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66 Chapter 3 ■ Experiments with a Single Factor: The Analysis of Variance

In Chapter 2, we discussed methods for comparing two conditions or treatments. For
example, the Portland cement tension bond experiment involved two different mortar for-

mulations. Another way to describe this experiment is as a single-factor experiment with
two levels of the factor, where the factor is mortar formulation and the two levels are the
two different formulation methods. Many experiments of this type involve more than two
levels of the factor. This chapter focuses on methods for the design and analysis of single-
factor experiments with an arbitrary number a levels of the factor (or a treatments). We will
assume that the experiment has been completely randomized.

3.1 An Example

In many integrated circuit manufacturing steps, wafers are completely coated with a layer of
material such as silicon dioxide or a metal. The unwanted material is then selectively removed
by etching through a mask, thereby creating circuit patterns, electrical interconnects, and
areas in which diffusions or metal depositions are to be made. A plasma etching process is
widely used for this operation, particularly in small geometry applications. Figure 3.1  shows
the important features of a typical single-wafer etching tool. Energy is supplied by a radio-
frequency (RF) generator causing plasma to be generated in the gap between the electrodes.
The chemical species in the plasma are determined by the particular gases used.
Fluorocarbons, such as CF4 (tetrafluoromethane) or C2F6 (hexafluoroethane), are often used
in plasma etching, but other gases and mixtures of gases are relatively common, depending
on the application.

An engineer is interested in investigating the relationship between the RF power setting
and the etch rate for this tool. The objective of an experiment like this is to model the rela-
tionship between etch rate and RF power, and to specify the power setting that will give a
desired target etch rate. She is interested in a particular gas (C2F6) and gap (0.80 cm) and
wants to test four levels of RF power: 160, 180, 200, and 220 W. She decided to test five
wafers at each level of RF power.

This is an example of a single-factor experiment with a � 4 levels of the factor and 
n � 5 replicates. The 20 runs should be made in random order. A very efficient way to gen-
erate the run order is to enter the 20 runs in a spreadsheet (Excel), generate a column of 
random numbers using the RAND ( ) function, and then sort by that column.

Gas supply

Gas control panel

RF
generator

Anode

Wafer
Cathode

Valve

Vacuum pump

■ F I G U R E 3 . 1 A single-wafer plasma etching tool



Suppose that the test sequence obtained from this process is given as below:

Excel Random 
Test Sequence Number (Sorted) Power

1 12417 200

2 18369 220

3 21238 220

4 24621 160

5 29337 160

6 32318 180

7 36481 200

8 40062 160

9 43289 180

10 49271 200

11 49813 220

12 52286 220

13 57102 160

14 63548 160

15 67710 220

16 71834 180

17 77216 180

18 84675 180

19 89323 200

20 94037 200

This randomized test sequence is necessary to prevent the effects of unknown nuisance vari-
ables, perhaps varying out of control during the experiment, from contaminating the results.
To illustrate this, suppose that we were to run the 20 test wafers in the original nonrandom-
ized order (that is, all five 160 W power runs are made first, all five 180 W power runs are
made next, and so on). If the etching tool exhibits a warm-up effect such that the longer it is
on, the lower the observed etch rate readings will be, the warm-up effect will potentially con-
taminate the data and destroy the validity of the experiment.

Suppose that the engineer runs the experiment that we have designed in the random
order. The observations that she obtains on etch rate are shown in Table 3.1.

It is always a good idea to examine experimental data graphically. Figure 3.2a presents box
plots for etch rate at each level of RF power, and Figure 3.2b a scatter diagram of etch rate ver-
sus RF power. Both graphs indicate that etch rate increases as the power setting increases. There
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■ TA B L E  3 . 1
Etch Rate Data (in Å/min) from the Plasma Etching Experiment

Observations
Power
(W) 1 2 3 4 5 Totals Averages

160 575 542 530 539 570 2756 551.2

180 565 593 590 579 610 2937 587.4

200 600 651 610 637 629 3127 625.4

220 725 700 715 685 710 3535 707.0
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is no strong evidence to suggest that the variability in etch rate around the average depends on the
power setting. On the basis of this simple graphical analysis, we strongly suspect that (1) RF power
setting affects the etch rate and (2) higher power settings result in increased etch rate.

Suppose that we wish to be more objective in our analysis of the data. Specifically,
suppose that we wish to test for differences between the mean etch rates at all a � 4 levels
of RF power. Thus, we are interested in testing the equality of all four means. It might seem
that this problem could be solved by performing a t-test for all six possible pairs of means.
However, this is not the best solution to this problem. First of all, performing all six pairwise
t-tests is inefficient. It takes a lot of effort. Second, conducting all these pairwise compar-
isons inflates the type I error. Suppose that all four means are equal, so if we select 	 � 0.05,
the probability of reaching the correct decision on any single comparison is 0.95. However,
the probability of reaching the correct conclusion on all six comparisons is considerably less
than 0.95, so the type I error is inflated.

The appropriate procedure for testing the equality of several means is the analysis of
variance. However, the analysis of variance has a much wider application than the problem
above. It is probably the most useful technique in the field of statistical inference.

3.2 The Analysis of Variance

Suppose we have a treatments or different levels of a single factor that we wish to compare.
The observed response from each of the a treatments is a random variable. The data would appear
as in Table 3.2. An entry in Table 3.2 (e.g., yij) represents the jth observation taken under factor
level or treatment i. There will be, in general, n observations under the ith treatment. Notice that
Table 3.2 is the general case of the data from the plasma etching experiment in Table 3.1.
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■ F I G U R E 3 . 2 Box plots and scatter diagram of the etch rate data

■ TA B L E  3 . 2
Typical Data for a Single-Factor Experiment

Treatment
(Level) Observations Totals Averages

1 y11 y12 . . . y1n y1.

2 y21 y22 . . . y2n y2.

. . .

. . .

a ya1 ya2 . . . yan

y.. y..

ya.ya.

oooooo
y2.

y1.



Models for the Data. We will find it useful to describe the observations from an
experiment with a model. One way to write this model is

(3.1)

where yij is the ijth observation, �i is the mean of the ith factor level or treatment, and �ij is a
random error component that incorporates all other sources of variability in the experiment
including measurement, variability arising from uncontrolled factors, differences between the
experimental units (such as test material, etc.) to which the treatments are applied, and the
general background noise in the process (such as variability over time, effects of environmen-
tal variables, and so forth). It is convenient to think of the errors as having mean zero, so that
E(yij) � �i.

Equation 3.1 is called the means model. An alternative way to write a model for the
data is to define

so that Equation 3.1 becomes

(3.2)

In this form of the model, � is a parameter common to all treatments called the overall mean,
and �i is a parameter unique to the ith treatment called the ith treatment effect. Equation 3.2
is usually called the effects model.

Both the means model and the effects model are linear statistical models; that is, the
response variable yij is a linear function of the model parameters. Although both forms of the
model are useful, the effects model is more widely encountered in the experimental design lit-
erature. It has some intuitive appeal in that � is a constant and the treatment effects �i repre-
sent deviations from this constant when the specific treatments are applied.

Equation 3.2 (or 3.1) is also called the one-way or single-factor analysis of variance
(ANOVA) model because only one factor is investigated. Furthermore, we will require that
the experiment be performed in random order so that the environment in which the treatments
are applied (often called the experimental units) is as uniform as possible. Thus, the exper-
imental design is a completely randomized design. Our objectives will be to test appropri-
ate hypotheses about the treatment means and to estimate them. For hypothesis testing, the
model errors are assumed to be normally and independently distributed random variables with
mean zero and variance �2. The variance �2 is assumed to be constant for all levels of the fac-
tor. This implies that the observations

and that the observations are mutually independent.

Fixed or Random Factor? The statistical model, Equation 3.2, describes two differ-
ent situations with respect to the treatment effects. First, the a treatments could have been
specifically chosen by the experimenter. In this situation, we wish to test hypotheses about the
treatment means, and our conclusions will apply only to the factor levels considered in the
analysis. The conclusions cannot be extended to similar treatments that were not explicitly
considered. We may also wish to estimate the model parameters (�, �i, �2). This is called the
fixed effects model. Alternatively, the a treatments could be a random sample from a larg-
er population of treatments. In this situation, we should like to be able to extend the conclu-
sions (which are based on the sample of treatments) to all treatments in the population,

yij 
 N(� � �i, � 2)

yij � � � �i � �ij�i � 1, 2, . . . , a
j � 1, 2, . . . , n

�i � � � �i,   i � 1, 2, . . . , a

yij � �i � �ij�i � 1, 2, . . . , a
j � 1, 2, . . . , n

3.2 The Analysis of Variance 69
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whether or not they were explicitly considered in the analysis. Here, the �i are random vari-
ables, and knowledge about the particular ones investigated is relatively useless. Instead, we
test hypotheses about the variability of the �i and try to estimate this variability. This is called
the random effects model or components of variance model. We discuss the single-factor
random effects model in Section 3.9. However, we will defer a more complete discussion of
experiments with random factors to Chapter 13.

3.3 Analysis of the Fixed Effects Model

In this section, we develop the single-factor analysis of variance for the fixed effects model.
Recall that yi. represents the total of the observations under the ith treatment. Let represent
the average of the observations under the ith treatment. Similarly, let y.. represent the grand
total of all the observations and represent the grand average of all the observations.
Expressed symbolically,

(3.3)

where N � an is the total number of observations. We see that the “dot” subscript notation
implies summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means; that is, E(yij) � � �
�i � �i, i � 1, 2, . . . , a. The appropriate hypotheses are

(3.4)

In the effects model, we break the ith treatment mean �i into two components such that 
�i � � � �i. We usually think of � as an overall mean so that

This definition implies that

That is, the treatment or factor effects can be thought of as deviations from the overall mean.1

Consequently, an equivalent way to write the above hypotheses is in terms of the treatment
effects �i, say

Thus, we speak of testing the equality of treatment means or testing that the treatment effects
(the �i) are zero. The appropriate procedure for testing the equality of a treatment means is
the analysis of variance.

H1��i Z 0   for at least one i

H0��1 � �2 � Á �a � 0

�
a

i�1
�i � 0

�
a

i�1
�i

a � �

H1��i Z �j   for at least one pair (i, j)

H0��1 � �2 � Á � �a

y.. � �
a

i�1
�
n

j�1
yij  y.. � y../N

yi. � �
n

j�1
yij   yi. � yi./n   i � 1, 2, . . . , a

y..

yi.

1 For more information on this subject, refer to the supplemental text material for Chapter 3.



3.3.1 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its com-
ponent parts. The total corrected sum of squares

is used as a measure of overall variability in the data. Intuitively, this is reasonable because if
we were to divide SST by the appropriate number of degrees of freedom (in this case, an � 1 �
N � 1), we would have the sample variance of the y’s. The sample variance is, of course, a
standard measure of variability.

Note that the total corrected sum of squares SST may be written as

(3.5)

or

However, the cross-product term in this last equation is zero, because

Therefore, we have

(3.6)

Equation 3.6 is the fundamental ANOVA identity. It states that the total variability in the data,
as measured by the total corrected sum of squares, can be partitioned into a sum of squares
of the differences between the treatment averages and the grand average plus a sum of
squares of the differences of observations within treatments from the treatment average. Now,
the difference between the observed treatment averages and the grand average is a measure of
the differences between treatment means, whereas the differences of observations within a
treatment from the treatment average can be due to only random error. Thus, we may write
Equation 3.6 symbolically as

where SSTreatments is called the sum of squares due to treatments (i.e., between treatments), and
SSE is called the sum of squares due to error (i.e., within treatments). There are an � N total
observations; thus, SST has N � 1 degrees of freedom. There are a levels of the factor (and a
treatment means), so SSTreatments has a � 1 degrees of freedom. Finally, there are n replicates
within any treatment providing n � 1 degrees of freedom with which to estimate the experi-
mental error. Because there are a treatments, we have a(n � 1) � an � a � N � a degrees of
freedom for error.

It is instructive to examine explicitly the two terms on the right-hand side of the funda-
mental ANOVA identity. Consider the error sum of squares

SSE � �
a

i�1
�
n

j�1
 (yij � yi.)

2 � �
a

i�1
��

n

j�1
 (yij � yi.)

2	

SST � SSTreatments � SSE

�
a

i�1
�
n

j�1
 (yij � y..)

2 � n �
a

i�1
 (yi. � y..)

2 � �
a

i�1
�
n

j�1
 (yij � yi.)

2

�
n

j�1
 (yij � yi.) � yi. � nyi. � yi. � n(yi./n) � 0

� 2 �
a

i�1
�
n

j�1
 (yi. � y..)(yij � yi.)

�
a

i�1
�
n

j�1
 (yij � y..)

2 � n �
a

i�1
 (yi. � y..)

2 � �
a

i�1
�
n

j�1
 (yij � yi.)

2

�
a

i�1
�
n

j�1
 (yij � y..)

2 � �
a

i�1
�
n

j�1
 [(yi. � y..) � (yij � yi.)]

2

SST � �
a

i�1
�
n

j�1
 (yij � y..)

2
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In this form, it is easy to see that the term within square brackets, if divided by n � 1, is the
sample variance in the ith treatment, or

Now a sample variances may be combined to give a single estimate of the common popula-
tion variance as follows:

Thus, SSE /(N � a) is a pooled estimate of the common variance within each of the a treatments.
Similarly, if there were no differences between the a treatment means, we could use the

variation of the treatment averages from the grand average to estimate �2. Specifically,

is an estimate of �2 if the treatment means are equal. The reason for this may be intuitively seen
as follows: The quantity estimates �2/n, the variance of the treatment
averages, so must estimate �2 if there are no differences in treatment
means.

We see that the ANOVA identity (Equation 3.6) provides us with two estimates of
�2—one based on the inherent variability within treatments and the other based on the
variability between treatments. If there are no differences in the treatment means, these
two estimates should be very similar, and if they are not, we suspect that the observed
difference must be caused by differences in the treatment means. Although we have used
an intuitive argument to develop this result, a somewhat more formal approach can be
taken.

The quantities

and

are called mean squares. We now examine the expected values of these mean squares.
Consider

�
1

N � a
E��

a

i�1
�
n

j�1
 (y2

ij � 2yijyi. � y 2
i.)	

E(MSE) � E� SSE

N � a� �
1

N � a
E��

a

i�1
�
n

j�1
 (yij � yi.)

2	

MSE �
SSE

N � a

MSTreatments �
SSTreatments

a � 1

n�a
i�1(yi. � y..)

2/(a � 1)
�a

i�1(yi. � y..)
2/(a � 1)
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a � 1
�

n �
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a � 1
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SSE

(N � a)

(n � 1)S 2
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 (yij � yi.)

2	
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i�1
 (n � 1)

S 2
i �

�
n

j�1
 (yij � yi.)

2

n � 1
  i � 1, 2, . . . , a



Substituting the model (Equation 3.1) into this equation, we obtain

Now when squaring and taking expectation of the quantity within the brackets, we see that
terms involving and are replaced by �2 and n�2, respectively, because E(�ij) � 0.
Furthermore, all cross products involving �ij have zero expectation. Therefore, after squaring
and taking expectation, the last equation becomes

or

By a similar approach, we may also show that2

Thus, as we argued heuristically, MSE � SSE/(N � a) estimates �2, and, if there are no differ-
ences in treatment means (which implies that �i � 0), MSTreatments � SSTreatments/(a � 1) also
estimates �2. However, note that if treatment means do differ, the expected value of the treat-
ment mean square is greater than � 2.

It seems clear that a test of the hypothesis of no difference in treatment means can be
performed by comparing MSTreatments and MSE. We now consider how this comparison may be
made.

3.3.2 Statistical Analysis

We now investigate how a formal test of the hypothesis of no differences in treatment means
(H0 :�1 � �2 � . . . � �a, or equivalently, H0:�1 � �2 � . . . � �a � 0) can be performed.
Because we have assumed that the errors �ij are normally and independently distributed with
mean zero and variance �2, the observations yij are normally and independently distributed
with mean � � �i and variance �2. Thus, SST is a sum of squares in normally distributed
random variables; consequently, it can be shown that SST /�2 is distributed as chi-square with
N � 1 degrees of freedom. Furthermore, we can show that SSE /�2 is chi-square with N � a
degrees of freedom and that SSTreatments/�

2 is chi-square with a � 1 degrees of freedom if the
null hypothesis H0 :�i � 0 is true. However, all three sums of squares are not necessarily
independent because SSTreatments and SSE add to SST. The following theorem, which is a spe-
cial form of one attributed to William G. Cochran, is useful in establishing the independence
of SSE and SSTreatments.
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Because the degrees of freedom for SSTreatments and SSE add to N � 1, the total number
of degrees of freedom, Cochran’s theorem implies that SSTreatments/�

2 and SSE /�2 are independ-
ently distributed chi-square random variables. Therefore, if the null hypothesis of no differ-
ence in treatment means is true, the ratio

(3.7)

is distributed as F with a � 1 and N � a degrees of freedom. Equation 3.7 is the test statis-
tic for the hypothesis of no differences in treatment means.

From the expected mean squares we see that, in general, MSE is an unbiased estimator of
�2. Also, under the null hypothesis, MSTreatments is an unbiased estimator of �2. However, if the
null hypothesis is false, the expected value of MSTreatments is greater than �2. Therefore, under the
alternative hypothesis, the expected value of the numerator of the test statistic (Equation 3.7) is
greater than the expected value of the denominator, and we should reject H0 on values of the test
statistic that are too large. This implies an upper-tail, one-tail critical region. Therefore, we
should reject H0 and conclude that there are differences in the treatment means if

where F0 is computed from Equation 3.7. Alternatively, we could use the P-value approach
for decision making. The table of F percentages in the Appendix (Table IV) can be used to
find bounds on the P-value.

The sums of squares may be computed in several ways. One direct approach is to make
use of the definition

Use a spreadsheet to compute these three terms for each observation. Then, sum up the
squares to obtain SST, SSTreatments, and SSE. Another approach is to rewrite and simplify the def-
initions of SSTreatments and SST in Equation 3.6, which results in

(3.8)

(3.9)

and

(3.10)SSE � SST � SSTreatments

SSTreatments �
1
n �

a

i�1
y2

i. �
y2

..

N

SST � �
a

i�1
�
n

j�1
y2

ij �
y2

..

N

yij � y.. � (yi. � y..) � (yij � yi.)

F0 � F	,a�1,N�a

F0 �
SSTreatments/(a � 1)

SSE/(N � a)
�

MSTreatments

MSE

THEOREM 3-1
Cochran’s Theorem

Let Zi be NID(0, 1) for i � 1, 2, . . . , � and

where s � v, and Qi has vi degrees of freedom (i � 1, 2, . . . , s). Then Q1, Q2, . . . , Qs

are independent chi-square random variables with v1, v2, . . . , vs degrees of freedom,
respectively, if and only if

� � �1 � �2 � Á � �s

�
�

i�1
Z 2

i � Q1 � Q2 � Á � Qs



This approach is nice because some calculators are designed to accumulate the sum of entered
numbers in one register and the sum of the squares of those numbers in another, so each num-
ber only has to be entered once. In practice, we use computer software to do this.

The test procedure is summarized in Table 3.3. This is called an analysis of variance
(or ANOVA) table.
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■ TA B L E  3 . 3
The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0

SSTreatments

Between treatments � a � 1 MSTreatments F0 �

Error (within treatments) SSE � SST � SSTreatments N � a MSE

Total SST � N�1�
a

i�1
�
n

j�1
(yij � y. . )2

MSTreatments

MSE
n �

a

i�1
 ( yi. � y..)

2

E X A M P L E  3 . 1 The Plasma Etching Experiment

To illustrate the analysis of variance, return to the first exam-
ple discussed in Section 3.1. Recall that the engineer is
interested in determining if the RF power setting affects the
etch rate, and she has run a completely randomized experi-
ment with four levels of RF power and five replicates. For
convenience, we repeat here the data from Table 3.1:

We will use the analysis of variance to test H0 :�1 �
�2 � �3 � �4 against the alternative H1: some means are
different. The sums of squares required are computed using
Equations 3.8, 3.9, and 3.10 as follows:

Observed Etch Rate (Å/min)
RF Power Totals Averages

(W) 1 2 3 4 5 yi.

160 575 542 530 539 570 2756 551.2

180 565 593 590 579 610 2937 587.4

200 600 651 610 637 629 3127 625.4

220 725 700 715 685 710 3535 707.0

y.. � 12,355 y.. � 617.75

yi.

� 66,870.55

�
1
5

 [(2756)2 � Á � (3535)2] �
(12,355)2

20

SSTreatments �
1
n �

4

i�1
y2

i. �
y2

..

N

� 72,209.75

� (575)2 � (542)2 � Á � (710)2 �
(12,355)2

20

SST � �
4

i�1
�
5

j�1
y2

ij �
y2

..

N

Usually, these calculations would be performed on a
computer, using a software package with the capability to
analyze data from designed experiments.

The ANOVA is summarized in Table 3.4. Note that the
RF power or between-treatment mean square (22,290.18)
is many times larger than the within-treatment or error
mean square (333.70). This indicates that it is unlikely
that the treatment means are equal. More formally, we

� 72,209.75 � 66,870.55 � 5339.20
SSE � SST � SSTreatments
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can compute the F ratio F0 � 22,290.18/333.70 � 66.80
and compare this to an appropriate upper-tail percentage
point of the F3,16 distribution. To use a fixed significance
level approach, suppose that the experimenter has select-
ed 	 � 0.05. From Appendix Table IV we find that
F0.05,3,16 � 3.24. Because F0 � 66.80  3.24, we reject
H0 and conclude that the treatment means differ; that is,
the RF power setting significantly affects the mean etch

■ TA B L E  3 . 4
ANOVA for the Plasma Etching Experiment

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0 P-Value

RF Power 66,870.55 3 22,290.18 F0 � 66.80 �0.01

Error 5339.20 16 333.70

Total 72,209.75 19 

rate. We could also compute a P-value for this test statis-
tic. Figure 3.3 shows the reference distribution (F3,16) for
the test statistic F0. Clearly, the P-value is very small in
this case. From Appendix Table A-4, we find that F0.01,3,16

� 5.29 and because F0  5.29, we can conclude that an
upper bound for the P-value is 0.01; that is, P � 0.01 (the
exact P-value is P � 2.88 � 10�9).
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F0 = 66.80F0F0.01,3,16
F0.05,3,16

■ F I G U R E  3 . 3 The reference distribution (F3,16) for
the test statistic F0 in Example 3.1

Coding the Data. Generally, we need not be too concerned with computing because
there are many widely available computer programs for performing the calculations. These
computer programs are also helpful in performing many other analyses associated with exper-
imental design (such as residual analysis and model adequacy checking). In many cases, these
programs will also assist the experimenter in setting up the design.

However, when hand calculations are necessary, it is sometimes helpful to code the
observations. This is illustrated in the next example.
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E X A M P L E  3 . 2 Coding the Observations

The ANOVA calculations may often be made more easily
or accurately by coding the observations. For example,
consider the plasma etching data in Example 3.1. Suppose
we subtract 600 from each observation. The coded data
are shown in Table 3.5. It is easy to verify that

and

SSE � 5339.20

�
(355)2

20
� 66,870.55

SSTreatments �
(�244)2 � (�63)2 � (127)2 � (535)2

5

� (110)2 �
(355)2

20
� 72,209.75

SST � (�25)2 � (�58)2 � Á

Comparing these sums of squares to those obtained in
Example 3.1, we see that subtracting a constant from the
original data does not change the sums of squares.

Now suppose that we multiply each observation in
Example 3.1 by 2. It is easy to verify that the sums of
squares for the transformed data are SST � 288,839.00,
SSTreatments � 267,482.20, and SSE � 21,356.80. These
sums of squares appear to differ considerably from those
obtained in Example 3.1. However, if they are divided
by 4 (i.e., 22), the results are identical. For example,
for the treatment sum of squares 267,482.20/4 �
66,870.55. Also, for the coded data, the F ratio is F �
(267,482.20/3)/(21,356.80/16) � 66.80, which is identi-
cal to the F ratio for the original data. Thus, the ANOVAs
are equivalent.

Randomization Tests and Analysis of Variance. In our development of the ANOVA
F test, we have used the assumption that the random errors �ij are normally and independently
distributed random variables. The F test can also be justified as an approximation to a random-
ization test. To illustrate this, suppose that we have five observations on each of two treatments
and that we wish to test the equality of treatment means. The data would look like this:

Treatment 1 Treatment 2

y11 y21

y12 y22

y13 y23

y14 y24

y15 y25

■ TA B L E  3 . 5
Coded Etch Rate Data for Example 3.2

Observations
RF Power Totals 

(W) 1 2 3 4 5 yi.

160 �25 �58 �70 �61 �30 �244

180 �35 �7 �10 �21 10 �63

200 0 51 10 37 29 127

220 125 100 115 85 110 535 
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We could use the ANOVA F test to test H0 : �1 � �2. Alternatively, we could use a somewhat
different approach. Suppose we consider all the possible ways of allocating the 10 numbers
in the above sample to the two treatments. There are 10!/5!5! � 252 possible arrangements
of the 10 observations. If there is no difference in treatment means, all 252 arrangements are
equally likely. For each of the 252 arrangements, we calculate the value of the F statistic using
Equation 3.7. The distribution of these F values is called a randomization distribution, and
a large value of F indicates that the data are not consistent with the hypothesis H0 : �1 � �2.
For example, if the value of F actually observed was exceeded by only five of the values of
the randomization distribution, this would correspond to rejection of H0 : �1 � �2 at a signif-
icance level of 	 � 5/252 � 0.0198 (or 1.98 percent). Notice that no normality assumption is
required in this approach.

The difficulty with this approach is that, even for relatively small problems, it is
computationally prohibitive to enumerate the exact randomization distribution. However,
numerous studies have shown that the exact randomization distribution is well approxi-
mated by the usual normal-theory F distribution. Thus, even without the normality
assumption, the ANOVA F test can be viewed as an approximation to the randomization
test. For further reading on randomization tests in the analysis of variance, see Box,
Hunter, and Hunter (2005).

3.3.3 Estimation of the Model Parameters

We now present estimators for the parameters in the single-factor model

and confidence intervals on the treatment means. We will prove later that reasonable estimates
of the overall mean and the treatment effects are given by

(3.11)

These estimators have considerable intuitive appeal; note that the overall mean is estimated
by the grand average of the observations and that any treatment effect is just the difference
between the treatment average and the grand average.

A confidence interval estimate of the ith treatment mean may be easily determined.
The mean of the ith treatment is

A point estimator of �i would be . Now, if we assume that the errors
are normally distributed, each treatment average is distributed NID(�i, �2/n). Thus, if �2

were known, we could use the normal distribution to define the confidence interval. Using the
MSE as an estimator of � 2, we would base the confidence interval on the t distribution.
Therefore, a 100(1 � 	) percent confidence interval on the ith treatment mean �i is

(3.12)

Differences in treatments are frequently of great practical interest. A 100(1 � 	) percent con-
fidence interval on the difference in any two treatments means, say �i � �j, would be

(3.13)yi. � yj. � t	/2,N�a�2MSE

n � �i � �j � yi. � yj. � t	/2,N�a�2MSE

n

yi. � t	/2,N�a�MSE

n � �i � yi. � t	/2,N�a�MSE

n

yi.

�̂i � �̂ � �̂i � yi.

�i � � � �i

�î � yi. � y..,   i � 1, 2, . . . , a

�̂ � y..

yij � � � �i � �ij
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E X A M P L E  3 . 3

Using the data in Example 3.1, we may find the estimates
of the overall mean and the treatment effects as �
12,355/20 � 617.75 and

A 95 percent confidence interval on the mean of
treatment 4 (220W of RF power) is computed from
Equation 3.12 as

�4̂ � y4. � y.. � 707.00 � 617.75 � 89.25
�3̂ � y3. � y.. � 625.40 � 617.75 � 7.65
�2̂ � y2. � y.. � 587.40 � 617.75 � �30.35
�1̂ � y1. � y.. � 551.20 � 617.75 � �66.55

�̂

or

Thus, the desired 95 percent confidence interval is
689.68 � �4 � 724.32.

707.00 � 17.32 � �4 � 707.00 � 17.32

Simultaneous Confidence Intervals. The confidence interval expressions given
in Equations 3.12 and 3.13 are one-at-a-time confidence intervals. That is, the confidence
level 1 � 	 applies to only one particular estimate. However, in many problems, the exper-
imenter may wish to calculate several confidence intervals, one for each of a number of
means or differences between means. If there are r such 100(1 � 	) percent confidence
intervals of interest, the probability that the r intervals will simultaneously be correct is at
least 1 � r	. The probability r	 is often called the experimentwise error rate or overall
confidence coefficient. The number of intervals r does not have to be large before the set of
confidence intervals becomes relatively uninformative. For example, if there are r � 5
intervals and 	 � 0.05 (a typical choice), the simultaneous confidence level for the set of
five confidence intervals is at least 0.75, and if r � 10 and 	 � 0.05, the simultaneous con-
fidence level is at least 0.50.

One approach to ensuring that the simultaneous confidence level is not too small is to
replace 	/2 in the one-at-a-time confidence interval Equations 3.12 and 3.13 with 	/(2r). This
is called the Bonferroni method, and it allows the experimenter to construct a set of r simul-
taneous confidence intervals on treatment means or differences in treatment means for which
the overall confidence level is at least 100(1 � 	) percent. When r is not too large, this is a
very nice method that leads to reasonably short confidence intervals. For more information,
refer to the supplemental text material for Chapter 3.

3.3.4 Unbalanced Data

In some single-factor experiments, the number of observations taken within each treatment
may be different. We then say that the design is unbalanced. The analysis of variance
described above may still be used, but slight modifications must be made in the sum of
squares formulas. Let ni observations be taken under treatment i (i � 1, 2, . . . , a) and N �

ni. The manual computational formulas for SST and SSTreatments become

(3.14)

and

(3.15)

No other changes are required in the analysis of variance.

SSTreatments � �
a

i�1

y2
i.

ni
�

y2
..

N

SST � �
a

i�1
�
ni

j�1
y2

ij �
y2

..

N

�a
i�1

707.00 � 2.120�333.70
5

� �4 � 707.00 � 2.120�333.70
5
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There are two advantages in choosing a balanced design. First, the test statistic is rela-
tively insensitive to small departures from the assumption of equal variances for the a treat-
ments if the sample sizes are equal. This is not the case for unequal sample sizes. Second, the
power of the test is maximized if the samples are of equal size.

3.4 Model Adequacy Checking

The decomposition of the variability in the observations through an analysis of variance identity
(Equation 3.6) is a purely algebraic relationship. However, the use of the partitioning to test for-
mally for no differences in treatment means requires that certain assumptions be satisfied.
Specifically, these assumptions are that the observations are adequately described by the model

and that the errors are normally and independently distributed with mean zero and constant
but unknown variance �2. If these assumptions are valid, the analysis of variance procedure
is an exact test of the hypothesis of no difference in treatment means.

In practice, however, these assumptions will usually not hold exactly. Consequently, it is
usually unwise to rely on the analysis of variance until the validity of these assumptions has
been checked. Violations of the basic assumptions and model adequacy can be easily investigated
by the examination of residuals. We define the residual for observation j in treatment i as

(3.16)

where is an estimate of the corresponding observation yij obtained as follows:

(3.17)

Equation 3.17 gives the intuitively appealing result that the estimate of any observation in the
ith treatment is just the corresponding treatment average.

Examination of the residuals should be an automatic part of any analysis of variance. If
the model is adequate, the residuals should be structureless; that is, they should contain no
obvious patterns. Through analysis of residuals, many types of model inadequacies and vio-
lations of the underlying assumptions can be discovered. In this section, we show how model
diagnostic checking can be done easily by graphical analysis of residuals and how to deal
with several commonly occurring abnormalities.

3.4.1 The Normality Assumption

A check of the normality assumption could be made by plotting a histogram of the residuals.
If the NID(0, �2) assumption on the errors is satisfied, this plot should look like a sample from
a normal distribution centered at zero. Unfortunately, with small samples, considerable fluc-
tuation in the shape of a histogram often occurs, so the appearance of a moderate departure
from normality does not necessarily imply a serious violation of the assumptions. Gross devi-
ations from normality are potentially serious and require further analysis.

An extremely useful procedure is to construct a normal probability plot of the resid-
uals. Recall from Chapter 2 that we used a normal probability plot of the raw data to check
the assumption of normality when using the t-test. In the analysis of variance, it is usually
more effective (and straightforward) to do this with the residuals. If the underlying error dis-
tribution is normal, this plot will resemble a straight line. In visualizing the straight line, place
more emphasis on the central values of the plot than on the extremes.

� yi.

� y.. � (yi. � y..)

ŷij � �̂ � �̂i

ŷij

eij � yij � ŷij

yij � � � �i � �ij



Table 3.6 shows the original data and the residuals for the etch rate data in Example 3.1.
The normal probability plot is shown in Figure 3.4. The general impression from examining
this display is that the error distribution is approximately normal. The tendency of the normal
probability plot to bend down slightly on the left side and upward slightly on the right side
implies that the tails of the error distribution are somewhat thinner than would be anticipated
in a normal distribution; that is, the largest residuals are not quite as large (in absolute value)
as expected. This plot is not grossly nonnormal, however.

In general, moderate departures from normality are of little concern in the fixed effects
analysis of variance (recall our discussion of randomization tests in Section 3.3.2). An error dis-
tribution that has considerably thicker or thinner tails than the normal is of more concern than a
skewed distribution. Because the F test is only slightly affected, we say that the analysis of
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■ TA B L E  3 . 6
Etch Rate Data and Residuals from Example 3.1a

Observations ( j)

Power (w) 1 2 3 4 5 � 

23.8 –9.2 –21.2 –12.2 18.8

160 575 (13) 542 (14) 530 (8) 539 (5) 570 (4) 551.2

–22.4 5.6 2.6 –8.4 22.6

180 565 (18) 593 (9) 590 (6) 579 (16) 610 (17) 587.4

–25.4 25.6 –15.4 11.6 3.6

200 600 (7) 651 (19) 610 (10) 637 (20) 629 (1) 625.4

18.0 –7.0 8.0 –22.0 3.0

220 725 (2) 700 (3) 715 (15) 685 (11) 710 (12) 707.0

aThe residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made. 
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variance (and related procedures such as multiple comparisons) is robust to the normality
assumption. Departures from normality usually cause both the true significance level and the
power to differ slightly from the advertised values, with the power generally being lower. The ran-
dom effects model that we will discuss in Section 3.9 and Chapter 13 is more severely affected by
nonnormality.

A very common defect that often shows up on normal probability plots is one residual
that is very much larger than any of the others. Such a residual is often called an outlier. The
presence of one or more outliers can seriously distort the analysis of variance, so when a
potential outlier is located, careful investigation is called for. Frequently, the cause of the
outlier is a mistake in calculations or a data coding or copying error. If this is not the cause,
the experimental circumstances surrounding this run must be carefully studied. If the outly-
ing response is a particularly desirable value (high strength, low cost, etc.), the outlier may
be more informative than the rest of the data. We should be careful not to reject or discard
an outlying observation unless we have reasonably nonstatistical grounds for doing so. At
worst, you may end up with two analyses; one with the outlier and one without.

Several formal statistical procedures may be used for detecting outliers [e.g., see Stefansky
(1972), John and Prescott (1975), and Barnett and Lewis (1994)]. Some statistical software pack-
ages report the results of a statistical test for normality (such as the Anderson-Darling test) on the
normal probability plot of residuals. This should be viewed with caution as those tests usually
assume that the data to which they are applied are independent and residuals are not independent.

A rough check for outliers may be made by examining the standardized residuals

(3.18)

If the errors �ij are N(0, �2), the standardized residuals should be approximately normal with mean
zero and unit variance. Thus, about 68 percent of the standardized residuals should fall within the
limits 
1, about 95 percent of them should fall within 
2, and virtually all of them should fall
within 
3. A residual bigger than 3 or 4 standard deviations from zero is a potential outlier.

For the tensile strength data of Example 3.1, the normal probability plot gives no indi-
cation of outliers. Furthermore, the largest standardized residual is

which should cause no concern.

3.4.2 Plot of Residuals in Time Sequence

Plotting the residuals in time order of data collection is helpful in detecting strong correlation
between the residuals. A tendency to have runs of positive and negative residuals indicates pos-
itive correlation. This would imply that the independence assumption on the errors has been
violated. This is a potentially serious problem and one that is difficult to correct, so it is impor-
tant to prevent the problem if possible when the data are collected. Proper randomization of the
experiment is an important step in obtaining independence.

Sometimes the skill of the experimenter (or the subjects) may change as the experiment
progresses, or the process being studied may “drift” or become more erratic. This will often result
in a change in the error variance over time. This condition often leads to a plot of residuals ver-
sus time that exhibits more spread at one end than at the other. Nonconstant variance is a poten-
tially serious problem. We will have more to say on the subject in Sections 3.4.3 and 3.4.4.

Table 3.6 displays the residuals and the time sequence of data collection for the tensile
strength data. A plot of these residuals versus run order or time is shown in Figure 3.5. There
is no reason to suspect any violation of the independence or constant variance assumptions.

d1 �
e1

�MSE

�
25.6

�333.70
�

25.6
18.27

� 1.40

dij �
eij

�MSE



3.4.3 Plot of Residuals Versus Fitted Values

If the model is correct and the assumptions are satisfied, the residuals should be structureless;
in particular, they should be unrelated to any other variable including the predicted response.
A simple check is to plot the residuals versus the fitted values . (For the single-factor exper-
iment model, remember that , the ith treatment average.) This plot should not reveal
any obvious pattern. Figure 3.6 plots the residuals versus the fitted values for the tensile
strength data of Example 3.1. No unusual structure is apparent.

A defect that occasionally shows up on this plot is nonconstant variance. Sometimes the
variance of the observations increases as the magnitude of the observation increases. This would
be the case if the error or background noise in the experiment was a constant percentage of the
size of the observation. (This commonly happens with many measuring instruments—error is a
percentage of the scale reading.) If this were the case, the residuals would get larger as yij gets
larger, and the plot of residuals versus would look like an outward-opening funnel or mega-
phone. Nonconstant variance also arises in cases where the data follow a nonnormal, skewed dis-
tribution because in skewed distributions the variance tends to be a function of the mean.

If the assumption of homogeneity of variances is violated, the F test is only slightly affect-
ed in the balanced (equal sample sizes in all treatments) fixed effects model. However, in unbal-
anced designs or in cases where one variance is very much larger than the others, the problem
is more serious. Specifically, if the factor levels having the larger variances also have the small-
er sample sizes, the actual type I error rate is larger than anticipated (or confidence intervals have
lower actual confidence levels than were specified). Conversely, if the factor levels with larger
variances also have the larger sample sizes, the significance levels are smaller than anticipated
(confidence levels are higher). This is a good reason for choosing equal sample sizes whenev-
er possible. For random effects models, unequal error variances can significantly disturb infer-
ences on variance components even if balanced designs are used.

Inequality of variance also shows up occasionally on the plot of residuals versus run
order. An outward-opening funnel pattern indicates that variability is increasing over time.
This could result from operator/subject fatigue, accumulated stress on equipment, changes in
material properties such as catalyst degradation, or tool wear, or any of a number of causes.

ŷij

ŷij � yi.

ŷij
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The usual approach to dealing with nonconstant variance when it occurs for the above
reasons is to apply a variance-stabilizing transformation and then to run the analysis of
variance on the transformed data. In this approach, one should note that the conclusions of
the analysis of variance apply to the transformed populations.

Considerable research has been devoted to the selection of an appropriate transformation.
If experimenters know the theoretical distribution of the observations, they may utilize this
information in choosing a transformation. For example, if the observations follow the Poisson
distribution, the square root transformation or would be used. If 
the data follow the lognormal distribution, the logarithmic transformation is
appropriate. For binomial data expressed as fractions, the arcsin transformation

is useful. When there is no obvious transformation, the experimenter usually
empirically seeks a transformation that equalizes the variance regardless of the value of the mean.
We offer some guidance on this at the conclusion of this section. In factorial experiments, which
we introduce in Chapter 5, another approach is to select a transformation that minimizes the inter-
action mean square, resulting in an experiment that is easier to interpret. In Chapter 15, we discuss
in more detail methods for analytically selecting the form of the transformation. Transformations
made for inequality of variance also affect the form of the error distribution. In most cases, the
transformation brings the error distribution closer to normal. For more discussion of transforma-
tions, refer to Bartlett (1947), Dolby (1963), Box and Cox (1964), and Draper and Hunter (1969).

Statistical Tests for Equality of Variance. Although residual plots are frequently
used to diagnose inequality of variance, several statistical tests have also been proposed. These
tests may be viewed as formal tests of the hypotheses

A widely used procedure is Bartlett’s test. The procedure involves computing a statis-
tic whose sampling distribution is closely approximated by the chi-square distribution with 
a � 1 degrees of freedom when the a random samples are from independent normal popula-
tions. The test statistic is

(3.19)

where

and is the sample variance of the ith population.
The quantity q is large when the sample variances differ greatly and is equal to zero

when all are equal. Therefore, we should reject H0 on values of that are too large; that
is, we reject H0 only when

where is the upper 	 percentage point of the chi-square distribution with a � 1 degrees
of freedom. The P-value approach to decision making could also be used.

Bartlett’s test is very sensitive to the normality assumption. Consequently, when the
validity of this assumption is doubtful, Bartlett’s test should not be used.
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In the plasma etch experiment, the normality assumption is
not in question, so we can apply Bartlett’s test to the etch
rate data. We first compute the sample variances in each
treatment and find that � 400.7, � 280.3, � 421.3,
and � 232.5. ThenS 2

4

S 2
3S 2

2S 2
1

and the test statistic is

From Appendix Table III, we find that � 7.81 (the
P-value is P � 0.934), so we cannot reject the null hypoth-
esis. There is no evidence to counter the claim that all five
variances are the same. This is the same conclusion reached
by analyzing the plot of residuals versus fitted values.

� 2
0.05,3

� 2
0 � 2.3026

(0.21)
(1.10)

� 0.43

S 2
p �

4(400.7) � 4(280.3) � 4(421.3) � 4(232.5)
16

� 333.7

Because Bartlett’s test is sensitive to the normality assumption, there may be situations where
an alternative procedure would be useful. Anderson and McLean (1974) present a useful dis-
cussion of statistical tests for equality of variance. The modified Levene test [see Levene
(1960) and Conover, Johnson, and Johnson (1981)] is a very nice procedure that is robust to
departures from normality. To test the hypothesis of equal variances in all treatments, the
modified Levene test uses the absolute deviation of the observations yij in each treatment from
the treatment median, say, . Denote these deviations by

The modified Levene test then evaluates whether or not the means of these deviations are
equal for all treatments. It turns out that if the mean deviations are equal, the variances of the
observations in all treatments will be the same. The test statistic for Levene’s test is simply
the usual ANOVA F statistic for testing equality of means applied to the absolute deviations.

dij � �yij � ỹi ��i � 1, 2, . . . , a
j � 1, 2, . . . , ni

ỹi

E X A M P L E  3 . 5

A civil engineer is interested in determining whether four
different methods of estimating flood flow frequency pro-
duce equivalent estimates of peak discharge when applied to
the same watershed. Each procedure is used six times on the
watershed, and the resulting discharge data (in cubic feet per
second) are shown in the upper panel of Table 3.7. The
analysis of variance for the data, summarized in Table 3.8,
implies that there is a difference in mean peak discharge
estimates given by the four procedures. The plot of residu-
als versus fitted values, shown in Figure 3.7, is disturbing
because the outward-opening funnel shape indicates that the
constant variance assumption is not satisfied.

We will apply the modified Levene test to the peak dis-
charge data. The upper panel of Table 3.7 contains the treat-
ment medians and the lower panel contains the deviations
dij around the medians. Levene’s test consists of conducting
a standard analysis of variance on the dij. The F test statistic
that results from this is F0 � 4.55, for which the P-value is 
P � 0.0137. Therefore, Levene’s test rejects the null
hypothesis of equal variances, essentially confirming the
diagnosis we made from visual examination of Figure 3.7.
The peak discharge data are a good candidate for data trans-
formation.

ỹi

c � 1 �
1

3(3) �4
4

�
1
16� � 1.10

� log10421.3 � log10232.5] � 0.21
q � 16 log10(333.7) � 4[log10400.7 � log10280.3
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■ TA B L E  3 . 7
Peak Discharge Data

Estimation
Method Observations Si

1 0.34 0.12 1.23 0.70 1.75 0.12 0.71 0.520 0.66

2 0.91 2.94 2.14 2.36 2.86 4.55 2.63 2.610 1.09

3 6.31 8.37 9.75 6.09 9.82 7.24 7.93 7.805 1.66

4 17.15 11.82 10.95 17.20 14.35 16.82 14.72 15.59 2.77

Estimation
Method Deviations dij for the Modified Levene Test

1 0.18 0.40 0.71 0.18 1.23 0.40

2 1.70 0.33 0.47 0.25 0.25 1.94

3 1.495 0.565 1.945 1.715 2.015 0.565

4 1.56 3.77 4.64 1.61 1.24 1.23 

 ỹiyi.

■ TA B L E  3 . 8
Analysis of Variance for Peak Discharge Data

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Methods 708.3471 3 236.1157 76.07 �0.001

Error 62.0811 20 3.1041

Total 770.4282 23 
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■ F I G U R E  3 . 7 Plot of residuals versus for
Example 3.5

ŷij
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■ TA B L E  3 . 9
Variance-Stabilizing Transformations

Relationship
Between �y and � � � � 1 � � Transformation Comment

�y � constant 0 1 No transformation

�y � �1/2 1/2 1/2 Square root Poisson (count) data

�y � � 1 0 Log

�y � �3/2 3/2 �1/2 Reciprocal square root

�y � �2 2 �1 Reciprocal 

Empirical Selection of a Transformation. We observed above that if experi-
menters knew the relationship between the variance of the observations and the mean, they
could use this information to guide them in selecting the form of the transformation. We now
elaborate on this point and show one method for empirically selecting the form of the required
transformation from the data.

Let E(y) � � be the mean of y, and suppose that the standard deviation of y is propor-
tional to a power of the mean of y such that

We want to find a transformation on y that yields a constant variance. Suppose that the trans-
formation is a power of the original data, say

(3.20)

Then it can be shown that

(3.21)

Clearly, if we set � � 1 � 	, the variance of the transformed data y* is constant.
Several of the common transformations discussed previously are summarized in Table

3.9. Note that � � 0 implies the log transformation. These transformations are arranged in
order of increasing strength. By the strength of a transformation, we mean the amount of
curvature it induces. A mild transformation applied to data spanning a narrow range has lit-
tle effect on the analysis, whereas a strong transformation applied over a large range may
have dramatic results. Transformations often have little effect unless the ratio ymax/ymin is
larger than 2 or 3.

In many experimental design situations where there is replication, we can empirically
estimate 	 from the data. Because in the ith treatment combination where 

is a constant of proportionality, we may take logs to obtain

(3.22)

Therefore, a plot of log versus log �i would be a straight line with slope �. Because we
don’t know and �i, we may substitute reasonable estimates of them in Equation 3.22 and
use the slope of the resulting straight line fit as an estimate of 	. Typically, we would use the
standard deviation Si and the average of the ith treatment (or, more generally, the ith treat-
ment combination or set of experimental conditions) to estimate and �i.

To investigate the possibility of using a variance-stabilizing transformation on the
peak discharge data from Example 3.5, we plot log Si versus log in Figure 3.8. The slope
of a straight line passing through these four points is close to 1/2 and from Table 3.9 this
implies that the square root transformation may be appropriate. The analysis of variance for

yi.

�yi

yi.

�yi

�yi

log �yi
� log 
 � 	 log �i

� 
�	
i ,�yi

� �	
i

�y* � ���	�1

y* � y�

�y � �	
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the transformed data y* � is presented in Table 3.10, and a plot of residuals versus the
predicted response is shown in Figure 3.9. This residual plot is much improved in compar-
ison to Figure 3.7, so we conclude that the square root transformation has been helpful.
Note that in Table 3.10 we have reduced the degrees of freedom for error and total by 1 to
account for the use of the data to estimate the transformation parameter 	.

In practice, many experimenters select the form of the transformation by simply trying
several alternatives and observing the effect of each transformation on the plot of residuals
versus the predicted response. The transformation that produced the most satisfactory resid-
ual plot is then selected. Alternatively, there is a formal method called the Box-Cox Method
for selecting a variance-stability transformation. In chapter 15 we discuss and illustrate this
procedure. It is widely used and implemented in many software packages.

3.4.4 Plots of Residuals Versus Other Variables

If data have been collected on any other variables that might possibly affect the response, the
residuals should be plotted against these variables. For example, in the tensile strength exper-
iment of Example 3.1, strength may be significantly affected by the thickness of the fiber, so
the residuals should be plotted versus fiber thickness. If different testing machines were used
to collect the data, the residuals should be plotted against machines. Patterns in such residual
plots imply that the variable affects the response. This suggests that the variable should be
either controlled more carefully in future experiments or included in the analysis.

�y
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■ F I G U R E  3 . 8 Plot of log Si versus log
for the peak discharge data from Example 3.5yi.

10 2 3
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■ F I G U R E  3 . 9 Plot of residuals from trans-
formed data versus for the peak discharge data in
Example 3.5
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■ TA B L E  3 . 1 0
Analysis of Variance for Transformed Peak Discharge Data, y* �

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Methods 32.6842 3 10.8947 76.99 �0.001

Error 2.6884 19 0.1415

Total 35.3726 22 

�y



3.5 Practical Interpretation of Results

After conducting the experiment, performing the statistical analysis, and investigating the
underlying assumptions, the experimenter is ready to draw practical conclusions about the
problem he or she is studying. Often this is relatively easy, and certainly in the simple exper-
iments we have considered so far, this might be done somewhat informally, perhaps by
inspection of graphical displays such as the box plots and scatter diagram in Figures 3.1 and
3.2. However, in some cases, more formal techniques need to be applied. We will present
some of these techniques in this section.

3.5.1 A Regression Model

The factors involved in an experiment can be either quantitative or qualitative. A quantitative
factor is one whose levels can be associated with points on a numerical scale, such as tempera-
ture, pressure, or time. Qualitative factors, on the other hand, are factors for which the levels
cannot be arranged in order of magnitude. Operators, batches of raw material, and shifts are typ-
ical qualitative factors because there is no reason to rank them in any particular numerical order.

Insofar as the initial design and analysis of the experiment are concerned, both types of
factors are treated identically. The experimenter is interested in determining the differences,
if any, between the levels of the factors. In fact, the analysis of variance treat the design fac-
tor as if it were qualitative or categorical. If the factor is really qualitative, such as operators,
it is meaningless to consider the response for a subsequent run at an intermediate level of the
factor. However, with a quantitative factor such as time, the experimenter is usually interest-
ed in the entire range of values used, particularly the response from a subsequent run at an
intermediate factor level. That is, if the levels 1.0, 2.0, and 3.0 hours are used in the experi-
ment, we may wish to predict the response at 2.5 hours. Thus, the experimenter is frequently
interested in developing an interpolation equation for the response variable in the experiment.
This equation is an empirical model of the process that has been studied.

The general approach to fitting empirical models is called regression analysis, which
is discussed extensively in Chapter 10. See also the supplemental text material for this
chapter. This section briefly illustrates the technique using the etch rate data of Example 3.1.

Figure 3.10 presents scatter diagrams of etch rate y versus the power x for the experi-
ment in Example 3.1. From examining the scatter diagram, it is clear that there is a strong
relationship between etch rate and power. As a first approximation, we could try fitting a lin-
ear model to the data, say

where �0 and �1 are unknown parameters to be estimated and � is a random error term. The
method often used to estimate the parameters in a model such as this is the method of least
squares. This consists of choosing estimates of the �’s such that the sum of the squares of the
errors (the �’s) is minimized. The least squares fit in our example is

(If you are unfamiliar with regression methods, see Chapter 10 and the supplemental text
material for this chapter.)

This linear model is shown in Figure 3.10a. It does not appear to be very satisfactory at
the higher power settings. Perhaps an improvement can be obtained by adding a quadratic
term in x. The resulting quadratic model fit is

ŷ � 1147.77 � 8.2555 x � 0.028375 x2

ŷ � 137.62 � 2.527x

y � �0 � �1x � �

3.5 Practical Interpretation of Results 89
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This quadratic fit is shown in Figure 3.10b. The quadratic model appears to be superior to the
linear model because it provides a better fit at the higher power settings.

In general, we would like to fit the lowest order polynomial that adequately describes
the system or process. In this example, the quadratic polynomial seems to fit better than the
linear model, so the extra complexity of the quadratic model is justified. Selecting the order
of the approximating polynomial is not always easy, however, and it is relatively easy to over-
fit, that is, to add high-order polynomial terms that do not really improve the fit but increase
the complexity of the model and often damage its usefulness as a predictor or interpolation
equation.

In this example, the empirical model could be used to predict etch rate at power settings
within the region of experimentation. In other cases, the empirical model could be used for
process optimization, that is, finding the levels of the design variables that result in the best
values of the response. We will discuss and illustrate these problems extensively later in the
book.

3.5.2 Comparisons Among Treatment Means

Suppose that in conducting an analysis of variance for the fixed effects model the null hypoth-
esis is rejected. Thus, there are differences between the treatment means but exactly which
means differ is not specified. Sometimes in this situation, further comparisons and analysis
among groups of treatment means may be useful. The ith treatment mean is defined as �i �
� � �i, and �i is estimated by . Comparisons between treatment means are made in terms
of either the treatment totals {yi.} or the treatment averages . The procedures for making
these comparisons are usually called multiple comparison methods. In the next several sec-
tions, we discuss methods for making comparisons among individual treatment means or
groups of these means.
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■ F I G U R E  3 . 1 0 Scatter diagrams and regression models for the etch rate data of Example 3.1



3.5.3 Graphical Comparisons of Means

It is very easy to develop a graphical procedure for the comparison of means following an
analysis of variance. Suppose that the factor of interest has a levels and that are
the treatment averages. If we know �, any treatment average would have a standard deviation
�/ . Consequently, if all factor level means are identical, the observed sample means 
would behave as if they were a set of observations drawn at random from a normal distribu-
tion with mean and standard deviation �/ . Visualize a normal distribution capable of
being slid along an axis below which the are plotted. If the treatment means are
all equal, there should be some position for this distribution that makes it obvious that the 
values were drawn from the same distribution. If this is not the case, the values that appear
not to have been drawn from this distribution are associated with factor levels that produce
different mean responses.

The only flaw in this logic is that � is unknown. Box, Hunter, and Hunter (2005)
point out that we can replace � with from the analysis of variance and use a t dis-
tribution with a scale factor instead of the normal. Such an arrangement for the
etch rate data of Example 3.1 is shown in Figure 3.11. Focus on the t distribution shown
as a solid line curve in the middle of the display.

To sketch the t distribution in Figure 3.11, simply multiply the abscissa t value by the
scale factor

and plot this against the ordinate of t at that point. Because the t distribution looks much like
the normal, except that it is a little flatter near the center and has longer tails, this sketch is
usually easily constructed by eye. If you wish to be more precise, there is a table of abscissa
t values and the corresponding ordinates in Box, Hunter, and Hunter (2005). The distribution
can have an arbitrary origin, although it is usually best to choose one in the region of the .
values to be compared. In Figure 3.11, the origin is 615 Å/min.

Now visualize sliding the t distribution in Figure 3.11 along the horizontal axis as indi-
cated by the dashed lines and examine the four means plotted in the figure. Notice that there
is no location for the distribution such that all four averages could be thought of as typical,
randomly selected observations from the distribution. This implies that all four means are not
equal; thus, the figure is a graphical display of the ANOVA results. Furthermore, the figure
indicates that all four levels of power (160, 180, 200, 220 W) produce mean etch rates that
differ from each other. In other words, �1 � �2 ��3 � �4.

This simple procedure is a rough but effective technique for many multiple comparison
problems. However, there are more formal methods. We now give a brief discussion of some
of these procedures.

yi

�MSE/n � �330.70/5 � 8.13

�MSE/n
�MSE

yi.

yi.

y1., y2., . . . , ya.

�ny..

yi.�n

y1., y2., . . . , ya.
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■ F I G U R E  3 . 1 1 Etch rate averages from Example 3.1 in relation to a t distribution
with scale factor � � 8.13�330.70/5�MSE/n
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3.5.4 Contrasts

Many multiple comparison methods use the idea of a contrast. Consider the plasma etching
experiment of Example 3.1. Because the null hypothesis was rejected, we know that some
power settings produce different etch rates than others, but which ones actually cause this dif-
ference? We might suspect at the outset of the experiment that 200 W and 220 W produce the
same etch rate, implying that we would like to test the hypothesis

or equivalently

(3.23)

If we had suspected at the start of the experiment that the average of the lowest levels of
power did not differ from the average of the highest levels of power, then the hypothesis
would have been

or

(3.24)

In general, a contrast is a linear combination of parameters of the form

where the contrast constants c1, c2, . . . , ca sum to zero; that is, ci � 0. Both of the above
hypotheses can be expressed in terms of contrasts:

(3.25)

The contrast constants for the hypotheses in Equation 3.23 are c1 � c2 � 0, c3 � �1, and 
c4 � �1, whereas for the hypotheses in Equation 3.24, they are c1 � c2 � �1 and c3 �
c4 � �1.

Testing hypotheses involving contrasts can be done in two basic ways. The first method
uses a t-test. Write the contrast of interest in terms of the treatment averages, giving

The variance of C is

(3.26)

when the sample sizes in each treatment are equal. If the null hypothesis in Equation 3.25 is
true, the ratio
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has the N(0, 1) distribution. Now we would replace the unknown variance �2 by its estimate,
the mean square error MSE and use the statistic

(3.27)

to test the hypotheses in Equation 3.25. The null hypothesis would be rejected if | t0 | in
Equation 3.27 exceeds t	/2,N�a.

The second approach uses an F test. Now the square of a t random variable with �
degrees of freedom is an F random variable with 1 numerator and v denominator degrees of
freedom. Therefore, we can obtain

(3.28)

as an F statistic for testing Equation 3.25. The null hypothesis would be rejected if F0 
F	,1,N�a. We can write the test statistic of Equation 3.28 as

where the single degree of freedom contrast sum of squares is

(3.29)

Confidence Interval for a Contrast. Instead of testing hypotheses about a contrast,
it may be more useful to construct a confidence interval. Suppose that the contrast of interest
is

Replacing the treatment means with the treatment averages yields

Because

the 100(1 � 	) percent confidence interval on the contrast is
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Note that we have used MSE to estimate �2. Clearly, if the confidence interval in Equation 3.30
includes zero, we would be unable to reject the null hypothesis in Equation 3.25.

Standardized Contrast. When more than one contrast is of interest, it is often useful to
evaluate them on the same scale. One way to do this is to standardize the contrast so that it has
variance �2. If the contrast is written in terms of treatment averages as , divid-
ing it by will produce a standardized contrast with variance �2. Effectively, then,
the standardized contrast is

where

Unequal Sample Sizes. When the sample sizes in each treatment are different, minor
modifications are made in the above results. First, note that the definition of a contrast now
requires that

Other required changes are straightforward. For example, the t statistic in Equation 3.27
becomes

and the contrast sum of squares from Equation 3.29 becomes

3.5.5 Orthogonal Contrasts

A useful special case of the procedure in Section 3.5.4 is that of orthogonal contrasts. Two
contrasts with coefficients {ci} and {di} are orthogonal if

or, for an unbalanced design, if

For a treatments, the set of a � 1 orthogonal contrasts partition the sum of squares due to
treatments into a � 1 independent single-degree-of-freedom components. Thus, tests per-
formed on orthogonal contrasts are independent.
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There are many ways to choose the orthogonal contrast coefficients for a set of treat-
ments. Usually, something in the nature of the experiment should suggest which comparisons
will be of interest. For example, if there are a � 3 treatments, with treatment 1 a control and
treatments 2 and 3 actual levels of the factor of interest to the experimenter, appropriate
orthogonal contrasts might be as follows:

Coefficients for 
Treatment Orthogonal Contrasts

1 (control) �2 0

2 (level 1) 1 �1

3 (level 2) 1 1

Note that contrast 1 with ci � �2, 1, 1 compares the average effect of the factor with the con-
trol, whereas contrast 2 with di � 0, �1, 1 compares the two levels of the factor of interest.

Generally, the method of contrasts (or orthogonal contrasts) is useful for what are called
preplanned comparisons. That is, the contrasts are specified prior to running the experiment
and examining the data. The reason for this is that if comparisons are selected after examin-
ing the data, most experimenters would construct tests that correspond to large observed dif-
ferences in means. These large differences could be the result of the presence of real effects,
or they could be the result of random error. If experimenters consistently pick the largest dif-
ferences to compare, they will inflate the type I error of the test because it is likely that, in an
unusually high percentage of the comparisons selected, the observed differences will be the
result of error. Examining the data to select comparisons of potential interest is often called
data snooping. The Scheffé method for all comparisons, discussed in the next section, per-
mits data snooping.
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E X A M P L E  3 . 6

Consider the plasma etching experiment in Example 3.1.
There are four treatment means and three degrees of free-
dom between these treatments. Suppose that prior to run-
ning the experiment the following set of comparisons
among the treatment means (and their associated contrasts)
were specified:

Hypothesis Contrast

H0 : �1 � �2 C1 �

H0 : �1 � �2 � �3 � �4 C2 �

H0 : �3 � �4 C3 �

Notice that the contrast coefficients are orthogonal. Using
the data in Table 3.4, we find the numerical values of the
contrasts and the sums of squares to be as follows:

SSC1
�

(�36.2)2

1
5

 (2)
� 3276.10

C1 � �1(551.2) � 1(587.4)  � �36.2

y3. � y4.

y1. � y2. � y3. � y4.

y1. � y2.

These contrast sums of squares completely partition the
treatment sum of squares. The tests on such orthogonal
contrasts are usually incorporated in the ANOVA, as
shown in Table 3.11. We conclude from the P-values that
there are significant differences in mean etch rates between
levels 1 and 2 and between levels 3 and 4 of the power set-
tings, and that the average of levels 1 and 2 does differ sig-
nificantly from the average of levels 3 and 4 at the 	 �
0.05 level.
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■ TA B L E  3 . 1 1
Analysis of Variance for the Plasma Etching Experiment

Sum of Degrees of Mean 
Source of Variation Squares Freedom Square F0 P-Value

Power setting 66,870.55 3 22,290.18 66.80 �0.001
Orthogonal contrasts

C1 : �1 � �2 (3276.10) 1 3276.10 9.82 �0.01

C2 : �1 � �3 � �3 � �4 (46,948.05) 1 46,948.05 140.69 �0.001

C3 : �3 � �4 (16,646.40) 1 16,646.40 49.88 �0.001

Error 5,339.20 16 333.70

Total 72,209.75 19

3.5.6 Scheffé’s Method for Comparing All Contrasts

In many situations, experimenters may not know in advance which contrasts they wish to
compare, or they may be interested in more than a � 1 possible comparisons. In many
exploratory experiments, the comparisons of interest are discovered only after preliminary
examination of the data. Scheffé (1953) has proposed a method for comparing any and all
possible contrasts between treatment means. In the Scheffé method, the type I error is at most
	 for any of the possible comparisons.

Suppose that a set of m contrasts in the treatment means

(3.31)

of interest have been determined. The corresponding contrast in the treatment averages is

(3.32)

and the standard error of this contrast is

(3.33)

where ni is the number of observations in the ith treatment. It can be shown that the critical
value against which Cu should be compared is

(3.34)

To test the hypothesis that the contrast �u differs significantly from zero, refer Cu to the critical
value. If �Cu �  S	,u, the hypothesis that the contrast �u equals zero is rejected.

The Scheffé procedure can also be used to form confidence intervals for all possible
contrasts among treatment means. The resulting intervals, say Cu � S	,u � �u � Cu � S	,u, are
simultaneous confidence intervals in that the probability that all of them are simultaneously
true is at least 1 � 	.

S	,u � SCu
�(a � 1)F	,a�1,N�a

SCu
� �MSE �

a

i�1
 (c2

iu/ni)

Cu � c1uy1. � c2uy2. � Á � cauya.  u � 1, 2, . . . , m

yi.

�u � c1u�1 � c2u�2 � Á � cau�a  u � 1, 2, . . . , m



To illustrate the procedure, consider the data in Example 3.1 and suppose that the con-
trasts of interests are

and

The numerical values of these contrasts are

and

The standard errors are found from Equation 3.33 as

and

From Equation 3.34, the 1 percent critical values are

and

Because �C1�  S0.01,1, we conclude that the contrast �1 � �1 � �2 � �3 � �4 does not equal
zero; that is, we conclude that the mean etch rates of power settings 1 and 2 as a group differ
from the means of power settings 3 and 4 as a group. Furthermore, because �C2�  S0.01,2, we
conclude that the contrast �2 � �1 � �4 does not equal zero; that is, the mean etch rates of
treatments 1 and 4 differ significantly.

3.5.7 Comparing Pairs of Treatment Means

In many practical situations, we will wish to compare only pairs of means. Frequently, we
can determine which means differ by testing the differences between all pairs of treatment
means. Thus, we are interested in contrasts of the form � � �i � �j for all i � j. Although
the Scheffé method described in the previous section could be easily applied to this problem,
it is not the most sensitive procedure for such comparisons. We now turn to a consideration
of methods specifically designed for pairwise comparisons between all a population means.

Suppose that we are interested in comparing all pairs of a treatment means and that the null
hypotheses that we wish to test are H0 : �i � �j for all i � j. There are numerous procedures
available for this problem. We now present two popular methods for making such comparisons.

S0.01,2 � SC2
�(a � 1)F0.01,a�1,N�a � 11.55�3(5.29) � 45.97

S0.01,1 � SC1
�(a � 1)F0.01,a�1,N�a � 16.34�3(5.29) � 65.09

SC2
� �MSE �

5

i�1
 (c2

i2/ni) � �333.70(1 � 1)/5 � 11.55

SC1
� �MSE �

5

i�1
 (c2

i1/ni) � �333.70(1 � 1 � 1 � 1)/5 � 16.34

� 551.2 � 707.0 � �155.8

C2 � y1. � y4.

� 551.2 � 587.4 � 625.4 � 707.0 � �193.80

C1 � y1. � y2. � y3. � y4.

�2 � �1 � �4

�1 � �1 � �2 � �3 � �4
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Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null
hypothesis of equal treatment means, we wish to test all pairwise mean comparisons:

for all i � j. Tukey (1953) proposed a procedure for testing hypotheses for which the over-
all significance level is exactly 	 when the sample sizes are equal and at most 	 when the
sample sizes are unequal. His procedure can also be used to construct confidence intervals on
the differences in all pairs of means. For these intervals, the simultaneous confidence level is
100(1 � 	) percent when the sample sizes are equal and at least 100(1 � 	) percent when
sample sizes are unequal. In other words, the Tukey procedure controls the experimentwise
or “family” error rate at the selected level 	. This is an excellent data snooping procedure
when interest focuses on pairs of means.

Tukey’s procedure makes use of the distribution of the studentized range statistic

where and are the largest and smallest sample means, respectively, out of a group of
p sample means. Appendix Table VII contains values of q	( p, f ), the upper 	 percentage
points of q, where f is the number of degrees of freedom associated with the MSE. For equal
sample sizes, Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds

(3.35)

Equivalently, we could construct a set of 100(1 � 	) percent confidence intervals for all pairs
of means as follows:

(3.36)

When sample sizes are not equal, Equations 3.35 and 3.36 become

(3.37)

and

(3.38)

respectively. The unequal sample size version is sometimes called the Tukey–Kramer
procedure.

� yi. � yj. �
q	(a, f )

�2 �MSE�1
ni

�
1
nj�, i � j

yi. � yj. �
q	(a, f )

�2 �MSE�1
ni

�
1
nj� � �i � �j

T	 �
q	(a, f )

�2 �MSE�1
ni

�
1
nj�

� yi. � yj. � q	(a, f )�MSE

n ,  i � j.

yi. � yj. � q	(a, f )�MSE

n � �i � �j

T	 � q	(a, f )�MSE

n

yminymax

q �
ymax � ymin

�MSE/n

H1��i � �j

H0��i � �j



When using any procedure for pairwise testing of means, we occasionally find that the
overall F test from the ANOVA is significant, but the pairwise comparison of means fails to
reveal any significant differences. This situation occurs because the F test is simultaneously
considering all possible contrasts involving the treatment means, not just pairwise compar-
isons. That is, in the data at hand, the significant contrasts may not be of the form �i � �j.

The derivation of the Tukey confidence interval of Equation 3.36 for equal sample sizes
is straightforward. For the studentized range statistic q, we have

If is less than or equal to q�(a, f ) , it must be true that
for every pair of means. Therefore

Rearranging this expression to isolate �i � �j between the inequalities will lead to the set of
100(1 � 	) percent simultaneous confidence intervals given in Equation 3.38.

The Fisher Least Significant Difference (LSD) Method. The Fisher method for
comparing all pairs of means controls the error rate 	 for each individual pairwise compari-
son but does not control the experimentwise or family error rate. This procedure uses the t sta-
tistic for testing H0 : �i � �j

(3.39)t0 �
yi. � yj.

�MSE�1
ni

�
1
nj�

P��q	(a, f )�MSE

n � yi. � yj. � (�i � �j) � q	(a, f )�MSE

n � � 1 � 	

� ( yi. � �i) � ( yj. � �j) � � q	(a, f )�MSE/n
�MSE/nmax( yi. � �i) � min( yi. � �i)

P�max( yi. � �i) � min(yi. � �i)

�MSE/n
� q	(a, f )� � 1 � 	
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E X A M P L E  3 . 7

To illustrate Tukey’s test, we use the data from the plasma
etching experiment in Example 3.1. With 	 � 0.05 and f �
16 degrees of freedom for error, Appendix Table VII gives
q0.05(4, 16) � 4.05. Therefore, from Equation 3.35,

Thus, any pairs of treatment averages that differ in absolute
value by more than 33.09 would imply that the correspon-
ding pair of population means are significantly different.
The four treatment averages are

y3. � 625.4  y4. � 707.0

y1. � 551.2  y2. � 587.4

T0.05 � q0.05(4, 16)�MSE

n � 4.05�333.70
5

� 33.09

and the differences in averages are

The starred values indicate the pairs of means that are sig-
nificantly different. Note that the Tukey procedure indicates
that all pairs of means differ. Therefore, each power setting
results in a mean etch rate that differs from the mean etch
rate at any other power setting.

y3. � y4. � 625.4 � 707.0 � �81.60*
y2. � y4. � 587.4 � 707.0 � �119.6*
y2. � y3. � 587.4 � 625.4 � �38.0*
y1. � y4. � 551.2 � 707.0 � �155.8*
y1. � y3. � 551.2 � 625.4 � �74.20*
y1. � y2. � 551.2 � 587.4 � �36.20*
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Note that the overall 	 risk may be considerably inflated using this method. Specifically,
as the number of treatments a gets larger, the experimentwise or family type I error rate (the
ratio of the number of experiments in which at least one type I error is made to the total num-
ber of experiments) becomes large.

Which Pairwise Comparison Method Do I Use? Certainly, a logical question at
this point is, Which one of these procedures should I use? Unfortunately, there is no clear-
cut answer to this question, and professional statisticians often disagree over the utility of
the various procedures. Carmer and Swanson (1973) have conducted Monte Carlo simula-
tion studies of a number of multiple comparison procedures, including others not discussed
here. They report that the least significant difference method is a very effective test for
detecting true differences in means if it is applied only after the F test in the ANOVA is sig-
nificant at 5 percent. However, this method does not contain the experimentwise error rate.
Because the Tukey method does control the overall error rate, many statisticians prefer to
use it.

As indicated above, there are several other multiple comparison procedures. For articles
describing these methods, see O’Neill and Wetherill (1971), Miller (1977), and Nelson
(1989). The books by Miller (1991) and Hsu (1996) are also recommended.

E X A M P L E  3 . 8

To illustrate the procedure, if we use the data from the
experiment in Example 3.1, the LSD at 	 � 0.05 is

LSD � t.025,16�2MSE

n � 2.120�2(333.70)
5

� 24.49

Assuming a two-sided alternative, the pair of means �i and �j would be declared significant-
ly different if . The quantity

(3.40)

is called the least significant difference. If the design is balanced, n1 � n2 � . . . � na � n,
and

(3.41)

To use the Fisher LSD procedure, we simply compare the observed difference between
each pair of averages to the corresponding LSD. If  LSD, we conclude that the
population means �i and �j differ. The t statistic in Equation 3.39 could also be used.

�yi. � yj. �

LSD � t	/2,N�a�2MSE

n

LSD � t	/2,N�a�MSE�1
ni

�
1
nj�

�yi. � yj. � � t	/2,N�a�MSE(1/ni � 1/nj)

Thus, any pair of treatment averages that differ in absolute
value by more than 24.49 would imply that the correspon-
ding pair of population means are significantly different.
The differences in averages are

y1. � y2. � 551.2 � 587.4 � �36.2*

The starred values indicate pairs of means that are signifi-
cantly different. Clearly, all pairs of means differ signifi-
cantly.

y3. � y4. � 625.4 � 707.0 � �81.6*

y2. � y4. � 587.4 � 707.0 � �119.6*

y2. � y3. � 587.4 � 625.4 � �38.0*

y1. � y4. � 551.2 � 707.0 � �155.8*

y1. � y3. � 551.2 � 625.4 � �74.2*



When comparing treatments with a control, it is a good idea to use more observations
for the control treatment (say na) than for the other treatments (say n), assuming equal num-
bers of observations for the remaining a � 1 treatments. The ratio na/n should be chosen to
be approximately equal to the square root of the total number of treatments. That is, choose
na/n � .�a

E X A M P L E  3 . 9

To illustrate Dunnett’s test, consider the experiment from
Example 3.1 with treatment 4 considered as the control. In
this example, a � 4, a � 1 � 3, f � 16, and ni � n � 5. At
the 5 percent level, we find from Appendix Table VIII that
d0.05(3, 16) � 2.59. Thus, the critical difference becomes

(Note that this is a simplification of Equation 3.42 resulting
from a balanced design.) Thus, any treatment mean that dif-

d0.05(3, 16)�2MSE

n � 2.59�2(333.70)
5

� 29.92

3.5.8 Comparing Treatment Means with a Control

In many experiments, one of the treatments is a control, and the analyst is interested in
comparing each of the other a � 1 treatment means with the control. Thus, only a � 1
comparisons are to be made. A procedure for making these comparisons has been devel-
oped by Dunnett (1964). Suppose that treatment a is the control and we wish to test the
hypotheses

for i � 1, 2, . . . , a � 1. Dunnett’s procedure is a modification of the usual t-test. For each
hypothesis, we compute the observed differences in the sample means

The null hypothesis H0 : �i � �a is rejected using a type I error rate 	 if

(3.42)

where the constant d	(a � 1, f ) is given in Appendix Table VIII. (Both two- and one-sided
tests are possible.) Note that 	 is the joint significance level associated with all a � 1 tests.

�yi. � ya. � � d	(a � 1, f )�MSE�1
ni

�
1
na�

�yi. � ya. �   i � 1, 2, . . . , a � 1

H1��i � �a

H0��i � �a
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fers in absolute value from the control by more than 29.92
would be declared significantly different. The observed dif-
ferences are

Note that all differences are significant. Thus, we
would conclude that all power settings are different from
the control.

3 vs. 4: y3. � y4. � 625.4 � 707.0 � �81.6

2 vs. 4: y2. � y4. � 587.4 � 707.0 � �119.6

1 vs. 4: y1. � y4. � 551.2 � 707.0 � �155.8
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3.6 Sample Computer Output

Computer programs for supporting experimental design and performing the analysis of variance
are widely available. The output from one such program, Design-Expert, is shown in Figure
3.12, using the data from the plasma etching experiment in Example 3.1. The sum of squares
corresponding to the “Model” is the usual SSTreatments for a single-factor design. That source is
further identified as “A.” When there is more than one factor in the experiment, the model sum
of squares will be decomposed into several sources (A, B, etc.). Notice that the analysis of vari-
ance summary at the top of the computer output contains the usual sums of squares, degrees of
freedom, mean squares, and test statistic F0. The column “Prob  F” is the P-value (actually,
the upper bound on the P-value because probabilities less than 0.0001 are defaulted to 0.0001).

In addition to the basic analysis of variance, the program displays some other useful
information. The quantity “R-squared” is defined as

and is loosely interpreted as the proportion of the variability in the data “explained” by the
ANOVA model. Thus, in the plasma etching experiment, the factor “power” explains about
92.61 percent of the variability in etch rate. Clearly, we must have 0 � R2 � 1, with larg-
er values being more desirable. There are also some other R2-like statistics displayed in
the output. The “adjusted” R2 is a variation of the ordinary R2 statistic that reflects the
number of factors in the model. It can be a useful statistic for more complex experiments
with several design factors when we wish to evaluate the impact of increasing or decreas-
ing the number of model terms. “Std. Dev.” is the square root of the error mean square,

, and “C.V.” is the coefficient of variation, defined as . The
coefficient of variation measures the unexplained or residual variability in the data as a per-
centage of the mean of the response variable. “PRESS” stands for “prediction error sum of
squares,” and it is a measure of how well the model for the experiment is likely to predict
the responses in a new experiment. Small values of PRESS are desirable. Alternatively, one
can calculate an R2 for prediction based on PRESS (we will show how to do this later). This

in our problem is 0.8845, which is not unreasonable, considering that the model
accounts for about 93 percent of the variability in the current experiment. The “adequate
precision” statistic is computed by dividing the difference between the maximum predict-
ed response and the minimum predicted response by the average standard deviation of all
predicted responses. Large values of this quantity are desirable, and values that exceed four
usually indicate that the model will give reasonable performance in prediction.

Treatment means are estimated, and the standard error (or sample standard deviation of
each treatment mean, ) is displayed. Differences between pairs of treatment means
are investigated by using a hypothesis testing version of the Fisher LSD method described in
Section 3.5.7.

The computer program also calculates and displays the residuals, as defined in Equation
3.16. The program will also produce all of the residual plots that we discussed in Section 3.4.
There are also several other residual diagnostics displayed in the output. Some of these will be
discussed later. Design-Expert also displays the studentized residual (called “Student Residual”
in the output), calculate as 

where Leverageij is a measure of the influence of the ijth observation on the model. We will dis-
cuss leverage in more detail and show how it is calculated in chapter 10. Studentized residuals

rij �
eij

�MSE (1 � Leverageij)

�MSE/n

R2
Pred

(�MSE/y )100�333.70 � 18.27

R2 �
SSModel

SSTotal
�

66,870.55
72,209.75

� 0.9261
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■ F I G U R E  3 . 1 2 Design-Expert computer output for Example 3.1
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One-way ANOVA: Etch Rate versus Power

Source
Power
Error
Total

DF
3

16
19

SS
66871

5339
72210

MS
22290

334

Level
160
180
200
220

N
5
5
5
5

Mean
551.20
587.40
625.40
707.00

Std.Dev.
20.02
16.74
20.53
15.25

Power
180
200
220

Lower
3.11

41.11
122.71

Center
36.20
74.20

155.80

Upper
69.29

107.29
188.89

Power
200
220

Lower
4.91

86.51

Center
38.00

119.60

Upper
71.09

152.69

( (

F
66.80

P
0.000

S = 18.27 R–Sq = 92.61% R–Sq (adj) = 91.22%

Individual 95% CIs For Mean Based on
Pooled StDev

*
( (*

( (*
( (*

( (*
( (*

( (*

550 600 700650

–100 0 200100

( (*
( (*

–100 0 200100

Pooled Std. Dev. = 18.27

Individual confidence level = 98.87%

Power = 160 subtracted from

Power = 180 subtracted from

Turkey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Power

Power
220

Lower
48.51

Center
81.60

Upper
114.69 ( (*

–100 0 200100

Power = 200 subtracted from

■ F I G U R E  3 . 1 3 Minitab computer output for Example 3.1

are considered to be more effective in identifying potential rather than either the ordinary resid-
uals or standardized residuals.

Finally, notice that the computer program also has some interpretative guidance embed-
ded in the output. This “advisory” information is fairly standard in many PC-based statistics
packages. Remember in reading such guidance that it is written in very general terms and may
not exactly suit the report writing requirements of any specific experimenter. This advisory
output may be hidden upon request by the user.

Figure 3.13 presents the output from Minitab for the plasma etching experiment. The out-
put is very similar to the Design-Expert output in Figure 3.12. Note that confidence intervals on
each individual treatment mean are provided and that the pairs of means are compared using
Tukey’s method. However, the Tukey method is presented using the confidence interval format
instead of the hypothesis-testing format that we used in Section 3.5.7. None of the Tukey con-
fidence intervals includes zero, so we would conclude that all of the means are different.
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Figure 3.14 is the output from JMP for the plasma etch experiment in Example 3.1.
The output information is very similar to that from Design-Expert and Minitab. The plots
of actual observations versus the predicted values and residuals versus the predicted values
are default output. There is an option in JMP to provide the Fisher LSD procedure or
Tukey’s method to compare all pairs of means.

3.7 Determining Sample Size

In any experimental design problem, a critical decision is the choice of sample size—that is,
determining the number of replicates to run. Generally, if the experimenter is interested 
in detecting small effects, more replicates are required than if the experimenter is interested in
detecting large effects. In this section, we discuss several approaches to determining sample
size. Although our discussion focuses on a single-factor design, most of the methods can be
used in more complex experimental situations.

3.7.1 Operating Characteristic Curves

Recall that an operating characteristic (OC) curve is a plot of the type II error probability
of a statistical test for a particular sample size versus a parameter that reflects the extent to
which the null hypothesis is false. These curves can be used to guide the experimenter in
selecting the number of replicates so that the design will be sensitive to important potential
differences in the treatments.

We consider the probability of type II error of the fixed effects model for the case of
equal sample sizes per treatment, say

(3.43)

To evaluate the probability statement in Equation 3.43, we need to know the distribution of
the test statistic F0 if the null hypothesis is false. It can be shown that, if H0 is false, the statistic
F0 � MSTreatments/MSE is distributed as a noncentral F random variable with a � 1 and N � a
degrees of freedom and the noncentrality parameter �. If � � 0, the noncentral F distribution
becomes the usual (central) F distribution.

Operating characteristic curves given in Chart V of the Appendix are used to evaluate
the probability statement in Equation 3.43. These curves plot the probability of type II error
(�) against a parameter �, where

(3.44)

The quantity �2 is related to the noncentrality parameter �. Curves are available for 	 � 0.05
and 	 � 0.01 and a range of degrees of freedom for numerator and denominator.

In using the OC curves, the experimenter must specify the parameter � and the value of
�2. This is often difficult to do in practice. One way to determine � is to choose the actual val-
ues of the treatment means for which we would like to reject the null hypothesis with high
probability. Thus, if �1, �2, . . . , �a are the specified treatment means, we find the �i in Equation
3.48 as �i � �i � , where � (1/a) �i is the average of the individual treatment means.
The estimate of �2 may be available from prior experience, a previous experiment or a prelim-
inary test (as suggested in Chapter 1), or a judgment estimate. When we are uncertain about
the value of �2, sample sizes could be determined for a range of likely values of �2 to study the
effect of this parameter on the required sample size before a final choice is made.

�a
i�1��

�2 �

n �
a

i�1
� 2

i

a� 2

� 1 � P{F0 � F	,a�1,N�a �H0 is false}

� � 1 � P{Reject H0�H0 is false}
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■ F I G U R E  3 . 1 4 JMP output from Example 3.1

Response Etch rate
Whole Model

RF power

Least Squares Means Table

Level Least Sq Mean Std Error Mean

160 551.20000 8.1694553 551.200
180 587.40000 8.1694553 587.400
200 625.40000 8.1694553 625.400
220 707.00000 8.1694553 707.000

Residual by Predicted Plot
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Summary of Fit
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Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 3 66870.550 22290.2 66.7971
Error 16 5339.200 333.7 Prob F
C. Total 19 72209.750 .0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F

RF power 3 3 66870.550 66.7971 .0001

Actual by Predicted Plot

750

700

650

600

550

550
Etch rate Predicted P < .0001
RSq = 0.93 RMSE = 18.267

E
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h
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A
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u
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A significant problem with this approach to using OC curves is that it is usually difficult to
select a set of treatment means on which the sample size decision should be based. An alternate
approach is to select a sample size such that if the difference between any two treatment means
exceeds a specified value, the null hypothesis should be rejected. If the difference between any
two treatment means is as large as D, it can be shown that the minimum value of �2 is

(3.45)

Because this is a minimum value of �2, the corresponding sample size obtained from the
operating characteristic curve is a conservative value; that is, it provides a power at least as
great as that specified by the experimenter.

To illustrate this approach, suppose that in the plasma etching experiment from Example
3.1, the experimenter wished to reject the null hypothesis with probability at least 0.90 if 
any two treatment means differed by as much as 75 Å/min and 	 � 0.01. Then, assuming that
� � 25 psi, we find the minimum value of �2 to be

�2 �
n(75)2

2(4)(252)
� 1.125n

�2 �
nD2

2a� 2

3.7 Determining Sample Size 107
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Consider the plasma etching experiment described in
Example 3.1. Suppose that the experimenter is interested in
rejecting the null hypothesis with a probability of at least
0.90 if the four treatment means are

She plans to use 	 � 0.01. In this case, because 
2500, we have � (1/4)2500 � 625 and

Thus, � 6250. Suppose the experimenter feels that
the standard deviation of etch rate at any particular level of

�4
i�1�

2
i

�4 � �4 � � � 675 � 625 � 50

�3 � �3 � � � 650 � 625 � 25

�2 � �2 � � � 600 � 625 � �25

�1 � �1 � � � 575 � 625 � �50

�
�4

i�1�i �

�1 � 575  �2 � 600  �3 � 650  and  �4 � 675

power will be no larger than � � 25 Å/min. Then, by using
Equation 3.44, we have

We use the OC curve for a � 1 � 4 � 1 � 3 with N � a �
a(n � 1) � 4(n � 1) error degrees of freedom and 	 �
0.01 (see Appendix Chart V). As a first guess at the required
sample size, try n � 3 replicates. This yields �2 � 2.5n �
2.5(3) � 7.5, � � 2.74, and 4(2) � 8 error degrees of free-
dom. Consequently, from Chart V, we find that �  0.25.
Therefore, the power of the test is approximately 1 � � �
1 � 0.25 � 0.75, which is less than the required 0.90, and
so we conclude that n � 3 replicates are not sufficient.
Proceeding in a similar manner, we can construct the fol-
lowing display:

�2 �

n �
4

i�1
� 2

i

a� 2
�

n(6,250)

4(25)2
� 2.5n

n �2 � a(n � 1) � Power (1 � �)

3 7.5 2.74 8 0.25 0.75

4 10.0 3.16 12 0.04 0.96

5 12.5 3.54 16 �0.01 0.99

Thus, 4 or 5 replicates are sufficient to obtain a test with the
required power.
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Now we can use the OC curves exactly as in Example 3.10. Suppose we try n � 4 repli-
cates. This results in �2 � 1.125(4) � 4.5, � � 2.12, and 4(3) � 12 degrees of freedom for
error. From the OC curve, we find that the power is approximately 0.65. For n � 5 replicates,
we have �2 � 5.625, � � 2.37, and 4(4) � 16 degrees of freedom for error. From the OC
curve, the power is approximately 0.8. For n � 6 replicates, we have �2 � 6.75, � � 2.60,
and 4(5) � 20 degrees of freedom for error. From the OC curve, the power exceeds 0.90, so
n � 6 replicates are required.

Minitab uses this approach to perform power calculations and find sample sizes for
single-factor ANOVAs. Consider the following display:

In the upper portion of the display, we asked Minitab to calculate the power for n � 5 repli-
cates when the maximum difference in treatment means is 75. Notice that the results closely
match those obtained from the OC curves. The bottom portion of the display the output when
the experimenter requests the sample size to obtain a target power of at least 0.90. Once again,
the results agree with those obtained from the OC curve.

3.7.2 Specifying a Standard Deviation Increase

This approach is occasionally helpful in choosing the sample size. If the treatment means do
not differ, the standard deviation of an observation chosen at random is �. If the treatment
means are different, however, the standard deviation of a randomly chosen observation is

If we choose a percentage P for the increase in the standard deviation of an observation
beyond which we wish to reject the hypothesis that all treatment means are equal, this is

�� 2 � ��
a

i�1
� 2

i /a�

Power and Sample Size

One-way ANOVA

Alpha � 0.01 Assumed standard deviation � 25 

Number of Levels � 4

Sample Maximum

SS Means Size Power Difference

 2812.5 5 0.804838 75

The sample size is for each level.

Power and Sample Size

One-way ANOVA

Alpha � 0.01 Assumed standard deviation � 25 

Number of Levels 5 4

Sample Target Maximum

SS Means Size Power Actual Power Difference

 2812.5 6 0.9 0.915384 75

The sample size is for each level.



equivalent to choosing

or

so that

(3.46)

Thus, for a specified value of P, we may compute � from Equation 3.46 and then use the
operating characteristic curves in Appendix Chart V to determine the required sample size.

For example, in the plasma etching experiment from Example 3.1, suppose that we wish
to detect a standard deviation increase of 20 percent with a probability of at least 0.90 and 
	 � 0.05. Then

Reference to the operating characteristic curves shows that n � 10 replicates would be
required to give the desired sensitivity.

3.7.3 Confidence Interval Estimation Method

This approach assumes that the experimenter wishes to express the final results in terms of
confidence intervals and is willing to specify in advance how wide he or she wants these con-
fidence intervals to be. For example, suppose that in the plasma etching experiment from
Example 3.1, we wanted a 95 percent confidence interval on the difference in mean etch rate
for any two power settings to be 
30 Å/min and a prior estimate of � is 25. Then, using
Equation 3.13, we find that the accuracy of the confidence interval is

Suppose that we try n � 5 replicates. Then, using �2 � (25)2 � 625 as an estimate of MSE ,
the accuracy of the confidence interval becomes

which does not meet the requirement. Trying n � 6 gives

Trying n � 7 gives

Clearly, n � 7 is the smallest sample size that will lead to the desired accuracy.

�2.064�2(625)
7

� �27.58

�2.086�2(625)
6

� �30.11

�2.120�2(625)
5

� �33.52

�t	/2,N�a�2MSE

n

� � �(1.2)2 � 1(�n) � 0.66�n

� �
��

a

i�1
� 2

i /a

�/�n
� �(1 � 0.01P)2 � 1(�n)

��
a

i�1
� 2

i /a

� � �(1 � 0.01P)2 � 1

�� 2 � ��
a

i�1
� 2

i /a�
� � 1 � 0.01P  (P � percent)
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The quoted level of significance in the above illustration applies only to one confi-
dence interval. However, the same general approach can be used if the experimenter wishes
to prespecify a set of confidence intervals about which a joint or simultaneous confidence
statement is made (see the comments about simultaneous confidence intervals in Section
3.3.3). Furthermore, the confidence intervals could be constructed about more general con-
trasts in the treatment means than the pairwise comparison illustrated above.

3.8 Other Examples of Single-Factor Experiments

3.8.1 Chocolate and Cardiovascular Health

An article in Nature describes an experiment to investigate the effect of consuming chocolate
on cardiovascular health (“Plasma Antioxidants from Chocolate,” Nature, Vol. 424, 2003,
pp. 1013). The experiment consisted of using three different types of chocolates: 100 g of dark
chocolate, 100 g of dark chocolate with 200 mL of full-fat milk, and 200 g of milk chocolate.
Twelve subjects were used, 7 women and 5 men, with an average age range of 32.2 
 1 years,
an average weight of 65.8 
 3.1 kg, and body-mass index of 21.9 
 0.4 kg m�2. On different
days a subject consumed one of the chocolate-factor levels and one hour later the total antiox-
idant capacity of their blood plasma was measured in an assay. Data similar to that summarized
in the article are shown in Table 3.12.

Figure 3.15 presents box plots for the data from this experiment. The result is an indication
that the blood antioxidant capacity one hour after eating the dark chocolate is higher than for the
other two treatments. The variability in the sample data from all three treatments seems very sim-
ilar. Table 3.13 is the Minitab ANOVA output. The test statistic is highly significant (Minitab
reports a P-value of 0.000, which is clearly wrong because P-values cannot be zero; this means
that the P-value is less than 0.001), indicating that some of the treatment means are different. The
output also contains the Fisher LSD analysis for this experiment. This indicates that the mean
antioxidant capacity after consuming dark chocolate is higher than after consuming dark choco-
late plus milk or milk chocolate alone, and the mean antioxidant capacity after consuming dark
chocolate plus milk or milk chocolate alone are equal. Figure 3.16 is the normal probability plot
of the residual and Figure 3.17 is the plot of residuals versus predicted values. These plots do not
suggest any problems with model assumptions. We conclude that consuming dark chocolate
results in higher mean blood antioxidant capacity after one hour than consuming either dark
chocolate plus milk or milk chocolate alone.

3.8.2 A Real Economy Application of a Designed Experiment

Designed experiments have had tremendous impact on manufacturing industries, including
the design of new products and the improvement of existing ones, development of new 

■ TA B L E  3 . 1 2
Blood Plasma Levels One Hour Following Chocolate Consumption

Subjects (Observations)

Factor 1 2 3 4 5 6 7 8 9 10 11 12

DC 118.8 122.6 115.6 113.6 119.5 115.9 115.8 115.1 116.9 115.4 115.6 107.9

DC+MK 105.4 101.1 102.7 97.1 101.9 98.9 100.0 99.8 102.6 100.9 104.5 93.5

MC 102.1 105.8 99.6 102.7 98.8 100.9 102.8 98.7 94.7 97.8 99.7 98.6
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■ F I G U R E  3 . 1 5 Box plots of the blood antioxidant
capacity data from the chocolate consumption experiment

■ TA B L E  3 . 1 3
Minitab ANOVA Output, Chocolate Consumption Experiment

One-way ANOVA: DC, DC+MK, MC 

Source  DF      SS     MS      F      P
Factor   2  1952.6  976.3  93.58  0.000
Error   33   344.3   10.4
Total   35  2296.9

S = 3.230   R-Sq = 85.01%   R-Sq(adj) = 84.10%

Individual 95% CIs For Mean Based on
Pooled StDev

Level   N    Mean  StDev   ---+---------+---------+---------+------
DC     12  116.06   3.53                                  (---*---)
DC+MK  12  100.70   3.24    (--*---)
MC     12  100.18   2.89   (--*---)

---+---------+---------+---------+------
100.0     105.0     110.0     115.0

Pooled StDev = 3.23

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons
Simultaneous confidence level = 88.02
DC subtracted from:

Lower   Center    Upper     -+---------+---------+---------+---
DC+MK  -18.041  -15.358  -12.675      (---*----)
MC     -18.558  -15.875  -13.192     (----*---)

-+---------+---------+---------+---
-18.0     -12.0      -6.0       0.0

DC+MK subtracted from:

Lower  Center  Upper     -+---------+---------+---------+--------
MC  -3.200  -0.517  2.166                               (---*----)

-+---------+---------+---------+--------
-18.0     -12.0      -6.0       0.0
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manufacturing processes, and process improvement. In the last 15 years, designed experi-
ments have begun to be widely used outside of this traditional environment. These applications
are in financial services, telecommunications, health care, e-commerce, legal services, market-
ing, logistics and transporation, and many of the nonmanufacturing components of manufac-
turing businesses. These types of businesses are sometimes referred to as the real economy. It
has been estimated that manufacturing accounts for only about 20 percent of the total US
economy, so applications of experimental design in the real economy are of growing impor-
tance. In this section, we present an example of a designed experiment in marketing.

A soft drink distributor knows that end-aisle displays are an effective way to increase
sales of the product. However, there are several ways to design these displays: by varying the
text displayed, the colors used, and the visual images. The marketing group has designed
three new end-aisle displays and wants to test their effectiveness. They have identified 15
stores of similar size and type to participate in the study. Each store will test one of the dis-
plays for a period of one month. The displays are assigned at random to the stores, and each
display is tested in five stores. The response variable is the percentage increase in sales activ-
ity over the typical sales for that store when the end-aisle display is not in use. The data from
this experiment are shown in Table 3.13.

Table 3.14 shows the analysis of the end-asile display experiment. This analysis was con-
ducted using JMP. The P-value for the model F statistic in the ANOVA indicates that there is a 
difference in the mean percentage increase in sales between the three display types. In this appli-
cation, we had JMP use the Fisher LSD procedure to compare the pairs of treatment means (JMP
labels these as the least squares means). The results of this comparison are presented as confidence
intervals on the difference in pairs of means. For pairs of means where the confidence interval
includes zero, we would not declare that pair of means are different. The JMP output indicates that
display designs 1 and 2 are similar in that they result in the same mean increase in sales, but that
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■ F I G U R E  3 . 1 6 Normal probability plot of the residu-
als from the chocolate consumption experiment
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■ F I G U R E  3 . 1 7 Plot of residuals versus the 
predicted values from the chocolate consumption 
experiment

■ TA B L E  3 . 1 3
The End-Aisle Display Experimental Design

Display
Design Sample Observations, Percent Increase in Sales

1 5.43 5.71 6.22 6.01 5.29

2 6.24 6.71 5.98 5.66 6.60

3 8.79 9.20 7.90 8.15 7.55



display design 3 is different from both designs 1 and 2 and that the mean increase in sales for dis-
play 3 exceeds that of both designs 1 and 2. Notice that JMP automatically includes some useful
graphics in the output, a plot of the actual observations versus the predicted values from the model,
and a plot of the residuals versus the predicted values. There is some mild indication that display
design 3 may exhibit more variability in sales increase than the other two designs.

■ TA B L E  3 . 1 4
JMP Output for the End-Aisle Display Experiment

Response Sales Increase
Whole Model

Summary of Fit

RSquare 0.856364
RSquare Adj 0.832425
Root Mean Square Error 0.512383
Mean of Response 6.762667
Observations (or Sum Wgts) 15

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio

Model 2 18.783053 9.39153 35.7722
Error 12 3.150440 0.26254 ProbF
C.Total 14 21.933493 �.0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob � F

Display 2 2 18.783053 35.7722 �.001

Residual by Predicted Plot
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■ T A B L E  3 . 1 4 (Continued)

Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 5.7320000 0.22914479 5.73200
2 6.2380000 0.22914479 6.23800
3 8.3180000 0.22914479 8.31800

LSMeans Differences Student’s t
a � 0.050 t � 2.17881
LSMean[i] By LSMean [i]

Level Least Sq Mean
3 A 8.3180000
2 B 6.2380000
1 B 5.7320000

Levels not connected by same letter are significantly different.

3.8.3 Discovering Dispersion Effects

We have focused on using the analysis of variance and related methods to determine which
factor levels result in differences among treatment or factor level means. It is customary to
refer to these effects as location effects. If there was inequality of variance at the different
factor levels, we used transformations to stabilize the variance to improve our inference on
the location effects. In some problems, however, we are interested in discovering whether the
different factor levels affect variability; that is, we are interested in discovering potential dis-
persion effects. This will occur whenever the standard deviation, variance, or some other
measure of variability is used as a response variable.

To illustrate these ideas, consider the data in Table 3.15, which resulted from a designed
experiment in an aluminum smelter. Aluminum is produced by combining alumina with other
ingredients in a reaction cell and applying heat by passing electric current through the cell.
Alumina is added continuously to the cell to maintain the proper ratio of alumina to other ingre-
dients. Four different ratio control algorithms were investigated in this experiment. The response
variables studied were related to cell voltage. Specifically, a sensor scans cell voltage several
times each second, producing thousands of voltage measurements during each run of the exper-
iment. The process engineers decided to use the average voltage and the standard deviation of

Mean[i]-Mean [i] 1 2 3
Std Err Dif
Lower CL Dif
Upper CL Dif
1 0 �0.506 �2.586

0 0.32406 0.32406
0 �1.2121 �3.2921
0 0.20007 �1.8799

2 0.506 0 �2.08
0.32406 0 0.32406

�0.2001 0 �2.7861
1.21207 0 �1.3739

3 2.586 2.08 0
0.32406 0.32406 0
1.87993 1.37393 0
3.29207 2.78607 0



cell voltage (shown in parentheses) over the run as the response variables. The average voltage
is important because it affects cell temperature, and the standard deviation of voltage (called
“pot noise” by the process engineers) is important because it affects the overall cell efficiency.

An analysis of variance was performed to determine whether the different ratio control
algorithms affect average cell voltage. This revealed that the ratio control algorithm had no
location effect; that is, changing the ratio control algorithms does not change the average cell
voltage. (Refer to Problem 3.38.)

To investigate dispersion effects, it is usually best to use

as a response variable since the log transformation is effective in stabilizing variability in the
distribution of the sample standard deviation. Because all sample standard deviations of pot
voltage are less than unity, we will use

as the response variable. Table 3.16 presents the analysis of variance for this response, the nat-
ural logarithm of “pot noise.” Notice that the choice of a ratio control algorithm affects pot
noise; that is, the ratio control algorithm has a dispersion effect. Standard tests of model ade-
quacy, including normal probability plots of the residuals, indicate that there are no problems
with experimental validity. (Refer to Problem 3.39.)

Figure 3.18 plots the average log pot noise for each ratio control algorithm and also
presents a scaled t distribution for use as a reference distribution in discriminating between
ratio control algorithms. This plot clearly reveals that ratio control algorithm 3 produces

y � �ln(s)

log(s)  or  log(s 2)
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3 1 4 2

Average log pot noise [–ln (s)]

4.003.002.00

■ F I G U R E  3 . 1 8 Average
log pot noise [�ln (s)] for 
four ratio control algorithms 
relative to a scaled t distribution
with scale factor 
�0.094/6 � 0.125

�MSE/n �

■ TA B L E  3 . 1 5
Data for the Smelting Experiment

Ratio
Control Observations
Algorithm 1 2 3 4 5 6

1 4.93(0.05) 4.86(0.04) 4.75(0.05) 4.95(0.06) 4.79(0.03) 4.88(0.05)
2 4.85(0.04) 4.91(0.02) 4.79(0.03) 4.85(0.05) 4.75(0.03) 4.85(0.02)
3 4.83(0.09) 4.88(0.13) 4.90(0.11) 4.75(0.15) 4.82(0.08) 4.90(0.12)
4 4.89(0.03) 4.77(0.04) 4.94(0.05) 4.86(0.05) 4.79(0.03) 4.76(0.02)

■ TA B L E  3 . 1 6
Analysis of Variance for the Natural Logarithm of Pot Noise

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Ratio control algorithm 6.166 3 2.055 21.96 �0.001

Error 1.872 20 0.094

Total 8.038 23
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greater pot noise or greater cell voltage standard deviation than the other algorithms. There
does not seem to be much difference between algorithms 1, 2, and 4.

3.9 The Random Effects Model

3.9.1 A Single Random Factor

An experimenter is frequently interested in a factor that has a large number of possible levels.
If the experimenter randomly selects a of these levels from the population of factor levels, then
we say that the factor is random. Because the levels of the factor actually used in the experi-
ment were chosen randomly, inferences are made about the entire population of factor levels.
We assume that the population of factor levels is either of infinite size or is large enough to be
considered infinite. Situations in which the population of factor levels is small enough to employ
a finite population approach are not encountered frequently. Refer to Bennett and Franklin
(1954) and Searle and Fawcett (1970) for a discussion of the finite population case.

The linear statistical model is

(3.47)

where both the treatment effects �i and �ij are random variables. We will assume that the treat-
ment effects �i are NID (0, ) random variables1 and that the errors are NID (0, �2), random
variables, and that the �i and are independent. Because �i is independent of �ij, the variance
of any observation is

The variances and �2 are called variance components, and the model (Equation 3.47) is
called the components of variance or random effects model. The observations in the random
effects model are normally distributed because they are linear combinations of the two normally
and independently distributed random variables and . However, unlike the fixed effects
case in which all of the observations yij are independent, in the random model the observations
yij are only independent if they come from different factor levels. Specifically, we can show that
the covariance of any two observations is

Note that the observations within a specific factor level all have the same covariance, because
before the experiment is conducted, we expect the observations at that factor level to be sim-
ilar because they all have the same random component. Once the experiment has been con-
ducted, we can assume that all observations can be assumed to be independent, because the
parameter has been determined and the observations in that treatment differ only because
of random error.

We can express the covariance structure of the observations in the single-factor random
effects model through the covariance matrix of the observations. To illustrate, suppose that
we have treatments and replicates. There are observations, which we can
write as a vector 

N � 6n � 2a � 3

�i

Cov �yij, yi�j�� � 0   i Z i�

Cov �yij, yij�� � �2
�   j Z j�

�ij�i

� 2
�

V(yij) � � 2
� � � 2

�ij

� 2
�

yij � � � �i � �ij  �i � 1, 2, . . . , a
j � 1, 2, . . . , n

1 The as assumption that the [�i] are independent random variables implies that the usual assumption of �a
i�1 �i � 0 from the fixed

effects model does not apply to the random effects model.



and the 6 � 6 covariance matrix of these observations is

The main diagonals of this matrix are the variances of each individual observation and every
off-diagonal element is the covariance of a pair of observations.

3.9.2 Analysis of Variance for the Random Model

The basic ANOVA sum of squares identity

(3.48)

is still valid. That is, we partition the total variability in the observations into a component
that measures the variation between treatments (SSTreatments) and a component that measures
the variation within treatments (SSE). Testing hypotheses about individual treatment effects is
not very meaningful because they were selected randomly, we are more interested in the pop-
ulation of treatments, so we test hypotheses about the variance component .

(3.49)

If , all treatments are identical; but if , variability exists between treatments.
As before, SSE/�2 is distributed as chi-square with N � a degrees of freedom and, under the
null hypothesis, SSTreatments/�

2 is distributed as chi-square with a � 1 degrees of freedom. Both
random variables are independent. Thus, under the null hypothesis , the ratio

(3.50)

is distributed as F with a � 1 and N � a degrees of freedom. However, we need to examine
the expected mean squares to fully describe the test procedure.

Consider
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When squaring and taking expectation of the quantities in brackets, we see that terms involv-
ing are replaced by as E (�i) � 0. Also, terms involving , and are
replaced by n� 2, an� 2, and an2, respectively. Furthermore, all cross-product terms involving
�i and �ij have zero expectation. This leads to

or

(3.51)

Similarly, we may show that

(3.52)

From the expected mean squares, we see that under H0 both the numerator and denom-
inator of the test statistic (Equation 3.50) are unbiased estimators of �2, whereas under H1 the
expected value of the numerator is greater than the expected value of the denominator.
Therefore, we should reject H0 for values of F0 that are too large. This implies an upper-tail,
one-tail critical region, so we reject H0 if F0 > F	,a�1, N�a.

The computational procedure and ANOVA for the random effects model are identical
to those for the fixed effects case. The conclusions, however, are quite different because they
apply to the entire population of treatments.

3.9.3 Estimating the Model Parameters

We are usually interested in estimating the variance components (�2 and ) in the model.
One very simple procedure that we can use to estimate �2 and is called the analysis of
variance method because it makes use of the lines in the analysis of variance table. The pro-
cedure consists of equating the expected mean squares to their observed values in the ANOVA
table and solving for the variance components. In equating observed and expected mean
squares in the single-factor random effects model, we obtain

and

Therefore, the estimators of the variance components are

(3.53)

and

(3.54)

For unequal sample sizes, replace n in Equation 13.8 by

(3.55)n0 �
1
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The analysis of variance method of variance component estimation is a method of
moments procedure. It does not require the normality assumption. It does yield estimators of �2

and that are best quadratic unbiased (i.e., of all unbiased quadratic functions of the observa-
tions, these estimators have minimum variance). There is a different method based on maximum
likelihood that can be used to estimate the variance components that will be introduced later.

Occasionally, the analysis of variance method produces a negative estimate of a variance
component. Clearly, variance components are by definition nonnegative, so a negative estimate
of a variance component is viewed with some concern. One course of action is to accept the esti-
mate and use it as evidence that the true value of the variance component is zero, assuming that
sampling variation led to the negative estimate. This has intuitive appeal, but it suffers from some
theoretical difficulties. For instance, using zero in place of the negative estimate can disturb 
the statistical properties of other estimates. Another alternative is to reestimate the negative vari-
ance component using a method that always yields nonnegative estimates. Still another alterna-
tive is to consider the negative estimate as evidence that the assumed linear model is incorrect and
reexamine the problem. Comprehensive treatment of variance component estimation is given by
Searle (1971a, 1971b), Searle, Casella, and McCullogh (1992), and Burdick and Graybill (1992).
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�
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E X A M P L E  3 . 1 1

A textile company weaves a fabric on a large number of
looms. It would like the looms to be homogeneous so that it
obtains a fabric of uniform strength. The process engineer
suspects that, in addition to the usual variation in strength
within samples of fabric from the same loom, there may also

be significant variations in strength between looms. To
investigate this, she selects four looms at random and makes
four strength determinations on the fabric manufactured on
each loom. This experiment is run in random order, and the
data obtained are shown in Table 3.17. The ANOVA is con-

■ TA B L E  3 . 1 7
Strength Data for Example 3.11

Observations

Looms 1 2 3 4 yi.

1 98 97 99 96 390

2 91 90 93 92 366

3 96 95 97 95 383

4 95 96 99 98 388

1527 � y..

ducted and is shown in Table 3.18. From the ANOVA, we
conclude that the looms in the plant differ significantly.

The variance components are estimated by � 1.90 and

�̂ 2
� �

29.73 � 1.90
4

� 6.96

�̂ 2

Therefore, the variance of any observation on strength is
estimated by

Most of this variability is attributable to differences
between looms.

�̂y � �̂ 2 � �̂ 2
� � 1.90 � 6.96 � 8.86.

■ TA B L E  3 . 1 8
Analysis of Variance for the Strength Data

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

Looms 89.19 3 29.73 15.68 <0.001

Error 22.75 12 1.90

Total 111.94 15 
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This example illustrates an important use of variance components—isolating different
sources of variability that affect a product or system. The problem of product variability fre-
quently arises in quality assurance, and it is often difficult to isolate the sources of variabili-
ty. For example, this study may have been motivated by an observation that there is too much
variability in the strength of the fabric, as illustrated in Figure 3.19a. This graph displays the
process output (fiber strength) modeled as a normal distribution with variance � 8.86.
(This is the estimate of the variance of any observation on strength from Example 3.11.)
Upper and lower specifications on strength are also shown in Figure 3.19a, and it is relative-
ly easy to see that a fairly large proportion of the process output is outside the specifications
(the shaded tail areas in Figure 3.19a). The process engineer has asked why so much fabric is
defective and must be scrapped, reworked, or downgraded to a lower quality product. The
answer is that most of the product strength variability is the result of differences between
looms. Different loom performance could be the result of faulty setup, poor maintenance,
ineffective supervision, poorly trained operators, defective input fiber, and so forth.

The process engineer must now try to isolate the specific causes of the differences in
loom performance. If she could identify and eliminate these sources of between-loom variabili-
ty, the variance of the process output could be reduced considerably, perhaps to as low as �
1.90, the estimate of the within-loom (error) variance component in Example 3.11. Figure
3.19b shows a normal distribution of fiber strength with � 1.90. Note that the proportion
of defective product in the output has been dramatically reduced. Although it is unlikely that
all of the between-loom variability can be eliminated, it is clear that a significant reduction in
this variance component would greatly increase the quality of the fiber produced.

We may easily find a confidence interval for the variance component �2. If the observations
are normally and independently distributed, then (N � a)MSE/�2 is distributed as . Thus,

and a 100(1 � 	) percent confidence interval for �2 is

(3.56)

Since and the 95% CI
on is 

Now consider the variance component . The point estimator of is

The random variable (a � 1)MSTreatments/(�
2 � n ) is distributed as , and (N � a)MSE/�2

is distributed as . Thus, the probability distribution of is a linear combination of two
chi-square random variables, say

�̂ 2
�� 2

N�a

� 2
a�1� 2

�

�̂ 2
� �
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n

� 2
�� 2

�

0.9770 � �2 � 5.1775.�2
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0.975, 12 � 4.4038,MSE � 190, N � 16, a � 4, �2
0.025,12 � 23,3367
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	/2,N�a
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(a) Variability of process output.

LSL USL

y = 8.86
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(b) Variability of process output if 2 = 0.
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y = 1.90
  2
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where

Unfortunately, a closed-form expression for the distribution of this linear combination of chi-
square random variables cannot be obtained. Thus, an exact confidence interval for cannot
be constructed. Approximate procedures are given in Graybill (1961) and Searle (1971a).
Also see Section 13.6 of Chapter 13.

It is easy to find an exact expression for a confidence interval on the ratio .
This ratio is called the intraclass correlation coefficient, and it reflects the proportion of the
variance of an observation [recall that V(yij) � � �2] that is the result of differences between
treatments. To develop this confidence interval for the case of a balanced design, note that
MSTreatments and MSE are independent random variables and, furthermore, it can be shown that

Thus,

(3.57)

By rearranging Equation 13.11, we may obtain the following:

(3.58)

where

(3.59a)

and

(3.59b)

Note that L and U are 100(1 � 	) percent lower and upper confidence limits, respective-
ly, for the ratio . Therefore, a 100(1 � 	) percent confidence interval for

is

(3.60)

To illustrate this procedure, we find a 95 percent confidence interval on 
for the strength data in Example 3.11. Recall that MSTreatments � 29.73, MSE � 1.90, a � 4,
n � 4, F0.025,3,12 � 4.47, and F0.975,3,12 � 1/F0.025,12,3 � 1/14.34 � 0.070. Therefore, from
Equation 3.59a and b,
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and from Equation 3.60, the 95 percent confidence interval on is

or

We conclude that variability between looms accounts for between 38 and 98 percent of the
variability in the observed strength of the fabric produced. This confidence interval is relative-
ly wide because of the small number of looms used in the experiment. Clearly, however, the
variability between looms is not negligible.

Estimation of the Overall Mean �. In many random effects experiments the exper-
imenter is interested in estimating the overall mean . From the basic model assumptions it
is easy to see that the expected value of any observation is just the overall mean.
Consequently, an unbiased estimator of the overall mean is

So for Example 3.11 the estimate of the overall mean strength is 

It is also possible to find a 100(1 – )% confidence interval on the overall mean. The
variance of is

The numerator of this ratio is estimated by the treatment mean square, so an unbiased estima-
tor of is 

Therefore, the 100(1 – )% CI on the overall mean is 

(3.61)

To find a 95% CI on the overall mean in the fabric strength experiment from Example 3.11,
we need and . The CI is computed from Equation 3.61 as
follows:
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So, at 95 percent confidence the mean strength of the fabric produced by the looms in
this facility is between 92.78 and 98.10. This is a relatively wide confidence interval because
a small number of looms were sampled and there is a large difference between looms as
reflected by the large portion of total variability that is accounted for by the differences
between looms.

Maximum Likelihood Estimation of the Variance Components. Earlier in this
section we presented the  analysis of variance method of variance component estimation.
This method is relatively straightforward to apply and makes use of familiar quantities—
the mean squares in the analysis of variance table. However, the method has some disad-
vantages. As we pointed out previously, it is a method of moments estimator, a technique
that mathematical statisticians generally do not prefer to use for parameter estimation
because it often results in parameter estimates that do not have good statistical properties.
One obvious problem is that it does not always lead to an easy way to construct confidence
intervals on the variance components of interest. For example, in the single-factor random
model there is not a simple way to construct confidence intervals on , which is certainly
a parameter of primary interest to the experimenter. The preferred parameter estimation
technique is called the method of maximum likelihood. The implementation of this
method can be somewhat involved, particularly for an experimental design model, but it has
been incorporated in some modern computer software packages that support designed
experiments, including JMP.

A complete presentation of the method of maximum likelihood is beyond the scope of
this book, but the general idea can be illustrated very easily. Suppose that x is a random vari-
able with probability distribution f(x, ), where is an unknown parameter. Let x1, x2, . . . , xn

be a random sample of n observations. The joint probability distribution of the sample is

. The likelihood function is just this joint probability distribution with the sample

observations consider fixed and the parameter unknown. Note that the likelihood function,

say

is now a function of only the unknown parameter . The maximum likelihood estimator of is
the value of that maximizes the likelihood function L(x1, x2, ..., xn; ). To illustrate how this
applies to an experimental design model with random effects, let y be the an 1 vector of obser-
vations for a single-factor random effects model with a treatments and n replicates and let be
the an an covariance matrix of the observations. Refer to Section 3.9.1 where we developed
this covariance matrix for the special case where and . The likelihood function is 

where an is the total number of observations, jN is an vector of 1s, and is the
overall mean in the model. The maximum likelihood estimates of the parameters and

are the values of these quantities that maximize the likelihood function.
Maximum likelihood estimators (MLEs) have some very useful properties. For large sam-

ples, they are unbiased, and they have a normal distribution. Furthermore, the inverse of the matrix
of second derivatives of the likelihood function (multiplied by �1) is the covariance matrix of the
MLEs. This makes it relatively easy to obtain approximate confidence intervals on the MLEs.

The standard variant of maximum likelihood estimation that is used for estimating vari-
ance components is known as the residual maximum likelihood (REML) method. It is pop-
ular because it produces unbiased estimators and like all MLEs, it is easy to find CIs. The basic
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characteristic of REML is that it takes the location parameters in the model into account when
estimating the random effects. As a simple example, suppose that we want to estimate the mean
and variance of a normal distribution using the method of maximum likelihood. It is easy to
show that the MLEs are

Notice that the MLE is not the familiar sample standard deviation. It does not take the esti-
mation of the location parameter into account. The REML estimator would be 

The REML estimator is unbiased.
To illustrate the REML method, Table 3.19 presents the JMP output for the loom exper-

iment in Example 3.11. The REML estimates of the model parameters and are
shown in the output. Note that the REML estimates of the variance components are identical
to those found earlier by the ANOVA method. These two methods will agree for balanced
designs. However, the REML output also contains the covariance matrix of the variance
components. The square roots of the main diagonal elements of this matrix are the standard

�2�, �2
�,

S2 �
�
n

i�1
(yi � y)2

n � 1

�
�̂ 2

�̂ 2 �
�
n

i�1
(yi � y)2

n

�̂ �
�
n

i�1
yi

n � y

■ T A B L E  3 . 1 9
JMP Output for the Loom Experiment in Example 3.11

Response Y

Summary of Fit

RSquare 0.793521

RSquare Adj 0.793521

Root Mean Square Error 1.376893

Mean of Response 95.4375

Observations (or Sum Wgts) 16

Parameter Estimates
Term Estimate Std Error DFDen t Ratio Prob>|t|

Intercept 95.4375 1.363111 3 70.01 <.0001*

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

X1 3.6703297 6.9583333 6.0715247 �4.941636 18.858303 78.588

Residual 1.8958333 0.7739707 0.9748608 5.1660065 21.412

Total 8.8541667 100.000

Covariance Matrix of Variance Component Estimates

Random Effect X1 Residual

X1 36.863412 �0.149758

Residual �0.149758 0.5990307



errors of the variance components. If is the MLE of and is its estimated standard
error, then the approximate 100(1 – )% CI on is 

JMP uses this approach to find the approximate CIs and shown in the output. The 
95 percent CI from REML for is very similar to the chi-square based interval computed
earlier in Section 3.9.

3.10 The Regression Approach to the Analysis of Variance

We have given an intuitive or heuristic development of the analysis of variance. However, it
is possible to give a more formal development. The method will be useful later in understand-
ing the basis for the statistical analysis of more complex designs. Called the general regres-
sion significance test, the procedure essentially consists of finding the reduction in the total
sum of squares for fitting the model with all parameters included and the reduction in sum of
squares when the model is restricted to the null hypotheses. The difference between these two
sums of squares is the treatment sum of squares with which a test of the null hypothesis can
be conducted. The procedure requires the least squares estimators of the parameters in the
analysis of variance model. We have given these parameter estimates previously (in Section
3.3.3); however, we now give a formal development.

3.10.1 Least Squares Estimation of the Model Parameters

We now develop estimators for the parameter in the single-factor ANOVA fixed-effects model

using the method of least squares. To find the least squares estimators of � and �i, we first
form the sum of squares of the errors

(3.61)

and then choose values of � and �i, say and , that minimize L. The appropriate values
would be the solutions to the a � 1 simultaneous equations

Differentiating Equation 3.61 with respect to � and �i and equating to zero, we obtain

and

which, after simplification, yield
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(3.62)

The a � 1 equations (Equation 3.62) in a � 1 unknowns are called the least squares
normal equations. Notice that if we add the last a normal equations, we obtain the first normal
equation. Therefore, the normal equations are not linearly independent, and no unique solution
for �, �1, . . . , �a exists. This has happened because the effects model is overparameterized.
This difficulty can be overcome by several methods. Because we have defined the treatment
effects as deviations from the overall mean, it seems reasonable to apply the constraint

(3.63)

Using this constraint, we obtain as the solution to the normal equations

(3.64)

This solution is obviously not unique and depends on the constraint (Equation 3.63) that
we have chosen. At first this may seem unfortunate because two different experimenters could
analyze the same data and obtain different results if they apply different constraints. However,
certain functions of the model parameters are uniquely estimated, regardless of the con-
straint. Some examples are �i � �j, which would be estimated by , and the
ith treatment mean �i � � � �i, which would be estimated by .

Because we are usually interested in differences among the treatment effects rather than
their actual values, it causes no concern that the �i cannot be uniquely estimated. In general,
any function of the model parameters that is a linear combination of the left-hand side of the
normal equations (Equations 3.48) can be uniquely estimated. Functions that are uniquely
estimated regardless of which constraint is used are called estimable functions. For more
information, see the supplemental material for this chapter. We are now ready to use these
parameter estimates in a general development of the analysis of variance.

3.10.2 The General Regression Significance Test

A fundamental part of this procedure is writing the normal equations for the model. These
equations may always be obtained by forming the least squares function and differentiating it
with respect to each unknown parameter, as we did in Section 3.9.1. However, an easier
method is available. The following rules allow the normal equations for any experimental
design model to be written directly:

RULE 1. There is one normal equation for each parameter in the model to be estimated.

RULE 2. The right-hand side of any normal equation is just the sum of all observations
that contain the parameter associated with that particular normal equation.

To illustrate this rule, consider the single-factor model. The first normal equation is for
the parameter �; therefore, the right-hand side is because all observations contain �.

RULE 3. The left-hand side of any normal equation is the sum of all model parameters,
where each parameter is multiplied by the number of times it appears in the total on
the right-hand side. The parameters are written with a circumflex to indicate that
they are estimators and not the true parameter values.

For example, consider the first normal equation in a single-factor experiment. According
to the above rules, it would be

N�̂ � n�̂1 � n�̂2 � Á � n�̂a � y..

(ˆ)

y..

�̂i � �̂ � �̂i � yi.

�̂i � �̂j � yi. � yj.

�̂i � yi. � y..   i � 1, 2, . . . , a

�̂ � y..

�
a

i�1
�̂i � 0

n�̂                         � n�̂a   � ya.

oo
n�̂   � n�̂2            � y2�



because � appears in all N observations, �1 appears only in the n observations taken under the
first treatment, �2 appears only in the n observations taken under the second treatment, and so
on. From Equation 3.62, we verify that the equation shown above is correct. The second nor-
mal equation would correspond to �1 and is

because only the observations in the first treatment contain �1 (this gives y1. as the right-hand
side), � and �1 appear exactly n times in y1., and all other �i appear zero times. In general, the
left-hand side of any normal equation is the expected value of the right-hand side.

Now, consider finding the reduction in the sum of squares by fitting a particular model
to the data. By fitting a model to the data, we “explain” some of the variability; that is, we
reduce the unexplained variability by some amount. The reduction in the unexplained vari-
ability is always the sum of the parameter estimates, each multiplied by the right-hand side
of the normal equation that corresponds to that parameter. For example, in a single-factor
experiment, the reduction due to fitting the full model yij � � � �i � �ij is

(3.65)

The notation R(�, �) means that reduction in the sum of squares from fitting the model con-
taining � and {�i}. R(�, �) is also sometimes called the “regression” sum of squares for the full
model yij � � � �i � �ij. The number of degrees of freedom associated with a reduction in
the sum of squares, such as R(�, �), is always equal to the number of linearly independent nor-
mal equations. The remaining variability unaccounted for by the model is found from

(3.66)

This quantity is used in the denominator of the test statistic for H0 :�1 � �2 � ... � �a � 0.
We now illustrate the general regression significance test for a single-factor experiment and

show that it yields the usual one-way analysis of variance. The model is yij � � � �i � �ij, and
the normal equations are found from the above rules as

Compare these normal equations with those obtained in Equation 3.62.
Applying the constraint , we find that the estimators for � and �i are

The reduction in the sum of squares due to fitting this full model is found from Equation 3.51 as
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which has a degrees of freedom because there are a linearly independent normal equations.
The error sum of squares is, from Equation 3.66,

and has N � a degrees of freedom.
To find the sum of squares resulting from the treatment effects (the {�i}), we consider

a reduced model; that is, the model to be restricted to the null hypothesis (�i � 0 for all i).
The reduced model is yij � � � �ij. There is only one normal equation for this model:

and the estimator of � is . Thus, the reduction in the sum of squares that results from
fitting the reduced model containing only � is

Because there is only one normal equation for this reduced model, R(�) has one degree of
freedom. The sum of squares due to the {�i}, given that � is already in the model, is the dif-
ference between R(�, �) and R(�), which is

with a � 1 degrees of freedom, which we recognize from Equation 3.9 as SSTreatments. Making the
usual normality assumption, we obtain appropriate statistic for testing H0:�1 � �2 � � �a � 0

which is distributed as Fa�1, N�a under the null hypothesis. This is, of course, the test statistic
for the single-factor analysis of variance.

3.11 Nonparametric Methods in the Analysis of Variance

3.11.1 The Kruskal–Wallis Test

In situations where the normality assumption is unjustified, the experimenter may wish to use
an alternative procedure to the F test analysis of variance that does not depend on this assump-
tion. Such a procedure has been developed by Kruskal and Wallis (1952). The Kruskal–Wallis
test is used to test the null hypothesis that the a treatments are identical against the alternative
hypothesis that some of the treatments generate observations that are larger than others. Because
the procedure is designed to be sensitive for testing differences in means, it is sometimes con-
venient to think of the Kruskal–Wallis test as a test for equality of treatment means. The
Kruskal–Wallis test is a nonparametric alternative to the usual analysis of variance.

To perform a Kruskal–Wallis test, first rank the observations yij in ascending order and
replace each observation by its rank, say Rij, with the smallest observation having rank 1. In
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R(� ��)(/(a � 1)
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the case of ties (observations having the same value), assign the average rank to each of the
tied observations. Let Ri. be the sum of the ranks in the ith treatment. The test statistic is

(3.67)

where ni is the number of observations in the ith treatment, N is the total number of observa-
tions, and

(3.68)

Note that S2 is just the variance of the ranks. If there are no ties, S2 � N(N � 1)/12 and the
test statistic simplifies to

(3.69)

When the number of ties is moderate, there will be little difference between Equations 3.68
and 3.69, and the simpler form (Equation 3.69) may be used. If the ni are reasonably large,
say ni � 5, H is distributed approximately as under the null hypothesis. Therefore, if

the null hypothesis is rejected. The P-value approach could also be used.
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E X A M P L E  3 . 1 2

The data from Example 3.1 and their corresponding ranks
are shown in Table 3.20. There are ties, so we use Equation
3.67 as the test statistic. From Equation 3.67

S 2 �
1

19�2869.50 �
20(21)2

4 	 � 34.97

■ TA B L E  3 . 2 0
Data and Ranks for the Plasma Etching Experiment in Example 3.1

Power

160 180 200 220

y1j R1j y2j R2j y3j R3j y4 j R4j

575 6 565 4 600 10 725 20

542 3 593 9 651 15 700 17

530 1 590 8 610 11.5 715 19

539 2 579 7 637 14 685 16

570 5 610 11.5 629 13 710 18

Ri. 17 39.5 63.5 90

and the test statistic is

� 16.91

�
1

34.97
 [2796.30 � 2205]

H �
1
S 2��

a

i�1

R2
i.

ni
�

N(N � 1)2

4 	

Because H  � 11.34, we would reject the null
hypothesis and conclude that the treatments differ. (The P-

� 2
0.01,3 value for H � 16.91 is P � 7.38 � 10�4.) This is the same

conclusion as given by the usual analysis of variance F test.
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3.11.2 General Comments on the Rank Transformation

The procedure used in the previous section of replacing the observations by their ranks is
called the rank transformation. It is a very powerful and widely useful technique. If we
were to apply the ordinary F test to the ranks rather than to the original data, we would
obtain

(3.70)

as the test statistic [see Conover (1980), p. 337]. Note that as the Kruskal–Wallis statistic H
increases or decreases, F0 also increases or decreases, so the Kruskal–Wallis test is equivalent
to applying the usual analysis of variance to the ranks.

The rank transformation has wide applicability in experimental design problems for
which no nonparametric alternative to the analysis of variance exists. This includes many of
the designs in subsequent chapters of this book. If the data are ranked and the ordinary F test
is applied, an approximate procedure that has good statistical properties results [see Conover
and Iman (1976, 1981)]. When we are concerned about the normality assumption or the effect
of outliers or “wild” values, we recommend that the usual analysis of variance be performed
on both the original data and the ranks. When both procedures give similar results, the analy-
sis of variance assumptions are probably satisfied reasonably well, and the standard analysis
is satisfactory. When the two procedures differ, the rank transformation should be preferred
because it is less likely to be distorted by nonnormality and unusual observations. In such
cases, the experimenter may want to investigate the use of transformations for nonnormality
and examine the data and the experimental procedure to determine whether outliers are pres-
ent and why they have occurred.

3.12 Problems

F0 �
H/(a � 1)

(N � 1 � H)/(N � a)

3.1. An experimenter has conducted a single-factor exper-
iment with four levels of the factor, and each factor level has
been replicated six times. The computed value of the F-statis-
tic is F0 � 3.26. Find bounds on the P-value.

3.2. An experimenter has conducted a single-factor
experiment with six levels of the factor, and each factor level
has been replicated three times. The computed value of the 
F- statistic is F0 � 5.81. Find bounds on the P-value.

3.3. A computer ANOVA output is shown below. Fill in
the blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SS MS F P

Factor 3 36.15 ? ? ?

Error ? ? ?

Total 19 196.04

3.4. A computer ANOVA output is shown below. Fill in
the blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SS MS F P

Factor ? ? 246.93 ? ?

Error 25 186.53 ?

Total 29 1174.24

3.5. An article appeared in The Wall Street Journal on
Tuesday, April 27, 2010, with the title “Eating Chocolate Is
Linked to Depression.” The article reported on a study funded
by the National Heart, Lung and Blood Institute (part of the
National Institutes of Health) and conducted by faculty at the
University of California, San Diego, and the University of
California, Davis. The research was also published in the
Archives of Internal Medicine (2010, pp. 699–703). The study
examined 931 adults who were not taking antidepressants and
did not have known cardiovascular disease or diabetes. The
group was about 70% men and the average age of the group
was reported to be about 58. The participants were asked
about chocolate consumption and then screened for depres-
sion using a questionnaire. People who score less than 16 on
the questionnaire are not considered depressed, while those
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with scores above 16 and less than or equal to 22 are consid-
ered possibly depressed, while those with scores above 22 are
considered likely to be depressed. The survey found that peo-
ple who were not depressed ate an average 5.4 servings of
chocolate per month, possibly depressed individuals ate an
average of 8.4 servings of chocolate per month, while those
individuals who scored above 22 and were likely to be
depressed ate the most chocolate, an average of 11.8 servings
per month. No differentiation was made between dark and
milk chocolate. Other foods were also examined, but no pat-
tern emerged between other foods and depression. Is this
study really a designed experiment? Does it establish a cause-
and-effect link between chocolate consumption and depres-
sion? How would the study have to be conducted to establish
such a cause-and effect link?

3.6. An article in Bioelectromagnetics (“Electromagnetic
Effects on Forearm Disuse Osteopenia: A Randomized,
Double-Blind, Sham-Controlled Study,” Vol. 32, 2011, pp.
273–282) described a randomized, double-blind, sham-con-
trolled, feasibility and dosing study to determine if a com-
mon pulsing electromagnetic field (PEMF) treatment could
moderate the substantial osteopenia that occurs after fore-
arm disuse. Subjects were randomized into four groups after
a distal radius fracture, or carpal surgery requiring immobi-
lization in a cast. Active or identical sham PEMF transduc-
ers were worn on the distal forearm for 1, 2, or 4h/day for 
8 weeks starting after cast removal (“baseline”) when bone
density continues to decline. Bone mineral density (BMD)
and bone geometry were measured in the distal forearm by
dual energy X-ray absorptiometry (DXA) and peripheral
quantitative computed tomography (pQCT). The data below
are the percent losses in BMD measurements on the radius
after 16 weeks for patients wearing the active or sham PEMF
transducers for 1, 2, or 4h/day (data were constructed to
match the means and standard deviations read from a graph
in the paper).

(a) Is there evidence to support a claim that PEMF usage
affects BMD loss? If so, analyze the data to determine
which specific treatments produce the differences.

(b) Analyze the residuals from this experiment and comment
on the underlying assumptions and model adequacy.

PEMF PEMF PEMF 
Sham 1 h/day 2 h/day 4 h/day

4.51 5.32 4.73 7.03

7.95 6.00 5.81 4.65

4.97 5.12 5.69 6.65

3.00 7.08 3.86 5.49

7.97 5.48 4.06 6.98

2.23 6.52 6.56 4.85

3.95 4.09 8.34 7.26

5.64 6.28 3.01 5.92

9.35 7.77 6.71 5.58

6.52 5.68 6.51 7.91

4.96 8.47 1.70 4.90

6.10 4.58 5.89 4.54

7.19 4.11 6.55 8.18

4.03 5.72 5.34 5.42

2.72 5.91 5.88 6.03

9.19 6.89 7.50 7.04

5.17 6.99 3.28 5.17

5.70 4.98 5.38 7.60

5.85 9.94 7.30 7.90
6.45 6.38 5.46 7.91

3.7. The tensile strength of Portland cement is being stud-
ied. Four different mixing techniques can be used economi-
cally. A completely randomized experiment was conducted
and the following data were collected:

Mixing
Technique Tensile Strength (lb/in2)

1 3129 3000 2865 2890

2 3200 3300 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

(a) Test the hypothesis that mixing techniques affect the
strength of the cement. Use 	 � 0.05.

(b) Construct a graphical display as described in Section
3.5.3 to compare the mean tensile strengths for the
four mixing techniques. What are your conclusions?

(c) Use the Fisher LSD method with 	 � 0.05 to make
comparisons between pairs of means.

(d) Construct a normal probability plot of the residuals.
What conclusion would you draw about the validity of
the normality assumption?

(e) Plot the residuals versus the predicted tensile strength.
Comment on the plot.

(f ) Prepare a scatter plot of the results to aid the interpre-
tation of the results of this experiment.

3.8(a) Rework part (c) of Problem 3.7 using Tukey’s test
with 	 � 0.05. Do you get the same conclusions from
Tukey’s test that you did from the graphical procedure
and/or the Fisher LSD method?

(b) Explain the difference between the Tukey and Fisher
procedures.

3.9. Reconsider the experiment in Problem 3.7. Find a 95
percent confidence interval on the mean tensile strength of the
Portland cement produced by each of the four mixing techniques.
Also find a 95 percent confidence interval on the difference in
means for techniques 1 and 3. Does this aid you in interpreting
the results of the experiment?
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3.10. A product developer is investigating the tensile strength
of a new synthetic fiber that will be used to make cloth for
men’s shirts. Strength is usually affected by the percentage of
cotton used in the blend of materials for the fiber. The engineer
conducts a completely randomized experiment with five levels
of cotton content and replicates the experiment five times. The
data are shown in the following table.

Cotton
Weight 
Percent Observations

15 7 7 15 11 9

20 12 17 12 18 18

25 14 19 19 18 18

30 19 25 22 19 23

35 7 10 11 15 11

(a) Is there evidence to support the claim that cotton con-
tent affects the mean tensile strength? Use 
	 � 0.05.

(b) Use the Fisher LSD method to make comparisons
between the pairs of means. What conclusions can you
draw?

(c) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.11. Reconsider the experiment described in Problem
3.10. Suppose that 30 percent cotton content is a control. Use
Dunnett’s test with 	 � 0.05 to compare all of the other
means with the control.

3.12. A pharmaceutical manufacturer wants to investigate
the bioactivity of a new drug. A completely randomized
single-factor experiment was conducted with three dosage
levels, and the following results were obtained.

Dosage Observations

20 g 24 28 37 30

30 g 37 44 31 35

40 g 42 47 52 38

(a) Is there evidence to indicate that dosage level affects
bioactivity? Use 	 � 0.05.

(b) If it is appropriate to do so, make comparisons
between the pairs of means. What conclusions can you
draw?

(c) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.13. A rental car company wants to investigate whether the
type of car rented affects the length of the rental period. An
experiment is run for one week at a particular location, and 

10 rental contracts are selected at random for each car type.
The results are shown in the following table.

Type of Car Observations

Subcompact 3 5 3 7 6 5 3 2 1 6

Compact 1 3 4 7 5 6 3 2 1 7

Midsize 4 1 3 5 7 1 2 4 2 7

Full size 3 5 7 5 10 3 4 7 2 7

(a) Is there evidence to support a claim that the type of car
rented affects the length of the rental contract? Use 	
� 0.05. If so, which types of cars are responsible for
the difference?

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

(c) Notice that the response variable in this experiment is
a count. Should this cause any potential concerns
about the validity of the analysis of variance?

3.14. I belong to a golf club in my neighborhood. I divide the
year into three golf seasons: summer (June–September), winter
(November–March), and shoulder (October, April, and May). 
I believe that I play my best golf during the summer (because I
have more time and the course isn’t crowded) and shoulder
(because the course isn’t crowded) seasons, and my worst golf
is during the winter (because when all of the part-year residents
show up, the course is crowded, play is slow, and I get frustrat-
ed). Data from the last year are shown in the following table.

Season Observations

Summer 83 85 85 87 90 88 88 84 91 90

Shoulder 91 87 84 87 85 86 83

Winter 94 91 87 85 87 91 92 86

(a) Do the data indicate that my opinion is correct? Use 	
� 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.15. A regional opera company has tried three approaches
to solicit donations from 24 potential sponsors. The 24 poten-
tial sponsors were randomly divided into three groups of
eight, and one approach was used for each group. The dollar
amounts of the resulting contributions are shown in the fol-
lowing table.

Approach Contributions (in $)

1 1000 1500 1200 1800 1600 1100 1000 1250

2 1500 1800 2000 1200 2000 1700 1800 1900

3 900 1000 1200 1500 1200 1550 1000 1100
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(a) Do the data indicate that there is a difference in
results obtained from the three different approaches?
Use 	 � 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.16. An experiment was run to determine whether four
specific firing temperatures affect the density of a certain type
of brick. A completely randomized experiment led to the fol-
lowing data:

Temperature Density

100 21.8 21.9 21.7 21.6 21.7

125 21.7 21.4 21.5 21.4

150 21.9 21.8 21.8 21.6 21.5

175 21.9 21.7 21.8 21.4

(a) Does the firing temperature affect the density of the
bricks? Use 	 � 0.05.

(b) Is it appropriate to compare the means using the Fisher
LSD method (for example) in this experiment?

(c) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(d) Construct a graphical display of the treatment as
described in Section 3.5.3. Does this graph adequately
summarize the results of the analysis of variance in
part (a)?

3.17. Rework part (d) of Problem 3.16 using the Tukey
method. What conclusions can you draw? Explain carefully
how you modified the technique to account for unequal
sample sizes.

3.18. A manufacturer of television sets is interested in the
effect on tube conductivity of four different types of coating
for color picture tubes. A completely randomized experiment
is conducted and the following conductivity data are
obtained:

Coating Type Conductivity

1 143 141 150 146

2 152 149 137 143

3 134 136 132 127

4 129 127 132 129

(a) Is there a difference in conductivity due to coating
type? Use 	 � 0.05.

(b) Estimate the overall mean and the treatment effects.

(c) Compute a 95 percent confidence interval estimate
of the mean of coating type 4. Compute a 99 percent
confidence interval estimate of the mean difference
between coating types 1 and 4.

(d) Test all pairs of means using the Fisher LSD method
with 	 � 0.05.

(e) Use the graphical method discussed in Section 3.5.3 to
compare the means. Which coating type produces the
highest conductivity?

(f) Assuming that coating type 4 is currently in use, what
are your recommendations to the manufacturer? We
wish to minimize conductivity.

3.19. Reconsider the experiment from Problem 3.18.
Analyze the residuals and draw conclusions about model
adequacy.

3.20. An article in the ACI Materials Journal (Vol. 84,
1987, pp. 213–216) describes several experiments investi-
gating the rodding of concrete to remove entrapped air. 
A 3-inch � 6-inch cylinder was used, and the number of
times this rod was used is the design variable. The resulting
compressive strength of the concrete specimen is the
response. The data are shown in the following table:

Rodding
Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

(a) Is there any difference in compressive strength due to
the rodding level? Use 	 � 0.05.

(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment. What con-
clusions can you draw about the underlying model
assumptions?

(d) Construct a graphical display to compare the treatment
means as described in Section 3.5.3.

3.21. An article in Environment International (Vol. 18, No. 4,
1992) describes an experiment in which the amount of radon
released in showers was investigated. Radon-enriched water
was used in the experiment, and six different orifice diameters
were tested in shower heads. The data from the experiment are
shown in the following table:

Orifice
Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

(a) Does the size of the orifice affect the mean percentage
of radon released? Use 	 � 0.05.
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(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment.

(d) Find a 95 percent confidence interval on the mean per-
cent of radon released when the orifice diameter is 1.40.

(e) Construct a graphical display to compare the treatment
means as described in Section 3.5.3 What conclusions
can you draw?

3.22. The response time in milliseconds was determined for
three different types of circuits that could be used in an auto-
matic valve shutoff mechanism. The results from a complete-
ly randomized experiment are shown in the following table:

Circuit Type Response Time

1 9 12 10 8 15

2 20 21 23 17 30

3 6 5 8 16 7

(a) Test the hypothesis that the three circuit types have the
same response time. Use 	 � 0.01.

(b) Use Tukey’s test to compare pairs of treatment means.
Use 	 � 0.01.

(c) Use the graphical procedure in Section 3.5.3 to com-
pare the treatment means. What conclusions can you
draw? How do they compare with the conclusions
from part (b)?

(d) Construct a set of orthogonal contrasts, assuming that
at the outset of the experiment you suspected the
response time of circuit type 2 to be different from the
other two.

(e) If you were the design engineer and you wished to
minimize the response time, which circuit type would
you select?

(f ) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?

3.23. The effective life of insulating fluids at an accelerated
load of 35 kV is being studied. Test data have been obtained
for four types of fluids. The results from a completely ran-
domized experiment were as follows:

Fluid Type Life (in h) at 35 kV Load

1 17.6 18.9 16.3 17.4 20.1 21.6

2 16.9 15.3 18.6 17.1 19.5 20.3

3 21.4 23.6 19.4 18.5 20.5 22.3

4 19.3 21.1 16.9 17.5 18.3 19.8

(a) Is there any indication that the fluids differ? Use 	 �
0.05.

(b) Which fluid would you select, given that the objective
is long life?

(c) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?

3.24. Four different designs for a digital computer circuit
are being studied to compare the amount of noise present. The
following data have been obtained:

Circuit 
Design Noise Observed

1 19 20 19 30 8

2 80 61 73 56 80

3 47 26 25 35 50

4 95 46 83 78 97

(a) Is the same amount of noise present for all four
designs? Use 	 � 0.05.

(b) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(c) Which circuit design would you select for use? Low
noise is best.

3.25. Four chemists are asked to determine the percentage
of methyl alcohol in a certain chemical compound. Each
chemist makes three determinations, and the results are the
following:

Percentage of  
Chemist Methyl Alcohol

1 84.99 84.04 84.38

2 85.15 85.13 84.88

3 84.72 84.48 85.16

4 84.20 84.10 84.55

(a) Do chemists differ significantly? Use 	 � 0.05.

(b) Analyze the residuals from this experiment.

(c) If chemist 2 is a new employee, construct a meaning-
ful set of orthogonal contrasts that might have been
useful at the start of the experiment.

3.26. Three brands of batteries are under study. It is suspect-
ed that the lives (in weeks) of the three brands are different.
Five randomly selected batteries of each brand are tested with
the following results:

Weeks of Life

Brand 1 Brand 2 Brand 3

100 76 108

96 80 100

92 75 96

96 84 98

92 82 100
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(a) Are the lives of these brands of batteries different?

(b) Analyze the residuals from this experiment.

(c) Construct a 95 percent confidence interval estimate on
the mean life of battery brand 2. Construct a 99 per-
cent confidence interval estimate on the mean differ-
ence between the lives of battery brands 2 and 3.

(d) Which brand would you select for use? If the manu-
facturer will replace without charge any battery that
fails in less than 85 weeks, what percentage would
the company expect to replace?

3.27. Four catalysts that may affect the concentration of one
component in a three-component liquid mixture are being
investigated. The following concentrations are obtained from
a completely randomized experiment:

Catalyst

1 2 3 4

58.2 56.3 50.1 52.9

57.2 54.5 54.2 49.9

58.4 57.0 55.4 50.0

55.8 55.3 51.7

54.9

(a) Do the four catalysts have the same effect on the con-
centration?

(b) Analyze the residuals from this experiment.

(c) Construct a 99 percent confidence interval estimate of
the mean response for catalyst 1.

3.28. An experiment was performed to investigate the
effectiveness of five insulating materials. Four samples of
each material were tested at an elevated voltage level to accel-
erate the time to failure. The failure times (in minutes) are
shown below:

Material Failure Time (minutes)

1 110 157 194 178

2 1 2 4 18

3 880 1256 5276 4355

4 495 7040 5307 10,050

5 7 5 29 2

(a) Do all five materials have the same effect on mean fail-
ure time?

(b) Plot the residuals versus the predicted response.
Construct a normal probability plot of the residuals.
What information is conveyed by these plots?

(c) Based on your answer to part (b) conduct another
analysis of the failure time data and draw appropriate
conclusions.

3.29. A semiconductor manufacturer has developed three
different methods for reducing particle counts on wafers. All
three methods are tested on five different wafers and the after
treatment particle count obtained. The data are shown below:

Method Count

1 31 10 21 4 1

2 62 40 24 30 35

3 53 27 120 97 68

(a) Do all methods have the same effect on mean particle
count?

(b) Plot the residuals versus the predicted response.
Construct a normal probability plot of the residuals.
Are there potential concerns about the validity of the
assumptions?

(c) Based on your answer to part (b) conduct another
analysis of the particle count data and draw appropri-
ate conclusions.

3.30. A manufacturer suspects that the batches of raw mate-
rial furnished by his supplier differ significantly in calcium
content. There are a large number of batches currently in the
warehouse. Five of these are randomly selected for study. A
chemist makes five determinations on each batch and obtains
the following data:

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

23.46 23.59 23.51 23.28 23.29

23.48 23.46 23.64 23.40 23.46

23.56 23.42 23.46 23.37 23.37
23.39 23.49 23.52 23.46 23.32
23.40 23.50 23.49 23.39 23.38

(a) Is there significant variation in calcium content from
batch to batch? Use 	 = 0.05.

(b) Estimate the components of variance.

(c) Find a 95 percent confidence interval for .

(d) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

3.31. Several ovens in a metal working shop are used to
heat metal specimens. All the ovens are supposed to operate at
the same temperature, although it is suspected that this may
not be true. Three ovens are selected at random, and their tem-
peratures on successive heats are noted. The data collected are
as follows:

Oven Temperature

1 491.50 498.30 498.10 493.50 493.60

2 488.50 484.65 479.90 477.35

3 490.10 484.80 488.25 473.00 471.85 478.65

�2
� � (�2
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(a) Is there significant variation in temperature between
ovens? Use 	 = 0.05.

(b) Estimate the components of variance for this model.

(c) Analyze the residuals from this experiment and draw
conclusions about model adequacy.

3.32. An article in the Journal of the Electrochemical
Society (Vol. 139, No. 2, 1992, pp. 524–532) describes an
experiment to investigate the low-pressure vapor deposition of
polysilicon. The experiment was carried out in a large-capaci-
ty reactor at Sematech in Austin, Texas. The reactor has sever-
al wafer positions, and four of these positions are selected at
random. The response variable is film thickness uniformity.
Three replicates of the experiment were run, and the data are
as follows:

Wafer Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

(a) Is there a difference in the wafer positions? Use 	 =
0.05.

(b) Estimate the variability due to wafer positions.

(c) Estimate the rendom error component.

(d) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.33. Consider the vapor-deposition experiment described
in Problem 3.32. 

(a) Estimate the total variability in the uniformity response. 

(b) How much of the total variability in the uniformity
response is due to the difference between positions in
the reactor?

(c) To what level could the variability in the uniformity
response be reduced if the position-to-position vari-
ability in the reactor could be eliminated? Do you
believe this is a significant reduction?

3.34. An article in the Journal of Quality Technology (Vol.
13, No. 2, 1981, pp. 111–114) describes an experiment that
investigates the effects of four bleaching chemicals on pulp
brightness. These four chemicals were selected at random
from a large population of potential bleaching agents. The
data are as follows:

Oven Temperature

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

(a) Is there a difference in the chemical types? Use � =
0.05.

(b) Estimate the variability due to chemical types.

(c) Estimate the variability due to random error.

(d) Analyze the residuals from this experimental and com-
ment on model adequacy.

3.35. Consider the single-factor random effects model dis-
cussed in this chapter. Develop a procedure for finding a
100(1 – 	)% confidence interval on the ratio �2�(�2

� � �2).
Assume that the experiment is balanced.

3.36. Consider testing the equality of the means of two nor-
mal populations, where the variances are unknown but are
assumed to be equal. The appropriate test procedure is 
the pooled t-test. Show that the pooled t-test is equivalent to
the single-factor analysis of variance.

3.37. Show that the variance of the linear combination
ciyi. is �2 .

3.38. In a fixed effects experiment, suppose that there are n
observations for each of the four treatments. Let be
single-degree-of-freedom components for the orthogonal con-
trasts. Prove that SSTreatments � .

3.39. Use Bartlett’s test to determine if the assumption of
equal variances is satisfied in Problem 3.24. Use 	 � 0.05.
Did you reach the same conclusion regarding equality of vari-
ances by examining residual plots?

3.40. Use the modified Levene test to determine if the
assumption of equal variances is satisfied in Problem 3.26.
Use 	 � 0.05. Did you reach the same conclusion regarding
the equality of variances by examining residual plots?

3.41. Refer to Problem 3.22. If we wish to detect a maximum
difference in mean response times of 10 milliseconds with a
probability of at least 0.90, what sample size should be used?
How would you obtain a preliminary estimate of �2?

3.42. Refer to Problem 3.26.

(a) If we wish to detect a maximum difference in battery life
of 10 hours with a probability of at least 0.90, what sam-
ple size should be used? Discuss how you would obtain
a preliminary estimate of �2 for answering this question.

(b) If the difference between brands is great enough so that
the standard deviation of an observation is increased by
25 percent, what sample size should be used if we wish
to detect this with a probability of at least 0.90?

3.43. Consider the experiment in Problem 3.26. If we wish
to construct a 95 percent confidence interval on the difference
in two mean battery lives that has an accuracy of 
2 weeks,
how many batteries of each brand must be tested?

3.44. Suppose that four normal populations have means of
�1 � 50, �2 � 60, �3 � 50, and �4 � 60. How many obser-
vations should be taken from each population so that the
probability of rejecting the null hypothesis of equal popula-
tion means is at least 0.90? Assume that 	 � 0.05 and that a
reasonable estimate of the error variance is �2 � 25.
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1 � Q2

2 � Q2
3

Q2
1, Q2
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3
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3.45. Refer to Problem 3.44.

(a) How would your answer change if a reasonable esti-
mate of the experimental error variance were �2 � 36?

(b) How would your answer change if a reasonable esti-
mate of the experimental error variance were �2 � 49?

(c) Can you draw any conclusions about the sensitivity of
your answer in this particular situation about how your
estimate of � affects the decision about sample size?

(d) Can you make any recommendations about how we
should use this general approach to choosing n in
practice?

3.46. Refer to the aluminum smelting experiment described
in Section 3.8.3. Verify that ratio control methods do not affect
average cell voltage. Construct a normal probability plot of the
residuals. Plot the residuals versus the predicted values. Is there
an indication that any underlying assumptions are violated?

3.47. Refer to the aluminum smelting experiment in
Section 3.8.3. Verify the ANOVA for pot noise summarized in
Table 3.16. Examine the usual residual plots and comment on
the experimental validity.

3.48. Four different feed rates were investigated in an
experiment on a CNC machine producing a component part
used in an aircraft auxiliary power unit. The manufacturing
engineer in charge of the experiment knows that a critical
part dimension of interest may be affected by the feed rate.
However, prior experience has indicated that only disper-
sion effects are likely to be present. That is, changing the
feed rate does not affect the average dimension, but it could
affect dimensional variability. The engineer makes five pro-
duction runs at each feed rate and obtains the standard devi-
ation of the critical dimension (in 10�3 mm). The data are
shown below. Assume that all runs were made in random
order.

Production Run

Feed Rate 
(in/min) 1 2 3 4 5

10 0.09 0.10 0.13 0.08 0.07

12 0.06 0.09 0.12 0.07 0.12

14 0.11 0.08 0.08 0.05 0.06

16 0.19 0.13 0.15 0.20 0.11

(a) Does feed rate have any effect on the standard devia-
tion of this critical dimension?

(b) Use the residuals from this experiment to investigate
model adequacy. Are there any problems with experi-
mental validity?

3.49. Consider the data shown in Problem 3.22.

(a) Write out the least squares normal equations for this
problem and solve them for and , using the usual
constraint ( ). Estimate �1 � �2.�3

i�1�̂i � 0
�̂i�̂

(b) Solve the equations in (a) using the constraint .
Are the estimators and the same as you found in
(a)? Why? Now estimate�1 � �2 and compare your
answer with that for (a). What statement can you make
about estimating contrasts in the �i?

(c) Estimate � � �1, 2�1 � �2 � �3, and � � �1 � �2

using the two solutions to the normal equations. Compare
the results obtained in each case.

3.50. Apply the general regression significance test to the
experiment in Example 3.5. Show that the procedure yields
the same results as the usual analysis of variance.

3.51. Use the Kruskal–Wallis test for the experiment in
Problem 3.23. Compare the conclusions obtained with those
from the usual analysis of variance.

3.52. Use the Kruskal–Wallis test for the experiment in
Problem 3.23. Are the results comparable to those found by
the usual analysis of variance?

3.53. Consider the experiment in Example 3.5. Suppose
that the largest observation on etch rate is incorrectly record-
ed as 250 Å/min. What effect does this have on the usual
analysis of variance? What effect does it have on the
Kruskal–Wallis test?

3.54. A textile mill has a large number of looms. Each loom
is supposed to provide the same output of cloth per minute. To
investigate this assumption, five looms are chosen at random,
and their output is noted at different times. The following data
are obtained:

Loom Output (lb/min)

1 14.0 14.1 14.2 14.0 14.1

2 13.9 13.8 13.9 14.0 14.0

3 14.1 14.2 14.1 14.0 13.9
4 13.6 13.8 14.0 13.9 13.7
5 13.8 13.6 13.9 13.8 14.0

(a) Explain why this is a random effects experiment. Are
the looms equal in output? Use 	 = 0.05.

(b) Estimate the variability between looms.

(c) Estimate the experimental error variance.

(d) Find a 95 percent confidence interval for .

(e) Analyze the residuals from this experiment. Do you think
that the analysis of variance assumptions are satisfied?

(f) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.

3.55. A manufacturer suspects that the batches of raw mate-
rial furnished by his supplier differ significantly in calcium
content. There are a large number of batches currently in the
warehouse. Five of these are randomly selected for study. 
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A chemist makes five determinations on each batch and
obtains the following data:

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

23.46 23.59 23.51 23.28 23.29

23.48 23.46 23.64 23.40 23.46

23.56 23.42 23.46 23.37 23.37
23.39 23.49 23.52 23.46 23.32
23.40 23.50 23.49 23.39 23.38

(a) Is there significant variation in calcium content from
batch to batch? Use 	 = 0.05.

(b) Estimate the components of variance.

(c) Find a 95 percent confidence interval for .

(d) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(e) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.
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