# First law of thermodynamic for various processes

Isothermal process:- ΔT= 0

**System** depends on the temperature there is no change in the **internal energy U** of the system. Hence  $\Delta U = 0$ .

# First law of thermodynamic for various processes

Isobaric process:- ΔP = 0

**System** performs the work of **expansion** due to volume change .  $W = -P_{ex} \times \Delta V$ 

qp heat absorb by the system at constant pressure.

$$\Delta U = q_P + W$$

$$\Delta U = q_P - P_{ex} \Delta V$$

Or 
$$q_p = \Delta U + P_{ex} \Delta V$$

q<sub>p</sub> heat absorbed used to increase the internal energy of the system.

### **Isochoric process**

$$\Delta V = 0$$

Hence system doesn't perform mechanical work..

- W = PΔV = 0.
- ΔU = q + W
- ∆U = q<sub>v</sub>
- q<sub>v</sub> = heat absorbed at constant volume.
- ΔU and q is state funtion.

### **Adiabatic process**

- q= 0.
- ΔU = q + W
- ΔU = W<sub>ad</sub>
- System Expansion ΔU decrease internal energy and temperature of system decrease.
- System Compression ΔU increase internal energy and temperature of system increase.

# Modern form of the first law of thermodynamic

 According to Einstein's theory, mass can be converted in to energy.



- Hence mass is also form of energy.
- The sum of mass and energy of an isolated system remain constant.

### Limitation of "FIRST LAW"

- The first law of thermodynamic states that a certain energy flow takes place when a system undergoes a process or change of state is possible or not.
  - According to first law in 'cyclic process'
    - Work is completely converted into heat or heat is completely converted into work.
    - "HEAT" & "WORK" are mutually converted into each other.
- But from experience this is NOT TRUE!

#### Limitation of "FIRST LAW"

- First law does not help to predict whether the certain process is possible or not.
- The first law does not give info about Direction.
- It does not provide and specify sufficient condition to process take place.



# The "SECOND LAW" of thermodynamic:

- The second low of thermodynamic gives more information about thermodynamic processes.
- Second law may be defined as
  - "Heat can not flow itself from colder body to a hotter body".
- The Second law is also used to determine the theoretical limits for the performance of mostly used engineering systems like heat engines and heat pump....

### "Kelvin-Plank" statement:

- The Kelvin-Plank statement of the second law of thermodynamic is states that
  - "It is impossible to for any devise as heat engine that operates on a cycle to receive heat from a single reservoir and produce net amount of work".
- This statement means that only part of total heat absorbed by heat engine from a high temperature is converted to work, the remaining heat must be rejected at a low temperature.

### "Clausius" statement

- Clausius statement of second law of thermodynamic is as below
  - "It is impossible to construct a device as heat pump that operates in a cycle and produces no effect other than the transfer of heat from lower temperature to higher temperature body".
- This statement means that heat cannot flow from cold body to hot body without any work input.

### <u>COMPARISON</u>

#### Kelvin-Plank Statement

- It is applied to 'Heat Engine'.
- It is negative statement.
- It is based on experimental observations and no mathematical proof.

#### Clausius Statement

- It is applied to 'Heat Pump' and 'Refrigeration'.
- It is also negative statement.
- It is based on experimental observations and no mathematical proof.

# **Heat Capacity**

Heat capacity is defined as the amount of energy needed to raise the temperature of a substance by 1°C or 1K.

# Calculating Heat Capacity



Unit for heat capacity: J/K or J/°C

# **Specific Heat Capacity**

Specific heat capacity is defined as the amount of energy needed to raise the temperature of 1kg of the substance by 1°C or 1K.



# Calculating Specific Heat Capacity



Unit for Specific Heat Capacity: JK-1kg-1

#### **ENTROPY**

- Measure of degree of Disorder or randomness in a molecular system is called ENTROPY
- EXAMPLES:
  - When solid change to liquid (entropy increases).
  - When liquid change to solid (entropy decreases).
  - When gas change to liquid (entropy decreases).





# Mathematical Expression Of Entropy

Mathematical expression is

$$\Delta S = q_{rev}/T$$

$$\Delta S \longrightarrow Change in entropy$$

$$q_{rev} \longrightarrow Heat change$$

$$T \longrightarrow Temperature$$

Ratio of the heat change (q) to the Temperature of the reversible cyclic Process units is Cal/Deg or Jk-1 mol-1 or cal k-

## Entropy & Randomness:

 It is increase in entropy there is change from order state to disorder state

### Entropy & Probability:

 A irreversible spontaneous process tends to proceed from less process to more probable state and so in spontaneous process entropy increase

## Entropy changes in isothermal expansion of ideal gas

According to 1st law of thermodynamic dE=q-PdV

or  $dE=q-W \longrightarrow (i)$ 

In reversible isothermal process change in

Internal energy(dE=0)

Equation (i) becomes

$$q_{rev} - W = 0$$

$$q_{rev} = W$$
 (ii)

The work done is expansion of moles of Gas from volume V, to V, at constant Temperature 'T'is  $W=nRT In V_2/V_1 \longrightarrow$ Sub(iii) in (ii) qrev=nRT In V<sub>2</sub>/V<sub>1</sub> We know tha  $\Delta S = q_{rev}/T$ So,  $q_{rev} = \Delta S * T$  $T\Delta s = nRT \ln V_{s}/V_{s}$  $\Delta S = 1/T \text{ nRT In } V_s/V_s$ 

$$\Delta S = nRTInV_2/V_1$$
  
 $\Delta S = 2.303nRlog V_2/V_1$  (iv)

$$P_1V_1=RT$$
 (or)  $V_1=RT/P_1$   
 $P_2V_2=RT$  (or)  $V_2=RT/P_2$ 

$$\Delta S = 2.303$$
nRlog P<sub>1</sub>/P<sub>2</sub>

# Entropy change in reversible process (Non-spontaneous):

- Consider isothermal expansion of ideal gas
- If system absorbs 'q' amount of heat from surroundings at Temperature "T" then Entropy increase of system

$$\Delta S_{system} = +q/T$$

Entropy decrease of surrounding

$$\Delta S_{surroundings} = -q/T$$

# Net change in entropy

 $\Delta S_{\text{Total}} = \Delta S_{\text{system}} + \Delta S_{\text{surrounding}}$ 

$$=q/T + (-q/T)$$

$$\Delta S_{\text{Total}} = 0$$

Therefore in reversible isothermal process
No change in Entropy

# Entropy change in irreversible (spontaneous) Process:

- Consider system at higher temperature 'T<sub>1</sub>', surrounding at lower temperature T<sub>2</sub>
- 'q' amount of heat passes irreversibly from system to surrounding
- Decrease in ε ΔS<sub>system</sub> =-q/T<sub>1</sub> stem
- Increase in entropy of surrounding
   ΔS<sub>surrounding</sub> = q/T<sub>2</sub>

### Net change $\Delta S_{\text{Total}} = \Delta S_{\text{system}} + \Delta S_{\text{surrounding}}$

=-
$$q/T1+q/T_2$$
  
= $q[1/T2-1/T1]$ 

$$=q[T1-T2/T1T2]$$

As 
$$T_1 > T_2$$

T1-T2=+ve

$$\Delta S_{Total} = +ve \Delta S_{total} > 0$$

# Entropy change in Physical transformations:

- Entropy change takes place when system under goes physical transformation like vapourise fusion etc AH
- Let be quantity of heat absorbed in calories at constant temperature and pressure.
- Entropy change

$$\Delta S = \Delta H/T$$



T Temperature in Kelvin Sub (ii) in (i)  $\Delta S = L * M/T$ 

Latent heat of Vapourisation of H<sub>2</sub>O:
540cal /gm at 100 ℃

Latent heat of fusion of ice: 80cal/gm at 0 ℃