_ i
o - -— A L\ 4 e
A= A(x,yz) : | A L J
31 "-IA‘l(X-Y.lj?+Ai(-X.')’.Z)T""AS(".)'.!)Q" / / - l
| . 4 -I. ' : e ‘ Ly ! g
The sot of all values of A In R constitutes a vector fleld us e ""T/ b
shown In figure (4.1) . J ~1 | fp— ]
Examples of vector fields are : . y i
e ]
(M A(x,y.2)=xlyT-2yz2T+xizk | S it
' ed : —~ R g
deﬁnos‘ a vector point function and bence Is V4 ! 3

~
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GRADIENT , DIVERGENCE , AND CURL

41  INTRODUCTION , .
In this chapter , wo shall discuss threo physically nnJ geometricnlly Important concupts related fo \

scalar and voctor flelds , namely , the gradlont , the divergence , and the ourl . These con;:;c; ts of veclor l
calculus play Tn important role In englneering , physics , and sovernl branches of upplled inathematics |
for example, mechanics , fluld mechanics , olasticlty , and eloctromagnetic thuory . ‘ 3

4o SCALAR AND VECTOR FIELDS
- SCALAR POINT FUNCTION AND SCALAR FIELD | g an

BT t0 @ach polnt ( x , y, z) of a region R In spnce there corresponts o unlqlrc number or
scalar ¢ (x,y,z)., then ¢ Is called a scalar function of posltion or acalnr point funetion In | , . The setof
all values of-tft in R constltutes a scalar fleld . ‘ e * !
Exainples of scalar flelds are M 5 AF

() ¢ (x', y.z) = x’y=z? defines a scalar point function nnd hence Iy scalur field .

() The temperature T-('x ,y ,.z) within 0 body D s o sealar polnt¥unotlon becnuse ut each point of
the body thero Is one and only one temperature , Henco It defines n scalar fleld , nanely , the
temperature field In B

> —
SN P T o TN Y PG P gt E W T Bt P A S WA T SRR 1

VECTOR POINT FUNCTION AND VECTOR FMELD
If to cq"ch polnt (x,y, z)ofuregion R inspnce thero corresponds a unique vector A (vx y YA

o ) o .
then i Is called a vector functian of positlon or vector polnt function In R and Is written ns

a vcctpi".ﬂcld '
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176 _ : ' GRADIENT , DIVERGENCE , AND CURL

(i) The set oftungent vectors of a curve C and thc sct of normal vectors of a surfuce S define vector
fields as shown in figure (4 b4 W

o Figure (4.2)

41 LEVEL SURFACES : A

Let $(x,y,2) bea scalar polnl function in a region R of space . Then for each flxed value of
the constant C, the equation

$(Xx,y.2)=C

represents a surface in three-dimensional space , and if C is ullowcd'lo'ukc‘ a variety of different values ,

we obtain a family of surfaces , which are called the level surfaces ‘cf the function ¢ . On each level

surface the function ¢ has the same value at each point on it . For e;‘mmple , for any fixed positive value

of C, the equation

¢ = xl +y +22 - C 3
represents a sphere with centre at the origin and radius \/E . If C varies , the level surfaces of ¢ are the
* concentric spheres

"v»f“lf ¢ represents the potential thcn the level smfncosch called the equipotential surfaces and lf
‘b represents the temperature then the level surfaces are called the lsothermnl s‘urfaccs

Now we show that one and only one level surface will pnus lh.roug,h cach point in space .

; ' i i
Let $(x,y,z) =C and ¢(x,y,z) =.C betwo lovel surfaces of ¢ corresponding to two different
values C and C' respectively . If these surfaces intersoct each other , then at each point of intersection ,

the valueof ¢ is C and C ' ns shown in the figure (4.3) .

Since by definition ¢ (x,y,z)ls u single valued function it
'is possible only If C = (18 Thus no two level surfaces
corresponding to two different values of the constant cun
intersect , f.e. through each point m space there pnsscs one ,
and only one , level surface of the funcuon ¢

¢(x,v,2)=C

> B : S
44  THE OPERATOR DEL | Figure (4.3)
The vector differential operator del , written ¥, Is defined by
B A, 08 8 n Ainan'a
8 ax ey draa N hant) oyt aa

This vecior operator is useful in deﬁning three qunnthlen which arise In physical applications and are
known as the gradient , the divergence ond the curl

~
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4.5 GRADIENT OF A SCALAR POINT FUNCTION
Lct $(x,y,z)beadifforentinble scalar point function In u vertaln region R of spuce
gradient on written V ¢ or grod ¢ is defined by

0 A _@_ A _Q_ A a¢ A _ﬂ: A M A
e (Ox +6y_j+azk)¢ ax | Oyj 52 X
Note that V¢ Is_:a vector quantity . If ¢ Is constant, then V¢ = 0,

. Then the

EXAMI_’L_E (]):V...;//"" $(x,y,z2) = Jx'.)'-y’_z'. find V¢ atthepoint(1,-2,-1),
SOLUTION: We have

: 3
S TE;(“’V-y’t )+J (3x y- y’z’)+f?-—(3x y-y’zl)
)
= 6xyi+(3x'-3y?2?)j-2y’zk

(Vé)g,-2.-p = =121-9)-16k

4.6 ?ROPERTIES OF THE GRADIENT
THEOREM (4.1): If ¢ and y are differentiable scalar point functions and C s n'conjsmnl  then

M  V(Cé)=CVs vy =np" Ve
()  V(4+y) = Vé+Vy W) V(by) = dVyry T
PROOF: We have /
0= vice) = & iEcn kL y - v
- Tegdefcgtiicd? -/
- c T%—EJ;—;J%D .oy
TR - Zn g 0 T oenk
- n¢““‘%?+n¢“"'%;§+ “"%{Q
- ﬂ"" %hg—g%a—tﬁ)-w“"w

/

m? viary) = TGl S ewrekg (4+9)
AN A6¢ A@Q)) (l\ 0\}/ AT ) !
- (ig-,;ﬂ-;*»k;; + l_x"'JB"},'#k?\g
- Vé+Vy

T
3 COPERATIVE STORE™——+————

H : Spors f)mc-' Umvorsuy of bamﬂana

'. \r'.'u

. -.L.‘ L ) M [!.../1 (SR AN

e

e B LIPS '.‘ *y "4" () /
. e R e R RS RSO b /
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v - TEGo IS G kg ewn
(5B 1 (132245200 28)
- ¢(?%¥JT%¥+Q%¥)+W(?%& j\})'i Q%)
o AR AR
o 3(8)e v (45)- 49 (3)eL ve
(et
’( o .'Vw-,w. L
THEOREM (421 Prove that
e vi(r) - LOE
(I y(r") = nr" ' T where n ls any real number .
My Vrar ) v(%)-_;-';
PROOF: We know that
0 Vo) g nfed ool ok

|

>
—
Qe
-
‘\')
-~

r~_'—'T —ﬂj‘ Mﬂﬁ
drdx " Ordy’ 0Orod:
L 4100q, 8000, dr0r
drox ' tdr iy &4
Since r-‘\f’ +1 ,Ilﬂ)”OW!llhl‘ 'g'i'év %.‘}' %&-f

(1

- ' A .
_Notethull‘ r = 1r,where r lnunllvoot'or In the direction of T , then V"

Vi(r) = 'f'-(r)",“l"+f'(r')§:l\+f'(r)f'c
- BBy fark)
S fax

r

Now| =
Using () 9 (r") = Mt a pet1 7

= Nk

n-| A
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.‘.«v:iiﬁl(xz* '*z )"’,‘,ji(x’¢y 47 ).“*Ql(x3+y +1 )ﬂ/}

- n(x *yz"_!)(l\“) '(xl*yj*zc) ,’

T )(m) |
- ne"F : : :
() Letn = | inpart (i) then Yr == =T, /| AR

r

- (v) Letn=-l In part (ii) thenV(';) Mot
 EXAMPLE(@): %§/Show that

e i . | ¢
| ) V(inr) =77 (i) V('f".)-ge r

-

(i v(r')=3rr.
t) Wolmo"yvlhnt
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180 A _ ] e GRADIENT, DIVERGENCE , AND CURL
Let the parametri¢ equations of the curve r be x = x(8), y = y(s),z = z(s),

— A A A | : A
Let r = xi+yj+2zk be the position vector of the point P, then T = %f is the unit vector tangent

tothe curve " at P as shown In figuro (4.4)

> ’ [
Since the curve T lies on the lovel surfuce , therefore , the T
coordinates of any point on the curve must satlsfy SE N vé

equation (1), and so ¢[x(s).y(s).i(s)]-C_. 8 P(x, y. 2)
4 "

! Differentiating this equation w.r.t, s using the chain r;:lc \

-1

———-.+.._. — — ._ { Y '-c

dx _
or (ﬂ?+—2;+2§ﬁ)‘(d—’f?+i¥j‘+ﬂﬁ).o ’ ° y
or v HBW'; (44;)
| ~ Which implies that v ¢ s ; vectoy perpendicular to the unit tangent vector T and therefore to the surface

¢(x,y,z)=C,

] 2 A

EXAMPLE (3):\/Find 8 unlt norinal vector n (o the surface given by 2 = x?+y? g (he
point(1,2,5),

SOLUTION: Since z = x?+y? the surface Is defned as $(x,y,2) = xl+yl-2 = O-.
i il e O sl o 1
Then ¥4 = iy tyl-z)+Josxleyloz)rk g (xi+yl-2)
f.\ ) A
Ti42y -k
Wt pon . ...V the value of the gradient Is

A

A A
Vo  2i+4j=k
v A
Hence a unit normal vector n to the surface at the given point Is
A A ' :
A 20+4] -k
e AL s J
|V ¢ 0(2)i+(4)i+(-l)i

A A A
_ 21+4)-k

A A A

\/'ﬁ :
2i+4j-k

Another unit normal vector 1o the surface at the glven polnt in the opposite direction Is - \ﬁ_l

48 DIRECTIONAL DERIVATIVE
We know that the first pa:{ial derivatives of $(x,y,z)are the rates of change of ¢ In the

directions of the coordinato axes , It seems unnatural to restrict attention to H‘cse three directions , and we

Inay ask for'the rateof change of ¢ In any direction, This leads us o the lde"l of a directional derivative
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To deﬁne the directional derivative we choose g point

REXGY 3 T ) in space and e direction at P, given by o un

vector T Let C bc the ray drawn from P in the diroction of T
and let P' (x -l- Ax, y +4Ay,2+4z2 ) bo a neighbouring polnt on

as

C , whose dlllnnce from P is A s as shown in figure (4.5) ,
Let ¢ ben dltTurcmlnble scalar point function and ¢ (x,y,2) A
and $(x+ 4 X vY+Ay,z+A4z)be the value of this function at - ~,T
Pand P’ rcs‘p‘octl-vcly. Then the limlt P Figure (4.5)
. ?

Lo B8 Ly $(P)-4(P) P

B0 T A5 0.7 A )

. . i 5 " ! j ! ,‘ a
if it exists , Is Talled the directional derivative of ¢ a1 P in the -dlrection of "I\' and Is dcd!f:tcd by 5-?

3 " Is the rate of change of ¢ ut P w.r.i. the distance & mensured In the dlrccudn of T
Equntlon (1) can be written as

Obvlotluly s

ﬂ_Lt ﬂxﬂsx,y+Ay,z+Az)—@(x.y,z)
2s " Aso Y W2

In this way there arp now Infinitely many directional derlvutives of @ ALe Pl ouch.cbrra:pondlng o a
certain direction , Now from elementary culculus , equation (2) onn be written as

8¢ _ 24 dx 24dy 044 g
TR ds 9y ds T8z 41 :
C (245 88n 880 (dxa. dya ds i
I~ |+-a-$j+azﬁ).('a—l- + : +d—[Q)
- v¢.d—d{--v¢.? . 3)

| 2
‘ 0
Since '?‘ Is a unit vector , directional derivative of ¢ ( l.e. 3‘?) s the component of V ¢, In the direction
of this unit vector , From equation (3) we have the operator equlvalence ,

a ' 1
' D B2 : o (4)
A )
This means that the operator T. V applied to the scalar function ¢ differentiatos It w.r.t. the distance s

|
. c A
in the djrection ofT. ;

PARTICULAR CASES ; i

m I T Is a unit vector in the directlon of the posltion veclor T , then the dlrocllon dc’ivullve of ¢
in this cvnctlon I8

A

¢
E"'er .

MAIN CO-OPERATIVE STORf

Near kror'f office Unwersn‘/ of ‘a“»“

s L _
U) .«l-h.'.....l i, < J
J A q-'/_‘. ,,,,,,,,,,,
AP o i‘“:) (el k! BLENG R
‘-J\‘f
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(1) If, In pnnlcinh:zr. ‘?‘ has the direation of the positive x-axis , then T = | and from squation (3),
we have * .

Similarly , By

D¢

0 2
It therefore , follo‘)«'i"a that the first partial dorivatives 0—3 ; 6: , and 0—3 are the directional derivatives

in the dlrectjons of '”e coordinates axes ,

THEOREM (4.4)‘;'; Show that the maximum value of the dlrectional derivative of $(x,y,z
s equal to the magnitude of V ¢ (Le.|V¢|) and It takes place In tha direction

of V. i
PROOF: We know that
CEAE .
a 8 —~ . v + . T

= 1941 %] cos6 = [94[cor0

. A a |
where 0 s the angle between V ¢ and T, Since =1 S cos O < | , therefore 3‘% Is maxiraum when

il A1

il s A 3 '
€036 = 1 or 6 = 0° Le, when the direotion of T Is the direction of V¢ and 2% “ |V,
Thus the maximum value of the directional derivative takes place In the direction of ' ¥ ¢ and has the

-magnitude a3 |V¢IE fy

i ) a0
NOTE: The direcflonal derivative ﬁ Is zoro , when 0 = % lle. vvhen V ¢ and T are orthogona) to
. ‘

cach other, |

/

EXAMPLR (4):\{/F|nd the directional derivative of ¢ (x, y,z) = x4+ yl+z!

at the polnt
!

. A A A
(1,1,1) Inthe direction of the vector | + ) + k., Find its maximum value

and the direction In which It takes place

SOLUTION:  Sinco ¢ (x,y,z) = x?+y?+ 27, therofors
I\l} ‘ 4 A A < ]
Ve | %(x”y’ﬂ’.)*] Dy (xT+y’+27) 4k a1 (x1+ylez?)
: {'n A A
- 2t¢|l"+2yj+2zk

Then at the polnt (1, 1, 1 ) the value of this gradlent s V ¢ = 2 | +2)+2k

A

: la) o) A A |+A+£ l ,‘\ 1 A ] A
Theunitveclorlnq:udlrocllonof T+)+k s T.Wﬁ-LTl-V;l+.3J+ Jk
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VECTOR AND TENSOR ANALYSIS
1,1,1)ls lh
| derivative of ¢ a1 (1, .
Thuuheroqulred directiona ] ?+ | ;\+—,- ;)
¢ v¢T‘(2|+?J+2k)(J v R

a8
T\/:/? 2'\/3
N +(2)+(2)’ \/_"2"/—

Now [Vél*= : : ' :
0 .
/ _.i : :
direc pnal doJr!vaxlve 51 al u.r.o‘polnl( 1,1,1)1s|9¢| = 2y3. oy

The maximum value of d}o

A A
direction Is thatof V¢ = 21+2 ) +2k.

DIRECTIONAL DERIVATIVE ALONG A CURVE

So far , we have deflned the  directional -
Instoad of a straight 4

derivative along a straight line .
smooth curve

llne , we can consider an arbitrary
passing through the polnt P (X ,y,z). If 3
measures the distance along the curve as shown in
ﬂgun (4.6) , then we know that the unit lnngcm vector

T to the curve at P is given by

"d_ﬂ__ A dzop
Tdd*-jr

and again , In this case , we can show that

33" V4T 194 cos0

where @ Is the dngle betwoen the unlt tangent vector T lo !becurvo’ at P and V
Thus we can say that the directional derivative nlong an lrbi b‘ ‘
directional derivative tlong a ltraight line tangent 1o the curve , byt Rt e pune &5 e

4.9  NORMAL DERIVATIVE - &

In various applicatlons the dlirection along which » dlrcctio;u.] deriva]
vative Is formed is that of &

ad
Is then denoted by .0_;‘ and [s given by

d A
;'t =Vé.n
i.¢. the normal derlvative of ¢ Is the component of ¥ ¢ In the ., ’ ¢)] Fio
no o S g '
From equation (1) we have the operator oqulvalcnco 51 -n.v | Fb° unlt normal vector ;;
n 4

which when applied to any scalar function always gnves tho normal derivatiye .
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410 ALTERNATIVE DEFINITION OF GRADIENT
An slternative definition of the gradient can be given
.as follows :

A
n

Let S and S be the level surfaces of the function ¢

through P(x,y,2z) and p’ (x+Ax y+Ay,z+Az)
with values ¢ and ¢+ 4 ¢ rcspectivcly and let As be

the distance between the points P and P'. Draw PQ
normalto S al P, tomeet S in Q andlet A n be the

length PQ- Accordingly , QP' ls approximately Figure (4.7) ‘
orthogonal to PQ and if 8 Is the angle between thie

: A
normal direction and the direction PP’ us shown in figure (4 7), then z"':' = ¢cos B

o=

Since the change in the scalar mnctﬁon ¢ in passing from P lo P' is A ¢, Its average rate of change per

. 4 & y A
unit distance in the direction from P to P s z‘% ;: Now

8¢ _d¢sn 88
As An 4as An

Inthe limitas S’ = S so that P' = P keeping B constant, this gives

cos 0

d¢ 0 ;
T-'é'%cose ' : (1)

If 1 is the unit vector normal to-the level surfnce S at P and havlng the direction PQ, and T {s the unit

vector in the direction PP, then cos@ = n s T and equation (1) becomes

20 _24a s ‘
- O " 3n " Ts, ) @)
=y 0é A
Also we know that s - Veé.T : )
Comparison of equations (2) and (3) shows that . : \ .
a¢ A g \
Vy= oo .8 | (4)

Thus V ¢ ls a vector in the direction of the normal to the surface nind- has magnitude equal to the rate of

) :
change of ¢ along this normal l.e. IVN - "i ' (%)

_ Equation (5) states that the muxlmum valuc of the directional denvnllve takes place along the normal

direction .

NOTE: The definition of gradient glven In equnuon (4) Is Invariant in the *ense that V ¢ is
of the cholce of the coordinate system

independent

Also V¢ --g—:?+%$]\+%¥ﬁ (6)
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