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These notes correspond to Lesson 25 in the text.

The Finite Fourier Transforms

When solving a PDE on a finite interval 0 < x < L, whether it be the heat equation or wave
equation, it can be very helpful to use a finite Fourier transform. In particular, we have the finite
sine transform

Sn = S[f ] =
2

L

∫ L

0
f(x) sin(nπx/L) dx, n = 1, 2, . . . ,

with its inverse sine transform

S−1[Sn] = f(x) =
∞∑
n=1

Sn sin(nπx/L).

This transform should be used with Dirichlet boundary conditions, that specify the value of u at
x = 0 and x = L.

When Neumann boundary conditions are used, that specify the value of ux at x = 0 and x = L,
it is best to use the finite cosine transform

Cn = C[f ] =
2

L

∫ L

0
f(x) cos(nπx/L) dx, n = 0, 1, 2, . . . ,

with its inverse sine transform

C−1[Cn] = f(x) =
C0

2
+
∞∑
n=1

Cn cos(nπx/L).

Both of these transforms can be used to reduce a PDE to an ODE.

Examples of the Sine Transform

Consider the function f(x) = 1 on (0, 1). If we apply the finite sine transform to this function, we
obtain

Sn = 2

∫ 1

0
sin(nπx) dx

= − 2

nπ
cos(nπx)

∣∣∣∣1
0

=

{ 4

nπ
n odd

0 n even
.

Applying the inverse sine transform yields

1 =
4

π

∞∑
n=1

1

2n− 1
sin[(2n− 1)πx].
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Properties of the Transforms

To apply these transforms to PDEs, we must know how to transform appropriate derivatives. We
have the following rules:

S[ut] =
dS[u]

dt
, S[utt] =

d2S[u]

dt2
,

C[ut] =
dC[u]

dt
, C[utt] =

d2C[u]

dt2
,

S[uxx] = −[nπ/L]2S[u] +
2nπ

L2
[u(0, t) + (−1)n+1u(L, t)],

C[uxx] = −[nπ/L]2C[u] − 2

L
[ux(0, t) + (−1)n+1ux(L, t)].

The last two rules can be obtained by applying integration by parts twice.

Solving Problems via Finite Transforms

We illustrate the use of finite Fourier transforms by solving the IBVP

utt = uxx + sin(πx), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x, 0) = 1, ut(x, 0) = 0, 0 < x < 1.

Because this problem has Dirichlet boundary conditions, we use the finite sine transform. From
the preceding example, the transform of the initial conditions are

Sn(0) =

{ 4

nπ
n odd

0 n even
, S′n(0) = 0.

Using the definition and aforementioned properties, we obtain the transform of the PDE,

S′′1 (t) = −π2S1(t) + 1,

S′′n(t) = −(nπ)2Sn(t), n = 2, 3, . . . .

The ODE for S1(t) is nonhomogeneous, and can be solved using either the method of undetermined
coefficients or variation of parameters. The general solution is

S1(t) = A cos(πt) +B sin(pit) + C,

where A,B and C are constants. Substituting this form of the solution into the ODE and initial
conditions yields

S1(t) =

(
4

π
− 1

π2

)
cos(πt) +

1

π2
.

The ODEs for Sn(t), n > 1, are homogeneous and can easily be solved to obtain

Sn(t) =

{ 4

nπ
cos(nπt) n = 3, 5, 7, . . . ,

0 n = 2, 4, 6, . . .
.

Applying the inverse sine transform, we conclude that the solution is

u(x, t) =

[(
4

π
− 1

π2

)
cos(πt) +

1

π2

]
sin(πx) +

4

π

∞∑
n=1

1

2n+ 1
cos[(2n+ 1)πt] sin[(2n+ 1)πx].
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