R AND TENSOR ANALYSIS

the line segment C_1 from (1,0) to (1,1), x = 1, dx = 0, while y varies from 0 to egral (1) over this part of the path is $\int \overline{A} \cdot d\overline{r} = \int 2y dy = 1$

equation (2), we get
$$\int \vec{A} \cdot d\vec{r} = 1 + 1 = 2$$

Along the line segment C_1 from (0,0) to (0,1), x=0, dx=0, while y varies from

ntegral (1) over this part of the path is
$$\int \overline{A} \cdot d\overline{r} = \int 0 dy = 0$$

$$C_1 \qquad x = 0$$

C ing the line segment C_2 from (0,1) to (1,1), y = 1, dy = 0, while x varies from 0 to

e integral (1) over this part of the path is
$$\int_{C_2} \vec{A} \cdot d\vec{r} = \int_{C_2} (1 + x^2) dx = \left| x + \frac{x^3}{3} \right|_0^2 = dx$$
om equation (2), we get
$$\int_{C_2} \vec{A} \cdot d\vec{r} = 0 + \frac{4}{3} = \frac{4}{3}.$$

OTE: In example (4), we have seen that the value of a line integral A. dr in general, dependent

in the path C joining the points P₁ and P₂. We now show that for certain types of vector functions and the path C joining the points P₁ and P₂. value of the line integral will depend only on P1 and P2 but will not depend on the path C from A 2. We first state the following definition.

LINE INTEGRAL INDEPENDENT OF PATH (OR CONSERVATIVE FIEL 5.4

The line integral $\int \overline{A} \cdot dr$ is said to be independent

of the path C (or the vector field A is conservative) in a

given region R, if the value of the line integral A.dr is the same for all paths C joining any two given points P, and

P₂ in R. Thus as shown in figure (5.8), the line integral is

independent of the path C. if the integrals along C1, C2, C

LINE, SURFACE, AND VOLUME INTEGRALS AND RELATED INTEGRAL THEOREMS

PLE (5): If
$$\vec{A} = 2 \times y^2 \hat{i} + 2 (x^2 y + y) \hat{j}$$
, evaluate $\int \vec{A} \cdot d\vec{r}$ from $(0,0)$ to $(2,4)$

along the following paths C:

Since integration is performed in the xy-plane, therefore $d\vec{r} = dx \hat{i} + dy \hat{j}$

$$\int_{C} \overline{A} \cdot dr = \int_{C} 2xy^{2} dx + 2(x^{2}y + y)$$
 (1)

the path C in each case is shown in figure (5.9).

Along the straight line y = 2x, we have 2 dx while x varies from 0 to 2.

ne integral (1) becomes

$$\int \overline{A} \cdot d\overline{r} = \int_{0}^{2} 2x(2x)^{2} dx + 2[x^{2}(2x) + 2x] 2 dx$$

$$x = 0$$

$$= \int_{0}^{2} (16x^{3} + 8x) dx = |4x^{4} + 4x^{2}|_{0}^{2} = 64 + 16 = 80$$

Along the parabola $y = x^2$, we have dy = 2 x dx while x varies from 0 to 2.

e integral (1) becomes

$$\int A \cdot dr = \int 2x(x^{2})^{2} dx + 2[x^{2}(x^{2}) + x^{2}] 2x dx$$

$$x = 0$$

$$= \int (6x^{5} + 4x^{3}) dx = |x^{6} + x^{4}|_{0}^{2} = 64 + 16 = 80.$$

e C is the curve consisting of the line segments C₁ and C₂.

Figure (5.9)

long the line segment C_1 , y = 0, therefore dy = 0, while x varies from 0 to 2. Thus

$$\int_{C_1} \vec{A} \cdot d\vec{r} = \int_{x=0}^{2} 0 dx = 0$$

Along the line segment C_2 , x = 2, therefore dx = 0 while y varies from 0 to 4.

$$\int_{C_2} \vec{A} \cdot d\vec{r} = \int_{y=0}^{4} 2(4y+y) dy = \int_{0}^{4} 10y dy = 5|y^2|_{0}^{4} = 5(16) = 80$$

From equation (2), we get
$$\int \vec{A} \cdot d\vec{r} = 0 + 80 = 80$$

THEOREMS ON LINE INTEGRALS INDEPENDENT OF PATH

THEOREM (5.1): Prove that a necessary and sufficient condition for $\int \overline{A} \cdot d\overline{r}$ to be independent of the path joining any two points P_1 and P_2 (i.e. \overline{A} to be conservative) in a given region is that $\oint \overline{A} \cdot d\overline{r} = 0$ for all closed paths C in the region.

PROOF: Let C be any simple closed curve, and let P₁ and P₂ be any two points on C as shown in figure (5.10). Then since by hypothesis, the integral is independent of the path

(i.e.
$$\overrightarrow{A}$$
 is conservative), we have
$$\int_{P_1AP_2} \overrightarrow{A} \cdot d\overrightarrow{r} = \int_{P_1BP_2} \overrightarrow{A} \cdot d\overrightarrow{r}$$

Reversing the direction of integration in the integral on the right, we have

$$\int_{A} \overline{A} \cdot d\overline{r} = -\int_{A} \overline{A} \cdot d\overline{r}$$

$$P_{1}AP_{2} \qquad P_{2}BP_{1}$$
or
$$\int_{A} \overline{A} \cdot d\overline{r} + \int_{A} \overline{A} \cdot d\overline{r} = 0$$

$$P_{1}AP_{2} \qquad P_{2}BP_{1}$$
or
$$\oint_{A} \overline{A} \cdot d\overline{r} = 0$$

Conversely, if
$$\oint \vec{A} \cdot d\vec{r} = 0$$
, then $\int \vec{A} \cdot d\vec{r} + \int \vec{A} \cdot d\vec{r} = 0$

C

 P_1AP_2
 P_2BP_1

or
$$\int_{P_1AP_2} \overline{A} \cdot d\overline{r} - \int_{P_1BP_2} \overline{A} \cdot d\overline{r} = 0$$

or
$$\int \overline{A} \cdot d\overline{r} = \int \overline{A} \cdot d\overline{r}$$

$$P_1AP_2 \qquad P_1BP_2$$

which shows that the line integral is independent of the path joining P1 and P2 as required.

SCALAR POTENTIAL FUNCTION

A scalar potential function ϕ is a single-valued function for which there exists a covector field \overrightarrow{A} in a simply connected region R that satisfies the relation $\overrightarrow{A} = \nabla \phi$.

THEOREM (5.2): Prove that a necessary and sufficient condition for $\int \overline{A} \cdot dr$ to be independent of the path C joining any two points $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, x_2, z_3)$ (i.e. \overline{A} to be conservative) is that there exists a scalar function ϕ su $\overline{A} = \nabla \phi$, where ϕ is single valued and has continuous partial derivative

PROOF:

$$\int \overline{A} \cdot d\overline{r} = \int \overline{A} \cdot d\overline{r} = \int \overline{P}_{2} \nabla \phi \cdot d\overline{r}$$
C
P₁
P₂
P₃

$$= \int_{P_1}^{P_2} \left(\frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial y} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k} \right) \cdot (dx \hat{i} + dy \hat{j} + dz \hat{k})$$

$$= \int_{P_1}^{P_2} \left(\frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial y} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k} \right) \cdot (dx \hat{i} + dy \hat{j} + dz \hat{k})$$

$$= \int_{P_1}^{P_2} \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$$

$$P_{2} = \int_{P_{1}} d\phi = \phi(P_{2}) - \phi(P_{1}) = \phi(x_{2}, y_{2}, z_{2}) - \phi(x_{1}, y_{1}, z_{1})$$

$$P_{1}$$

) to (x,

ne integrand

LIN

Conversely, let $\int \overline{A} \cdot d\overline{r}$ be independent of the path C joining any two points. We choose these points as a fixed point $P_1 = (x_1, y_1, z_1)$ and a variable point $P_2 = (x, y, z)$, so that these points as a fixed point $P_1 = (x_1, y_1, z_1)$ and a variable point $P_2 = (x, y, z)$, so that the

24, . . .

a function only of the coordinates (x, y, z) of the variable end point. Then

(x,y,z)

long the st

$$\phi(x,y,z) = \int_{(x_1,y_1,z_1)}^{(x,y,z)} A \cdot dr = \int_{(x_1,y_1,z_1)}^{(x,y,z)} A \cdot \frac{dr}{ds} ds$$

long the st

By differentiation, $\frac{d\phi}{ds} = \overline{A} \cdot \frac{d\overline{r}}{ds}$

(1) sthat d

$$\frac{d\phi}{ds} = \frac{\partial\phi}{\partial s} = \nabla\phi \cdot \frac{dr}{ds}$$

(2)

From equations (1) and (2), we have $(\nabla \phi - \overline{A}) \cdot \frac{dr}{ds} = 0$

(3)

Since $\frac{dr}{ds}$ is a unit tangent vector and $\neq 0$, therefore equation (3) implies that

S. T. B. Berghalland

, A:

 $\nabla \phi - \overline{A} = 0$ or $\overline{A} = \nabla \phi$. Hence the theorem.

THEOREM (5.3): Prove that a necessary and sufficient condition that a vector for conservative is that $\nabla \times A = 0$ (i.e. A is irrotational).

_ _ _

PROOF: If A is a conservative field then by theorem (5.2), we have A

Thus $\nabla \times \overline{A} = \nabla \times \nabla \phi = \overline{0}$

Conversely, if $\nabla \times \vec{A} = \vec{0}$, then

 $\begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = 0 \text{ and thus}$ $\begin{vmatrix} \hat{A}_1 & \hat{A}_2 & \hat{A}_3 \\ \hat{A}_1 & \hat{A}_2 & \hat{A}_3 \end{vmatrix} = 0 \text{ and thus}$ $\frac{\partial A_1}{\partial y} = \frac{\partial A_2}{\partial z} \cdot \frac{\partial A_1}{\partial z} = \frac{\partial A_3}{\partial x} \cdot \frac{\partial A_2}{\partial x} = \frac{\partial A_3}{\partial y}$

1

We must prove that A = V & follows as a consequence of this

von St. ai = Sailt. () () () (x, y, z) ay + A; (x, y, z) az

is a cons

EXAMPLE (6): Show that the vector field $\vec{A} = (\sin y + z)\hat{i} + (x\cos y - z)\hat{j} + (x - y)\hat{k}$ is conservative. Hence find the scalar potential function ϕ for which $A = \nabla \phi$.

SOLUTION: We know that a necessary and sufficient condition for a vector field. A to be conservative is $\nabla \times A = 0$

Now
$$\nabla \times \vec{A} = \begin{vmatrix} \cdot \hat{i} & \hat{j} & \cdot \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \sin y + z & x \cos y - z & x - y \end{vmatrix}$$

$$= (-1+1)\hat{i} + (1-1)\hat{j} + (\cos y - \cos y)\hat{k} = 0\hat{i} + 0\hat{j} + 0\hat{k} = 0$$

Thus the vector field A is a conservative.

Let
$$\vec{A} = \nabla \phi = \frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial y} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k} = (\sin y + z) \hat{i} + (x \cos y - z) \hat{j} + (x - y) \hat{k}$$

Then
$$\frac{\partial \phi}{\partial x} = \sin y + z$$
 (1)

$$\frac{\partial \phi}{\partial y} = x \cos y - z \tag{2}$$

$$\frac{\partial \phi}{\partial z} = x - y \tag{3}$$

Integrating equations (1), (2), and (3), we get

$$\phi = x \sin y + x z + f(y, z)$$

$$\phi = x \sin y - y z + g(x, z)$$

$$\phi = xz - yz + h(x,y)$$

These agree if we choose f(y,z) = -yz, g(x,z) = xz, $h(x,y) = x \sin y$ so that $\phi = x \sin y + x z - y z + C$ where C is any constant.

Show that a necessary and sufficient condition that A, dx + A, dy + A, dz THEOREM (5.4): be an exact differential is that $\nabla \times \vec{A} = \vec{0}$ where $\vec{A} = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}$.

PROOF: Let A₁dx+A₂dy+A₃dz = d
$$\phi$$
 = $\frac{\partial \phi}{\partial x}$ dx+ $\frac{\partial \phi}{\partial y}$ dy+ $\frac{\partial \phi}{\partial z}$ dz

be an exact differential of a scalar function $\phi(x,y,z)$. Then on comparing coefficients, we have

$$A_1 = \frac{\partial \phi}{\partial x}, \quad A_2 = \frac{\partial \phi}{\partial y}, \quad A_3 = \frac{\partial \phi}{\partial z}$$
and so $\overline{A} = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k} = \frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial y} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k} = \nabla \phi$

5.3 LINE INTEGRAL DEPENDENT ON PATH (SAME END POINTS)

We now show that the value of a line integral $\int_{C}^{\infty} A \cdot dr$ in general, depends not only on the points P_1 and P_2 of the path C but also on the geometric shape of the path C; i.e. if we integrate P_1 to P_2 along different paths, we in general, obtain different values of the integral.

EXAMPLE (4): If
$$\vec{A} = (1 + x^2 y) \hat{i} + 2 x y \hat{j}$$
, evaluate $\int \vec{A} \cdot d\vec{r}$ from (0,0) to (

along the following paths C:

(i) the straight line from (0,0) to (1,1).

(ii) the line segment C, from (0,0) to (1,0) and then the line segment from (1,0) to (1,1).

(iii) the line segment C_1 from (0,0) to (0,1) and then the line segment from (0,1) to (1,1).

SOLUTION: Since integration is performed in the xy-plane, therefore $dr = dx \hat{i} + dy \hat{j}$.

and so
$$\int_{C} \overline{A} \cdot d\overline{r} = \int_{C} (1 + x^{2}y) dx + 2xy dy$$
 (1)

where the path C in each case is shown in figure (5.7).

(i) Along the straight line from (0,0) to (1,1), y = x, dy = dx while x varies from 0 to 1. The line integral (1) becomes

$$\int \vec{A} \cdot d\vec{r} = \int \left[1 + x^{2}(x)\right] dx + 2x(x) dx = \int \left(1 + 2x^{2} + x^{3}\right) dx$$

$$= \left|x + \frac{2}{3}x^{3} + \frac{1}{4}x^{4}\right|_{0}^{1} = 1 + \frac{2}{3} + \frac{1}{4} = \frac{23}{12}$$

(ii) In this case we have

$$\int \overline{A} \cdot d\overline{r} = \int \overline{A} \cdot d\overline{r} + \int \overline{A} \cdot d\overline{r}$$

$$C \qquad C_1 \qquad C_2 \qquad (2)$$

where C is the curve consisting of the line segments C_1 and C_2 as shown in figure (5.7). Along the line segment C_1 from (0,0) to (1,0), y = 0, dy = 0, while x varies from 0 to 1

The integral (1) over this part of the path is $\int \overline{A} \cdot d\overline{r} = \int dx = 1$