain small, hard protrusions on the
external surface. These defects are known as “flicks.” The
defect is cause for rejection of the unit.

The product developer responsible for the vascular
grafts suspects that the extrusion pressure affects the occur-
rence of flicks and therefore intends to conduct an experi-
ment to investigate this hypothesis. However, the resin is
manufactured by an external supplier and is delivered to the
medical device manufacturer in batches. The engineer also
suspects that there may be significant batch-to-batch varia-

tion, because while the material should be consistent with
respect to parameters such as molecular weight, mean par-
ticle size, retention, and peak height ratio, it probably isn’t
due to manufacturing variation at the resin supplier and nat-
ural variation in the material. Therefore, the product devel-
oper decides to investigate the effect of four different levels
of extrusion pressure on flicks using a randomized com-
plete block design considering batches of resin as blocks.
The RCBD is shown in Table 4.3. Note that there are four
levels of extrusion pressure (treatments) and six batches of
resin (blocks). Remember that the order in which the extru-
sion pressures are tested within each block is random. The
response variable is yield, or the percentage of tubes in the
production run that did not contain any flicks.
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To perform the analysis of variance, we need the follow-
ing sums of squares:

� (514.6)2] �
(2155.1)2

24
� 178.17

�
1
6

 [(556.9)2 � (550.1)2 � (533.5)2
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1
b �

4

i�1
y2

i. �
y2

..

N

� 193,999.31 �
(2155.1)2

24
� 480.31

SST � �
4

i�1
�
6

j�1
y2

ij �
y2

..

N

The ANOVA is shown in Table 4.4. Using 	 � 0.05, the
critical value of F is F0.05, 3,15 � 3.29. Because 8.11  3.29,
we conclude that extrusion pressure affects the mean yield.
The P-value for the test is also quite small. Also, the resin
batches (blocks) seem to differ significantly, because the
mean square for blocks is large relative to error.

� 480.31 � 178.17 � 192.25 � 109.89

SSE � SST � SSTreatments � SSBlocks

�
(2155.1)2

24
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�
1
4

 [(350.8)2 � (359.0)2 � Á � (377.8)2]

SSBlocks �
1
a �
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y2

.j �
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..

N

■ T A B L E  4 . 3
Randomized Complete Block Design for the Vascular Graft Experiment

Batch of Resin (Block)
Extrusion Treatment
Pressure (PSI) 1 2 3 4 5 6 Total

8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9

8700 92.5 89.5 90.6 94.7 87.0 95.8 550.1

8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5

9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6

Block Totals 350.8 359.0 364.0 362.2 341.3 377.8 y.. � 2155.1

It is interesting to observe the results we would have obtained from this experiment had
we not been aware of randomized block designs. Suppose that this experiment had been run
as a completely randomized design, and (by chance) the same design resulted as in Table 4.3.
The incorrect analysis of these data as a completely randomized single-factor design is shown
in Table 4.5.

Because the P-value is less than 0.05, we would still reject the null hypothesis and con-
clude that extrusion pressure significantly affects the mean yield. However, note that the mean

■ T A B L E  4 . 4
Analysis of Variance for the Vascular Graft Experiment

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Treatments (extrusion pressure) 178.17 3 59.39 8.11 0.0019

Blocks (batches) 192.25 5 38.45

Error 109.89 15 7.33

Total 480.31 23



square for error has more than doubled, increasing from 7.33 in the RCBD to 15.11. All of
the variability due to blocks is now in the error term. This makes it easy to see why we some-
times call the RCBD a noise-reducing design technique; it effectively increases the signal-to-
noise ratio in the data, or it improves the precision with which treatment means are compared.
This example also illustrates an important point. If an experimenter fails to block when he or
she should have, the effect may be to inflate the experimental error, and it would be possible
to inflate the error so much that important differences among the treatment means could not
be identified.

Sample Computer Output. Condensed computer output for the vascular graft exper-
iment in Example 4.1, obtained from Design-Expert and JMP is shown in Figure 4.2. The
Design-Expert output is in Figure 4.2a and the JMP output is in Figure 4.2b. Both outputs are
very similar, and match the manual computation given earlier. Note that JMP computes an 
F-statistic for blocks (the batches). The sample means for each treatment are shown in the out-
put. At 8500 psi, the mean yield is , at 8700 psi the mean yield is , at
8900 psi the mean yield is , and at 9100 psi the mean yield is .
Remember that these sample mean yields estimate the treatment means �1, �2, �3, and �4.
The model residuals are shown at the bottom of the Design-Expert output. The residuals are
calculated from

and, as we will later show, the fitted values are , so

(4.13)

In the next section, we will show how the residuals are used in model adequacy checking.

Multiple Comparisons. If the treatments in an RCBD are fixed, and the analysis
indicates a significant difference in treatment means, the experimenter is usually interested in
multiple comparisons to discover which treatment means differ. Any of the multiple compar-
ison procedures discussed in Section 3.5 may be used for this purpose. In the formulas of
Section 3.5, simply replace the number of replicates in the single-factor completely random-
ized design (n) by the number of blocks (b). Also, remember to use the number of error
degrees of freedom for the randomized block [(a � 1)(b � 1)] instead of those for the com-
pletely randomized design [a(n � 1)].

The Design-Expert output in Figure 4.2 illustrates the Fisher LSD procedure. Notice
that we would conclude that �1 � �2, because the P-value is very large. Furthermore,
�1 differs from all other means. Now the P-value for H0:�2 � �3 is 0.097, so there is some
evidence to conclude that �2 �3, and �2 �4 because the P-value is 0.0018. Overall,
we would conclude that lower extrusion pressures (8500 psi and 8700 psi) lead to fewer
defects.

ZZ

eij � yij � yi. � y.j � y..

ŷij � yi. � y.j � y..

eij � yij � ŷij

y4. � 85.77y3. � 88.92
y2. � 91.68y1. � 92.82
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■ T A B L E  4 . 5
Incorrect Analysis of the Vascular Graft Experiment as a Completely Randomized Design

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Extrusion pressure 178.17 3 59.39 3.95 0.0235

Error 302.14 20 15.11

Total 480.31 23
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.

(a)

■ F I G U R E  4 . 2 Computer output for Example 4.1. (a) Design-Expert; (b) JMP



We can also use the graphical procedure of Section 3.5.1 to compare mean yield at the
four extrusion pressures. Figure 4.3 plots the four means from Example 4.1 relative to a
scaled t distribution with a scale factor � � 1.10. This plot indicates that
the two lowest pressures result in the same mean yield, but that the mean yields for 8700 psi and

�7.33/6�MSE/b

148 Chapter 4 ■ Randomized Blocks, Latin Squares, and Related Designs

■ F I G U R E  4 . 2 (Continued)

80 85 90

234 1
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Yield

■ F I G U R E  4 . 3 Mean
yields for the four extrusion
pressures relative to a
scaled t distribution with a
scale factor 
�MSE/b � �7.33/6 � 1.10

Oneway Analysis of Yield By Pressure

Block
Batch

Oneway Anova

Summary of Fit

0.771218Rsquare
0.649201Adj Rsquare
2.706612Root Mean Square Error
89.79583Mean of Response

24Observations (or Sum Wgts)

Analysis of Variance

Mean SquareSum of SquaresDFSource F Prob > FRatio

0.00198.107159.3904178.171253Pressure
0.00555.248738.4504192.252085Batch

7.3257109.8862515Error
480.3095823C.Total

Means for Oneway Anova

Upper 95%Lower 95%ErrorStd.MeanNumberLevel

95.17290.4611.105092.816768500
94.03989.3281.105091.683368700
91.27286.5611.105088.916768900
88.12283.4111.105085.766769100

Error uses a pooled estimate of error varianceStd.

Block Means

NumberMeanBatch

487.70001
489.75002
491.00003
490.55004
485.32505
494.45006

(b)



8900 psi (�2 and �3) are also similar. The highest pressure (9100 psi) results in a mean
yield that is much lower than all other means. This figure is a useful aid in interpreting the
results of the experiment and the Fisher LSD calculations in the Design-Expert output in
Figure 4.2.

4.1.2 Model Adequacy Checking

We have previously discussed the importance of checking the adequacy of the assumed
model. Generally, we should be alert for potential problems with the normality assumption,
unequal error variance by treatment or block, and block–treatment interaction. As in the
completely randomized design, residual analysis is the major tool used in this diagnostic
checking. The residuals for the randomized block design in Example 4.1 are listed at the bot-
tom of the Design-Expert output in Figure 4.2.

A normal probability plot of these residuals is shown in Figure 4.4. There is no severe
indication of nonnormality, nor is there any evidence pointing to possible outliers. Figure 4.5
plots the residuals versus the fitted values . There should be no relationship between the size
of the residuals and the fitted values . This plot reveals nothing of unusual interest. Figure
4.6 shows plots of the residuals by treatment (extrusion pressure) and by batch of resin or
block. These plots are potentially very informative. If there is more scatter in the residuals for
a particular treatment, that could indicate that this treatment produces more erratic response
readings than the others. More scatter in the residuals for a particular block could indicate that
the block is not homogeneous. However, in our example, Figure 4.6 gives no indication of
inequality of variance by treatment but there is an indication that there is less variability in
the yield for batch 6. However, since all of the other residual plots are satisfactory, we will
ignore this.

ŷij

ŷij
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■ F I G U R E  4 . 4 Normal probability plot
of residuals for Example 4.1

■ F I G U R E  4 . 5 Plot of residuals versus ij

for Example 4.1
ŷ



Sometimes the plot of residuals versus has a curvilinear shape; for example, there
may be a tendency for negative residuals to occur with low values, positive residuals with
intermediate values, and negative residuals with high values. This type of pattern is sug-
gestive of interaction between blocks and treatments. If this pattern occurs, a transformation
should be used in an effort to eliminate or minimize the interaction. In Section 5.3.7, we
describe a statistical test that can be used to detect the presence of interaction in a random-
ized block design.

4.1.3 Some Other Aspects of the Randomized 
Complete Block Design

Additivity of the Randomized Block Model. The linear statistical model that we
have used for the randomized block design

is completely additive. This says that, for example, if the first treatment causes the expected
response to increase by five units (�1 � 5) and if the first block increases the expected response
by 2 units (�1 � 2), the expected increase in response of both treatment 1 and block 1 together
is E(y11) � � � �1 � �1 � � � 5 � 2 � � � 7. In general, treatment 1 always increases the
expected response by 5 units over the sum of the overall mean and the block effect.

Although this simple additive model is often useful, in some situations it is inadequate.
Suppose, for example, that we are comparing four formulations of a chemical product using
six batches of raw material; the raw material batches are considered blocks. If an impurity in
batch 2 affects formulation 2 adversely, resulting in an unusually low yield, but does not affect
the other formulations, an interaction between formulations (or treatments) and batches (or

yij � � � �i � �j � �ij

ŷijŷij

ŷij

ŷij
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■ F I G U R E  4 . 6 Plot of residuals by extrusion pressure (treatment) and by batches of resin (block) for
Example 4.1
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blocks) has occurred. Similarly, interactions between treatments and blocks can occur when
the response is measured on the wrong scale. Thus, a relationship that is multiplicative in the
original units, say

is linear or additive in a log scale since, for example,

or

Although this type of interaction can be eliminated by a transformation, not all interactions
are so easily treated. For example, transformations do not eliminate the formulation–batch
interaction discussed previously. Residual analysis and other diagnostic checking procedures
can be helpful in detecting nonadditivity.

If interaction is present, it can seriously affect and possibly invalidate the analysis of
variance. In general, the presence of interaction inflates the error mean square and may
adversely affect the comparison of treatment means. In situations where both factors, as well
as their possible interaction, are of interest, factorial designs must be used. These designs are
discussed extensively in Chapters 5 through 9.

Random Treatments and Blocks. Our presentation of the randomized complete
block design thus far has focused on the case when both the treatments and blocks were con-
sidered as fixed factors. There are many situations where either treatments or blocks (or both)
are random factors. It is very common to find that the blocks are random. This is usually what
the experimenter would like to do, because we would like for the conclusions from the exper-
iment to be valid across the population of blocks that the ones selected for the experiments
were sampled from. First, we consider the case where the treatments are fixed and the blocks
are random. Equation 4.1 is still the appropriate statistical model, but now the block effects
are random, that is, we assume that the �j , j � 1, 2,..., b are NID(0, �2

�) random variables.
This is a special case of a mixed model (because it contains both fixed and random factors).
In Chapters 13 and 14 we will discuss mixed models in more detail and provide several exam-
ples of situations where they occur. Our discussion here is limited to the RCBD.  

Assuming that the RCBD model Equation 4.1 is appropriate, if the blocks are random
and the treatments are fixed we can show that:

(4.14)

Thus, the variance of the observations is constant, the covariance between any two observa-
tions in different blocks is zero, but the covariance between two observations from the same
block is . The expected mean squares from the usual ANOVA partitioning of the total sum
of squares are 

(4.15)

E(MSE) � �2

E(MSBlocks) � �2 � a�2
�

E(MSTreatments) � �2 �

b�
a

i�1
�2

i

a � 1

�2
�

Cov(yij, yi�j) � �2
� i Z i�

Cov(yij, yi�j�) � 0,   j Z j�

V(yij) � �2
� � �2

E(yij) � � � �i, i � 1, 2,..., a

E(y*ij ) � �* � �*i � �*j

ln E(yij) � ln � � ln �i � ln �j

E(yij) � ��i�j



The appropriate statistic for testing the null hypothesis of no treatment effects (all
) is 

which is exactly the same test statistic we used in the case where the blocks were fixed. Based
on the expected mean squares, we can obtain an ANOVA-type estimator of the variance com-
ponent for blocks as 

(4.16)

For example, for the vascular graft experiment in Example 4.1 the estimate of is

This is a method-of-moments estimate and there is no simple way to find a confidence inter-
val on the block variance component . The REML method would be preferred here. Table 4.6
is the JMP output for Example 4.1 assuming that blocks are random. The REML estimate of

is exactly the same as the ANOVA estimate, but REML automatically produces the stan-
dard error of the estimate (6.116215) and the approximate 95 percent confidence interval.
JMP gives the test for the fixed effect (pressure), and the results are in agreement with those
originally reported in Example 4.1. REML also produces the point estimate and CI for the
error variance . The ease with which confidence intervals can be constructed is a major rea-
son why REML has been so widely adopted.

Now consider a situation where there is an interaction between treatments and
blocks. This could be accounted for by adding an interaction term to the original statisti-
cal model Equation 4.1. Let be the interaction effect of treatment I in block j. Then
the model is 

(4.17)

The interaction effect is assumed to be random because it involves the random block effects.
If is the variance component for the block treatment interaction, then we can show that
the expected mean squares are 

(4.18)

From the expected mean squares, we see that the usual F-statistic F � MSTreatments/MSE would
be used to test for no treatment effects. So another advantage of the random block model is
that the assumption of no interaction in the RCBD is not important. However, if blocks are
fixed and there is interaction, then the interaction effect is not in the expected mean square for
treatments but it is in the error expected mean square, so there would not be a statistical test
for the treatment effects.  

E(MSE) � �2 � �2
��
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�
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�� �
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a

i�1
�2

i
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Choice of Sample Size. Choosing the sample size, or the number of blocks to run,
is an important decision when using an RCBD. Increasing the number of blocks increases
the number of replicates and the number of error degrees of freedom, making design more
sensitive. Any of the techniques discussed in Section 3.7 for selecting the number of repli-
cates to run in a completely randomized single-factor experiment may be applied directly to
the RCBD. For the case of a fixed factor, the operating characteristic curves in Appendix
Chart V may be used with

(4.19)

where there are a � 1 numerator degrees of freedom and (a � 1)(b � 1) denominator degrees
of freedom.

�2 �

b�
a

i�1
� 2

i

a� 2
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TA B L E  4 . 6
JMP Output for Example 4.1 with Blocks Assumed Random

Response Y

Summary of Fit

RSquare 0.756688

RSquare Adj 0.720192

Root Mean Square Error 2.706612

Mean of Response 89.79583

Observations (or Sum Wgts) 24

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

Block 1.0621666 7.7811667 6.116215 �4.206394 19.768728 51.507

Residual 7.32575 2.6749857 3.9975509 17.547721 48.493

Total 15.106917 100.000

Covariance Matrix of Variance Component Estimates

Random Effect Block Residual

Block 37.408085 �1.788887

Residual �1.788887 7.1555484

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Pressure 3 3 15 8.1071 0.0019*



Estimating Missing Values. When using the RCBD, sometimes an observation in
one of the blocks is missing. This may happen because of carelessness or error or for reasons
beyond our control, such as unavoidable damage to an experimental unit. A missing observa-
tion introduces a new problem into the analysis because treatments are no longer orthogonal
to blocks; that is, every treatment does not occur in every block. There are two general
approaches to the missing value problem. The first is an approximate analysis in which the
missing observation is estimated and the usual analysis of variance is performed just as if the
estimated observation were real data, with the error degrees of freedom reduced by 1. This
approximate analysis is the subject of this section. The second is an exact analysis, which is
discussed in Section 4.1.4.

Suppose the observation yij for treatment i in block j is missing. Denote the missing
observation by x. As an illustration, suppose that in the vascular graft experiment of Example
4.1 there was a problem with the extrusion machine when the 8700 psi run was conducted in
the fourth batch of material, and the observation y24 could not be obtained. The data might
appear as in Table 4.7.

In general, we will let represent the grand total with one missing observation, rep-
resent the total for the treatment with one missing observation, and be the total for the
block with one missing observation. Suppose we wish to estimate the missing observation x

y�. j

y�i.y�ij
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E X A M P L E  4 . 2

Consider the RCBD for the vascular grafts described in
Example 4.1. Suppose that we wish to determine the appro-
priate number of blocks to run if we are interested in detect-
ing a true maximum difference in yield of 6 with a reasonably
high probability and an estimate of the standard deviation
of the errors is � � 3. From Equation 3.45, the minimum
value of �2 is (writing b, the number of blocks, for n)

where D is the maximum difference we wish to detect. Thus,

�2 �
b(6)2

2(4)(3)2
� 0.5b

�2 �
bD2

2a�2

If we use b � 5 blocks, � � � 1.58,
and there are (a � 1)(b � 1) � 3(4) � 12 error degrees of
freedom. Appendix Chart V with �1 � a � 1 � 3 and 	 �
0.05 indicates that the � risk for this design is approxi-
mately 0.55 (power � 1 � � � 0.45). If we use b � 6
blocks, � � , with (a � 1)
(b � 1) � 3(5) � 15 error degrees of freedom, and the cor-
responding � risk is approximately 0.4 (power � 1 � � �
0.6). Because the batches of resin are expensive and the cost
of experimentation is high, the experimenter decides to use
six blocks, even though the power is only about 0.6 (actually
many experiments work very well with power values of only
0.5 or higher).

�0.5b � �0.5(6) � 1.73

�0.5b � �0.5(5)

■ T A B L E  4 . 7
Randomized Complete Block Design for the Vascular Graft Experiment with One Missing Value

Batch of Resin (Block)
Extrusion
Pressures (PSI) 1 2 3 4 5 6

8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9

8700 92.5 89.5 90.6 x 87.0 95.8 455.4

8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5

9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6

Block totals 350.8 359.0 364.0 267.5 341.3 377.8 y�.. � 2060.4



so that x will have a minimum contribution to the error sum of squares. Because SSE �
, this is equivalent to choosing x to minimize

or

(4.20)

where R includes all terms not involving x. From dSSE / dx � 0, we obtain

(4.21)

as the estimate of the missing observation.
For the data in Table 4.7, we find that and .

Therefore, from Equation 4.16,

The usual analysis of variance may now be performed using y24 � 91.08 and reducing the
error degrees of freedom by 1. The analysis of variance is shown in Table 4.8. Compare the
results of this approximate analysis with the results obtained for the full data set (Table 4.4).

If several observations are missing, they may be estimated by writing the error sum of
squares as a function of the missing values, differentiating with respect to each missing value,
equating the results to zero, and solving the resulting equations. Alternatively, we may use
Equation 4.21 iteratively to estimate the missing values. To illustrate the iterative approach,
suppose that two values are missing. Arbitrarily estimate the first missing value, and then use
this value along with the real data and Equation 4.21 to estimate the second. Now Equation
4.21 can be used to reestimate the first missing value, and following this, the second can be
reestimated. This process is continued until convergence is obtained. In any missing value
problem, the error degrees of freedom are reduced by one for each missing observation.

4.1.4 Estimating Model Parameters and the General
Regression Significance Test

If both treatments and blocks are fixed, we may estimate the parameters in the RCBD model
by least squares. Recall that the linear statistical model is

(4.22)yij � � � �i � �j � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

x � y24 �
4(455.4) � 6(267.5) � 2060.4

(3)(5)
� 91.08

y�.. � 2060.4y�2. � 455.4, y�.4 � 267.5,

x �
ay�i. � by�.j � y�. .

(a � 1)(b � 1)

SSE � x2 �
1
b

(y�i. � x)2 �
1
a(y�.j � x)2 �
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■ T A B L E  4 . 8
Approximate Analysis of Variance for Example 4.1 with One Missing Value

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Extrusion pressure 166.14 3 55.38 7.63 0.0029

Batches of raw material 189.52 5 37.90

Error 101.70 14 7.26

Total 457.36 23



Applying the rules in Section 3.9.2 for finding the normal equations for an experimen-
tal design model, we obtain

(4.23)

Notice that the second through the (a � 1)st equations in Equation 4.23 sum to the first
normal equation, as do the last b equations. Thus, there are two linear dependencies in the
normal equations, implying that two constraints must be imposed to solve Equation 4.23. The
usual constraints are

(4.24)

Using these constraints helps simplify the normal equations considerably. In fact, they
become

(4.25)

whose solution is

(4.26)

Using the solution to the normal equation in Equation 4.26, we may find the estimated or fit-
ted values of yij as

This result was used previously in Equation 4.13 for computing the residuals from a random-
ized block design.

� yi. � y.j � y..

� y.. � (yi. � y..) � (y.j � y..)

ŷij � �̂ � �̂i � �̂j

�̂j � y.j � y..   j � 1, 2, . . . , b

�̂i � yi. � y..   i � 1, 2, . . . , a

�̂ � y..

a�̂ � a�̂j � y.j   j � 1, 2, . . . , b

b�̂ � b�̂i � yi.  i � 1, 2, . . . , a

ab �̂ � y..

�
a

i�1
�̂i � 0   �

b

j�1
�̂j � 0

� y.b�b: aa�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b

ooo

�2: aa�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂22 � Á � a�̂b � y.2

�1: aa�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y.1

b�̂a � a�̂1 � a�̂2 � Á � a�̂b � ya.�a: ab�̂

ooo

�2: ab�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y2.

�1: ab�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y1.

�: ab�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y..
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The general regression significance test can be used to develop the analysis of variance
for the randomized complete block design. Using the solution to the normal equations given
by Equation 4.26, the reduction in the sum of squares for fitting the full model is

with a � b � 1 degrees of freedom, and the error sum of squares is

with (a � 1)(b � 1) degrees of freedom. Compare this last equation with SSE in Equation 4.7.
To test the hypothesis H0: �i � 0, the reduced model is

which is just a single-factor analysis of variance. By analogy with Equation 3.5, the reduction
in the sum of squares for fitting the reduced model is

which has b degrees of freedom. Therefore, the sum of squares due to {�i} after fitting � and
{�j} is

which we recognize as the treatment sum of squares with a � 1 degrees of freedom (Equa-
tion 4.10).

The block sum of squares is obtained by fitting the reduced model
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which is also a single-factor analysis. Again, by analogy with Equation 3.5, the reduction in
the sum of squares for fitting this model is

with a degrees of freedom. The sum of squares for blocks {�j} after fitting � and {�i} is

with b � 1 degrees of freedom, which we have given previously as Equation 4.11.
We have developed the sums of squares for treatments, blocks, and error in the random-

ized complete block design using the general regression significance test. Although we would
not ordinarily use the general regression significance test to actually analyze data in a ran-
domized complete block, the procedure occasionally proves useful in more general random-
ized block designs, such as those discussed in Section 4.4.

Exact Analysis of the Missing Value Problem. In Section 4.1.3 an approximate
procedure for dealing with missing observations in the RCBD was presented. This approx-
imate analysis consists of estimating the missing value so that the error mean square is
minimized. It can be shown that the approximate analysis produces a biased mean square
for treatments in the sense that E(MSTreatments) is larger than E(MSE) if the null hypothesis
is true. Consequently, too many significant results are reported.

The missing value problem may be analyzed exactly by using the general regression
significance test. The missing value causes the design to be unbalanced, and because all the
treatments do not occur in all blocks, we say that the treatments and blocks are not orthog-
onal. This method of analysis is also used in more general types of randomized block
designs; it is discussed further in Section 4.4. Many computer packages will perform this
analysis.

4.2 The Latin Square Design

In Section 4.1 we introduced the randomized complete block design as a design to reduce the
residual error in an experiment by removing variability due to a known and controllable nui-
sance variable. There are several other types of designs that utilize the blocking principle. For
example, suppose that an experimenter is studying the effects of five different formulations of
a rocket propellant used in aircrew escape systems on the observed burning rate. Each formu-
lation is mixed from a batch of raw material that is only large enough for five formulations to
be tested. Furthermore, the formulations are prepared by several operators, and there may be
substantial differences in the skills and experience of the operators. Thus, it would seem that
there are two nuisance factors to be “averaged out” in the design: batches of raw material and
operators. The appropriate design for this problem consists of testing each formulation exact-
ly once in each batch of raw material and for each formulation to be prepared exactly once by
each of five operators. The resulting design, shown in Table 4.9, is called a Latin square
design. Notice that the design is a square arrangement and that the five formulations 
(or treatments) are denoted by the Latin letters A, B, C, D, and E; hence the name Latin square.
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We see that both batches of raw material (rows) and operators (columns) are orthogonal to
treatments.

The Latin square design is used to eliminate two nuisance sources of variability; that is,
it systematically allows blocking in two directions. Thus, the rows and columns actually
represent two restrictions on randomization. In general, a Latin square for p factors, or a 
p � p Latin square, is a square containing p rows and p columns. Each of the resulting p2 cells
contains one of the p letters that corresponds to the treatments, and each letter occurs once
and only once in each row and column. Some examples of Latin squares are

4 � 4 5 � 5 6 � 6

A B D C A D B E C A D C E B F

B C A D D A C B E B A E C F D

C D B A C B E D A C E D F A B

D A C B B E A C D D C F B E A

E C D A B F B A D C E

E F B A D C

Latin squares are closely related to a popular puzzle called a sudoku puzzle that origi-
nated in Japan (sudoku means “single number” in Japanese). The puzzle typically consists of
a 9 � 9 grid, with nine additional 3 � 3 blocks contained within. A few of the spaces contain
numbers and the others are blank. The goal is to fill the blanks with the integers from 1 to 9 so
that each row, each column, and each of the nine 3 � 3 blocks making up the grid contains just
one of each of the nine integers. The additional constraint that a standard 9 � 9 sudoku puzzle
have 3 � 3 blocks that also contain each of the nine integers reduces the large number of pos-
sible 9 � 9 Latin squares to a smaller but still quite large number, approximately 6 � 1021.

Depending on the number of clues and the size of the grid, sudoku puzzles can be
extremely difficult to solve. Solving an n � n sudoku puzzle belongs to a class of computa-
tional problems called NP-complete (the NP refers to non-polynomial computing time). An
NP-complete problem is one for which it’s relatively easy to check whether a particular
answer is correct but may require an impossibly long time to solve by any simple algorithm as
n gets larger.

Solving a sudoku puzzle is also equivalent to “coloring” a graph—an array of points
(vertices) and lines (edges) in a particular way. In this case, the graph has 81 vertices, one for
each cell of the grid. Depending on the puzzle, only certain pairs of vertices are joined by an
edge. Given that some vertices have already been assigned a “color” (chosen from the nine
number possibilities), the problem is to “color” the remaining vertices so that any two ver-
tices joined by an edge don’t have the same “color.”
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■ T A B L E  4 . 9
Latin Square Design for the Rocket Propellant Problem

Operators
Batches of
Raw Material 1 2 3 4 5

1 A � 24 B � 20 C � 19 D � 24 E � 24

2 B � 17 C � 24 D � 30 E � 27 A � 36

3 C � 18 D � 38 E � 26 A � 27 B � 21

4 D � 26 E � 31 A � 26 B � 23 C � 22

5 E � 22 A � 30 B � 20 C � 29 D � 31



The statistical model for a Latin square is

(4.27)

where yijk is the observation in the ith row and kth column for the jth treatment, � is the over-
all mean, 	i is the ith row effect, �j is the jth treatment effect, �k is the kth column effect, and
�ijk is the random error. Note that this is an effects model. The model is completely additive;
that is, there is no interaction between rows, columns, and treatments. Because there is only
one observation in each cell, only two of the three subscripts i, j, and k are needed to denote
a particular observation. For example, referring to the rocket propellant problem in Table 4.8,
if i � 2 and k � 3, we automatically find j � 4 (formulation D), and if i � 1 and j � 3 (for-
mulation C), we find k � 3. This is a consequence of each treatment appearing exactly once
in each row and column.

The analysis of variance consists of partitioning the total sum of squares of the N � p2

observations into components for rows, columns, treatments, and error, for example,

(4.28)

with respective degrees of freedom

Under the usual assumption that �ijk is NID (0, �2), each sum of squares on the right-hand side
of Equation 4.28 is, upon division by �2, an independently distributed chi-square random vari-
able. The appropriate statistic for testing for no differences in treatment means is

which is distributed as Fp�1,(p�2)(p�1) under the null hypothesis. We may also test for no row effect
and no column effect by forming the ratio of MSRows or MSColumns to MSE. However, because the
rows and columns represent restrictions on randomization, these tests may not be appropriate.

The computational procedure for the ANOVA in terms of treatment, row, and column
totals is shown in Table 4.10. From the computational formulas for the sums of squares, we
see that the analysis is a simple extension of the RCBD, with the sum of squares resulting
from rows obtained from the row totals.

F0 �
MSTreatments

MSE

p2 � 1 � p � 1 � p � 1 � p � 1 � (p � 2)(p � 1)

SST � SSRows � SSColumns � SSTreatments � SSE

yijk � � � 	i � �j � �k � �ijk �i � 1, 2, . . . , p
j � 1, 2, . . . , p
k � 1, 2, . . . , p
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■ T A B L E  4 . 1 0
Analysis of Variance for the Latin Square Design

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Treatments p � 1

Rows p � 1

Columns p � 1

Error SSE (by subtraction) ( p � 2)( p � 1)

Total p2 � 1SST � �
i
�

j
�

k
y2

ijk �
y2

...

N

SSE

(p � 2)(p � 1)

SSColumns

p � 1
SSColumns �

1
p �

p

k�1
y2

..k �
y2

...

N

SSRows

p � 1
SSRows �

1
p�

p

i�1
y2

i.. �
y2

...

N

F0 �
MSTreatments

MSE

SSTreatments

p � 1
SSTreatments �

1
p �

p

j�1
y2

.j. �
y2

..

N
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E X A M P L E  4 . 3

Consider the rocket propellant problem previously
described, where both batches of raw material and opera-
tors represent randomization restrictions. The design for
this experiment, shown in Table 4.8, is a 5 � 5 Latin
square. After coding by subtracting 25 from each observa-
tion, we have the data in Table 4.11. The sums of squares
for the total, batches (rows), and operators (columns) are
computed as follows:

The totals for the treatments (Latin letters) are

Latin Letter Treatment Total

A
B
C
D
E y.5. � 5

y.4. � 24
y.3. � �13
y.2. � �24
y.1. � 18

�
(10)2

25
� 150.00

�
1
5

 [(�18)2 � 182 � (�4)2 � 52 � 92]

SSOperators �
1
p �

p

k�1
y2

..k �
y2

...

N

�
(10)2

25
� 68.00

�
1
5

 [(�14)2 � 92 � 52 � 32 � 72]

SSBatches �
1
p�

p

i�1
y2

i.. �
y2

...

N

� 680 �
(10)2

25
� 676.00

SST � �
i
�

j
�

k
y2

ijk �
y2

...

N

The sum of squares resulting from the formulations is com-
puted from these totals as

The error sum of squares is found by subtraction

The analysis of variance is summarized in Table 4.12. We
conclude that there is a significant difference in the mean
burning rate generated by the different rocket propellant
formulations. There is also an indication that differences
between operators exist, so blocking on this factor was a
good precaution. There is no strong evidence of a differ-
ence between batches of raw material, so it seems that in
this particular experiment we were unnecessarily con-
cerned about this source of variability. However, blocking
on batches of raw material is usually a good idea.

� 676.00 �68.00 � 150.00 �330.00 �128.00

SSE � SST � SSBatches � SSOperators � SSFormulations

�
(10)2

25
� 330.00

�
182 � (�24)2 � (�13)2 � 242 � 52

5

SSFormulations �
1
p�

p

j�1
y2

.j. �
y2

...

N

■ T A B L E  4 . 1 1
Coded Data for the Rocket Propellant Problem

Batches of
Operators

Raw Material 1 2 3 4 5 yi..

1 A � �1 B � �5 C � �6 D � �1 E � �1 �14

2 B � �8 C � �1 D � 5 E � 2 A � 11 9

3 C � �7 D � 13 E � 1 A � 2 B � �4 5

4 D � 1 E � 6 A � 1 B � �2 C � �3 3

5 E � �3 A � 5 B � �5 C � 4 D � 6 7

y..k �18 18 �4 5 9 10 � y...



As in any design problem, the experimenter should investigate the adequacy of the model by
inspecting and plotting the residuals. For a Latin square, the residuals are given by

The reader should find the residuals for Example 4.3 and construct appropriate plots.
A Latin square in which the first row and column consists of the letters written in alpha-

betical order is called a standard Latin square, which is the design shown in Example 4.4. A
standard Latin square can always be obtained by writing the first row in alphabetical order and
then writing each successive row as the row of letters just above shifted one place to the left.
Table 4.13 summarizes several important facts about Latin squares and standard Latin squares.

As with any experimental design, the observations in the Latin square should be taken in
random order. The proper randomization procedure is to select the particular square employed at
random. As we see in Table 4.13, there are a large number of Latin squares of a particular size,
so it is impossible to enumerate all the squares and select one randomly. The usual procedure is

� yijk � yi.. � y.j. � y..k � 2y...

eijk � yijk � ŷijk
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■ T A B L E  4 . 1 2
Analysis of Variance for the Rocket Propellant Experiment

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Formulations 330.00 4 82.50 7.73 0.0025

Batches of raw material 68.00 4 17.00

Operators 150.00 4 37.50

Error 128.00 12 10.67

Total 676.00 24

■ T A B L E  4 . 1 3
Standard Latin Squares and Number of Latin Squares of Various Sizesa

Size 3 � 3 4 � 4 5 � 5 6 � 6 7 � 7 p � p

Examples of A B C A B C D A B C D E A B C D E F A B C D E F G ABC . . . P

standard squares B C A B C D A B A E C D B C F A D E B C D E F G A BCD . . . A

C A B C D A B C D A E B C F B E A D C D E F G A B CDE . . . B

D A B C D E B A C D E A B F C D E F G A B C

E C D B A E A D F C B E F G A B C D

F D E C B A F G A B C D E PAB . . . (P � 1)

G A B C D E F

Number of 1 4 56 9408 16,942,080 — 
standard squares

Total number of 12 576 161,280 818,851,200 61,479,419,904,000 p!( p � 1)! �
Latin squares (number of

standard squares)

aSome of the information in this table is found in Fisher and Yates (1953). Little is known about the properties of Latin squares larger than 7 � 7.

o



to select an arbitrary Latin square from a table of such designs, as in Fisher and Yates (1953), or
start with a standard square, and then arrange the order of the rows, columns, and letters at 
random. This is discussed more completely in Fisher and Yates (1953).

Occasionally, one observation in a Latin square is missing. For a p � p Latin square,
the missing value may be estimated by

(4.29)

where the primes indicate totals for the row, column, and treatment with the missing value,
and is the grand total with the missing value.

Latin squares can be useful in situations where the rows and columns represent factors
the experimenter actually wishes to study and where there are no randomization restrictions.
Thus, three factors (rows, columns, and letters), each at p levels, can be investigated in only
p2 runs. This design assumes that there is no interaction between the factors. More will be said
later on the subject of interaction.

Replication of Latin Squares. A disadvantage of small Latin squares is that they
provide a relatively small number of error degrees of freedom. For example, a 3 � 3 Latin
square has only two error degrees of freedom, a 4 � 4 Latin square has only six error degrees
of freedom, and so forth. When small Latin squares are used, it is frequently desirable to repli-
cate them to increase the error degrees of freedom.

A Latin square may be replicated in several ways. To illustrate, suppose that the 5 � 5
Latin square used in Example 4.4 is replicated n times. This could have been done as follows:

1. Use the same batches and operators in each replicate.

2. Use the same batches but different operators in each replicate (or, equivalently, use
the same operators but different batches).

3. Use different batches and different operators.

The analysis of variance depends on the method of replication.
Consider case 1, where the same levels of the row and column blocking factors are used

in each replicate. Let yijkl be the observation in row i, treatment j, column k, and replicate l.
There are N � np2 total observations. The ANOVA is summarized in Table 4.14.

y�...

yijk �
p(y�i.. � y�.j. � y�...k) � 2y�...

(p � 2)(p � 1)
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■ T A B L E  4 . 1 4
Analysis of Variance for a Replicated Latin Square, Case 1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Treatments p � 1

Rows p � 1

Columns p � 1

Replicates n � 1

Error Subtraction (p � 1)[n(p � 1) � 3]

Total np2 � 1� � � � y2
ijkl �

y2
....

N

SSE

( p � 1)[n( p � 1) � 3]

SSReplicates

n � 1
1
p2 �

n

l�1
y2

...l �
y2

....

N

SSColumns

p � 1
1
np �

p

k�1
y2

..k. �
y2

....

N

SSRows

p � 1
1
np �

p

i�1
y2

i... �
y2

....

N

MSTreatments

MSE

SSTreatments

p � 1
1
np �

p

j�1
y2

.j.. �
y2

....

N



Now consider case 2 and assume that new batches of raw material but the same opera-
tors are used in each replicate. Thus, there are now five new rows (in general, p new rows)
within each replicate. The ANOVA is summarized in Table 4.15. Note that the source of vari-
ation for the rows really measures the variation between rows within the n replicates.

Finally, consider case 3, where new batches of raw material and new operators are used in
each replicate. Now the variation that results from both the rows and columns measures the vari-
ation resulting from these factors within the replicates. The ANOVA is summarized in Table 4.16.

There are other approaches to analyzing replicated Latin squares that allow some inter-
actions between treatments and squares (refer to Problem 4.30).

Crossover Designs and Designs Balanced for Residual Effects. Occasionally,
one encounters a problem in which time periods are a factor in the experiment. In general, there
are p treatments to be tested in p time periods using np experimental units. For example,
a human performance analyst is studying the effect of two replacement fluids on dehydration
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■ T A B L E  4 . 1 5
Analysis of Variance for a Replicated Latin Square, Case 2

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F0

Treatments p � 1

Rows n(p � 1)

Columns p � 1

Replicates n � 1

Error Subtraction (p � 1)(np � 1)

Total np2 � 1�
i
�

j
�

k
�

l
y2

ijkl �
y2

....

N

SSE

( p � 1)(np � 1)

SSReplicates

n � 1
1
p2 �

n

l�1
y2

...l �
y2

....

N

SSColumns

p � 1
1
np �

p

k�1
y2

..k. �
y2

....

N

SSRows

n( p � 1)
1
p �

n

l�1
�
p

i�1
y2

i..l � �
n

l�1

y2
...l

p2

MSTreatments

MSE

SSTreatments

p � 1
1
np �

p

j�1
y2

.j.. �
y2

....

N

■ T A B L E  4 . 1 6
Analysis of Variance for a Replicated Latin Square, Case 3

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F0

Treatments p � 1

Rows n(p � 1)

Columns n(p � 1)

Replicates n � 1

Error Subtraction (p � 1)[n(p � 1) � 1]

Total np2 � 1�
i
�

j
�

k
�

l
y2

ijkl �
y2

....

N

SSE

( p � 1)[n( p � 1) � 1]

SSReplicates

n � 1
1
p2 �

n

l�1
y2

...l �
y2

....

N

SSColumns

n( p � 1)
1
p �

n

l�1
�
p

k�1
y2

..kl � �
n

l�1

y2
...l

p2

SSRows

n( p � 1)
1
p �

n

l�1
�
p

i�1
y2

i..l � �
n

l�1

y2
...l

p2

MSTreatments

MSE

SSTreatments

p � 1
1
np �

p

j�1
y2

.j.. �
y2

....

N



in 20 subjects. In the first period, half of the subjects (chosen at random) are given fluid A and
the other half fluid B. At the end of the period, the response is measured and a period of time
is allowed to pass in which any physiological effect of the fluids is eliminated. Then the
experimenter has the subjects who took fluid A take fluid B and those who took fluid B take
fluid A. This design is called a crossover design. It is analyzed as a set of 10 Latin squares
with two rows (time periods) and two treatments (fluid types). The two columns in each of
the 10 squares correspond to subjects.

The layout of this design is shown in Figure 4.7. Notice that the rows in the Latin square
represent the time periods and the columns represent the subjects. The 10 subjects who
received fluid A first (1, 4, 6, 7, 9, 12, 13, 15, 17, and 19) are randomly determined.

An abbreviated analysis of variance is summarized in Table 4.17. The subject sum of
squares is computed as the corrected sum of squares among the 20 subject totals, the period
sum of squares is the corrected sum of squares among the rows, and the fluid sum of squares
is computed as the corrected sum of squares among the letter totals. For further details of the
statistical analysis of these designs see Cochran and Cox (1957), John (1971), and Anderson
and McLean (1974).

It is also possible to employ Latin square type designs for experiments in which the
treatments have a residual effect—that is, for example, if the data for fluid B in period 2 still
reflected some effect of fluid A taken in period 1. Designs balanced for residual effects are
discussed in detail by Cochran and Cox (1957) and John (1971).

4.3 The Graeco-Latin Square Design

Consider a p � p Latin square, and superimpose on it a second p � p Latin square in which
the treatments are denoted by Greek letters. If the two squares when superimposed have the
property that each Greek letter appears once and only once with each Latin letter, the two
Latin squares are said to be orthogonal, and the design obtained is called a Graeco-Latin
square. An example of a 4 � 4 Graeco-Latin square is shown in Table 4.18.
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■ TA B L E  4 . 1 7
Analysis of Variance for the Crossover
Design in Figure 4.7

Source of Degrees of
Variation Freedom

Subjects (columns) 19

Periods (rows) 1

Fluids (letters) 1

Error 18

Total 39 

■ F I G U R E  4 . 7 A crossover design



The Graeco-Latin square design can be used to control systematically three sources of
extraneous variability, that is, to block in three directions. The design allows investigation of
four factors (rows, columns, Latin letters, and Greek letters), each at p levels in only p2 runs.
Graeco-Latin squares exist for all p � 3 except p � 6.

The statistical model for the Graeco-Latin square design is

(4.30)

where yijkl is the observation in row i and column l for Latin letter j and Greek letter k, 
i is
the effect of the ith row, �j is the effect of Latin letter treatment j, �k is the effect of Greek
letter treatment k, �l is the effect of column l, and �ijkl is an NID (0, �2) random error com-
ponent. Only two of the four subscripts are necessary to completely identify an observation.

The analysis of variance is very similar to that of a Latin square. Because the Greek let-
ters appear exactly once in each row and column and exactly once with each Latin letter, the
factor represented by the Greek letters is orthogonal to rows, columns, and Latin letter treat-
ments. Therefore, a sum of squares due to the Greek letter factor may be computed from the
Greek letter totals, and the experimental error is further reduced by this amount. The computa-
tional details are illustrated in Table 4.19. The null hypotheses of equal row, column, Latin let-
ter, and Greek letter treatments would be tested by dividing the corresponding mean square by
mean square error. The rejection region is the upper tail point of the Fp�1,( p�3)( p�1) distribution.

yijkl � � � 
i � �j � �k � �l � �ijkl �
i � 1, 2 , . . . , p
j � 1, 2 , . . . , p
k � 1, 2 , . . . , p
l � 1, 2 , . . . , p
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■ T A B L E  4 . 1 9
Analysis of Variance for a Graeco-Latin Square Design

Source of Variation Sum of Squares Degrees of Freedom

Latin letter treatments p � 1

Greek letter treatments p � 1

Rows p � 1

Columns p � 1

Error SSE (by subtraction) (p � 3)(p � 1)

Total p2 � 1SST � �
i
�

j
�

k
�

l
y2

ijkl �
y2

....

N

SSColumns �
1
p �

p

l�1
y2

...l �
y2

....

N

SSRows �
1
p �

p

i�1
y2

i... �
y2

....

N

SSG �
1
p �

p

k�1
y2

..k. �
y2

....

N

SSL �
1
p �

p

j�1
y2

.j.. �
y2

....

N

■ T A B L E  4 . 1 8
4 � 4 Graeco-Latin Square Design

Column

Row 1 2 3 4

1 A	 B� C� D�

2 B� A� D� C	

3 C� D	 A� B�

4 D� C� B	 A�
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