# **Working Drawing**





### Introduction

Detail drawing

Assembly drawing

Assembly section

Dimensioning

# Introduction



### DEFINITION

Working drawing is a set of drawing used during the work of making a product.



### DEFINITION

Detail drawing is a multiview representation of a single part with dimensions and notes.

Assembly drawing is a drawing of <u>various</u> parts of a machine or structure assembled in their relative working positions.

### PURPOSE

Detail drawing conveys the information and instructions for manufacturing the part.

Assembly drawing conveys

- 1. completed shape of the product.
- 2. overall dimensions.
- 3. relative position of each part.
- 4. functional relationship among various components.

# **Detail Drawing**



# INFORMATION IN DETAIL DRAWING



# **GENERAL INFORMATION**

- Name of company
- Title of drawing (usually part's name)
- Drawing sheet number
- Name of drafter, checker
- Relevant dates of action
  - (drawn, checked, approved etc.)
- Revision table
- 🕨 Unit
  - Scale
  - Method of projection

# PART'S INFORMATION



# **RECOMMENDED PRACTICE**

- Draw one part to one sheet of paper.
- If not the case,
  - apply enough spacing between parts.
  - draw all parts using the same scale.
    Otherwise, the scale should be clearly note under each part's drawing.
- Standard parts such as **bolt**, **nut**, **pin**, **bearing** do not require detail drawings.

#### **EXAMPLE** : Interpreting detail drawing



# **Assembly Drawing**



# **TYPES OF ASSEMBLY DRAWING**

### 1. Exploded assembly drawings

The parts are separately display, but they are aligned according to their assembly positions and sequences.

### **2. General assembly drawings.**

All parts are drawn in their working position.

### 3. Detail assembly drawings

All parts are drawn in their working position with a completed dimensions.

### **1. EXPLODED ASSEMBLY**

#### **Pictorial representation**



### **1. EXPLODED ASSEMBLY**

#### Orthographic representation



### 2. GENERAL ASSEMBLY



#### Orthographic





### **2. GENERAL ASSEMBLY**







Only dimensions relate to machine's operation are given.

Only dimensions relate to machine's operation are given in tabulated form (not shown).

### 2. GENERAL ASSEMBLY



### **3. DETAILED ASSEMBLY**

#### (working-drawing assembly)



# REQUIRED INFORMATION IN GENERAL ASSEMBLY DRAWING

- 1. All parts, drawn in their operating position.
- 2. Part list (or bill of materials, BOM)
  - 1. Item number
  - 2. Descriptive name
  - 3. Material, MATL.
  - 4. Quantity required (per a unit of machine), QTY.
- 3. Leader lines with balloons around part numbers.
- 4. Machining and assembly operations and critical dimensions related to operation of the machine.

### PLACING AN INFORMATION (This course)



# PART LIST (BOM) (This course)

Locate above or beside the title block. Fill the table from the bottom.

| 3   | SET SCREW | 1     | Stainless Steel,<br>M3 HEX SOCK CUP PT |
|-----|-----------|-------|----------------------------------------|
| 2   | SHAFT     | 1     | Stainless Steel                        |
| 1   | SUPPORT   | 2     | Cast Iron                              |
| NO. | PART NAME | REQD. | MATL. & NOTE                           |

#### **EXAMPLE :** Another allowable place for BOM



# STEPS TO CREATE ASSEMBLY DRAWING

- 1. *Analyze* geometry and dimensions of all parts in order to understand the *assembly steps* and overall shape of device or machine.
- 2. Select an appropriate view.
- 3. Choose major parts, i.e. parts that have several parts assembled on.
- 4. Draw a view of *major parts* according to a selected viewing direction.

# STEPS TO CREATE ASSEMBLY DRAWING

- Add detail view of the remaining parts at their working positions.
- Apply section technique where relative positions between adjacent parts are needed to clarify.
- 7. Add **balloons**, **notes** and **dimensions** (if any).
- 8. Create BOM.

# **GENERAL PRACTICE**

- The *number of views* can be one, two, three or more as needed, but it should be minimum.
- A good viewing direction is that represents all (or most) of the parts assembled in their working position.

## **GENERAL PRACTICE**

 Hidden lines usually omit unless they are absolutely necessary to illustrate some important feature that the reader might otherwise miss.



#### **EXAMPLE :** Hidden lines omit **or not**?

#### **EXAMPLE :** Hidden lines omit *or not*?



#### **EXAMPLE :** Hidden lines omit **or not**?



# **GENERAL PRACTICE**

Section technique is usually need to clarify the combination of the parts.

Use *different* section line styles for adjacent parts.



# **SECTION LINE PRACTICE**

- **Do not** draw section lines on sectional view of standard parts.
  - Threaded fastener
  - Washer
  - (Iongitudinal cut of) Solid shaft, Pin, Key

### **EXAMPLE 1 :** Assembly steps





#### **EXAMPLE 2 :** Assembly steps



#### **EXAMPLE :** Section line practice



# LEADER LINE PRACTICE

Drawn from the inside of the part to the balloon and placed a filled circle at the beginning of a line.

Drawn in the **oblique** direction.

