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<3 VOLUME INTEGRAL

Let : (x,y,z)beavecor point function which is
defined and continvous in a closed region R . Subdivide the
region R ito D subregions A Ry of volume AV y,
k=1.2, - % I Pg (Xg.Yr»2Zk) be any point oo
each subregion ARy as shown in figure (5.19) .
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gion K : l'll‘tl the

|f we have a scalar point function d(x,y.2) defined and continuous over the 1

integral becomes j j [ bdV (1)
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In rectangular coordinate system , d V = dxdydz sothe volume integral (1) can be writlen as
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R
which is the ordinary triple integral of ¢ (x,y, z) ovei the region R, If ¢(x,y,2) = 1, the

V of the region R is given by V = j jj dV.,
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EXAMPLE (13): Evaluate jjj r dV where R Is the reglon bounded by the surfaces x
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SOLUTION: The region R bounded by the given surfaces is shown in figure (5.20) . Then
2 ] a4
- & f.\ A AN
III{('V j I J (xn'yjfzk)dzclydx
R x=0 y=0z=yx'
26 4 ; t
- | IJ‘ deulydx
R
4 6 4
] I chlulydx
00 x’
&0 3
bk J-I Il.dulydx
g g %
‘ 26 yl
- iijIz' ldydxﬂj
'i.
‘ 00 0
: 2 6




_———-——'—__——-—-—'

VECTOR AND TENSOR ANALYSIS

2

0 0
i
4

A |

A |
r 18| 4x "]x

)'6;(.

]

A 1

= 6i(4)*18]

” A 3"\
= 241+96)+k

oo
“io
ul‘_{:
\—_‘4

y SIMPLY AND MULTIPLY CONNECTED REGIONS

/A region R is said to be simply connected if any simple closed curve
A — ]

\/ 5.10 GREEN’S THEOREM IN THE PLANE .‘
We will consider vector functions of just x and y and denve a rebsuosst® ©

L v :
i

A simple closed curve is a closed curve which does not / -

intersect itself auywhcrej For example , the curve in figure (5.21 (a))

is a simple closed curve while the curve in figure [5.21 (b)) is DOt .

P .
lying iIn R can be continuously shrunk 1o a pointsy For example , the
interior of a rectangle as shown in figure [5.21 (c)) is an example of a
simply connected region .
( A region R which is not simply connected is called multiply
~connected) For example , the region R exterior to C; and iatenior 1o

C, is not simply connected because a circle drawn within R and /’,- :\‘-*‘?
1 R 75

enclosing C, cannot be shrunk to a point without crossing C ; as <, @ 4

shown in figure [5.21 (d)] . In other words , the regions which have LY

/bolcs are called multiply connected .

integral around a closed curve and a double integral over the part of the plane euciosed VY
THOREM (5.6):
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derivatives in R, then e

Ox dy
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: We prove the theorem for a closed curve C which has @€ PV
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where C is described in the positive (wumrdockvﬁ‘?‘““’_;‘; ;
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The theorem also holds for a multiply—connected region R such as shown in figure (5.23) (b) .

Verify Green’s theorem In the plane for M = xy+y’and N =

(b)

x? where C

is the closed curve of the region bounded by y = x and y = x.

(i)

tY N

0 "X ®)
(2)
Figure (5.23)

EXAMPLE (14):
SOLUTION: The plane curves y =
be the curve y = x' and Cj the curve y

The positive direction in traversing C is shown in figure (5.24).
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Trlenfromcquanons(?.)andc) we have § (xy+Yy )dx+x 2dy = 0~ 20
C
Since %‘hg'-— x+2y, aod %“‘-‘-ZX, then
[[(2-2) axay - [Joanaxay= | ] -zney
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so that the theorem is verified .

511 GREEN’S THEOREM IN THE PLANE IN VECTOR NOTATION

FIRST VECTOR FORM (OR TANGENTIAL FORM) OF GREEN’S THEOREM

chavc§de+Ndy=II(aa}: aa};)d)(dy (n
& : R
/.\ l;\ A A — —
Now Mdx+Ndy=(Mi+Nj).(dxi+dyj)=A.dr

—

S —
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Then from equation (1) Green’s theorem in the plane can be written
\j § Kidy # I_"(VXA).kd_R where dR = dxdy
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: SECOND VECTOR FORM (OR NORMAL FORM) OF GREEN'S Thigjgy ™ [ I
4 = =R A
- /\t.abuvc,de+Ndy=A.dr = A.T &% '\
: A i
where L, 1 = Unit tangent vector 10 K [ see the figure (5.23) ]
2 %
Role 3 b ¢
I o is the outward drawn unit normal (0 C then- T = kXn s0 that [
=l A , - A A (x ;9 )
Mdm-Ndy:X.Tds:A.(kxn)ds=(Axk)-nds - .
y -~
A T 7 - ;o
Since A= Mi+Nj, therefore 9 X
Pl A ~ A ‘ i « .{\
B=Axk=(Mi+Nj)xk =Ni-M] c,-‘fj\ y j
and V) E .“QE. _a_M ”// /
i SOt Ny

then equation (1) becomes § B.nds = I_[ V.BdR
¢l R

where dR = dxdy

\/ 512 STOKES’ THEOREM
THEOREM (5.7): It states that if S is an open , two-sided surface bound

curve C, thenif A has continuous first partial denvauves o

s &5

— = S A e n )m ;
@A.dr=”(w,\).nds gQQV;(R ¥y

C S o ,_6 P

where C istraversed in the positive direction &’

In words the line integral of the tangential component of a vector functica ¢

curve C is equal to the surface integral of the normal component of the cul ©
surface S having C as its boundary .

PROOF: Let X

A A A , '-
‘Anl*AzJ*A)k.lhcnStok:s'mcmtmiﬁb'

jj[Vx(A,?fA;j'fA,ﬁ)].rA\d-S - § A.dx*-‘h“”’”a‘ ’

S ' ¢ | ;
We prove this theorem for a swrface S which has the pmpmymuaw“’!"‘w‘*
planes are regions bounded by sumple closed curves as shown @ figa® e
ICpresentation z = f(x.y) or x = B Y4 G -y 0 d VL e
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N

for both curves , we must have

‘§Fdx=§>/\,dx
3 C

¢ A ' .

or II[VX(AH)].ndS=§A|dx (4)
S 5

Similarly , by projections on the other coordinate planes , we have

”[Vx(m?)]-ﬁdw-ggmdy (5)
c >

S

“[Vx(A,Q)].SdsHﬁA,dz ‘ (6)
: S €
Addition of equatic;ns (4), (5), and (6) completes the proof of the theorem .
RECTANGULAR FORM OF STOKES' THEOREM
Let X — A|?+A,?+A;ﬁ and r’;= n,’i\+n,'j\+n,£ bcthcoutward(h'awntmit

| s -
to the surface S. If a, B,and y are the angles which the unit normal n makes with the
directions of X, and z axes respectively , then

A
Ny =R = Somd

A
n.1 = cosP

I

—

alld Fhintou

= >
KD D

= cosY

A
The quantities cos @, €03 B,and cosy are the directions cosines of 1. Then

5 A A i
n = Cosai+COSﬂJ+COSYk

A A )
Fais ) k
1 o S e
Thus @ ¥ e 5-; ay 0z
Al A) A]

0As g_&,)¢+(%_gﬁ;);+(gﬁ_z_a__m

n (ay =~ Az dz dx dx ay

d

and

2 w—
B i (A,?+A,§+A,ﬁ).(dx?+dy3+dzk) = Ay
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and Stokes' theorem becomes

4) f’\\ii\* r\}d)’ff\]d'l.
C

0/ oA 9A; A, ]
T[S (B e (3 - e o

dy d
g
A i 27 _y'zk, where S |
| EXAMPLE (15): Verify Stokes® theorem for A = (2x-y)i-y2  j-Y ZK,
F upper half surface of the sphere x*+y?+2? = 1 and C isits bdbundary .
SOLUTION: The surface S and its projection R on the xy—plane is shown in figure (5.27) .

The boundary C of S isacircle in the xy—plane of radius | and centre at the origin .

Let x = cos®, y = sinB, z=0, 0<6<2n be the parametric equations of C .

el G 5
Then ‘J” A.dr = ?(Zx—y)dx—yz’dy—yzzdz ;
G ks
2n
- j (2cos0-sinB)(-sinB)d8
0=0
2n
1
b I(—?sin6c059+sm’9)de \"x7-+y2=1,z=0
0 X . :
i Figure (5.2
£ .[[—510291-(1:‘:;529)]‘18
0 »

Then ”(fox).ﬁds = ”f(.?xds

=j,[d"d)’ (sinceaﬁds_ |
. ndxd
R 2
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Let x = sin@®, dx =cos8d6, 0=<8 < /2. Then

22 x/2
i . |
”(VxA).nds = 4 J’caszede'-’-i(i) j(l*mzé,gg
0 0

>

N’

and Stokes' theorem is venfied .

3.13  GAUSS’ DIVERGENCE THEOREM

Gauss® divergence theorem has wide applications in mathemaucs physics ang en

used lo derive equations governing the flow of fluids , heat conduction , wave PrCpasacs
fields .

7

/ THEOREM (5.8): . It states that if R is the region bounded by a closed surface 3
vector point function with continuous first partial derivatines , 12

JI35as-[[fv.3 3 v JA
sAA_ ds Iﬁ”v AdV__?{fV.AJ/? |
where n is the outward drawn unit normalto S. =

In words the surface ntegral of the normal Component of a vector funcliod
surface

S is equal to the integral of the divergence of A taken over the 122108
PROOF:

If A is expressed in t components Al
| erms of s AN
divergence theorem ¢ |

an be written as

jj(-ﬂnifA:;*Alﬁ)-;dS=III(aA‘+aA4
j éx. o
To establish (his ; ;
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Algy ]IIQ‘A‘ dzdydx

01 2z
14 ;
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A
il
j ] Bz dz |dyd2
L2=M,(x,y) )

R.
- ”lh(!.y.z)lz::::;; dydx
Ro
” j[{A)(".Y.f:(l-Y)]'A)[1-7'“(3-?)]}dydx (‘)
R-

since the normal 3, to S, makes an
= -Q.R,ds.. since the normal

M
Si. dydl - C“",ds, - k-ﬂde),

 For the lower part S, , dydx = cosy,dS,

£ with —C,
‘ ,[x.y,f,(x,y)]dydx - IIA,‘-B)dS:

S,

| '[‘-Y.f.(x,y)]dydx - —IIA,k.n,dS,
| %
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0A,, ., 3A
E Y ”f—;’ dzdydx

[

R
fa(x,y)
dA
- N
j_‘ I 32 dz dyd?
sz?(x!)')

fi(x,
JIA,(x.y.z.wlf,’fI,_iI dydx

i

.[{A,[x.y,r,(x,y>]-A,[x.y.r,(x,y)]}dydx (1)

i
M — X e

A A A
part S;, dydx = cosy,dS; = k.n,dS,, sincethe normal n,; to S, makes an acute
A A A
: For the Jowerpart S,, dydx = cosy,dS, = -k.n,;dS,, since the normal n, to

mmgle v with -k

A)[‘,}’,f;(l,y)]del - J’IAglk\.I’]\;dS)
S,

A-’[‘.Y,f;(x.y)]dydx = —_H-A,Q.S.dS.
S

€quation (1) becomes

flbie o L
’ "?2 4.y = ,Jr\gk-n;ds;‘JJA,k.n,dS,

S» S\

e @)

S
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tion of equations (2), (3), and (4) completes the proof of the theorem .

ce that Gauss’ divergence theorem is a generalization of Green's theorem in the plane where the
ie) region R and its boundary (curve) C are replaced by a (space) region R and its closed boundary
ace) S. For this reason the divergence theorem is often called Green's theorem in space .

RECTANGULAR FORM OF GAUSS'S DIVERGENCE THEOREM |

A A

— A A A A
Jet A = A|i+!\}j+f\3k, and n = n|i+n1j+n3

>

2 8A1+6A2+6A3
ax 0y o2

]‘ VhJA

— A A A A A /.\ A
| A ™ (A‘i+A1j+A;k).(cosai+cosp)+cosyk)
A,cosa+A;cosP+Aj cosy

j the Gauss' divergence theorem can be written as

S
/

— A
X AMPLE (16) Verify the divergence theorem for A = 4xzi -
surface of the cube bounded by

A A X
y’j+yzk where S is the

x =, X =ks y.—:o’ Y"“], =0 =k,

OLUTION: The given cube is shown in figure (5.29) . By the divergence theorem , we have
HX.Sds - ”_[V.A dv
S R
5 (12 o z)+~f’—(-y’)+i(yz)]dv
o s B kD 3z
R 4 3
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