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Since
3

∑

j=1

|a1j = |1| + |2| + |−1| = 4

3
∑

j=1

|a2j = |0| + |3| + |−1| = 4

3
∑

j=1

|a3j = |5| + |−1| + |1| = 7

3.5 Unstable or ill-conditioned system

A system of equations AX = B whose solution is extremely sensitive to small changes

in the coefficients (matrix A or B) is called ill-conditioned system. It is observed that

even with the best available algorithm, the error due to round-off is some times large,

because the problem itself may be very sensitive to the effects of small errors in the

matrix A or in matrix B. An ill-conditioned system cannot be tested for the accuracy

of the computed solution by substituting values of solution into equations.

A system of equations is called stable if relatively small changes in the coefficients

produce small changes in the solution vector.

Example 3.5.1. Consider the system AX = B as given below








1.01 0.99

0.99 1.01

















x

y









=









2.00

2.00









Solution of the above system is x = 1 and y = 1. Now, modify matrix B just slightly








1.01 0.99

0.99 1.01

















x

y









=









2.02

1.98









Solution of the above system is x = 2 and y = 0. Now, modify matrix B just slightly








1.01 0.99

0.99 1.01

















x

y









=









1.98

2.02
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Solution of the above system is x = 0 and y = 2.

Remark 3.5.1. Ill-Conditioning of a matrix A can usually be expected if |A| is small.

3.5.1 Effect on Eigenvalues

Small changes in matrix A do not necessarily lead to small changes in the eigenvalues

of A. To illustrate, consider the following example

A =





1 1000

0 1



 and B =





1 1000

0.001 1





matrix A has eigenvalues 1, 1 and matrix B has eigenvalues 0 and 2. A diffrence of

0.001 in an entry (second row, first column) of the matrices led the eigenvalues to

differ by 1. Thus a change of 0.001 in one entry of matrix A led to 100% change in

eigenvalues. If

A =





1 1000

0 1



 and B =





1 1000

−0.001 1





then matrix B have no real eigenvalue as its characteristic equation λ2 − 2λ + 2 will

give complex values.

Remark 3.5.2. For Symmetric matrices, small changes will generally not lead to large

changes in eigenvalues.

3.5.2 Condition Number

Let A be a non singular matrix then condition number of matrix A relative to a norm

is denoted by k(A) or cond(A) and is calculated as

cond(A) = ‖A‖ .
∥

∥

∥A−1

∥

∥

∥

If cond(A) is close to 1, then the system is well conditioned and stable. Otherwise

system is ill conditional or unstable if cond(A) is significantly larger than 1. For
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example, consider the matrix

A =





2 1

2 1.01



 and A−1 =





50.5 −50

−100 100





‖A‖ = 4, and
∥

∥

∥A−1

∥

∥

∥ = 150.5

∵ cond (A) = 602

Therefore, given matrix is ill-conditioned.

Example 3.5.2. Determine the condition number of the matrix given below

A =









1 2

1.0001 2









Solution.

A−1 =









−10000 10000

5000.5 −5000









‖A‖
∞

= max(|1| + |2| , |1.0001| + |2|) = max(3, 3.0001) = 3.0001

∥

∥

∥A−1

∥

∥

∥

∞

= max(|−10000|+|10000| , |5000.5|+|−5000|) = max(20000, 10000.5) = 20000

k(A) = ‖A‖
∞

.
∥

∥

∥A−1

∥

∥

∥

∞

= (20000)(3.0001) = 60002.000 > 1

Example 3.5.3. Determine the system is ill conditioned or not?

A =

















1 1/2 1/3

1/2 1/3 1/4

1/2 1/4 1/5

















Solution.

‖A‖
∞

= max(|1| + |1/2| + |1/3| , |1/2| + |1/3| + |1/4| , |1/2| + |1/4| + |1/5|)

‖A‖
∞

= max(1.8333, 1.08333, 0.950) = 1.8333
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By using Gaussian Elimination method

A−1 =

















3/2 −6 5

9 12 −30

−15 0 30

















∥

∥

∥A−1

∥

∥

∥

∞

= max(|3/2| + |−6| + |5| , |9| + |12| + |−30| , |−15| + |0| + |30|)

= max(12.5, 51, 45) = 51

Now

cond(A) = ‖A‖
∞

.
∥

∥

∥A−1

∥

∥

∥

∞

= (1.8333)(51)

cond(A) = 93.4983 > 1

Hence matrix is ill conditioned.

3.6 Exercise

Find the dominant and the least eigenvalues of the following matrices

1.

A =













10 2 1

2 10 1

2 1 10













. . . . . .Answer: Dominant eigenvalue of A = 12.994 and dominant eigenvalue of

B = −4.995, Least eigenvalue of A = 7.999

2.

A =













5 0 1

0 −2 0

1 0 5













. . . . Answer: Performing 17 iterations, dominant eigenvalue of A = 5.9979 and

dominant eigenvalue of B = −1.9979, Least eigenvalue of A = 5.9979 − 1.9979


