LETTERING

Lecture Week 3

Delivered By: Engr. Kiran Arshad

Writing text on a drawing (e.g. titles, dimensions, scales) using letters which can be alphabets, numerals, symbols or punctuation marks to convey detailed information.

Features of Lettering
1 Legibility, uniformity, ease, rapidity of execution reproducibility
2. No ornamental or artistic and cursive style of letter
3. Letters should be distinguishable from each other in order to avoid any confusion even in case of slight

Standard followed

Types of Lettering

- Single stroke - Thickness of the line of the letter should be such as is obtained in one stroke of the pencil.

Does not mean that the letter should be made in one stroke without lifting the pencil.

- Double stroke- When more thickness is given to single stroke letters, it is known as double stroke or gothic letters.
- BIS (SP46:2003) - Gives dimensions for lettering \&
types
- Type A - Height of capital letter is divided into 14 parts
- Type B - Height of capital letter is divided into 10 parts

Both types can be Vertical or Inclined at 75° to the horizontal Line Width staphype A slantype B

Basic Strokes

BIS(SP 46:
recommended
2003) has letters the heights of as:
$1.8,2.5,3.5,5,7,10,14 \& 20 \mathrm{~mm}$

Sl. no	Iten	s on a drawing	Size (mm)
1	Nam	of the company	IU, 14, 20
2	Drav	ing numbers, letters denoting section pl	10,14
3	Title	of the drawing	7, 10
4	Sub-	titles \& Headings	5,7
5	Dime	ensioning, notes, schedules \& material lists	3.5, 7
6	Alter	ation entries and tolerances	3.5

Total height of
lowercase letters
equals that of capital

The height-to-width ratio for letters varies between $7: 5$ or $7:$ 6

A \& B type

 Lettering BIS (SP46: 2003) (SPACING BETWEEN BASE LINES

Specifications	Type	Value	Size (mm)						
Capital letter height	A	h	2.5	3.5	5	7	10	14	20
	B	h	2.5	3.5	5	7	10	14	20
Lowercase letter height	A	$\mathrm{a}=(5 / 7) \mathrm{h}$	-	2.5	3.5	5	7	10	14
	B	$a=(7 / 10) h$	-	2.5	3.5	5	7	10	14
Thickness of lines	A	$b=(1 / 14) h$. 18	. 25	. 35	. 5	. 7	1	1.4
	B	$\mathrm{b}=(1 / 10) \mathrm{h}$. 25	. 35	. 5	. 7	1	1.4	2
Spacing between characters	A	$\mathrm{c}=(1 / 7) \mathrm{h}$. 35	. 5	. 7	1	1.4	2	2.8
	B	$\mathrm{c}=(1 / 5) \mathrm{h}$. 5	. 7	1	1.4	2	2.8	4
Minimum spacing between words	A	$\mathrm{d}=(3 / 7) \mathrm{h}$	1.05	1.5	2.1	3	4.2	6	8.4
	B	$\mathrm{d}=(3 / 5) \mathrm{h}$	1.5	2.1	3	4.2	6	8.4	12
Minimum spacing between baselines	A	$\mathrm{e}=(10 / 7) \mathrm{h}$	3.5	5	7	10	14	20	28
	B	$e=(7 / 5) h$	3.5	5	7	10	14	20	28

$\because \mid$

Vertical Capital Letters and Numerical

1. Height of numerator and denominator $=$ $3 / 4^{\text {th }}$ of height of non- fractioned number
2. Spacing between division bar and numerator or denominator should be such that the total height of fraction will be twice of that of non-fractioned number

If you put the central horizontal strokes of the letters B, E, F, and H at mid- height, they will appear to be below center. To overcome this optical illusion, draw the strokes B, E, F, and H slightly above the center as you letter, keeping letters uniform, as in the second example of fig(right below).

CGBEK|S|XZ C GBEMW|XV

Use extremely light horizontal guidelines to keep letter height uniform as shown in Figure (left above). Do not use vertical guidelines to space the distance from one letter to the next within a word or sentence. This should he done by eye while lettering.

Some combinations, such as LT and VA, may have to be slightly closer than other letters to look correctly spaced. In some cases the width of a letter may be decreased slightly. In typesetting, pairs of letters that need to be spaced more closely to appear correctly are

called kerned pairs.

BIS (SP 46: 2003) defines dimension as a numerical value expressed in appropriate units of measurement and indicated graphically on technical drawings with lines,

Features of Dimensioning

1 Units of measurement - length (mm), angles (degrees ${ }^{\circ}$)
2 Symbols - incorporated to indicate specific geometries Notes - to give specification to particular feature or Elements of Dimensioning

- Object lines
- Dimension lines
- Extension lines
- Leader lines
- Arrowheads
- Dimensions

Elements of dimensioning

Arrowheads
Leader line

Dimension

A leader or a pointer is a thin continuous line connecting a note or a dimension figure with the feature to which it applies. Never drawn vertical of horizontal but at some angle. A dot is used instead of an arrowhead if the leader ends inside the object.
An arrowhead is placed at each end of a dimension line. Its pointed end touches an extension line. The size of an arrowhead should be proportional to the length of the dimension line. The length of the arrowhead should be about three times its maximum width.

Placed near the middle and above the dimension lines or at the center of dimension lines by breaking them. As all dimensions of a drawing are in the same unit, instead of unit a note (ALL DIMENSIONS IN MM) preferable at the left hand side of title block is written. Dimension text should be uniform for all features.

Extension line

(a)
(d)

(e)

(f)

$x=3 \mathrm{~mm}$ for usual drawings
$=4-5 \mathrm{~mm}$ for larger drawings

Best practices for dimension \& extension lines

1. The shorter dimensions are nearest to the object outline.
2. Dimension lines should not cross extension lines as in Figure (b), which results from placing the shorter dimensions outside. Note that it is perfectly satisfactory to cross extension lines (Figure a), but they should not be shortened (Figure c).
3. Dimension lines should not cross each other \& any other lines of the object. However extension lines can cross both (fig 1).
4. A dimension line should never coincide with or extend from any line of the drawing (Figure
 d).

Best practices for dimension \& extension lines

5 Dimensions should be lined up and grouped together as
much as possible, as in Figure 2a, and not as in Figure 2 b .
In some cases, extension lines and center-lines must

(a)

(b)

(a)

(b)

Fig 2
7 Dimension shoul placed outside the (a). Placed inside if view clear and readable

Fig 3

Best practices for arrowheads \& centerlines

1 Arrowheads should ordinarily be drawn within the limits of
the dimensioned feature. But when the space is too

1. Center line(axis) itself shall not be used as a dimension line with arrowheads as its ends. Fig 5a
2. Center line(axis) itself shall not be used as a dimension line with arrowheads as its ends. Fig 5b

Fig
5a

Fig
5b
3. Center-lines should not extend from view to view.

Best practices for dimensions

1 All dimensions must be given. There should not be need for assumption or direct measurement
2. Each dimension should be given only once. No dimension should be
redundant / superfluous (repeated) (fig 6). Not even on another

Fig 6

Fig 7
3. Dimensions shall be given to visible lines and not to hidden lines
4. Each feature is dimensioned and positioned where its shape shows.

Best practices for dimensioning pictorial view

1 Principal lines are dimensioned in pictorial view. Dimension
and extension lines are drawn in directions that are parallel to the principal lines. For non-principal lines, its

(a) Incorrect

(b) Correct

2 In case of oblique parallel projections, along with principal
lines, those lines which are projected with true length are also dimensioned. In those cases, extension lines

Systems of dimensioning

For placing the dimensions on the drawing, following systems can be adopted.

Aligned system

1. Dimensions are placed perpendicular to the dimension line.
2. Horizontal and inclined dimensions can be read from the bottom of the drawing. Vertical dimensions can be read from the right-hand side of the drawing.
3. All dimensions are placed above the midpoint of dimension lines.

Ninto

Unidirectional system

1. Dimensions are placed vertically irrespective of dimension lines.
2. All dimensions can be read from the bottom of the drawing.
3. Horizontal dimensions are placed above the midpoint of dimension lines. Vertical and inclined dimensions are placed at the middle of dimension lines by breaking them.

All the dimensions on a drawing must be shown using either Aligned System or Unidirectional System. Two systems should not be mixed on the same

References

- Dr. Poonam Kumari, ED-ME111, L-2

