Jim Lambers
 MAT 417/517
 Spring Semester 2013-14
 Lecture 18 Notes

These notes correspond to Lesson 25 in the text.

The Finite Fourier Transforms

When solving a PDE on a finite interval $0<x<L$, whether it be the heat equation or wave equation, it can be very helpful to use a finite Fourier transform. In particular, we have the finite sine transform

$$
S_{n}=S[f]=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x, \quad n=1,2, \ldots
$$

with its inverse sine transform

$$
S^{-1}\left[S_{n}\right]=f(x)=\sum_{n=1}^{\infty} S_{n} \sin (n \pi x / L)
$$

This transform should be used with Dirichlet boundary conditions, that specify the value of u at $x=0$ and $x=L$.

When Neumann boundary conditions are used, that specify the value of u_{x} at $x=0$ and $x=L$, it is best to use the finite cosine transform

$$
C_{n}=C[f]=\frac{2}{L} \int_{0}^{L} f(x) \cos (n \pi x / L) d x, \quad n=0,1,2, \ldots,
$$

with its inverse sine transform

$$
C^{-1}\left[C_{n}\right]=f(x)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos (n \pi x / L) .
$$

Both of these transforms can be used to reduce a PDE to an ODE.

Examples of the Sine Transform

Consider the function $f(x)=1$ on $(0,1)$. If we apply the finite sine transform to this function, we obtain

$$
\begin{aligned}
S_{n} & =2 \int_{0}^{1} \sin (n \pi x) d x \\
& =-\left.\frac{2}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
& =\left\{\begin{array}{ll}
\frac{4}{n \pi} & n \text { odd } \\
0 & n \text { even }
\end{array} .\right.
\end{aligned}
$$

Applying the inverse sine transform yields

$$
1=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin [(2 n-1) \pi x] .
$$

Properties of the Transforms

To apply these transforms to PDEs, we must know how to transform appropriate derivatives. We have the following rules:

$$
\begin{aligned}
S\left[u_{t}\right] & =\frac{d S[u]}{d t}, \quad S\left[u_{t t}\right]=\frac{d^{2} S[u]}{d t^{2}}, \\
C\left[u_{t}\right] & =\frac{d C[u]}{d t}, \quad C\left[u_{t t}\right]=\frac{d^{2} C[u]}{d t^{2}}, \\
S\left[u_{x x}\right] & =-[n \pi / L]^{2} S[u]+\frac{2 n \pi}{L^{2}}\left[u(0, t)+(-1)^{n+1} u(L, t)\right], \\
C\left[u_{x x}\right] & =-[n \pi / L]^{2} C[u]-\frac{2}{L}\left[u_{x}(0, t)+(-1)^{n+1} u_{x}(L, t)\right] .
\end{aligned}
$$

The last two rules can be obtained by applying integration by parts twice.

Solving Problems via Finite Transforms

We illustrate the use of finite Fourier transforms by solving the IBVP

$$
\begin{gathered}
u_{t t}=u_{x x}+\sin (\pi x), \quad 0<x<1, \quad t>0, \\
u(0, t)=0, \quad u(1, t)=0, \quad t>0 \\
u(x, 0)=1, \quad u_{t}(x, 0)=0, \quad 0<x<1 .
\end{gathered}
$$

Because this problem has Dirichlet boundary conditions, we use the finite sine transform. From the preceding example, the transform of the initial conditions are

$$
S_{n}(0)=\left\{\begin{array}{ll}
\frac{4}{n \pi} & n \text { odd } \\
0 & n \text { even }
\end{array}, \quad S_{n}^{\prime}(0)=0 .\right.
$$

Using the definition and aforementioned properties, we obtain the transform of the PDE,

$$
\begin{aligned}
S_{1}^{\prime \prime}(t) & =-\pi^{2} S_{1}(t)+1 \\
S_{n}^{\prime \prime}(t) & =-(n \pi)^{2} S_{n}(t), \quad n=2,3, \ldots
\end{aligned}
$$

The ODE for $S_{1}(t)$ is nonhomogeneous, and can be solved using either the method of undetermined coefficients or variation of parameters. The general solution is

$$
S_{1}(t)=A \cos (\pi t)+B \sin (p i t)+C
$$

where A, B and C are constants. Substituting this form of the solution into the ODE and initial conditions yields

$$
S_{1}(t)=\left(\frac{4}{\pi}-\frac{1}{\pi^{2}}\right) \cos (\pi t)+\frac{1}{\pi^{2}}
$$

The ODEs for $S_{n}(t), n>1$, are homogeneous and can easily be solved to obtain

$$
S_{n}(t)=\left\{\begin{array}{ll}
\frac{4}{n \pi} \cos (n \pi t) & n=3,5,7, \ldots \\
0 & n=2,4,6, \ldots
\end{array} .\right.
$$

Applying the inverse sine transform, we conclude that the solution is

$$
u(x, t)=\left[\left(\frac{4}{\pi}-\frac{1}{\pi^{2}}\right) \cos (\pi t)+\frac{1}{\pi^{2}}\right] \sin (\pi x)+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n+1} \cos [(2 n+1) \pi t] \sin [(2 n+1) \pi x] .
$$

