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INE , SURFACE , AND VOLUME INTEGRALS
AND RELATED INTEGRAL THEOREMS

INTRODUCTION

So far , we have dealt with derivative operations on vector fields . In this chapter , we shall define
tegrals , surface integrals , and volume integrals and consider some important applications of thes
Is . We shall see that a line integral is a natural generalization of the definite integral , the surface

l'is a generalization of a double integral , and volume integral is a generalization of a triple integra
ulus .

:

Line integrals can be transformed into double integrals with the help of Green's theorem in the
With the help of Stokes' theorem , line integrals can be trunsformed into surface integrals , and
sely . Surface integrals can be transformed into triple integrals and conversely with the help ol
divergence theorem . These transformations are of great practical importance . The corresponding
ns of Green's , Stokes' , and Gauss serve as powerful tools in many practical as well as theorelical

ns . - »
TANGENTIAL LINE INTEGRAL
Let A (x,y.2) = A,i+A;s]+Ask be a vector B-p,

unction which is defined and continuous along the arc
f the space curve C . Subdivide the arc AB into n

ts by means of the points P, ,P,, ..., P,_, chosen " =

ily and write A = P, and B = P, as shown in

5.1} Consider one such segment P, _, P, and let
length of this segmentbe Asy, k = 1,2, ... ,n.

. ( X .y .2y )beany point on the segment P, , P,

fine A (xg,yyx,2y) = Ag. Lot Ty B0 it
vectorto C at Q, .

Iiply the tangential componm of A

:r._,,r-,; mdfmhm
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¢ arc length of each segment A5 -

, : ‘ : th
Now take the limit of this sum a§ n — @ i such a way thal

- d is denol
‘ _ . from A to B an
(s himit , of it exists |, is called the tangential line integral of A along C
B
by IK.TJS or J.A.Tds
A C
B
i P, siligh?
SRR RS A..TkAsiﬁjA.Tds
k=] A5 A
Since T o %rs where r is the position vector of any point on C uisusvaltoput Tds = dr
B B
thus the hine mtegral jl; T A8 ™ I A.dr = J; a7 = JA,dl’ A;dy+*A,dz2
A A o C

- A N A
where dr = dxi+tdy ) +dzk iscalled the differential displacement vector .
A - .
o/ the hoe wiegral | A . d 1 is sometimes called a scalar line integral of a vector flield A
G
s . : . :
A C s aclesed curvewhuch we shall supposg » simple closed curve (i e a curve which does not wter

isell anywhere ), the line integral around C s often denoted by

7 <ﬁ A.a'?a§A.dx+A,dy+A,az
| C c

S 1A istheforce F ona particle moving along C, this line integral represents the work done by a fi
O

i Dud mechanmics | ths integral is called the circulation of X around C |, where ;
- ' represents
clocity of a nd . 1a general , any integral which 1s to Be evaluat
' ed along & curve is called a line ;
~ 3 hine integr,

OTHER FORMS OF LINE INTEGRALS

-

[ he other lorms of hine mtegrals are I.d? n : I“* .I
C C |

e I}ixd; - J(Ali*hi“&ﬁd'
C ¢




e follo™

j i -k’;~" (K any real constant )
@ KA ‘

C -
C [(5o5) e JR07 o JUH

¢ C L
() IA‘.-J!. . ];.‘;' ] A,dt

C g C)

whert e patd L awhduﬂtd.lomm C| aid c] “h
.nf.;uc(w)uuumolum“c o revarsed, e

v} U C & precewise smooth, CORMISING d““

figwe (3 )), e loe wiegral of A over C o“‘h
the smocth carves makung wp C

[7.66- | iss ] Rt

C Cq c,
lndmullqualm“cuh |
om‘h(mco.CIo oc.' P
ot of C, & e rerminal pois of C,-1r-

requuement )
figwre (3 3) sed by e amows as shows
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g

! e dy=4xdx. Also x varies from 0 to 1.

]
\s - { Ix(2xNdx-4x'(4x)dx
x=0
[.v-.\\ :‘.0§ll,.l §.,Z
- .\h\ - 16 x " )dx 3 X -3 ol Bl e
0
2k i A = (2‘*!)?*‘(3’—-1);, evaluate I;d: where C is the curve
C
in the xy-plane consisting of the line segment C, from (0,0) to (2, 0)and
then the line segment C, from (2,0) to (3,2). §
N: The path C consisting of line segments C, and C, is shown in figure (5.5) . 21
m%misperf:medhtbcxy—yhm.thcn&n?-x’i\+yjandso dr =dxi+dyj. 3
A.dr = j[ 2x+y)i*(3y-x)j).[dxi+dyj) 1
C “y )
J 2x+y)dx+(3y-x)d (M 2t -
(2x+y)dx+(3y-2)dy 1 el
e
consisting of the line segments C, and C,, we have Ca !
i b 4 i i i : > + :x
A.dr = j,\.dr* I A.dr ) 0.0 ¢ @0 3
Figure (5.5)

Cy C,
 sepment C, from (0,0)10(2,0),y = 0 and so dy = 0. while x vanes from 0 to 2.

2 (1) over this part of the path i

-

g 2
j’\-d' " I 2xd1=|xl|,=4
E x=0
* seement C, from(2,0) to (3,2), the equationis y = 2x -4 andso dy = 2dx,
aes fiem 2 1o 3 The integral (1) over this part of the path is

3
jxd; " j {2:*(2x-4)]dx+[3(21-—‘4)—1]2dx
1 R
3

- jm:-zs’)dx-lu’;.zuli-'(63-84)-(2?-—56)'7
] e 2
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3): If A =(x=-3y)i*+{(y-2x)j, evaluate A.dr w C s an cHipse
C
N g o e RPN, g, e S,
sta"Lmin xy-plane traversed in the positive (cous terclockwise
4 ; '

- s 4 - ‘ b
SOLUTION: he curve C which is an ellipse with é . )
: " ol o
3 . e ac 3 . Sve e Bt D i - s . ~ & ¢
sem-major s as 3 and semimunor axis as 2 1S shown ; . -
-~ ot | 3 R
s : 3 L : .
figure (5.6) Since the integration is performed n the K |
- . N . ] ®
) - . 3 ~ S s = - ’
xy—plane wetake dr =dxi1+dy) e = ) X
e Ot 3
!
A e . JI\.
T { = F > > L
| DUS ¢\ .'\.dn e ¢‘t\".‘\\d“‘\\—~\\d\ \!\ K
- .. B R S A)
> C
Tic eqguall ~f 1 lipse are = Jcost v = 2smt 0t v
The parametric equations of this elhpse are x = Jcost, ) 2simt, -
N .
herefore . dx = —3sintdt, dy = 2costdt. Hence from equation (1), we get
Y -
o 0N
* — - " \
: N : " o3 . Y~ v
‘i‘ A .dy = (Jcost-6sint)(-3sintdt)+(2sint-8cost){2costdt
bl -
— > = )
% Begpd.
\-
= (-Ssintcost+ i8sin“t-12cos ) dt
:
B
(\
.
F Y. 5 ]
= | -Ssin21+9(1-cos2t)-0 +cos2t) |d
%
T < N e B s Boa N B Ny
BT R sin21) L Deat)
= IOt TII I~ 0N VTR '
P = \ - . i N
< 1 &£ B
) & G NS i~‘
SCOSLt+it-"sm it
4 ) ¢




