# NOMENCLATURE OF ORGANIC COMPOUNDS 

There are two general ways of naming organic compounds; (i) Common or trivial and (ii) Systematic names (IUPAC names).

### 3.1. Trivial Or Common names

During the first half of the nineteenth century, chemists discovered many new compounds and named them with little or no structural significance. Such common or trivial names might reflect the source of the compound, the method of its preparation or the name of the person working on it. For example, acetic acid can be obtained from vinegar, it got its name from the Latin word for vinegar, acetum. Formic acid, HCOOH , was so named as it was obtained by distillation of red ants (Latin, formica = ants). Ethylene chloride got its name because it was made by the reaction of ethylene with chlorine. Barbituric acid is said to perpeturate the name of woman barbara. Some names, refer to distinctive properties that characterize the compound, e.g; acrolein (Latin acris; pungent); chrysene (Greek chrysos, golden); glucose (Greek glucose, sweet) refer to attributes of odour, colour and taste.

An ordinary name given to a compound without reference to its structure is called a Common name or Trivial name. The common names are like nicknames.

Common or trivial names are still widely used by chemists, biochemists and the companies that sell chemicals. For this reason, trivial names have a firm place in the literature and language of organic chemistry and hence it is still necessary to learn the common names for some of the common compounds.

### 3.2. Systematic Naming of Organic Compounds by IUPAC System

With the rapid growth of organic chemistry, the number of compounds increased fantastically (now about 3 million). It becomes impossible to give common names to such a large number of organic compounds.

In 1957, the International union of Pure and Applied chemistry evolved a scheme for giving systematic names to organic compounds on the basis of structure. This is known as the IUPAC System. The systematic name of a compound derived from its structural formula by applying IUPAC rules, is referred to its as IUPAC Name. One organic compounds can have only one IUPAC name. It is superior to a common name as it gives an insight into the structure of the molecule. Knowing the IUPAC name of a compounds, we can at once write its structural formula. Remember that the common names identify compounds while the IUPAC names represent structures.

The IUPAC system of nomenclature is based upon the following principles for assignment of substitutive names.

1. The longest continuous carbon chain (the parent chain) containing the functional group is the parent structure of aliphatic (acyclic) compounds.
2. The common names of familiar cyclics are frequently chosen as parent structures of compounds containing cyclic structures.
3. An order of preference is assigned to various functional groups. The groups higher in the order are given preference in the definition of parent structures. Some functional groups are always considered as substituents.

## Functional Group

A functional group is an atom or group of atoms in a molecule that gives the molecule its characteristic chemical properties. Double and triple bonds are functional groups. Other examples include $-\mathrm{Cl},-\mathrm{Br},-\mathrm{OH},-\mathrm{NH} 2,-\mathrm{COOH},>\mathrm{C}=\mathrm{O}$ groups.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$.

> Hydrocarbon portion Functional group

The concept of functional group is important to organic chemistry for three reasons:

1. Functional groups serve as basis for nomenclature.
2. Functional groups serve to classify orgainic compounds into classes / families. All compounds with the same functional group belong to the same class.
3. Functional group is a site of chemical reactivity in a molecule. Compounds in the same class have similar chemical properties.

## Alkyl groups

Radicals which are derived by the removal of one hydrogen atom from an alkane are called alkyl radicals and are expressed by general formula, $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+1}$. The names of the alkyl groups are derived by replacing the ending-ane of the corresponding alkane by -yl. An alkyl group is represented by a general symbol R-. Two different alkyl groups ( n -propyl and isopropyl) are derived from propane depending on whether the hydrogen atom is removed from the terminal or the middle carbon of propane. Similarly, two alkyl groups are obtained from each of n butane and isobutane. Some of the common alkyl groups are given below:
Methyl
$\mathrm{CH}_{3}-$
Ethyl
$\mathrm{CH}_{3} \mathrm{CH}_{2}-$
n-propyl $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ -
n-butyl $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ -
Isopropyl
$\mathrm{CH}_{3}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3}$
Sec butyl


n-pentyl $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\quad$ Isopentyl $\quad \stackrel{\mathrm{CH}_{3}}{1} \quad \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ -


An alkyl group is known as primary if its carbon of attachment is bonded to only one other carbon atom, secondary if bonded to two other carbon atoms, and tertiary if
bonded to three other carbon atoms. Thus isopropyl group is a secondary alkyl group but isobutyl group is a primary alkyl group.

Unsaturated hydrocarbon groups are called alkenyl groups, while the aromatic hydrocarbon groups are called aryl groups and are represented by the general symbol Ar .

| $\mathrm{CH}_{2}=\mathrm{CH}-$ | $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-$ | $\mathrm{C}_{6} \mathrm{H}_{5}-$ | $-\mathrm{C}_{6} \mathrm{H}_{4}-$ |
| :--- | :--- | :--- | :--- |
| Vinyl | Allyl | Phenyl | Phenylene |
| $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}<$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}^{\prime}$ |  |
| Benzyl | Benzal | Benzo |  |

## 1. Alkanes

Hydrocarbons that contain only single bonds are called alkanes. Hydrocarbons are compounds that contain only carbon and hydrogen. The first four members of the series are known by their common names; methane, ethane, propane and butane. The names of higher alkanes are derived from the Greek prefixes that indicate the number of carbon atoms in the molecule. Thus pentane has 5 carbons, hexane has 6 and so on.

Table 3.1. Names of the unbranched alkanes

| Name | No. of <br> Carbons | Structure | Name | No. of <br> Carbons | Structure |
| :--- | :---: | :---: | :--- | :---: | :---: |
| Methane | 1 | $\mathrm{CH}_{4}$ | Eicosane | 20 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{CH}_{3}$ |
| Ethane | 2 | $\mathrm{CH}_{3} \mathrm{CH}_{3}$ | Heneicosane | 21 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{19} \mathrm{CH}_{3}$ |
| Propane | 3 | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ | Docosane | 22 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}$ |
| Butane | 4 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ | Triacontane | 30 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{28} \mathrm{CH}_{3}$ |
| Pentane | 5 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ | Hentriacontane | 31 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{29} \mathrm{CH}_{3}$ |
| Hexane | 6 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$ | Tetracontane | 40 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{38} \mathrm{CH}_{3}$ |
| Heptane | 7 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$ | Pentacontane | 50 | $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{48} \mathrm{CH}_{3}$ |
| Octane | 8 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$ | Hexacontane | 60 | $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{58} \mathrm{CH}_{3}$ |
| Nonane | 9 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$ | Heptacontane | 70 | $\mathrm{CH}_{3} \mathrm{CH}_{2}^{\prime}{ }_{68} \mathrm{CH}_{3}$ |
| Decane | 10 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$ | Octacontane | 80 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{78} \mathrm{CH}_{3}$ |
| Undecane | 11 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}_{3}$ | $\mathrm{Nonacontane}^{2}$ | 90 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{88} \mathrm{CH}_{3}$ |
| Dodecane | 12 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}$ | Hectane | 100 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{98} \mathrm{CH}_{3}$ |
| Tridecane | 13 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$ |  |  |  |

In the common system all isomeric alkanes have the same parent name. The name of various isomers are distinguished by prefixes. The prefix indicates the type of branching present in the molecule.

The prefix n -(normal) denotes an unbranched chain of C atoms. The prefix iso-indicates a $\mathrm{CH}_{3}$ branch on the second carbon from the end. The prefix neo-indicates two methyl groups attached to the second carbon from the end of the continuous chain.
$\stackrel{\stackrel{\mathrm{CH}_{3}}{1}}{\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}}$
Isobutane
$\stackrel{\stackrel{\mathrm{CH}_{3}}{\mathrm{I}}}{\mathrm{CH}} \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
Isopentane

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}
$$



Neopentane


Neohexane


Isohexane

## IUPAC Rules for Naming Alkanes

The IUPAC system is much the same for all classes of organic compounds.
Branched-chain alkanes are named according to the following rules:

1. Find the longest continuous carbon chain in the molecule and name the alkane corresponding to this number of carbon atoms.
2. Number the carbon atoms of the longest chain starting from that end so as to assign the lowest possible total number to the substituents. If there are more than one longest chain, select the chain with greatest number of substituents.
3. The position of each substituent is specified by the number of carbon to which it is attached in the longest continuous chain.
4. When two or more substituents are present on the same carbon, use the number twice
5. When two or more substituents are identical, indicate this by the use of prefixes di-, tri-, tetra-, and so on.
6. The substituents are written in alphabetical order before the parent name. Each substituent is prefixed by the number assigned to it and separated from the name by a hyphen. If several identical radicals are present, their numbers are listed together, separated each number by commas. Some examples are given below to illustrate the system.


2,2-dimethylpentane


3-ethyl 3-methylhexane


4,4,5-Triethyl-3,5-dimethyloctane


2,3,5-trimethyl-4-propylheptane

## 2. Cycloalkanes

Cycloalkanes with only one ring are named by adding the prefix cyclo- to the name of the alkane having the same number of carbons as in the ring. Cycloalkanes are often represented by simple geometrical figures. It should be noted that each corner represents $\mathrm{CH}_{2}$ group.

Substituted cycloalkanes are named as alkyl cycloalkanes. The substituents on the ring are named, and their positions are indicated by numbers. The ring is numbered so that the substituents are given the lowest possible numbers.

The ring is designated as a substituent if the alkane chain contains a greater number of carbon atoms than the ring.


Cyclopropane


3-Cyclopropylpentane

1-ethyl-3-methylcyclohexane




4-tert-butyl-1-isopropyl-2-methylcyclohexane
Bicyclic Compounds. Polycyclic compounds, in which two or more carbon atoms are common to two or more rings, take the name of an open chain compound having the same number of carbon atoms, and suffixes such as bicyclo- and tricylo indicate the number of rings. The points of fusion of the rings are indicated by listing the number of carbon atoms in each of the bridges. The bridges are listed, within brackets, in order of decreasing length. The numbers in brackets indicate how many atoms are in each bridge.

Numbers are assigned to the carbon atoms by beginning at a bridgehead and moving along the bridges. The longest bridge is numbered first, the second largest next and so on.


Bicyclo [4,2,0] octane

Spiroalkanes: A "spiro union" is one formed by a single atom which is the only common member of two rings. A "free Spiro union" is one constituting the only union direct or indirect between two rings. The common atom is designated as the "spiro atom". According to the number of spiro atoms present, the compounds are Estinguished as monospiro-, dispiro-, trispirocompounds, etc. The following rules apply to the naming of spiroalkanes containing free spiro unions.

Monospiro compounds consisting of only two alicyclic rings as components are named by placing "spiro" before the name of the normal acyclic hydrocarbon of the same total number of carbon atoms. The number of carbon atoms linked to the spiro atom in each ring is indicated in ascending order in brackets placed between the spiro prefix and the alkane (hydrocarbon) name. The carbon atoms in monospiro alkanes are numbered consecutively starting with a ring atom next to the spiro atom, first through the smaller ring (if such be present) and then through the spiro atom and around the second ring.


Spiro [4.5] decane


Spiro [2.5] octane


Spiro [2.2] pentane


5-methylspiro [3.5] nenane


Spiro [3.3] heptane


1-methylspiro [3.5] nonane

Polyspiro compounds consisting of a linear assembly of three or more alicyclic systems are named by placing "dispiro-", "trispiro-" "tetraspiro-" etc., before the name of the unbranched-chain acyclic hydrocarbon of the same total number of carbon


Dispiro [5.1.7.2] heptadecane atoms. The numbers of carbon atoms linked to the spiro atoms in each ring are indicated in brackets in the same order as the numbering proceeds about the ring. Numbering starts with a ring atom next to a terminal spiro atom and proceeds in such a way as to give the spiro atoms as low numbers as possible after numbering all the carbon atoms of the first ring linked to the terminal spiro atom.

## 3. Alkenes

(i) Trivial or Common System. In this system of nomenclature alkenes are named by replacing the ending -ane of the corresponding alkane by -ylene, e.g., ethylene from ethane, propylene from c.opane and isobutylene from isobutane

$$
\begin{array}{ccc} 
& & \mathrm{CH}_{3} \\
\mathrm{CH}_{2}=\mathrm{CH}_{2} & \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} & \mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}_{2} \\
\text { Ethylene } & \text { Propylene } & \text { Isobutyleng }
\end{array}
$$

The use of trivial names becomes difficult for individual alkenes having four or more carbon atoms because of the large number of isomers possible. So the common names are used only for the above three alkenes. However, a few simple alkenes may be named as derivatives of ethylene, e.g.,
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
Methylethylene
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
sym-Dimethylethylene
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ unsym-Dimethylethylene

A few special trivial names are also in common use, e.g.,

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5}
$$

Styrene
Stilbene
(ii) IUPAC System. 1. Select the longest continuous chain containing the carbon - carbon double bond as the parent chain which is then named by replacing the ending -ane of the corresponding alkane by -ene.
2. The parent chain is numbered starting from the end nearer to the double bond.
3. The position of the double bond is indicated by putting the number of lower numbered carbon of the double bond before the name of the alkene.
4. Presence of more than one double bond is indicated by the suffix -diene for two double bonds, -triene for three double bonds and so on.
5. Indicate the locations of the substituent groups by the number of the carbon atoms to which they are attached.
6. For cycloalkenes, numbering is always started from one of the carbon atoms of the double bond such that when continued toward the other carbon of the double bond, the substituents (if any) are given the lowest sum of numbers. It is not necessary to specify the position of the double bond (unless there are more than one double bond in the ring) because it is always 1.

When a geometric isomer is to be specified, a prefix cis or trans is added.


2-Methyl-2-butene
$\stackrel{\mathrm{CH}_{3}}{\stackrel{C}{\mathrm{CH}_{3}}} \stackrel{\mathrm{CH}_{3} \mathrm{CH}_{2}-{ }^{5} \mathrm{C}}{\stackrel{4}{!}}{ }^{4} \mathrm{CH}_{2}-{ }^{3} \mathrm{CH}_{2}-{ }^{2} \mathrm{C}={ }^{1} \mathrm{CH}_{2}$
${ }^{8} \mathrm{CH}_{3}{ }^{7} \mathrm{CH}_{2}{ }^{6} \mathrm{CH}_{2}$
5-Ethyl-2,5-dimethyl-1-octene


4,5-Dimethyl-3-propyl-1-hexene
${ }^{1} \mathrm{CH}_{2}={ }^{2} \mathrm{C}-{ }^{3} \mathrm{CH}={ }^{4} \mathrm{CH}_{2}$
$\mathrm{CH}_{3}$
2 -methyl-1,3-butadiene


1-Methylcyclohexene

$\begin{aligned} & \mathrm{H}_{2} \mathrm{C} \\ & \mathrm{H}_{2} \mathrm{C} \\ & \mathrm{CH}\end{aligned} \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
3-Cyciopropyl-1-propene


5-Ethyl-3-methylcyclohexene

trans-1-Iodo-2-pentene

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} \\
\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
\end{gathered}
$$

4-(1-Methylbutyl)-1,4-hexadiene

Here are a few important alkenyl groups for which trivial (common) names are -d preferentially in place of systematic names. These are
$\mathrm{CH}_{2}=\mathrm{CH}-$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-$
Propenyl
(1-Propenyl)
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-$
Allyl
(2-Propenyl)

Vinyl
(Ethenyl)

Isopropenyl
(1-Methylethenyl)

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2}- \\
\text { Crotyl } \\
(2-\text { Butenyl })
\end{gathered}
$$

Hydrocarbons that contain a carbon - carbon triple bond are called alkynes. The simplest alkyne, $\mathrm{HC} \equiv \mathrm{CH}$ is commonly called acetylene.

The simple alkynes are named in the common system as derivatives of acetylene.
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
Methylacetylene
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}$
diphenylacetylene
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ dimethylacetylene

IUPAC rules for naming alkynes are analogous to those for alkenes.
Select the longest continuous carbon chain containing the triple bond as the parent chain which is then named by replacing the ending -ane of the corresponding alkane by -yne.
Number the parent chain from the end nearer to the triple bond.
Indicate the position of the triple bond by putting the number of lower numbered carbon of the triple bond before the name of the alkyne.
Alkyl groups and other substituents are numbered, named and placed as prefixes in alphabetic order.
(v) Alkynes containing two triple bonds are named as alkadiynes.
(vi) If both double and triple bonds are present in a molecule, the double bond takes precedence over the triple bond, then the hydrocarbon is named as an alkenyne, alkadienyne, alkendiyne, etc., depending on the number of double and triple bonds in the molecule. The numbers to the multiple bonds are assigned in such a way that the total of the number remain as low as possible.



5 -Methyl - 1,6 - heptadiene - 3 - yne

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH} \\
\text { 3-Penten-1-yne }
\end{gathered}
$$

$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
1-Penten-3-yne

## 5. Aromatic Hydrocarbons

The nomenclature of the aromatic hydrocarbons and their derivatives is more complex than that of the aliphatic compounds. The system used for naming the benzene derivatives generally depends on the number of substituents on the benzene ring.

1. Monosubstituted benzene derivatives are systematically named as one word by combining the name of the substituent as a prefix with the word benzene, e.g.,


Ethylbenzene


Nitrobenzene


Bromobenzene

A number of monosubstituted benzene derivatives have common names which are currently accepted. The IUPAC names are given in brackets.


Toluene (Methylbenzene)


Phenol (Hydroxybenzene)


Aniline (Aminobenzene)


Anisole (Methoxybenzene)


Styrene
(Phenylethylene)


Cumene (Isopropylbenzene)


Benzaldehyde


Acetophenone


Benzoic acid


Benzenesulphonic acid

Sometimes, it is more convenient to name the benzene ring as a substituent, the phenyl group, $\mathrm{C}_{6} \mathrm{H}_{5}$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}
$$

Phenylacetylene


2-Phenylethanol


3-Phenylpropanal

Another common aromatic substituent is Benzyl group which is abbreviated as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ -


Benzyl chloride


Benzyl
2. In disubstituted benzene derivatives, the relative positions of the substituent in the benzene ring are indicated by the numbers allocated to the carbon atoms of the ring to which the substituents are attached or by using the prefixes ortho ( $o-$ ), meta ( $m-$ ), and para ( $p$-) for the $1,2-, 1,3$-, and 1,4 - substituent, respectively. For example,

1,2-Dichlorobenzene $o$-Dichlorobenzene


1,3-Dichlorobenzene
$m$-Dichlorobenzene


1,4-Dichlorobenzene or p-Dichlorobenzene

If the two substituents are different, both are used as prefixes successively it alphabetic order. The whole name is used in one word.


2-Chloronitrobenzene
$o$-Chloronitrobenzene


3-Chloroiodobenzene or
$m$-Chloroiodobenzene


4-Bromonitrobenzene or $p$-Bromonitrobenzene

If one of the substituents is such that it gives a special name to the molecule then the special name is used as the parent name, the disubstituted compound is named as a derivative of that parent, e.g.,


4-Nitrotoluene or $p$-Nitrotoluene


3-Nitrophenol
$m$-Nitrophenol


2-bromoanisole
o-bromoanisole

If both substituents are such that they independently give a special name to the molecule, then the substituent which is normally treated as suffix gives the parent name to the molecule.


4-Aminophenol p-Aminophenol


4-Aminobenzoic acid or


4-Hydroxybenzoic acid
p-Hydroxybenzoic acid


3-Nitrobenzenesulphonic acid or
$m$-Nitrobenzenesulphonic acid


4-Methoxybenzaldehyde
or $p$-Methoxybenzaldehyde

p-methylanisole $p$-Aminobenzoic acid

Some disubstituted benzene derivatives also have special names that repiesent the benzene ring together with both the substituents, e.g.,

$o$-Xylene


$p$-Xylene

Catechol


Resorsinol


Anthranilic acid


Hydroquinone


Salicylaldehyde

o-Toluidine
 Cresol



Phthalic acid

Polysubstituted Benzenes. When three or more substituents are attached to the benzene ring, numbers must be used to designate their positions. If all the substituents are the same, the benzene ring is numbered so as to give the lowest total of the numbers assigned to the substituents, e.g.,


1,2,4-Trichlorobenzene


1,3,5-Tribromobenzene

If one of the substituents gives a special name to the molecule, then only the remaining positions of substituents are mentioned.


2,4,6-Trinitrotoluene


2,4,6-Tribromophenol


3,5-Diaminobenzoic acid

Some Polysubstituted benzene derivatives also have special names.


Phloroglucinol


Mesitylene


Pyrogallol


Durene

## Polynuclear Aromatic Hydrocarbons

Polynuclear aromatic compounds have more than one benzene ring. Biphenyl, $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}$, and triphenylmethane, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CH}$, have isolated rings. Benzene rings sharing 2 ortho carbons are fused or condensed ring system.

Isolated ring systems. The following are the important compounds of isolated ring systems.

Biphenyl

$p$-Terphenyl

Diphenylmethane

The numbering system in biphenyl is:



3-Chlorobiphenyl


2-Chloro-3-nitrobiphenyl

$p, p^{\prime}-\mathrm{di}(\mathrm{N}, \mathrm{N}$-dimethylamino) biphenyl

Fused or Condensed ring systems. Naphthalene, anthracene and phenanthrene are the most important members of this class, in which the benzene rings are fused together at ortho positions so that the adjacent rings have a common carbon-carbon bond.


Naphthalene


Anthracene


Phenanthrene

In the IUPAC system of nomenclature, numbers are assigned only to those positions of the fused ring aromatic hydrocarbons at which substitution can take place as shown in the above structures.

The substituted naphthalene derivatives are usually designated by the prefixes $\alpha-$ and $\beta-$. The numbering system begins with number 1 at the $\alpha-$ position.

$\alpha$-Naphthol 1-Naphthol

1,5-dinitronaphthalene

1-Bromo-8-methoxynaphthalene

9,10-Dihydroanthracene


9,10-Dibromoanthracene

## 6. Alkyl Halides

Monohaloalkanes are usually called alkyl halides and they contain carbon-halogen bonds. They are classified as primary, secondary, or tertiary, depending upon whether the halogen atom is bonded to a primary, secondary, or tertiary carbon atom. Abbreviations for these terms are $1^{\circ}, 2^{\circ}$, and $3^{\circ}$ respectively.

The common names of alkyl halides are obtained by naming the alkyl group attached to the halogen and adding the name of halide corresponding to halogen as a separate word.

| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ | $\stackrel{\mathrm{I}}{ }$ | $\mathrm{I}^{2}$ |
| :--- | :---: | :---: | :---: |
| Ethyl bromide | n-Butyl bromide | $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}$ | $\mathrm{CH}_{3}$ |
|  |  | Isopropyl iodide | $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$ <br>  |
|  |  | Isobutyl bormide |  |


tert. Butyl bromide


Neopentyl iodide

Dihaloalkanes are named according to the relative positions of the halogen atoms. If two halogen atoms are attached to the same carbon atom, i.e. in the germinal (gem-) position, it is named as an alkylidene dihalide. If the two halogen atoms are on adjacent carbon atoms, i.e., in the vicinal (vic-) position; it is named as a dihalide of the alkene from which it may be prepared by the addition of halogen. If the halogen atoms are on the terminal carbon atoms of the chain it is named as the polymethylene dihalide.
For example,


Ethylidene dibromide


Isopropylidene dichloride
$\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$
Ethylene dibromide

$\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
Hexamethylene dichloride
Isobutene dichloride
IUPAC System: The IUPAC names of alkyl halides are obtained by using the following rules:

1. Select the longest chain to which the halogen is attached and give it the name of the corresponding alkanes.
2. Prefix the name of alkane by halo; i.e., chloro, bromo, iodo or fluoro.
3. Number the chain so as to give the carbon carrying the halogen atom the lowest possible number.
4. Other substituents are numbered, named and placed as prefixes in alphabetic order. For example


2-Bromopropane


1-Chloro-2-methylbutane


1,2-Dibromo-2-methylpropane


1-Bromo-3,3-dichloropentane


5-Bromo-1-chloro-2-iodo-3-methylpentane

## 7. Organometallic Compounds

Organometallic compounds are named as alkylmetals.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Li}$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{4} \mathrm{~Pb}$
Ethyllithium
Tetraethyllead

If the metal is bonded to an inorganic anion as well as a carbon atom, the compounds is named as a derivative of the inorganic salt.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$
Ethylmagnesium bromide

tert - butylmagnesium bromide

## 8. Alcohols

Common System: In this system alcohols ( $\mathrm{R}-\mathrm{OH}$ ) are named by naming the alkyl group attached to the -OH group and adding alcohol as a separate word.

| - | $\mathrm{CH}_{3}$ | $\mathrm{CH}_{3}$ |
| :---: | :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ |  |  |
| $n$-propyl alcohol | $\mathrm{CH}_{3} \mathrm{CHOH}$ | $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$ |
|  | Isopropyl alcohol | Isobutyl alcohol |
| $\mathrm{CH}_{3}$ | $\mathrm{CH}_{3}$ | $\mathrm{CH}_{3}$ |
| $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CHOH}$ | $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OH}$ | 1 |
| sec-Butyl alcohol | 1 | $\mathrm{CH}_{3}-\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$ |
|  | tert- Butyl alcohol | 1 |
|  |  | Neopentyl alcohol |

The positions of the other substituents in the alkyl groups are indicated by the Greek letters $\alpha$ (alpha), $\beta$ (beta), $\gamma$ (gamma), and $\delta$ (delta). The carbon atom bearing the hydroxyl group is named as $\alpha$, next carbon atoms named as $\beta, \gamma, \delta$ and so on respectively.

$$
\begin{array}{cc}
\mathrm{Cl}-{ }^{\gamma} \mathrm{CH}_{2}-{ }^{\beta} \mathrm{CH}_{2}-\alpha \mathrm{CH}_{2}-\mathrm{OH} & \mathrm{Br}^{\omega} \mathrm{CH}_{2}{ }^{\gamma} \mathrm{CH}_{2}{ }^{\gamma} \mathrm{CH}_{2}{ }^{\beta} \mathrm{CH}_{2}{ }^{\alpha} \mathrm{CH}_{2} \mathrm{OH} \\
\gamma \text {-Chloropropyl alcohol } & \omega \text {-Bromoamyl alcohol }
\end{array}
$$

An alcohol, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$ containing five carbons is commonly called amyl alcohol and the end carbon is generally named as $\omega$ (omega).

$\alpha$-phenylethyl alcohol
$\stackrel{\stackrel{\mathrm{Br}}{1}}{\mathrm{CH}_{3}}-\stackrel{\text { CHCH}}{2} \mathrm{CH}_{2} \mathrm{OH}$
$\gamma$-Bromobutyl alcohol

IUPAC System: 1 . Select the longest carbon chain containing the hydroxyl group as the parent alkane.
2. The name is obtained by replacing the ending -e of the name of the parent alkane by - ol. Thus, the alcohols are named as alkanols.
3. The position of the hydroxyl group is indicated by the number of the carbon attached to the - OH group, and is written before the name of the alkanol.
4. Other substituents are numbered, named and placed as prefixes in alphabetic order.

|  | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |
| :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}$ |
| 1-propanol | 1 |
|  | CH ${ }_{2} \mathrm{CH}_{3}$ |
|  | 3-Ethyl - 3 -hexanol |


3-Buten-2-ol

Note that in IUPAC system the OH is given a lower number than $\mathrm{C}=\mathrm{C}$ or Cl .


2,2-Dichloroethanol


4-Bromo-5-methyl-3-hexanol

Diols and Triols have both common and IUPAC names. The IUPAC names are obtained by adding the suffix diol or triol to the name of the parent alkane containing two or three -OH groups respectively. The positions of the -OH groups are indicated by the numbers. For example
$\mathrm{CH}_{2} \mathrm{OH}$
1
$\mathrm{CH}_{2} \mathrm{OH}$
1,2 -Ethanediol
(Ethylene glycol)

## 9. Phenols

Compounds containing an -OH group attached directly to an aromatic ring are called Phenols. Phenols are usually named by common system or as derivatives of the parent phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ which is called hydroxybenzene. Their systematic names are also given in parentheses.


Phenol
(Hydroxybenzene)

(2-Methylphenol)

$p$-Nitrophenol
(4-Nitrophenol)


Catechol
(o-Dihydroxybenzene)


Picric acid (2,4,6-Trinitrophenol)


Salicylaldehyde (o-hydroxybenzaldehyde)


Resorcinol ( $m$-Dihydroxybenzene)


Pyrogallol
(1,2,3-Hydroxybenzene)

( $m$-hydroxytoluene)


Hydroquinone ( $p$-Dihydroxybenzene)


Phyloroglucinol (1,3,5-Trihydroxybenzene)


Salicylic acid
(o-Hydroxybenzoic acid)

While naming the polyfunctional aromatic compounds, the hydroxy function is usually placed low in order precedence; only the amino and the ether functions are placed lower than the hydroxy function.

p-hydroxybenzoic acid

$p$-Methoxyphenol

$p$-Hydroxyacetanilide

Compounds with the hydroxyl group attached to a polycyclic benzenoid ring system also belong to the phenol faimly and they are named in a similar ways;

$\alpha$-Naphthol
(1-Hydroxynaphthalene)


2-Anthranol
(2-Hydroxyanthrancene)


9-Phenanthrol (9-Hydroxyphenanthrene)

## 10. Ethers

Common system. In the commen system, the names of ethers are derived by naming the two alkyl groups attached to the oxygen atom, in alphabetic order, followed by the word ether. If the groups are same, the prefix di- is used with the group.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
Diethyl ether
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOC}_{2} \mathrm{H}_{5}$
Ethyl methyl ether Isopropyl ethyl ether
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$
t-Buyl ethyl ether
$\mathrm{CH}_{2}=\mathrm{CHO} \mathrm{CH}=\mathrm{CH}_{2}$.
Divinyl ether
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
Dibenzyl ether

In the IUPAC system, ethers are named as Alkoxyalkanes or compounds containing a functional group of higher priority than ether.

| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\mathrm{CH}_{3}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ |
| :---: | :---: | :---: |
| 1-Methoxypropane | Ethoxybenzene | 2-isopropoxybutane |



Methoxycyclohexane


## 11. Oxiranes (Epoxides)

Oxiranes are cyclic ethers in which the ether oxygen is part of the three membered ring. Oxiranes are also called epoxides. Because they are readily prepared from alkenes, they are commonly known as alkene oxides. In the IUPAC system, they are named as alkyloxiranes. Substituents on the oxirane ring require a numbering system. The oxygen atom is given the number 1.


Oxirane (Ethylene oxide)


2-Methyloxirane
(Propylene oxide)


2,2-Dimethyloxirane
(Isobutylene oxide)

## 12. Aldehydes and Ketones

Aldehydes. The common name. The common names of aldehydes are derived from the names of the corresponding acids by replacing the suffix -ic (or -oic) acid by aldehyde. Locations of substituent groups are designated by Greek letters $\alpha$-, $\beta$-, $\gamma$ - and so on, beginning with the carbon next to carbonyl group.
$\mathrm{CH}_{3} \mathrm{CHO}$
Acetaldehyde
(from acetic acid)


Benzaldehyde (from benzoic acid)

$\beta$-Methylbutyralaldehyde

IUPAC System. In the IUPAC system, aldehydes are named as alkanals.
Select the longest chain containing the aldehyde group and replace the final -e from the name of the corresponding alkane by the suffix -al. The C of CHO is number 1. Since the aldehyde group is always at the end of the chain, there is no need to indicate its position. However, the positions of the substituents are indicated by number, named and placed as prefixes in alphabetic order.

When there are two aldehyde groups in a molecules it is named as Alkanedial. Notice that -e of the corresponding alkane name is retained.


3-Methylbutanal
 1,6-Hexanedial


2-Chloropentanal


3-Bromobutanal

When-CHO group is used as substituent, it is named as a formyl group.

$o$-Formylbenzoic acid


2-Formylcyclohexanone

Ketones. Common name. The common names of ketones are obtained by naming the alkyl groups attached to the carbonyl group separately in alphabetical order and adding the word ketone. For symmetrical ketones the prefix di- is used. The positions of the substituents are indicated by the Greek letters as in the case of aldehydes.


Dimethyl ketone (Acetone)


Methyl Phenyl ketone (Acetophenone)


Ethyl methyl ketone

$\alpha, \beta^{\prime}$-Dichlorodiethyl ketone

The ketones in which the carbonyl group is attached to a benzene ring, are named as -phenone, as shown above in parentheses.

In the IUPAC System the names of ketones are derived from the names of the corresponding alkanes by replacing the ending -e with -one. The position of the keto group is indicated by numbering the parent chain from one end so that the carbonyl group gets the lowest possible number. The substituents are numbered, named and placed as prefixes in alphabetic order.

When there are two carbonyl groups in a molecule, it is named as Alkanedione.


Butanone


3-Methyl-2-butanone
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCOCH}_{3}$
3-Buten-2-one

## $\stackrel{\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CCH}_{3}}{ }$

4-chlorobutanone


4-Acetylbenzoic acid


4-propanoylbenzene sulphonic acid

Sometimes a carbonyl compound also contains a more important functional group. In such cases, the prefix oxo-, along with a number indicating its position in the chain, is used for the carbonyl group.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\text { II }}{\mathrm{C}} \mathrm{CH}_{2} \mathrm{CHO}$
3-Oxopentanal

The general order of precedence of the functional group in naming the compound is: acid anhydride $>$ carboxylic acid $>$ sulphonic acid $>$ ester $>$ acid halide $>$ amide $>$ aldehyde $>$ ketone $>$ alcohol $\approx$ phenol $>$ ether $>$ amine

The $\mathrm{C}=\mathrm{O}$ group has numbering priority over the $\mathrm{C}=\mathrm{C}$ group.

## 13. Carboxylic acids

Common or trivial names. The common names of the carboxylic acids are usually derived from the Latin or Greek words that indicate one of their original source. All common names of acids end in -ic acid. Common names, such as formic (ant) and butyric (butter) acids, are based on the natural source of the acid. The positions of substituetnt groups are shown by Greek letters $\alpha, \beta, \gamma, \delta$, etc. The carbon atom adjacent to the carboxyl carbon is assigned the letter $\alpha$, the next carbon on the chain $\beta$, the next one $\gamma$, and so on. Some common names of carboxylic acids are given below:
$\mathrm{CH}_{3} \mathrm{COOH}$ acetic acid
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$
Caproic acid
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$
Valeric acid
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
Benzoic acid
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{COOH}$
Naphthoic acid
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
Propionic acid
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$
Pivalic acid
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COOH}$
Palmitic acid
o- $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}$
Salicylic acid
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}$
Capric acid
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
Butyric acid
$\left(\mathrm{CH}_{3}\right)_{2}{ }^{\gamma} \mathrm{CH}^{\beta} \mathrm{CH}_{2}{ }^{u} \mathrm{CH}_{2} \mathrm{COOH}$ $\gamma$-methylvaleric acid $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}$
Stearic acid
$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\text {i }} \mathrm{CH}_{2}{ }^{3} \mathrm{CH}_{2}{ }^{\prime \prime} \mathrm{CH}_{2} \mathrm{COOH}$
$\gamma$-Phenylbutyric acid
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$
$\alpha$-Hydroxyisobutyric acid

Some carboxylic acids have names derived from acetic acids, e.g.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COOH}$
Trimethylacetic acid
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$
Phenyl acetic acid
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COOH}$
Isopropylacetic acid

The four simplest of the dicarboxylic acids are known exclusively by their common names.
$\mathrm{HOOC}-\mathrm{COOH}$
Oxalic acid
$\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$
Succinic acid
$\mathrm{HOOC}-\mathrm{CH}_{2} \mathrm{COOH}$
Malonic acid $\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{COOH}$

Glutaric acid

IUPAC System. In the IUPAC system, the name of the carboxylic acid is obtained from the chain of carboxylic acid, by replacing the ending ee of the corresponding alkane by -oic acid. The positions of the substituents are indicated by numbers. The carboxyl carbon is always given number 1 , the carbon adjacent to it is given the number 2 , and so on.

HCOOH
Methanoic acid

| $\mathrm{CH}_{3} \mathrm{COOH}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ |
| :---: | :---: |
| Ethanoic acid | Propanoic acid |


$\mathrm{CH}_{3}-\stackrel{\mathrm{CH}}{\mathrm{C}} \mathrm{COOH} \mathrm{CH}_{3} \mathrm{CHCH}-\mathrm{CH} \mathrm{CHCOOH}$ 2-Bromopropanoic acid 2-Hydroxy -5-methyl-3hexenoic acid

## $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ 4-Hexynoic acid



4-chloro-5-phenylpentanoic acid

It is not convenient to name a cyche carboxylic ach by ILPAC system. however, occasionally they are named as carboxylic acads, eq.


## Benzene carboxylic acid



Cyclohexanecarboxylic acid

The common names acceptable in the IUPAC system are acetic acid and benzoic acid, although most of the common names are stil! in use

Dicarboxylic acids are named by adding the suffix -dioic and the word acid to the longest chain with the two COOH's.

| $\mathrm{HOOC}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ |
| :--- |
| 1,6 -hexanedioic acid |$+$| $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CH} \mathrm{COOH}$ |
| :--- |
| 2-Hydroxybutanedioic acid |

Aromatic carboxylic acids are usually named as derivatives of benzoic acid, e.g.

The names of some important acids are given below. Their common names are given in parentheses.


2-Hydroxybenzene carboxylic acid (Salicylic acid)


Benzene-1,2-dicarboxylic acid
(Phthalic acid)


Naphthalene-1-carboxylic acid ( $\alpha$-Naphthoic acid)

## Derivatives of Carboxylic Acids

## 14. Esters

The names of esters are derived by writing the name of alkyl group of the alcohol, followed by the name of the acid with the ending -ic acid replaced by -ate. This nomenclature applies to both common and IUPAC names of esters.

| Formula | Common Name | IUPAC Name |
| :--- | :--- | :--- |
| O | Methyl formate | Methyl methanoate |
| $\mathrm{H}_{\mathrm{C}}^{\mathrm{C}}-\mathrm{OCH}_{3}$ | Ethyl acetate | Ethyl ethanoate |
| $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OCH}_{2} \mathrm{CH}_{3}$ |  |  |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{OCH}_{3}$ | Methyl butyrate | Methyl butanoate |
| $\mathrm{CH}_{3} \mathrm{O}$ | Methyl isobutyrate | Methyl isobutanoate |
| $\mathrm{CH}_{3}-\mathrm{CH}-\stackrel{\text { II }}{\mathrm{C}}-\mathrm{OCH}_{3}$ |  |  |

If the ester function ( -COOR ) is to be treated as a substituent, it is treated as a carboalkoxy group.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}
$$

## 4-Carboethoxybutanoic acid

## 15. Acid Halides

Acid halides are the derivatives of carboxylic acids in which the -OH of carboxyl group has been replaced by a halogen atom.

Acid halides are named in both the common and IUPAC systems by dropping the ending ic acid' from the name of the parent acid and adding the suffix ' -yl halide'.

| Formula | Common Name | IUPAC Name |
| :--- | :--- | :--- |
| $\mathrm{CH}_{3} \mathrm{COCl}$ | Acetyi chloride | Ethanoyl chloride |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ | Propionyl chleride | Propanoyl chloride |
|  | Benzoyl chloride |  |

## Acid Anhydrides

Acid anhydrides are the compounds which are obtained after the elimination Ifa water molecule from the carboxyl groups of two carboxylic acid molecules (or Inm the two carboxyl groups of dicarboxylic acids).

Acid anhydrides are named by replacing the word 'acid' in the name of parent cid by 'anhydride'. For mixed acid anhydrides, the parent name of each acid is seiten in alphabetical order, followed by the word anhydride.


Acetic anhydride
(Ethanoic anhydride)


Benzoic anhydride


Acetic formic anhydride

## 17. Amides

Amides are the compounds in which -OH of the carboxyl group has been replaced by an amino group, $-\mathrm{NH}_{2}$.

Simple amides are named by replacing the ending '-ic acid' (Common) or -oic anid (IUPAC) by the word 'amide'. The IUPAC names are given in parentheses.



Propionamide (Propanamide)
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CONH}_{2}$
Caproamide (Hexanamide)


2,2-dimethylpropionamide (2,2-dimethyl propanamide)


Benzamide

When nitrogen is substituted, this is indicated by prefixing the name of a simple amide by $\mathrm{N}-$, followed by the name of the substituent group. This method is used for both systems of nomenclature.


N -methyl propionamide (N-methyl propanamide)

$\mathrm{N}, \mathrm{N}$-dimethyl formamide
( $\mathrm{N}, \mathrm{N}$-dimethyl methamide)

## 18. Amines

Common Names. The commor names of amines are derived by using the suffix -amine, preceded by the name or names of the alkyl groups attached to the nitrogen atom, in alphabetical order. The prefixes di- or tri- are used for identical alkyl groups. The name is written as one word.

$\mathrm{CH}_{3} \mathrm{NH}_{2}$<br>Methylamine<br>$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{NHCH}_{3}$<br>Ethylmethylamine

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Tri-n-Propylamine


Cyclohexylethylmethylamine


4,4'-Dimethyldiphenylamine

IUPAC System. In the IUPAC system, the ending $e$ of the name of the parent hydrocarbon containing the $-\mathrm{NH}_{2}$ group, is replaced by -amine. For secondary and tertiary amines, the longest chain is selected as the parent alkane; in case of equal chain -lengths the parent alkane is the one with the greater number of substituents. The remaining alkyl groups are named as substituents by using the prefix N - to indicate that they are attached to nitrogen.

| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ | $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ |
| :--- | :---: | :---: |
| Ethanamine | Propanamine | N-Ethylethanamine |

$\stackrel{\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}}{\mathrm{~N}, \mathrm{~N} \text { - Diethylethanamine }}$


$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}$
2 - Methyl - N - propylpropanamine
N -ethyl- N -isopropyi-1-methylethanamine


Benzenamine


4-Methoxybenzenamine


N,N-Diethylcyclohexanamine

In more complicated amines, the $-\mathrm{NH}_{2}$ group is considered as a substituent on a hydrocarbon, and its position on the chain is indicated by the lowest possible number.


5-Methyl-3-aminolexane
$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{COOH}$
$\mathrm{NH}_{2}$
2-Aminopropanoic acid
 p-Aminobenzoic acid

## $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

3-Aminopropanol
A number of aromatic amines have special names that. have been accepted by IUPAC.

Aniline

o-Toluidine

$m$-Toluidine

p-Anisidine

Anthranilic acid


Diphenylamine

Some of the aromatic amines are named as derivatives of aniline.


N -Ethyl-N-methylaniline


2,4,6-Tribromoaniline

$o$-Nitroaniline

### 3.3 Nomenclature of Polyfunctional Compound

The functional group present in a compound determines its class. When a compound contains two or more different types of functional groups (polyfunctional compound), the functional group which specifies its class is the principal functional group. The other functional groups are considered as substituents. For example, the compounds $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ must be named 4-hydroxy-2butanone, not 4 -butanol-2-one. The name 3 -oxo-1-butanol is not preferred because the $\mathrm{C}=\mathrm{O}$ group is the principal functional group as it ranks higher in the priority table.

## Selection of the Principal Functional Group

The IUPAC system has established the priority of functional groups for determining the class of a polyfunctional compound. Table 3.2 gives a list of functional groups in decreasing order of priority for citation as the principal functional group. That is, the functional group which occurs higher up in the priority table is the principal functional group and specifies the class. Therefore, by having a look at the priority table, one can at once know the class of a polyfunctional structure

Table 3.2 Nomenclature Priority for Determining the Principal Functional Group. Higher Priority Group is at the Top

| Class | Functional group | Suffix used |
| :---: | :---: | :---: |
| Carboxylic acid |  | -oic acid |
| Sulphonic acid | $-\mathrm{SO}_{3} \mathrm{H}$ | -sulphonic acid |
| Ester |  | Alkyl-oate |
| Acid halide | $-C-X$ | -oyl halide |
| Amide | $-\mathrm{C}-\mathrm{NH}_{2}$ | -amide |
| Nitrile | - CN O | -nitrile |
| Aldehyde | $\stackrel{\\|}{-\mathrm{C}-\mathrm{H}}$ | -al |
| Ketone |  | -one |
| Alcohol | $-\mathrm{OH}$ | -ol |
| Amine | $\begin{gathered} 1 \\ -\mathrm{N}- \end{gathered}$ | Amine |
| Ethers | -0- | (ether) |
| Alkene | $\begin{array}{cc} 1 & 1 \\ -\mathrm{C} & =\mathrm{C}- \end{array}$ | -ene |
| Alkyne | $-\mathrm{C} \equiv \mathrm{C}-$ | -yne |

Table 3.3 Prefixes used for Functional Groups

|  |  |  |  | O |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| -Br | Bromo | -R | Alkyl | I | $-\mathrm{C}-$ |
| Cl | Chloro | -OR | Alkoxy | $-\mathrm{NO}_{2}$ | Nitro |
| -F | Fluoro | -OH | Hydroxy | -NO | Nitroso |
| -I | lodo | $-\mathrm{NH}_{2}$ | Amino | -CN | Cyano |

## IUPAC Rules for Naming Polyfunctional Compounds

1. Identify the principal functional group and this gives the class name of the structure.
2. Number the longest chain containing the principal functional group from the end nearer to it.
3. Write the parent name corresponding to the number of carbons in the longest chain.
4. Arrainge the substituent r लmes with position numbers in alphabetical order.

Prefix substituent names with the parent name.
The following functional groups are always named as substituents.

| -Cl | Chloro | -R | Alkyl | $-\mathrm{NO}_{2}$ | Nitro |
| :--- | :--- | :--- | :--- | :--- | :--- |
| -Br | Bromo | -OR | Alkoxy | -NO | Nitroso |
| -I | Iodo | $-\mathrm{NH}_{2}$ | Amino |  |  |
| -F | Fluoro | -CN | Cyano |  |  |

C-C double or triple bonds are usually indicated by integrating -en- or -yneinto the suffix.

Compounds containing a double bond $(\mathrm{C}=\mathrm{C})$ and a triple bond $(\mathrm{C} \equiv \mathrm{C})$ in the main chain are named as alkenynes. Their position number of the double bond is inserted before -alken- and that of triple bond before -yne.

$$
\begin{gathered}
{ }^{5} \mathrm{CH}_{3}-{ }^{4} \mathrm{CH}={ }^{3} \mathrm{CH}-{ }^{2} \mathrm{C} \equiv{ }^{1} \mathrm{CH} \\
\text { 3-penten-1-yne }
\end{gathered}
$$

$$
\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}
$$

1-Penten-4-yne
Remember that when a double bond and a triple bond can be given the same position number, the chain is numbered from the end closer to double bond.


2-Bromo-3-chloro-5-nitrohexane


2-Butenal

Remember that the -CHO group is the principal functional group, as it ranks higher in the priority table than the $\mathrm{C}=\mathrm{C}$ group. The position number of -CH$)$ is not indicated before -al as it is always 1 .



Both $\mathrm{C}=\mathrm{O}$ and -CHO form part of the longest chain. The -CHO group is the principal functional group as it ranks higher in the priority table. The ketonic carbonyl group, $\mathrm{C}=\mathrm{C}$, is indicated by the prefix oxo.


4-Hydroxy-2-butanone



4-Hexen-3-one


2-Methcxy-1-butanni

In both the above compounds, the -OH group is the principal functional groups. Th $-\mathrm{OCH}_{3}$ is always treated as a substituent and is indicated by the prefix meithoxy


2-Methyl-4-oxopentanoic acid
 3-Amino-5-methylhexanoic acid In both the above compounds, the -COOH groups is the funcational group as it ranks highest in the Priority table. The ketonic carbonyl group ( $\mathrm{C}=\mathrm{O}$ ) is indicated by the prefix oxo. The $-\mathrm{NH}_{2}$ group is indicated by the prefix amino


Ethyl-3-hydroxybutanoate


3-Methoxypentanoyl chloride

The $-\mathrm{C}-\mathrm{O}$ group is the principal functional group and the compound is named as
ester. The $-\stackrel{\text { II }}{\mathrm{C}}-\mathrm{Cl}$ is the principal functional group and the compound is named as an acid halide.


The functional groups are $-\mathrm{CN}, \mathrm{C}=\mathrm{C},-\mathrm{CO}$-, and -CHO . The -CHO group is the principal functional group and the compound is named as aldehyde.


2.4-Pentanedione
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{OCH}_{3}$ Methyl-4-oxohexanoate

$o$-Hys roxybenzoic acid (Salicylic acid)

p-Methoxyethylbenzene

$p$-allylphenol

m-formylbenzoic acid

p-sulphobenzoic acid

$p$-Toluenesulphonic acid

### 3.4 Heterocyclic Compounds

Thos cyclic compounds which, in addition to carbon, have at least one atom of another element (heteroatom) in the ring are called heterocyclic compounds or simply heterocycles.

Common Names Heterocyclic compounds are usually called by their common names. Their numbering starts from the hetero atom and proceeds around the ring so as to give the substituents the lowest number.
IUPAC System. The system combines prefixes, which indicate the nature of the hetero atom present, with stems, which indicate the size of the ring. The prefixes are the same as those listed in table. 3.4 for use in substitution names, except the terminal a is usually elided since the stems, which are listed in table 3.5 all begin with vowels. When there is more than one kind of ring hetero atom, the atom of higher atomic number receives the lower number in naming the compound.

## Table.3.4 Characterístic Prefixes for Replacement Names

| Element | Prefix |
| :--- | :---: |
| Oxygen | oxa- |
| Nitrogen | aza- |
| Sulphur | Thia |
| Phosphorus | Phospha $q$ |
| Silicon | Sila |

Table. 3.5. Stem for use in Nomenclature of Heterocyclic Compounds

| Ring size | Stem |  |
| :---: | :---: | :---: |
|  | Saturated | Unsaturated |
| 3 | Irane | irine |
| 4 | etane | ete |
| 5 | olane | ole |
| 6 | ixane | ixine |
| 7 | epane | epine |
| 8 | ocane | ocine |

(i) In numbering rings, a single hetero atom is given number 1. The substituents are then numbered in the usual manner.
(ii) When a hetero atom occurs more than once, the hetero atoms are given the lowest possible numbers.
(iii) If isomers are possible as a result of the positions of one or more hydrogens, the position of each hydrogen is indicated by means of the prefix $1 \mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}$ etc.
The IUPAC names are given in parentheses.


Furan
(oxole)


Pyrrolidine (azolidine)


Thiophene
(Thiole)


Ethylene oxide (oxirane)

Pyridine (azine)


Pyrrole (azole)

imidazole (1,3-diazole)


Piperidine (perhydroazine)

tetrahydrofuran (oxolane)

(1,3-thiazole)

dioxane
(1,4-dioxane)


Pyrazine
(1,4-diazixine)


Pyrimidine
(1,3-diazixine)


Pyran ( 4 H -oxirine)

quinoline (1-azanaphthalene)


acridine
(10-azanthracene)

indole
(1-azindene)


2,5-dimethylfuran (2,5-dimethyloxole)


Furfural (2-formyloxole)


Isonicotinic acid (azixine-4-carboxylic acid)


3-furansulphonic acid

$\gamma$-Butyrolactone (oxalane-2-one)

-benzoylthiophene 2-benzoylthiole)

(3H-1,2,4-triazole)

Heterocyclic compounds containing more than one ring are niently named by combining the names of the indicated rings, e.g.,

benzofuran

benzopyrrole

## Questions

Name the following alkyl groups: (a) $\mathrm{CH}_{3}-$ (b) $\mathrm{CH}_{3} \mathrm{CH}_{2}-$ (c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
(d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$ (e) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-$

Write the structural formulas for the following compounds:
(a) 2-Buten-1-ol
(b) 6-Methyl-5-hepten-2-ol
(c) 2-Pentanone
(d) 1,3-Butadiene
(e) 3-Hydroxypropanoic acid
(f) 4-penten-2-one
(g) 6-cyano-3-oxo-4-heptenal
(h) 4-oxopentanoic acid

Write structural formulas for the following compounds.
(a) p-Nitroaniline (b) Mesitylene (c) Durene
(d) Biphenyl
(e) Cumene
(f) Anthrancene
(g) Triphenylimethanol (h) 3-oxopentanal
(i) 4-Acetylbenzoic acid (j) Benzoic anhydride

Write the IUPAC names of the following compounds.
(a) $\stackrel{\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{OH}, ~}{\text { I }}$
(b) $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(d) $\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{OCH}_{2} \mathrm{CH}_{3}$

