Since

$$
\begin{aligned}
& \sum_{j=1}^{3}\left|a_{1 j}=|1|+|2|+|-1|=4\right. \\
& \sum_{j=1}^{3}\left|a_{2 j}=|0|+|3|+|-1|=4\right. \\
& \sum_{j=1}^{3}\left|a_{3 j}=|5|+|-1|+|1|=7\right.
\end{aligned}
$$

3.5 Unstable or ill-conditioned system

A system of equations $A X=B$ whose solution is extremely sensitive to small changes in the coefficients (matrix A or B) is called ill-conditioned system. It is observed that even with the best available algorithm, the error due to round-off is some times large, because the problem itself may be very sensitive to the effects of small errors in the matrix A or in matrix B. An ill-conditioned system cannot be tested for the accuracy of the computed solution by substituting values of solution into equations.

A system of equations is called stable if relatively small changes in the coefficients produce small changes in the solution vector.

Example 3.5.1. Consider the system $A X=B$ as given below

$$
\left[\begin{array}{ll}
1.01 & 0.99 \\
0.99 & 1.01
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2.00 \\
2.00
\end{array}\right]
$$

Solution of the above system is $x=1$ and $y=1$. Now, modify matrix B just slightly

$$
\left[\begin{array}{ll}
1.01 & 0.99 \\
0.99 & 1.01
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2.02 \\
1.98
\end{array}\right]
$$

Solution of the above system is $x=2$ and $y=0$. Now, modify matrix B just slightly

$$
\left[\begin{array}{ll}
1.01 & 0.99 \\
0.99 & 1.01
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1.98 \\
2.02
\end{array}\right]
$$

Solution of the above system is $x=0$ and $y=2$.

Remark 3.5.1. Ill-Conditioning of a matrix A can usually be expected if $|A|$ is small.

3.5.1 Effect on Eigenvalues

Small changes in matrix A do not necessarily lead to small changes in the eigenvalues of A. To illustrate, consider the following example

$$
A=\left[\begin{array}{cc}
1 & 1000 \\
0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
1 & 1000 \\
0.001 & 1
\end{array}\right]
$$

matrix A has eigenvalues 1,1 and matrix B has eigenvalues 0 and 2. A diffrence of 0.001 in an entry (second row, first column) of the matrices led the eigenvalues to differ by 1 . Thus a change of 0.001 in one entry of matrix A led to 100% change in eigenvalues. If

$$
A=\left[\begin{array}{cc}
1 & 1000 \\
0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
1 & 1000 \\
-0.001 & 1
\end{array}\right]
$$

then matrix B have no real eigenvalue as its characteristic equation $\lambda^{2}-2 \lambda+2$ will give complex values.

Remark 3.5.2. For Symmetric matrices, small changes will generally not lead to large changes in eigenvalues.

3.5.2 Condition Number

Let A be a non singular matrix then condition number of matrix A relative to a norm is denoted by $k(A)$ or $\operatorname{cond}(A)$ and is calculated as

$$
\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

If $\operatorname{cond}(A)$ is close to 1 , then the system is well conditioned and stable. Otherwise system is ill conditional or unstable if $\operatorname{cond}(A)$ is significantly larger than 1 . For
example, consider the matrix

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & 1 \\
2 & 1.01
\end{array}\right] \quad \text { and } \quad A^{-1}=\left[\begin{array}{cc}
50.5 & -50 \\
-100 & 100
\end{array}\right] \\
\|A\|=4, \quad \text { and } \quad\left\|A^{-1}\right\|=150.5 \\
\because \quad \operatorname{cond}(A)=602
\end{gathered}
$$

Therefore, given matrix is ill-conditioned.

Example 3.5.2. Determine the condition number of the matrix given below

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]
$$

Solution.

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{cc}
-10000 & 10000 \\
5000.5 & -5000
\end{array}\right] \\
\|A\|_{\infty}=\max (|1|+|2|,|1.0001|+|2|)=\max (3,3.0001)=3.0001 \\
\left\|A^{-1}\right\|_{\infty}=\max (|-10000|+|10000|,|5000.5|+|-5000|)=\max (20000,10000.5)=20000 \\
k(A)=\|A\|_{\infty} \cdot\left\|A^{-1}\right\|_{\infty}=(20000)(3.0001)=60002.000>1
\end{gathered}
$$

Example 3.5.3. Determine the system is ill conditioned or not?

$$
A=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 2 & 1 / 4 & 1 / 5
\end{array}\right]
$$

Solution.

$$
\begin{gathered}
\|A\|_{\infty}=\max (|1|+|1 / 2|+|1 / 3|,|1 / 2|+|1 / 3|+|1 / 4|,|1 / 2|+|1 / 4|+|1 / 5|) \\
\|A\|_{\infty}=\max (1.8333,1.08333,0.950)=1.8333
\end{gathered}
$$

By using Gaussian Elimination method

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{ccc}
3 / 2 & -6 & 5 \\
9 & 12 & -30 \\
-15 & 0 & 30
\end{array}\right] \\
\left\|A^{-1}\right\|_{\infty}=\max (|3 / 2|+|-6|+|5|,|9|+|12|+|-30|,|-15|+|0|+|30|) \\
=\max (12.5,51,45)=51
\end{gathered}
$$

Now

$$
\begin{gathered}
\operatorname{cond}(A)=\|A\|_{\infty} \cdot\left\|A^{-1}\right\|_{\infty}=(1.8333)(51) \\
\operatorname{cond}(A)=93.4983>1
\end{gathered}
$$

Hence matrix is ill conditioned.

3.6 Exercise

Find the dominant and the least eigenvalues of the following matrices
1.

$$
A=\left[\begin{array}{ccc}
10 & 2 & 1 \\
2 & 10 & 1 \\
2 & 1 & 10
\end{array}\right]
$$

......Answer: Dominant eigenvalue of $A=12.994$ and dominant eigenvalue of $B=-4.995$, Least eigenvalue of $A=7.999$
2.

$$
A=\left[\begin{array}{ccc}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]
$$

.... Answer: Performing 17 iterations, dominant eigenvalue of $A=5.9979$ and dominant eigenvalue of $B=-1.9979$, Least eigenvalue of $A=5.9979-1.9979$

