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1.1 Strategy of Experimentation

Observing a system or process while it is in operation is an important part of the learning
process, and is an integral part of understanding and learning about how systems and
processes work. The great New York Yankees catcher Yogi Berra said that “. . . you can
observe a lot just by watching.” However, to understand what happens to a process when
you change certain input factors, you have to do more than just watch—you actually have
to change the factors. This means that to really understand cause-and-effect relationships in
a system you must deliberately change the input variables to the system and observe the
changes in the system output that these changes to the inputs produce. In other words, you
need to conduct experiments on the system. Observations on a system or process can lead
to theories or hypotheses about what makes the system work, but experiments of the type
described above are required to demonstrate that these theories are correct.

Investigators perform experiments in virtually all fields of inquiry, usually to discover
something about a particular process or system. Each experimental run is a test. More formally,
we can define an experiment as a test or series of runs in which purposeful changes are made
to the input variables of a process or system so that we may observe and identify the reasons
for changes that may be observed in the output response. We may want to determine which
input variables are responsible for the observed changes in the response, develop a model
relating the response to the important input variables and to use this model for process or system
improvement or other decision-making.

This book is about planning and conducting experiments and about analyzing the
resulting data so that valid and objective conclusions are obtained. Our focus is on experi-
ments in engineering and science. Experimentation plays an important role in technology
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commercialization and product realization activities, which consist of new product design
and formulation, manufacturing process development, and process improvement. The objec-
tive in many cases may be to develop a robust process, that is, a process affected minimally
by external sources of variability. There are also many applications of designed experiments
in a nonmanufacturing or non-product-development setting, such as marketing, service oper-
ations, and general business operations.

As an example of an experiment, suppose that a metallurgical engineer is interested in
studying the effect of two different hardening processes, oil quenching and saltwater
quenching, on an aluminum alloy. Here the objective of the experimenter (the engineer) is
to determine which quenching solution produces the maximum hardness for this particular
alloy. The engineer decides to subject a number of alloy specimens or test coupons to each
quenching medium and measure the hardness of the specimens after quenching. The aver-
age hardness of the specimens treated in each quenching solution will be used to determine
which solution is best.

As we consider this simple experiment, a number of important questions come to mind:

1. Are these two solutions the only quenching media of potential interest?

2. Are there any other factors that might affect hardness that should be investigated or
controlled in this experiment (such as, the temperature of the quenching media)?

3. How many coupons of alloy should be tested in each quenching solution?

4. How should the test coupons be assigned to the quenching solutions, and in what
order should the data be collected?

5. What method of data analysis should be used?

6. What difference in average observed hardness between the two quenching media
will be considered important?

All of these questions, and perhaps many others, will have to be answered satisfactorily
before the experiment is performed.

Experimentation is a vital part of the scientific (or engineering) method. Now there are
certainly situations where the scientific phenomena are so well understood that useful results
including mathematical models can be developed directly by applying these well-understood
principles. The models of such phenomena that follow directly from the physical mechanism
are usually called mechanistic models. A simple example is the familiar equation for current
flow in an electrical circuit, Ohm’s law, E � IR. However, most problems in science and engi-
neering require observation of the system at work and experimentation to elucidate infor-
mation about why and how it works. Well-designed experiments can often lead to a model of
system performance; such experimentally determined models are called empirical models.
Throughout this book, we will present techniques for turning the results of a designed exper-
iment into an empirical model of the system under study. These empirical models can be
manipulated by a scientist or an engineer just as a mechanistic model can.

A well-designed experiment is important because the results and conclusions that can
be drawn from the experiment depend to a large extent on the manner in which the data were
collected. To illustrate this point, suppose that the metallurgical engineer in the above exper-
iment used specimens from one heat in the oil quench and specimens from a second heat in
the saltwater quench. Now, when the mean hardness is compared, the engineer is unable to
say how much of the observed difference is the result of the quenching media and how much
is the result of inherent differences between the heats.1 Thus, the method of data collection
has adversely affected the conclusions that can be drawn from the experiment.
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1 A specialist in experimental design would say that the effect of quenching media and heat were confounded; that is, the effects of
these two factors cannot be separated.
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In general, experiments are used to study the performance of processes and systems.
The process or system can be represented by the model shown in Figure 1.1. We can usually
visualize the process as a combination of operations, machines, methods, people, and other
resources that transforms some input (often a material) into an output that has one or more
observable response variables. Some of the process variables and material properties x1,
x2, . . . , xp are controllable, whereas other variables z1, z2, . . . , zq are uncontrollable
(although they may be controllable for purposes of a test). The objectives of the experiment
may include the following:

1. Determining which variables are most influential on the response y

2. Determining where to set the influential x’s so that y is almost always near the
desired nominal value

3. Determining where to set the influential x’s so that variability in y is small

4. Determining where to set the influential x’s so that the effects of the uncontrollable
variables z1, z2, . . . , zq are minimized.

As you can see from the foregoing discussion, experiments often involve several factors.
Usually, an objective of the experimenter is to determine the influence that these factors have
on the output response of the system. The general approach to planning and conducting the
experiment is called the strategy of experimentation. An experimenter can use several strate-
gies. We will illustrate some of these with a very simple example.

I really like to play golf. Unfortunately, I do not enjoy practicing, so I am always look-
ing for a simpler solution to lowering my score. Some of the factors that I think may be impor-
tant, or that may influence my golf score, are as follows:

1. The type of driver used (oversized or regular sized)

2. The type of ball used (balata or three piece)

3. Walking and carrying the golf clubs or riding in a golf cart

4. Drinking water or drinking “something else” while playing

5. Playing in the morning or playing in the afternoon

6. Playing when it is cool or playing when it is hot

7. The type of golf shoe spike worn (metal or soft)

8. Playing on a windy day or playing on a calm day.

Obviously, many other factors could be considered, but let’s assume that these are the ones of pri-
mary interest. Furthermore, based on long experience with the game, I decide that factors 5
through 8 can be ignored; that is, these factors are not important because their effects are so small
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that they have no practical value. Engineers, scientists, and business analysts, often must make
these types of decisions about some of the factors they are considering in real experiments.

Now, let’s consider how factors 1 through 4 could be experimentally tested to determine
their effect on my golf score. Suppose that a maximum of eight rounds of golf can be played
over the course of the experiment. One approach would be to select an arbitrary combination
of these factors, test them, and see what happens. For example, suppose the oversized driver,
balata ball, golf cart, and water combination is selected, and the resulting score is 87. During
the round, however, I noticed several wayward shots with the big driver (long is not always
good in golf), and, as a result, I decide to play another round with the regular-sized driver,
holding the other factors at the same levels used previously. This approach could be contin-
ued almost indefinitely, switching the levels of one or two (or perhaps several) factors for the
next test, based on the outcome of the current test. This strategy of experimentation, which
we call the best-guess approach, is frequently used in practice by engineers and scientists. It
often works reasonably well, too, because the experimenters often have a great deal of tech-
nical or theoretical knowledge of the system they are studying, as well as considerable prac-
tical experience. The best-guess approach has at least two disadvantages. First, suppose the
initial best-guess does not produce the desired results. Now the experimenter has to take
another guess at the correct combination of factor levels. This could continue for a long time,
without any guarantee of success. Second, suppose the initial best-guess produces an accept-
able result. Now the experimenter is tempted to stop testing, although there is no guarantee
that the best solution has been found.

Another strategy of experimentation that is used extensively in practice is the one-
factor-at-a-time (OFAT) approach. The OFAT method consists of selecting a starting point,
or baseline set of levels, for each factor, and then successively varying each factor over its
range with the other factors held constant at the baseline level. After all tests are performed,
a series of graphs are usually constructed showing how the response variable is affected by
varying each factor with all other factors held constant. Figure 1.2 shows a set of these graphs
for the golf experiment, using the oversized driver, balata ball, walking, and drinking water
levels of the four factors as the baseline. The interpretation of this graph is straightforward;
for example, because the slope of the mode of travel curve is negative, we would conclude
that riding improves the score. Using these one-factor-at-a-time graphs, we would select the
optimal combination to be the regular-sized driver, riding, and drinking water. The type of
golf ball seems unimportant.

The major disadvantage of the OFAT strategy is that it fails to consider any possible
interaction between the factors. An interaction is the failure of one factor to produce the same
effect on the response at different levels of another factor. Figure 1.3 shows an interaction
between the type of driver and the beverage factors for the golf experiment. Notice that if I use
the regular-sized driver, the type of beverage consumed has virtually no effect on the score, but
if I use the oversized driver, much better results are obtained by drinking water instead of beer.
Interactions between factors are very common, and if they occur, the one-factor-at-a-time strat-
egy will usually produce poor results. Many people do not recognize this, and, consequently,
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OFAT experiments are run frequently in practice. (Some individuals actually think that this
strategy is related to the scientific method or that it is a “sound” engineering principle.) One-
factor-at-a-time experiments are always less efficient than other methods based on a statistical
approach to design. We will discuss this in more detail in Chapter 5.

The correct approach to dealing with several factors is to conduct a factorial experi-
ment. This is an experimental strategy in which factors are varied together, instead of one
at a time. The factorial experimental design concept is extremely important, and several
chapters in this book are devoted to presenting basic factorial experiments and a number of
useful variations and special cases.

To illustrate how a factorial experiment is conducted, consider the golf experiment and
suppose that only two factors, type of driver and type of ball, are of interest. Figure 1.4 shows
a two-factor factorial experiment for studying the joint effects of these two factors on my golf
score. Notice that this factorial experiment has both factors at two levels and that all possible
combinations of the two factors across their levels are used in the design. Geometrically, the
four runs form the corners of a square. This particular type of factorial experiment is called a
22 factorial design (two factors, each at two levels). Because I can reasonably expect to play
eight rounds of golf to investigate these factors, a reasonable plan would be to play two
rounds of golf at each combination of factor levels shown in Figure 1.4. An experimental
designer would say that we have replicated the design twice. This experimental design would
enable the experimenter to investigate the individual effects of each factor (or the main
effects) and to determine whether the factors interact.

Figure 1.5a shows the results of performing the factorial experiment in Figure 1.4. The
scores from each round of golf played at the four test combinations are shown at the corners
of the square. Notice that there are four rounds of golf that provide information about using
the regular-sized driver and four rounds that provide information about using the oversized
driver. By finding the average difference in the scores on the right- and left-hand sides of the
square (as in Figure 1.5b), we have a measure of the effect of switching from the oversized
driver to the regular-sized driver, or

That is, on average, switching from the oversized to the regular-sized driver increases the
score by 3.25 strokes per round. Similarly, the average difference in the four scores at the top

� 3.25

 Driver effect �
92 � 94 � 93 � 91

4
�

88 � 91 � 88 � 90
4
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of the square and the four scores at the bottom measures the effect of the type of ball used
(see Figure 1.5c):

Finally, a measure of the interaction effect between the type of ball and the type of driver can
be obtained by subtracting the average scores on the left-to-right diagonal in the square from
the average scores on the right-to-left diagonal (see Figure 1.5d), resulting in

The results of this factorial experiment indicate that driver effect is larger than either the
ball effect or the interaction. Statistical testing could be used to determine whether any of
these effects differ from zero. In fact, it turns out that there is reasonably strong statistical evi-
dence that the driver effect differs from zero and the other two effects do not. Therefore, this
experiment indicates that I should always play with the oversized driver.

One very important feature of the factorial experiment is evident from this simple
example; namely, factorials make the most efficient use of the experimental data. Notice that
this experiment included eight observations, and all eight observations are used to calculate
the driver, ball, and interaction effects. No other strategy of experimentation makes such an
efficient use of the data. This is an important and useful feature of factorials.

We can extend the factorial experiment concept to three factors. Suppose that I wish
to study the effects of type of driver, type of ball, and the type of beverage consumed on my
golf score. Assuming that all three factors have two levels, a factorial design can be set up

� 0.25

 Ball–driver interaction effect �
92 � 94 � 88 � 90

4
�

88 � 91 � 93 � 91
4

� 0.75

 Ball effect �
88 � 91 � 92 � 94

4
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4

6 Chapter 1 ■ Introduction

O R
Type of driver

(b) Comparison of scores leading
to the driver effect

Ty
p

e 
o

f 
b

al
l

B

T

O R
Type of driver

(c) Comparison of scores
leading to the ball effect

Ty
p

e 
o

f 
b

al
l

B

T

O R

88, 90

88, 91

93, 91

92, 94

Type of driver

(a) Scores from the golf experiment

Ty
p

e 
o

f 
b

al
l

B

T

O R
Type of driver

(d) Comparison of scores
leading to the ball–driver

interaction effect

Ty
p

e 
o

f 
b

al
l

B

T

+–

+–
+

–

+

– –

– +

+

■ F I G U R E 1 . 5 Scores from the golf experiment in Figure 1.4 and calculation of the
factor effects



as shown in Figure 1.6. Notice that there are eight test combinations of these three factors
across the two levels of each and that these eight trials can be represented geometrically as
the corners of a cube. This is an example of a 23 factorial design. Because I only want to
play eight rounds of golf, this experiment would require that one round be played at each
combination of factors represented by the eight corners of the cube in Figure 1.6. However,
if we compare this to the two-factor factorial in Figure 1.4, the 23 factorial design would pro-
vide the same information about the factor effects. For example, there are four tests in both
designs that provide information about the regular-sized driver and four tests that provide
information about the oversized driver, assuming that each run in the two-factor design in
Figure 1.4 is replicated twice.

Figure 1.7 illustrates how all four factors—driver, ball, beverage, and mode of travel
(walking or riding)—could be investigated in a 24 factorial design. As in any factorial design,
all possible combinations of the levels of the factors are used. Because all four factors are at
two levels, this experimental design can still be represented geometrically as a cube (actually
a hypercube).

Generally, if there are k factors, each at two levels, the factorial design would require 2k

runs. For example, the experiment in Figure 1.7 requires 16 runs. Clearly, as the number of
factors of interest increases, the number of runs required increases rapidly; for instance, a
10-factor experiment with all factors at two levels would require 1024 runs. This quickly
becomes infeasible from a time and resource viewpoint. In the golf experiment, I can only
play eight rounds of golf, so even the experiment in Figure 1.7 is too large.

Fortunately, if there are four to five or more factors, it is usually unnecessary to run all
possible combinations of factor levels. A fractional factorial experiment is a variation of the
basic factorial design in which only a subset of the runs is used. Figure 1.8 shows a fractional
factorial design for the four-factor version of the golf experiment. This design requires only
8 runs instead of the original 16 and would be called a one-half fraction. If I can play only
eight rounds of golf, this is an excellent design in which to study all four factors. It will provide
good information about the main effects of the four factors as well as some information about
how these factors interact.
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Fractional factorial designs are used extensively in industrial research and development,
and for process improvement. These designs will be discussed in Chapters 8 and 9.

1.2 Some Typical Applications of Experimental Design

Experimental design methods have found broad application in many disciplines. As noted
previously, we may view experimentation as part of the scientific process and as one of the
ways by which we learn about how systems or processes work. Generally, we learn through
a series of activities in which we make conjectures about a process, perform experiments to
generate data from the process, and then use the information from the experiment to establish
new conjectures, which lead to new experiments, and so on.

Experimental design is a critically important tool in the scientific and engineering
world for improving the product realization process. Critical components of these activities
are in new manufacturing process design and development, and process management. The
application of experimental design techniques early in process development can result in

1. Improved process yields

2. Reduced variability and closer conformance to nominal or target requirements

3. Reduced development time

4. Reduced overall costs.

Experimental design methods are also of fundamental importance in engineering
design activities, where new products are developed and existing ones improved. Some appli-
cations of experimental design in engineering design include

1. Evaluation and comparison of basic design configurations

2. Evaluation of material alternatives

3. Selection of design parameters so that the product will work well under a wide vari-
ety of field conditions, that is, so that the product is robust

4. Determination of key product design parameters that impact product performance

5. Formulation of new products.

The use of experimental design in product realization can result in products that are easier
to manufacture and that have enhanced field performance and reliability, lower product
cost, and shorter product design and development time. Designed experiments also have
extensive applications in marketing, market research, transactional and service operations,
and general business operations. We now present several examples that illustrate some of
these ideas.
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E X A M P L E  1 . 2 Optimizing a Process

In a characterization experiment, we are usually interested
in determining which process variables affect the response.
A logical next step is to optimize, that is, to determine the
region in the important factors that leads to the best possi-
ble response. For example, if the response is yield, we
would look for a region of maximum yield, whereas if the
response is variability in a critical product dimension, we
would seek a region of minimum variability.

Suppose that we are interested in improving the yield
of a chemical process. We know from the results of a char-
acterization experiment that the two most important
process variables that influence the yield are operating
temperature and reaction time. The process currently runs

at 145°F and 2.1 hours of reaction time, producing yields
of around 80 percent. Figure 1.9 shows a view of the
time–temperature region from above. In this graph, the
lines of constant yield are connected to form response
contours, and we have shown the contour lines for yields
of 60, 70, 80, 90, and 95 percent. These contours are pro-
jections on the time–temperature region of cross sections
of the yield surface corresponding to the aforementioned
percent yields. This surface is sometimes called a
response surface. The true response surface in Figure 1.9
is unknown to the process personnel, so experimental
methods will be required to optimize the yield with
respect to time and temperature.

E X A M P L E  1 . 1 Characterizing a Process

A flow solder machine is used in the manufacturing process
for printed circuit boards. The machine cleans the boards in
a flux, preheats the boards, and then moves them along a
conveyor through a wave of molten solder. This solder
process makes the electrical and mechanical connections
for the leaded components on the board.

The process currently operates around the 1 percent defec-
tive level. That is, about 1 percent of the solder joints on a
board are defective and require manual retouching. However,
because the average printed circuit board contains over 2000
solder joints, even a 1 percent defective level results in far too
many solder joints requiring rework. The process engineer
responsible for this area would like to use a designed experi-
ment to determine which machine parameters are influential
in the occurrence of solder defects and which adjustments
should be made to those variables to reduce solder defects.

The flow solder machine has several variables that can
be controlled. They include

1. Solder temperature
2. Preheat temperature
3. Conveyor speed
4. Flux type
5. Flux specific gravity
6. Solder wave depth
7. Conveyor angle.

In addition to these controllable factors, several other factors
cannot be easily controlled during routine manufacturing,
although they could be controlled for the purposes of a test.
They are

1. Thickness of the printed circuit board
2. Types of components used on the board

3. Layout of the components on the board
4. Operator
5. Production rate.

In this situation, engineers are interested in character-
izing the flow solder machine; that is, they want to deter-
mine which factors (both controllable and uncontrollable)
affect the occurrence of defects on the printed circuit
boards. To accomplish this, they can design an experiment
that will enable them to estimate the magnitude and direc-
tion of the factor effects; that is, how much does the
response variable (defects per unit) change when each fac-
tor is changed, and does changing the factors together
produce different results than are obtained from individual
factor adjustments—that is, do the factors interact?
Sometimes we call an experiment such as this a screening
experiment. Typically, screening or characterization exper-
iments involve using fractional factorial designs, such as in
the golf example in Figure 1.8.

The information from this screening or characterization
experiment will be used to identify the critical process fac-
tors and to determine the direction of adjustment for these
factors to reduce further the number of defects per unit. The
experiment may also provide information about which fac-
tors should be more carefully controlled during routine man-
ufacturing to prevent high defect levels and erratic process
performance. Thus, one result of the experiment could be the
application of techniques such as control charts to one or
more process variables (such as solder temperature), in
addition to control charts on process output. Over time, if the
process is improved enough, it may be possible to base most
of the process control plan on controlling process input vari-
ables instead of control charting the output.
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E X A M P L E  1 . 3 Designing a Product—I

A biomedical engineer is designing a new pump for the
intravenous delivery of a drug. The pump should deliver a
constant quantity or dose of the drug over a specified peri-
od of time. She must specify a number of variables or
design parameters. Among these are the diameter and
length of the cylinder, the fit between the cylinder and the
plunger, the plunger length, the diameter and wall thickness
of the tube connecting the pump and the needle inserted
into the patient’s vein, the material to use for fabricating

both the cylinder and the tube, and the nominal pressure at
which the system must operate. The impact of some of
these parameters on the design can be evaluated by build-
ing prototypes in which these factors can be varied over
appropriate ranges. Experiments can then be designed and
the prototypes tested to investigate which design parame-
ters are most influential on pump performance. Analysis of
this information will assist the engineer in arriving at a
design that provides reliable and consistent drug delivery.

E X A M P L E  1 . 4 Designing a Product—II

An engineer is designing an aircraft engine. The engine is a
commercial turbofan, intended to operate in the cruise con-
figuration at 40,000 ft and 0.8 Mach. The design parameters
include inlet flow, fan pressure ratio, overall pressure, sta-
tor outlet temperature, and many other factors. The output
response variables in this system are specific fuel consump-
tion and engine thrust. In designing this system, it would be
prohibitive to build prototypes or actual test articles early in

the design process, so the engineers use a computer model
of the system that allows them to focus on the key design
parameters of the engine and to vary them in an effort to
optimize the performance of the engine. Designed experi-
ments can be employed with the computer model of the
engine to determine the most important design parameters
and their optimal settings.
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To locate the optimum, it is necessary to perform an
experiment that varies both time and temperature together,
that is, a factorial experiment. The results of an initial facto-
rial experiment with both time and temperature run at two
levels is shown in Figure 1.9. The responses observed at the
four corners of the square indicate that we should move in
the general direction of increased temperature and decreased
reaction time to increase yield. A few additional runs would
be performed in this direction, and this additional experimen-
tation would lead us to the region of maximum yield.

Once we have found the region of the optimum, a second
experiment would typically be performed. The objective of
this second experiment is to develop an empirical model of
the process and to obtain a more precise estimate of the opti-
mum operating conditions for time and temperature. This
approach to process optimization is called response surface
methodology, and it is explored in detail in Chapter 11. The
second design illustrated in Figure 1.9 is a central compos-
ite design, one of the most important experimental designs
used in process optimization studies.
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E X A M P L E  1 . 5 Formulating a Product

A biochemist is formulating a diagnostic product to detect
the presence of a certain disease. The product is a mixture
of biological materials, chemical reagents, and other mate-
rials that when combined with human blood react to pro-
vide a diagnostic indication. The type of experiment used
here is a mixture experiment, because various ingredients
that are combined to form the diagnostic make up 100 per-
cent of the mixture composition (on a volume, weight, or

mole ratio basis), and the response is a function of the mix-
ture proportions that are present in the product. Mixture
experiments are a special type of response surface experi-
ment that we will study in Chapter 11. They are very useful
in designing biotechnology products, pharmaceuticals,
foods and beverages, paints and coatings, consumer prod-
ucts such as detergents, soaps, and other personal care
products, and a wide variety of other products.

E X A M P L E  1 . 6 Designing a Web Page

A lot of business today is conducted via the World Wide
Web. Consequently, the design of a business’ web page has
potentially important economic impact. Suppose that the
Web site has the following components: (1) a photoflash
image, (2) a main headline, (3) a subheadline, (4) a main
text copy, (5) a main image on the right side, (6) a back-
ground design, and (7) a footer. We are interested in finding
the factors that influence the click-through rate; that is, the
number of visitors who click through into the site divided by
the total number of visitors to the site. Proper selection of
the important factors can lead to an optimal web page
design. Suppose that there are four choices for the photo-
flash image, eight choices for the main headline, six choic-
es for the subheadline, five choices for the main text copy,

four choices for the main image, three choices for the back-
ground design, and seven choices for the footer. If we use a
factorial design, web pages for all possible combinations of
these factor levels must be constructed and tested. This is a
total of 640 web
pages. Obviously, it is not feasible to design and test this
many combinations of web pages, so a complete factorial
experiment cannot be considered. However, a fractional fac-
torial experiment that uses a small number of the possible
web page designs would likely be successful. This experi-
ment would require a fractional factorial where the factors
have different numbers of levels. We will discuss how to
construct these designs in Chapter 9.

4 � 8 � 6 � 5 � 4 � 3 � 7 � 80,

Designers frequently use computer models to assist them in carrying out their activities.
Examples include finite element models for many aspects of structural and mechanical
design, electrical circuit simulators for integrated circuit design, factory or enterprise-level
models for scheduling and capacity planning or supply chain management, and computer
models of complex chemical processes. Statistically designed experiments can be applied to
these models just as easily and successfully as they can to actual physical systems and will
result in reduced development lead time and better designs.

1.3 Basic Principles

If an experiment such as the ones described in Examples 1.1 through 1.6 is to be performed
most efficiently, a scientific approach to planning the experiment must be employed.
Statistical design of experiments refers to the process of planning the experiment so that
appropriate data will be collected and analyzed by statistical methods, resulting in valid
and objective conclusions. The statistical approach to experimental design is necessary if we
wish to draw meaningful conclusions from the data. When the problem involves data that are
subject to experimental errors, statistical methods are the only objective approach to analysis.
Thus, there are two aspects to any experimental problem: the design of the experiment and
the statistical analysis of the data. These two subjects are closely related because the method



of analysis depends directly on the design employed. Both topics will be addressed in this
book.

The three basic principles of experimental design are randomization, replication, and
blocking. Sometimes we add the factorial principle to these three. Randomization is the cor-
nerstone underlying the use of statistical methods in experimental design. By randomization
we mean that both the allocation of the experimental material and the order in which the indi-
vidual runs of the experiment are to be performed are randomly determined. Statistical meth-
ods require that the observations (or errors) be independently distributed random variables.
Randomization usually makes this assumption valid. By properly randomizing the experi-
ment, we also assist in “averaging out” the effects of extraneous factors that may be present.
For example, suppose that the specimens in the hardness experiment are of slightly different
thicknesses and that the effectiveness of the quenching medium may be affected by specimen
thickness. If all the specimens subjected to the oil quench are thicker than those subjected to
the saltwater quench, we may be introducing systematic bias into the experimental results.
This bias handicaps one of the quenching media and consequently invalidates our results.
Randomly assigning the specimens to the quenching media alleviates this problem.

Computer software programs are widely used to assist experimenters in selecting and
constructing experimental designs. These programs often present the runs in the experimental
design in random order. This random order is created by using a random number generator.
Even with such a computer program, it is still often necessary to assign units of experimental
material (such as the specimens in the hardness example mentioned above), operators, gauges
or measurement devices, and so forth for use in the experiment.

Sometimes experimenters encounter situations where randomization of some aspect of
the experiment is difficult. For example, in a chemical process, temperature may be a very
hard-to-change variable as we may want to change it less often than we change the levels of
other factors. In an experiment of this type, complete randomization would be difficult
because it would add time and cost. There are statistical design methods for dealing with
restrictions on randomization. Some of these approaches will be discussed in subsequent
chapters (see in particular Chapter 14).

By replication we mean an independent repeat run of each factor combination. In the
metallurgical experiment discussed in Section 1.1, replication would consist of treating a
specimen by oil quenching and treating a specimen by saltwater quenching. Thus, if five
specimens are treated in each quenching medium, we say that five replicates have been
obtained. Each of the 10 observations should be run in random order. Replication has two
important properties. First, it allows the experimenter to obtain an estimate of the experi-
mental error. This estimate of error becomes a basic unit of measurement for determining
whether observed differences in the data are really statistically different. Second, if the sam-
ple mean ( ) is used to estimate the true mean response for one of the factor levels in the
experiment, replication permits the experimenter to obtain a more precise estimate of this
parameter. For example; if � 2 is the variance of an individual observation and there are 
n replicates, the variance of the sample mean is

The practical implication of this is that if we had n � 1 replicates and observed 
y1 � 145 (oil quench) and y2 � 147 (saltwater quench), we would probably be unable to
make satisfactory inferences about the effect of the quenching medium—that is, the
observed difference could be the result of experimental error. The point is that without
replication we have no way of knowing why the two observations are different. On the
other hand, if n was reasonably large and the experimental error was sufficiently small and
if we observed sample averages  , we would be reasonably safe in concluding thaty1 < y2

�y
2
� �

� 2

n

y
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saltwater quenching produces a higher hardness in this particular aluminum alloy than
does oil quenching.

Often when the runs in an experiment are randomized, two (or more) consecutive runs
will have exactly the same levels for some of the factors. For example, suppose we have three
factors in an experiment: pressure, temperature, and time. When the experimental runs are
randomized, we find the following:

Run number Pressure (psi) Temperature (�C) Time (min)

i 30 100 30

i � 1 30 125 45

i � 2 40 125 45

Notice that between runs i and i � 1, the levels of pressure are identical and between runs 
i � 1 and i � 2, the levels of both temperature and time are identical. To obtain a true repli-
cate, the experimenter needs to “twist the pressure knob” to an intermediate setting between
runs i and i � 1, and reset pressure to 30 psi for run i � 1. Similarly, temperature and time
should be reset to intermediate levels between runs i � 1 and i � 2 before being set to their
design levels for run i � 2. Part of the experimental error is the variability associated with hit-
ting and holding factor levels.

There is an important distinction between replication and repeated measurements.
For example, suppose that a silicon wafer is etched in a single-wafer plasma etching process,
and a critical dimension (CD) on this wafer is measured three times. These measurements are
not replicates; they are a form of repeated measurements, and in this case the observed vari-
ability in the three repeated measurements is a direct reflection of the inherent variability in
the measurement system or gauge and possibly the variability in this CD at different locations
on the wafer where the measurement were taken. As another illustration, suppose that as part
of an experiment in semiconductor manufacturing four wafers are processed simultaneously
in an oxidation furnace at a particular gas flow rate and time and then a measurement is taken
on the oxide thickness of each wafer. Once again, the measurements on the four wafers are
not replicates but repeated measurements. In this case, they reflect differences among the
wafers and other sources of variability within that particular furnace run. Replication reflects
sources of variability both between runs and (potentially) within runs.

Blocking is a design technique used to improve the precision with which comparisons
among the factors of interest are made. Often blocking is used to reduce or eliminate the vari-
ability transmitted from nuisance factors—that is, factors that may influence the experimen-
tal response but in which we are not directly interested. For example, an experiment in a
chemical process may require two batches of raw material to make all the required runs.
However, there could be differences between the batches due to supplier-to-supplier variabil-
ity, and if we are not specifically interested in this effect, we would think of the batches of
raw material as a nuisance factor. Generally, a block is a set of relatively homogeneous exper-
imental conditions. In the chemical process example, each batch of raw material would form
a block, because the variability within a batch would be expected to be smaller than the vari-
ability between batches. Typically, as in this example, each level of the nuisance factor
becomes a block. Then the experimenter divides the observations from the statistical design
into groups that are run in each block. We study blocking in detail in several places in the text,
including Chapters 4, 5, 7, 8, 9, 11, and 13. A simple example illustrating the blocking prin-
cipal is given in Section 2.5.1.

The three basic principles of experimental design, randomization, replication, and
blocking are part of every experiment. We will illustrate and emphasize them repeatedly
throughout this book.
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1.4 Guidelines for Designing Experiments

To use the statistical approach in designing and analyzing an experiment, it is necessary for
everyone involved in the experiment to have a clear idea in advance of exactly what is to be stud-
ied, how the data are to be collected, and at least a qualitative understanding of how these data
are to be analyzed. An outline of the recommended procedure is shown in Table 1.1. We now
give a brief discussion of this outline and elaborate on some of the key points. For more details,
see Coleman and Montgomery (1993), and the references therein. The supplemental text
material for this chapter is also useful.

1. Recognition of and statement of the problem. This may seem to be a rather obvi-
ous point, but in practice often neither it is simple to realize that a problem requiring
experimentation exists, nor is it simple to develop a clear and generally accepted state-
ment of this problem. It is necessary to develop all ideas about the objectives of the
experiment. Usually, it is important to solicit input from all concerned parties: engi-
neering, quality assurance, manufacturing, marketing, management, customer, and
operating personnel (who usually have much insight and who are too often ignored).
For this reason, a team approach to designing experiments is recommended.

It is usually helpful to prepare a list of specific problems or questions that are
to be addressed by the experiment. A clear statement of the problem often contributes
substantially to better understanding of the phenomenon being studied and the final
solution of the problem. 

It is also important to keep the overall objectives of the experiment in mind.
There are several broad reasons for running experiments and each type of experiment
will generate its own list of specific questions that need to be addressed. Some (but
by no means all) of the reasons for running experiments include:

a. Factor screening or characterization. When a system or process is new,
it is usually important to learn which factors have the most influence on
the response(s) of interest. Often there are a lot of factors. This usually
indicates that the experimenters do not know much about the system so
screening is essential if we are to efficiently get the desired performance
from the system. Screening experiments are extremely important when
working with new systems or technologies so that valuable resources will
not be wasted using best guess and OFAT approaches.

b. Optimization. After the system has been characterized and we are rea-
sonably certain that the important factors have been identified, the next
objective is usually optimization, that is, find the settings or levels of
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the important factors that result in desirable values of the response. For
example, if a screening experiment on a chemical process results in the
identification of time and temperature as the two most important fac-
tors, the optimization experiment may have as its objective finding the
levels of time and temperature that maximize yield, or perhaps maxi-
mize yield while keeping some product property that is critical to the
customer within specifications. An optimization experiment is usually
a follow-up to a screening experiment. It would be very unusual for a
screening experiment to produce the optimal settings of the important
factors.

c. Confirmation. In a confirmation experiment, the experimenter is usually
trying to verify that the system operates or behaves in a manner that is
consistent with some theory or past experience.  For example, if theory
or experience indicates that a particular new material is equivalent to the
one currently in use and the new material is desirable (perhaps less
expensive, or easier to work with in some way), then a confirmation
experiment would be conducted to verify that substituting the new mate-
rial results in no change in product characteristics that impact its use.
Moving a new manufacturing process to full-scale production based on
results found during experimentation at a pilot plant or development site
is another situation that often results in confirmation experiments—that
is, are the same factors and settings that were determined during devel-
opment work appropriate for the full-scale process?

d. Discovery. In discovery experiments, the experimenters are usually trying
to determine what happens when we explore new materials, or new fac-
tors, or new ranges for factors. In the pharmaceutical industry, scientists
are constantly conducting discovery experiments to find new materials or
combinations of materials that will be effective in treating disease.

e. Robustness. These experiments often address questions such as under
what conditions do the response variables of interest seriously degrade?
Or what conditions would lead to unacceptable variability in the response
variables? A variation of this is determining how we can set the factors in
the system that we can control to minimize the variability transmitted into
the response from factors that we cannot control very well. We will dis-
cuss some experiments of this type in Chapter 12.

Obviously, the specific questions to be addressed in the experiment relate
directly to the overall objectives. An important aspect of problem formulation is the
recognition that one large comprehensive experiment is unlikely to answer the key
questions satisfactorily. A single comprehensive experiment requires the experi-
menters to know the answers to a lot of questions, and if they are wrong, the results
will be disappointing. This leads to wasting time, materials, and other resources and
may result in never answering the original research questions satisfactorily. A
sequential approach employing a series of smaller experiments, each with a specific
objective, such as factor screening, is a better strategy.

2. Selection of the response variable. In selecting the response variable, the exper-
imenter should be certain that this variable really provides useful information about
the process under study. Most often, the average or standard deviation (or both) of
the measured characteristic will be the response variable. Multiple responses are
not unusual. The experimenters must decide how each response will be measured,
and address issues such as how will any measurement system be calibrated and
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how this calibration will be maintained during the experiment. The gauge or meas-
urement system capability (or measurement error) is also an important factor. If
gauge capability is inadequate, only relatively large factor effects will be detected
by the experiment or perhaps additional replication will be required. In some situ-
ations where gauge capability is poor, the experimenter may decide to measure
each experimental unit several times and use the average of the repeated measure-
ments as the observed response. It is usually critically important to identify issues
related to defining the responses of interest and how they are to be measured before
conducting the experiment. Sometimes designed experiments are employed to
study and improve the performance of measurement systems. For an example, see
Chapter 13.

3. Choice of factors, levels, and range. (As noted in Table 1.1, steps 2 and 3 are often
done simultaneously or in the reverse order.) When considering the factors that may
influence the performance of a process or system, the experimenter usually discov-
ers that these factors can be classified as either potential design factors or nuisance
factors. The potential design factors are those factors that the experimenter may wish
to vary in the experiment. Often we find that there are a lot of potential design fac-
tors, and some further classification of them is helpful. Some useful classifications
are design factors, held-constant factors, and allowed-to-vary factors. The design
factors are the factors actually selected for study in the experiment. Held-constant
factors are variables that may exert some effect on the response, but for purposes of
the present experiment these factors are not of interest, so they will be held at a spe-
cific level. For example, in an etching experiment in the semiconductor industry,
there may be an effect that is unique to the specific plasma etch tool used in the
experiment. However, this factor would be very difficult to vary in an experiment, so
the experimenter may decide to perform all experimental runs on one particular (ide-
ally “typical”) etcher. Thus, this factor has been held constant. As an example of
allowed-to-vary factors, the experimental units or the “materials” to which the design
factors are applied are usually nonhomogeneous, yet we often ignore this unit-to-unit
variability and rely on randomization to balance out any material or experimental
unit effect. We often assume that the effects of held-constant factors and allowed-to-
vary factors are relatively small.

Nuisance factors, on the other hand, may have large effects that must be
accounted for, yet we may not be interested in them in the context of the present experi-
ment. Nuisance factors are often classified as controllable, uncontrollable, or noise
factors. A controllable nuisance factor is one whose levels may be set by the exper-
imenter. For example, the experimenter can select different batches of raw material
or different days of the week when conducting the experiment. The blocking princi-
ple, discussed in the previous section, is often useful in dealing with controllable nui-
sance factors. If a nuisance factor is uncontrollable in the experiment, but it can be
measured, an analysis procedure called the analysis of covariance can often be used
to compensate for its effect. For example, the relative humidity in the process envi-
ronment may affect process performance, and if the humidity cannot be controlled,
it probably can be measured and treated as a covariate. When a factor that varies nat-
urally and uncontrollably in the process can be controlled for purposes of an experi-
ment, we often call it a noise factor. In such situations, our objective is usually to find
the settings of the controllable design factors that minimize the variability transmit-
ted from the noise factors. This is sometimes called a process robustness study or a
robust design problem. Blocking, analysis of covariance, and process robustness
studies are discussed later in the text.
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Once the experimenter has selected the design factors, he or she must choose
the ranges over which these factors will be varied and the specific levels at which runs
will be made. Thought must also be given to how these factors are to be controlled at
the desired values and how they are to be measured. For instance, in the flow solder
experiment, the engineer has defined 12 variables that may affect the occurrence of
solder defects. The experimenter will also have to decide on a region of interest for
each variable (that is, the range over which each factor will be varied) and on how
many levels of each variable to use. Process knowledge is required to do this. This
process knowledge is usually a combination of practical experience and theoretical
understanding. It is important to investigate all factors that may be of importance and
to be not overly influenced by past experience, particularly when we are in the early
stages of experimentation or when the process is not very mature.

When the objective of the experiment is factor screening or process charac-
terization, it is usually best to keep the number of factor levels low. Generally, two
levels work very well in factor screening studies. Choosing the region of interest is
also important. In factor screening, the region of interest should be relatively large—
that is, the range over which the factors are varied should be broad. As we learn more
about which variables are important and which levels produce the best results, the
region of interest in subsequent experiments will usually become narrower.

The cause-and-effect diagram can be a useful technique for organizing
some of the information generated in pre-experimental planning. Figure 1.10 is the
cause-and-effect diagram constructed while planning an experiment to resolve
problems with wafer charging (a charge accumulation on the wafers) encountered
in an etching tool used in semiconductor manufacturing. The cause-and-effect dia-
gram is also known as a fishbone diagram because the “effect” of interest or the
response variable is drawn along the spine of the diagram and the potential causes
or design factors are organized in a series of ribs. The cause-and-effect diagram
uses the traditional causes of measurement, materials, people, environment, meth-
ods, and machines to organize the information and potential design factors. Notice
that some of the individual causes will probably lead directly to a design factor that
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will be included in the experiment (such as wheel speed, gas flow, and vacuum),
while others represent potential areas that will need further study to turn them into
design factors (such as operators following improper procedures), and still others
will probably lead to either factors that will be held constant during the experiment
or blocked (such as temperature and relative humidity). Figure 1.11 is a cause-and-
effect diagram for an experiment to study the effect of several factors on the tur-
bine blades produced on a computer-numerical-controlled (CNC) machine. This
experiment has three response variables: blade profile, blade surface finish, and
surface finish defects in the finished blade. The causes are organized into groups
of controllable factors from which the design factors for the experiment may be
selected, uncontrollable factors whose effects will probably be balanced out by
randomization, nuisance factors that may be blocked, and factors that may be held
constant when the experiment is conducted. It is not unusual for experimenters to
construct several different cause-and-effect diagrams to assist and guide them dur-
ing preexperimental planning. For more information on the CNC machine experi-
ment and further discussion of graphical methods that are useful in preexperimental
planning, see the supplemental text material for this chapter.

We reiterate how crucial it is to bring out all points of view and process infor-
mation in steps 1 through 3. We refer to this as pre-experimental planning. Coleman
and Montgomery (1993) provide worksheets that can be useful in pre-experimental
planning. Also see the supplemental text material for more details and an example
of using these worksheets. It is unlikely that one person has all the knowledge required
to do this adequately in many situations. Therefore, we strongly argue for a team effort
in planning the experiment. Most of your success will hinge on how well the pre-
experimental planning is done.

4. Choice of experimental design. If the above pre-experimental planning activities are
done correctly, this step is relatively easy. Choice of design involves consideration of
sample size (number of replicates), selection of a suitable run order for the experi-
mental trials, and determination of whether or not blocking or other randomization
restrictions are involved. This book discusses some of the more important types of
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experimental designs, and it can ultimately be used as a guide for selecting an appro-
priate experimental design for a wide variety of problems.

There are also several interactive statistical software packages that support this
phase of experimental design. The experimenter can enter information about the num-
ber of factors, levels, and ranges, and these programs will either present a selection of
designs for consideration or recommend a particular design. (We usually prefer to see
several alternatives instead of relying entirely on a computer recommendation in most
cases.) Most software packages also provide some diagnostic information about how
each design will perform. This is useful in evaluation of different design alternatives for
the experiment. These programs will usually also provide a worksheet (with the order
of the runs randomized) for use in conducting the experiment.

Design selection also involves thinking about and selecting a tentative empirical
model to describe the results. The model is just a quantitative relationship (equation)
between the response and the important design factors. In many cases, a low-order
polynomial model will be appropriate. A first-order model in two variables is 

where y is the response, the x’s are the design factors, the 	’s are unknown parame-
ters that will be estimated from the data in the experiment, and is a random error
term that accounts for the experimental error in the system that is being studied. The
first-order model is also sometimes called a main effects model. First-order models
are used extensively in screening or characterization experiments. A common exten-
sion of the first-order model is to add an interaction term, say

where the cross-product term x1x2 represents the two-factor interaction between the
design factors. Because interactions between factors is relatively common, the first-
order model with interaction is widely used. Higher-order interactions can also be
included in experiments with more than two factors if necessary. Another widely used
model is the second-order model

Second-order models are often used in optimization experiments.
In selecting the design, it is important to keep the experimental objectives in

mind. In many engineering experiments, we already know at the outset that some of
the factor levels will result in different values for the response. Consequently, we are
interested in identifying which factors cause this difference and in estimating the mag-
nitude of the response change. In other situations, we may be more interested in ver-
ifying uniformity. For example, two production conditions A and B may be compared,
A being the standard and B being a more cost-effective alternative. The experimenter
will then be interested in demonstrating that, say, there is no difference in yield
between the two conditions.

5. Performing the experiment. When running the experiment, it is vital to monitor
the process carefully to ensure that everything is being done according to plan.
Errors in experimental procedure at this stage will usually destroy experimental
validity. One of the most common mistakes that I have encountered is that the peo-
ple conducting the experiment failed to set the variables to the proper levels on
some runs. Someone should be assigned to check factor settings before each run.
Up-front planning to prevent mistakes like this is crucial to success. It is easy to

y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
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underestimate the logistical and planning aspects of running a designed experiment
in a complex manufacturing or research and development environment.

Coleman and Montgomery (1993) suggest that prior to conducting the experi-
ment a few trial runs or pilot runs are often helpful. These runs provide information
about consistency of experimental material, a check on the measurement system, a
rough idea of experimental error, and a chance to practice the overall experimental
technique. This also provides an opportunity to revisit the decisions made in steps
1–4, if necessary.

6. Statistical analysis of the data. Statistical methods should be used to analyze the data
so that results and conclusions are objective rather than judgmental in nature. If the
experiment has been designed correctly and performed according to the design, the
statistical methods required are not elaborate. There are many excellent software
packages designed to assist in data analysis, and many of the programs used in step 4
to select the design provide a seamless, direct interface to the statistical analysis. Often
we find that simple graphical methods play an important role in data analysis and
interpretation. Because many of the questions that the experimenter wants to answer
can be cast into an hypothesis-testing framework, hypothesis testing and confidence
interval estimation procedures are very useful in analyzing data from a designed
experiment. It is also usually very helpful to present the results of many experiments
in terms of an empirical model, that is, an equation derived from the data that express
the relationship between the response and the important design factors. Residual
analysis and model adequacy checking are also important analysis techniques. We will
discuss these issues in detail later.

Remember that statistical methods cannot prove that a factor (or factors) has a
particular effect. They only provide guidelines as to the reliability and validity of
results. When properly applied, statistical methods do not allow anything to be proved
experimentally, but they do allow us to measure the likely error in a conclusion or to
attach a level of confidence to a statement. The primary advantage of statistical meth-
ods is that they add objectivity to the decision-making process. Statistical techniques
coupled with good engineering or process knowledge and common sense will usually
lead to sound conclusions.

7. Conclusions and recommendations. Once the data have been analyzed, the experi-
menter must draw practical conclusions about the results and recommend a course of
action. Graphical methods are often useful in this stage, particularly in presenting the
results to others. Follow-up runs and confirmation testing should also be performed
to validate the conclusions from the experiment.

Throughout this entire process, it is important to keep in mind that experimen-
tation is an important part of the learning process, where we tentatively formulate
hypotheses about a system, perform experiments to investigate these hypotheses,
and on the basis of the results formulate new hypotheses, and so on. This suggests
that experimentation is iterative. It is usually a major mistake to design a single,
large, comprehensive experiment at the start of a study. A successful experiment
requires knowledge of the important factors, the ranges over which these factors
should be varied, the appropriate number of levels to use, and the proper units of
measurement for these variables. Generally, we do not perfectly know the answers
to these questions, but we learn about them as we go along. As an experimental pro-
gram progresses, we often drop some input variables, add others, change the region
of exploration for some factors, or add new response variables. Consequently, we
usually experiment sequentially, and as a general rule, no more than about 25 percent
of the available resources should be invested in the first experiment. This will ensure
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that sufficient resources are available to perform confirmation runs and ultimately
accomplish the final objective of the experiment.

Finally, it is important to recognize that all experiments are designed exper-
iments. The important issue is whether they are well designed or not. Good pre-
experimental planning will usually lead to a good, successful experiment. Failure
to do such planning usually leads to wasted time, money, and other resources and
often poor or disappointing results.

1.5 A Brief History of Statistical Design

There have been four eras in the modern development of statistical experimental design. The
agricultural era was led by the pioneering work of Sir Ronald A. Fisher in the 1920s and early
1930s. During that time, Fisher was responsible for statistics and data analysis at the
Rothamsted Agricultural Experimental Station near London, England. Fisher recognized that
flaws in the way the experiment that generated the data had been performed often hampered
the analysis of data from systems (in this case, agricultural systems). By interacting with sci-
entists and researchers in many fields, he developed the insights that led to the three basic
principles of experimental design that we discussed in Section 1.3: randomization, replica-
tion, and blocking. Fisher systematically introduced statistical thinking and principles into
designing experimental investigations, including the factorial design concept and the analysis
of variance. His two books [the most recent editions are Fisher (1958, 1966)] had profound
influence on the use of statistics, particularly in agricultural and related life sciences. For an
excellent biography of Fisher, see Box (1978).

Although applications of statistical design in industrial settings certainly began in the
1930s, the second, or industrial, era was catalyzed by the development of response surface
methodology (RSM) by Box and Wilson (1951). They recognized and exploited the fact that
many industrial experiments are fundamentally different from their agricultural counterparts
in two ways: (1) the response variable can usually be observed (nearly) immediately, and 
(2) the experimenter can quickly learn crucial information from a small group of runs that can
be used to plan the next experiment. Box (1999) calls these two features of industrial exper-
iments immediacy and sequentiality. Over the next 30 years, RSM and other design
techniques spread throughout the chemical and the process industries, mostly in research and
development work. George Box was the intellectual leader of this movement. However, the
application of statistical design at the plant or manufacturing process level was still not
extremely widespread. Some of the reasons for this include an inadequate training in basic
statistical concepts and methods for engineers and other process specialists and the lack of
computing resources and user-friendly statistical software to support the application of statis-
tically designed experiments.

It was during this second or industrial era that work on optimal design of experi-
ments began. Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959) proposed a formal
approach to selecting a design based on specific objective optimality criteria. Their initial
approach was to select a design that would result in the model parameters being estimat-
ed with the best possible precision. This approach did not find much application because
of the lack of computer tools for its implementation. However, there have been great
advances in both algorithms for generating optimal designs and computing capability over
the last 25 years. Optimal designs have great application and are discussed at several
places in the book.

The increasing interest of Western industry in quality improvement that began in the
late 1970s ushered in the third era of statistical design. The work of Genichi Taguchi [Taguchi
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and Wu (1980), Kackar (1985), and Taguchi (1987, 1991)] had a significant impact on
expanding the interest in and use of designed experiments. Taguchi advocated using designed
experiments for what he termed robust parameter design, or

1. Making processes insensitive to environmental factors or other factors that are dif-
ficult to control

2. Making products insensitive to variation transmitted from components

3. Finding levels of the process variables that force the mean to a desired value while
simultaneously reducing variability around this value.

Taguchi suggested highly fractionated factorial designs and other orthogonal arrays along
with some novel statistical methods to solve these problems. The resulting methodology
generated much discussion and controversy. Part of the controversy arose because Taguchi’s
methodology was advocated in the West initially (and primarily) by entrepreneurs, and the
underlying statistical science had not been adequately peer reviewed. By the late 1980s, the
results of peer review indicated that although Taguchi’s engineering concepts and objectives
were well founded, there were substantial problems with his experimental strategy and
methods of data analysis. For specific details of these issues, see Box (1988), Box, Bisgaard,
and Fung (1988), Hunter (1985, 1989), Myers, Montgomery and Anderson-Cook (2009), and
Pignatiello and Ramberg (1992). Many of these concerns are also summarized in the exten-
sive panel discussion in the May 1992 issue of Technometrics [see Nair et al. (1992)].

There were several positive outcomes of the Taguchi controversy. First, designed exper-
iments became more widely used in the discrete parts industries, including automotive and
aerospace manufacturing, electronics and semiconductors, and many other industries that had
previously made little use of the technique. Second, the fourth era of statistical design began.
This era has included a renewed general interest in statistical design by both researchers and
practitioners and the development of many new and useful approaches to experimental prob-
lems in the industrial world, including alternatives to Taguchi’s technical methods that allow
his engineering concepts to be carried into practice efficiently and effectively. Some of these
alternatives will be discussed and illustrated in subsequent chapters, particularly in Chapter 12.
Third, computer software for construction and evaluation of designs has improved greatly
with many new features and capability. Forth, formal education in statistical experimental
design is becoming part of many engineering programs in universities, at both undergraduate
and graduate levels. The successful integration of good experimental design practice into
engineering and science is a key factor in future industrial competitiveness.

Applications of designed experiments have grown far beyond the agricultural origins.
There is not a single area of science and engineering that has not successfully employed sta-
tistically designed experiments. In recent years, there has been a considerable utilization of
designed experiments in many other areas, including the service sector of business, financial
services, government operations, and many nonprofit business sectors. An article appeared in
Forbes magazine on March 11, 1996, entitled “The New Mantra: MVT,” where MVT stands
for “multivariable testing,” a term authors use to describe factorial designs. The article notes
the many successes that a diverse group of companies have had through their use of statisti-
cally designed experiments.

1.6 Summary: Using Statistical Techniques in Experimentation

Much of the research in engineering, science, and industry is empirical and makes exten-
sive use of experimentation. Statistical methods can greatly increase the efficiency of
these experiments and often strengthen the conclusions so obtained. The proper use of 



statistical techniques in experimentation requires that the experimenter keep the following
points in mind:

1. Use your nonstatistical knowledge of the problem. Experimenters are usually
highly knowledgeable in their fields. For example, a civil engineer working on a
problem in hydrology typically has considerable practical experience and formal
academic training in this area. In some fields, there is a large body of physical the-
ory on which to draw in explaining relationships between factors and responses.
This type of nonstatistical knowledge is invaluable in choosing factors, determining
factor levels, deciding how many replicates to run, interpreting the results of the
analysis, and so forth. Using a designed experiment is no substitute for thinking
about the problem.

2. Keep the design and analysis as simple as possible. Don’t be overzealous in the use
of complex, sophisticated statistical techniques. Relatively simple design and analysis
methods are almost always best. This is a good place to reemphasize steps 1–3 of the
procedure recommended in Section 1.4. If you do the pre-experiment planning care-
fully and select a reasonable design, the analysis will almost always be relatively
straightforward. In fact, a well-designed experiment will sometimes almost analyze
itself! However, if you botch the pre-experimental planning and execute the experi-
mental design badly, it is unlikely that even the most complex and elegant statistics
can save the situation.

3. Recognize the difference between practical and statistical significance. Just because
two experimental conditions produce mean responses that are statistically different,
there is no assurance that this difference is large enough to have any practical value.
For example, an engineer may determine that a modification to an automobile fuel
injection system may produce a true mean improvement in gasoline mileage of 
0.1 mi/gal and be able to determine that this is a statistically significant result.
However, if the cost of the modification is $1000, the 0.1 mi/gal difference is proba-
bly too small to be of any practical value.

4. Experiments are usually iterative. Remember that in most situations it is unwise to
design too comprehensive an experiment at the start of a study. Successful design
requires the knowledge of important factors, the ranges over which these factors are
varied, the appropriate number of levels for each factor, and the proper methods and
units of measurement for each factor and response. Generally, we are not well
equipped to answer these questions at the beginning of the experiment, but we learn
the answers as we go along. This argues in favor of the iterative, or sequential,
approach discussed previously. Of course, there are situations where comprehensive
experiments are entirely appropriate, but as a general rule most experiments should be
iterative. Consequently, we usually should not invest more than about 25 percent of
the resources of experimentation (runs, budget, time, etc.) in the initial experiment.
Often these first efforts are just learning experiences, and some resources must be
available to accomplish the final objectives of the experiment.
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1.7 Problems

1.1. Suppose that you want to design an experiment to
study the proportion of unpopped kernels of popcorn.
Complete steps 1–3 of the guidelines for designing experi-
ments in Section 1.4. Are there any major sources of variation
that would be difficult to control?

1.2. Suppose that you want to investigate the factors that
potentially affect cooking rice.

(a) What would you use as a response variable in this
experiment? How would you measure the response?



(b) List all of the potential sources of variability that could
impact the response.

(c) Complete the first three steps of the guidelines for
designing experiments in Section 1.4.

1.3. Suppose that you want to compare the growth of gar-
den flowers with different conditions of sunlight, water, fertil-
izer, and soil conditions. Complete steps 1–3 of the guidelines
for designing experiments in Section 1.4.

1.4. Select an experiment of interest to you. Complete
steps 1–3 of the guidelines for designing experiments in
Section 1.4.

1.5. Search the World Wide Web for information about
Sir Ronald A. Fisher and his work on experimental design
in agricultural science at the Rothamsted Experimental
Station.
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1.6. Find a Web Site for a business that you are interested
in. Develop a list of factors that you would use in an experi-
ment to improve the effectiveness of this Web Site.

1.7. Almost everyone is concerned about the rising price
of gasoline. Construct a cause and effect diagram identifying
the factors that potentially influence the gasoline mileage that
you get in your car. How would you go about conducting an
experiment to determine any of these factors actually affect
your gasoline mileage?

1.8. What is replication? Why do we need replication in an
experiment? Present an example that illustrates the difference
between replication and repeated measurements.

1.9. Why is randomization important in an experiment?

1.10. What are the potential risks of a single large, compre-
hensive experiment in contrast to a sequential approach?
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