Solutions of Equations in One Variable

Accelerating Convergence

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロト <回ト < 国ト < 国ト = 国

イロト イヨト イヨト イヨ

2 Steffensen's Method

- 2 Steffensen's Method
- Application of Steffensen's Method

A ►

3 Application of Steffensen's Method

A .

- 2 Steffensen's Method
- 3 Application of Steffensen's Method
- Rate of Convergence

< 17 ▶

Improving the Rate of Convergence

- We have seen from an earlier result Linear Convergence that it is rare to have the luxury of quadratic convergence.
- We now consider a technique called Aitken's △² method that can be used to accelerate the convergence of a sequence that is linearly convergent, regardless of its origin or application.

(ロ) (四) (注) (注) (注) (注) (注)

Constructing Aitken's Δ^2 Method

- Suppose $\{p_n\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit *p*.
- To motivate the construction of a sequence {p̂_n}[∞]_{n=0} that converges more rapidly to p than does {p_n}[∞]_{n=0}, let us first assume that the signs of

$$p_n - p$$
, $p_{n+1} - p$ and $p_{n+2} - p$

agree and that n is sufficiently large that

$$rac{p_{n+1}-p}{p_n-p}pproxrac{p_{n+2}-p}{p_{n+1}-p}.$$

< 回 > < 三 > < 三 >

$$rac{p_{n+1}-p}{p_n-p}pproxrac{p_{n+2}-p}{p_{n+1}-p}.$$

Constructing Aitken's Δ^2 Method (Cont'd)

Solve for *p*:

$$(p_{n+1}-p)^2 \approx (p_{n+2}-p)(p_n-p)$$

$$\Rightarrow p_{n+1}^2 - 2p_{n+1}p + p^2 \approx p_{n+2}p_n - (p_n + p_{n+2})p + p^2$$

$$\Rightarrow (p_{n+2} + p_n - 2p_{n+1}) p ~\approx~ p_{n+2}p_n - p_{n+1}^2$$

$$\Rightarrow p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n}$$

Numerical Analysis 9 (Chapter 2)

$$p pprox rac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n}$$

Constructing Aitken's Δ^2 Method (Cont'd)

Adding and subtracting the terms p_n^2 and $2p_np_{n+1}$ in the numerator and grouping terms appropriately gives

$$\begin{split} p &\approx \frac{p_n p_{n+2} - 2p_n p_{n+1} + p_n^2 - p_{n+1}^2 + 2p_n p_{n+1} - p_n^2}{p_{n+2} - 2p_{n+1} + p_n} \\ &= \frac{p_n (p_{n+2} - 2p_{n+1} + p_n) - (p_{n+1}^2 - 2p_n p_{n+1} + p_n^2)}{p_{n+2} - 2p_{n+1} + p_n} \\ &= p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}. \end{split}$$

Numerical Analysis 9 (Chapter 2)

Aitken's Δ^2 Method

Aitken's Δ^2 method is based on the assumption that the sequence $\{\hat{p}_n\}_{n=0}^{\infty}$, defined by

$$\hat{p}_n = p_n - rac{(p_{n+1}-p_n)^2}{p_{n+2}-2p_{n+1}+p_n}$$

converges more rapidly to p than does the original sequence $\{p_n\}_{n=0}^{\infty}$.

< 🗇 🕨

Example: Computing the Iterations

- The sequence $\{p_n\}_{n=1}^{\infty}$, where $p_n = \cos(1/n)$, converges linearly to p = 1.
- Determine the first 5 terms of the sequence given by Aitken's Δ² method.
- In order to determine a term p̂_n of the Aitken's Δ² method sequence, we need to have the terms p_n, p_{n+1}, and p_{n+2} of the original sequence.
- So to determine \hat{p}_5 we need the first 7 terms of $\{p_n\}$.
- These are given in the following table.

Computing \hat{p}_n from p_n , p_{n+1} , and p_{n+2}			
	n	pn	,
	1	0.54030	0.96178
	2	0.87758	0.98213
	3	0.94496	0.98979
	4	0.96891	0.99342
	5	0.98007	0.99541
	6	0.98614	
	7	0.98981	

It certainly appears that $\{\hat{p}_n\}_{n=1}^{\infty}$ converges more rapidly to p = 1 than does $\{p_n\}_{n=1}^{\infty}$.

э

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$
 for $n \ge 0$

Writing the formula using Δ Notation

The numerator and denominator of the formula (above) may be expressed using the Δ notation for forward differences • Definition of Δ since

$$\begin{array}{rcl} \Delta p_n &=& p_{n+1} - p_n \\ \Delta^2 p_n &=& \Delta (p_{n+1} - p_n) = \Delta p_{n+1} - \Delta p_n \\ &=& (p_{n+2} - p_{n+1}) - (p_{n+1} - p_n) \\ &=& p_{n+2} - 2p_{n+1} + p_n \end{array}$$

Aitken's Δ^2 Method

$$\hat{p}_n = p_n - rac{(\Delta p_n)^2}{\Delta^2 p_n}$$
 for $n \ge 0$

- We have stated that the sequence {p̂_n}[∞]_{n=0}, converges to p more rapidly than does the original sequence {p_n}[∞]_{n=0}, ...
- but we have not said what is meant by the term "more rapid" convergence.
- The following theorem (stated without proof) explains and justifies this terminology.

Rate of Convergence of Aitken's Δ^2 Method

Suppose that $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges linearly to the limit *p* and that

$$\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}<1.$$

Then the Aitken's Δ^2 sequence $\{\hat{p}_n\}_{n=0}^{\infty}$ converges to *p* faster than $\{p_n\}_{n=0}^{\infty}$ in the sense that

$$\lim_{n\to\infty}\frac{\hat{p}_n-p}{p_n-p}=0.$$

Numerical Analysis 9 (Chapter 2)

• • • • • • • • • • •

- 2 Steffensen's Method
- 3 Application of Steffensen's Method
- Rate of Convergence

< 17 ▶

Accelerating Convergence: Steffensen's Method

From Aitken's Method to Steffensen's Method

- By applying a modification of Aitken's Δ² method to a linearly convergent sequence obtained from fixed-point iteration, we can accelerate the convergence to quadratic.
- This procedure is known as Steffensen's method and differs slightly from applying Aitken's Δ² method directly to the linearly convergent fixed-point iteration sequence.

Accelerating Convergence: Steffensen's Method

From Aitken's Method to Steffensen's Method (Cont'd)

• Aitken's Δ^2 method constructs the terms in order:

$$\begin{array}{ll} p_0, & p_1 = g(p_0), & p_2 = g(p_1), & \hat{p}_0 = \{\Delta^2\}(p_0), \\ p_3 = g(p_2), & \hat{p}_1 = \{\Delta^2\}(p_1), \dots, \end{array}$$

Steffensen's method constructs the same first four terms, p₀, p₁, p₂, and p̂₀. However, at this step we assume that p̂₀ is a better approximation to p than is p₂ and apply fixed-point iteration to p̂₀ instead of p₂. Using this notation the sequence generated is

$$p_0^{(0)}, \quad p_1^{(0)} = g(p_0^{(0)}), \quad p_2^{(0)} = g(p_1^{(0)}), \quad p_0^{(1)} = \{\Delta^2\}(p_0^{(0)}), \\ p_1^{(1)} = g(p_0^{(1)}), \dots$$

< ロ > < 同 > < 回 > < 回 >

Example

Algorithm for Steffensen's Method

To find a solution to p = g(p) given an initial approximation p_0 , tolerance *TOL*; maximum number of iterations N_0 .

1 Set i = 12 While $i \le N_0$ do Steps 3–6: 3 Set $p_1 = g(p_0)$; (Compute $p_1^{(i-1)}$.) $p_2 = g(p_1)$; (Compute $p_2^{(i-1)}$.) $p = p_0 - (p_1 - p_0)^2 / (p_2 - 2p_1 + p_0)$. (Compute $p_0^{(i)}$.) 4 If $|p - p_0| < TOL$ then OUTPUT (p); (Procedure completed successfully.) STOP. 5 Set i = i + 16 Set $p_0 = p$. (Update p_0)

7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (*Procedure completed unsuccessfully.*) STOP.

- 2 Steffensen's Method
- Application of Steffensen's Method

< 17 ▶

Accelerating Convergence: Steffensen's Method

Example: Application of Steffensen's Method

- Earlier, we solved $x^3 + 4x^2 10 = 0$ using fixed-point iteration.
- One choice for g(x) was obtained by letting $x^3 + 4x^2 = 10$, dividing by x + 4 and solving for x to obtain x = g(x) where

$$g(x)=\sqrt{\frac{10}{x+4}}$$

• With this choice of g(x), we will now solve $x^3 + 4x^2 - 10 = 0$ using Steffensen's method starting with $p_0 = 1.5$.

Steffensen's Method: $g(x) = \sqrt{rac{10}{x+4}}$

• The iterate $p_0^{(2)} = 1.365230013$ is accurate to the ninth decimal place.

• In this example, Steffensen's method gave about the same accuracy as Newton's method applied to this polynomial.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

20 / 27

- 2 Steffensen's Method
- 3 Application of Steffensen's Method

< 17 ▶

From this example, it appears that Steffensen's method gives quadratic convergence without evaluating a derivative, and the following theorem states that this is the case.

Rate of Convergence of Steffensen's Method

Suppose that x = g(x) has the solution p with $g'(p) \neq 1$. If there exists a $\delta > 0$ such that $g \in C^3[p - \delta, p + \delta]$, then Steffensen's method gives quadratic convergence for any $p_0 \in [p - \delta, p + \delta]$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The proof of this theorem can be found in [He2], pp. 90–92, or [IK], pp. 103–107 • References.

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reference Material

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thoerem (Linear Convergence)

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all $x \in [a, b]$. Suppose, in addition, that g' is continuous on (a, b) and a positive constant k < 1 exists with

 $|g'(x)| \le k$, for all $x \in (a, b)$.

If $g'(p) \neq 0$, then for any number $p_0 \neq p$ in [a, b], the sequence

$$p_n = g(p_{n-1}), \text{ for } n \geq 1,$$

converges only linearly to the unique fixed point p in [a, b].

Return to Rate of Convergence

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Forward Difference Operator Δ

For a given sequence $\{p_n\}_{n=0}^{\infty}$, the forward difference Δp_n (read "delta p_n ") is defined by

$$\Delta p_n = p_{n+1} - p_n$$
, for $n \ge 0$.

Higher powers of the operator Δ are defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n), \text{ for } k \geq 2.$$

Return to Aitken's Method

《曰》 《聞》 《臣》 《臣》 三臣 …

Rate of Convergence of Steffensen's Method

Suppose that x = g(x) has the solution p with $g'(p) \neq 1$. If there exists a $\delta > 0$ such that $g \in C^3[p - \delta, p + \delta]$, then Steffensen's method gives quadratic convergence for any $p_0 \in [p - \delta, p + \delta]$.

Sources for the Proof

٩

0

Return to Steffensen's Method