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In this chapter, we consider experiments to compare two conditions (sometimes called
treatments). These are often called simple comparative experiments. We begin with an

example of an experiment performed to determine whether two different formulations of a
product give equivalent results. The discussion leads to a review of several basic statistical
concepts, such as random variables, probability distributions, random samples, sampling dis-
tributions, and tests of hypotheses.

2.1 Introduction

An engineer is studying the formulation of a Portland cement mortar. He has added a poly-
mer latex emulsion during mixing to determine if this impacts the curing time and tension
bond strength of the mortar. The experimenter prepared 10 samples of the original formula-
tion and 10 samples of the modified formulation. We will refer to the two different formula-
tions as two treatments or as two levels of the factor formulations. When the cure process
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was completed, the experimenter did find a very large reduction in the cure time for the
modified mortar formulation. Then he began to address the tension bond strength of
the mortar. If the new mortar formulation has an adverse effect on bond strength, this could
impact its usefulness.

The tension bond strength data from this experiment are shown in Table 2.1 and plot-
ted in Figure 2.1. The graph is called a dot diagram. Visual examination of these data gives
the impression that the strength of the unmodified mortar may be greater than the strength of
the modified mortar. This impression is supported by comparing the average tension bond
strengths, for the modified mortar and for the
unmodified mortar. The average tension bond strengths in these two samples differ by what
seems to be a modest amount. However, it is not obvious that this difference is large enough
to imply that the two formulations really are different. Perhaps this observed difference in
average strengths is the result of sampling fluctuation and the two formulations are really
identical. Possibly another two samples would give opposite results, with the strength of the
modified mortar exceeding that of the unmodified formulation.

A technique of statistical inference called hypothesis testing can be used to assist
the experimenter in comparing these two formulations. Hypothesis testing allows the com-
parison of the two formulations to be made on objective terms, with knowledge of the
risks associated with reaching the wrong conclusion. Before presenting procedures for
hypothesis testing in simple comparative experiments, we will briefly summarize some
elementary statistical concepts.

y2 � 17.04 kgf/cm2y1 � 16.76 kgf/cm2
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■ TA B L E  2 . 1
Tension Bond Strength Data for the Portland
Cement Formulation Experiment

Modified Unmodified
Mortar Mortar

j y1j y2j

1 16.85 16.62

2 16.40 16.75

3 17.21 17.37

4 16.35 17.12

5 16.52 16.98

6 17.04 16.87

7 16.96 17.34

8 17.15 17.02

9 16.59 17.08

10 16.57 17.27

17.0816.9416.80

y1 = 16.76

16.6616.5216.38 17.22 17.36

Strength (kgf/cm2)
y2 = 17.04

Modified

Unmodified

■ F I G U R E 2 . 1 Dot diagram for the tension bond strength data in Table 2.1



2.2 Basic Statistical Concepts

Each of the observations in the Portland cement experiment described above would be called
a run. Notice that the individual runs differ, so there is fluctuation, or noise, in the observed
bond strengths. This noise is usually called experimental error or simply error. It is a sta-
tistical error, meaning that it arises from variation that is uncontrolled and generally
unavoidable. The presence of error or noise implies that the response variable, tension bond
strength, is a random variable. A random variable may be either discrete or continuous. If
the set of all possible values of the random variable is either finite or countably infinite, then
the random variable is discrete, whereas if the set of all possible values of the random variable
is an interval, then the random variable is continuous.

Graphical Description of Variability. We often use simple graphical methods to
assist in analyzing the data from an experiment. The dot diagram, illustrated in Figure 2.1, is
a very useful device for displaying a small body of data (say up to about 20 observations). The
dot diagram enables the experimenter to see quickly the general location or central tendency
of the observations and their spread or variability. For example, in the Portland cement tension
bond experiment, the dot diagram reveals that the two formulations may differ in mean strength
but that both formulations produce about the same variability in strength.

If the data are fairly numerous, the dots in a dot diagram become difficult to distinguish
and a histogram may be preferable. Figure 2.2 presents a histogram for 200 observations on the
metal recovery, or yield, from a smelting process. The histogram shows the central tendency,
spread, and general shape of the distribution of the data. Recall that a histogram is constructed
by dividing the horizontal axis into bins (usually of equal length) and drawing a rectangle over
the jth bin with the area of the rectangle proportional to nj, the number of observations that fall
in that bin. The histogram is a large-sample tool. When the sample size is small the shape of the
histogram can be very sensitive to the number of bins, the width of the bins, and the starting
value for the first bin. Histograms should not be used with fewer than 75–100 observations.

The box plot (or box-and-whisker plot) is a very useful way to display data. A box
plot displays the minimum, the maximum, the lower and upper quartiles (the 25th percentile
and the 75th percentile, respectively), and the median (the 50th percentile) on a rectangular
box aligned either horizontally or vertically. The box extends from the lower quartile to the
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■ F I G U R E  2 . 2 Histogram for 200 observations on metal recovery (yield) from 
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upper quartile, and a line is drawn through the box at the median. Lines (or whiskers) extend
from the ends of the box to (typically) the minimum and maximum values. [There are several
variations of box plots that have different rules for denoting the extreme sample points. See
Montgomery and Runger (2011) for more details.]

Figure 2.3 presents the box plots for the two samples of tension bond strength in the
Portland cement mortar experiment. This display indicates some difference in mean strength
between the two formulations. It also indicates that both formulations produce reasonably
symmetric distributions of strength with similar variability or spread.

Dot diagrams, histograms, and box plots are useful for summarizing the information in
a sample of data. To describe the observations that might occur in a sample more completely,
we use the concept of the probability distribution.

Probability Distributions. The probability structure of a random variable, say y, is
described by its probability distribution. If y is discrete, we often call the probability distri-
bution of y, say p(y), the probability mass function of y. If y is continuous, the probability dis-
tribution of y, say f(y), is often called the probability density function for y.

Figure 2.4 illustrates hypothetical discrete and continuous probability distributions.
Notice that in the discrete probability distribution Fig. 2.4a, it is the height of the function
p(yj) that represents probability, whereas in the continuous case Fig. 2.4b, it is the area under
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(a) A discrete distribution

p
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j)

f(
y)

y1 y3
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y5 y7 y9 y11 y13
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(b) A continuous distribution
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■ F I G U R E  2 . 4 Discrete and continuous probability distributions



the curve f(y) associated with a given interval that represents probability. The properties of
probability distributions may be summarized quantitatively as follows:

Mean, Variance, and Expected Values. The mean, �, of a probability distribution
is a measure of its central tendency or location. Mathematically, we define the mean as

(2.1)

We may also express the mean in terms of the expected value or the long-run average value
of the random variable y as

(2.2)

where E denotes the expected value operator.
The variability or dispersion of a probability distribution can be measured by the vari-

ance, defined as

(2.3)

Note that the variance can be expressed entirely in terms of expectation because

(2.4)

Finally, the variance is used so extensively that it is convenient to define a variance opera-
tor V such that

(2.5)

The concepts of expected value and variance are used extensively throughout this book,
and it may be helpful to review several elementary results concerning these operators. If y is
a random variable with mean � and variance �2 and c is a constant, then

1. E(c) � c

2. E(y) � �

V(y) � E[(y � �)2] � � 2

� 2 � E[(y � �)2]

� 2 � ��
�

��
 (y � �)2f (y) dy

�
all y

 (y � �)2p(y)

 y continuous

 y discrete

� � E(y) � ��
�

��
yf (y) dy

�
all y

yp(y)

 y continuous

 y discrete

� � ��
�

��
yf (y) dy

�
all y

yp(y)

 y continuous

 y discrete

��

��
f (y) dy � 1

P(a � y � b) � � b

a
f (y) dy

y continuous:         0 � f (y)

�
all values

of yj

p(yj) � 1

P(y � yj) � p(yj)    all values of yj

y discrete:   0 � p(yj) � 1             all values of yj
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3. E(cy) � cE(y) � c�

4. V(c) � 0

5. V(y) � �2

6. V(cy) � c2V(y) � c2�2

If there are two random variables, say, y1 with E(y1) � �1 and V(y1) � and y2 with
E(y2) � �2 and V(y2) � , we have

7. E(y1 � y2) � E(y1) � E(y2) � �1 � �2

It is possible to show that

8. V(y1 � y2) � V(y1) � V(y2) � 2 Cov(y1, y2)

where

(2.6)

is the covariance of the random variables y1 and y2. The covariance is a measure of the lin-
ear association between y1 and y2. More specifically, we may show that if y1 and y2 are inde-
pendent,1 then Cov(y1, y2) � 0. We may also show that

9. V(y1 � y2) � V(y1) � V(y2) � 2 Cov(y1, y2)

If y1 and y2 are independent, we have

10. V(y1 
 y2) � V(y1) � V(y2) �

and

11. E(y1
. y2) � E(y1) . E(y2) � �1

. �2

However, note that, in general

12.

regardless of whether or not y1 and y2 are independent.

2.3 Sampling and Sampling Distributions

Random Samples, Sample Mean, and Sample Variance. The objective of statistical
inference is to draw conclusions about a population using a sample from that population.
Most of the methods that we will study assume that random samples are used. A random
sample is a sample that has been selected from the population in such a way that every pos-
sible sample has an equal probability of being selected. In practice, it is sometimes difficult
to obtain random samples, and random numbers generated by a computer program may be
helpful.

Statistical inference makes considerable use of quantities computed from the observa-
tions in the sample. We define a statistic as any function of the observations in a sample that

E�y1

y2� Z
E(y1)
E(y2)

� 2
1 � � 2

2

Cov(y1, y2) � E [(y1 � �1)(y2 � �2)]

�2
2

�2
1
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1 Note that the converse of this is not necessarily so; that is, we may have Cov(y1, y2) � 0 and yet this does not imply independence.
For an example, see Hines et al. (2003).



does not contain unknown parameters. For example, suppose that y1, y2, . . . , yn represents a
sample. Then the sample mean

(2.7)

and the sample variance

(2.8)

are both statistics. These quantities are measures of the central tendency and dispersion of the
sample, respectively. Sometimes S � , called the sample standard deviation, is used as
a measure of dispersion. Experimenters often prefer to use the standard deviation to measure
dispersion because its units are the same as those for the variable of interest y.

Properties of the Sample Mean and Variance. The sample mean is a point
estimator of the population mean �, and the sample variance S2 is a point estimator of the
population variance �2. In general, an estimator of an unknown parameter is a statistic that
corresponds to that parameter. Note that a point estimator is a random variable. A particular
numerical value of an estimator, computed from sample data, is called an estimate. For example,
suppose we wish to estimate the mean and variance of the suspended solid material in the
water of a lake. A random sample of n � 25 observation is tested, and the mg/l of suspended
solid material is recorded for each. The sample mean and variance are computed according to
Equations 2.7 and 2.8, respectively, and are and S2 � 1.20. Therefore, the estimate
of � is , and the estimate of �2 is S2 � 1.20.

Several properties are required of good point estimators. Two of the most important are
the following:

1. The point estimator should be unbiased. That is, the long-run average or expected
value of the point estimator should be equal to the parameter that is being estimated.
Although unbiasedness is desirable, this property alone does not always make an
estimator a good one.

2. An unbiased estimator should have minimum variance. This property states that
the minimum variance point estimator has a variance that is smaller than the vari-
ance of any other estimator of that parameter.

We may easily show that and S2 are unbiased estimators of � and �2, respectively.
First consider . Using the properties of expectation, we have

because the expected value of each observation yi is �. Thus, is an unbiased estimator of �.y

� �

�
1
n �

n

i�1
�

�
1
n �

n

i�1
E(yi)

E(y ) � E��
n

i�1
yi

n
�

y
y

y � 18.6
y � 18.6

y

�S2

S2 �
�
n

i�1
 (yi � y)2

n � 1

y �
�
n

i�1
yi

n
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Now consider the sample variance S2. We have

where SS � is the corrected sum of squares of the observations yi. Now

(2.9)

(2.10)

Therefore,

and we see that S2 is an unbiased estimator of �2.

Degrees of Freedom. The quantity n � 1 in Equation 2.10 is called the number of
degrees of freedom of the sum of squares SS. This is a very general result; that is, if y is a
random variable with variance �2 and SS � �(yi � )2 has degrees of freedom, then

(2.11)

The number of degrees of freedom of a sum of squares is equal to the number of independ-
ent elements in that sum of squares. For example, SS � in Equation 2.9 consists
of the sum of squares of the n elements y1 � , y2 � , . . . , yn � . These elements are not
all independent because ; in fact, only n � 1 of them are independent,
implying that SS has n � 1 degrees of freedom.

The Normal and Other Sampling Distributions. Often we are able to determine
the probability distribution of a particular statistic if we know the probability distribution of
the population from which the sample was drawn. The probability distribution of a statistic
is called a sampling distribution. We will now briefly discuss several useful sampling
distributions.

One of the most important sampling distributions is the normal distribution. If y is a
normal random variable, the probability distribution of y is

(2.12)

where � � � � is the mean of the distribution and �2  0 is the variance. The normal
distribution is shown in Figure 2.5.

��

f (y) �
1

��2�
e�(1/2)[(y��)/�]2

  �� � y � �

�n
i�1(yi � y) � 0

yyy
�n

i�1(yi � y)2

E �SS
v � � � 2

vy

E(S 2) �
1

n � 1
E(SS) � � 2

�  (n � 1)� 2

� �
n

i�1
 (�2 � � 2) � n(�2 � � 2/n)

� E��
n

i�1
y2

i � ny 2	

E(SS) � E��
n

i�1
 (yi � y)2	

�n
i�1(yi� y)2

�
1

n � 1
E(SS)

�
1

n � 1
E��

n

i�1
 (yi � y )2	

E(S 2) � E��
n

i�1
 (yi � y )2

n � 1
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Because sample runs that differ as a result of experimental error often are well
described by the normal distribution, the normal plays a central role in the analysis of data
from designed experiments. Many important sampling distributions may also be defined in
terms of normal random variables. We often use the notation y ~ N(�, �2) to denote that y is
distributed normally with mean � and variance �2.

An important special case of the normal distribution is the standard normal distribu-
tion; that is, � � 0 and �2 � 1. We see that if y ~ N(�, �2), the random variable

(2.13)

follows the standard normal distribution, denoted z ~ N(0, 1). The operation demonstrated in
Equation 2.13 is often called standardizing the normal random variable y. The cumulative
standard normal distribution is given in Table I of the Appendix.

Many statistical techniques assume that the random variable is normally distributed.
The central limit theorem is often a justification of approximate normality.

z �
y � �

�
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THEOREM 2-1
The Central Limit Theorem

If y1, y2, . . . , yn is a sequence of n independent and identically distributed random vari-
ables with E(yi) � � and V(yi) � �2 (both finite) and x � y1 � y2 � � yn, then the
limiting form of the distribution of

as n , is the standard normal distribution.�l
zn �

x � n�

�n� 2

Á

This result states essentially that the sum of n independent and identically distributed
random variables is approximately normally distributed. In many cases, this approximation is
good for very small n, say n � 10, whereas in other cases large n is required, say n  100.
Frequently, we think of the error in an experiment as arising in an additive manner from sev-
eral independent sources; consequently, the normal distribution becomes a plausible model
for the combined experimental error.

An important sampling distribution that can be defined in terms of normal random vari-
ables is the chi-square or 2 distribution. If z1, z2, . . . , zk are normally and independently
distributed random variables with mean 0 and variance 1, abbreviated NID(0, 1), then the ran-
dom variable

x � z2
1 � z2

2 � Á � z2
k

�



follows the chi-square distribution with k degrees of freedom. The density function of chi-
square is

(2.14)

Several chi-square distributions are shown in Figure 2.6. The distribution is asymmetric,
or skewed, with mean and variance

respectively. Percentage points of the chi-square distribution are given in Table III of the
Appendix.

As an example of a random variable that follows the chi-square distribution, suppose
that y1, y2, . . . , yn is a random sample from an N(�, �2) distribution. Then

(2.15)

That is, SS/�2 is distributed as chi-square with n � 1 degrees of freedom.
Many of the techniques used in this book involve the computation and manipulation of

sums of squares. The result given in Equation 2.15 is extremely important and occurs repeat-
edly; a sum of squares in normal random variables when divided by �2 follows the chi-square
distribution.

Examining Equation 2.8, we see that the sample variance can be written as

(2.16)

If the observations in the sample are NID(�, �2), then the distribution of S2 is [�2/(n � 1)] .
Thus, the sampling distribution of the sample variance is a constant times the chi-square dis-
tribution if the population is normally distributed.

If z and are independent standard normal and chi-square random variables, respec-
tively, the random variable

(2.17)tk �
z

�� 2
k/k

�2
k

� 2
n�1

S 2 �
SS

n � 1

SS
� 2

�
�
n

i�1
 (yi � y )2

� 2

 � 2

n�1

� 2 �  2k
� � k

f (x) �
1

2k/2��k
2�

x(k/2)�1e�x/2   x � 0
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follows the t distribution with k degrees of freedom, denoted tk. The density function of t is

(2.18)

and the mean and variance of t are � � 0 and �2 � k/(k � 2) for k  2, respectively. Several
t distributions are shown in Figure 2.7. Note that if k � , the t distribution becomes the stan-
dard normal distribution. The percentage points of the t distribution are given in Table II of
the Appendix. If y1, y2, . . . , yn is a random sample from the N(�, �2) distribution, then the
quantity

(2.19)

is distributed as t with n � 1 degrees of freedom.
The final sampling distribution that we will consider is the F distribution. If and 

are two independent chi-square random variables with u and degrees of freedom, respec-
tively, then the ratio

(2.20)

follows the F distribution with u numerator degrees of freedom and denominator
degrees of freedom. If x is an F random variable with u numerator and denominator
degrees of freedom, then the probability distribution of x is

(2.21)

Several F distributions are shown in Figure 2.8. This distribution is very important in the sta-
tistical analysis of designed experiments. Percentage points of the F distribution are given in
Table IV of the Appendix.

As an example of a statistic that is distributed as F, suppose we have two independent
normal populations with common variance �2. If y11, y12, . . . , is a random sample of n1

observations from the first population, and if y21, y22, . . . , is a random sample of n2 obser-
vations from the second, then

(2.22)
S 2

1

S 2
2


 Fn1�1, n2�1

y2n2

y1n1

h(x) �

��u � v
2 ��u

v�u/2

x(u/2)�1

��u
x���v

2���u
v�x � 1	(u�v)/2

  0 � x � �

v
v

Fu,v �
� 2

u /u

� 2
v /v

v
�2

v� 2
u

t �
y � �

S/�n

�

f (t) �
�[(k � 1)/2]

�k��(k/2)
1

[(t 2/k) � 1](k�1)/2
  �� � t � �
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where and are the two sample variances. This result follows directly from Equations 2.15
and 2.20.

2.4 Inferences About the Differences in 
Means, Randomized Designs

We are now ready to return to the Portland cement mortar problem posed in Section 2.1. Recall
that two different formulations of mortar were being investigated to determine if they differ in
tension bond strength. In this section we discuss how the data from this simple comparative
experiment can be analyzed using hypothesis testing and confidence interval procedures for
comparing two treatment means.

Throughout this section we assume that a completely randomized experimental
design is used. In such a design, the data are usually viewed as if they were a random sample
from a normal distribution.

2.4.1 Hypothesis Testing

We now reconsider the Portland cement experiment introduced in Section 2.1. Recall that we
are interested in comparing the strength of two different formulations: an unmodified mortar
and a modified mortar. In general, we can think of these two formulations as two levels of the
factor “formulations.” Let y11, y12, . . . , represent the n1 observations from the first factor
level and y21, y22, . . . , represent the n2 observations from the second factor level. We
assume that the samples are drawn at random from two independent normal populations.
Figure 2.9 illustrates the situation.

A Model for the Data. We often describe the results of an experiment with a model.
A simple statistical model that describes the data from an experiment such as we have just
described is

(2.23)

where yij is the jth observation from factor level i, �i is the mean of the response at the ith fac-
tor level, and ij is a normal random variable associated with the ijth observation. We assume�

yij � �i � �ij�i � 1, 2
j � 1, 2, . . . , ni

y2n2

y1n1

S2
2S2

1
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that ij are NID(0, ), i � 1, 2. It is customary to refer to ij as the random error compo-
nent of the model. Because the means �1 and �2 are constants, we see directly from the model
that yij are NID(�i, ), i � 1, 2, just as we previously assumed. For more information about
models for the data, refer to the supplemental text material.

Statistical Hypotheses. A statistical hypothesis is a statement either about the
parameters of a probability distribution or the parameters of a model. The hypothesis
reflects some conjecture about the problem situation. For example, in the Portland cement
experiment, we may think that the mean tension bond strengths of the two mortar formula-
tions are equal. This may be stated formally as

where �1 is the mean tension bond strength of the modified mortar and �2 is the mean ten-
sion bond strength of the unmodified mortar. The statement H0 :�1 � �2 is called the null
hypothesis and H1 :�1 � �2 is called the alternative hypothesis. The alternative hypothe-
sis specified here is called a two-sided alternative hypothesis because it would be true if
�1 � �2 or if �1  �2.

To test a hypothesis, we devise a procedure for taking a random sample, computing an
appropriate test statistic, and then rejecting or failing to reject the null hypothesis H0 based
on the computed value of the test statistic. Part of this procedure is specifying the set of val-
ues for the test statistic that leads to rejection of H0. This set of values is called the critical
region or rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis
is rejected when it is true, a type I error has occurred. If the null hypothesis is not rejected
when it is false, a type II error has been made. The probabilities of these two errors are given
special symbols

Sometimes it is more convenient to work with the power of the test, where

The general procedure in hypothesis testing is to specify a value of the probability of type I
error 	, often called the significance level of the test, and then design the test procedure so
that the probability of type II error � has a suitably small value.

Power � 1 � � � P(reject H0�H0 is false)

� � P(type II error) � P(fail to reject H0 �H0 is false)

	 � P(type I error) � P(reject H0�H0 is true)

H1��1 Z �2

H0��1 � �2

� 2
i

�� 2
i�
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Factor level 1

Sample 1: y11, y12,..., y1n1

N(μ1, σ 1
2)

Factor level 2

Sample 2: y21, y22,..., y2n2

μ1 μ2

σ 1

N(μ2, σ 2
2)

σ 2
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The Two-Sample t-Test. Suppose that we could assume that the variances of tension
bond strengths were identical for both mortar formulations. Then the appropriate test statistic
to use for comparing two treatment means in the completely randomized design is

(2.24)

where and are the sample means, n1 and n2 are the sample sizes, is an estimate of the
common variance computed from

(2.25)

and and are the two individual sample variances. The quality Sp in the denom-

inator of Equation 2.24 is often called the standard error of the difference in means in the

numerator, abbreviated To determine whether to reject H0 :�1 � �2, we would

compare t0 to the t distribution with n1 � n2 � 2 degrees of freedom. If �t0�  , where

is the upper 	/2 percentage point of the t distribution with n1 � n2 � 2 degrees of

freedom, we would reject H0 and conclude that the mean strengths of the two formulations of

Portland cement mortar differ. This test procedure is usually called the two-sample t-test.

This procedure may be justified as follows. If we are sampling from independent nor-
mal distributions, then the distribution of is N[�1 � �2, �2(1/n1 � 1/n2)]. Thus, if �2

were known, and if H0 : �1 � �2 were true, the distribution of

(2.26)

would be N(0, 1). However, in replacing � in Equation 2.26 by Sp, the distribution of Z0

changes from standard normal to t with n1 � n2 � 2 degrees of freedom. Now if H0 is true, t0

in Equation 2.24 is distributed as and, consequently, we would expect 100(1 � 	) per-
cent of the values of t0 to fall between and . A sample producing a value
of t0 outside these limits would be unusual if the null hypothesis were true and is evidence
that H0 should be rejected. Thus the t distribution with n1 � n2 � 2 degrees of freedom is the
appropriate reference distribution for the test statistic t0. That is, it describes the behavior of
t0 when the null hypothesis is true. Note that 	 is the probability of type I error for the test.
Sometimes 	 is called the significance level of the test.

In some problems, one may wish to reject H0 only if one mean is larger than the other.
Thus, one would specify a one-sided alternative hypothesis H1 : �1  �2 and would reject
H0 only if t0  . If one wants to reject H0 only if �1 is less than �2, then the alterna-
tive hypothesis is H1 :�1 � �2, and one would reject H0 if t0 �

To illustrate the procedure, consider the Portland cement data in Table 2.1. For these
data, we find that

Modified Mortar Unmodified Mortar

� 16.76 kgf/cm2 � 17.04 kgf/cm2

� 0.100 � 0.061

S1 � 0.316 S2 � 0.248

n1 � 10 n2 � 10

S2
2S2

1

y2y1

�t	,n1�n2�2.
t	,n1�n2�2

t	/2, n1�n2�2�t	/2, n1�n2�2

tn1�n2�2

Z0 �
y1 � y2

�� 1
n1

�
1
n2

y1 � y2

t	/2,n1�n2�2

t	/2,n1�n2�2

se (y1 � y2).

� 1
n1

�
1
n2

S2
2S2

1

S 2
p �

(n1 � 1)S 2
1 � (n2 � 1)S 2

2

n1 � n2 � 2

�2
1 � �2

2 � �2
S2

py2y1

t0 �
y1 � y2

Sp� 1
n1

�
1
n2
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Because the sample standard deviations are reasonably similar, it is not unreasonable to con-
clude that the population standard deviations (or variances) are equal. Therefore, we can use
Equation 2.24 to test the hypotheses

Furthermore, n1 � n2 � 2 � 10 � 10 � 2 � 18, and if we choose 	 � 0.05, then we would
reject H0 :�1 � �2 if the numerical value of the test statistic t0  t0.025,18 � 2.101, or if t0 �
�t0.025,18 � �2.101. These boundaries of the critical region are shown on the reference distri-
bution (t with 18 degrees of freedom) in Figure 2.10.

Using Equation 2.25 we find that

and the test statistic is

Because t0 � �2.20 � �t0.025,18 � �2.101, we would reject H0 and conclude that the mean
tension bond strengths of the two formulations of Portland cement mortar are different. This
is a potentially important engineering finding. The change in mortar formulation had the
desired effect of reducing the cure time, but there is evidence that the change also affected
the tension bond strength. One can conclude that the modified formulation reduces the bond
strength (just because we conducted a two-sided test, this does not preclude drawing a one-
sided conclusion when the null hypothesis is rejected). If the reduction in mean bond

�
�0.28
0.127

� �2.20

t0 �
y1 � y2

Sp� 1
n1

�
1
n2

�
16.76 � 17.04

0.284� 1
10

�
1

10

Sp � 0.284

�
9(0.100) � 9(0.061)

10 � 10 � 2
� 0.081

S2
p �

(n1 � 1)S2
1 � (n2 � 1)S2

2

n1 � n2 � 2

H1��1 Z �2

H0��1 � �2
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strength is of practical importance (or has engineering significance in addition to statistical
significance) then more development work and further experimentation will likely be
required.

The Use of P-Values in Hypothesis Testing. One way to report the results of
a hypothesis test is to state that the null hypothesis was or was not rejected at a specified
	-value or level of significance. This is often called fixed significance level testing. For
example, in the Portland cement mortar formulation above, we can say that H0 : �1 � �2 was
rejected at the 0.05 level of significance. This statement of conclusions is often inadequate
because it gives the decision maker no idea about whether the computed value of the test sta-
tistic was just barely in the rejection region or whether it was very far into this region.
Furthermore, stating the results this way imposes the predefined level of significance on other
users of the information. This approach may be unsatisfactory because some decision makers
might be uncomfortable with the risks implied by 	 � 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in practice.
The P-value is the probability that the test statistic will take on a value that is at least as
extreme as the observed value of the statistic when the null hypothesis H0 is true. Thus, a P-
value conveys much information about the weight of evidence against H0, and so a decision
maker can draw a conclusion at any specified level of significance. More formally, we define
the P-value as the smallest level of significance that would lead to rejection of the null
hypothesis H0.

It is customary to call the test statistic (and the data) significant when the null hypoth-
esis H0 is rejected; therefore, we may think of the P-value as the smallest level 	 at which the
data are significant. Once the P-value is known, the decision maker can determine how
significant the data are without the data analyst formally imposing a preselected level of
significance.

It is not always easy to compute the exact P-value for a test. However, most modern
computer programs for statistical analysis report P-values, and they can be obtained on
some handheld calculators. We will show how to approximate the P-value for the Portland
cement mortar experiment. Because �t0� � 2.20  t0.025,18 � 2.101, we know that the P-
value is less than 0.05. From Appendix Table II, for a t distribution with 18 degrees of free-
dom, and tail area probability 0.01 we find t0.01,18 � 2.552. Now �t0� � 2.20 � 2.552, so
because the alternative hypothesis is two sided, we know that the P-value must be between
0.05 and 2(0.01) � 0.02. Some handheld calculators have the capability to calculate P-values.
One such calculator is the HP-48. From this calculator, we obtain the P-value for the value
t0 � �2.20 in the Portland cement mortar formulation experiment as P � 0.0411. Thus
the null hypothesis H0 : �1 � �2 would be rejected at any level of significance 	 
0.0411.

Computer Solution. Many statistical software packages have capability for statisti-
cal hypothesis testing. The output from both the Minitab and the JMP two-sample t-test pro-
cedure applied to the Portland cement mortar formulation experiment is shown in Table 2.2.
Notice that the output includes some summary statistics about the two samples (the abbrevi-
ation “SE mean” in the Minitab section of the table refers to the standard error of the mean,

) as well as some information about confidence intervals on the difference in the two
means (which we will discuss in the next section). The programs also test the hypothesis of
interest, allowing the analyst to specify the nature of the alternative hypothesis (“not �” in
the Minitab output implies H1 : �1 � �2).

The output includes the computed value of t0, the value of the test statistic t0 (JMP
reports a positive value of t0 because of how the sample means are subtracted in the numerator

s/�n
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of the test statistic), and the P-value. Notice that the computed value of the t statistic differs
slightly from our manually calculated value and that the P-value is reported to be P � 0.042.
JMP also reports the P-values for the one-sided alternative hypothesis. Many software pack-
ages will not report an actual P-value less than some predetermined value such as 0.0001 and
instead will return a “default” value such as “�0.001” or in some cases, zero.

Checking Assumptions in the t-Test. In using the t-test procedure we make the
assumptions that both samples are random samples that are drawn from independent popula-
tions that can be described by a normal distribution, and that the standard deviation or vari-
ances of both populations are equal. The assumption of independence is critical, and if the run
order is randomized (and, if appropriate, other experimental units and materials are selected
at random), this assumption will usually be satisfied. The equal variance and normality
assumptions are easy to check using a normal probability plot.

Generally, probability plotting is a graphical technique for determining whether sample
data conform to a hypothesized distribution based on a subjective visual examination of the
data. The general procedure is very simple and can be performed quickly with most statistics
software packages. The supplemental text material discusses manual construction of nor-
mal probability plots.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample y1, y2, . . . , yn is arranged as y(1), y(2), . . . , y(n) where y(1) is the
smallest observation, y(2) is the second smallest observation, and so forth, with y(n) the largest. The
ordered observations y(j) are then plotted against their observed cumulative frequency (j � 0.5)/n.
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■ T A B L E  2 . 2
Computer Output for the Two-Sample t-Test

Minitab

Two-sample T for Modified vs Unmodified

N Mean Std. Dev. SE Mean

Modified 10 16.764 0.316 0.10

Unmodified 10 17.042 0.248 0.078

Difference � mu (Modified) � mu (Unmodified)

Estimate for difference: �0.278000

95% CI for difference: (�0.545073, �0.010927)

T-Test of difference � 0 (vs not � ): T-Value � �2.19 

P-Value � 0.042 DF � 18

Both use Pooled Std. Dev. � 0.2843

JMP t-test

Unmodified-Modified

Assuming equal variances

Difference 0.278000 t Ratio 2.186876

Std Err Dif 0.127122 DF 18

Upper CL Dif 0.545073 Prob |t| 0.0422

Lower CL Dif 0.010927 Prob t 0.0211

Confidence 0.95 Prob t 0.9789�

�

�

–0.4 –0.2 0.0 0.1 0.3



The cumulative frequency scale has been arranged so that if the hypothesized distribution ade-
quately describes the data, the plotted points will fall approximately along a straight line; if the
plotted points deviate significantly from a straight line, the hypothesized model is not appropri-
ate. Usually, the determination of whether or not the data plot as a straight line is subjective.

To illustrate the procedure, suppose that we wish to check the assumption that tension
bond strength in the Portland cement mortar formulation experiment is normally distributed.
We initially consider only the observations from the unmodified mortar formulation. A
computer-generated normal probability plot is shown in Figure 2.11. Most normal probability
plots present 100(j � 0.5)/n on the left vertical scale (and occasionally 100[1� (j � 0.5)/n] is
plotted on the right vertical scale), with the variable value plotted on the horizontal scale. Some
computer-generated normal probability plots convert the cumulative frequency to a standard
normal z score. A straight line, chosen subjectively, has been drawn through the plotted points.
In drawing the straight line, you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to draw the line approximately
between the 25th and 75th percentile points. This is how the lines in Figure 2.11 for each sample
were determined. In assessing the “closeness” of the points to the straight line, imagine a fat
pencil lying along the line. If all the points are covered by this imaginary pencil, a normal
distribution adequately describes the data. Because the points for each sample in Figure 2.11
would pass the fat pencil test, we conclude that the normal distribution is an appropriate model
for tension bond strength for both the modified and the unmodified mortar.

We can obtain an estimate of the mean and standard deviation directly from the normal
probability plot. The mean is estimated as the 50th percentile on the probability plot, and the
standard deviation is estimated as the difference between the 84th and 50th percentiles. This
means that we can verify the assumption of equal population variances in the Portland cement
experiment by simply comparing the slopes of the two straight lines in Figure 2.11. Both lines
have very similar slopes, and so the assumption of equal variances is a reasonable one. If this
assumption is violated, you should use the version of the t-test described in Section 2.4.4. The
supplemental text material has more information about checking assumptions on the t-test.

When assumptions are badly violated, the performance of the t-test will be affected.
Generally, small to moderate violations of assumptions are not a major concern, but any fail-
ure of the independence assumption and strong indications of nonnormality should not be
ignored. Both the significance level of the test and the ability to detect differences between
the means will be adversely affected by departures from assumptions. Transformations are
one approach to dealing with this problem. We will discuss this in more detail in Chapter 3.
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probability plots of tension bond
strength in the Portland cement
experiment
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Nonparametric hypothesis testing procedures can also be used if the observations come from
nonnormal populations. Refer to Montgomery and Runger (2011) for more details.

An Alternate Justification to the t-Test. The two-sample t-test we have just present-
ed depends in theory on the underlying assumption that the two populations from which the
samples were randomly selected are normal. Although the normality assumption is required to
develop the test procedure formally, as we discussed above, moderate departures from normal-
ity will not seriously affect the results. It can be argued that the use of a randomized design
enables one to test hypotheses without any assumptions regarding the form of the distribution.
Briefly, the reasoning is as follows. If the treatments have no effect, all [20!/(10!10!)] �
184,756 possible ways that the 20 observations could occur are equally likely. Corresponding
to each of these 184,756 possible arrangements is a value of t0. If the value of t0 actually
obtained from the data is unusually large or unusually small with reference to the set of
184,756 possible values, it is an indication that �1 � �2.

This type of procedure is called a randomization test. It can be shown that the t-test is
a good approximation of the randomization test. Thus, we will use t-tests (and other procedures
that can be regarded as approximations of randomization tests) without extensive concern
about the assumption of normality. This is one reason a simple procedure such as normal prob-
ability plotting is adequate to check the assumption of normality.

2.4.2 Confidence Intervals

Although hypothesis testing is a useful procedure, it sometimes does not tell the entire story. It is
often preferable to provide an interval within which the value of the parameter or parameters in
question would be expected to lie. These interval statements are called confidence intervals. In
many engineering and industrial experiments, the experimenter already knows that the means �1

and �2 differ; consequently, hypothesis testing on �1 � �2 is of little interest. The experimenter
would usually be more interested in knowing how much the means differ. A confidence interval
on the difference in means �1 � �2 is used in answering this question.

To define a confidence interval, suppose that 
 is an unknown parameter. To obtain an
interval estimate of 
, we need to find two statistics L and U such that the probability statement

(2.27)

is true. The interval

(2.28)

is called a 100(1 � �) percent confidence interval for the parameter . The interpretation
of this interval is that if, in repeated random samplings, a large number of such intervals are
constructed, 100(1 � 	) percent of them will contain the true value of . The statistics L and
U are called the lower and upper confidence limits, respectively, and 1 � 	 is called the
confidence coefficient. If 	 � 0.05, Equation 2.28 is called a 95 percent confidence interval
for . Note that confidence intervals have a frequency interpretation; that is, we do not know
if the statement is true for this specific sample, but we do know that the method used to
produce the confidence interval yields correct statements 100(1 � 	) percent of the time.

Suppose that we wish to find a 100(1 � 	) percent confidence interval on the true dif-
ference in means �1 � �2 for the Portland cement problem. The interval can be derived in the
following way. The statistic

is distributed as . Thus,tn1�n2�2

y1 � y2 � (�1 � �2)

Sp� 1
n1

�
1
n2










L � 
 � U

P(L � 
 � U) � 1 � 	
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or

(2.29)

Comparing Equations 2.29 and 2.27, we see that

(2.30)

is a 100(1 � 	) percent confidence interval for �1 � �2.
The actual 95 percent confidence interval estimate for the difference in mean tension

bond strength for the formulations of Portland cement mortar is found by substituting in
Equation 2.30 as follows:

Thus, the 95 percent confidence interval estimate on the difference in means extends from
�0.55 to �0.01 kgf/cm2. Put another way, the confidence interval is �1 � �2 � �0.28 

0.27 kgf/cm2, or the difference in mean strengths is �0.28 kgf/cm2, and the accuracy of this
estimate is 
 0.27 kgf/cm2. Note that because �1 � �2 � 0 is not included in this interval, the
data do not support the hypothesis that �1 � �2 at the 5 percent level of significance (recall
that the P-value for the two-sample t-test was 0.042, just slightly less than 0.05). It is likely
that the mean strength of the unmodified formulation exceeds the mean strength of the mod-
ified formulation. Notice from Table 2.2 that both Minitab and JMP reported this confidence
interval when the hypothesis testing procedure was conducted.

2.4.3 Choice of Sample Size

Selection of an appropriate sample size is one of the most important parts of any experimental
design problem. One way to do this is to consider the impact of sample size on the estimate of
the difference in two means. From Equation 2.30 we know that the 100(1 – 	)% confidence
interval on the difference in two means is a measure of the precision of estimation of the
difference in the two means. The length of this interval is determined by 

We consider the case where the sample sizes from the two populations are equal, so that n1 �
n2 � n. Then the length of the CI is determined by

t	/2, n1 �n2�2 Sp� 1
n1

�
1
n2

�0.55 � �1 � �2 � �0.01

�0.28 � 0.27 � �1 � �2 � �0.28 � 0.27

�  16.76 � 17.04 � (2.101)0.284� 1
10 �

1
10

 16.76 � 17.04 � (2.101)0.284� 1
10 �

1
10 � �1 � �2

� y1 � y2 � t	/2,n1�n2�2 Sp� 1
n1

�
1
n2

y1 � y2 � t	/2,n1�n2�2 Sp� 1
n1

�
1
n2

� �1 � �2

� y1 � y2 � t	/2,n1�n2�2 Sp� 1
n1

�
1
n2� � 1 � 	

P�y1 � y2 � t	/2,n1�n2�2 Sp� 1
n1

�
1
n2

� �1 � �2

P��t	/2,n1�n2�2 �
y1 � y2 � (�1 � �2)

Sp� 1
n1

�
1
n2

� t	/2,n1�n2�2� � 1 � 	
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Consequently the precision with which the difference in the two means is estimated
depends on two quantities—Sp, over which we have no control, and , which
we can control by choosing the sample size n. Figure 2.12 is a plot of versus
n for 	 = 0.05. Notice that the curve descends rapidly as n increases up to about n = 10 and
less rapidly beyond that. Since Sp is relatively constant and isn’t going to
change much for sample sizes beyond n � 10 or 12, we can conclude that choosing a sample
size of n � 10 or 12 from each population in a two-sample 95% CI will result in a CI that
results in about the best precision of estimation for the difference in the two means that is
possible given the amount of inherent variability that is present in the two populations.

We can also use a hypothesis testing framework to determine sample size. The choice
of sample size and the probability of type II error � are closely connected. Suppose that we
are testing the hypotheses

and that the means are not equal so that � � �1 � �2. Because H0 : �1 � �2 is not true, we are
concerned about wrongly failing to reject H0. The probability of type II error depends on the
true difference in means �. A graph of � versus � for a particular sample size is called the oper-
ating characteristic curve, or O.C. curve for the test. The � error is also a function of sample
size. Generally, for a given value of �, the � error decreases as the sample size increases. That is, a
specified difference in means is easier to detect for larger sample sizes than for smaller ones.

An alternative to the OC curve is a power curve, which typically plots power or 1 � �‚
versus sample size for a specified difference in the means. Some software packages perform
power analysis and will plot power curves. A set of power curves constructed using JMP for
the hypotheses 

is shown in Figure 2.13 for the case where the two population variances and are
unknown but equal ( ) and for a level of significance of 	 � 0.05. These power�2

1 � �2
2 � �2

�2
2�2

1

H1��1 Z �2

H0��1 � �2

H1��1 Z �2

H0��1 � �2

t	/2, 2n � 2�2�n

t	/2, 2n � 2�2�n
t	/2, 2n � 2�2�n

t	/2, 2n � 2 Sp�2
n
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curves also assume that the sample sizes from the two populations are equal and that the sam-
ple size shown on the horizontal scale (say n) is the total sample size, so that the sample size
in each population is n/2.  Also notice that the difference in means is expressed as a ratio to
the common standard deviation; that is

From examining these curves we observe the following:

1. The greater the difference in means , the higher the power (smaller type
II error probability).  That is, for a specified sample size and significance level 	,
the test will detect large differences in means more easily than small ones.

2. As the sample size get larger, the power of the test gets larger (the type II error
probability gets smaller) for a given difference in means and significance level 	.
That is, to detect a specified difference in means we may make the test more pow-
erful by increasing the sample size.

Operating curves and power curves are often helpful in selecting a sample size to use in an
experiment.  For example, consider the Portland cement mortar problem discussed previously.
Suppose that a difference in mean strength of 0.5 kgf/cm2 has practical impact on the use of
the mortar, so if the difference in means is at least this large, we would like to detect it with a
high probability. Thus, because kgf/cm2 is the “critical” difference in means
that we wish to detect, we find that the power curve parameter would be .
Unfortunately, involves the unknown standard deviation . However, suppose on the basis of
past experience we think that it is very unlikely that the standard deviation will exceed 
0.25 kgf/cm2. Then substituting kgf/cm2 into the expression for results in . If
we wish to reject the null hypothesis when the difference in means with prob-
ability at least 0.95 (power = 0.95) with , then referring to Figure 2.13 we find that the
required sample size on the horizontal axis is 16, approximately.  This is the total sample size,
so the sample size in each population should be 

In our example, the experimenter actually used a sample size of 10. The experimenter could
have elected to increase the sample size slightly to guard against the possibility that the prior
estimate of the common standard deviation � was too conservative and was likely to be some-
what larger than 0.25.

Operating characteristic curves often play an important role in the choice of sample size
in experimental design problems. Their use in this respect is discussed in subsequent chap-
ters. For a discussion of the uses of operating characteristic curves for other simple compar-
ative experiments similar to the two-sample t-test, see Montgomery and Runger (2011).

Many statistics software packages can also assist the experimenter in performing power
and sample size calculations. The following boxed display illustrates several computations for
the Portland cement mortar problem from the power and sample size routine for the two-sample
t test in Minitab. The first section of output repeats the analysis performed with the OC
curves; find the sample size necessary for detecting the critical difference in means of
0.5 kgf/cm2, assuming that the standard deviation of strength is 0.25 kgf/cm2. Notice that the
answer obtained from Minitab, n1 � n2 � 8, is identical to the value obtained from the OC
curve analysis. The second section of the output computes the power for the case where the
critical difference in means is much smaller; only 0.25 kgf/cm2. The power has dropped con-
siderably, from over 0.95 to 0.562. The final section determines the sample sizes that would
be necessary to detect an actual difference in means of 0.25 kgf/cm2 with a power of at least
0.9. The required sample size turns out to be considerably larger, n1 � n2 � 23.

n � 16/2 � 8.

	 � 0.05
�1 � �2 � 0.5

� � 2�� � 0.25

��
� � 0.5/�

�1 � �2 � 0.5

�1 � �2

� �
��1 � �2 �

�
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Power and Sample Size

2-Sample t-Test

Testing mean 1 � mean 2 (versus not � )

Calculating power for mean 1 � mean 2 � difference

Alpha � 0.05  Sigma � 0.25

Sample Target Actual

Difference Size Power Power

0.5 8 0.9500 0.9602

Power and Sample Size

2-Sample t-Test

Testing mean 1 � mean 2 (versus not �)

Calculating power for mean 1 � mean 2 � difference

Alpha � 0.05 Sigma � 0.25

Sample

Difference Size Power

0.25 10 0.5620

Power and Sample Size

2-Sample t-Test

Testing mean 1 � mean 2 (versus not �)

Calculating power for mean 1 � mean 2 � difference

Alpha � 0.05  Sigma � 0.25

Sample Target Actual

Difference Size Power Power

0.25 23 0.9000 0.9125

■ F I G U R E  2 . 1 3 Power Curves (from JMP) for the Two-Sample t-Test Assuming Equal
Varianes and � � 0.05. The Sample Size on the Horizontal Axis is the Total sample Size, so the
sample Size in Each population is n � sample size from graph/2.
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2.4.4 The Case Where 

If we are testing

and cannot reasonably assume that the variances and are equal, then the two-sample 
t-test must be modified slightly. The test statistic becomes

(2.31)

This statistic is not distributed exactly as t. However, the distribution of t0 is well approximat-
ed by t if we use

(2.32)

as the number of degrees of freedom. A strong indication of unequal variances on a normal
probability plot would be a situation calling for this version of the t-test. You should be able
to develop an equation for finding that confidence interval on the difference in mean for the
unequal variances case easily.

v �
�S2

1

n1
�

S2
2

n2�
2

(S2
1/n1)

2

n1 � 1
�

(S2
2/n2)

2

n2 � 1

t0 �
y1 � y2

�S2
1

n1
�

S2
2

n2

� 2
2� 2

1

H1��1 Z �2

H0��1 � �2

�2
1 � �2

2
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E X A M P L E  2 . 1

Nerve preservation is important in surgery because acci-
dental injury to the nerve can lead to post-surgical problems
such as numbness, pain, or paralysis. Nerves are usually
identified by their appearance and relationship to nearby
structures or detected by local electrical stimulation (elec-
tromyography), but it is relatively easy to overlook them.
An article in Nature Biotechnology (“Fluorescent Peptides

Highlight Peripheral Nerves During Surgery in Mice,” Vol.
29, 2011) describes the use of a fluorescently labeled pep-
tide that binds to nerves to assist in identification. Table 2.3
shows the normalized fluorescence after two hours for
nerve and muscle tissue for 12 mice (the data were read
from a graph in the paper).   

We would like to test the hypothesis that the mean normalized fluorescence after two hours is
greater for nerve tissue then for muscle tissue. That is, if is the mean normalized fluorescence
for nerve tissue and  is the mean normalized fluorescence for muscle tissue, we want to test

The descriptive statistics output from Minitab is shown below:

H1:�1 > �2

H0:�1 � �2

��

Variable    N Mean  StDev Minimum Median Maximum

Nerve      12  4228   1918      450  4825     6625

Non-nerve 12 2534    961     1130    2650     3900
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TA B L E  2 . 3
Normalized Fluorescence After Two Hours

Observation Nerve Muscle

1 6625 3900

2 6000 3500

3 5450 3450

4 5200 3200

5 5175 2980

6 4900 2800

7 4750 2500

8 4500 2400

9 3985 2200

10 900 1200

11 450 1150

12 2800 1130
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Notice that the two sample standard deviations are quite different, so the assumption of equal
variances in the pooled t-test may not be appropriate. Figure 2.14 is the normal probability
plot from Minitab for the two samples. This plot also indicates that the two population vari-
ances are probably not the same.

Because the equal variance assumption is not appropriate here, we will use the two-
sample t-test described in this section to test the hypothesis of equal means. The test statistic,
Equation 2.31, is 

�
4228 � 2534

�(1918)2

12
�

(961)2

12

� 2.7354t0 �
y1 � y2

�S2
1

n1
�

S2
2

n2

■ F I G U R E  2 . 1 4 Normalized Fluorescence Data from Table 2.3
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The number of degrees of freedom are calculated from Equation 2.32:

If we are going to find a P-value from a table of the t-distribution, we should round the degrees
of freedom down to 16. Most computer programs interpolate to determine the P-value. The
Minitab output for the two-sample t-test is shown below. Since the P-value reported is small
(0.015), we would reject the null hypothesis and conclude that the mean normalized fluores-
cence for nerve tissue is greater than the mean normalized fluorescence for muscle tissue.

� 16.1955v �
�S1

2

n1
�

S2
2

n2�
2

(S1
2

� n1)
2

n1 � 1
�

(S2
2   

� n2)
2

n2 � 1

�
�(1918)2

12
�

(961)2

12 �2

[(1918)2
� 12]2

11
�

[(961)2
� 12]2

11

Difference = mu (Nerve) - mu (Non-nerve)

Estimate for difference:  1694

95% lower bound for difference:  613

T-Test of difference = 0 (vs >): T-Value = 2.74  P-Value = 0.007  DF = 16

2.4.5 The Case Where and Are Known

If the variances of both populations are known, then the hypotheses

may be tested using the statistic

(2.33)

If both populations are normal, or if the sample sizes are large enough so that the central limit
theorem applies, the distribution of Z0 is N(0, 1) if the null hypothesis is true. Thus, the criti-
cal region would be found using the normal distribution rather than the t. Specifically, we
would reject H0 if �Z0�  Z	/2, where Z	/2 is the upper 	/2 percentage point of the standard nor-
mal distribution. This procedure is sometimes called the two-sample Z-test. A P-value
approach can also be used with this test. The P-value would be found as P �
where (x) is the cumulative standard normal distribution evaluated at the point x.

Unlike the t-test of the previous sections, the test on means with known variances does not
require the assumption of sampling from normal populations. One can use the central limit the-
orem to justify an approximate normal distribution for the difference in sample means 

The 100(1 � 	) percent confidence interval on �1 � �2 where the variances are known is

(2.34)

As noted previously, the confidence interval is often a useful supplement to the hypothesis test-
ing procedure.

2.4.6 Comparing a Single Mean to a Specified Value

Some experiments involve comparing only one population mean � to a specified value, say,
�0. The hypotheses are

H0�� � �0

y1 � y2 � Z	/2�� 2
1

n1
�

� 2
2

n2
� �1 � �2 � y1 � y2 � Z	/2�� 2

1

n1
�

� 2
2

n2

y1 � y2

�
2 [1 � �( �Z0 �)],

Z0 �
y1 � y2

�� 2
1

n1
�

� 2
2

n2

H1��1 Z �2

H0��1 � �2

�2
2�2

1



If the population is normal with known variance, or if the population is nonnormal but the sam-
ple size is large enough so that the central limit theorem applies, then the hypothesis may be
tested using a direct application of the normal distribution. The one-sample Z-test statistic is

(2.35)

If H0 : � � �0 is true, then the distribution of Z0 is N(0, 1). Therefore, the decision rule for 
H0 : � � �0 is to reject the null hypothesis if �Z0�  Z	/2. A P-value approach could also be used. 

The value of the mean �0 specified in the null hypothesis is usually determined in one
of three ways. It may result from past evidence, knowledge, or experimentation. It may be the
result of some theory or model describing the situation under study. Finally, it may be the
result of contractual specifications.

The 100(1 � 	) percent confidence interval on the true population mean is

(2.36)y � Z	/2�/�n � � � y � Z	/2�/�n

Z0 �
y � �0

�/�n
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E X A M P L E  2 . 2

A supplier submits lots of fabric to a textile manufacturer.
The customer wants to know if the lot average breaking
strength exceeds 200 psi. If so, she wants to accept the lot.
Past experience indicates that a reasonable value for the
variance of breaking strength is 100(psi)2. The hypotheses
to be tested are

Note that this is a one-sided alternative hypothesis. Thus,
we would accept the lot only if the null hypothesis H0 :� �
200 could be rejected (i.e., if Z0  Z	).

H1�� � 200

H0�� � 200

Four specimens are randomly selected, and the average
breaking strength observed is –y � 214 psi. The value of the
test statistic is

If a type I error of 	 � 0.05 is specified, we find Z	 � Z0.05 �
1.645 from Appendix Table I. The P-value would be
computed using only the area in the upper tail of the stan-
dard normal distribution, because the alternative hypothesis
is one-sided. The P-value is P � 1 � (2.80) � 1 �
0.99744 � 0.00256. Thus H0 is rejected, and we conclude
that the lot average breaking strength exceeds 200 psi.

�

Z0 �
y � �0

�/�n
�

214 � 200

10/�4
� 2.80

If the variance of the population is unknown, we must make the additional assumption
that the population is normally distributed, although moderate departures from normality will
not seriously affect the results.

To test H0 : � � �0 in the variance unknown case, the sample variance S2 is used to esti-
mate �2. Replacing � with S in Equation 2.35, we have the one-sample t-test statistic

(2.37)

The null hypothesis H0 : � � �0 would be rejected if �t0�  t	/2,n�1, where t	/2,n�1 denotes the
upper 	/2 percentage point of the t distribution with n � 1 degrees of freedom. A P-value
approach could also be used. The 100(1 � 	) percent confidence interval in this case is

(2.38)

2.4.7 Summary

Tables 2.4 and 2.5 summarize the t-test and z-test procedures discussed above for sample
means. Critical regions are shown for both two-sided and one-sided alternative hypotheses.

y � t	/2,n�1S/�n � � � y � t	/2,n�1S/�n

t0 �
y � �0

S/�n
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■ T A B L E 2 . 5
Tests on Means of Normal Distributions, Variance Unknown

Fixed Significance Level
Hypothesis Test Statistic Criteria for Rejection P-Value

H0 : � � �0 sum of the probability
H1 : � � �0 �t0�  t	/2,n�1 above t0 and below �t0

H0 : � � �0

H1 : � � �0 t0 � �t	,n�1 probability below t0

H0 : � � �0

H1 : �  �0 t0  t	,n�1 probability above t0

if

H0 : �1 � �2

H1 : �1 � �2 �t0�  t	/2,v sum of the probability

v � n1 � n2 � 2

above t0 and below �t0

if

H0 : �1 � �2

H1 : �1 � �2 t0 � �t	,v probability below t0

H0 : �1 � �2

H1 : �1  �2 t0  t	,v probability above t0v �
�S2

1

n1
�

S2
2

n2�
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(S2
1/n1)2

n1 � 1
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�S2
1

n1
�

S2
2

n2

�2
1 Z �2
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y1 � y2

Sp� 1
n1
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n2

�2
1 � �2

2

t0 �
y � �0

S/�n

■ T A B L E 2 . 4
Tests on Means with Variance Known

Fixed Significance Level
Hypothesis Test Statistic Criteria for Rejection P-Value

H0 : � � �0

H1 : � � �0 �Z0�  Z	/2

H0 : � � �0

H1 : � � �0 Z0 � �Z	

H0 : � � �0

H1 : �  �0 Z0  Z	

H0 : �1 � �2

H1 : �1 � �2 �Z0�  Z	/2

H0 : �1 � �2

H1 : �1 � �2 Z0 � �Z	

H0 : �1 � �2

H1 : �1  �2 Z0  Z	 P � 1 � �(Z0)

P � �(Z0)Z0 �
y1 � y2

��2
1

n1
�

�2
2

n2

P � 2[1 � �( �Z0 �)]

P � 1 � �(Z0)

P � �(Z0)Z0 �
y � �0

�/�n

P � 2[1 � �( �Z0 �)]



2.5 Inferences About the Differences in Means,
Paired Comparison Designs

2.5.1 The Paired Comparison Problem

In some simple comparative experiments, we can greatly improve the precision by making
comparisons within matched pairs of experimental material. For example, consider a hardness
testing machine that presses a rod with a pointed tip into a metal specimen with a known force.
By measuring the depth of the depression caused by the tip, the hardness of the specimen is
determined. Two different tips are available for this machine, and although the precision
(variability) of the measurements made by the two tips seems to be the same, it is suspected
that one tip produces different mean hardness readings than the other.

An experiment could be performed as follows. A number of metal specimens (e.g., 20)
could be randomly selected. Half of these specimens could be tested by tip 1 and the other
half by tip 2. The exact assignment of specimens to tips would be randomly determined.
Because this is a completely randomized design, the average hardness of the two samples
could be compared using the t-test described in Section 2.4.

A little reflection will reveal a serious disadvantage in the completely randomized
design for this problem. Suppose the metal specimens were cut from different bar stock that
were produced in different heats or that were not exactly homogeneous in some other way that
might affect the hardness. This lack of homogeneity between specimens will contribute to the
variability of the hardness measurements and will tend to inflate the experimental error, thus
making a true difference between tips harder to detect.

To protect against this possibility, consider an alternative experimental design. Assume
that each specimen is large enough so that two hardness determinations may be made on it.
This alternative design would consist of dividing each specimen into two parts, then randomly
assigning one tip to one-half of each specimen and the other tip to the remaining half. The
order in which the tips are tested for a particular specimen would also be randomly selected.
The experiment, when performed according to this design with 10 specimens, produced the
(coded) data shown in Table 2.6.

We may write a statistical model that describes the data from this experiment as

(2.39)yij � �i � �j � �i j�i � 1, 2
j � 1, 2, . . . , 10
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■ T A B L E 2 . 6
Data for the Hardness Testing Experiment

Specimen Tip 1 Tip 2

1 7 6

2 3 3

3 3 5

4 4 3

5 8 8

6 3 2

7 2 4

8 9 9

9 5 4

10 4 5 



where yij is the observation on hardness for tip i on specimen j, �i is the true mean hardness
of the ith tip, �j is an effect on hardness due to the jth specimen, and �ij is a random experi-
mental error with mean zero and variance . That is, is the variance of the hardness meas-
urements from tip 1, and is the variance of the hardness measurements from tip 2.

Note that if we compute the jth paired difference

(2.40)

the expected value of this difference is

That is, we may make inferences about the difference in the mean hardness readings of the two
tips �1 � �2 by making inferences about the mean of the differences �d. Notice that the addi-
tive effect of the specimens �j cancels out when the observations are paired in this manner.

Testing H0 : �1 � �2 is equivalent to testing

This is a single-sample t-test. The test statistic for this hypothesis is

(2.41)

where

(2.42)

is the sample mean of the differences and

(2.43)

is the sample standard deviation of the differences. H0 : �d � 0 would be rejected if �t0� 
t	/2,n�1. A P-value approach could also be used. Because the observations from the factor
levels are “paired” on each experimental unit, this procedure is usually called the paired
t-test.

For the data in Table 2.6, we find

d5 � 8 � 8 � 0 d10 � 4 � 5 � �1

d4 � 4 � 3 � 1 d9 � 5 � 4 � 1

d3 � 3 � 5 � �2   d8 � 9 � 9 � 0

d2 � 3 � 3 � 0 d7 � 2 � 4 � �2

d1 � 7 � 6 � 1 d6 � 3 � 2 � 1
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Thus,

Suppose we choose 	 � 0.05. Now to make a decision, we would compute t0 and reject H0 if
�t0�  t0.025,9 � 2.262.

The computed value of the paired t-test statistic is

and because �t0� � 0.26 � t0.025,9 � 2.262, we cannot reject the hypothesis H0 : �d � 0. That
is, there is no evidence to indicate that the two tips produce different hardness readings.
Figure 2.15 shows the t0 distribution with 9 degrees of freedom, the reference distribution for
this test, with the value of t0 shown relative to the critical region.

Table 2.7 shows the computer output from the Minitab paired t-test procedure for this
problem. Notice that the P-value for this test is P  0.80, implying that we cannot reject the
null hypothesis at any reasonable level of significance.
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d
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2.5 Inferences About the Differences in Means, Paired Comparison Designs 55

■ T A B L E 2 . 7
Minitab Paired t-Test Results for the Hardness Testing Example

Paired T for Tip 1�Tip 2

N Mean Std. Dev. SE Mean

Tip 1 10 4.800 2.394 0.757

Tip 2 10 4.900 2.234 0.706

Difference 10 �0.100 1.197 0.379

95% CI for mean difference: (�0.956, 0.756)

t-Test of mean difference � 0 (vs not � 0):

T-Value � �0.26 P-Value � 0.798

■ F I G U R E  2 . 1 5 The reference distribution (t with 9 degrees
of freedom) for the hardness testing problem
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2.5.2 Advantages of the Paired Comparison Design

The design actually used for this experiment is called the paired comparison design, and it
illustrates the blocking principle discussed in Section 1.3. Actually, it is a special case of a
more general type of design called the randomized block design. The term block refers to
a relatively homogeneous experimental unit (in our case, the metal specimens are the
blocks), and the block represents a restriction on complete randomization because the treat-
ment combinations are only randomized within the block. We look at designs of this type in
Chapter 4. In that chapter the mathematical model for the design, Equation 2.39, is written
in a slightly different form.

Before leaving this experiment, several points should be made. Note that, although 
2n � 2(10) � 20 observations have been taken, only n � 1 � 9 degrees of freedom are avail-
able for the t statistic. (We know that as the degrees of freedom for t increase, the test becomes
more sensitive.) By blocking or pairing we have effectively “lost” n - 1 degrees of freedom,
but we hope we have gained a better knowledge of the situation by eliminating an additional
source of variability (the difference between specimens).

We may obtain an indication of the quality of information produced from the paired
design by comparing the standard deviation of the differences Sd with the pooled standard
deviation Sp that would have resulted had the experiment been conducted in a completely
randomized manner and the data of Table 2.5 been obtained. Using the data in Table 2.5 as
two independent samples, we compute the pooled standard deviation from Equation 2.25 to
be Sp � 2.32. Comparing this value to Sd � 1.20, we see that blocking or pairing has reduced
the estimate of variability by nearly 50 percent.

Generally, when we don’t block (or pair the observations) when we really should have,
Sp will always be larger than Sd. It is easy to show this formally. If we pair the observations,
it is easy to show that is an unbiased estimator of the variance of the differences dj under
the model in Equation 2.39 because the block effects (the �j) cancel out when the differences
are computed. However, if we don’t block (or pair) and treat the observations as two
independent samples, then is not an unbiased estimator of �2 under the model in Equation
2.39. In fact, assuming that both population variances are equal,

That is, the block effects �j inflate the variance estimate. This is why blocking serves as a
noise reduction design technique.

We may also express the results of this experiment in terms of a confidence interval on
�1 � �2. Using the paired data, a 95 percent confidence interval on �1 � �2 is

Conversely, using the pooled or independent analysis, a 95 percent confidence interval on
�1 � �2 is
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The confidence interval based on the paired analysis is much narrower than the confidence
interval from the independent analysis. This again illustrates the noise reduction property of
blocking.

Blocking is not always the best design strategy. If the within-block variability is the
same as the between-block variability, the variance of will be the same regardless of
which design is used. Actually, blocking in this situation would be a poor choice of design
because blocking results in the loss of n � 1 degrees of freedom and will actually lead to a
wider confidence interval on �1 � �2. A further discussion of blocking is given in Chapter 4.

2.6 Inferences About the Variances of Normal Distributions

In many experiments, we are interested in possible differences in the mean response for two
treatments. However, in some experiments it is the comparison of variability in the data that
is important. In the food and beverage industry, for example, it is important that the variabil-
ity of filling equipment be small so that all packages have close to the nominal net weight or
volume of content. In chemical laboratories, we may wish to compare the variability of two
analytical methods. We now briefly examine tests of hypotheses and confidence intervals for
variances of normal distributions. Unlike the tests on means, the procedures for tests on vari-
ances are rather sensitive to the normality assumption. A good discussion of the normality
assumption is in Appendix 2A of Davies (1956).

Suppose we wish to test the hypothesis that the variance of a normal population equals
a constant, for example, . Stated formally, we wish to test

(2.44)

The test statistic for Equation 2.44 is

(2.45)

where SS � (yi � )2 is the corrected sum of squares of the sample observations. The
appropriate reference distribution for is the chi-square distribution with n � 1 degrees of
freedom. The null hypothesis is rejected if or if , where 
and are the upper 	/2 and lower 1 � (	/2) percentage points of the chi-square
distribution with n � 1 degrees of freedom, respectively. Table 2.8 gives the critical regions
for the one-sided alternative hypotheses. The 100(1 � 	) percent confidence interval on �2 is

(2.46)

Now consider testing the equality of the variances of two normal populations. If inde-
pendent random samples of size n1 and n2 are taken from populations 1 and 2, respectively,
the test statistic for

(2.47)

is the ratio of the sample variances
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The appropriate reference distribution for F0 is the F distribution with n1 � 1 numerator
degrees of freedom and n2 � 1 denominator degrees of freedom. The null hypothesis would
be rejected if F0  or if F0 � , where  and

denote the upper 	/2 and lower 1 � (	/2) percentage points of the F distribu-
tion with n1 � 1 and n2 � 1 degrees of freedom. Table IV of the Appendix gives only upper-
tail percentage points of F; however, the upper- and lower-tail points are related by

(2.49)

Critical values for the one-sided alternative hypothesis are given in Table 2.8. Test procedures
for more than two variances are discussed in Section 3.4.3. We will also discuss the use of the
variance or standard deviation as a response variable in more general experimental settings.

F1�	,v1,v2
�

1
F	,v2,v1

F1�(	/2),n1�1,n2�1

F	/2,n1�1,n2�1F1�(	/2),n1�1,n2�1F	/2,n1�1,n2�1

E X A M P L E  2 . 3

A chemical engineer is investigating the inherent variability
of two types of test equipment that can be used to monitor
the output of a production process. He suspects that the old
equipment, type 1, has a larger variance than the new one.
Thus, he wishes to test the hypothesis

Two random samples of n1 � 12 and n2 � 10 observations
are taken, and the sample variances are � 14.5 and �S2

2S2
1

H1��2
1 � �2

2

H0��2
1 � �2

2

10.8. The test statistic is

From Appendix Table IV we find that F0.05,11,9 � 3.10, so
the null hypothesis cannot be rejected. That is, we have
found insufficient statistical evidence to conclude that the
variance of the old equipment is greater than the variance of
the new equipment.

F0 �
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1

S2
2

�
14.5
10.8

� 1.34

■ T A B L E 2 . 8
Tests on Variances of Normal Distributions

Fixed Significance Level
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The 100(1 � 	) confidence interval for the ratio of the population variances is

(2.50)

To illustrate the use of Equation 2.50, the 95 percent confidence interval for the ratio of vari-
ances in Example 2.2 is, using F0.025,9,11 � 3.59 and F0.975,9,11 � 1/F0.025,11,9 � 1/3.92 �
0.255,

2.7 Problems

 0.34 �
� 2

1

� 2
2

�  4.82

14.5
10.8

 (0.255) �
� 2

1

� 2
2

�
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10.8

 (3.59)

� 2
1/�

2
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S 2
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S 2
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� 2
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�
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F	/2,n2�1,n1�1

� 2
1/�

2
2

2.1. Computer output for a random sample of data is
shown below. Some of the quantities are missing. Compute
the values of the missing quantities.

Variable N Mean SE Mean Std. Dev. Variance Minimum Maximum

Y 9 19.96 ? 3.12 ? 15.94 27.16

2.2. Computer output for a random sample of data is
shown below. Some of the quantities are missing. Compute
the values of the missing quantities.

Variable N Mean SE Mean Std. Dev. Sum

Y 16 ? 0.159 ? 399.851

2.3. Suppose that we are testing H0 : � � �0 versus 
H1 : � � �0. Calculate the P-value for the following observed
values of the test statistic:

(a) Z0 � 2.25 (b) Z0 � 1.55 (c) Z0 � 2.10

(d) Z0 � 1.95 (e) Z0 � �0.10

2.4. Suppose that we are testing H0 : � � �0 versus 
H1 : �  �0. Calculate the P-value for the following observed
values of the test statistic:

(a) Z0 � 2.45 (b) Z0 � �1.53 (c) Z0 � 2.15

(d) Z0 � 1.95 (e) Z0 � �0.25

2.5. Consider the computer output shown below.

One-Sample Z

Test of mu � 30 vs not � 30

The assumed standard deviation � 1.2

N Mean SE Mean 95% CI Z P

16 31.2000 0.3000 (30.6120, 31.7880) ? ?

(a) Fill in the missing values in the output. What conclu-
sion would you draw?

(b) Is this a one-sided or two-sided test?

(c) Use the output and the normal table to find a 99 percent
CI on the mean.

(d)What is the P-value if the alternative hypothesis is 
H1 : �  30?

2.6. Suppose that we are testing H0 : �1 � �2 versus  H0 :
�1 � �2 where the two sample sizes are n1 � n2 � 12. Both
sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of
the test statistic.

(a) t0 � 2.30 (b) t0 � 3.41 (c) t0 � 1.95 (d) t0 � �2.45

2.7. Suppose that we are testing H0 : �1 � �2 versus H0 :
�1  �2 where the two sample sizes are n1 � n2 � 10. Both
sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of
the test statistic.

(a) t0 � 2.31 (b) t0 � 3.60 (c) t0 � 1.95 (d) t0 � 2.19

2.8. Consider the following sample data: 9.37, 13.04,
11.69, 8.21, 11.18, 10.41, 13.15, 11.51, 13.21, and 7.75. Is it
reasonable to assume that this data is a sample from a normal
distribution? Is there evidence to support a claim that the
mean of the population is 10?

2.9. A computer program has produced the following out-
put for a hypothesis-testing problem:

Difference in sample means:  2.35

Degrees of freedom: 18

Standard error of the difference in sample means: ?

Test statistic:  t0 = 2.01

P-value: 0.0298

(a) What is the missing value for the standard error?

(b) Is this a two-sided or a one-sided test?

(c) If 	 � 0.05, what are your conclusions?

(d) Find a 90% two-sided CI on the difference in
means.
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2.10. A computer program has produced the following out-
put for a hypothesis-testing problem:

Difference in sample means:  11.5

Degrees of freedom: 24

Standard error of the difference in sample means: ?

Test statistic:  t0 = -1.88

P-value: 0.0723

(a) What is the missing value for the standard error?

(b) Is this a two-sided or a one-sided test?

(c) If 	 � 0.05, what are your conclusions?

(d) Find a 95% two-sided CI on the difference in means.

2.11. Suppose that we are testing H0 : � � �0 versus 
H1 : �  �0 with a sample size of n � 15. Calculate bounds
on the P-value for the following observed values of the test
statistic:

(a) t0 � 2.35 (b) t0 � 3.55 (c) t0 � 2.00 (d) t0 � 1.55

2.12. Suppose that we are testing H0 : � � �0 versus 
H1 : � � �0 with a sample size of n � 10. Calculate bounds
on the P-value for the following observed values of the test
statistic:

(a) t0 � 2.48 (b) t0 � �3.95 (c) t0 � 2.69

(d) t0 � 1.88 (e) t0 � �1.25

2.13. Consider the computer output shown below.

One-Sample T: Y

Test of mu � 91 vs. not � 91

Variable N Mean Std. Dev. SE Mean 95% CI T P

Y 25 92.5805 ? 0.4673 (91.6160, ?) 3.38 0.002

(a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?

(c) If the hypotheses had been H0 : � � 90 versus 
H1 : � � 90 would you reject the null hypothesis at the
0.05 level?

(d) Use the output and the t table to find a 99 percent two-
sided CI on the mean.

(e) What is the P-value if the alternative hypothesis is 
H1 : �  91?

2.14. Consider the computer output shown below.

One-Sample T: Y

Test of mu � 25 vs  25

95% Lower 
Variable N Mean Std. Dev. SE Mean Bound T P
Y 12 25.6818 ? 0.3360 ? ? 0.034

(a) How many degrees of freedom are there on the t-test
statistic?

(b) Fill in the missing information.

2.15. Consider the computer output shown below.

Two-Sample T-Test and Cl: Y1, Y2

Two-sample T for Y1 vs Y2

N Mean Std. Dev. SE Mean
Y1 20 50.19 1.71 0.38
Y2 20 52.52 2.48 0.55

Difference � mu (X1) � mu (X2)
Estimate for difference: � 2.33341
95% CI for difference: (� 3.69547, � 0.97135)
T-Test of difference�0 (vs not �) : T-Value� �3.47 
P-Value�0.001 DF�38
Both use Pooled Std. Dev. � 2.1277

(a) Can the null hypothesis be rejected at the 0.05 level?
Why?

(b) Is this a one-sided or a two-sided test?

(c) If the hypotheses had been H0 : �1 � �2 � 2 versus 
H1 : �1 � �2 � 2 would you reject the null hypothesis
at the 0.05 level?

(d) If the hypotheses had been H0 : �1 � �2 � 2 versus 
H1 : �1 � �2 � 2 would you reject the null hypothesis
at the 0.05 level? Can you answer this question with-
out doing any additional calculations? Why?

(e) Use the output and the t table to find a 95 percent
upper confidence bound on the difference in means.

(f) What is the P-value if the hypotheses are  H0 : �1 �
�2 � 2 versus H1: �1 � �2 � 2?

2.16. The breaking strength of a fiber is required to be at
least 150 psi. Past experience has indicated that the standard
deviation of breaking strength is � � 3 psi. A random sample
of four specimens is tested, and the results are y1 � 145, y2 �
153, y3 � 150, and y4 � 147.

(a) State the hypotheses that you think should be tested in
this experiment.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) Find the P-value for the test in part (b).

(d) Construct a 95 percent confidence interval on the mean
breaking strength.

2.17. The viscosity of a liquid detergent is supposed to
average 800 centistokes at 25°C. A random sample of 16
batches of detergent is collected, and the average viscosity is
812. Suppose we know that the standard deviation of viscosity
is � � 25 centistokes.

(a) State the hypotheses that should be tested.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) What is the P-value for the test?

(d) Find a 95 percent confidence interval on the mean.

2.18. The diameters of steel shafts produced by a certain
manufacturing process should have a mean diameter of 0.255
inches. The diameter is known to have a standard deviation of
� = 0.0001 inch. A random sample of 10 shafts has an aver-
age diameter of 0.2545 inch.
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(a) Set up appropriate hypotheses on the mean �.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) Find the P-value for this test.

(d) Construct a 95 percent confidence interval on the mean
shaft diameter.

2.19. A normally distributed random variable has an
unknown mean � and a known variance �2 � 9. Find the sam-
ple size required to construct a 95 percent confidence interval
on the mean that has total length of 1.0.

2.20. The shelf life of a carbonated beverage is of interest.
Ten bottles are randomly selected and tested, and the follow-
ing results are obtained:

Days

108 138
124 163
124 159
106 134
115 139

(a) We would like to demonstrate that the mean shelf life
exceeds 120 days. Set up appropriate hypotheses for
investigating this claim.

(b) Test these hypotheses using 	 � 0.01. What are your
conclusions?

(c) Find the P-value for the test in part (b).

(d) Construct a 99 percent confidence interval on the mean
shelf life.

2.21. Consider the shelf life data in Problem 2.20. Can shelf
life be described or modeled adequately by a normal distribu-
tion? What effect would the violation of this assumption have
on the test procedure you used in solving Problem 2.15?

2.22. The time to repair an electronic instrument is a normal-
ly distributed random variable measured in hours. The repair
times for 16 such instruments chosen at random are as follows:

Hours

159 280 101 212
224 379 179 264
222 362 168 250
149 260 485 170

(a) You wish to know if the mean repair time exceeds 225
hours. Set up appropriate hypotheses for investigating
this issue.

(b) Test the hypotheses you formulated in part (a). What
are your conclusions? Use 	 � 0.05.

(c) Find the P-value for the test.

(d) Construct a 95 percent confidence interval on mean
repair time.

2.23. Reconsider the repair time data in Problem 2.22. Can
repair time, in your opinion, be adequately modeled by a nor-
mal distribution?

2.24. Two machines are used for filling plastic bottles with
a net volume of 16.0 ounces. The filling processes can be
assumed to be normal, with standard deviations of �1 � 0.015
and �2 � 0.018. The quality engineering department suspects
that both machines fill to the same net volume, whether or not
this volume is 16.0 ounces. An experiment is performed by
taking a random sample from the output of each machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03
16.04 15.96 15.97 16.04
16.05 15.98 15.96 16.02
16.05 16.02 16.01 16.01
16.02 15.99 15.99 16.00

(a) State the hypotheses that should be tested in this
experiment.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) Find the P-value for this test.

(d) Find a 95 percent confidence interval on the difference
in mean fill volume for the two machines.

2.25. Two types of plastic are suitable for use by an elec-
tronic calculator manufacturer. The breaking strength of this
plastic is important. It is known that �1 � �2 � 1.0 psi. From
random samples of n1 � 10 and n2 � 12 we obtain � 162.5
and � 155.0. The company will not adopt plastic 1 unless
its breaking strength exceeds that of plastic 2 by at least 10
psi. Based on the sample information, should they use plastic
1? In answering this question, set up and test appropriate
hypotheses using 	 � 0.01. Construct a 99 percent confidence
interval on the true mean difference in breaking strength.

2.26. The following are the burning times (in minutes) of
chemical flares of two different formulations. The design
engineers are interested in both the mean and variance of the
burning times.

Type 1 Type 2

65 82 64 56
81 67 71 69
57 59 83 74
66 75 59 82
82 70 65 79

(a) Test the hypothesis that the two variances are equal.
Use 	 � 0.05.

(b) Using the results of (a), test the hypothesis that the
mean burning times are equal. Use 	 � 0.05. What is
the P-value for this test?

y2

y1



(c) Discuss the role of the normality assumption in this
problem. Check the assumption of normality for both
types of flares.

2.27. An article in Solid State Technology, “Orthogonal
Design for Process Optimization and Its Application to
Plasma Etching” by G. Z. Yin and D. W. Jillie (May 1987)
describes an experiment to determine the effect of the C2F6

flow rate on the uniformity of the etch on a silicon wafer
used in integrated circuit manufacturing. All of the runs
were made in random order. Data for two flow rates are as
follows:

C2F6 Flow Uniformity Observation

(SCCM) 1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8
200 4.6 3.4 2.9 3.5 4.1 5.1

(a) Does the C2F6 flow rate affect average etch uniformi-
ty? Use 	 � 0.05.

(b) What is the P-value for the test in part (a)?

(c) Does the C2F6 flow rate affect the wafer-to-wafer vari-
ability in etch uniformity? Use 	 � 0.05.

(d) Draw box plots to assist in the interpretation of the
data from this experiment.

2.28. A new filtering device is installed in a chemical unit.
Before its installation, a random sample yielded the follow-
ing information about the percentage of impurity: � 12.5,

� 101.17, and n1 � 8. After installation, a random sample
yielded � 10.2, � 94.73, n2 � 9.

(a) Can you conclude that the two variances are equal?
Use 	 � 0.05.

(b) Has the filtering device reduced the percentage of
impurity significantly? Use 	 � 0.05.

2.29. Photoresist is a light-sensitive material applied to
semiconductor wafers so that the circuit pattern can be
imaged on to the wafer. After application, the coated wafers
are baked to remove the solvent in the photoresist mixture
and to harden the resist. Here are measurements of photore-
sist thickness (in kA) for eight wafers baked at two differ-
ent temperatures. Assume that all of the runs were made in
random order.

95 �C 100 �C

11.176 5.263
7.089 6.748
8.097 7.461

11.739 7.015
11.291 8.133
10.759 7.418
6.467 3.772
8.315 8.963

S2
2y2

S2
1

y1
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(a) Is there evidence to support the claim that the high-
er baking temperature results in wafers with a lower
mean photoresist thickness? Use 	 � 0.05.

(b) What is the P-value for the test conducted in part (a)?

(c) Find a 95 percent confidence interval on the difference in
means. Provide a practical interpretation of this interval.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality of the photoresist
thickness.

(f) Find the power of this test for detecting an actual dif-
ference in means of 2.5 kA.

(g) What sample size would be necessary to detect an
actual difference in means of 1.5 kA with a power of
at least 0.9?

2.30. Front housings for cell phones are manufactured in
an injection molding process. The time the part is allowed
to cool in the mold before removal is thought to influence
the occurrence of a particularly troublesome cosmetic
defect, flow lines, in the finished housing. After manufac-
turing, the housings are inspected visually and assigned a
score between 1 and 10 based on their appearance, with 10
corresponding to a perfect part and 1 corresponding to a
completely defective part. An experiment was conducted
using two cool-down times, 10 and 20 seconds, and 20
housings were evaluated at each level of cool-down time.
All 40 observations in this experiment were run in random
order. The data are as follows.

10 seconds 20 seconds

1 3 7 6
2 6 8 9
1 5 5 5
3 3 9 7
5 2 5 4
1 1 8 6
5 6 6 8
2 8 4 5
3 2 6 8
5 3 7 7

(a) Is there evidence to support the claim that the longer
cool-down time results in fewer appearance defects?
Use 	 � 0.05.

(b) What is the P-value for the test conducted in part (a)?

(c) Find a 95 percent confidence interval on the difference
in means. Provide a practical interpretation of this
interval.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality for the data from
this experiment.



2.31. Twenty observations on etch uniformity on silicon
wafers are taken during a qualification experiment for a plas-
ma etcher. The data are as follows:

5.34 6.65 4.76 5.98 7.25

6.00 7.55 5.54 5.62 6.21

5.97 7.35 5.44 4.39 4.98

5.25 6.35 4.61 6.00 5.32

(a) Construct a 95 percent confidence interval estimate
of �2.

(b) Test the hypothesis that �2 � 1.0. Use 	 � 0.05. What
are your conclusions?

(c) Discuss the normality assumption and its role in this
problem.

(d) Check normality by constructing a normal probability
plot. What are your conclusions?

2.32. The diameter of a ball bearing was measured by 12
inspectors, each using two different kinds of calipers. The
results were

Inspector Caliper 1 Caliper 2

1 0.265 0.264
2 0.265 0.265
3 0.266 0.264
4 0.267 0.266
5 0.267 0.267
6 0.265 0.268
7 0.267 0.264
8 0.267 0.265
9 0.265 0.265

10 0.268 0.267
11 0.268 0.268
12 0.265 0.269

(a) Is there a significant difference between the means of
the population of measurements from which the two
samples were selected? Use 	 � 0.05.

(b) Find the P-value for the test in part (a).

(c) Construct a 95 percent confidence interval on the dif-
ference in mean diameter measurements for the two
types of calipers.

2.33. An article in the journal Neurology (1998, Vol. 50, pp.
1246–1252) observed that monozygotic twins share numerous
physical, psychological, and pathological traits. The investi-
gators measured an intelligence score of 10 pairs of twins.
The data obtained are as follows:

Pair Birth Order: 1 Birth Order: 2

1 6.08 5.73
2 6.22 5.80
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3 7.99 8.42
4 7.44 6.84
5 6.48 6.43
6 7.99 8.76
7 6.32 6.32
8 7.60 7.62
9 6.03 6.59

10 7.52 7.67

(a) Is the assumption that the difference in score is nor-
mally distributed reasonable?  

(b) Find a 95% confidence interval on the difference in
mean score. Is there any evidence that mean score
depends on birth order?

(c) Test an appropriate set of hypotheses indicating that
the mean score does not depend on birth order. 

2.34. An article in the Journal of Strain Analysis (vol. 18,
no. 2, 1983) compares several procedures for predicting the
shear strength for steel plate girders. Data for nine girders in
the form of the ratio of predicted to observed load for two of
these procedures, the Karlsruhe and Lehigh methods, are as
follows:

Girder Karlsruhe Method Lehigh Method

S1/1 1.186 1.061
S2/1 1.151 0.992
S3/1 1.322 1.063
S4/1 1.339 1.062
S5/1 1.200 1.065
S2/1 1.402 1.178
S2/2 1.365 1.037
S2/3 1.537 1.086
S2/4 1.559 1.052

(a) Is there any evidence to support a claim that there is a
difference in mean performance between the two
methods? Use 	 � 0.05.

(b) What is the P-value for the test in part (a)?

(c) Construct a 95 percent confidence interval for the dif-
ference in mean predicted to observed load.

(d) Investigate the normality assumption for both samples.

(e) Investigate the normality assumption for the difference
in ratios for the two methods.

(f) Discuss the role of the normality assumption in the
paired t-test.

2.35. The deflection temperature under load for two differ-
ent formulations of ABS plastic pipe is being studied. Two
samples of 12 observations each are prepared using each for-
mulation and the deflection temperatures (in °F) are reported
below:



Formulation 1 Formulation 2

206 193 192 177 176 198
188 207 210 197 185 188
205 185 194 206 200 189
187 189 178 201 197 203

(a) Construct normal probability plots for both samples.
Do these plots support assumptions of normality and
equal variance for both samples?

(b) Do the data support the claim that the mean deflection
temperature under load for formulation 1 exceeds that
of formulation 2? Use 	 � 0.05.

(c) What is the P-value for the test in part (a)?

2.36. Refer to the data in Problem 2.35. Do the data support
a claim that the mean deflection temperature under load for
formulation 1 exceeds that of formulation 2 by at least 3°F?

2.37. In semiconductor manufacturing wet chemical
etching is often used to remove silicon from the backs of
wafers prior to metalization. The etch rate is an important
characteristic of this process. Two different etching solutions
are being evaluated. Eight randomly selected wafers have
been etched in each solution, and the observed etch rates (in
mils/min) are as follows.

Solution 1 Solution 2

9.9 10.6 10.2 10.6
9.4 10.3 10.0 10.2

10.0 9.3 10.7 10.4
10.3 9.8 10.5 10.3

(a) Do the data indicate that the claim that both solutions
have the same mean etch rate is valid? Use 	 � 0.05
and assume equal variances.

(b) Find a 95 percent confidence interval on the difference
in mean etch rates.

(c) Use normal probability plots to investigate the adequa-
cy of the assumptions of normality and equal variances.

2.38. Two popular pain medications are being compared
on the basis of the speed of absorption by the body.
Specifically, tablet 1 is claimed to be absorbed twice as fast
as tablet 2. Assume that and are known. Develop a test
statistic for

2.39. Continuation of Problem 2.38. An article in Nature
(1972, pp. 225–226) reported on the levels of monoamine oxi-
dase in blood platelets for a sample of 43 schizophrenic

H1�2�1 Z �2

H0�2�1 � �2

�2
2�2

1
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patients resulting in � 2.69 and s1 � 2.30 while for a sam-
ple of 45 normal patients the results were � 6.35 and s2 �
4.03. The units are nm/mg protein/h. Use the results of the
previous problem to test the claim that the mean monoamine
oxidase level for normal patients is at last twice the mean level
for schizophrenic patients. Assume that the sample sizes are
large enough to use the sample standard deviations as the true
parameter values.

2.40. Suppose we are testing

where > are known. Our sampling resources are con-
strained such that n1 � n2 � N. Show that an allocation of the
observation n1 n2 to the two samp that lead the most powerful
test is in the ratio n1/n2 � �1/�2.

2.41. Continuation of Problem 2.40. Suppose that we
want to construct a 95% two-sided confidence interval on the
difference in two means where the two sample standard devi-
ations are known to be �1 � 4 and �2 � 8. The total sample
size is restricted to N � 30. What is the length of the 95% CI
if the sample sizes used by the experimenter are n1 � n2 � 15?
How much shorter would the 95% CI have been if the exper-
imenter had used an optimal sample size allocation?

2.42. Develop Equation 2.46 for a 100(1 � 	) percent con-
fidence interval for the variance of a normal distribution.

2.43. Develop Equation 2.50 for a 100(1 � 	) percent con-
fidence interval for the ratio , where and are the
variances of two normal distributions.

2.44. Develop an equation for finding a 100 (1 � 	) percent
confidence interval on the difference in the means of two nor-
mal distributions where . Apply your equation to the
Portland cement experiment data, and find a 95 percent confi-
dence interval.

2.45. Construct a data set for which the paired t-test statis-
tic is very large, but for which the usual two-sample or pooled
t-test statistic is small. In general, describe how you created
the data. Does this give you any insight regarding how the
paired t-test works?

2.46. Consider the experiment described in Problem 2.26.
If the mean burning times of the two flares differ by as much
as 2 minutes, find the power of the test. What sample size
would be required to detect an actual difference in mean burn-
ing time of 1 minute with a power of at least 0.90?

2.47. Reconsider the bottle filling experiment described in
Problem 2.24. Rework this problem assuming that the two
population variances are unknown but equal.

2.48. Consider the data from Problem 2.24. If the mean fill
volume of the two machines differ by as much as 0.25 ounces,
what is the power of the test used in Problem 2.19? What sam-
ple size would result in a power of at least 0.9 if the actual dif-
ference in mean fill volume is 0.25 ounces?
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