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No say anything “I shall be sure to do so and so
tomorrow”, except “if ALLAH so wills”"® And
remember your Lord when you forget [it] and say,
"Perhaps my Lord will guide me to what is nearer
than this to right conduct.®

Surat Al-Kahf (23-24)



FOREWORD

When | was a doctorate student at Johns Hopkins School of Public
Health. | used to take Biostatistics as a course, which | have to accept and
live with it. | did not have much of a problem with it, but I could have
enjoyed it more if it were presented to me in more attractive way. | mean in
relation to real life rather than abstracts of figures. With this innovative
writing of Prof. Hanif and Prof. Ahmad, | can see that the science of numbers

and ratios is being wisely integrated with epidemiology.

Through feedback from the learners, 1 am sure that more will be added to

this healthy relation between Biostatistics and other medical and public

health sciences.

Prof. Zohair Sebai
Saudi Arabia
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PREFACE TO SECONED EDITION

In this Edition the analysis of statistical data have been done on the basis of IBM 22
SPSS Package. In logistic regression (Chapter 9) basic concept with analysis of ordinal
logistic regression and multinomial logistic regression have been added. A new Chapter
of survival analysis is included as Chapter 10. The previous Chapter 10 (Reliability
Coefficient) from the old addition is now Chapter 11. We are thankful to Dr. Nadeem
Shafique Butt of COMSATS Institute of Information Technology, Lahore for the addition
of new material in this Edition. We are also thankful to Mr.,M. dmtiaz and M. Iftikhar of
Islamic Countries Society of Statistical Sciences (ISOSS) for excellent typesetting of this
book.

Muhammad Hanif

Munir Ahmad
Ezz H. Abdelfattah



PREFACE

The use of statistical techniques of data analysis has been observed to have
dramatically increased recently, particularly for application in the biomedical and social
sciences. This may be partially attributed to the developments during the last few decades
of sophisticated methods for analyzing quantitative and categorical data. It also reflects
the increasing methodological sophistication of scientists and applied statisticians. The
Islamic Educational Scientific and Cultural Organization (ISESCO) realized that the
knowledge of these statistical methods in health and medical research as well as in
clinical practice was very important for dealing with uncertainty in diagnosis, treatment
and prognosis. Moreover these methods are useful for health professionals, since they
have to evaluate their day-to-day clinical data and research material. Such statistical
analyses could improve their understanding and skills for treatment of patients, as well as
planning, implementation and evaluation of health programs. Considering all these
reasons, ISESCO formed a committee headed by Dr. Munir Ahmad in 1993 to develop a
curriculum regarding Bio-statistics for medical colleges inthe Islamic Countries. The
senior author was also member of this committee. -The curriculuméwas developed and
circulated among the medical colleges of the Islamic Countries. Most of the Islamic
Countries sent their comments and suggestions, which were incorporated in the
curriculum before approval. Then we decidedito write this manual for the medical, health
and social sciences students. This is a self-reading'manual written in a simple language,
which can easily be comprehended and could be of use for health related and social
studies, both at the undergraduate and postgraduate levels.

This manual consists of 10.chapters and presents the most important methods for
analyzing quantitative and categorical data<It summarizes methods that have long played
a prominent role, such as parametric and non-parametric tests; linear regression, chi
square tests and measures of, association including the tests of significance of relative
risk, odds ratio and Mental-Haenszel odds ratio. A chapter on various types of sampling
techniques and estimation.of sample size has been added which is normally not included
in common books“on Bio-statistics. Various methods of reliability co-efficient with
applications have been put together to facilitate the research workers. This manual puts
special emphasis on logistic regression, a newly developed technique for qualitative data
analysis. Another feature of this manual is that one can easily understand and use SPSS
(Statistical Package for Social Sciences) software. Much emphasis has been given to the
ability to select an appropriate test for the analysis of data with medical interpretation in
the context of the problem.

The technical components of the manual have been explained in a way that does not
require familiarity with mathematics such as calculus and matrix algebra. Examples
relating to health problems have been solved using SPSS software. Permission has been
taken for the examples and tables included in this manual.

In general most statistical methods require extensive computations. We have tried to
avoid details of complex calculations, since software for data analyses are available. It is
recommended for the users of this manual to use software, where possible, in solving the



problems. The data entry system has been explained either in the text or at the end of
each chapter. However, for those who wish to solve problems manually, all the steps
have been clearly demonstrated. At the end of each chapter the applications of SPSS
software have been demonstrated in details.

We are deeply grateful to Prof. Zohair Al-Sebai Ex-Professor of Family and
Community Medicine King Faisal University Dammam for providing full facilities to
write this manual. We are also thankful to Dr. Nabil Yasin Kurashi, Dr. Adnan Al-Bar,
Dr. Abdullah Mangood, Dr. Kasim Al-Dwood, Dr. Sameeh Al-Maie and Post-Graduates
students of the Department of Family and Community Medicine, King Faisal University,
Dammam, Saudi Arabia for encouraging us to write this manual. In this respect we also
appreciate with gratitude to the National College of Business Administration and
Economics for providing for administrative work.

We particularly appreciate the efforts of Dr. M. Samiuddin, Ex. Professor of
King Abdul Aziz University, Jeddah, who read the manuscript eritically and suggested
useful changes to improve the text of the manual. We\ expressdour gratitude to
Prof. Akhlag Ahmad of Islamic Countries Society“of Statistical Sciences (ISOSS),
Lahore for reading the first and final draft of the manuscript and suggesting useful
changes in the text and to Prof. M. Afzal, Ex-Joint Director, PIDE, Islamabad for
critically reviewing the book.

Last but not the least, we are indebted to<Mr. Mohammad Junaid, of King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Arabia, for composing the
manuscript.

We would like to thank Mr. Muhammad Iftikhar and Mr. Muhammad Imtiaz of
Islamic Countries Society of Statistical Sciences (ISOSS) for assistance in adjusting the
corrections in the manuseript.

Muhammad Hanif
Munir Ahmad
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Chapter 1

Basic Concepts and Data Presentation

1.1 Introduction

The word statistics seems to have been derived from the Latin word status or the Italian
word statist. Both these words mean a political state. The word statist was also used by
Shakespeare and Milton in the sense of a statesman, i.e. a person well versed in the
affairs of the state. Modern concept of statistics was illustrated by Sir R.A. Fisher
(1890-1962), J. Neyman (1894-1983), E.S. Pearson (1895-1981) and many others.

The word statistics is used in the plural sense to refer to numerical facts in any field of
study. It concerns with collection, organization, summarizations analysis and drawing
inferences from a data set. This word is also used in singularisense to refer to the science
comprising methods, which are used in collection, presentation, analysis, and
interpretation of numerical data.

Bio-statistics is the branch of statistics that concerns with the applications of statistical
methods to medical and biological data.

In medical field, statistical methods enable us<to study the effectiveness of different
treatments in medicines. Recently; it has_been found that applications of statistical
methods in medical data are very effective. Testing of hypothesis, analysis of variance,
chi-square, non-parametric metheds, ‘regression and correlation, logistic regression etc.
are frequently used in the analysis of dataiin the health and medical sciences.

Knowledge of statistical methods is very important in health and medical research and in
clinical practice for dealing with<uncertainty in diagnosis, treatments and prognosis.
These methods «are. usefulhand important both for clinicians as well as medical
researchers, since they have to evaluate both clinical and research materials to improve
their understanding and,skills while treating patients.lt is necessary to explain some basic
terms and their definitions to understand statistical concepts in depth.

Here is a quick chart for the steps for scientific research:
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Steps for Scientific Research

3 .

1], |

Interpretation, New ]

ideas & Solving the Understanding &
defining the problem

problem

Plan

Whatto measure?

i i & how to measure?

Constructing tables,

Graphs, Estimation,

Looking for patterns, %

Testing Hypotheses,

Predicting, <: Collection, Entering &
Forecasting,... Editing

1.1.1 Population versus Sample

Population means an aggregate <of individuals having a particular characteristic. In
medical science it is generally_humandpopulation but it may be a population of patients.
The group of all patients in any hospital4s known as a population of patients of that
hospital. Population of smakers, population of cancer patients, etc. are some examples of
population. In medicaléscience we sometimes consider a target population about which
inferences are to be drawn. Generally, population is of two types viz. Finite and Infinite
population. A population_is'said to be finite if one can count individuals, otherwise, it is
known as an infinitepopulation. An infinite population comprises infinitely large number
of elements. In statistics, if the number of individuals in a population is countable, it is
known as a finite population and if it is not, then it is treated as infinite population.

A sample is defined as a representative part of any population. This representative part is
not haphazard but some scientific method is used to select this part. At this stage, one
should only remember that random technique, giving all members of the population an
equal chance of selection, is applied to select the sample. Sample is considered to be
large if the number of individuals in the sample is 30 or more, otherwise it is considered
as a small sample. (Details of this will be discussed in Chapter 3).

1.1.2 Parameter versus Statistic

Parameter is a value (known or unknown) concerning some characteristic of a
population. For example, average age of patients in a certain hospital admitted at a certain
time is a parameter. It is a fixed quantity and always to be estimated.
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Statistic is a value concerning some characteristic of a sample. For example, sample
average can be defined as a statistic. Sample average may vary from sample to sample
even drawn from the same population.

1.1.3 Descriptive versus Inferential Statistics

Descriptive statistics is a branch of statistics devoted to the organization, summarization
and description of data. Inferential statistics is the branch of statistics concerned with
using sample data to make inferences about a population. Proper sampling technique
provides a measure of reliability for the inference. In inferential statistics, predictions are
made and conclusions are drawn for the target population based on the sample.

—
Iy
Make
inferences
Describe U
| Q o V]|
|

1.1.4 Descriptive versus Analytic Studies

A study has one of two objectives; €ither descriptive or analytic. In a descriptive study,
statistical data is collected, organized/and»summarized according to one or more
characteristics. The study of _means; proportions, rates, standard deviations, graphic
representations of data fall®under the category of descriptive studies. Association or
correlation is sought but no cause-effects are inferred. In fact no causal inference is
involved in descriptiveistudies. Measuring of incidence, and most of the vital statistics,
i.e. death rate, birth rate, fertilitysrate, etc. also come under descriptive study. Study of
child growth and development comes under descriptive study. How many people are
suffering from AIDS is an example of cross-sectional study. This study measures the
prevalence of disease at a point in time and also determines the association between a
factor and disease. Some other types of descriptive studies are case-report, case-series
(analysis of cases) etc. In analytic studies, a sample data is studied to draw inference
about the nature of the data set from which the sample is selected. The main objective of
analytic studies is to draw inference.

1.1.5 Cohort Study

Cohort refers to the fact that the study group is followed forward in time to the future. A
Cohort study is a follow up study in which people that are exposed (or not exposed) to
the suspected causal factor or compared to the subsequent development of the disease. It
determines the association between exposure and disease. Incidence of disease can be
estimated in exposed and non-exposed groups. In a Cohort study, a long time period is
required. It is very costly, and is conducted relatively on common diseases.
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4 Basic Concepts and Data Presentation

For example, consider a cohort of 1000 persons of which 400 are smokers and 600 are
non-smokers. The entire cohort is followed for 15 years and it is found that 50 out of
1000 develop lung cancer. Of these 45 were smokers and 5 were not. The information is
summarized in a 2x2 table.

Disease
Lung cancer | Without lung cancer | Total
Smokers 45 355 400
Non-smokers 5 595 600
Total 50 950 1000

1.1.6 Case versus Control study

A case-control study is backward looking study. This starts with the outcome of a disease
and goes back to suspected cause. People with the disease are compared with people who
are free from disease (control). The term case-control study.is often called a retrospective
study. This is a short time study, relatively less expensive and_suitable for rare disease
however incidence rate cannot be determined.

Suppose we like to determine the association between smoking and lung cancer. Suppose
100 cases having lung cancer (case) and 100 cases free from“lung cancer (control) are
selected. Both cases and controls are asked ifithey are smokers or non- smokers.

The information is summarized in a 2 x 2 table as:

Cases Control
Smokers 90 40
Non-smokers 10 60
Total 100 100

Of 100 lungs cancer cases 90 weresmokers and 10 were non- smoker. Of 100 persons
who are free from _cancer 40 were smokers and 60 were non- smokers. Study of such
cases fall under the category of case-control study.



Hanif, Ahmad and Abdelfattah 5

Retrospective studies

gather past data from selected cases and
controls to determine differences, if any, in
exposure to a suspected risk factor. These are
commonly referred to as case-control studies

Comparative Studies

Prospective Studies

enroll group or groups of subjects and follow
them over certain periods of time.
examples include occupatignal mortality
studies and clinical trials

1.1.7 Experimental study

Experimental studies are considered special types of caohort. studies where all conditions
of the study are specified by an investigator, namely selection.of treatment group, nature
of interventions, management during follow up, etc. The bearings of children, exposure
to hazards, or personality type, are not normally'subject torexperiment.

1.1.8 Intervention Studies

Epidemiological experiments thatdare designed to test cause-effect hypotheses may be
termed intervention studies. Intervention studies may be group-based or individual-based.
If the effect of fluoride on dental caries is investigated by fluoridating, the water supplies
of some towns and comparing the subsequent occurrence of dental caries in these towns,
it is a group-based experiment. On the other hand, when the administration of oxygen,[to
premature infants causing retrolental fibroplasia (a blinding disease)], is tested by
administering oxygen_continuously to some babies then it is an individual-based
experiment.

1.2 Variable

A variable is a characteristic of an individual which takes different values at different
situations i.e. age, height and weight of patients, level of education, marital status,
pulmonary blood flow (PBF), pulmonary blood volume (PBYV), stage of a disease type of
accidents, number of visits to a hospital, gestation age (weeks), smoking status etc. are a
few examples of a variable. The values assumed by these variables are either categorical
or numerical. A numerical variable may further be divided into two types: discrete
variable or continuous variable.

1.2.1 Categorical Variable

A categorical variable is one for which the observations recorded result in a set of
categories. For example, gender is a categorical variable as it falls into two categories
only such as male and female. Recovery from disease is a categorical variable as it may
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be recorded into three categories as, not recovered, partially recovered or completely
recovered. Similarly level of education is a categorical variable. Categorical variable is
often referred to as a qualitative variable.

1.2.2 Numerical Variable

A numerical variable is one for which the observations are recorded in numerical values
such as, age, height, etc. It has further two types viz. discrete and continuous. A
numerical variable is often referred to as a quantitative variable.

(a) Discrete Variable

A variable that is capable of taking a set of discrete numerical values such as 10, 15,
1, 199, etc. but not every possible value between two given numbers, is termed as
discrete variable. The number of heart beats in a fixed time period, number of
successful operations in a hospital; number of cases reported at a casualty ward of a
certain hospital etc. are a few examples of discrete variables.

(b) Continuous Variable

A variable, which is capable of taking every possible value bétween two given
number is termed as a continuous variable. Age, weight, length, etc. are a few
examples of continuous variables.

1.2.3 Dependent and Independent Variables

Variables can further be divided into dependent (response) and an independent (predictor
or explanatory) variable. Some examples, of dependent and independent variables are as
follows:

a. Inastudy of a prevalence of adisease in different age groups, the presence of the
disease may be referred to as a dependent variable, whereas age is an independent
variable.

b. In the study of the effect.of smoking on lungs, smoking is an independent
variable; whereas effect of smoking on the lungs is a dependent variable.

c. In a study of an association between birth weight of a child gestation period
(weeks) and smoking status are possible factors that may influence the birth
weight of a child. Birth weight is dependent variable whereas smoking status and
gestation period are independent variables.

d. In the study of early sitting, smiling and walking of a child, the factors such as
age, gender, birth weight, type of feeding, education of mother and father, birth
order, number of siblings, etc. are independent variables.

e. Inastudy of mental disorders among elderly population; gender, age, family type,
education level, income, family history, etc. may be taken as independent
variables.
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(a) An Interval Scale &

This scale considers as pertinent information not only the relative order of the
measurements as in the ordinal scale but also the size of the interval between
measurements, that is the size of the difference (in a subtraction sense) between two
measurements. We know, for example, that the difference between measurement of
10 and a measurement of 20 is equal to the difference between measurements of 20
and 30. The ability to do this implies the use of a unit distance and a zero point, both
of which are arbitrary but it is not important which measurement is declared to be
zero or which distance is defined to be the unit distance. Temperature has been
measured quite adequately for some time by both the Fahrenheit and Centigrade
scales, which have different origin and scale. The principle of interval measurement is
not violated by a change in scale or location or both. In simple words, we can say that
an interval scale may have an arbitrary zero unit, for example, temperature measured
on a Celsius scale is an interval scale as 25°C = 72°F .and 50°C = 112°F but the
intervals of Celsius scale and Fahrenheit scale are not equal, e.g.425 , 50] = [72, 112].

(b) The Ratio Scale &
Unlike, the interval scale, the ratio scale has an_absolute zero point, for example,
weight measured on metric scale is a ratio scale because

1 ton = 1016 Kg; and 2 tons = 2032 Kg, therefore [1™ 2] = [1016 : 2032]

The ratio scale of measurement is used whendthe order and interval size are important,
and the ratio between two measurements. is meaningful. The ratio scale is appropriate
for measuring crop yields, distances, weights, heights, income, length, time, mass,
volume, etc.

1.4 Types of Statistical Data

An observation recorded or measurement taken in a planned study with some objectives
in mind may resultrinya. letter like "A" type blood or number like "120 mmHg" blood
pressure. A collection of such observations may be termed as data or statistical data.
Data may be classified into two types, viz. Qualitative Data and Quantitative Data.

1.4.1 Qualitative Data é) Elj

When a population is classified into several categories, it is possible to count the number
of individuals in each category. These counts are the qualitative data. A diagnostic test
for pregnancy gives either positive (+) or negative(-) result. Colour of hair, colour of
eyes, gender, non-resident, vaccinated or not, blood types, etc. are few examples of
qualitative data. Observations recorded qualitatively (non-numerical measurements) give
rise to qualitative data.
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1.4.2 Quantitative Data &9

Observations, which are measured quantitatively (numerical measurements) give rise to
quantitative data, such as measurement of serum cholesterol level, systolic blood
pressure, blood urea nitrogen (BUN), etc. are some examples of quantitative data.

Qualtiative Quantitative

S1 Introduction to IBM-SPSS
S1.1 The origins of SPSS

In 1968, Norman H. Nie, C. Hadlai(Tex) Hull and Dale H. Bent, three young men from
disparate professional backgrounds, ‘developed a software system based on the idea of
using statistics to turn raw data into information essential to decision-making.

Nie, a social scientist_and 'Stanford doctoral candidate, represented the target audience
and set the requirements;, Bent; a Stanford University doctoral candidate in operations
research, had the.analysis expertise and designed the SPSS system file structure; and
Hull, who had recently graduated from Stanford with a master of business administration
degree, programmed.

This revolutionary statistical software system was called SPSS, which stood for the
Statistical Package for the Social Sciences. SPSS is renamed as PASW (Predictive
Analytic Soft Ware) in version 18 after owned by IBM in 2009. Starting from version 19
IBM gave the name IBM-SPSS for the statistical package.

Today: IBM-SPSS is recognized as a leader in the predictive analytics market space.
Predictive analytics, combines advanced analytics and decision optimization.
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The symbols used for data according to the measurement level:

Data Type
Measurment level

Time Date String | Numeric
A
£

Scale & 0 % &
[ ]
Ordinal il d&

e | ol
& | &

&

Nominal

S1.2 The Views of IBM-SPSS

SPSS has two views, the Data view and the Variable'view. The Data view displays the
actual data values or defined value labels, while in the Variable view, the variables are
defined with label, measurement levels and other important features.

Many of the features of Data view are similar to the features that are found in spreadsheet
applications. There are, however, several important distinctions:

= Rows are cases. Each row represents a case or an observation. For example, each
individual respondent to a questionnaire is a case.

» Columns are variablesEach column represents a variable or characteristic that
is being measured. For example, each item on a questionnaire is a variable.

S1.3 The Toolbar

DD MR & -1 Ea2TB0® %

Icon Use Function
In addition to files saved in SPSS format, we can open Excel,
E Open file SAS, and Stata, tab-delimited and other files without
P converting the files to an intermediate format or entering data
definition information.
E Save file | !N addition to saving data files in SPSS format, we can save
data from SPSS in a wide variety of external formats
L= Print PRINT displays the values of variables for each case in the
T data.
nr Recall Recall recently used dialogs
0 Undo Undo a user action




Hanif, Ahmad and Abdelfattah 11

Icon Use Function
d Redo Redo a user action
b Go to case | To go to a specific case
L
@ Gc_) to To go to a specific variable
variable
%.) Variables | To see the definition for a specific variable
!ﬁ] Find To search for a specific word or number
—b@ Insert case | To insert case between two cases
% In_sert To insert variable between two variables
variable
Split File splits the data file into separate groups for analysis
= based on the values of one or more grouping variables. If we
m Split file | select multiple grouping variables, cases are grouped by each
variable within categories;of the preceding variable on the
Groups Based On list.
% Weight Weight Cases gives cases different weights (by simulated
cases replication) for statistical analysis.

— Select Select:Cases provides several methods for selecting a subgroup
:ZZE: cases of cases based on criteria that include variables and complex
- expressions. We can also select a random sample of cases.

When labgls have been assigned to the category codes of a
Al Value ; : ) *
categorical variable, these can be displayed by checking Value
1] labels Labels
~ Use This is to define sets for group of variables e.g. to construct a
'*:) variable |, set called "demography" to contain all demographic variables
sets only.
( + Show all | This is to show all variables, not only the pre-defined variable
*\_) variables | sets
a Spell . . .
tg check This for checking the spelling.
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S1.4 The Menu

File Edit View Data Transform Analyze DirectMarketing Graphs Utilities Add-ons  Window Help
We use the file menu to read the data, an existing SPSS data file,

File spreadsheet, text, or database files created by other software.

Ecit Used to perform the standard Windows functions to cut copy &

= paste selections & to find data values.

Vi Used to display gridlines, labels, the status bar & toolbars, & to

1= .
- change the display font.
Dt Used to access the SPSS facilities that make global changes to
| 3
B SPSS data files.
Used to access SPSS facilities that modify or create new variables

E—— in the data file. We can compute new variables, bin values of scale

variables, manipulate date/time variables, & record variables from
this menu.

Used to analyse the SPSS statistical &seporting procedures we
have installed with SPSS. This menu contains all of.the SPSS
Analyze procedures included in the SPSS.base system. EX .frequencies,
cross tabs as well as other descriptive procedures, regression,
analysis of variance & many more,

Direct Marketing | Has some recent applications,in Marketing researches

Used to create charts using the Chart Builder or the Interactive
Graphs Graphics system. Some statistical procedures also optionally
generate charts.

Used to display variable.information, to define & use variable sets
Litilties to control the variables that appear in the Data Editor & in the
variable lists of dialogue boxes.

Used to'add new products of SPSS, not included in SPSS base
system,

Weiuse the Window menu to switch between SPSS windows &
manipulate how they appear on the screen.

Add-onz

Wincowy

Help Used to provide access to the many Help features of SPSS.
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S1.5 The Variable View

MName Type Width Decimals Label Values Missing Columns Align Measure Role
" ‘ Each variable must be assigned a unique name no longer than 64
ame characters.
Type the type or format of the variable( numeric , string, dollar, etc.)
Wiidth the total number of columns( width) of the variable values
]__‘ the number of decimal positions of the variable value (should be set
Decimals | | {5 0 with nominal or ordinal variables)
Lahel Variable label for the variable
“alues Value label for any nominal or ordinal variable
M'—' the values which should be flagged as user-missing and excluded by
1ssiny default from most analysis
Colurmmns | Changes the display width of the columnin the data view.
Alicn Placement of the report relative to its margins. LEFT, CENTER, or
4 RIGHT can be specified in the paréntheses following the keyword.
Measure The level of measurement for the variable
R Used to define the dependent variable (target) and independent
ole . . .
variables (input) to be used automatically :

“w'Input

@ Target
) Both

& None
EH Partition
= Split
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Example S1-1

Suppose for example, we have the following simple questionnaire,

It is clear that:

1. Serial No.: :}

2.Age: | | years
) Mate || Female

4, Pain Ievel:@ Mild G Moderate D Severe

D Pills

(You may choose more than one) D Injection

D Syrup

3. Gender:

5. Preferred medicine:

Variable Measure | Symbol Valle
Serial No Scale (any)
Age Scale @
. 1=male
Gender Nominal & 2—female
1=Mild
Pain level Ordinal E[i 2=Moderate
3=Severe
¥ . . 0=No
Preferred medicine | Nominal é);' 1=Yes

Each variable has a‘column

For the Preferred medicine, each choice is considered a variable, so that it has

three variables (celumns), this is known as "Multiple response”.

Now suppose that the 1st patient's response was as follows:

1. Serial No.;z]

years
(] Male

4. Pain level: Miid

2. Age:

3. Gender: Female

(] Moderate ] Severe
Pills

[: Injection

syrup

5. Preferred medicine:
{You may chose more than one)
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Then the corresponding data should be entered as a raw as follows:

Serial | Age | Gender | Pain level |Pills|Injection |Syrup
1 26 | female Mild Yes No Yes
Now suppose that we have 10 patients with the following responses:
Serial Age Gender Pain level Pills |Injection| Syrup
1 26 female Mild Yes No Yes
2 21 female Moderate Yes No No
3 18 male Moderate No No Yes
4 35 male Mild Yes Yes No
5 41 female Severe Yes Yes Yes
6 22 male Severe Yeées No No
7 22 male Moderate Yes No No
8 31 female Mild Yes Yes No
9 19 male Severe No Yes Yes
10 26 male Severe Yes No No

Variables in Variable View:

DATAEN-~1.5]

Eile  Edt iew Data Iransform  Analvze  Graphs  Uiities Add-ons O Window Help

DHE W o0 LT Wi e 00 Y

| Mame | Type ‘ Width | Dec\mal5| Label | Walues | Missing ‘ Columns | Align ‘ Measure

1 Serial MNumeric i ul Serial Number Mone Maone 8 = Right 69 Scale

2 Age MNumeric 8 1] Age MNone Mone ] = Right & Scale

3 Gender MNumeric 8 0 Gender {1, Male} Mone ] = Right &> Marninal  ~
4 Pain MNumeric ] i) Pain leval {1, Mild} Mone ] = Right & Scale

5 Pills NufAgtic 8 0 Pills {0, Ma}. Nane G = Right all Orcinal

5] Injection MNumetic 8 o Injection {0, Mo} Mone ] = Right &) Mominal

7 Syrup Mumeriz g8 o Syrup {0, Mo} Mone g = Right & Mominal
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Data in Data View:

Showing the values of the numbers
(for Nominal or Ordinal)

{3 *“dafa entry.sav  DataSef] - PASW Staistics Data Editor i *data entry.sav [ SDataSet] - PASW Statistics Data Editor

fie B Ve s Tawim Ao Dredbeddig Gars Uibes Ao Vindw Hop fie Eft Vew Deta Transfm Anelyze DiectMarketng Graphs Uiifes Addons Window Hebp

SHE B BEABEYELE run SHE M~ BLANEE ELT

Showing the numbers

Seral Age | Gender | Pan Fils | Imection | Syup _A‘I Serial Age Gender Pain Fills Injection |~ Symp
T s 2 1 0 a1 s [ i BooFemk MG s Wb Ve
1 1 il 1 1 1 0 0 2 2 21 Female  Moderste Yes N Mo
3 3 18 1 2 0 0 1 3 3 18 Male  Moderate No N Yes
4 4 % 1 1 1 1 0 4 4 ki Male hild Yes Yes Mo
5 5 4 2 3 1 1 1 § 5 41 Femak Sevete Yes Yes ez
[} 1] P/ 1 3 1 0 0 ] ] 22‘ Male Sevare Yes No No
1 i P 1 2 1 0 0 7 7 T Male  Moderate Yes N Mo
E I L 8 i o Ferde M Ve Ve Mo
g § 19 1 3 0 1 1 9 9 Q 19r Wale Severe Na Yes s
10 i 5 1 3 1 0 U[ 10 N 10 _ZEJ_ ﬁer Jerere Yes Mo Mo

1.5 Graphical Presentation of Qualitative Data

The medical scientists while writing their\ papers, or reports always present their
information in the forms of diagrams and graphs.as they are made to summarize the data
and a guide to further analysis. Graphs are used to compare two or more than two sets of
data. Every graph or chart should‘have a title\that should give a clear description of the
diagram or chart. A suitable scale.should be used. The horizontal and vertical axes should
be marked so that the graph‘or chart should be self-explanatory. There are many ways to
present the data by charts and diagrams. We will discuss only commonly used charts or
diagrams. Data involving a'categorical variable measured on a nominal or ordinal scale
can be displayed by (i) Simple‘Bar Charts (ii) Subdivided and Multiple Bar Charts and
(iii) Pie Charts.

When representing the.data graphically, we can use the "Graphs = Chart Builder"

File Edit View Data Transform Analyze Direct Marketing graphslgtilities Add-ons  Window H

.'%} = Lg_] e E %E full Chart Builder... ‘———

1 .
Graphboard Template Chooser...

1.5.1 Bar Charts HHH m m

Bar chart is mainly used for graphical presentation of categorical data. Bar chart is
obtained by plotting categories (of some constant widths) along X-axis and erecting bars
of the heights equal to the corresponding numbers along Y-axis. Usually some fixed gap
is left between two bars. Some non statisticians make the bar diagram for the data which
relate to time, which in fact is not an appropriate chart.

Legacy Dialogs 2
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Example 1.1:
Table 1.1 shows the blood groups of 230 patients visiting in January 1994 in the Blood
Bank of King Fahd Teaching Hospital of the King Faisal University at Al-Khobar.

Table 1.1:
Blood groups of patients
Blood Group At A Bt B- | ABt| ot | O

No. of Patients 35 10 45 5 20 105 10

Draw a suitable diagram for these data.

Solution:

Since the data given in the table are categorical, the most appropriate diagram is Bar
Chart. There are 230 patients falling in 7 categories of various blood groups and each
category is presented by a bar of height equal to the number of patients in that category as
shown in Figure 1.1 presents each.

120

n 100
c

Q0 80
T

9_' 60
o

CT.) 40
o)
S

=} 20
z

0

Blood group
Fig. L:1:xBar chart of blood groups
Example S1-2

To obtain the simplebar chart using IBM-SPSS, we enter the data and follow the
following steps: Graphs=» Chart Builder:

File Edit View Data Transform Analyze DirectMarketing JGraphs Jutilities  Add-ons  Window

T m L%] - g % :'é il Chart Builder... ]

[E Graphboard Terﬂue Chooser
Legacy Dialogs [
BG NP var var va var var var
1 At 35
2 A- 10
3 B+ 45
4 B- 5
5 AB+ 20
6 O+ 105
T O- 10
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We drag or double click the icon

Variables:

Basic Concepts and Data Presentation

, then we move the variables as follows:

Chart preview uses example data

&4 Blood Group [BG]
4 No. of Patients [NP]
-

-~
-
h‘

Mo of Patients

ic
H
i3
<]

[ Category 1
H Category 2

Category 1 Category 2 [More...] /

A Blood Group 5

Once we click on @ we get the following chart:

120

100

Mean No. of Patients

= AL

T
AB+ B B+ o

Blood Group

Once we click on the graph twice, we will change to the “Chart editor” then we can
manipulate the figure (e:g. change the color, change it to 3D, etc...) and then using the

iconﬁ, we can add the numbers.

Mean No. of Patients

Blood Group
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1.5.2 Subdivided and Multiple Bar Charts

If the data is grouped on the basis of two categorical variables then categories of one
variable are displayed by erecting bars of height which corresponds to the values of these
categories and the categories of second variable are displayed by dividing each bar into
parts of size equal to the values of the sub-categories, whereas in multiple bar charts two
bars for each category are constructed side by side.

Example 1.2:

Table 1.2 shows the type of investigation conducted on patients with breast disease for
study 1 and study 2, in a New Bury Hospital of Berkshire from October 1 to December
31, 1989 (study 1) and from April 16 to July 19, 1990 (study-2)

Table 1.2:
Type of investigations by study type
No. Type of Investigation Study 1 | Study2 | Total | %

1 |Mammogram 11 15 26 |23.9
2 |FNAC* 5 8 13 119
3 |FNAC + Mammogram 17 25 42 |38.5
4 |Cyst Aspiration 2 2 4 3.7
5 |Cyst Aspiration + Mammogram 3 6 9 8.3
6 |NIL 8 7 15 137

Total 46 63 109 | 100

*Fine needle aspiration for catalogue
Prepare suitable charts.

Solution (a):

Subdivided Bar Chart - The numbersin each category are added and bar chart is prepared
for each category. Further, each bar is divided into two types of study as shown in
Fig. 1.2.

To obtain the subdivided bar chart using IBM-SPSS, we enter the data and follow the
following steps: Graphs=» Chart Builder:

File Edit View Data Transform Analyze Direct Marketing § Graphs | Utilities Add-ons  Window
e A s Chart Builder...
SH& o w1 e SRS |

Graphboard Template Chooser...

7 Type

Legacy Dialogs 2
No Type 51 Z var var var

1 1 Mammaogram 1 1
2 2 FNAC* 5 1
3 3 FNAC + Mammogram 17 25
4 4 Cyst Aspiration 2 2
5 5|Cyst Aspiration + Mammogram 3

6 6 MIL 8 7
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We drag or double click the icon , then we move the variables as follows:

1=} Chart Builder
Variables: Chart preview uses example data
&) Mo Stach: set calar

&a Type of Investigation...
& Study 1[51]
Study 2 [S2
& sty 2182
-

/]

an]

|
o
Ay
5|
Z
|
|

|

Study 1 [Mean]

¥ Category 1
 Category 2

i % Twpe of Inwvestigation

H oL L L
e Category 1 Category 2 [More..]

Once we click on @ we get the following chart:

50

40

30

Value

20

10

Mammeogram  FNAC* FMAC + Cyst Cyst
Mammogram Aspiration Aspiration +
Mammaogram

Type of Investigation

¥

L

Study 1
B Study 2

Fig. 1.2: Subdivided bar chart for Types of investigations performed

Solution (b):

Multiple Bar Chart - In this diagram, same data is used and two bars for each type of
investigations of both studies are placed side by side as shown in Figure 1.3.

The advantage of the multiple bar chart is that comparison can be made easily. If there
could be more than two studies, more than two bars are created side by side.

To obtain the subdivided bar chart using IBM-SPSS, we enter the data and follow the

following steps: Graphs=» Chart Builder:
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File Edit View Data Transform Analyze Direct Marketing gﬁliﬁes Add-ons  Window
=1 e~ [ & = Wb crarBuicer
H = EI Graphboard Template Chooser...
|7:Type | Legacy Dialogs 3
| No | Type | st ] seq——var—p—var——var—

1 1 Mammogram " 1

2 2 FNAC* 5 1

3 3 FNAC + Mammogram 17 25

4 4 Cyst Aspiration 2 2

5 5 Cyst Aspiration + Mammogram 3 6

6 6 MNIL 8 7

, then we move

We drag or double click the icon

Variables:

the variables as follows:

Chart preview uses example d

& No

&4 Type of Investigation

Mo categories (scak
wariabie)

FNAC*
Mammogram

Cyst Cyst
Aspiration Aspiration +
Mammogram

Type of Investigation

M study 1
I Study 2

FNAC +  Mammogram NIL

Fig. 1.3: Multiple bar chart for Types of investigations performed

21



22 Basic Concepts and Data Presentation

1.5.3 Pie Chart@

Pie chart is a pictorial presentation of the data. If a set of observation has K categories, it
is represented by pies i.e. K sectors in a circle. The angle of the i" sector at the center of
the circle, denoted by A, is proportional to the number in that category. It is given by:

~_ Valueof the i" category
i

= ~—x360%i=1,2,3,....,K
Total value of all categories

This is explained by the following example.

Example 1.3:
Table 1.3 shows the reported cases of AIDs in the 5 continents as of 17 Jan. 1992
(WHO).

Table 1.3:

Number of cases of AIDs by continents
Continents No. of Cases
America 252,977
Africa 129,066
Europe 60,195
Oceanic 3,189
Asia 1,254

Total 446,681

Prepare a suitable chart for the given data.

Solution:

One can say that this data may be represented by bar charts, the answer is no, as the
difference between thelminimum value and maximum value is so much (more than 1:10)
that bar charts for these ‘data cannot be presented on normal paper. Besides we may be
interested in the proportional share of each continent ratio than actual numbers. Therefore
we look for another solution. The appropriate chart for this type of data is, Pie Chart that
is shown in Fig. 1.4.

The angles and percentages are calculated as follows:

Table 1.4:
Computation of AIDS case by continent for Pie Diagram
Continents | No. of Cases of AIDS | Aj | Cumulative Aj
America 252977 204° 204°
Africa 129066 104° 308°
Europe 60195 48° 356°
Oceanic 3189 3° 359°
Asia 1254 1° 360°
Total 446681 360°
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252,977
446,681

_ 129,066
446,681

Europe Continent = Ag= 60,195
446,681

X 360° = 204°

American Continent = A, =

X 360° = 104°

African Continent = A,

X 360° = 48°

Australia Continent = A, = 3189 x 360° = 3°
446,681

x 360° =1°

Asia Continent = Ag = 1,254
446,681

America

]

56.6%

f 0.7% 4—Australia

==
\\13-5% 28.9%
: 0
Eurg 0.3%

pe Africa
Asia

Fig. 1.4: AIDs cases in different continents

Note that it will be convenient to draw the chart if you calculate cumulative Aj. If one is
using computer then there is no need of this column.
Example S1-3

To obtain the pie chart using IBM-SPSS, we enter the data and follow the following
steps: Graphs=» Chart Builder:
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File Edit View Data Transform Analyze Direct Marketing

SHE @ = « B,
|

fw, tilittes  Add-ons  Window He

Legacy Dialogs 3

|Continents ” Mo " var " var ” —var T var T Var T va
1 America 262977
2 Africa 129066
3 Europe 60195
4 Oceanic 3189
5 Asia 1264

We drag or double click the icon , then we move the variables as follows:

Variables: Chart preview uses example dats
&a Continents [Contine.
& No. of Cases [Nao]

MNo. of Cazes

No categories (scake ||| A DT
variabia)

Once we click on E

Continents

M Africa
M america
O asia

M Europe
O oceanic

Once we click on the graph twice, we will change to the “Chart editor” then using the

icon @

==, we can add the percentages.
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1.6 Summarization of Quantitative Data

In this section construction of grouping frequencies into tables, is explained. Relative
frequency, and relative cumulative frequency have also been defined and are calculated.
Their uses have also been discussed.

1.6.1 Frequency Table and Frequency Distribution

Frequency table is a two-column tabular presentation of the data. First column shows the
different values of variable and second column the corresponding frequencies. To explain
this, suppose we take 120 students from King Faisal University and record their weights
to the nearest Kg.

Table 1.5:
Weights of 120 students in Kg
67 63 57 85 67 60 75 55 67 068 51 54
45 57 64 68 67 86 63 60 98 83 76 70
56 50 74 74 67 77 61 85 ®6 66 60 61
58 56 56 57 60 60 63 64 85 80 75 75
57 58 59 58 58 61 62 @1, 74 720 57 73
61 8 64 91 64 64 61 62 .69 57 81 66
65 81 82 76 77 81 76 66 62 63 62 63
60 60 72 72 79 70170, 58 w78 58 71 76
60 60 65 65 66 65 7373 71 73 66 73
67 68 69 68 73468 74 68 67 76 52 79

This is known as raw or ungrouped data. As'the data is presented, it is difficult to
understand how the weights of.students are distributed. Only after some search, we can
find that the minimum valug is 45 and maximum value is 98. One can say that the weight
of the 120 students of this{University varies from 45 Kg to 98 Kg. Therefore, for better
understanding we need'some more manipulation of raw data.

In order to get a.clear picture of the data, the data are presented in a condensed form,
which is only possible if'the data are grouped into a number of classes. If someone is
working on the statistical packages, like SPSS or SAS he can directly condense the data
into sufficient number ofigroups or classes.

How many groups should be there and how to make groupings? These two questions are
very common for medical scientists. Let us deal with these, one by one.

Before grouping the data, it is important to decide upon the number of groups to be made.
As a general rule, the number of groups should neither be too small so that all the
information is lost nor should be so large that no useful summarization is obtained.
Usually the number of groups is taken from 5 to 15 and preferably from 5 to 10.

Regarding second question, let K be the number of groups to be made, d the width of
each of the group. The number K may be obtained by using Sturge's Rule as:

K=1+3.322(log,,n),
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where d = R/K, and R = maximum - minimum value of the data, n is the total number of
observations. Smallest value in the data set may be taken as the lower limit of the first
group. If, however, it is not an integer the next higher integer value is selected. Note that
this formula provides a guideline only and the value of K thus obtained, can be increased
or decreased, for better presentation. In the above data, maximum value is 98 and
minimum value is 45, thus R = 98 - 45 =53, n = 120.

Using the Sturge's Rule
K=1+3.322 (log10120) = 1 + 3.322 (2.079) = 7.906 ~ 8

R =53, then d (width) = % =6.6~7
Most statisticians prefer to group the data starting with a number with a multiple of 2 or 5

or 10 as the class may be.

Select 45 as the lower of the class limit and make the following groupings called class
intervals:

45 to 51, 52 to 58, 59 to 65, 66 to 72, 73 to 79, 80 to 86, 87.t0 93 and 94 to 100.

Table 1.6:
Distribution of studentsiby weights in Kg.

Weights (class-limits/intervals) 4 Number of students
45-51 3
52 - 58 18
59 - 65 33
66 - 72 29
73-79 23
80 - 86 11
87:=93 2
94 - 100 1
Total 120

This is known as grouped data. This table is known as frequency table or frequency
distribution. To make frequency distribution by using SPSS package proceed as follows:

(i) Enter raw data
(if) Click tool and then click recode, and click recode into different variable

(iif) Bring the original variable to the right hand side and create a new variable
(say, x) and change variable, finally

(iv) Click old and new variable, recode data according to the groups you want to
make.

Note that, the class intervals given in table 1.6 are called discrete class intervals. If
someone is interested to present this data in form of appropriate diagram then one cannot,
as the groups are discrete. Therefore continuous groups are must. To make it continous
see the upper limit of the first group and lower limit of the second group, find their
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difference and divide by 2. Add this number in the upper limit of the group and subtract
from the lower limit of the group i.e. 45 — 0.5 = 44.5 and 51 + 0.5 = 51.5. Now these
class limits will be called class boundries The class limits of table 1.6 is rewritten as class
boundaries in table 1.7 (Column 1).

Table 1.7:
Distribution of Students by Weights in Kg. Percentage
Number Relative Relative
Class of frequencies | Percentage Cumulative Cumulative
Boundaries students or frequencies frequencies
Proportion
() (&) (©) 4 ©) (6)
445-515 3 0.025 25 3 0.025
51.5-58.5 18 0.150 15.0 3+18=21 0.175
58.5-65.5 33 0.275 27.5 21+33=54 0.450
65.5-72.5 29 0.242 24.2 54 +29 =83 0.692
72.5-79.5 23 0.191 19.1 83+ 23= 106 0.883
79.5-86.5 11 0.092 9.2 106, +41 =117 0.975
86.5-93.5 2 0.017 1.7 117+2 =419 0.995
93.5 - 100.5 1 0.008 0.8 119 +1=120 1.000
Total 120 1

If we do not know as to how many grouping there should,be by using the given formula,
we can use the following rule to calculate class.interval:

Find the maximum and minimum values from the data. Calculate the range i.e. difference
between maximum and minimum<alue./Divide the difference by the number of groups
one likes to make. For example,.in the above data maximum value is 98 and minimum
value is 45, the range is 98 — 45 = 53! Suppose we like to make 10 groups then
53/10 = 5.3, roughly the groups will'be made with an interval of 5 or 6. We shall prefer
the interval to be 5

1.6.2 Relative Frequency

Relative frequency ‘of. a class interval is proportion of the class frequency relative to the
total frequencies. Relative frequencies are in column (3), Table 1.7. The purpose
ofcalculating the relative frequencies is to obtain the idea of proportion, and percentage
which are, in fact, useful to understand the basic concept of different types of rates, ratios
and consequently the idea of probability. From the Table 1.7, we can immediately say that
there are about 27.5% students whose weight lies in the weight group 58.5 - 65.5 Kg.

1.6.3 Cumulative Frequency

The cumulative class frequency of class interval is the total number of observations
having values less than the upper limit of that class interval. One of the advantages of the
construction of cumulative frequency table is that, one gets immediately the picture, how
many students have weight less than or equal to a certain point. For example there are
117 students whose weights are less than or equal to 86.5 Kg. The cumulative frequencies
are given in column 5 of Table 1.7.
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1.6.4 Relative Cumulative Frequency

The cumulative frequency of a class interval divided by the total frequencies is called
relative cumulative frequency. It is generally expressed in the form of percentages and is
known as percentage cumulative frequency. One of its advantages is that one can
immediately get an idea, of the percentage of the students whose weight is less than or
equal to a certain point. For example 69.2% students have weight less than or equal to
72.5 Kg. In other words one can say that about 31% students have weight above 72.5 Kg.
The relative cumulative frequencies are given in column (6), Table 1.7.

1.7 Graphical Presentation of Quantitative Data

A grouped data involving a quantitative variable may be presented by various graphs.
Some commonly used graphs are histogram, frequency polygon, frequency curve and
cumulative frequency curve.

Example S1-4

We can use the IBM-SPSS, to change the raw date into a frequency table, then to obtain
the frequency and cumulative table, through the following steps:
File Edit View Data | Transform Iﬁnalyze DirectMarketing  Graphs
== I L%] E =] gomﬁe\iariable...
@ CountValueswithin€ases...

Shift Values...
Weights< | Iy )
% &g S?? Q Recode into'Same Variables...
2 T 4 Eecmginto Different Variables...
3 4 5 ] Alitomatic Recode .. '
4 | | 5d | [} Visual Binning...
5 _||__ &7 [¥2 Optimal Binning...
_5 A 61 Prepare Data for Modeling 3
[N 69 B RankCases..
2 =1 E &£ Date and Time Wizard. ..
= . [ Create Time Series. .
1 531 M Replace Missing Values...
12 57 @ Random Number Generators...
13 50 K
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Mumeric Variable -= Output Variable:

rOutput Variable——————

Mame:

Weughts_i

Label:

rOld Value
@ value:

© system-missing

@ System-missing CiCopy old value(s)

© System- or user-missing
@ Range:
thraugh

© Range, LOWEST through value:

@ Range, value through H

Outputvariables are strings ~ /idih 2

© All othervalues . Convert numeric strings to numbers (5-=5)

[Old Valug New Value
© value: @ value: ‘

© System-missing

© System-missing @ Copy old value(s)
© System- or user-missing

0Old —= New:
Elians A5t 51— 1

L ] s2tuse -2

through 59thru 65— 3

. 73thru79 -5

@ Range, LOWEST through value: 80 thru 86— 6
87thru93 —=7

© Rangg, value through HIGHEST. QA thn 100 = 8

Outputvariables are strings ~ /1din: 2

@ All other values M Convert numeric strings to numbers (5->5)

(ot s _ens

29
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Now, in the “Variable View” we use the Values” to define the “Value Lables”

rValue Labels

Label: |45-51,

rValue Label

Lavel: [94-100]

1="45-51"

Then we can obtali

Analyze-> Descriptive Statistics 2 Frequencies,

IFIe Edit View Data Transform irect Marketing  Graphs  Utiliies  Add-ons W

@ HS - \~ | Repons ] £
m | Descriptives... |
| Weiylts || Weights Compare Means 2 A Explore...
1 67 General Linear Model 2 E ;rosstabs
2 45 Generalized Linear Models » -
“ 56 Mixed Models 3 Ratio..
¢ 58 Correlate N [ PP Plots ..
5 57 S > Bl oaPiots...
6 61 o o
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Once we click on , we get the following table:

= Frequencies
Variable(s):
f Weights ¢5 class-limitsfinterval...

[ Display frequency tables

[ OK ‘\‘"L-Easte ][ Reset ][Cancel][ Help ]

Charts_..

Format...

Bootstrap...

class-limits/intervals

Cumulative
Frequency | Percent [fWalid Percent Percent

Walid 45-81 3 2.4 2.5 24
52-58 18 15.0 15.0 17.5
A8-65 33 275 27 A 450
66-72 29 242 2472 69.2
¥3-80 23 19.2 19.2 883
80-86 N 8.2 9.2 897.5
ar-93 2 1.7 1.7 992
94-100 1 .8 B 100.0
Total 120 100.0 100.0

1.7.1 Histogram

il

31

Histogram is a graphical display of a frequency distribution and is obtained by plotting
the class intervals along the X-axis and frequencies along the Y-axis. On each class
interval (taken as width), we draw adjacent vertical bars of the heights equal to the
corresponding frequencies. The graph thus obtained is called histogram. Histogram is
constructed by using the data given in Table 1.7 and is shown in Figurel.5.

1.7.2 Frequency Polygon

M

and Frequency Curve.-

Frequency Polygon is a graph obtained by joining by straight lines the mid points of the
tops of the bars of the histogram. Frequency curve is a smoothed curve, which does not
necessarily pass through the mid points like frequency polygon. The ends of the graph
drawn in this way do not meet the X-axis, but remain open ended. This curve is very
important as analysis of the data depends on the shape of the curve drawn. Frequency
curve is plotted by using the data given in Table 1.7 and is shown in Fig.1.5.
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To draw histogram we proceed as follows:

i.  Enter the mid-points of groups in the first column

ii. Enter the frequencies in the second column

iii. On data menu, click weight cases

iv. Bring the frequency to the right hand side in frequency variable and click Ok
v. On graphs menu, click Histogram

Note: the histogram is ready but may not be according to your requirements

vi. Click at any point on X-axis of the diagram a new histogram will appear, click
any point on the X-axis

vii. Click custom and then click define

viii. Adjust interval and interval width as per your data

iX. Histogram can be made directly from the raw data. For this purpose

X. Enter the required data

xi. Click graph and click histogram, then follow steps vi-viii

40

30 1

20 1

10 A
Std. Dev= 9.55
Mean = 67.9

0 N = 120.00

48.0 55.0 62.0 69.0 76.0 83.0 90.0 97.0

Fig. 1.5: Histogram frequency polygon and frequency curve

Example S1-5

To obtain the Histogram (automatically) using IBM-SPSS, we enter the data and follow
the following steps: Graphs=» Chart Builder:
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Add-ons  Window H

File Edit View Data Transform Analyze Direct Marketing | Utilities

SHE M e~ B
|

Graphs |
il hart Builder...

Graphboard Template Chooser...

Legacy Dialogs

I Weights || Weights_i || var || var L - L |
1 67 66-72
2 45 45-51
3 56 52-68
A £ £9.68

We drag or double click the icon m_lﬂ , then we move the variable as follows:

@R Chart Builder
Variables: Chart preview uses example d[
& Weights

&b class-limitsfinterval...

Histogram

y Weights ‘

Nocategaries (scak
variabie

Once we click on @ we get the following chart:

Mean = 67.62
Std. Dev. = 9488
30.0 N=120
20.0 —
=
o
c
[
3
T —
@
4
w
10.0
00 T T T T
40 60 80 100

Weights
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Also, we can obtain the Histogram (automatically) along with the Normal curve using
IBM-SPSS, through the following alternative steps:

Analyze—> Descriptive Statistics 2 Frequencies,

[ File Edt View Data Transform

SEHE @M o
|

irect Marketing

Add-ons

Graphs  Utilities w

eports

Compare Means

[ weights |  Weight
1 67
2 45
3 56
4 58
5 57

61

Variable(s):

Mixed Models
Correlate

Reagression

& class-limitsfinterval...

& Weights

Display frequency tables

Frequency

Histogram

General Linear Model

Generalized Linear Models »

e

3
3

[ Ratio...
[ P-P Plots ..

Show normal curve on histogram

rChart Value

@ Freguencies @ Percentages

=
=}
1

Mean = 67 63
Std. Dev. = 9.488
=120

T
80

Weights
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1.7.3 Types of Frequency Curve

Frequency curves are generally of two types; (i) symmetrical and (ii) asymmetrical or
skewed. Asymmetrical or skewed curve is either positively skewed or negatively skewed.
In symmetrical curves, observations are equidistant from the central maximum.

Normal curve (to be discussed later) is an important example of this type. In
asymmetrical curves, the tails of the curves is longer on one side than the other side. If
the longer tail is to the right, the curve is said to be positively skewed. If the longer tail is
to the left, the curve is said to be negatively skewed.

ANYANYAN

(i) Symmetrical (i) Positively Skewed (1ii) Negatively Skewed

Fig. 1.6: Symmetrical and Asymmetrical curves
1.7.4 Cumulative Frequency Curve

Cumulative frequency curve is a graph obtained by plotting the upper limits on X-axis
and the corresponding cumulative frequencies along [Y-axis and joining the points by
freehand. The graph of cumulative frequency using, the data given in Table 1.7 is shown
in Figure 1.7.

140

120 o

[N
o
=]

80

60 «

Number. of students

40 1

20 «

515 58.5 65.5 725 79.5 86.5 93.5 100.5

Weights of Students
Fig. 1.7: Cumulative frequency curve
If we use SPSS package we proceed as follow:

1. Enter the upper limits of group in one column
2. Enter cumulative frequencies in the second column
3. Follow the guidelines given on page 32.
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1.8 Historigram: Graphical Presentation of Data Relating to Time

Sometimes data is relating to time. People without going into details of the nature of data
draw either bar diagram or pie charts for this type of data. In fact bar diagram or pie
charts are not appropriate. The line diagram is drawn for the data relating to time. This
graph is known as Historigram. One can see the trend of the data and may guess which
type of analysis for this type of data.

Below are the data relating to number of students (males and females) admitted in King
Faisal University from 1975-1976 to 1993-1994 in medical college. We are interested to
present this data in an appropriate diagram.

Example 1.4:
Table 1.8 shows the data relating to admission of students in King Faisal University.
Draw a suitable graph for this data.

Table 1.8:
Distribution of students by gender admitted in King Faisal University
from 1975 to 1994

Year Male Female Total
1975-76 170 0 170
1976-77 316 35 351
1977-78 537 77 614
1978-79 702 170 872
1979-80 910 248 1158
1980-81 1096 334 1430
1981-82 1269 544 1813
1982-83 1439 770 2209
1983-84 1577 1018 2595
1984-85 1876 1371 3247
1985-86 1898 1608 3506
1986-87 2088 1760 3848
1987-88 2146 1880 4026
1988-89 2234 2126 4360
1989-90 2226 2371 4597
1990-91 2259 2725 4984
1991-92 2430 2704 5134
1992-93 2681 3000 5681
1993-94 3145 3120 6265

Solution:

Fig (1.8) shows time series graphs of years and students by gender This Fig is given on

next page.
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4000
3000 A
2000 A
1000
MALE
(o} FEMAL
SERRSEFS I 835 88338 Fa
LerEReedd82sebEa88: 8.8
D OO OO OO OO OO OO O O OO OO OO OO OO OO OO O O O
i i ~— ~ o - - i ~— i - - ~— i —
Years
Fig. 1.8: Number of students admitted in King Faisal University
Example S1-6
For the data given in example S1-1, represent each of the age, gender and pain level using
IBM-SPSS:
Variable | Measure<=Symbol | Value Graph
Age Scale ﬁ Histogram
Gender Nominal 9 L=male Pie
2 | 2=female
1=Mild
Pain level | Ordinal E[i 2=Moderate Bar
3=Severe

We have two ways for representing data, either through the "Graphs - Chart Builder"

File

Edit View Data

Transform  Analyze Direct Marketing

Qraphslgﬁlities Add-ons  Window H

_—

._l

e O -~ Bk

fill Chart Builder.. ‘ ——

Lﬁ Graphboard Template Chooser...

Legacy Dialogs

Or, we can Graph using Descriptive as follows:

(Analyze-> Descriptive Statistics> Frequencies)
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File [Edit View Data Transform nalyze irect Marketing Graphs  Utiites  Add-ons  Window  Help
1
i o B Re} »
= H (= [0y -
: — Descriptive Statistics
[15: | . Tables ¥
| Serial " Agd Compare Means +
1 1 General Linear Model 3
2 2 Generalized Linear Models
3 3 Mixed Model 2
4 4 Correlate 3
Regression 3
: 5 i (S

For the scale variable "Age":
Move the "Age" into variable,
Push on "Charts"
Select "Histogram"

Frequencies |Z|

Variable(s):

|¢® serial Number [Serian ||

& Age[Age] mm mem mm ._._._.__*

&) Gender [Gender]

il Pain level [Pain]
&5 Pills [Pils]

& Injection [injection]
&b Syrup [Syrup]

(

[+ Display frequency tables

Push on ™ E then " E to get:

Histogram

B I Wean = 26.1
Std. Dev. = 7.48
=10

¥
I

Frequency
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For the Nominal variable "Gender":
Move the "Gender" into variable,
Push on "Charts"

Select "Pie charts"

Frequencies: Charts |X|

Frequencies |z|

Variable(s): [ Chart Type

& Serial Number [Serial © None
& Age [Age] © Bar charts
& Gender [Gender] e e e fom -
£l Pain level [Pain]
& Pills [Pils] Q Histograms:
&) Injection [Injection] . Show normal curve on histogram
&b Syrup [Syrup)

- Chart Values

@ vencies ©) Percentages

[+l Display frequency tables

e (e () e Lesren e )
Pushon " @ then " E to get:

Gender
[T
WFesss

Frequency P

Male G
Female 40.
Total 10

For the ordinal variable,"Pain level":
Move the "pain™ into variable,

Push on "Charts"

Select "Bar charts"
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Frequencies: Charts ['5__<|

ek | satstcs. | o

& Serial Number [Serial] = None
& agelage] | Charts.._|
Sl == =P (romat. ) P charts
& Pils [Pils] Bod:shap © Histograms:
& Injection [injection] E
&5 Syrup [Syrup]

rChart Values

® Frequencies Percentages

E Display frequency tables

) o (et (cmont) (e ) (contpue) _cancet ) _sier )

o
Push on " E"'"'""e" then " @ to get:
Pain evel
¥
Frequency | Percent . W
Mild 3 30.0 i
a9
Moderate 3 30.0 £
Severe 4 40.0
Total 10 100.0 .
Ilt I’Gﬂ:lae Sewma

Pain level

1.9 Descriptive Statistics

After the graphical presentation and summarization of statistical data, the next step is to
proceed to different measures for statistical analysis. The methods of statistical analysis
for qualitative and quantitative data are different. Proportion, percentage, ratio, indices,
ranks, association, test of independence, etc. are possible methods of statistical analyses
for qualitative data whereas percentage, indices, averages, variations, correlation,
regression, analysis of variance, etc. are possible methods of analysis for quantitative
data. For qualitative data, we shall describe the methods wherever it is necessary but we
begin with quantitative data analysis.

1.9.1 Rates

Suppose, in a specified population, n events occur during a fixed period of time. If n(A)
of these events possess some characteristic, say A, then rate of the event having the
characteristic A is given by
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R(A) = @ . base (K)

per base (K) unit, where base is usually taken as 1,100,1000, or 100000, etc.
* If base is 1 then R(A) becomes proportion of A as given in column 3 of Table 1.6.
* If base is 100 then R(A) becomes percentage of A as given in column 4 of Table 1.6.

* In some of the cases base is either 100 or 1000 or 100000, like the death rate, birth
rate. For very small proportions such as cancer patients base may be 10,000 or even
100,000.

(i) Prevalence Rate (P.R.)

Prevalence rate of an attribute or a disease in any group, is the proportion of individuals
in the groups having that attribute at one point in time. Thisis also known a prevalence
ratio.

Number of individuals with disease at a given time 4
Total number of individuals exp osed to thedisease

(i) Incidence Rate (1.R.)
The risk of developing the disease over a period .of time is called incidence rate and is
calculated as:

_ Number of new cases of disease overa period of time 9
Populationatrisk of developing thedisease

LR K

(iiif) Crude Death Rate (CDR)

_ Totaldeaths during.a calander year
Total population on mid year July 01

K is either 1000.or 100000.
(iv) Specific Death Rate (SDR)

Total deaths in specific sub - group during a calander year
Total population in thespecific group on July 01

SDR =

(v) Crude Birth Rate (CBR)

CBR = Totalllveblrthis durlng_theyear y
Total populaiton on july 01

(vi) Maternal Mortality Rate (MMR)

Deaths from all puerperal causes during a year
Total live births during the year

MMR = x K
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The preferred denominator for this rate is the number of pregnant women during the year
but it is difficult to determine. A death from a puerperal is a death that can be ascribed to
some phase of child bearing i.e. pregnancy or puerperal.

(vii) Infant Mortality Rate (IMR)

Deaths under one year of age during a year
Total of livebirths during the year

IMR = x K

(viii) Neo-natal Mortality Rate(NNMR)

Deaths from 0 to 28days during a year < K
Totalof livebirths during the year

NNMR

(ix) Fetal Death Rate (FDR)

_ Totalfetal deaths during a year y

FDR = — -
Totaldeliveries during the year

K

A fetal death is defined as a product of conception that.shows'no sign of life after
complete birth.

(x) Pre-Natal Mortality Rate (PMR)

Total fetal deaths of 20(24) weeks ormore+ Infant deaths under 7 days 8
Total births'(alive and dead)

PMR= K

(xi) General Fertility Rate (GER)

GER — Total live birth to women aged 15—-44 years N
Total population of women aged 15—44 years

(xii) Body Mass lndex (Quetelet’s Index)

Weight of a person

BMI = 5
(Height of the person)

(xiii) Ponderal Index
_ Height
(Weight)'®
Note: Units for weight and height are arbitrarily assigned.
1.9.2 Ratios

Suppose in a specific population, n events occur during a fixed period of time and n(A) of
these events possess some characteristic "A" and n - n(A) of these events do not possess
this characteristic, then the ratio of these events possessing the characteristic "A" is given
as
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Ratio (A) = M
n—n(A)
For example, gender ratio, which is commonly used, is defined as

Number of females
Number of males

Gender Ratio =

Some more examples are:
(i) Fetal Death Ratio

_ Totalnumber of fetal deaths during a year

FDR = —— -
T otal number of livebirths during a year

(ii) Immaturity Ratio

_ Number of livebirthsunder 2500grams duringayear,
T otalnumber of livebirthsduring ayear

IR

(iii) Case-Fatality Ratio

_ Totalnumber of deaths due todisease

CFR = y
T otalnumber of cases due todisease

1.9.3 Odds Ratio

Suppose the number of observations possessing a characteristic "A" say case and control
and is further classified accarding to another factor "B" called diseaseed and not diseased
and we make a cross tabulation thenthese information may be presented 2 x 2 table also
called contingency table as:

Table 1.9:
2 x 2table'for.case-control versus disease-non-disease

Characteristics
Case Control
A A Total
Disease B a b a+b
Non-disease B c d c+d
Total a+c b+d a+b+c+d
A = exposed A = non-exposed

B = disease (case) B = no disease (control)

then the rate of diseased persons among exposed = 3 The rate of non-diseased
a+c
persons among exposed persons s 3 _ Then the rate of exposure

a+cC
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c —

among exposed case is 2 + _© = £ Similarly the rate of exposure among controls

a+cC a+cC a
_ b d _b
b+d b+d d’
The odds ratio is the ratio of these odds and is given by
OR = E R E = ﬁ
c d bc

If any cell is zero, the odd ratios can be calculated by adding % to each cell.The details

of odd ratio with its statistical meaning attached to it along with its statistical significance
will be discussed in Chapter 7.

Example 1.5:
In a case-control study, let us take artificial example of alcohol and liver cirrhosis. The
data are given table 1.10.

Table 1.10:
Liver cirrhosis
Case Control
Alcohol LC c Total
A 400 a 333 b 733
A 100 c 167 d 267
Total 500 500 1000

LC = liver cirrhosis LC = naliver cirrhosis

A = alcohol drinking A =no alcohol drinking

The different indices are calculated as:

i) Odds of alcohol.among cases = 400 /100 _ 400 _a
500 500 100 ¢
ii) Odds of alcohol among controls —ﬁ/167 33 _b
500 500 167 d
iii) Odd ratio (OR) = 2. = 20 _ 400167 _, g
b/d bc 333x100

Example 1.6:
Consider the following example of the relationship between smoking and lung cancer in a
case-control study:

Cases | Controls
Smokers 145 107
Non- or ex-smokers 55 93

Calculate the odds ratio and give its meaning.
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Solution:

. _A/B _ 145/107 _
0dds ratio = o= 5503 = 2.29

The value 2.29 can be interpreted as an estimate of the ratio of the odds, in the
population, of smoker developing lung cancer to the odds of a non-smoker developing
this disease.

In other words we can say that a smoker has 2.29 times more risk of developing lung
cancer, than a non-smoker.

Example S1-7

Consider the following example of the relationship between smoking and lung cancer in a
case-control study:

Cases | Controls
Smokers 145 107
Non- or ex-smokers | 55 93

Calculate the odds ratio and interpret its meaning.
Solution: The data in the IBM-SPSS file is as.follows:

The variable view is:

T34 “Chisquare test of independence.sav [DataSet?] - I8M SPSS Statistics Data EdifoR w o ||

File Edit View Data Transform Analyze DirectMarketing Graphs Ulilities Add-ans, Window Help

ECE R L B Y X

Name Type Width | Decimals Label J_i\/a\uaa Missing Columns Align Measure Role
1 smoking Numeric 8 ‘U Smoking type I{ﬂ. Heavy s MNone 8 = Right &5 Mominal “ Input
2 cancer Numeric 8 0 Canger status. {1, Having lu__ None 8 = Right & Nominal N Input

We define the values ofithe variable as follows

—
ﬁ*’" ¥a|ue A @
’—Value Labels=

Label: ‘ |

1 ="8mokers”
2 ="Non- or ex-smokers”
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m\l'alue Labels @
Value Labels
Label | |
1="Case”
2 ="Contral”

The Data are entered in two columns. The 1st column is for smoking, in which the value
"1" which is corresponding to "Smokers" is entered 252 times, the value "2", which is
corresponding to "Non — or-ex-smokers" is entered 148 times:

The 2nd column is for disease, in which the value "1" which is‘corresponding to "case"
and the value "2" which is corresponding to "control”, is entered .as follows: "1" 145
times than "2" 105 times, then "1" 55 times than "2'193 times. A part of the data view is:

%5 odds ratio sav [DataSet1] - IBM W

File Edit View Data, Transform___An

= H &\ e -

_r.ﬁiﬁ —" disease
4 JJ_ y A

2
> 4
<

ala ala ala aa

1
1
1
1
1
1
1

W

To calculate the odds ratio, we follow the following steps:

Analyze-> Descriptive Statistics> Crosstabs

@ odds ratio.sav [DataSetl] - IBM SPSS Statistics Data Editor
File Edit View Data Transform @Mﬂﬂmﬂm_ﬂmf Utilities  Add-ons Wi

== Reports 5
SHE @M « — O
| B L— o Descriptive Statistics PI @Frequencies...

Tables " | [Z] Descriptives...

. - 2 r
smoking disease COMEZEMEERS A Explore.. r

1 1 General Linear Model »

_ ) Crosstabs...
2 1 Generalized Linear Models » -

Ratio...
3 1 Mixed Models 2 R
P-P Plots...

4 1 Caorrelate 2 E— o5
5 1 Rearession y | Eslo-0Piots..
= . I |
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Then we will get the following windows, in which we will move the variable "smoke" to
"Row" and the variable "disease" to "Columns". Then, we push on Statistics, as follows:

@ Crosstabs

Rowi(s)

&5 smoking

& diseas
%h

¢
Y

~
-~
ﬁ-

o Col :
~ , Column(s)

S

Layer 1 of 1

]

] Display clustered bar charts

[] Suppress tables

Y-

:] Reset || Cancel Help‘

8

Exact.

Statistics

!‘

cells..|

Format...

Bootstrap...

We mark on "Cochran's and Mantel-Haenszel statistics", then we push on continue, as
shown in the following figure:

¥4 Crosstabs: Statistics w

[] Chi-square

MNominalzs> B

|| Contingency.coefficient

[Z'Phivand Cramer's V
\ "] Lambda

[ LD Uncertainty coefficient

~Mominal bydnterval
| [ Eta

| BN

[@) Correlations

RGQrdinal
7] Gamma
[] Somers' d
[] Kendall's tau-b
[] Kendall's tau-c

[C] Kappa
[T Risk
[] MchNemar

Cochran's and Mantel-Haenszel statistics I
t common odds ratio equals: 4

|C°"“‘Di;} Cancel Help

Now Click on @ to get the following results:

disease
Case Control Total
smoking  Smaokers 145 107 252
Mon- or ex-smaokers 1] a3 148
Total 200 200 400
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Mantel-Haenszel Common Odds Ratio Estimate

e

Estimate @1}
In{Estimate) 829
Std. Error of In(Estimate) 213
Asymp. Sig. (2-sided) 000
Asymp. 95% Confidence Common Odds Ratio Lower Bound 1.511
Interval Upper Bound 3.476
In(Common Odds Ratio) Lower Bound 43
Upper Bound 1.246

The Mantel-Haenszel commaon odds ratio estimate is asymptaotically normally
distributed under the common odds ratio of 1.000 assumption. So is the natural
log ofthe estimate.

The first table gives the observed values. The second table gives,the odds ratio.

Note: The table also gives the 95% confidence value, withdower value equals 1.511 and
upper value equals 3.476. It means that with 95% confidence; a smoker has (at least)
about 1.5 times the risk of developing lung cancer than.a non-smoker:

1.9.4 Measures of Central Tendency

Central tendency is a characteristic of a data.set that relates 1o its average value. It is the
central value in the sense that it is located in the middle and the data points cluster around
it. Since it is the most representative point of thedata and a comparison between two or
more data sets may, therefore, be made hy their respective central points. In simple way,
it can be said that methods of measures of‘central tendency are useful for the purpose of
comparison of two or more similar types of data sets. Most commonly used measures are,
arithmetic mean, median and mode. Quartiles, deciles and percentiles are also position
indicators and useful for comprehensive comparison of two or more sets of data.

(i) Arithmetic mean

Arithmetic mean or simply:mean is most commonly used measure of central tendency. It
has a very important property,viz., when it is subtracted from all the values of data, the
sum of the differences,of mean from observations is zero. It uses all observations fully in
its calculation.

(a) Mean for ungrouped data
Add all the observations in a set of data and divide by the total number of
observations, i.e.
sumof all theobservations of data set
total number of observations

Mean =

If “x;” denotes the value of the i observation and “n” the number of observations,
then the mean (X) is

Xyt Xy + X+, + X > X
X = 1 2 3 1: i (11)
n n
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Example:
Suppose the weights of 14 patients are 62, 64, 65, 66, 68, 70, 70, 70, 70, 74, 74, 77,
77,79 in kg, the mean for this data is

 62+64+65+...+79 1036
14 14

(b) Mean for grouped data

Given a grouped data, we first find the midpoints of the groups, which are multiplied
by the corresponding frequencies of those groups. All these products are added. This
sum is divided by the sum of all the frequencies. Suppose the weights of 14 patients is
given, the mean can be calculated as:

Mean

=T74kg

Table 1.11:
Distribution of patient by Weights
Weight of Number of | Mid-points of
patients (kg) patients (f;) groups (x;) fi X
) 2) 3
60-64 2 62 124
65-69 4 67 268
70-74 6 72 432
75-79 2 T 154
Total 14 978

Mean = or8 =69.857 kg
14

If x; are the mid values of the‘groups and\f; are the frequencies, then the mean (X) is

5 = X.fp + X,f, +.0 + X, f, ) > fix; w2
f, +f, + +f, >f,

The mean obtained fromsgrouped data may be different from the mean obtained from
ungrouped data. Thisyis because in grouped data we assume that all the values in that
group is placed at the mid-value of the class interval.

(if) Median, quartile, decile and percentile [quantile]

The median of data set arranged in order of magnitude is the middle most value. If the
numbers of observation are odd, the middle value is the median. If the numbers of
observations are even, the arithmetic mean of the two middle most values is the median
value. Median tells us that 50% of the observations are on both sides of the median point.
Median is a suitable measure for a data set which is measured on an ordinal or a ratio
scale. Like median, quartiles are points dividing an ordered data set into 4 equal parts,
deciles divide ordered data set into 10 equal parts and percentiles divide an ordered data
set into 100 equals parts. Note that for comprehensive comparison for two or more than
two data sets of the same type, percentile is relatively a better measure. Since SPSS
package will be used for the calculation of all these measures, therefore, detailed
discussion on this topic will not be useful. By using SPSS package (as explained at the
end of the chapter) median and other measures can be calculated easily. If we use SPSS
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package on the raw data given in Table 1.5 the median comes out to be 66.5 kg and lower
(first) quartile is 60.0 kg and upper (third) quartile is 74.9 kg whereas for different deciles
or percentiles the values are as:

Percentiles | 10 | 20 | 30 |40 | 50 |60 | 70| 80 | 90
Value (kg) 57 | 60 | 61.3 | 64 | 66.5 | 68 | 74 | 75.8 | 81
(iii) Mode

Mode is the most frequently occuring number in the data set. The mode of the given data
is 60, as 60 has occurred more times in the data set than anyother number. It is not an
effective measure. Sometimes, there is no mode and sometimes there are more than one
modal values. Sometimes, the distribution is bi-modal or is multimodal. In such cases,
mode does not provide true picture of the central tendency. It is not generally done, but
one way of finding a mode in multimodal data, is to find the average of all modes.The
average mode may be considered as mode of the data set. For example the scores of
medical students in a test are 2, 2, 2, 3, 5, 5, 5, 6, 6 in this‘case 2¢and 5 are two modes.
The average mode is (2 + 5)/2 = 3.5

1.9.5 Measures of Dispersion

The average value of a set of observations fails to describe‘therdistribution without some
degree of variation of the observations about the averages. Statistical measures of
dispersion are used to measure the extent to.which,individual observations disperse or
cluster around the average. They, like mean are.also used to compare two or more data
sets of same nature. Here only two measures, which are commonly used in medical
science, will be described. These are range and standard deviation

(i) Range

Range is the difference between maximum and minimum values of data set, such as
blood pressure, blood cholesterol level, hemoglobin (Hg/dl) etc. This is a useful but a
crude measure in medical, sciences as it provides a quick value of variation. The range of
the data set, given.in Tableis 1.5, 98 - 45 = 53 kg. [Maximum Value — Minimum Value].

(ii) Standard Deviation

The most widely used‘and stable measure of dispersion is the standard deviation. This is
a square root of variance. The variance is defined as mean squared deviation about the
mean. The standard deviation (s.d) for the ungrouped data is calculated as:

2
Standard Deviation (o) = \/1 {inz - M} .3)
n n
For dealing with frequency table we have
- 1 2 (Zfixi)
Standard Deviation = = > fix;i — 14
viatl (o) \/zfl |:Z i Xi Zfi (1.4)

The computation of standard deviations for grouped data for population and sample is
shown as:
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Table 1.12:
Computation of mean, variance and standard deviation

. Number of | Mid-Points of | frequency & *
W(i'g)ht students weight Mi?j-Poinyts Fr.equer.my
g (f) (x) (xif) (Mid-Points)
445-515 3 48 144 6912
51.5-58.5 18 55 990 54450
58.5-65.5 33 62 2046 126852
65.5-72.5 29 69 2001 138069
72.5-89.5 23 76 1748 132848
89.5-86.5 11 83 913 75779
86.5-93.5 2 90 180 16200
93.5 - 100.5 1 97 97 9409
Total 120 580 8119 560519
Mean = 8119 = 67.658 kg
120

Using (1.4) the standard deviation comes out as:

2
Standard Deviation (o) = L 560519 = w =9.661 kg (Population).
120 120

Assuming that this data is a sample from a certain population.

Standard Deviation (8) = A, 560519 —
1201

(8119)2
~———~ | =9.702 kg (Sample
120 g (Sample)
The variance of population ¢%= (9.661)2: 93.334 kg, whereas the variance of sample
2
s?= (9.70) = 94{129mDifference will be only marginal if Zfi is large. The only

difference between population standard deviation and sample standard deviation is that in
sample standard deviation the divisor is total number of observations minus 1, i.e. (n - 1)

or > f;i-1.

Note that Mean, Median, Mode, variance and standard deviation may be calculated
directly from the grouped data by using IBM-SPSS package. For this purpose one should
follow the following steps.

Example S1-8

1. enter the required mid points in one column and enter frequencies in another
column
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2. Click DATA and click weight cases, bring the frequen

click ok
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Now Click on E to get the following results:

Mid-Points of weight

M Walid
Missing

Mean

Median

Mode

Std. Deviation

Wariance

120

G7.66
69.00
62
9.702
94126
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Note also that the mean of ungrouped data (raw data) is 67.625 kg and standard deviation
is 9.488 kg whereas in grouped data the mean is 67.658 kg and the standard deviation is
9.661 kg. Note that grouped and ungrouped data results are close to each other. The
difference (error) coming in the results is due to the grouping. When raw data is grouped,
it loses some information. If a different grouping of the same is made then the mean and
standard deviation are different. In grouped data it is assumed that all the values lying in
that group correspond to the mid-value of the group. When a statistical package is used,
these measures are calculated from raw data directly. Note that when you transfer the
observations from one media to another one, some information are lost".

From the example given in table 1.5, new groups are formed as in table 1.13:

Table 1.13:
Computation of mean

Weight | Number of students | Mid-points of groups 2% 3
1) (2 )
45-52 3 485 145.5
52-59 18 55.5 999.0
59-66 32 62.5 2000.0
66-73 28 69.5 1946.0
73-80 24 76.5 1836.0
80-87 12 83.5 1002.0
87-94 2 90.5 181.0
95-101 1 97.5 97.5
Total 120 584.0 8207.0
8207

Mean =—— =68.392 kg.
120

The mean with the first grouping is 67.658 kg whereas the mean with new grouping
is = 68.392 kg. Therefore; we seerif the groups are changed the mean is also different.
The mean and standard.deviation calculated from a raw data are always exact.

1.9.6 Relative Measure

All the measures we have so far discussed are called absolute measures, that is, these are
measured in terms of their basic units. Suppose there are two sets of data of the same type
but these are measured in different units (weights in kilograms and in pounds) and we
want to compare two sets of data. Even if the standard deviation of one set of data is less
than the standard deviation of another set of data, we cannot say that the first set of data
is less scattered than the second set of data. We cannot make such comparison, as the
basic units are different. Measures, which enable us to make such comparisons, are free
of units and are called Relative Measures. Some of the useful and commonly used
relative measures are: (i) Coefficient of variation (ii) Z-score.

This point will be explained while applying the logistic regression (Chapter 9).
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(i) Coefficient of Variation

We know that in central tendency mean is the best measure among the group and in
measure of dispersion standard deviation is the best measure then these two measures are
used to establish an index called coefficient of variation. If the units of the two or more
data sets are different then coefficient of variation is the best method for comparison.

Coefficient of variation (C.V) is a relative measure of variation in any variable and is
defined by

CV = sample standard deviation % 100 = % % 100
sample mean
(1.5)
Cv = population standard deviation x 100 (for population) =% 100 (1.6)
i

population mean

Note that, if one is comparing two or more data sets, then, a.data set, which has less
Coefficient of Variation is more consistent, more homogeneous and«more stable than a
data set that has larger C.V.

The coefficient of variation is a useful measure of relative spread in data and is used
frequently in the biological sciences. For example, suppose the authors of the study on
diet and lipoproteins want to compare the variabilitysin the ratio of total/HDL cholesterol
with the variability in vessel diameter_change for the 18 patients who had no lesion
growth. The mean and the standard.deviation of total/HDL cholesterol (in mill moles per
liter) are 5.81 and 1.20, respectively; for.the vessel diameter change (in millimeters), they
are 0.12 and 0.29, respectively=A comparison of 1.20 and 0.29 makes no sense because
cholesterol and vessel diameter are measured on different scales. The coefficient of
variation adjusts the scales 'so that a sensible comparison can be made.

Variation, as measured by the standard deviation, is small relative to the mean. Therefore,
readers of their article can'be confident that the assay results were consistent. From this
formula, the CV far total/HDL cholesterol is (1.20/5.81) (100) = 20.7%, and the CV for
vessel diameter change. is (0.29/0.12) (100) = 241.7%. Therefore, we can conclude that
the relative variation in‘vessel diameter change is much greater than (more than 10 times
as great as) that in cholesterol ratio.

A frequent application of the coefficient of variation is in laboratory testing and quality
control procedures. For example, screening for neural tube defects is accomplished by
measuring maternal serum alpha fetoprotein. DiMaio et al. (1987) evaluated the use of
this test in a prospective study of 34,000 women. The reproducibility of the test
procedure was determined by repeating the assay ten times in each of four pools of
serum. They calculated the mean and the standard deviation of the ten assays in each pool
of serum and then used them to find the coefficient of variation for each pool. The
coefficients of variation for the four pools were 7.4%, 5.8%, 2.7%, and 2.4%. These
values indicate relatively good reproducibility of the assays because the variation, as
measured by standard deviation, is small relative to the mean. Therefore readers of their
articles can be confident that the assay results were consistent
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Example 1.7:

In the following table, data are given relating to collection of blood and to compare two
methods of coagulation. The data are related to the arterial activated partial
ehromboplastin time (APTT). Values are recorded for 30 patients in each of two groups.
Do these data indicate the difference in the distribution of APTT times?

Table 1.14:

METHOD 1.
20.7 29.6 34.4 56.6 22.5 29.7
31.2 38.3 28.5 22.8 44.8 41.6
24.9 29.0 30.1 33.9 39.7 45.3
22.9 20.3 28.4 35.5 22.8 54.7
52.4 20.9 46.1 35.0 46.1 22.1

METHOD 2:
23.9 23.2 56.2 30.2 27.2 21.8
53.7 31.6 24.6 49.8 22.6 48.9
23.1 34.6 41.3 34.1 26.7 20.1
38.9 24.2 21.1 40.7 39.8 21.4
41.3 23.7 35.7 29.2 27.4 23.3

Solution:

These information relate to two data sets (groups), and these two groups are not selected
from any population(s). We like to see which method. s better than the other by
comparing two data sets. All the basic measures are calculated using IBM-SPSS package
regarding two methods through:
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and the output is given on next table.

SPSS output for Descriptive Measures

Table 1.15:
Different values of the desecriptive measures
Statistics

Method1 Method?2

M wWalid a0 30
Missing 0 ]

Mean 336093 32.010
Median 30.650 28.300
Mode 2289 41.3
Std. Deviation 10,7288 | 10.4586
Variance 115130 | 108.383
Range 36.3 361
Minimurm 20.3 201
Maximum 56.6 56.2

a. Multiple modes exist. The
smallestvalue is shown

If we cannot reach any decision by using mean and standard deviation, we go ahead for
coefficient of variation.

We know that by looking at the mean we cannot reach any conclusion unless we go
ahead for standard deviation. Method 2 has less standard deviation than the data collected
by Method 1, therefore, we say that Method 2 of taking the blood is better than Method 1.
To be sure we go ahead to relative measure (coefficient of variation COV). The
coefficient of variation of data collected by Method 2 is less than the coefficient of
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variation of the data collected by Method 1. Therefore, we confirm our decision that data
collected by Method 2 is more consistent, more homogeneous and more stable than

Method 1. One can calculate

the C.V by hand to get:

Table 1.16:
Coefficient variation

Method 1

Method 2

Mean
Standard deviation

33.693
10.730

32.010
10.459

Coefficient variation

31.85%

30.67%

Note that Coefficient of Variation is not available directly in IBM-SPSS Package, unless
we add a dummy variable of 1’s and use the Ratio. For example, to calculate the C.Vfor

Method 1, we do as follows:

We add a dummy variable

of I’s
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Now Click on @ to get the following results:
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e
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(i) Z-Score
Z-score is also a relative measure of a variable and is defined as

7 _ Value of variable (x) — Populationmean
Population standard deviation

1.7

Example 1.8:

A student's average grade in Pharmacology is 67 and in Bio-statistics is 87. If the class
means and standard deviation in Bio-statistics is 80 and 5 respectively, whereas in
Pharmacology the mean and standard deviation is 79 and 8 respectively, then find the
Z-scores in these subjects and interpret the results.

Solution:
The Z-scores in these two subjects are:
Subject Z-score
. - 87 -8
Bio-statistics 4 =1.4
=
Pharmacology % =2-15

Z-score in Bio-statistics is 1.4, i.e. 1.4 timeSistandard deviation above the mean of the
class whereas in Pharmacology the Z-score is -1.5; which means 1.5 times standard
deviation below the mean of the class. Thus Z-score measures his ability in relation to his
class and is free of unit measure. Note that the variable Z has mean = 0 and standard
deviation =1 (details will be givenlater)

Note that we can obtain the Z-score for-all the values as in the following steps:

File Edit View Data Transform [BRalyze | DirectMarketing Graphs Utilties Add-ons W
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Regression 2
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Variable(s):
& WMethod1
&7 Method2

£

‘Save standardized values as variables

The default outcome is as in the following table:

Descriptive Statistics

I Minirmum Maxim Std. Deviation
Method1 30 20.3 10,7288
Method2 30 201 010 10,4586

Walid M (listwise) 30

File Edit View Data Direct Marketing  Graphs  Utilities
SHE Bi-2F R
|
ZMethod! | ZMethod2 |
K 239 1.21095 - 77544
537 - 23237 207388
231 -81952 - 85193
229 389 -1.00592 65879
524 413 1.74342 88826
6 296 232 -38149 -84237
38.3 316 42933 -03920
29.0 346 - 43741 24764
9 203 242 -1.24823 - 74675
209 237 -1.19231 - 79456
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1.10 Mean * k x Standard Deviation

What percentage of observations falls within mean * k x s.d. (k = 1, 2, 3). Empirically
it is known that, for a reasonably large set of data having a bell shaped frequency curve
(symmetrical curve), about 68% of the observations fall within mean £ 1 s.d, about
95% of the observations fall within mean + 2 s.d and 99% of the observation fall within
mean + 3 x s.d. (details will be discussed at a later stage).

The advantage of this empirical rule is, if we do not have the data and only mean and
standard deviation are known, then one can calculate the ranges where 64% to 68%, 95%
and 99% of the data are lying. For example, the mean and standard deviation of raw data
are, mean is 67.625 and s.d = 9.488 respectively, then the weight of about 68% of the
students is lying between 58 to 77Kg., and the weight of 95% of the students will be
lying between 49 to 87 Kg etc.
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Chapter 2

Basic Concepts of Probability
and Probability Distributions

2.1 Introduction

Different methods of summarizing the statistical data along with their graphical
presentations have been discussed in Chapter 1. This chapter deals with the basic
concepts of probability and probability distributions. The purpose of this chapter is not to
teach probability to medical students and research workers but to clarify some of the basic
concepts involved in understanding the interpretation of the results. For example, a major
reason for performing clinical research, however, is to genéralize«he findings from a set
of observations on one group of subjects to other similar groups of subjects. If we are
interested to study whether smoking causes lung cancer;or it leads to cardiac problems, it
is not possible to study all the persons who smoke. We dinvestigate a small group of
smokers selected from a larger group. The conclusion may, indicate that smokers run a
greater risk of lung cancer or a myocardial‘infarction. \We say that smokers may have
more chance of lung cancer than non-smokers. The term chance in the statistical language
is designated as probability. A sample.rarely tells us precise story about the population
from which it is selected. There is_ always uncertainty about how far the sample estimate
will depart from the true population «value.  Measures of the amount of uncertainty
associated with estimate play.a:major role in_statistical inference. How do we measure the
uncertainty associated with/events? The answer is probability. The concept of probability
is very useful in understanding and interpreting statistical data. It helps us to understand
the confidence limits, p-value (will be discussed in chapter 4) and the terms like
significance and non-significance.

Whenever one deals,with the probability, one faces the word experiment. This word has
very broad meaning. JAn experiment is a process of making observations or taking
measurements on one or'more experimental units. An experiment can be repeated many
times. Each replication is called a trial. One or more outcomes can result from each trial.
Consider a large number of trials. The probability of a specific outcome is the number of
times that the specific outcome occurs divided by the total number of trials. If E is an
event then the probability of an event will be defined as:

Number of timesE occurs inan experiment

P(E) = — -
T otalnumber of trialsinan experiment

If the number of trials is very large this ratio is generally seen to be fairly stable from one
instance to another.

An estimate of the probability may be determined empirically or it may be based on
theoretical model. If we flip a coin, the chance of getting a head or a tail is 50%. If this
coin is flipped, say 20 times, there is no guarantee that exactly 10 heads will be observed.

61
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Then again if the coin is tossed 2,000 times the ratio of number of heads to total number
of trial will be very near to 1/2. The frequency of the heads may vary from 0 to 2000,

though in each case the chance of getting the head is 50%.

2.2 Definition and rules of probability

We will describe some examples to illustrate the concept of probabilities.

Example 2.1
Following data relate to total circulating albumin (gm) for 30 normal males aged 20-29.
Table 2.1
Distribution of males by total circulating albumin(gm)
Total circulating Number Relative
albumin (gm) of males | frequency
99.5-109.4 2 2/30
109.5-119.4 6 6/30
119.5-129.4 6 6/30
129.5-139.4 7 7/30
139.5-149.4 8 8/30
149.5-159.4 1 1/30
Total 30 1.00

Suppose a person is picked up at random, the ‘probability that the person belongs to the
group 119.5-129.4 is 6/30, whichdn fact iswa, relative frequency of this group. It means
that of 30 persons, 6 belong to the group 119.5 - 129.4.

Example 2.2

In a study of the relation between blood type and disease, a sample of patients with peptic
ulcer, patients with gastric cancer and control persons that are free from these diseases are
classified into the blood type (O,A,B). The data are given in table 2.2:

Table 2.2
Distribution of patients by disease and blood

Blood Peptic | Gastric Controls | Total | Probability
type ulcer | cancer
O 983 383 2892 4258 0.486
A 679 416 2625 3720 0.424
B 134 84 570 788 0.090
Total 1796 883 6087 8766 1.0
Probability | 0.205 | 0.101 0.694 1.0

Source: Snedecor and Cochran (1980)

In presenting this problem one can easily determine the probability that a patient selected
at random will fall in blood group O or A or B or he/she is suffering from peptic ulcer or
gastric cancer.

The probability that a person selected at random from 8766 cases falls in blood type O
group will be



Hanif, Ahmad and Abdelfattah 63

P(blood type O) = 4258/8766 = 0.486.

Again the probability that a person selected at random from 8766 cases belongs to peptic
ulcer group will be

P( peptic ulcer) = 1796/ 8766 = 0.205.
If we add the probabilities of blood type O, A, and B it comes out to be 1 0

(see Table-2.2). The value can be zero if no patient is in a group and can be 1 if all the
patients fall in that group. Therefore two important results can be drawn from this:

i) The sum of all the probabilities of all possible outcomes of an experiment is equal
to 1.

ii) The probability of each outcome (blood type or type of disease) is greater than or
equal to zero but cannot be greater than 1 or less than zero.

Therefore a general rule can be stated that the probability of any outcome lies between
0 and 1, both ends inclusive.

0<P(A)<1. 2.1)

The probability that a selected person does not belong to.blood type O, will be 1 — P
(with blood type O) = 1- 0.486 = 0.514, as the total probability is 1 this is such because a
person either falls in blood type O group or doesinet fallsiin‘blood type O group.

2.2.1 Additive Rule of Probability for Mutually’ Exclusive Events

Before we explain the additive lawf probability. it is essential to understand an event and
mutually exclusive events. An event'may be defined as either a single outcome or a set of
outcomes of an experiment. Two or mare events are mutually exclusive if the occurrence
of one event precludes the/occurrence of another event. In the above example, a person
cannot have a blood type O or A at the same time, therefore blood type O and A are
mutually exclusive events:

Suppose the probability;of blood type O = 0.486 whereas the probability of blood type
A =0.424. The probability of blood type O or A will be

P(O or A) = P(O)+P(A)= 0.486+0.424=0.91. (2.2)
This is known as an additive law of probability for mutually exclusive events.
2.2.2 Independent Events and Multiplicative Rule of Probability

If the outcome of one event does not affect the outcome of another event then these events
are called independent events. If two events A and B are independent then the probability
that both A and B occur is equal to the product of their respective probabilities i.e.

P(A and B) = P(A) P(B). (2.3)

Suppose two coins are tossed. The probability that heads occur on both coins i.e. P (two
heads) = P (H; and H,) = P(H,) P(H,), where H, denotes the head on first coin and H,

head on the second coin. Since P (Hy) =P (H,) =% therefore P (H; and H,) = % .
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2.2.3 Additive Rule for non Mutually Exclusive Events

Let us now examine the situation for finding out the probability that either of the two
events occur, when they are not mutually exclusive. For example, type of peptic ulcer and
patients with blood group O is not mutually exclusive. The additive rule of the probability
can be modified otherwise the probability that both events occur will be added twice into
the calculated probability. The probability that a randomly selected person has a peptic
ulcer = 1796/8766 = 0.205 and the person has blood type O = 4258/8766 = 0.486. Here
the joint probability of being ulcer and has a blood type O has been added twice. This
joint probability of being peptic ulcer and have a blood type O = 983/8766 = 0.112 must
be subtracted from the calculated probability, i.e.

P( peptic ulcer or blood type O) = P(peptic ulcer) + P(blood type O)
— P(peptic ulcer and blood type O)

=0.205 + 0.486 - 001112 = 0.579.

Therefore the additive law of probability for non-mutually ‘exclusive events may be stated
as:

The probability that either event A or an event B or both occur is

P(AorB)=P(A) + P (B) - P(Aand B). (2.4)
If A and B are mutually exclusive then the P(Aiand B)i=.0.
2.2.4 Conditional Probability

The probability of an event A, givenithat an event B i.e. P (A| B)] has occurred, is called
the conditional probability of#A given B;.is déefined as:

P(A and B)

P(A|B) = FE) (2.5)
and
P(B|A) = % 2.6)

The probability of a person selected at random has a peptic ulcer given that he has blood
type O.

P(peptic ulcer | blood type O) = 983/ 4258= 0.231.
This may also be calculated using (2.5).
P(peptic ulcer and blood type O)
= P[Peptic ulcer | blood type O] x P[blood type O]

_ 983 4258 983 _
= y _ =0.11
4258~ 8766 8766
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983 " 8766 983
8766 4258 4258

2.2.5 Rule of multiplication for non-independent events
The probability of A and B
P(A and B) =P(A) P(B|A) = P(B) P(A|B) 2.7)

=0.231.

Like wise P (peptic ulcer | blood type O) =

P(gastric cancer and blood type B) = P(gastric cancer) P(blood type B | gastric cancer)

583 1182 1 _0.0096.
8766 ) \ 883

2.2.6 Properties of Probability
1. The probability of any event always lies from 0 and 1.

2. If we list all possible events mutually exclusive and exhaustive; the sum of their
probabilities is always 1.

3. If two events A and B are mutually exclusive,ithen.the probability that either A or
B occurs is equal to P(A) + P(B).

4. If two events A and B are independent then,the probability of both A and B
occurring together is equal to the product'of their probabilities i.e. P(A and B) =
P(A) P(B).

5. If two events A and B are not mutually exclusive, the probability that either A or B
or both occur is equal to P(A) +RP(B) -P(AB). If A and B are mutually exclusive
then P(A and B) = 0.

6. The probability of an event A, given that B has already occurred, is called the
conditional probability of A given B i.e. P(A|B).

7. The probability that both events A and B occur is
P(A and B)= P(A) P(A|B) = P(B) P(B|A) (2.7

Example 2.3:
The following data relates to Chinese smoking and lung cancer study in Beijing during
1990. Various types of probabilities can be calculated based on the data.

Table 2.3 Status of lung cancer by smoking
Lung Cancer

Yes | No | Total

Yes | 126 | 100 | 226

No 35 61 96

161 | 161 | 322

Smoking
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(i)
(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

)
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The probability that a selected person has a lung cancer — 161 _ -0.50-
322

The probability that a selected person is smoker — 252 =0.702.

The probability that a man has a lung cancer given that he is smoker

12
s [P
226 [22 /22}
The probability that a man is smoker given that he has lung cancer
12
_126 [ / 22}
T 161 =078= 16
[182350]
The probability that a man does not have lung cancer given that he is not
smoker — = — 0,64 = [9}/22J
[ / 22]
The probability that a man is.not smoker given that he has lung cancer
35
[*%308]
161 =022= 16
[$555,])

The probability that a man is smoker and does not have lung cancer

~ 200 _pam
322

The probahility that a man is either smoker or lung cancer or both
226 161> 126

=——+—-—=0.81.
322 322 322

The probability that a man is smoker and has lung cancer = ;22 =0.39.

Or P (smoker and cancer) = P(smoker) P(cancer|smoker)
322 )\ 226
The probability that a man is not smoker and does not have lung cancer

61 — =0.19.

T 322
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(xi) P (no smoker and no cancer) =P(no smoker) P(no cancer | no smoker)
(2)(8)-on
322 /196
2.3 Probability distribution

In order to understand the concept of probability distribution, the explanation of some
terms is necessary.

(@) A random variable is a quantity whose value depends upon the outcome of an
experiment. Random variable has two types (i) A discrete random variable is one
that assumes a countable number of values and (ii) A continuous random variable
assumes any value on an interval on a line.

(b) Probability distribution is a table or formula listing.all possible values that a
random variable can take alongwith associated probabilities. If the random
variable is discrete then this distribution is called discrete probability distribution
otherwise it is called continuous probability distributions While discussing
continuous random variable the number of’possible, valugs become infinite and
cannot be listed. This is taken care of by considering probability density function,
which we will discuss later. BinomialgPoisson and Normal distributions are some
examples of probability distributions.

Regardless of whether a random variable is‘continuous or discrete its probability
distribution must conform to the basic rulesyof probability (i) 0 <P (A) <1 and (ii) the
sum of the probabilities of all the values of random variable must be 1.

2.3.1 The Binomial Probability Distribution

Frequently in health sciences, investigations are made in which the investigator is
interested in one of the two possible outcomes; test is positive or negative, a patient is
suffering with diabetes or not, or in general a person is suffering with some disease or not.
The outcome may he called success and failure. When a single trial of some experiment
can result in only one of the two mutually exclusive outcomes then the trial is called a
Bernoulli trial. The probability of positive test is denoted by p whereas the probability of
negative with g. Note that (q+p = 1). When such experiment is repeated n times under
same conditions and X of them has some specific proposition then this distribution is
known as binomial probability distribution. This distribution is named after a Swiss
mathematician James Bernoulli (1654-1705).

A binomial experiment is one that possesses the following properties.

Q) Each experimental unit results in an outcome that may be classified as a
success or a failure.

(i)  The random variable X counts the number of successes or failures in n trials.

(iii) ~ The probability of single experimental unit of success denoted by p, remains
same (constant) from trial to trial.
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(iv)  The outcome for any one experimental unit is independent of the outcome of
another experimental unit (draws are independent).

The binomial distribution gives the probability that a specified outcome occurs in a given
number of independent trials. The binomial distribution can be used to model the
inheritability of a particular trait in genetics, to estimate the occurrence of a specific
reaction, such as the single packet (quantal release) of acetylcholine at the neuromuscular
junction, or to estimate the death of a cancer cell in an in vitro test of a new
chemotherapeutic. Binomial distribution is useful in understanding the relative risk, odds
ratio, sensitivity (true positive), specificity (true negative), false negative and false
positive etc. (all these terms will be discussed in Chapter 7).

To develop the concept of binomial distribution let 5 coins be flipped. Suppose there are
three heads and two tails. The outcome of a head is considered as a success whereas an
outcome of a tail is a failure. The probability of success (S) isdlenoted by p whereas the
probability of failure (F) by g (g=1-p). Since the trials aré independent, according to
multiplicative law of probability, the probability of a sequence S,S, F, F, S is:

P(S,S,F.F,S)=ppgqp=p°q’
The probability of a head or a tail of a coin is equal and'isi0:50; therefore
P(S, S, F, F, S) =0.5°0.5%= 0.03125.

If we make all possible arrangements of 3 heads.and 2 tails it will appear in 10 possible
ways. Therefore the probability of 3 heads\when 5 coins are flipped will be

P (3 heads and 2 tails) = 10 (0.5)*(0.5)*= 0.3125
If we take x = 3 and n = 5 (5 coins are tossed and 3 heads appeared) then we may easily
write the formula to calculate the probability of x successes in an n trials as
n
P (X successes) = p g™, forx=0,1,2,3,..., n. (2.8)
X

= 0, otherwise

n
where ( } means that x things are taken from n
X

n n!
and = ——— andn!'=n(n-1) (n-2)...... (),
(x] x (n - x)!

and 0!=1.

If, in this formula, we put x=3 and n=5 we get the required probability.

P(X=3)= (Zj 5(1— p)'* = @ (0.5)°(1-0.5)* = 0.3125,
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When sample size is large, it is difficult to calculate the probability. In this case we can
use Tables given at the end of the Chapter. Without going into details of derivation, the
mean and standard deviation of the binomial distribution are:

p=npand c = /np(L-p) (2.9

Example 2.4:
The probability of death with certain disease is 40%. Five such patients are admitted in
the hospital, what is the probability that exactly 3 of them die?

Solution:
Here p = 0.4, g = 1-0.4 = 0.6, and n = 5 the probability that exactly 3 of them will die is

P(X=3) = (2] (0.4)%(0.6)>= 10 (0.4)%(0.6)* = 0.2304

Instead of calculating the probability, table of cumulative binomial probability can be
consulted to find the probability. These tables are available inany boek on statistics. For
ready reference a portion of the table has been reproduced at the end‘of the chapter.

Probability for n=5, x = 3 and p = 0.4 is 0.2304. Since inthe table, cumulative probability
is given therefore,

P(X=3)=P(X<3)-P(X<2)
From the table for n=5, x=3 and p=0#4, we get
P (X=3) = 0.9130 - 0.6826 =0:2304.

Example 2.5:

The dairy industry is capitalizing on new medical research in the field of osteoporosis (an
age related condition characterized by decreased bone mass and increased susceptibility
to fractures) to promote itsproduct. According to the National Institute of Health, by the
age of 90, 32% of women and 17% of men will suffer a hip fracture because of
osteoporosis (American Demographics, Oct. 1985). Find the probability that (a) in a
random sample of 5 wamen aged 90, exactly three have suffered a broken hip due to
osteoporosis, (b) at least two of the 5 women have suffered a broken hip due to
osteoporosis, and (c) at most three have suffered a fractured hip due to osteoporosis.

Solution:
P(women with hip fracture) = 0.32 P(men with hip fracture)=0.17
(i)n=5x=3; (iyn=5x>2
(a) For women with hip fracture
(i) n=5,x=3,p=32
P(X=3)=P(X<3)-P(X<2)=0.9610- 0.809 = 0.1515. (from the table)
(i)n=5x>2,p=0.32
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The P (X>2)=P(X =2) +P(X =3) + P(X =4) + P(X = 5)
since the total probability = 1, therefore the
P(X>2)=1-P (X < 1) = 1- 0.4875 =0.5125 (from the Table 2.4).
(b) for men with hip fracture

n=>5and x <3, p=0.17 we are interested to find P(0) +P(1))+P(2)+P(3) for this one
can consult the Table 2.4 directly against x = 3 and p = 0.17 which is 0.9964.

Example 2.6:

One of the most comprehensive studies of drug used in junior high school was conducted
in U.S.A. The survey of 1,532 eighth-grade students found that 25% believed they would
use marijuana and 11% believed they would use cocaine by the time they enter high
school (Alligator, Sept. 27, 1984). A representative of the community group that
conducted the study claims that these results are applicable nationwide. Consider a
random sample of 10 eighth- graders selected from a sch@ol. Assume that the result is
applicable nationwide, find the probability that (a) exactly 5 ofthe eighth-graders believe
they will use marijuana before entering high school#(h), at least:2 of the eighth- graders
believe they will use marijuana before entering highyschool and (c) at most three of the
eighth-graders believe they will use cocaine before entering school.

Solution:
() The Probability of students usingimarijuana = P(marijuana) = 0.25,
(b) The probability of students‘using.cocaine = P(cocaine) = 0.11
(@ p=0.25n=10,x =5, then
P(X=5)=P (X<5)-P (X<4)=0.9803-0.9219
= 0.0584 (from the table2.4)
(b) p =.25, n=10, P(X'=2):= 1~ P(X < 1) = 1-0.2440 = 0.776 ( Table 2.4)
(c) p=0.11, n=10, x=8ythen P(X =3) = P(X < 3) + P(X £ 2)
=0.9822 - 0.9116 = 0.706 (Table 2.4)

Example 2.7:

A physician claims that only 10% of all American adults suffer from high blood pressure.
The American Medical Association conducted a study involving 1,200 randomly selected
American adults. Find the mean number of adults in the sample who suffer from high
blood pressure, and standard deviation of adults with high blood pressure if the
physician’s claim is true.

Solution:
The probability of adults having blood pressure p = 0.1 and n = 1200;

(i) The mean number of adults who suffer from high blood pressure
=np =1200 x 0.10 =120
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(ii) The standard deviation is

s=,np - p) = 1200(0.10) (1 - 0.10) = 10.39

Using empirical rule, the limits will be 120 + 2 x 10.39 ~ (99 ~ 141) there are about 95%
chances that people suffering with blood pressure will lie between 8.25% ~ 11.75% in a
population.

2.3.2 The Poisson Probability Distribution

Like the binomial distribution, Poisson distribution is also a discrete probability
distribution. This distribution is named after the French mathematician S.D. Poisson. The
use of this distribution is extensive in biology and medicine. Poisson distribution is used
to determine the probability of rare events: i.e. it gives the probability that an outcome
occurs a specified number of times when the number of trials is,large and the probability
of occurrence is very small.

Poisson distribution is used to plan the number of beds a hospital needs in the intensive
care unit; the number of ambulances needed on call in.a certain hospital. This is a useful
distribution for estimation of bacteria in colonies. It/can alsobe used to model the number
of cells in a given volume of fluid; the number of bacterial'colonies growing in a certain
amount of medium.

A Poisson experiment is one that possesses the following,three properties:

(i) The number of outcomes occurring in one time interval is independent of the
number in any disjoint time interval,

(if) The probability thatasingle outcome will occur during a very short time interval
is proportional to [the lengthsof ‘the time interval and does not depend on the
number of outcomes occurring before this time or on the past history of the
process,

(iii) The probabilitysthat more than one outcome will occur in such a short time
interval is negligible

A random variable X taking on one of the values 0,1,2 .... is said to be a Poisson random
variable with parameter p if for some p > 0, its probability distribution is

P(X)= , x=012,...0 (2.10)

where e stands for constant and is approximately 2.7183, and p is the parameter of the
distribution and is the average number of outcomes occurring in a given time interval.
Some examples of random variables are given which usually follow Poisson distribution:

(i)  The number of people in a community living up to 100 years of age.

(if) The number of o - particles discharged in a fixed period of time from some
radioactive material.
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(iii) The number of wrong telephone numbers that are dialed in a small interval of
time.

(iv) The number of sudden deaths of healthy men in a small interval of time period.
Note that the both mean and standard deviation of Poisson distribution is p.

Example 2.8

The probability that a person dies from certain respiratory infection is 0.002. Find the
probability that (i) less than 5 of the next 2000 persons so infected will die (ii) exactly 5
will die.

Solution:
p=0.002, n= 2000, x =5, mean = u = np = 2000 x 0.002 = 4
(@) P(X<5)=P (X<4)=0.629 [table 2.5]

—4 45
(b) P(X = 5) = e 4 _ 0.0183 x 124
ol 120

Like binomial distribution, probability for the Poisson,distribution'may also be calculated
using the cumulative probability table. For this purpose a portion of the table has been
reproduced for ready reference at the end of thisichapter (Table 2.5).

= 0.156.

We consult the table to see the probability for p
P (X=5)=P(X<5)-P (X<4)=0:785-0.629 = 0.156

Example 2.9:

The probability that a student fails the screening test for scoliosis (curvature of the spine)
at a local high school is known to be 0.004. 1500 students are selected for such a test.
Find the probability that,(i) less than' 5 will fail the test (ii) not more than 4 will fail the
test.

Solution:
p=0.004, n=1500, (i)we find P (X <5),
(if) P (X >4 ) mean =p = np = (0.004) (1500) = 6.
() P(X<5)=P (X =0)+P(X=1) +P(X=2) +P(X=3) + P(X=4) = P(X < 4)
=0.285 [table 2.5]
(i) P(X = 4) =1 - P(X < 3) = 1- 0.151 = 0.849[table 2.5]
2.3.3 The Normal Probability Distribution

One of the most useful models frequently used is the Normal probability model. This
model has not only wide application in mathematics and statistics but also in medical and
social sciences. This distribution is continuous unlike binomial and Poisson distributions.
The graph of the normal distribution is known as normal curve. The shape of the normal
distribution is shown as:
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u-3c H-26 p-o U p+o p+2c p+3c
Fig. 2.1: The shape of the normal distribution

The area under the normal curve is always used as a reference value in order to draw any
conclusion about any experiment. The laboratory investigations of any suspected patient
are always compared with the standard (healthy person) value in order to draw any
conclusion. If the readings of the investigation fall within the limits of the standard value,
it is always considered that a suspected patient is out of the dangerous zone. Exactly in
the same way the findings of an experiment are compared with the values of normal
distribution and conclusions are drawn accordingly. This coneept willbe explained in the
remaining chapters.

This distribution was discovered by DeMoivre in 1733 and was developed by Gauss
(1777-1855). Sometimes this probability distribution issknewn as Gaussian distribution.
We will use the word normal for this distribution,vas. it is very familiar to social and
medical scientists.

Much can be discussed regarding iormal/distribution but we will limit ourselves with the
application for medical scientists. IfX(is a continuous random variable with mean p and
standard deviation  then the probability,density function of the normal distribution will
be

F(x) = e_%(%u] . (2.11)

V2no
where © = 3.14159, e =2.71828, —0 < X< +o0 and ¢ > 0.

The mean measures the location of the distribution and standard deviation measures the
spread. The mathematical equation of the normal distribution depends on two parameters
uand o. It is usually written as X ~ N (u, o°) and read as, X is normally distributed with
mean = p and variance = c°.

Since the values of p and o vary from one normal distribution to another, the easiest way
to express a distance from mean is in terms of a Z- score,

X—pu
(e}

Z= (2.12)
This is distance between X and p, expressed in units of o, Z is commonly known as
standard normal variable (variate) with mean = 0 and variance = 1 and is written as
Z~ N (0, 1). The equation of the standard normal distribution is
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1 iz

f(z) = ——= e 2 -—w<z<+m. (2.13)

J2n

Probability of any part of the curve can be calculated by the method of integration. Since
this is difficult to calculate for medical scientists, therefore table for the standard normal
distribution has been provided at the end of this chapter (Table 2.6). In order to calculate
the area under the curve of the normal distribution the general equation is converted into
standard equation by using the standard normal variable and the table is consulted to
calculate the probability.

This curve is symmetric about the mean value. About 68% of the area lies between
p £ 1 o, about 95% between p + 2 o and about 99% lies between u + 3 . This
approximately agrees with the empirical rule stated in Chapter 1. Note that areas under
the normal curve have a probabilistic interpretation. If a population of measurements has
approximately normal distribution, then the probability<that a randomly selected
observation falls in the interval p + 2o is approximately 95%, but area between p + 1.96
o is exactly 95% (Fig. 2.4). Medical scientists usually use the value'2 rather than 1.96
because of convenience. The area under normal curye beyond a value of Z is known as p-
value. For a given Z=1.3, the p-value is P (Z > 3) = 0.0968xSome of the properties of the
normal distribution are as follows:

(i) It is symmetrical about the mean value therefore half of the probability of this
distribution is on the right of the;mean.and half on the left of the mean.

(i) The total area under the curve is‘equal to 1.
(iif) Mean, median and mode‘are equal.
(iv) It is completely determined by mean and standard deviation.

Example 2.10:
Given the standard.normal distribution ~ N (0, 1), calculate the probability that

(@) (i) P(Z < -1.96).(ii) P( Z > 1.96) (iiii) P( -1.96 < Z < +1.96)
(b) (i) P(Z < -2.58) (i) P( Z > 2.58) (iii) P(-2.58 < Z < +2.58)
(©) (i) P(Z < -2.33) (ii) P( Z < -1.65).

Solution:
It is always advised to sketch a diagram of normal distribution before solving the problem
as it makes things easier and also errors in calculation are avoided.

@ (i) P(Z < -1.96) = probability from -0 to -1.96. In the Table 2.6 cumulative
probability is given, therefore we can see the table directly and set the value
0.0250.
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0.025
— Z
-1.96 0
' Fig. 2.2

(if) The curve is symmetrical, therefore P (Z > 1.96) = P (Z < -1.96) = 0.0250 or it
may be calculated as

P (2>1.96)=1-P (Z<1.96) = 1 -0.9750 = 0.0250.

0.025
— Z
0 1.96
Fig. 2.3
(iiii) P (-1.96 < Z < +1.96) =1 - [P(Z< -1.96) + P(Z > 1.96)] = 1- [0.0250 + 0.0250]

=0.95
or this may be calculated as
=P(Z<1.96)-P (Z<-1.96)=0.9750 - 0.0250 = 0.95

0.025 0.025

\ /

-1.96 0 1.96
Fig. 2.4

Therefore 95 % of the probability of the normal distribution is between -1.96 to 1.96, 5 %
is lying beyond these limits. In other words if p = 0.0250, then either z is greater than or
equal to 1.96 or less than or equal to -1.96. This probability is usually referred to as two-
tailed probability.
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(b) (i) P( Z < -2.58) = .0049 ~ 0.005,

;/‘\

—] Z
/ °
258

Fig. 2.5
(i) P(Z>2258) =P (Z2<-258)0rl-P(Z<258)=1-0.9951=0.049=5049 ~

0.005.
/N
— Z

<
\ \ 2.58

Fig. 2.6

(iii) P (-258 < Z < 2.58) & P (Z.<.2.58) - P(Z < -2.58) = 0.9951 - 0.0049
= 0.9902 ~ 99%.

Therefore 99% of/the probability of the normal distribution is between - 2.58
and 2.58 and only 1% probability is beyond these two points.

0.005 ‘}.005
z
0
- 258 / \
. 2.58
Fig. 2.7
(c) (i) P(Z<-2.33)=0.0099 ~ 1%
a=0.01
== Z

-2.33 0
Fig. 2.8
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(i) P(Z<-1.65)=0.0495

0.0495

\

-1.65 0

Fig. 2.9

From the above calculations, it is clear as the probability {p-value} decreases z-value
increases and vice versa.

Example 2.11:

Medical research has linked excessive consumption of salt4o hypertension. The average
amount of salt consumed per day by an American is 15, gram, although the actual
physiological minimum daily requirement for salt is.only 220 milligrams. Suppose that
the amount of salt per day is approximately normally distributed with a standard deviation
of 5 grams. What proportion of all Americans consume between 14 and 22 grams of salt
per day?

Solution:
The proportion of Americans who censume between x = 14 and x = 22 grams salt is
shown in the shaded area of the graph 2.10.

P —
14 15 22
Fig. 2.10

Since mean = 15 grams with standard deviation = 5. This does not follow standard normal
distribution. In order to find the proportion, it is to be converted into the standard normal
distribution by using standardized normal variable (z - variate)

p=15,0=5,
_14-15

_ 22 -15 1.0

Z = -0.20 Z>

This can be shown by the diagram
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-Z U 1.4
Fig. 2.11

P(-0.20 < Z < 1.40) = P(Z < 1.40) - P(Z < -0.20)
=0.9192 -0.4207 = 0.4985

49.85% ~ 50% of the Americans consume between 14 to 22 grams of salt per day.

Table 2.4
Cumulative Probabilities of Binomial Distribution for n=5 and n=10

() n=5
xypo>| A1 | 12 | 13 | 14 | 15 | 16 | A7 | 187 19 | .20
.5584 | 5277 | .4984 | .4704 | .4437 | .4482)| .3939|,.3707 | .3487 | .3277
.9035 | .8875 | .8704 | .8533 | .8352 | .8165 |.7973.| .7776 | .7576 | .7373
.9888 | .9875 |.9821 |.9780 | .9734 | .9682 | .9625 | .9563 | .9495 | .9421
.9993 | .9991 |.9987 | .9983 | .9978:9971 29964 | .9955 | .9945 | .9933
1.000 | 1.000 | 1.000 | .9999 | .9999 | .9999)| .9999 | .9998 | .9998 | .9997
1.000|1.000|1.000 | 1.000:1.000|1.000|1.000 |1.000 |1.000 | 1.000

GI|A|W|IN|R|O

xy p—>| .31 .32 .33 .34 .35 .36 .37 .38 .39 40

.1564 | .1454 | .1350 | .1252 |,.1160 | .1074 | .0092 | .0916 | .0845 | .0778
5077 |.4875 | .4675 | .4478 | 14284 | .4094 | .3907 | .3724 | .3545|.3370
8234 | .8095,| .7950 | .7801 | .7648 | .7491 | .7330 | .7165 | .6997 | .6826
9653 | .9610 |.956429514 | .9460 | .9402 | .9340 | .9274 | .9204 | .9130
9971 |.9966,..9961 | .9955 | .9947 | .9940 | .9931 | .9921 | .9910 | .9898
1.000]1.000 | 1.000]1.000|1.000]1.000|1.000]1.000|1.000]1.000

Q| |W|IN|P|O

(i) n=10

xlps | .22 23 24 25 26 27 28
0834 | .0733 | .0643 | .0563 | .0492 | .0430 | .0374
3185 | 2921 | 2673 | .2440 | 2222 | .2019 | .1830
6169 | 5863 | 5558 | 5256 | .4958 | .4665 | .4378
8413 | .8206 | .7988 | .7759 | .7521 | .7274 | .7021
9521 | .9431 | 9330 | 9219 | .0096 | .8963 | .8819
9896 | .9870 | .9839 | .0803 | .9761 | .9713 | .9658
9984 | .9979 | .9973 | .9965 | .9955 | .9944 | .9930
19998 | .9998 | .9997 | .0996 | .9994 | .9993 | .9990
1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | .9999 | .9999
1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

OO |NO|OAWINF|IO
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Table 2.5
Cumulative probability for Poisson distribution
xtuo>| 36 | 38 | 40 [ 42 | 44 | 46 | 48 | 50
0 .027 | .022 | .018 | .015 | .012 | .010 | .008 | .007
1 126 | .107 | .092 | .078 | .066 | .056 | .048 | .040
2 .303 | .269 | .238 | .210 | .185 | .163 | .143 | .125
3 515 | .473 | .433 | .395 | .359 | .326 | .294 | .265
4 706 | .668 | .629 | .590 | .551 | .513 | .476 | .440
5 844 | .816 | .785 | .753 | .720 | .686 | .651 | .616
6 .927 | .909 | .889 | .867 | .844 | .818 | .791 | .762
7 969 | .960 | .949 | .963 | .921 | .905 | .887 | .867
8 .988 | .984 | .979 | .972 | .964 | .955 | .944 | .932
9 996 | .994 | .992 | .989 | .985 | .980 | .975 | .968
10 | .999 | .998 | .997 | .996 | .994 | .992 | .990 | .986
11 [1.000| .999 | .999 | .999 | .998 | .997 |+996 | .995
12 - |1.000[1.000|1.000 | .999 |.999.] .999 | .998
13 - - - - 11.000]1.000 [ 1,000 | .999
14 - - - - - - - |1.000
xtuo>| 52 | 54 | 56 | 58.| 60 .| 62 | 6.4 | 6.6
0 .006 | .005 | .024 | .003 | .002 | .002 | .002 | .001
1 .034 | .029 | .024.| .021.017 | .015 | .012 | .010
2 109 | .095 | .082 | .072 | .062 | .054 | .046 | .040
3 238 | .213 |".2914] .170 | .151 | .134 | .119 | .105
4 406 | .378|,.342 | .381 | .285 | .259 | .235 | .213
5 581 | 546 | .512 | 478 | .446 | .414 | .384 | .355
6 732 | (702 | .670 | .638 | .606 | .574 | .542 | 511
7 845 .822 | .797 | .771 | .744 | .716 | .687 | .658
8 918 [.903 | .886 | .867 | .847 | .826 | .803 | .780
9 960 951 | .941 | .929 | .916 | .902 | .886 | .869
10 | .982 | .977 | .972 | .965 | .975 | .949 | .939 | .927
11 [ .993 | .990 | .988 | .984 | .980 | .975 | .969 | .963
12 | .997 | .996 | .995 | .993 | .991 | .989 | .986 | .982
13 [ .999 | .999 | .998 | .997 | .996 | .995 | .994 | .992
14 ]1.000| .999 | .999 | .999 | .999 | .998 | .997 | .997
15 - |1.000]1.000[1.000] .999 | .999 | .999 | .999
16 - - - - [1.000[1.000 | 1.000 | .999
17 - - - - - - - | 1.000
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Table 2.6
Probabilities of the Normal Distribution
(Areas between - oo and z)

0.975 «— 1.96

-3.80 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
-3.70 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
-3.60 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002
-3.50 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002
-3.40 .0002 .0003 .0003 .0003 .0003 .0003 .0003> .0003 .0003 .0003
-3.30 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0005 .0005 .0005
-3.20 .0005 .0005 .0005 0006 .0006 .0006 <0006 .0006 .0007 .0007
-3.10 .0007 .0007 .0008 .0008 .0008 .0008 .0009 .0009 .0009 .0010
-3.00 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0013 .0013 .0013
-2.90 .0014 .0014 .0015 .0015 .0016 .0016' .0017 0018 .0018 .0019
-2.80 .0019 .0020 .0021 .0021 .0022 .0023 .0023" .0024 .0025 .0026
-2.70 .0026 .0027 .0028 .0029 .0030,. .0031,.0032 .0033 .0034 .0035
-2.60 .0036 .0037 .0038 .0039 .0040 .0041 .0043 .0044 .0045 .0047
-2.50 .0048 .0049 .0051 .0052_ .0054 <.0055 .0057 .0059 .0060 .0062
-2.40 .0064 .0066 .0068 .0069 .0071" .0073 .0075 .0078 .0080 .0082
-2.30 .0084 .0087 .0089 <0091 <.0094 '.0096 .0099 .0102 .0104 .0107
-2.20 .0110 .0113 .0116..0119 .0122 .0125 .0129 .0132 .0136 .0139
-2.10 .0143 .0146 .0150 .0154 ,.0158 .0162 .0166 .0170 .0174 .0179
-2.00 .0183 .0188 .0192 .0197 .0202 .0207 .0212 .0217 .0222 .0228
-1.90 .0233 .0239, .0244 .0250 .0256 .0262 .0268 .0274 .0281 .0287
-1.80 .0294 .0301 .0307,.,.0314 .0322 .0329 .0336 .0344 .0351 .0359
-1.70 .0367 40375 .0384 .0392 .0401 .0409 .0418 .0427 .0436 .0446
-1.60 .0455 .0465 0475 .0485 .0495 .0505 .0516 .0526 .0537 .0548
-1.50 .0559 .0571 .0582 .0594 .0606 .0618 .0630 .0643 .0655 .0668
-1.40 .0681 .0694 ,.0708 .0721 .0735 .0749 .0764 .0778 .0793 .0808
-1.30 .0823 .0838 .0853 .0869 .0885 .0901 .0918 .0934 .0951 .0968
-1.20 .0985 .1003 .1020 .1038 .1056 .1075 .1093 .1112 .1131 .1151
-1.10 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 .1357
-1.00 .1379 .1401 .1423 .1446 .1469 .1492 .1515 .1539 .1562 .1587
-0.90 .1611 .1635 .1660 .1685 .1711 .1736 .1762 .1788 .1814 .1841
-0.80 .1867 .1894 .1922 .1949 .1977 .2005 .2033 .2061 .2090 .2119
-0.70 .2148 2177 .2206 .2236 .2266 .2296 .2327 .2358 .2389 .2420
-0.60 .2451 .2483 .2514 .2546 .2578 .2611 .2643 .2676 .2709 .2743
-0.50 .2776 .2810 .2843 .2877 .2912 .2946 .2981 .3015 .3050 .3085
-0.40 3121 .3156 .3192 .3228 .3264 .3300 .3336 .3372 .3409 .3446
-0.30 .3483 .3520 .3557 .3594 .3632 .3669 .3707 .3745 .3783 .3821
-0.20 .3859 .3897 .3936 .3974 .4013 .4952 .4090 .4129 .4168 .4207
-0.10 4247 4286 4325 .4364 .4404 4443 4483 4522 4562 .4602
0.00 .4641 .4681 .4721 .4761 .4801 .4840 .4880 .4920 .4960 .5000
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0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80

.00

.5000
.5398
5793
.6179
.6554
.6915
71257
.7580
.7881
.8159
.8413
.8643
.8849
.9032
.9192
.9332
.9452
.9554
.9641
9713
9772
.9821
.9861
.9893
.9918
.9938
.9953
.9965
.9974
.9981
.9987
.9990
.9993
.9995
.9997
.9998
.9998
.9999
.9999

.01

.5040
.5438
.5832
.6217
.6591
.6950
7291
.7611
.7910
.8186
.8438
.8665
.8869
.9049
.9207
.9345
.9463
.9564
.9649
9719
9778
.9826
.9864
.9896
.9920
.9940
.9955
.9966
.9975
.9982
.9987
.9991
.9993
.9995
.9997
.9998
.9998
.9999
.9999

.02

.5080
.5478
.5871
.6255
.6628
.6985
7324
7642
.7939
.8212
.8461
.8686
.8888
.9066
.9222
.9357
9474
.9573
.9656
.9726
.9783
.9830
.9868
.9898
.9922
9941
.9956
.9967
.9976
.9982
.9987
.9991
.9994
.9995
.9997
.9998
.9999
.9999
.9999

Table 2.6 (contd.)

.03

.5120
5517
.5910
.6293
.6664
.7019
.7357
7673
7967
.8238
.8485
.8708
.8907
.9082
.9236
.9370
.9484
.9582
.9664
.9732
9788
.9834
.9871
.9901
.9925
19943
.9957
.9968
9977
.9983
.9988
.9992
.9994
.9996
.9997
.9998
.9999
.9999
.9999

.04

.5160
.5557
.5948
.6331
.6700
.7054
.7389
7704
.7995
.8264
.8508
.8729
.8925
.9099
9251
.9382
.9495
.9501
9671
.9738
.9793
.9838
.9875
9904
.9927
.9945
.9959
.9969
9977
.9984
.9988
.9992
.9994
.9996
.9997
.9998
.9999
.9999
.9999

.05

.5199
.5596
.5987
.6368
.6736
.7088
7422
7734
.8023
.8289
.8531
.8749
.8944
9115
.9265
.9394
.9505
:9599
9678
.9744
.9798
.9842
.9878
.9906
.9929
.9946
.9960
.9970
.9978
.9985
.9989
.9992
.9994
.9996
.9997
.9998
.9999
.9999
.9999

.06

.5239
.5636
.6026
.6406
6772
.7123
.7454
7764
.8051
.8315
.8554
.8770
18962
9131
.9279
9406
.9515
19608
.9686
.9750
.9803
.9846
.9881
.9909
.9931
.9948
.9961
9971
.9979
.9985
.9989
.9992
.9994
.9996
.9997
.9998
.9999
.9999
.9999

.07

.5279
.5675
.6064
.6443
.6808
7157
.7486
7794
.8078
.8340
.8577
.8790
.8980
.9147
.9292
.9418
.9525
.9616
.9693
.9756
.9808
.9850
.9884
9911
.9932
.9949
.9962
.9972
.9979
.9985
.9989
.9992
.9995
.9996
.9997
.9998
.9999
.9999
.9999

.08

.5319
5714
.6103
.6480
.6844
.7190
7517
.7823
.8106
.8365
.8599
.8810
.8997
.9162
.9306
.9429
.9535
.9625
.9699
9761
.9812
.9854
.9887
.9913
.9934
9951
.9963
.9973
.9980
.9986
.9990
.9993
.9995
.9996
.9997
.9998
.9999
.9999
.9999

81

.09

.5359
5753
.6141
.5617
.6879
7224
.7549
.7852
.8133
.8389
.8621
.8830
.9015
9177
.9319
.9441
.9545
.9633
.9706
9767
.9817
.9857
.9890
.9916
.9936
.9952
.9964
.9974
.9981
.9986
.9990
.9993
.9995
.9997
.9998
.9998
.9999
.9999
.9999
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Chapter 3

Sampling Procedures and
Sample Size Estimation

3.1 Introduction

Most survey work involves sampling from finite populations. There are two parts to any
sampling strategy (design). First, there is a selection procedure, the manner in which
sampling units are selected from a population. Second, there is an estimation procedure
that prescribes how inferences are to be drawn from sample to the population

Sampling is procedure or process of selecting some units from the population with some
common characteristics and is primarily concerned with the collection of data of some
selected units of the population. Census is another method .of data«collection and is
defined as a complete enumeration of the population., A list ef population units from
which the sample is selected is called a sampling frame.

Since sample is a part of population, the result based on the sampled observations will not
be equal to that of population values. There mustibe somexdifference, which is inevitable.
This difference is known as error. This erroris arisingydue to drawing inferences about
the population on the basis of sampled observations, therefore, it is termed as sampling
error, e.g. the prevalence of tuberculosis-based on a sample cannot be identical to its
prevalence in the population. The sampling error usually decreases as the sample size
increases. In many situations;'the decrease is‘inversely proportional to the sample size, in
fact, to the square root of the sample-size. The sampling error is reduced to minimum if
the choice of the sampling unit, sampling design, selection procedure, sample size and
method of data analysisiare appropriate. Note that in the reduction of sampling error,
sample size plays.an important role.

Error arising from the causes not associated with the sampling process is known as non-
sampling error, whichiis common, both to complete enumeration and sample surveys.
Non-sampling error includes (i) response error (ii) non-response error (iii) measurement
and coding error, (iv) improper method for statistical analysis (v) non- coverage of
population, (vi) interviewers error, (vii) data entry error etc. As the sample size increases,
non-sampling error increases. Generally if the sample is proper representative of a
population, sampling error is minimum. A representative sample must possess all the
important characteristics of the population under study. If one is to investigate
malnutrition in children under five, then our population will be all children from 0 to 4
years of age.

A question naturally arises why sampling? The answer is as follows:
There are some advantages to select a sample from a population. These are:
(i) A sample is a part of population; the information can be collected more cheaply
and more rapidly as compared to complete enumeration.
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(i) A sample makes it possible to concentrate on individual units and to obtain
relevant information comprehensively and accurately.

(iii) Selection of appropriate sampling design reduces non-sampling error.

(iv) More precise results can be obtained by survey and sampling experts.

3.2 Types of Sampling

There are, generally, two types of sampling, i.e. (i) probability sampling and (ii) non-
probability sampling.

3.2.1 Probability Sampling

A probability sample or a random sample is one in which the probability of selection of
each unit in the population is known. The probability of selection of each unit may or
may not be independent. If a sample is selected at randem then it is known as a
probability sample. In fact probability sampling is a general name‘given to the sampling
plan in which

(a) every individual in the sampled population has a known prebability of entering in
the sample, (b) the sample is chosen by a process iinvolving one or more steps of
automatic randomization, (c) in the analysis of the samples, weights (probabilities)
appropriate to the probabilities given in (@) above arewsed.

3.2.2 Non-Probability Sampling

A sample selected by a non-random process is termed as a non-probability sample.
Judgment samples, purposive samples.and quata samples are examples of non-probability
samples. These types of selection procedurées are useful when the population units are
highly variable and the sample is small. In"these selection procedures, there is no way to
check the precision and to obtain the precise estimates. There is no way to determine the
sampling, non-sampling errors:

3.3 Some Commonly Used Selection Procedures

In this section some commonly used selection procedures of probability sampling and
estimation of mean, variance, confidence intervals are described.

3.3.1 Simple Random Sampling

Random sampling or more precisely simple random sampling is a term covering two of
the most straightforward selection procedures used in the probability sampling. In both
these procedures population units are drawn (selected) one by one with equal probability
until the sample is achieved of the required size. If unit once selected is not allowed to be
selected again, the procedure is known as simple random sampling without replacement
(srswor). If the selection at each draw is from the whole population, the procedure is
known as simple random sampling with replacement (srswr). Selection of units using
srswr is independent from draw to draw, but if srswor is used the selections are not
independent. This is because in srswor the probability of selection of a population unit at
any given draw depends on whether or not it has been selected at some previous draws. It
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is generally assumed that the characteristic for which the sample is selected does not
change during sampling operation and selection must be independent of the characteristic
under investigation. This selection procedure is explained in the following example:

Example 3.1:

Suppose there are 500 households in a certain area and we are interested in holding a
tuberculosis (TB) survey to check the prevalence of TB in that area. First, we get a map
of that area. We will allot our own numbers starting from 001 to 500. Suppose we want to
select 5 percent sample from this population, which comes out to be 25 households. Then
select any three columns from the random number tables (table 3.10) as population is of
three digits.

Include all those numbers, which are between 001 and 500 both ends inclusive and reject all
others. If any number previously selected is repeated ignore it. As an example a sample of
25 houses has been drawn using the random digits. These random digits are given in Table
3.17. Note, if any number is repeated ignore it.

In cases where respondents do not cooperate or householdis closed,.we need to have
some randomly selected reserve sample so that it can be utilized .if any non-response
occurs. It has been observed that 5 to 10 percent is the, non-response rate, so it is
advisable while selecting a sample, to select a reservessample at that time. If, for
example, the 9" house (house number 466) in our actual sample is not co-operating or is
closed then it can be substituted by the 26™ housexthouse"Rumber 270), which is the first
house in our reserved sample and so on. In‘any case the interviewer has no personal
choice to select the house.

Table 3.1
Selected actualiand reserved samples

Sr. Random number/House Sr. Random number/House
No. numberin our list No. number in our list
Actual Sample

1 427 16 218

2 275 17 014

3 356 18 146

4 463 19 292

5 112 20 174

6 497 21 405

7 054 22 094

8 163 23 158

9 308 24 103

10 062 25 122

11 466 26 270

12 143 27 104

13 465 28 120

14 078 29 030

15 467 30 476




86 Sampling Procedures and Sample Size Estimation

If we like to investigate the quality of the X-ray films in a certain laboratory, then all X-
ray films will be our study population. Each x-ray film must have ID number and
required sample will be selected accordingly.

Simple random sampling selection procedure is very simple and easily understandable as
each unit of population has an equal chance to be in the sample and also each selected
sample has an equal probability. This design is ineffective if the population units are
highly variable.

Many samples can be selected but in practical life, only one sample is selected and it is
assumed that this sample will be the representative sample of the population under study.
The sample mean or sample proportion is assumed to be the estimated value of
population mean or population proportion.

3.3.2 Estimation of mean and variance for sample mean and sample proportion

An unbiased estimator of population mean is

9:

=

%yi (3.1)

A sample will yield unbiased estimate under the following‘conditions.

(i)  All the units of the population to be sampled are.listed . Failure to do so causes
bias, known as coverage bias.

(if) Each unit of the population{o be\sampled must have a known probability, other
than zero. Failure to do so cause$ bias known as sample selection bias.

(iii) The measurements,#observations .or responses must be obtained from each
sample unit. Failure to do so.causes bias known as non-response bias.

(iv) Actual values)of ‘measurements, or observations or responses are obtained.
Failure to do so causes bias known as response bias.

(v) Appropriate sample design must be used. Failure to do so causes bias known as
sample design,bias.

(vi) Appropriate method of estimation is to be used. Failure to do so causes bias
known as sample estimation bias.

(vii) One should not collect information from the next door if sampled unit is not
available. Failure to do so causes bias known as substitution bias.

(viii) Finally, all the arithmetic, clerical and other operations entailed in sample
selection and estimation must be performed properly. Failure to do so causes
bias known as operational bias.

The variance expressions of sample mean for without and with replacement sampling are
respectively given as:

_ N-n S2 s?
Var(ywor):TFZ(l_f)F, (3.2)
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f=n/N and
N-18§2 1)82
var(y, )= —— > =|1-= | = 33
(ywr)Nn(Njn (3.3)
N _
where S? = iZ(Yi i (3.4)
N-1i3

For large N correction factor is ignored and we get the same expression for sampling with
and without replacement i.e.

Var(y)=5%/n (3.5)

An unbiased variance estimator for without replacement and with replacement sampling
are given respectively as:
2

Var(Y nor) = (1) (36)
and
2
Var( o) = 37)
where s = ——3"(y; ~y) (38)
n-1i3

For large N the unbiased variance expression for with and without replacement is:

var(y)=s%/n (3.9)

In case of qualitative data/such as smoker and non-smoker, educated and non-educated
etc. the proportion (p), of smokers, educated etc. is calculated. If p is an unbiased
proportion of population‘proportionP, then the variance expressions of sample proportion
for with and without.replacement sampling are respectively given as:

_N-nPQ
Var (Pyor) = ™ W (srswor) (3.10)
and
Var (p,,,) =PQ/n (srswr) (3.11)

For large N, N-1 approaches to N, and if fpc is ignored than we get the same expression
for with and without replacement given as:

Var(pyy) = PQ/n (3.12)
An unbiased variance expression for with and without replacement is:
N-n pq
var(Pyor) = N n_1’ (3.13)
and
N-1
Var(p ) =~ (3.14)

N n-1
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Ignoring fpc we get:

var(p) = pa/(n-1) (3.15)
For large n, if n/N is small, we get:
var (p) =pq /n (3.16)

3.3.3 Estimation of Sample Size

The most important question for statisticians and non-statisticians is how large a sample
should be? In a survey sampling, it is always a problem for an experimenter to know or to
determine the size of the sample when the result is required with least sampling error.
Should a sample be 2% or 5% or 10% or any other fraction? Although the sample size is
a matter of choice with the planner, yet great care and weight is needed in its
determination. Since sample is a proportion of the population;, it should neither be too
large to involve a lot of expenditure and non-sampling error nor too small to make the
results less reliable. In fact the sample size depends on the costfinvolved and time and
precision required. Optimal sample size minimizes sampling‘error. Although sampling
error is decreased by the increase of sample size but‘without optimal sample size there is
a danger of large non-sampling error.

The following formula may be used for different situations.
(a) Sampling for Proportions
(i) Sample size for absolute precision

Z{ o) P-p)
no =d—2

where d is the difference \between estimated and actual value. i.e. absolute precision
required on either side of thesproportion p. It is usually taken as 5%. If sample size is
large, then for 95%,probability level or confidence level Z1_a. /2 is taken as 1.96, for
99% level, 2.58, and for 90% the confidence level is 1.645. For convenience, sample
size has been calculated for different values of p and d, [Tables 3.12 and 3.13 are
given at the end of this chapter].

, (3.17)

Example 3.2:

The Ministry of Health wishes to estimate the prevalence of tuberculosis among
children under 5 years of age. How many children should be there in the sample so
that the prevalence may be estimated within 5% points of the true value with 95% or
99% confidence level, if it is known that the true rate will not exceed 15%.

Solution:
In This exemple we have

p=0.15,1-p=0.85
Probability level or confidence level (1 — o)) = 95% or 99%.

d = 5 percentage points
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Zy o =196 for a=0.05 and Z,_,/, =2.58 for o =0.01
Using the formula, we have

o (1.96)* (0.15) (0.85)

0 : = 196 for 1- o = 95%
(0.05)

and
o _(2:58)% (0.15) (0.85)

0 5 =339 forl—a=99%
(0.05)

If population is finite then an approximation of sample size can be obtained as
n

n=-—->=" -—

1+ (ny—-1/N

then the sample size may be estimated as, by an approximation,

~ 196 _ 196 .o
1+ (196-1)/20000 ~ 1.00975

. If the population of children less than 5 years of age is 20,000,

ny

This is not different from 196, so 196 or 194 may be taken as a sample size.

Example 3.3:

Ministry of Health would like to estimate the proportion of children who are receiving
medical care regularly. How large should he the sample if the estimate falls within
5% of true proportion with 95% confidence level.

Solution:

In this question, the assumption regarding proportion of children who are receiving
regularly medical care is that 50% of the population of children is receiving medical
care. Using p = 0.50,maximum sample size will be obtained.

If we take
p=0.5;1-a=0.950.99;d=0.05
then
2
Ny = (L.96) (0'52) 05) _ 384 for 95%
(0.05)
2
Ny = (258)” (05) (05) = 666 for 99%

0 (0.05)?

Suppose N = 600 then, then the sample size for 95% level comes to be:

. 384 _ 384
17 1+(384-1)/600 1.638

=234 (2nd approx.)
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- 234 234
27 14 (234-1)/600  1.388

=169 (3rd approx.)

o= 169 169
® 1+(169-1)/600 1.280

= 132 (4th approx.)

This process will continue till difference between the last two approximations
becomes minimal.

(ii) Sample size for relative precision

If the coefficient of variation (or for relative precision) is given, the formula for the
determination of sample size is

242 1-P)

n=
D?p

(3.18)

where D denotes coefficient of variation or relative precision.

For convenience, sample sizes have been calculated for«different values of p and D.
[see Tables 3.14 and 3.15]

Example 3.4:

Ministry of Health of Eastern Province would like. to conduct a survey regarding
hypertension of elderly persons (above the‘age of 60). It is known from the past
experience that the prevalence of hypertension is 25%. How large a sample should be
so that the resulting estimates falls within 10% (not 10% points) of the true proportion
with 95% confidence level?

Solution:
In this question p £,0.25; Confidence level = 95% and relative precision is 10% of
25%. There are two ways toselve this problem.

(i) Using relative precision formula
2
= (1.96)2 (0.75) - 4610
(0.05)“ (0.25)
(i) Using absolute precision formula
Since d =0.05 x 0.25 = 0.0125

- (1.96)%(0.25) (0.75)

= 4610
(0.0125)2

If population size is known to be 2000, then

. 4610 4610
17 1+ (4610 —1)/2000 3.3045
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1395 1395
n, = = =22 g2
1+ (1395 —1)/2000 1.697
822 822 _ o

n,= =
% 1+(822-1)/2000  1.4105

This process will continue till there is not much difference between the last two
approximations. We see that after 10" approximation, we get the sample size of
212

If p = 25% to 40% and relative precision D = 0.05 then for different values of
p and with 95% confidence level, the sample size will be:

Table 3.2
p 0.25 0.30 0.35 0.40
n 4610 3585 2854 2305

The relative precision (D) may be converted into absolute precision{(d) as

.25 x .05 = 0.0125

.30 x .05 = 0.0150
d=pxD=

.35 x.05 = 0.0175

40 x 0.5 =0.0200

The sample sizes for different‘values ofid and p and for 95% confidence level are
given as:

Table 3.3
Sample sizes far different values of p and d
pl d— 0.0125 0.0150 0.0175 0.0200
0.25 4610 3201 2352 1801
0.30 5163 3585 2634 2017
0.35 5593 3884 2854 2184
0.40 5901 4098 3010 2305

If the range is given, i.e. the prevalence is 10 to 25%, then it is always advisable to
use prevalence 25% for precision. If the range is 45% to 55% then for precision use p
= 50% but for relative precision use 55%.

(b) Sampling with Continuous Data (absolute precision)
If mean and sample variance is known then the formula for determination of sample
size

22, s°
— “l-al/2
n,= ——>— (Istapprox.)

o2 (3.19)

If the population size is known then
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n,= n% (2nd approx.)
1+-2
or
n,= ”1n (3rd approx.)
1+-1
N
and so on.
Example 3.5:

A physician would like to know the mean fasting blood glucose of patients seen in the
diabetes clinic over the past 10 years. Determine the number of records the physician
should examine in order to obtain 90% and 95% confidence level for population if the
desired width of the interval is 8 units and pilot sample yields a standard deviation of
60 units.

Solution:
Here s = 60, D = 4, as the total width is 6 whichuis on the both sides of the mean.
Therefore, the sample size for 90% confidence will be

. (1.645)? (60)?

o/ =609 for 90%
(4)
and for 95 %
2 2
n= E9OVCO° _ g6 torgs9
4)

3.3.4 Standard Deviation and Standard Error

When numerical findings are. reported in research articles or medical dissertation,
regardless of whether or not their statistical significance is quoted, they are often
presented with additionalsstatistical information. The distinction between standard
deviation and the standard error is often misunderstood. By contrast, the standard error is
a measure of the uncertainty in a sample statistic.

The standard deviation is relevant when variability between individuals is of interest
whereas the standard error is relevant to summary statistics such as mean, proportions,
differences between means and proportions, etc.

The standard error of the sample statistic, which depends on both the standard deviation
and the sample size, is recognition that a sample is most unlikely to determine the
population value exactly. In fact, if a further sample is taken in identical circumstances, it
will almost certainly produce different estimates of the same population. The sample
statistic is therefore imprecise and the standard error is a measure of this imprecision.

The standard error of sampling mean is given as:

SE(Y) = yvar(y) (3.20)
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3.3.5 Confidence Limits

It is not possible for a sample to evaluate characteristics of a population exactly, but it
estimates the characteristics as accurately as possible. One way out may be to find
intervals which are functions of observations and which cover the parameter with pre-
assigned probabilities. In case the variable is normally distributed with known variance,
the sampling distribution of means is also normally distributed. The interval X + 1.96 SE
(X)) will cover sample means in 95% of the cases.

The confidence intervals are calculated whenever an inference is to be made from the
sample to the population from which the sample has been drawn. The calculated interval
provides a range of values within which lies the population value. Confidence limits are
calculated with (1 - a)% confidence coefficient. The width of the confidence coefficient
intervals depends on three factors. Firstly the size of sample (large sample sizes give
narrower confidence intervals), secondly the standard deviation of the characteristic
being studied (smaller the standard deviation, narrower the confidence interval) and
finally the degree of confidence is required.

The confidence limits for sample mean are:
mean * Z1_q/2 S.E (mean) (3.21)

For 95% reliability the confidence limits will<be:
y-1.96 SE(Y) and ¥y +1.96 S.E(Y) (3.22)

For sample proportion the confidence limits-will'be

P+Z1-0/2 ,/@ (3.23)

(i) Confidence limits for. large sample
This is explained with the following example.

Example 3.6:

The serum cholesterahlevel of healthy persons is given. Select a sample of 30 persons
from the population of 90 -persons and estimate the average cholesterol level of persons in
the population. Construct 95% confidence limits for the mean of the population (the data
is given on in Table 3.4)

Solution:

We have 90 persons in the population, or we say N = 90. The purpose is to select a
random sample of 30 persons from the given population of 90 persons. One should
remember that random number table or a computer psuedo random numbers are used to
select 30 persons out of 90.The mean cholesterol level of persons in the population is
19316/90 = 21462. One should remember that population mean or proportion is never
known before it is always to be estimated on the basis of sample. In this example actual
population values are given and sample has been selected so that comparison could be
made. We can calculate the mean of the selected sample and can compare it with
population mean.
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Table 3.4
Serum cholesterol level of 90 healthy persons

Person | Cholester | Persons | Cholestero | Persons | Cholestero
S ol level | level | level
1 154 31 172 61 235
2 212 32 219 62 253
3 222 33 247 63 263
4 259 34 186 64 266
5 239 35 257 65 200
6 201 36 222 66 200
7 204 37 208 67 223
8 208 38 170 68 155
9 197 39 202 69 201
10 205 40 222 70 234
11 196 41 236 71 263
12 212 42 248 72 233
13 218 43 186 73 223
14 196 44 259 74 198
15 169 45 218 75 177
16 179 46 208 76 197
17 210 47 226 77 221
18 204 48 160 78 220
19 212 49 171 79 231
20 191 50 238 80 222
21 239 51 175 81 200
22 251 52 208 82 225
23 160 53 239 83 279
24 214 54 255 84 283
25 188 55 221 85 258
26 236 56 160 86 253
27 248 57 224 87 234
28 189 58 156 88 276
29 174 59 230 89 265
30 138 60 262 90 221

total 19316

A random sample of 30 using the random digits given at the end of the chapter has been
selected and the values of the sample are given in Table 3.5.
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Table 3.5
Selected sample of 30 persons

Sr. Random number | Cholesterol level
No X x?
1 88 276 76176
2 25 188 35344
3 56 160 25600
4 07 204 41616
5 31 172 29584
6 47 226 51076
7 73 223 49729
8 16 179 32041
9 89 265 70225
10 03 222 49284
11 72 233 54289
12 74 198 39204
13 43 186 34596
14 17 210 44100
15 83 279 77841
16 62 253 64009
17 37 208 43264
18 65 204 41616
19 79 231 53361
20 06 201 40401
21 33 247 61009
22 32 219 47961
23 12 212 44944
24 02 212 44944
25 45 218 47524
26 13 218 47524
27 66 200 40000
28 23 160 25600
29 20 191 36481
30 35 257 66049
Total 6452 1415392

The sample and population means are 6452/30 = 215.07 and 19316/90 = 214.62,
respectively. We see that one random sample has been selected and mean cholesterol
level on the basis of the sample is 215.07 whereas mean cholesterol level of the
population is 214.62. The difference between sample and population mean is not much.
As mentioned before, in practical life, we never know population mean and proportion
this is assumed to be an estimate of the population mean. The sample mean, 215.07 is an
estimated value of population mean, 214.62. To locate the position of population mean,
we construct 95% or 99% confidence limits, then we say with confidence that is, we are
95% or 99% confident that these two limits contain population mean. For this purpose we
calculate first sample standard deviation and then standard error. The sample standard
deviation is: (using Equation 3.8)
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2
s= £l 1415392 _(6452)7 ) _ 30.952
29 30

If a sample is large, we divide by 30 = n or 29 = (n - 1) which does not make much
difference but remember if the sample size is less than 30, it is essential that the divisor
for standard deviation is n-1.

The standard error of sample mean is:

s _ 3095 _ 3095 _

SE(X =mean)= —— = —— = —— =5.650
( ) Jn 30 5477
The confidence limits of p is
mean = Zj.g/2 S.E (mean) (3.21)

Were Z1-g/2 is taken 1.645 for 90%, 1.96 for 95%.and 2.58 for 99% confidence level
[Table 3.18]. The 90%, 95% and 99% confidence limits respectively are:
215.07 £ 1.645 x 5.650 = (205.80 - 224.36) is a 90% confidence limits

215.07 £1.96 x 5.650 = (203.996 - 226.074).is a 95% confidence limits
215.07 £ 2.58 x 5.650 = (200.493 ~ 229,647) is @99% confidence limits

In this example, we state that population mean is.214.62. Therefore, we say with 90% or
95% or 99% confidence that these limits‘contain population mean. If the population mean
is not known, even then we say:with confidence that above statement is true.

Example S3-1 (Selecting aSimple Random Sample using IBM-SPSS)

To select a random sample of'size”30 from the data in table 3.4, using IBM-SPSS, we
follow the following,steps: Data=» Select Cases:

(we can either chose\Filter out unselected cases, or Copy selected cases to a new
dataset, or Delete unselected cases):
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File Edit View ransform Analyze Direct Marketing = X
% . é [3 Define Variable Properties...
L= " | 7% sSetMeasurementLevel for Unknown... 3 slect
= Sr. No. [No] © Al cases
15 Copy et Popertis-  Cholesterollevel [C @ Ifcondition is satisfied
' New Custom Atiribute... =
L B Define Dat dis
efine Dates.
E - ® Random sample of cases
3 Define Multiple Response Sets.. =
r Validation 13
= 3] © Based o e or case range
3 = |dentify Duplicate Cases.. =
Range
6 F7 Identify Unusual Cases... nd )
7 T, Compare Datasets... @ Use filter variable:
4 5 Sort Cases - ‘
9
10 ESur{\lananes
1 &l Transpose.. [ Output
12 Merge Files » © Filter out unselected cases
13 FH Restructure... © Copy selected cases to a new dataset
14 i Agoregate. :
15 Orthogonal Design 3
16 %, Copy Datasst
7] == splitFile.
18
19
20

To obtain the Con s for the mean using IBM-SPSS, for the data in table 3.5,
ow the following steps:

Direct Marketing  Graphs  Utilities  Add-ons W

o W PREEE

[E] Frequencies...

File Edit View Data Transform [ Analyze |

SHEe @ o
|

Descriptives_..
I No || Cholestrol Compare Means 4
1 1 21 General Linear Model >
2 2 1 Generalized Linear Models » _
3 3 18 Mixed Models 3 Ratio..
4 4 2 Correlate 3 I PP Piots..
5 5 1 e N Q-QPlots...

We move the variable into Dependent List and do as follows:
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= Explore

ta Explore: Statistics H
Dependent List: Statistics. .
s e El S —
. i Confidence Interval for Mean: %
Factor List. -
— [[] M-estimators
- L] -
PSS || Qutliers
abel Cases by:
|| Percentiles
Display
@ Both © Statistics © Plot: .
= — [Contlnu [ Cancel ][ Help ]
= /

(Note that we can change the 95% to any other value, e.g. 90% or 99%).

Once we click on , we get the following output for the 95%:

Statistic | Std. Error
Cholesterol level  Mean 216.07 56581
rgs% Confidence Interval Lower Bound 20381 r 4

for Mean UpperBound | 22662
5% Trimmed Mean — 21463
Median 212.00
Variance 967.995
Std. Deviation 30.952
Minimum 160
Maximum 279
Range 119
Interquartile Range 35

Skewness 313 A7

Kurtosis -175 833

(i) Confidence limits for small sample
The values of 90% or 95% or 99% are only used if the sample size is large.

Example 3.7:
A sample of size 10:is drawn from the population given in example 3.4 is given on next
page table 3.6:

The sample mean = 2221/10 = 222.1, and the sample standard deviation using (3.8) is

2
s = L 506321—% = 38.060.
10 10

(The divisor is (10 - 1) and not 10.)

38060 _ 222122262 x 200 1 1194875,
Ji0 3.162

249.325]. 2.262 is value from the t-table [Table 3.17].

The confidence limits are 222.1 + t1-/2
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Table 3.6
Selected sample of 10 persons

Value of cholesterol level
Random members X X2
82 225 50625
44 259 67081
53 239 57121
60 262 68644
06 201 40401
07 204 41616
30 138 19044
65 200 40000
61 235 55225
85 258 66564
Total 2221 506321

The question is how to see the table. If it is 95% confidence limit then subtract 0.95 from
1, i.e. 1 -0.95 = 0.05, divide 0.05 by 2, i.e. = 0.025;:subtract 0.025 from 1 we will get
0.975, consult the t-table under 0.975 and against (9 =/(n -«1). This value is used at the
place of t,__,,. (n - 1) is called the degree of freedom and 0:05 (5%) is called level of

significance. This will be explained in the next:Chapter.
Example 3.8:

A sample of 25 physically active adult males was selected and arterial blood gas analysis
was performed. The results are given in terms of PaQ, values i.e. 75, 88, 75, 88, 72, 83,

83, 72, 87, 78, 78, 77, 79, 80,80, 83,79, 79, 72, 83, 76, 85, 86, 84, 75. Compute 95%
confidence limits for the mean.

Solution:
Mean = 79.88 and sample standard déeviation = 4.969. The 95% confidence limits will be

sample s.d (s)

V25
4.969

mean + t1-g/2

79.88 + 2.0639 X

=79.88 £ 2.049 or [77.830 ~ 81.929].

(The table value at 5% level of significance with 24 degrees of freedom 2.0639)

The confidence interval is narrow and therefore, we say our sample estimate is close to
population parameter.

Example S3-3

To obtain the Confidence limits for the mean using IBM-SPSS, for the data in example
3.8, we enter the data and follow the following steps:

Analyze=» Descriptive Statistics =» Explore:
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File Edit View Data Transform jAnalyze IDiredMarketing Graphs  Utilities  Add-ons V¥

S N Report b
=1 1= o LT M FD R
e Descriptive Statistics ¥ [E] Frequencies...
gL 4 Elgescriptiues...
Avrterial var Compare Means » g5
1 75 General Linear Model » @;rosstabs
2 88 Generalized Linear Models » ; .
1| Ratio...
3 75 Mixed Models p | 25
4 38 Corelate R [ P-P Plots...
5 72 Regression y | EoaPiots.
We move the variable into Dependent List and do as follows:
& Explore ta Explgre: Statistics EX|

Dependent List

Statistics.

- Lo Descripives
— Confidence Interval for Mean: %%
F S [T] Meestimators
B (sam.) ] e
Label Cases b []'Qutiers
abel Cases by.
[T] Percentiles

Display

@ Both © Statistics © Plots
= = - W Cancel Help
|

=0

Once we click on , we get the following output for the 95%:

Descriptives

Statistic Std. Errar

Anterial blood'gas  Mean 79.88 9594

( ﬁ);onﬂdence Interval Lower Bound 77.83 - -

BLMean Upper Bound 51.93 p—
5% Trimmed Mean 79.87
Median 79.00
Variance 24,683
Std. Deviation 4.969
Minimum 72
Maximum a8
Range 16
Interquartile Range g

Skewness 027 464

Kurtosis -.991 802

Example 3.9:
Among Saudi male children 7% asthma was found during a survey held at Yumboo. The
sample size was 200. Estimate 95% confidence limits for population proportion of
Yumboo city.
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Solution: p = 0.07
1-p = 0.093

ptZ1-as2 |0 (3.23)

Since sample (n) is large we use 1.96 for 95% confidence level.

0.07 (1-0.07)
200

0.07 £1.96

or
0.07 £0.035 [0.035, 0.105]

These limits contain the proportion of children suffering from asthma in the city of
Yumboo.

Example S3-4
To obtain the Confidence limits for the proportion using -SPSS, for the data in
example 3.9, we enter the data (14 of 1’s and 186 o nd. fo ¢ following steps:

Analyze=» Descriptive Statistics = Frequency:

Descriptives...
B Explore..
BH crosstabs
Ratio

2] P-P Plots...
Q-0 Plots...

Correlate

Reagression »

umber of samples: 1000

z el { gatstes.. !
asthma m "’ Set seed for Mersenne Twister
\\..L“ @ Seed 2000000

rConfidence Interval
£ % Lo
@ Percentile

@ Bias corrected accelerated (BCa)

ngsplayfreuuencytab\as ampling
@ simple
(Lo zae (meset) (cancat) Lten ] o s
Variables: Strata Variables:
& z2sthma

W@
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Once we click on , we get the following output:

asthma
Bootstrap for Percent?
Cumulative 95% Confidence Interval
Frequency | Percent | Valid Percent Percent Bias Std. Error Lower Lpper

‘alid 0 186 930 93.0 93.0 .0 1.9 89.5 96.5
—
1 14 7.0 7.0 100.0 0 19 GE 10.5°p

Total 200 100.0 100.0 .0 .0 100.0 100.0

a. Unless otherwise noted, hootstrap results are based on 1000 bootstrap samples

3.3.6 Stratified Random Sampling

As has been mentioned before, if there is a large variation among the population units,
then simple random sampling selection procedure will be less precise, i.e. estimates
obtained from using this selection procedure will not be a good estimate of population
parameter. If relatively more precise results are to be obtained, then the population is to
be divided into different homogeneous groups, called strata. The'strata are formed so that
inside each stratum, units are as homogeneous as_far as possibles Stratification is a
process of dividing the population into different strata and selecting a sample of the
required number of units within strata, using the simple random sampling selection
procedure. Estimates (i.e. mean, proportion, etc.) of each stratum are aggregated to
produce an estimate for the whole population using.a method of weighted mean. There
are number of reasons for using this type of selection procedure, i.e. (i) it may increase
precision by reducing the variation, (ii) information may be needed for individual strata,
(iii) it is easy to control the execution.of“survey, and (iv) simultaneous work can be
started by independent teams. Stratification can be done by area, age, gender, race, area,
nationality, type of patients admitted in‘the<hospital, etc. Sample may be selected using a
method of proportional allacation. This method of allocation is more scientific and easily
under stable by all. This allocation is highly useful if there is a considerable difference
between strata averages or. propertions and not many differences between the variances
within the strata.dnithe study,of population of smokers, the physician may wish to stratify
according to type of smokers (light, medium or heavy smokers). The population of
smokers may be divided. into light smokers, medium smokers or heavy smokers.

An unbiased estimator for population mean for stratified random sampling is
— -
Yst= YN, Yn/N (3.24)
h=1

The variance of sample mean of stratified random sampling is as:

— k 2
Var (yg) = : > [Nh(Nh_nh)i_h] (3.25)
h

N2 na

If the allocation of the sample size is proportional then the variance of sample mean will
be
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Varprop(yst) = WEWh Sﬁ (3.26)

If correction factor is ignored then (3.26) takes the following form

_ K
Varprop(yst) = thh Sﬁ In (3.27)
=1
The optimum allocation of sample size when the cost in involved is
nwW, S,/,/C
n, = # (3.28)
If the cost is ignored then the above formula takes the following form
Ny, = ZW—hSh (3.29)
th Sh
h=1

The variance of the sample mean for optimum allocation when cost is involved

_ 1( k K 1 K 5
Var,; == >W, S, /,C WS,/C -——>WS 3.30
min (Yst) ﬂ[ha h °h hj[hZ_:l he®h hj th::l hoh (3.30)
If the cost factor is ignored then (3:30) will be
— 1( k k
Vari, (Yg) =H(thWh Sh 1 Eh J[thWh Sh’\/chj (3.31)
Example 3.10:

The smoking information.given in the following table and is obtained from census of an
Australian City during 1966.

Table 3.7
Stratification with respect to number of cigarette smokin
Type of Smoking Population Size of adult males
Light smoker
<10 28,900
Medium smoker
10-20 38,300
Heavy smoker
> 20 52,800
Total 120,000
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In order to examine the current smoking habits of adult males in the city, using the
information, a sample survey was planned for 1968. It was further decided to use a
sample size of 800 adult males.

Solution:
The sample size is allocated to each stratum by using proportional allocation method as:
Light smoker = 28900 x 800 = 192.6 ~ 193
120000
Medium smoker = 38300 x 800 = 255.3 ~ 255
120000
52800

Heavy smoker = x 800 = 352 = 352

120000
3.3.7 Sytematic Sampling

This selection procedure is different from simple random sampling selection procedure.
In simple random sampling procedure every unit is'Selected by, using random numbers
table whereas in systematic selection procedure, only.the first unit is selected at random
and the rest of the units are automatically determined. Suppase there are 500 households
in a population and 5 percent sample is #onbe selected/from this population using
systematic selection procedure. The sample size comes,out to be 25 units. What we do is
to calculate N/n = 500/25 = 20 (K), thissis called’skip interval. Note that 25 is the size of
the sample. Select one unit randomly from first 20 units, using simple random sampling
selection procedure. For this purpose; we will adopt the same procedure as it was done in
case of simple random samplingyselection procedure. Choose two columns of random
number tables, and take thefirst numberthat is less or equal to 20 (00 is not considered).
By using the random numbers table, 12th household is chosen from first twenty
households, then remaining households will be chosen automatically with the skip
interval as 12 + 20, 12 +2(20), 12 + 3(20) and so on. The sample will consist of the
following households.

12, 32, 52, 72,92, 112, 132, 152, 172, 192, 212, 232, 252, 272, 292,
312,332, 352, 372, 392, 412, 432, 452, 472 and 492.

This procedure of selecting the sample is called systematic selection procedure. The
probability of the selection of the sample is 1/K= 1/20, which is in fact the probability
with which any member of the group is selected in the sample. This type of selection
procedure is very useful when the population size is unknown or sampling frame is not
possible. If the population size is known, it is advisable to use simple random sampling
selection procedure. In summary, the following remarks are useful for systematic
sampling procedure.

i) Selection is simple, easier and quicker.

ii) Itinvolves less cost as compared to simple random sampling.

iii) A complete and up to date frame is not strictly needed, but the idea of the
population is necessary, whereas in simple random sampling selection, procedure
a complete and up to date frame is necessary.
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In practical situation N/n is not an integer. If population units are 1012 and sample of size
40 is to be selected, the skip interval comes out to be as 1012/40 = 25.3, take 25 as skip
interval. If population units are 1025 and a sample of size 40 is to be selected, the skip
interval comes out to be as 1025/40 = 25.6, take 26 as skip interval, etc. In most of
situations population size is not known, then skip interval is the choice of an experienced
sampling statistician. Note that, if sampling frame is available then simple or stratified
random sampling is a better choice.

An unbiased estimator for population mean is
o1 ko
Ysy :_zzyri (3.34)
nK rZic1

The variance of sample mean is
_ 1k _ =
Var(ysy) =E2(yr -Y) (3.35)
r=1

Other form of variance is

N-1

_ k(n-1
Var(gy) = St - K0D

N
where S?is total sum of square and Sf\, is within sumyof squares i.e.

sz, (3.36)

(nk-1)5? = 3 Iy, - V12 (3.37)
r=li=1
and
S SR 2 VTS 3.38
PN (R0 (338)

3.3.8 Single Stage Cluster:'Sampling

The word cluster ‘was used by Hansen and Hurwitz (1942) to describe a group of
elements that constitute,a sampling unit. When the entire area containing the population
under study is sub-divided into smaller areas and each element of the population is
associated with one and only one such small area, the procedure is alternatively called
area sampling. Cluster sampling is a selection procedure in which population units
(elements) are divided into convenient number of groups, called clusters. Each cluster
contains some elements. A random sample of some clusters is selected using a simple
random sampling procedure or probability proportional to size selection procedure (see
next section). Each selected cluster is studied in full. Since all the elements in the
sampled cluster are examined in full, therefore it is known as a single stage cluster
sampling. Sometimes clusters are known as primary units in the context of multistage
sampling and elements within each cluster are called secondary units.

The concept of cluster was developed for the cases, where the list of elements is not
available. For example, in a population survey, list of households is available whereas a
list of persons is not. Since cluster sampling consists of groups of elements, approach to



106 Sampling Procedures and Sample Size Estimation

the elements is faster, easier and more convenient than other sampling procedures. Cost
will be less if the elements are grouped in a cluster rather than randomly dispersed
throughout the area. Since cluster sampling is not a true representative sampling method
as compared to simple random method, therefore, the efficiency will be less. The
efficiency of clustering sampling depends on the size of the cluster. If the size of clusters
is large and the number of clusters is less the efficiency will also be decreased, but if the
size is small and number of clusters is more, the efficiency will be increased. Cluster
sampling procedure is different from stratified sampling in the sense that in the former
case all elements within groups (clusters) are studied.

The cluster sampling procedure is explained below:

Suppose we would like to hold a TB survey in Dammam City and the list of households
and list of persons are not known to us. We can divide the whole city into different
sectors (clusters) say (40). We try to divide the population into,equal size clusters as far
as possible. Suppose 10 sectors (clusters) are likely to be selected. We will use simple
random sampling procedure to select 10 clusters. Then all.ihe 10.selected clusters will be
examined fully to check the prevalence of TB.

If the clusters vary in size then, simple random selection procedure will not be
appropriate method of selection. We will select the sample keeping in view, the size of
the clusters. The selection used in these.situations will be known as probability
proportional to size sampling selection procedure:

An unbiased estimator of population mean is

1nM

D Yij (3.39)

Ye=——
© aMT 3

The variance of sample mean is

- N-n Nyc oy
Vare) i 1Y) (3.40)

An unbiased variance estimator of (3.40) is

N-n 1 (__ —)2

(3.41)

where y; is mean of the cluster of population and Y the mean of population.

3.3.9 Probability Proportional to Size Sampling Procedure

In all the above selection procedures, equal probability of selection was involved i.e. each
unit or each cluster has equal chance to be in the sample, but in probability proportional
to size sampling procedure, units are selected keeping in mind the size of units. This
method is also known as sampling with unequal probabilities of selection procedure.
Hansen and Hurwitz (1943) suggested this selection procedure.

An unbiased estimator for population total is given as
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’ ' 12 i
Yhn OF Yeps :_ZL' (3.42)
Nz P;

where p; is the probability of selection of the ith population unit to be in sample.

The variance and unbiased variance estimator are given respectively

Var (Yhy) = %(%:—'Z—YZJ (3.43)
and
2
var(yyy) = ﬁ%{% - thJ (3.44)

Here only brief introduction is given, if anyone is intereSted, he may refer to a
monograph on sampling with unequal probabilities by Brewer and Hanif (1983). This
selection procedure is explained as:

Example 3.11:
Avreas of 20 sectors and numbers of households in each.area are given. Select a sample of
5 sectors.

Solution

To select a sample, some basic calculations aré required. In column 5, proportions
(probability) of the area of each sector, and in column 6 cumulative size of the area have
been calculated. In column 7 range of each'sector is given. The ranges are given only for
convenience otherwise it is not essential. Suppose we like to select a sample of 5 sectors
under this selection procedure. Five random numbers are selected between 001 and 448.
These random numbers are 153, 52, 414, 283 and 177. They fall in the ranges 151 - 156,
43 - 58, 316 - 438, 257- 310.and 162 - 256. Therefore, sector numbers, 8, 4, 16, 11, and
10 are in the sample as given in‘Table 3.9.
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Table 3.8:
Population of house hold along with area
Sector | Area No. of Zilz Proportion |[Cumulative | Range
No. Zi Households Zilz Z
@) (2) 3) 4) 5) (5) (6)
1 33 2328 33/448 0.074 33 1-33
2 8 754 8/448 0.018 41 34 -41
3 1 105 1/448 0.002 42 42
4 16 949 16/448 0.035 58 43 - 58
5 43 3091 43/448 0.096 101 59 -101
6 40 1736 40/448 0.089 141 102 - 141
7 9 840 9/448 0.020 150 142 - 150
8 6 311 6/448 0.014 156 151 - 156
9 5 0 5/448 0.011 161 157 - 161
10 95 3044 95/448 0.212 256 162 - 256
11 54 2483 54/448 0.121 310 257 - 310
12 1 128 1/448 0.002 311 311
13 1 102 1/448 0.002 312 312
14 2 60 2/448 0.005 314 313-314
15 1 0 1/448 0.002 315 325
16 123 11799 123/448| 0.275 438 316 - 438
17 1 26 1/448 0.002 439 439
18 3 317 3/448 0.007 442 440 - 442
19 4 190 41448 0.009 446 433 - 446
20 2 180 2/448 0.005 448 447 - 448
Total |448=Z 28443
Table 3.9:
Sample selected from Table 3.3
Random Sr. No. Number of Probability of
Numbers of Sector Houses Selection
52 4 949 0.035
153 8 311 0.014
177 10 3044 0.212
283 11 2483 0.121
414 16 11799 0.275

This selection procedure is with replacement and a cluster can be selected twice.

There are over 100 selection procedures relating to probability proportional to size
without replacement. Here only one selection procedure that is most frequently used by
non-statisticians is described.

3.3.10 Random Systematic Selection Procedure

This selection procedure is simple and easy for the selection of a sample. It is commonly
used in a large-scale survey. In this selection procedure the population units (sectors) are
randomly arranged. The size of each population is mentioned against every unit. The size
may be area or may be total number of households in that sector.
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Example 3.12:

Suppose we have a population of 8 sectors. Select a sample of 3 sectors. These sectors are
arranged randomly before the selection of sample. Against each sector, the size of sector
is given.

Table 3.10:
Population of 8 Sectors

Sectors | Size of Sector | Cumulative Size | Cluster to be Selected
1 15 15
2 81 96 36
3 26 112
4 42 164 136
5 20 184
6 16 200
7 45 245 236
8 55 300
Total 300

A sample of 3 sectors is to be selected. Divide the total by the sample size to obtain skip
interval, i.e. 300/3 = 100. Select a random start from 001to 300. Let the random start be
36, so the first sector selected will be the 2nd.one. For the selection of second and third
sectors, we proceed as: add 36 + 100 = 136 and 36:+.2(100) = 236. 136 falls against 164
and 236 falls against 245. So, 4th and 7th sectors are selected. As a result 2nd, 4th and
7th sectors are in the sample.

3.3.11 Multistage Sampling

Simple random sampling and stratified random sampling selection procedures described
above may be considered as a single Stage sampling procedure. In a single stage selection
procedure, a sample istdrawn, from a population and informations are obtained from the
sampling units. In multistage sampling, a population is divided into a number of large
units and a sampleof.large,units is selected either using equal probability selection
procedure or using probability proportional to size selection procedure. Each of selected
large unit is further subdivided into smaller units, and a sample of these units is selected
from each of the selected large units. Kendall and Bukland (1980) in the Dictionary of
Statistical Terms define a multistage sample as one which is selected by stages, the
sample units at each stage being sub-sampled from the (larger) units chosen at the
previous stage or in multistage sampling selection is carried out in a succession of stages.
Typical example of multistage sampling may be a health survey in Eastern Province,
Saudi Arabia where the Eastern Province is divided into primary care centers as the first
stage units. A sample may be selected from primary care centers as primary sampling
units (P.S.U.) From each primary care centers; sample of patients may be selected as
second stage units (SSU) and so on.

Multistage sampling is most frequently used in field surveys where the list of last stage
units is difficult to get. Though by using multistage sampling precision is lost but it is
much cheaper and quicker than any other design.
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Table 3.11 (Random Digits)
57780 97609 52482 12783 88768 12323 64967 22970 11204 37576
68327 00067 17487 49149 25894 23639 86557 04139 10756 76285
55888 82253 67464 91628 88764 43598 45481 00331 15900 97699
84910 44827 31173 44247 56573 91759 79931 26644 27048 53704
35654 53638 00563 57230 07395 10813 99194 81592 96834 21374

46381 60071 20835 43110 31842 02855 73446 24456 24268 85291
11212 06034 77313 66896 47902 63483 09924 83635 30013 61791
49703 07226 73337 49223 73312 09534 64005 79267 76590 26066
05482 30340 24606 99042 16536 14267 84084 16198 94852 44305
92947 65090 47455 90675 89921 13036 92867 04786 76776 18675

51806 61445 32437 01129 03644 70024 07629 55805 85616 59569
16383 30577 91319 67998 72423 81307 75192 80443 09651 30068
30893 85406 42369 71836 74479 68273 78133 34506 68711 58725
59790 11682 63156 10443 99033 76460 36814 36917 37232 66218
06271 74980 46094 21881 43525 16516 26393 89082 24343 57546

93325 61834 40763 81178 17507 90432 50973 35591 36930 03184
46690 08927 32962 24882 83156 58597 88267 32479 80440 41668
82041 88942 57572 34539 43812 58483 43779 42718 (46798 49079
14306 04003 91186 70093 62700 99408772236 52722 37531 24590
63471 77583 80056 59027 37031 05819 90836) 19530 07138 36431

68467 17634 84211 31776 92996 75644 82043 84157 10877 12536
94308 57895 08121 07088 65080 51928 74237 00449 86625 06626
52218 32502 82195 43867 79935 34620, 37386 00243 46353 44499
46586 08309 52702 85464 06670 18796 74713 81632 34056 56461
07869 80471 69139 82408 33989 44250 79597 15182 14956 70423

46719 60281 88638 26909 32415 31864 53708 60219 44482 40004
74687 71227 59716 80619 © 56816 73807 94150 21991 22901 74351
42731 50249 11685 54034 1271035159 00214 19440 61539 25717
71740 29429 86822 / 01187 96497 25823 18415 06087 05886 11205
96746 05938 11828 47727 02522 33147 92846 15010 96725 67903

27564 81744 51909 36192 (45263 33212 71808 24753 72644 74441
21895 29683 26533, 14740 94286 90342 24671 52762 22051 31743
01492 40778 05988 65760 13468 31132 37106 02723 40202 15824
55846 19271 22846 80425 00235 34292 72181 24910 25245 81239
14615 75196 40813 50783 66585 39010 76796 31385 26785 66830

77848 15755 91938 81915 65312 86956 26195 61525 97406 67988
87167 03106 52876 31670 23850 13257 77510 42393 53782 32412
73018 56511 89388 73133 12074 62538 57215 23476 92150 14737
29247 67792 10593 22772 03407 24319 19525 24672 21182 10765
17412 09161 34905 44524 20124 85151 25952 81930 43536 39705

68805 19830 87973 99691 25096 41497 57562 35553 77057 06161
40551 36740 61851 76158 35441 66188 87728 66375 98049 84604
90379 06314 21897 42800 63963 44258 14381 90884 66620 14538
09466 65311 95514 51559 29960 07521 42180 86677 94240 59783
15821 25078 19388 93798 50820 88254 20504 74158 35756 42100

10328 60890 05204 30069 79630 31572 63273 13703 52954 72793
49727 08160 81650 71690 56327 06729 22495 49756 43333 34533
71118 41798 34541 76132 40522 51521 74382 06305 11956 30611
53253 23100 03743 48999 37736 92186 19108 69017 21661 17175
12206 24205 32372 46438 67981 53226 24943 68659 91924 69555
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Tables 3.12
Estimation of sample size with absolute precision (95%).

Pld» | .01 | .02 .03 | 04 | O5 | .06 | .07 | .08 | .09 A
.01 | 380 | 95 42 24 15 11 8 6 5 4
.02 753 | 188 | 84 47 30 21 15 12 9 8
.03 1118|279 | 124 | 70 45 31 23 17 14 11
.04 1475|369 | 164 | 92 59 41 30 23 18 15
.05 1825 | 456 | 203 | 114 | 73 51 37 29 23 18
.06 |2167 | 542 | 241 | 135 | 87 60 44 34 27 22
.07 |2501 | 625 | 278 | 156 | 100 | 69 51 39 31 25
.08 2827 | 707 | 314 | 177 | 113 | 79 58 44 35 28
.09 |3146 | 787 | 350 | 197 | 126 | 87 64 49 39 31

1 | 3457 | 864 | 384 | 216 | 138 | 96 71 54 43 35
A5 14898 | 1225 | 544 | 306 | 196 | 136 | 1000| 77 60 49
2 6147 | 1537 | 683 | 384 | 246 | 171 | 125 | 96 76 61
.25 | 7203 11801 | 800 | 450 | 288 | 200 | 1474 113.| 89 72
.3 | 8067 | 2017 | 896 | 504 | 323 | 224. | 165.] 126 | 100 | 81
.35 |8740 (2185 | 971 | 546 | 350 | 243 )| 1¥8 | 137 | 108 | 87
4 19220 | 2305 | 1024 | 576 | 369 | 256 | 188%| 144 | 114 | 92
45 19508 | 2377 | 1056 | 594 | 380.| 264 | 194 | 149 | 117 | 95
.5 9604 | 2401 | 1067 | 600 | 384 | 267 | 196 | 150 | 119 | 96
Table 3.13
Estimation of sample size for absolute precision (99%)

Pld—» | .01 .02 | O3» 04 | O5 | .06 | .07 | .08 | .09 A
.01 658 | 165 |/ 73 41 26 18 13 10 8 7
.02 1305 | 326 | 145 | 82 52 36 27 20 16 13
.03 1937 | 484,| 215 | 121 | 77 54 40 30 24 19
.04 | 2556 _| 639 {284 1160 | 102 | 71 52 40 32 26
.05 3162 | .790|»351 | 198 | 126 | 88 65 49 39 32
.06 3754 | 989 | 417 | 235 | 150 | 104 | 77 59 46 38
.07 | 4333 |1083 | 481 | 271 | 173 | 120 | 88 68 53 43
.08 | 4899 |1225| 544 | 306 | 196 | 136 | 100 | 77 60 49
.09 5452 1363 | 606 | 341 | 218 | 151 | 111 | 85 67 55

A 5991 1498 | 666 | 374 | 240 | 166 | 122 | 94 74 60
.15 8487 2122|943 | 530 | 339 | 236 | 173 | 133 | 105 | 85
2 10650 | 2663 | 1183 | 666 | 426 | 296 | 217 | 166 | 131 | 107
25 12481 | 3120|1387 | 780 | 499 | 347 | 255 | 195 | 154 | 125
3 13978 | 3495 | 1553 | 874 | 559 | 388 | 285 | 218 | 173 | 140
.35 15143 | 3786 | 1683 | 946 | 606 | 421 | 309 | 237 | 187 | 151
A4 15975 | 3994 | 1775 | 998 | 639 | 444 | 326 | 250 | 197 | 160
45 16475 (4119|1831 [1030 | 659 | 458 | 336 | 257 | 203 | 165
.5 6641 | 4160 | 1849 | 1040 | 666 | 462 | 340 | 260 | 205 | 166
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Table 3.14
Estimation of sample size with relative precision (95%)

P{D-> .01 .02 .03 .04 .05 .06 .07 .08 .09
.01 |3803184|950796 |422576(237699|152127|105644 77616 |59425|46953
.02 |1882384(470596 (209154 |117649| 75295 | 52288 |38416|29412 (23239
.03 |1242117| 310529|138013| 77632 | 49685 | 34503 |(25349|19408|15335
.04 | 921984 230496 ({102443| 57624 | 36879 | 25611 |18816|14406(11383
.05 | 729904 | 182476 | 81100 | 45619 | 29196 | 20275 |14896|11405| 9011
.06 | 601851 | 150463 | 66872 | 37616 | 24074 | 16718 |12283| 9404 | 7430
.07 | 510384 (127596 | 56709 | 31899 | 20415 | 14177 |10416| 7975 | 6301
.08 | 441784 |110446| 49087 | 27611 | 17671 | 12272 | 9016 | 6903 | 5454
.09 | 388428 | 97107 | 43159 | 24277 | 15637 | 10790 | 7927 | 6069 | 4795
A 345744 | 86436 | 38416 | 21609 | 13830 | 9604 |(.7056 | 5402 | 4268
A5 | 217691 | 54423 | 24188 | 13606 | 8708 | 6047 | 4443 | 3401 | 2688
2 153664 | 38416 | 17074 | 9604 | 6147y | 4268, | 3136 | 2401 | 1897
.25 | 115248 | 28812 | 12805 | 7203 | 4610. [ 3210 | 2352 | 1801 | 1423
3 89637 | 22409 | 9960 | 5602 | 3585 | 2490 | 1829 | 1401 | 1107
.35 71344 | 17836 | 7927 | 4459 | 2854 | 1982 | 1456 | 1115 | 881
4 57624 | 14406 | 6403 | 3601 "|\.2305 | 1601 | 1176 | 900 | 711
.45 46953 | 11738 | 5217 | 2935 | 1878 | 1304 | 968 | 734 | 580
.5 38416 | 9604 | 4268 (<2401, | 1537 | 1067 | 784 | 600 | 474
.55 31431 | 7858 , 3492 | 1964 | 1257 | 873 641 | 491 | 388
.6 25611 | 60437 | 2846 | 1601 | 1024 | 711 523 | 400 | 316
.65 20686 | 5171 11,2298/ 1293 | 827 575 | 422 | 323 | 256
7 16464 4116 1829 | 1029 | 669 457 336 | 257 | 203
.75 12805 |1,3201 | 1423 | 800 512 366 261 | 200 | 158
.8 9604 2401 | 1067 | 600 364 267 196 | 150 | 119
.85 6779 1695 753 424 271 188 138 | 106 84
.9 4268 1067 474 267 171 119 87 67 53
.95 2022 505 225 126 81 56 41 32 25
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Table 3.15
Estimation of sample size for relative precision (99%)
PID-»| .01 .02 .03 .04 .05 .06 .07 .08 .09

.01 [6589836|1647459(732204|411865|263583|183051|134486(102966|81356

.02 |3261636| 815409 |362404(203852|130465| 90601 | 66564 | 50963 (40267

.03 |2152236| 538059 |239137(134515| 86089 | 59784 | 43923 | 33629 (26571

.04 |1597536| 399384 |177504| 99846 | 63901 | 44376 | 32603 | 24962 (19723

.05 1264716| 316179 |140524| 79045 | 50589 | 36131 | 25811 | 19761 |15614

.06 |1042836( 260709 |115871| 66177 | 41713 | 28968 | 21282 | 16294 (12875

.07 | 884350 | 221088 | 96261 | 55272 | 35374 | 24565 | 18048 | 13818 (10918

.08 | 765486 | 191372 | 85054 | 47843 | 30619 | 21264 | 15622 | 11961 | 9450

.09 | 673036 | 168259 | 74782 | 42065 | 26921 | 18695, 13735 | 10516 | 8309

.1 | 599076 | 149769 | 66564 | 37442 | 23963 | 16641 | 12226 | 9361 | 7396

A5 | 377196 | 94299 | 41911 | 23575 | 15088 | 104784 7698, | 5894 | 4657

.2 | 266256 | 66564 | 29684 | 16641 | 10650n|, 7396 |, 5434 | 4160 | 3287

.25 199692 | 49923 | 22188 | 12481 | 7988, 5547 | 4075 | 3120 | 2465

.3 | 156316 | 36829 | 17257 | 9707 | 6213 || 4314 | 3170 | 2427 | 1917

.35 | 123619 30905 | 13735 | 7726"| 4945 | 3434 | 2523 | 1932 | 1526

A 99846 | 24961 | 11094 | 6240 | 3994 | 2774 | 2038 | 1560 | 1233

A5 | 81366 | 20339 | 90404| 5085, | 3254 | 2260 | 1660 | 1271 | 1004

5 66564 | 16641 | 7396 [, 4160 | 2663 | 1849 | 1358 | 1040 | 822

.55 | 54461 | 13615 (6051 | 3404 | 2178 | 1513 | 1111 | 851 | 672

.6 44376 | 11094 | 4931 | 2774 | 1775 | 1233 | 906 693 | 548

.65 | 35842 | 8961 | 3982 (| 2240 | 1434 | 996 731 560 | 442

g 28527 (.. 7132}, 3170 | 1783 | 1141 | 792 582 446 | 352

75 | 22198 [ 5547 | 2465 | 1387 | 888 616 453 347 274

.8 18641 | 4160 | 1849 | 1040 | 666 452 340 260 | 205

.85 | 11747 | 2937 | 1305 | 734 470 326 240 184 145

9 7396 1849 822 452 296 205 151 116 91

.95 3503 876 389 219 140 97 71 55 43
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Table-3.16: (Percentile of t-distribution)

0 L,
d.fla t90 tos tors too t.g05
1 3.078 6.3138 12.706 31.821 63.6570
2 1.886 2.9200 4.3027 6.965 9.9248
3 1.638 2.3534 3.1825 4.541 5.8409
4 1.533 2.1318 2.7764 3.747 4.6041
5 1.476 2.0150 2.5706 3.365 4.0321
6 1.440 1.9432 2.4469 3.143 3.7074
7 1.415 1.8946 2.3646 2.998 3.4995
8 1.397 1.8595 2.3060 2.896 3.3554
9 1.383 1.8331 2.2622 2.821 3.2498
10 1.372 1.8125 2.2281 2.764 3.1693
11 1.363 1.7959 2.2010 2.718 3.1058
12 1.356 1.7823 2.1788 2.681 3.0545
13 1.350 1.7709 2:1604 2.650 3.0123
14 1.345 1.7613 2.1448 2.624 2.9768
15 1.341 1.7530 2.1315 2.602 2.9467
16 1.337 1.7459 2.1199 2.583 2.9208
17 1.333 1.7396 2:1098 2.567 2.8982
18 1.330 1.7341 2.1009 2.552 2.8784
19 1.328 1.7291 2.0930 2.539 2.8609
20 1.325 1.7247 2.0860 2.528 2.8453
21 1.323 1.7207 2.0796 2.518 2.8314
22 1.321 1.7171 2.0739 2.508 2.8188
23 1.319 1.7139 2.0687 2.500 2.8073
24 1.318 1.7109 2.0639 2.492 2.7969
25 1.316 1.7081 2.0595 2.485 2.7874
26 1.315 1.7056 2.0555 2.479 2.7787
27 1.314 1.0733 2.0518 2.473 2.7707
28 1.313 1.1701 2.0484 2.467 2.7633
29 1.311 1.6991 2.0452 2.462 2.7564
30 1.310 1.6973 2.0423 2.457 2.7500
35 1.3602 1.6896 2.0301 2.438 2.7239
40 1.3031 1.6839 2.0211 2.423 2.7045
45 1.3007 1.6794 2.0141 2.412 2.6896
50 1.2987 1.6759 2.0086 2.403 2.6778
60 1.2959 1.6707 2.0003 2.390 2.6603
70 1.2938 1.6669 1.9945 2.381 2.6480

1.2922 | 1.6641 | 1.9901 2.374 2.6388




Chapter 4

Hypothesis Testing Procedures

4.1 Introduction

Generally there are two methods available and widely used for making inferences about
the population parameters i.e.

() Inference may be drawn through confidence limits.

(b) Inference may be drawn about specific value of the population through testing of
hypotheses.

Inferential
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Though the confidence intervals'and testing of hypotheses are related and either can be used
in making decision about the population parameters yet the decision can be made in a more
effective way by the use of testing of hypothesis procedure. Two examples are given to
explain how the method of confidence intervals is used to make decision about a parameter.

Example 4.1:

Suppose a research worker, working for the Environmental Protection Agency [EPA]
wants to determine whether the mean level of a certain type of pollutant released into the
atmosphere by a certain chemical company meets the guidelines set by the EPA. If 4
parts per million is the upper limit allowed by the EPA then the research worker will use
a sample data (i.e. daily pollution measurements) to decide whether the mean is greater
than 4. If, for example, 95% confidence interval for mean contains numbers greater than
4, then the research worker would suspect that the mean exceeds the established limits.

Example 4.2:
Suppose that a certain hospital purchases some syringes from a manufacturer. The
manufacturer claims that not more than 1% of the equipments are defective. It is not

115



116 Hypothesis Testing Procedures

possible for hospital authority to test each and every syringe; they will take a random
sample to test the defective items. The hospital authority wants to see whether the
proportion of defective items exceeds 1% or not, based on the information contained in
the sample. If the sample proportion falls inside the confidence limits of 1% then the
hospital authority will accept the lot, otherwise, the lot will not be accepted.

This is how inferences are drawn through confidence intervals.

Whenever any research worker in any field wants to test a new theory, he always first
formulates a hypothesis that provides an explanation of his experience. He makes some
assumptions about some characteristic of a population, tries to support it by information
obtained from sample data. These assumptions are called hypotheses. This is the
beginning of the concept of testing of hypotheses. The purpose of hypothesis testing is to
help the research worker in making decision for the population on the basis of the
information collected through sample. For example, we may examine a manufacturer's
claim that his drug on the average is more effective than.an alternative drug already
available in the market. We will reach the decision through‘a sample of patients on whom
the drugs are tried.

Before we pass on to the application of testing of hypotheses it is.useful and important to
explain some basic terms to understand the concept ofstesting of hypothesis. More
precisely one must understand what statistical hypothesis is? How should the tests be
performed? What types of errors one can face?:How to draw conclusion(s) regarding
parameter(s) on the basis of sampled observations? What p-value is?

4.1.1 Hypothesis or a Statistical Hypothesis

As mentioned earlier, a research worker always makes certain assumptions, when he
wants to test a new theory.4In statistics,nit«is known as a hypothesis. A hypothesis or a
statistical hypothesis is a statement about the specified value(s) of the parameter(s). In its
most general form a statistical hypothesis tells us something about this distribution of an
observed random variable: Thisistatement may be true or may not be true. In fact this is a
baseline to start the:experiment. We set up two types of statistical hypotheses, viz.

(i) Null hypothesis,H, and (ii) Alternative hypothesis H,

The Null Hypothesis states that there is no difference between the specified or stated
value (o = mean or Py= proportion) and actual unknown values of y, or P of the
parameters. An initial hypothesis of equivalence of two statements is called Null
Hypothesis. For example, a manufacturer of some brand of cigarette claims that 30% of
the smokers prefer his brand of cigarettes. The null hypothesis will be, that the claim of
the manufacturer is correct. A manufacturer of a drug claims that the drug manufactured
by him is more effective than the drug already available in the market. The null
hypothesis states that there is no difference between the efficacies of the two drugs.

An alternative hypothesis states that the specified or stated value and an actual unknown
value of the parameter are not equivalent or the null hypothesis is not true. In the first case
H,: P =0.30 (null hypothesis)
H, :P>0.30 (alternative hypothesis)
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and in the second case

H,:P, =P, (There is no difference between two types of drugs: null hypothesis)
H,: P,>P,(Drug one is superior to that of the second drug: alternative hypothesis)

There is an unstated willingness on this part of the investigator to accept H; in case
he/she rejects Hy,.

An accepted convention in the simple testing of hypotheses is to write null hypothesis
(Ho) with an equality (=) sign and the alternative could be greater (>) or less (<) or not
equal (%) depending on the problem. If not equal (#) then it is called two-tail test
otherwise it is known as one-tail test. The one-tail and two-tail tests are explained in the
following subsections:

4.1.2 One-tail and Two-tail Test

One-tail test is that in which alternative hypothesis is directional. This includes either
less (<) or greater (>), i.e. unknown mean or proportion is either greater or less than
specified or stated mean or proportion. Two- tail test is one’in which the alternative
hypothesis does not specify departure from null hypothesis in particular direction. One-
tail and two-tail tests are explained in Table 4.1 and Table 472

Table4.1
One-tail test of mean and proportion for.one sample and two samples
Mean Proportion
One Hi: W = Uy | Ho: P = P,
sample | Huft >, | Hi: P > P,
Two Hy "y =1, | Ho: P, =P,
sampgs H1 et ) Hy - I:)1> Pz
Table 4.2
Two-tailed testrof,. mean and proportion for one and two samples
Mean Proportion

One Ho: 1 = Mo | Ho : P = Py
sample | Hy 4 # o | Hi : P # Py

Two Ho i Wi = M, | Ho: Pt =P
Samples Hy @ Wz Wy H, @ Pz Py

An incidence of tuberculosis among people living in Eastern Province of Saudi Arabia is
known to be not more than 0.03. After conducting a medical survey, the researcher
believes that the incidence is much higher. The researcher is interested in detecting
whether true incidence of tuberculosis is larger than 0.03. He forms the null and
alternative hypotheses (one-tail) as:-

Ho:P = 0.03
H,:P > 0.03
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If the researcher is interested in detecting that there is no difference between incidences
of two provinces of Saudi Arabia, then his null and alternative hypotheses (two-tail) are

Ho:Pl = Pz
Hl:Pli Pz

4.1.3 Level of Significance (a)

The probability of rejecting the null hypothesis, when the null hypothesis is true is called
the level of significance or probability of type | error. This probability is generally
specified before the sample is drawn. Level of significance is generally chosen either 1%
or 5%. In medical trials, because human lives are involved therefore, sometimes level of
significance may go as low as 0.1% or even 0.05%. When we say that the level of
significance is 5%, we mean that there are 5 in 100 chances that the null hypothesis is
rejected when it is in fact is true and we are 95% confident regarding our decision.
Commonly, the level of significance is denoted by the Greek letter o (Alpha).

4.1.4 Confidence Level (1 - o)

The complement of probability a is (1 - o) that is called confidence level or confidence
coefficient. It gives the probability of accepting H, whenever'it is true.

4.1.5 A Critical Value

A critical value is a boundary or separation pointsbetween rejection and acceptance
regions. For example if we choose 5%.level of significance, then the boundary points for
a two-tailed test (critical values) at5% level of significance are -1.96 and 1.96, see Fig.
4.1.

a/2=.025 a/2=.025
z
-1.96 0 1.96
Reject Reject
Ho Ho

Fig. 4.1: Critical values

The points beyond 1.96 and -1.96 are called rejection regions and points between -1.96
to 1.96 is known as acceptance region for two-tail- test. The points -1.96 and 1.96 are
called critical values. If it is a one-tail-test then for the same level of significance, the
rejection and acceptance regions are shown in Fig. 4.2. A critical value depends on the
level of significance of the test. For large sample, the critical values or a critical z-value
for one-tail and two-tail tests, commonly used are as given in Table 4.3.
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Table 4.3
Level of Significance for Acceptance Region for
One-tailed and two tailed tests

Level of Two-tail One-tail test
Significance test
1% -2.58 to +2.58 | -2.33 to + or -0 to 2.33
5% -1.96 to +1.96 | -1.645 to +x or -0 to 1.645
TN
F 4 b Y
/ \\
r'\r .
\
\
L
| “*‘”--...

Rejection Region Acceptance ‘Region

Ao 1 —— -

Acceptance Region Rejection Region

Fig. 4.2: Rejection and acceptance‘regions for given level of significance
4.1.6 Test Statistic

A decision based on a“sample;is made to reject or accept null hypothesis. These
decisions depend onsthe,value of some statistic with a probability distribution Such a
statistic is called a test- statistic.

4.1.7 Type | and Type 1} Errors

The main aim of the testing of the hypotheses is to make decision whether to accept or
not to accept the null hypothesis in favour of an alternative hypothesis. We always like to
make correct decision, but this decision depends on the sampled observations. In spite of
every precaution taken, there is a chance of committing an error. We may reject null
hypothesis when it is true or we may accept the null hypothesis when it is false.
Therefore, two types of errors may be committed during the process of testing of
hypothesis, which are known as Type | and Type Il errors.

Type | error occurs when the null hypothesis is true and it is not accepted whereas Type
Il error occurs when the null hypothesis is false and it is accepted. The probability of
committing Type | error is denoted by o (Alpha) whereas the probability of committing
Type Il error is denoted by P (Beta). There is an interesting relationship between the
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probabilities of two types of errors for a fixed sample size. If one increases the other
decreases and if one decreases, the other increases.

There are four possibilities regarding the correctness of the decision in any hypothesis
test. These possibilities are explained in Table 4.4 on next page.

We see in Table 4.4 that false positive corresponds to Type | error and false negative
corresponds to Type Il error

Table 4.4
Types of Errors
Decision —»
Hypothesis ¢ Accept H, Reject H
True + False +
Ho is true Correct decision Type | error
False - True -
H, is false Type Il error Correlt decision

Note that Type | error is more serious than Type liferror. If Hguis‘rejected then usually
one is not clear about what to substitute in its placesSo. we want to avoid unnecessary
rejection of a true Hy. The conventional practice is to ensure that probability of Type I
error is controlled below a predetermined level,of tolerance and then to choose among
these tests, the one with the smallest possible probability of Type Il error i.e. to fix
probability of Type | error and then, selectfan appropriate test which minimizes
probability of Type Il error.

In practice, we are very careful_in stating the decision. If sampled observations do not
provide sufficient evidence/to support thesnull hypothesis, we prefer the decision, and
say, we fail to reject the null hypothesis.” If we were to accept the null hypothesis, the
reliability of the conclusion'is measured by the probability of Type Il error. The power of
test for testing the hypothesis under consideration where X > A is unknown. For given
oand B, we havedtherfollowing two equalities for determining these values.

o v .\
L [exp M d% = a (4.1)
Var A 2
and
Vn %ol & - m)?
— ———|dx =1-8 4.2)
e 3P 2
Let us write A = p, +za/\/ﬁ where z,, is chosen in such a way that for a random

variable y with normal distribution N(0,1), P( Z > z, ) = a. From (4.2), we have
A=y +zB/x/ﬁ , Where z; is chosen in such a way that P[Z < zg] = .

hold.
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From the equality:

z
B
Lo+t—/—==W +—F,
Jn Jn
we obtain
2
zZ, —Z
n:u (4.3)
2
(Hl—uo)
and
z -z
A= a1 —Zplo (4.2)

Figr4.3: The power of a test

The power 1-B is defined as the probability of acceptance of H; when it is true or
rejecting of H, whenit is false. Unfortunately the probability of Type Il error is not
constant, but depends on the specific alternative value of the parameter. In order to
calculate Type | errorand.Type Il error some examples are given

The purpose of presenting examples is not that health scientists should calculate and find
amounts of probabilitiesiof Type | and Type Il errors but the main objective is to show
how the probabilities of Type | and Type Il errors behave with the increase of sample
size, so that one should be careful in testing of hypotheses.

Example 4.3.

In a large school of USA, the proportion of high school students that regularly use some
form of illegal drug is reported to be 0.50. The school authority took a random sample of
200 students and it was found that 45% of the students were using illegal drug. If the rule
of rejection is to calculate Z and reject Hy whenever Z < -1.60

i. Would you reject Ho,.
ii. Calculate the probability of Type I error.
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Solution:

H,:P=0.50

H, :P<0.50
Since p = 0.45 therefore, P(Type I error) = P(p < 0.45)
We know from Chapter 2

045-050 _ -0.05 _

050x050 0.035
V' 200

(i) We will not reject as the calculated value of Z, is less than -1.60

Z = -1.43

(ii) The probability of type I error for Z=+1.43 will be calculated as:
a=P[p < 045] = P[Z > 1.43] = 0.076 (Table 26).
Therefore, one is planning to use about 7.6% level of significance.

Probability of Type | or Type Il error relate to a well-defined rule of rejection. For
example if you decide that you will reject Hy whenever Z calculated exceeds a given
value (say 1.64). Then correspondingly to thiswyou say probability of Type I error is such
and such.

Example 4.4:
For a certain hypothesis H, : i =®&0 versus, H;.: L > 50. Suppose o = 9.0. Calculate

probability of Type I error for the following cases:
i) A random sample of 40 observations was taken and found that sample mean is 52.0.
ii) A random sample of 6Q observations was taken and found that sample mean is 52.0.
iii) A random sample of 120 observations was taken and found that sample mean is 52.0.

Comment what happens if sample mean is fixed and sample size is increasing.

Solution:
(i) Hy : p =50
H @ u>50

Sample mean ( X ) = 52, n=40, and ¢ =9.0)

Z= 52;50 = %X\/4_0 = 1.40

Ja0

Therefore, the probability of type | error is
o =P[Z > 1.40] = 0.0808 (From Table 2.6) = 8%
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(i)H, : u =50
H :p>50

2:52;50: %X\/% = 172

J60
Therefore, the probability of type | error is
a=P[Z > 1.72] = 0.0427 (From Table 2.6) = 4.3%
ii)H, : p =50
H :p>50

Z= 52;50:%x 120 = 2.43

V120

Therefore, the probability of type I error is
o=P[Z > 2.43] = 0.0075 (From Table 2(6) =0 .75%

We find that if sample size increases probability of Type | error decreases provided
variance is the same.

Example 4.5:

A quality control worker is/going to checka large production of drug. If the lot has 5% or
fewer defectives than the lot is of acceptable quality. He took a random sample of 100
tablets of certain drug and found<that the defective rate is 12%. For 1% level of

significance, calculate probability of Type Il error (B).
Solution:
Ho P=0.05
H; P>0.05
Z valueis2.33at1% n = 100
Actual sample proportion (p) = 0.12
The calculated proportion comes out to be
p—0.05

0.05x0.95
100

233 =
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Solving this, we get:

p=0.101
or
0.05 x 0.95

p = 005 +233 ,[——— =0.101.

100
Now

Z = 0.101 - 0.120 = '0.59

\/0.12 x 0.88
100

Therefore, the probability of type Il error is

B=P[p <0.101] = P[Z < -0.59] = 0.2776

Hypothesis Testing Procedures

The probability is about 28% that the quality worker will fail to detect'that the proportion
of defectives for this production is actually larger than 0.05 (5%).

Note that 1 — B is the power of the test, this represents the probability that null
hypothesis is rejected when it is false. In thevabove example, power of the test will be
1-0.2776 = 0.7224. There is about 72% probability'that null hypothesis is rejected when
null hypothesis is false. Note that for.fixed sample size power increases as o increases
and for fixed level of significance,power increases as n increases. The power of the test

may be stated as:

The power of a test is the probability that.the test will lead to rejection of the Hj when, in

fact, H, is true.

Example 4.6:

For hypothesis testiblg.: 4 =150.0 against H, : p < 50.0 and o =0.05, ¢ =9.0.

(a) Calculate B if ‘|u.=48.0 and n=36
(b) Calculate B if p=48.0 and n=281

How does 3 behave with the sizes of samples?
Solution:
(@ Hy,:pn = 500
H :p < 500 c=9.0
o =0.05
Z =-1.645 for 95% one-tailed test.

Sample mean (X ) = 50.0 - 1.645 —2_ = 47.53

V36
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Z= w: -0.31

V36

B=P[X > 47.53]=P[Z >-0.31] =P[Z < 0.31] = 0.6217

()X = 500 - 1.645 —9_= 48355

V81
Z= w: 0.355
V81

B=P[X > 48.355] = P[Z > 0.355] = P(Z < -0.355) = .0.3632

As the size of the sample increases, 3 decreases.

4.2 Estimation of Sample size when Probability of Type 1 Error
and Power of the test are known

We know that type | and Type Il errors cannot be controlled simultaneously. If we try to
control Type | error then type Il will go up and vice,versa."In Chapter 3 we described the
methods of estimation of sample size by fixing the type | error and Type Il error was
controlled by large sample size. In medical science, sometimes we are forced to a small
sample size. What we do, we fix the probability of type | error and also fix the probability
of Type Il error in term of Power of the test then the calculation of sample size is made.
Since calculations are bit cumbersome, therefore for the convenience of the users they are
given in different tables at the end of the Chapter.

4.2.1 Sample size for camparing proportions

. (nPRIE=P@))s B/PO)L-PO)] ws)
[P - P(a) [ |

where A and B are given for various level of significance. P(0)= present proportion,
P(a)= anticipated proportion. Find sample size n from (4.5).

(i) For 5% level of significance and 90% power (two sided), A=1.96,B=1.28

(Table 4.10)

(if) For 1% level of significance and 90% power (two sided), A=2.58,B=1.28
(Table 4.11).

(iii) For 5% level of significance and 90% power(one sided), A=1.645, B=1.28
(Table 4.12)

(iv) For 1% level of significance and 90% power(one sided), A=2.58, B= 1.28
(Table 4.13)
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(v) For 5% level of significance and 80% power(two sided), A=1.96, B=0.84
(Table 4.14)

(vi) For 1% level of significance and 80% power(two sided) A=2.33, B=0.84
(Table 4.15)

(vii) For 5% level of significance and 80% power (one sided), A=1.645, B=0.84
(Table 4.16)

(viii) For 1% level of significance and 80% power (one sided), A=2.33, B=0.84
(Table 4.15)

Some more examples are given below:

Example 4.7:

An investigator wants to know the size of the sample in his study if he uses intermittent
pneumatic (IPC) to prevent Deep Venous Thrombosis (BVT) following total hip
replacement. He states that 70 patients in each group gives a probability of 80% of
detecting a 20% difference (from the estimated frequency»of10%) between the three
therapies groups when p is less than 5%. How large sample size. is needed in the study in
order to detect an overall reduction from previous studies that indicate 20-50% of patients
develop DVT? It is assumed that investigator wants 80% power-of detecting a decrease in
rate of DVT from 20% to 10%.

Solution:
From this example we can easily extract:following information.

Test rate = 20% = P(0); anticipated rate = 10% = P(a); level of significance = 5% or 1%;
power of the test = 80% (probability of type Il error is 20%). The size of sample may be
seen from the corresponding table(4.14), given at the end of the chapter. The sample sizes
are reproduced below.

Level of significance and sample sizes
5% 1%

Two-tailed 108 165
One-tailed 83 141

Example 4.8:

The five years cure rate for a particular cancer (the proportion of patients free from
cancer five years after treatment) is reported in the literature to be 50%. An investigator
wishes to test the hypothesis that his cure rate applies in a certain local health district.
What minimum sample size would be needed if the investigator was interested in
rejecting the null hypothesis only if the true rate was less than 50% and wanted to be 90%
sure of detecting a true rate of 40% at 5% level of significance?

Solution:
True cure rate = 50%=P(0), anticipated cure rate = 40% = P(a); level of significance 5%
or 1% and power of the test =90% (probability of type Il error is 10%)

The sample size for various levels of significance may be seen from the tables. The
sampling sizes for all these cases are reproduced below.
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Level of significance and sample sizes

5% 1%
Two-tailed 259 368
One-tailed 211 322

Example 4.9:

Previous surveys have demonstrated that the usual prevalence of dental caries among
school children in a particular community is about 25%. How many children should be
included in a new survey design to test for decrease in the prevalence of dental carries, if
it is designed to be 90% sure of detecting a rate of 20% at 5% level of significance?

Solution:
Test caries rate = 25%=P(0); anticipated rate = 20%=P(a); power of the test = 90%; level
of significance 5% or 1%. The tables are used to find the sizes of the samples:

Level of significance and sample sizes

5% 1%
two-tailed 741 1062
one-tailed 600 926

4.2.2 Sample size for a single mean
We know that:

:X—Ho X Zy
* sidn c/Jn

Solving these two critical ratio for sample size n, we get:

o {{z«x)— z«a)}ﬂz @6

Z and Z[3 =

H1 =Ho

where Z(a) =value against given level of significance; Z(B) =table value against given
power; u; = given mean; p,= expected mean and o = standard deviation. If ¢ = 1, then
(4.6) is identical to (4.3).

Example 4.10:

Suppose the investigator wants to know whether PIMAX (maximal inspiratory mouth
pressure) is the same in patients with kyphoscoliosis and in normal patients without
kyphoscoliosis. Suppose the investigator wants the type I error to be 0.05 and he wants a
0.90 probability of detecting a true difference. His past experience is that the mean
PIMAX is 110 cmH,O in normal patients with a standard deviation of 20cm H,O.
Suppose the investigator wants to be able to say that mean PIMAX of 80cm H,O or less
in kyphoscoliosis patients is significantly different from normal. What would be the
sample size to achieve this target?
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Solution:
Level of significance for 5%, then Z(o =0.05) =1.96.Lower tail z-value (Power) for

90%, Z(0.10) = —1.28. Given mean = 110; expected mean 80 and standard deviation = 20.
Then using (4.2) we get that sample size is 5.

4.2.3 Sample size for Comparing of two proportions
PO PE) B POPR) + P@ (1—PE]
[P®) - PO F

where A and B are defined in (4.1), p( ¢ ) = proportion of control group and
P(t) = proportion of treatment group.

, (4.7)

Example 4.11:

A randomized trial was used to evaluate the efficacy of J5fantiserum in presenting the
serious consequences of gram-negative infection. This study.invelved a trial J5 antiserum
in surgical patients to determine whether it is effective in preventing gram-negative
infections. The actual study utilized 126 patients in the treatment<group and 136 in the
control group. Let us suppose that an investigator prior,to.doing the study wants to
estimate the sample size needed to detect a reduction in proportion of patients who
experience shock from 10% level according to the. investigator’s previous experience to
5% or less if patients are given transfusions from_ donors-treated with J5. He is willing to
accept a type | error of 0.05 and wants @ 90% probability of detecting a true difference.
Determine the sample size under this situation for each group.

Solution:

Proportion in the control group = P(c) =:10%; proportion in the treatment group = P(t)
= 5%,; level of significance = 5% [ 1.96 = Z(a)]; power of the test = 90% [table value
= 1.28 = Z(b)]. Using (4.3) we get n/= 682, the sample size for each group. Suppose the
sample size is large and the chances are that the investigator will compromise and
recalculate the samplessize with less power or a larger difference. If we take the same
difference and reduce,the power from 90% to 70% (table value for 70% is approximately
0.52) the sample size comes out to be 420 for each group. Again if he needs to detect a
drop in the infection rate from 10% to 3% with power 70% then the sample size will be
208 for each group.

4.3 Diagnosing a Test-Statistic for Testing of Hypotheses and p-Value
4.3.1 Diagnosing a Test-Statistic

The manner in which the test-statistic is actually used depends on the parameter of
interest. For example, if for large sample, we are interested to test population mean or
proportion, and then the test-statistic for both will not be the same. If a variance is to be
tested, then different test-statistic will be used. How to proceed to diagnose a test-
statistic, is first to determine the parameter of interest. What the researcher needs is very
important. Three steps will be useful to diagnose a test-statistic.
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i) First, try to understand the objectives for which the data are collected or
measurements are taken.

i) Second, try to identify the type of variable(s), whether measurements are
qualitative or quantitative in nature.

iii) Third, try to identify the parameter(s) to be tested.

Note that, if the variable is quantitative, then parameter may be either population mean or
population variance and if it is qualitative, the parameter may be population proportion.

If one looks into your objectives minutely, the problems can be solved easily. If it is a
written statement then there is certainly an indication, and the hypothesis can be
formulated easily. Let us try to guide how to formulate the hypothesis through these
examples.

There is one glass of Pepsi and another glass of Mecca-Cola@and it is required to select
one, which tastes best. Here experimental units are the consumersand the variable under
study is qualitative. Therefore, the parameter of interest is theproportion of population
who favor Mecca-Cola over PEPSI or vice-versa.

A dietician would like to see whether a new diet is,effective in‘reducing weight of an
obese woman. Here the experimental women will be obese women and the variable to be
measured is quantitative. The dietician will (bexcomparing-mean weight before and after
the completion of course.

A manufacturer of a new drug claims'that his drug is more effective than the one already
available in the market. Naturally the experimenter will select two groups to see the
effectiveness of these two types.of drugs in terms of proportions and these proportions
will be compared.

4.3.2 p -Value

Since it is difficult to understandsthe concept of p-value for non-statisticians, therefore,
some remarks onp=value is devoted in this section. We know that in testing of
hypotheses we choose the level of significance beforehand. The null hypothesis is
accepted if the calculated value of test-statistic is less than the corresponding value at the
level of significance. If both values are equal, we say that one is in a critical situation.
There is one drawback that the test be conducted in this manner. A measure of the level of
significance of the test results is not readily available. If the value of the test-statistic falls
in the rejection region, we have no measure of the extent to which the data disagree with
the null hypothesis.

Consider the null hypothesis that the average weight of the university students is 68.5 kg
to be tested against alternative hypothesis that the average weight is greater than 68.5 at
fixed 5% level of significance. Consider the following possible values of the computed
test-statistic (z-statistic)

Zc = 2.01 and Zc = 3.87,
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which of these values of test-statistic provides stronger evidence for the rejection of null
hypothesis? How can we measure the extent of disagreement between the sample data
and null hypothesis for each of the computed value?

We know that at 5% level of significance the Z-value for one-tailed test is 1.645. Both
computed values are greater than 1.645 and falls in the rejection region, therefore the
result in each case is statistically significant.

Note that Z-test-statistic of population mean is simply Z-score (Chapter 1, Section 1.9.6).
Therefore, Z-score of 3.87 would present strong evidence that the true mean is larger
than 68.5 kg.

One way of measuring the amount of disagreement between sample mean and the value
of population mean or proportion in the null hypothesis is to calculate the probability that
the observed value of the test-statistic equals to or greater or less than the actual
computed value under null hypothesis. The disagreement between sample statistic and
population parameter Hy can be measured as:

p-value = P[Z > Z¢] upper one-tailed
p-value = P[Z < Z¢]lower one-tailed
p-value =P[Z # |Z¢[] two-tailed
where Z¢ is the computed value of the test-statistic. From Table 2.1 we can calculate the
probability.
P(Z > 2.01)
P(Z > 3.87)

We can draw a conclusion'that smaller the probability (p-value), greater is the extent of
disagreement between sample,statistic and population parameter (mean or proportion).
Note that the p-value for the two-tailed test is twice the p-value of one-tailed test.

1- 09778
1 £0.9999

0.0222 “and
00001

Thus we can say that p-value'is the maximum probability of rejecting the null hypothesis,
when null hypothesis isitrue. Some statisticians referred to p-value as the observed level
of significance of the test under consideration. In fact, for computer it is easy to calculate
p-value but it takes much longer time to calculate the test-statistic value for a given
a-value.

In most of the medical journals, dissertations and technical reports test-statistics and
p-values associated with the tests are mentioned and it is left to the research workers to
draw conclusions whether to accept or not to accept the null hypothesis.

There are two advantages of reporting the results in the form of test-statistic and p-value:

a) Most software packages (like SPSS or SAS) present a p-value. This makes it easy
for the researcher to decide whether to accept or not to accept the null hypotheses.

b) Researchers are allowed to select the maximum value of the level of significance
that they would be willing to tolerate in carrying out standard tests of hypothesis.
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One should follow two points to decide whether to accept the null hypothesis or not,
when the results are presented in the form of p-values.

i) Choose the maximum value of the level of significance (1%, 5%, 10%, .....) that
one is willing to tolerate.

ii) If p-value of the test is less than the stated a-value (given level of significance)
then do not accept the null hypothesis otherwise accept the null hypothesis.

Fig. 4.4: Performing a hypothesis test

4.4 General Procedure of Testing of Hypothesis

There are several steps.in testing of hypothesis, which lead to a conclusion to accept or
not to accept the hypothesis. These steps are common for all types of tests of
significance. These general.steps lead us to the final decision about the null hypothesis.

Step 1:  Write two statements, which are appropriate concerning value of the parameter
i.e. to state null and alternative hypotheses.
Step 2:  State whether the test is a one-tailed or a two-tailed test.

Step 3:  Choose the level of significance. Usually 1% or 5% level of significance is
chosen.

Step 4:  State an appropriate test-statistic to be used.
Step 5:  Calculate the value using the test-statistic mentioned in Step 4.

Step 6:  State the decision rule for the acceptance of null hypothesis. The decision rule
is to accept the null-hypothesis if calculated value is less (larger) than table
value at a given level of significance otherwise do not accept the null
hypothesis.
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Health scientists usually interpret the result in terms of p-value (observed level
of significance). If the observed p-value is less than the stated p-value (given
level of significance), then the null hypothesis is not accepted.

Step 7:  Draw the inference about the parameter on the basis of the above steps.

All these steps are given in the flow chart Fig. 4.5 (next page)

4.5 Tests of Significance

The following tests of significance will be discussed in this section.

Tests for mean and proportion | Tests for variance

Z-test ¥ -test
t-test F-test

If the condition of normality is satisfied we use parametric,tests. Ifhe responses are
distribution free then we use non-parametric tests (non=parametric tests will be discussed
in Chapter 8). The lay out for the tests of means and proportions (Zand t) on next page:

Layout of the Test of Significance - |

Test for Means and Proportions

Small sample Large sample
[ [
I | I |
Population Population variance Population Population variance
variation known notknown variation known notknown

\ \ \ \
Z-test t-test Z-test t-test
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Steps of General Procedure of the testing of Hypothesis
1
Assumptions(s)

| >
Write null and alternative
hypotheses

3

One tailed test or
two tailed test

4
Level of significance

5

Test-statistic to be used

6
Calculate p-value

7

Comparison of observed
p-value (table value) and
calculated p-value

8

If calculated p-value is
less than observed p-
value do not accept the
hypothesis otherwise
accept

9

Conclusion(s) and
Interpretation

Fig. 4.5: Flow chart of the testing of hypotheses
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Layout of the test of significance 11

Test for Variance
(for large and small samples)

Single sample Two samples

Chi-square F-test

Fig. 4.7: Layout plan of the test of significance 11

Before the application of t-test, test of homogeneity“(equality of variance) is applied, if
this condition is satisfied, t-test is used otherwise non-parametric tests or some other
alternatives are used. Five tests are available to test the homogeneity of samples. These
are:

(a) Bartlett's test (1936)

(b) F-test

(c) Levene's test (1962)

(d) Cochran's test (1962)

(e) Samiuddin-Hanif-Asad cube root test (1978)

Cochran's test is a special test as it is applicable for equal number of observations in the
samples. Only Levene's test:of homogeneity is available in SPSS package, therefore, we
stick to it. Note that'in EPI-INFO package, Bartlett's test is available. Samiuddin-Hanif-
Asad test is very simplesto calculate and more or less identical to Bartlett's test. When
t-test is used the SPSS package automatically test the homogeneity (equality) of variance.
The flow chart (layout) of tests of significance for parametric and non-parametric
situations follows (Fig. 4.8).
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Fig. 4.8: Flow chart from tests of significance.

Layout of Test of Significance-lll
I

| More than two samples |
Independent] Independent] Matched
Normal | Non Normal

Testofgquality | | Testofgquality of | |
of variance Paired Non-parametric Yariance ‘Normal Non Normal
tlest fests | |
| | | | | Repeated
ANOVA [
Equal Notequal | | Equal Notequal 00- measure
9 k The sign Wilcoxon signed- ways design
| | test rank test | |
Pooled | | ANOVA Non-parametric | |
tHest - one-ways fests Fridman's| | Kendall's| | Cochran
t-testfor unequal Non-parametric. | fest W-test Q-test
variance tests | | | | |
[ I I | Median Kruskal-Walls Depending on situations
Kolmogorov- The Median The Mann- Wilcoxon Rank- test test
Smirnov Test test Whitney test Sumtest

If t-test for unequal variance is there in computer printput, it is always advised to choose this instead of non-parametric tests.
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4,5.1 Z-Test for one and two samples for means and proportions

This test is used to test mean and proportion for one sample and to test the difference
between two sample means and proportions. Followings are the assumptions and
conditions to apply Z-test.

(i) Sampled population should be normal.
(i)  Sample must be random.

(iii)  Sample size is large and population variance is known. If population variance
is not known, sample variance may be used when sample size is large.

(iv)  If sample size is small and/or population variance is known, this test is also
applicable.

(v)  Samples must be independent.

Since in practice population variance is never known, we always use either t-test or its
equivalent non-parametric test as the circumstances occur.

(i) Z-test for one sample mean

This is used to test whether a given sample has been selected from the population whose
mean and variance are known. Since sample,meanu(X ) is representative of the
population mean (), we find the difference between sample mean and population mean.
If there is no difference, we say thatsthe,sample has been selected from the population
whose mean and variance are given.

Some examples for Z-test aresgiven. The purpose of these examples is to demonstrate
how Z-test is used to test the mean and proportion. Later on it will be demonstrated how
SPSS package is used to solve the problems.

Example 4.12:

Family and Community Medicine Department feels through a study that patients in an
area spend on the average®12 minutes with the doctors in the Family Care Centers.
Ministry of Health feels that doctors should spend more time with the patients. For this,
the Ministry took a random sample of 50 patients from the Family Care Centers of the
area and found that doctors are spending on the average 13.6 minutes. The population
standard deviation is 8.2 minutes. Use 5% level of significance to test that doctors are
spending on the average more than 12 minutes with the patient.

Solution:
(1) Hy: 1 = 12minutes X = 136, o = 82
H, : 1 > 12 minutes
(2) =0.05 andn=50
Since sample is large, Z-test is used.

(3) Test-statistic: Z_ = {(Y —p)vn } G, (4.8)



Hanif, Ahmad and Abdelfattah 137

where:
X = Sample mean | = population mean
o = Population standard deviation n =sample size
, - (136-12) V50 _
’ 8.2

(4) Since it is a one-tail test, the Z-value for 5% level of significance is 1.645.

1.38

(5) The calculated value is 1.38 which is less than table value, therefore, the result is
non-significant and the null hypothesis is not rejected, we say with 95%
confidence that the study conducted by the Family and Community Department
shows that doctors are spending on the average 12 minutes with the patients. This
conclusion may also be shown through p-value.

Stated p-value Observed p-value
P[Zz> 1.38]
0.05 = 1-0/9162 =_.0.0838

Since observed p-value is more than stated p-value, /it falls in the acceptance region;
therefore, we are 95% confident that the con¢lusion is correct.

The virtue of the p-value in computation is, that<one can simply report the p-value and
different workers can make their decisions.

95% confidence limits may be calculated as:

13.6 + 1.645 82, or (11.692 ,15.508)

J/50

We say with 95% confidence that'these two limits contain population mean (which in this
case is 12). Since theseslimits.do not contain zero, therefore, we can also say that there is
significance difference between sample and population means. Note that in practice
population mean or proportion is never known to us. That is why, we construct confidence
limits to see the location of the population mean or proportion (see Chapter 3).

Example 4.13:

An article published in Medical Journal where it was claimed that by better nutrition the
mean weight of adult women in USA had increased to 79.5 kg. The authority of weight
control felt that the figure was too high for the females. A sample of 45 women was taken
and found that average weight was 76.6 kg with standard deviation 11.7. Perform a test
that Hy : = 79.5 against p <79.5 at 5% level of significance and give interpretation
about conclusion.

Solution:
(1) Hy:p = 795 X =766,
H,:p <795 s=117,
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(2) @ =0.05 n=45
Since sample is large, Z-test is applied.

(3) test-statistic: Z, = % = -1.663

Ja5

(4) Since it is a one-tailed test, the Z-value is -1.645 at 5% level of significance.

(5) The calculated absolute value of Z¢ is more than the table value of Z, therefore,
the result is significant and the null hypothesis is not accepted. We say with 95%
confidence level that the average weight of the women is less than 79.5 kg.
Conclusion may also be drawn by the use of p-value as:

Stated p-value Observed p-value
0.05 P [Z<-1.66] = 0.0485

Since the observed p-value is less than the stated p<value, the statistic value falls in the
rejection region.

95% confidence limits may be calculated as:

11.7
76.6 + 1.645 ——— or [73.73, 79.47]

T

We are 95% confident that these two<limits; do not contain the average weight of the
women. The average weight.of 95% womenawould not lie in (73.73, 79.47).

(ii) Z-test for one sample proportion

Example 4.14:

It was reported in.the Journal of the American Geriatric Society (1990) that hospital
patients over the age of 65 apparently face high risk of serious treatment errors. The
records of 122 elderly patients were randomly selected and 30 out of them found to have
at least one erroneously. prescribed medication. (They received unneeded drug or they
failed to receive necessary drug). The researcher did not expect such a high rate. Test at
5% level of significance that the true proportion of elderly patients who have at least one
erroneously prescribed drug exceeds 20%.

Solution:

.30
1)H. :P=0.20 = 2 = 0.246,
(1) H, =1

H,:P>020 n = 122
(2) =005

Since proportion is to be tested and sample is large, therefore, Z-test for the testing of
proportion will be used.
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(3) test-statistic: Z¢ = (4.9)

where: p = sample proportion P = population proportion

Note that the denominator of the Z-statistic contains the population proportion.

|0.246 — 0.20|
Zr= —

0.20 x 0.80
122

= 1.27

(4)  Since itis a one-tailed test, Z-value is 1.645 at 5% level of significance.

(5) The calculated value of Z¢ is less than the table value of Z at 5% level of

significance. Therefore, the result is non-significant and‘the null hypothesis is
accepted. We can say with 95% confidence that the\true proportion of elderly
patients who received at least one erroneously prescribed drug does not exceed
20%.

The p-value will be calculated as:
P[Zz > 1.27] = 1 - 0.8980 = 0.1020 (observed,level of significance)

Since observed p-value is more thanstated p-value (0.05), therefore, the null hypothesis
is accepted. The 95% confidence limits are

0.246 + 1.645 /% or [0/186 , 0.306].

The proportions of elderly patientsiwho have at least one erroneously prescribed drug
vary from 0.186 to.0.306. Since the value of Hj lies inside the interval, 0.186 to 0.306,
the null hypothesis is accepted.

Example 4.15:

Prior to the Polio immunization program in the Eastern Province of Saudi Arabia, a
survey revealed that 180 out of a random sample of 400 elementary school children have
been immunized against Polio. Can we say at 5% level of significance that 50% of the
elementary school children in this area had been immunized?

Solution:

(MH,:P=050 p= 280 =045
400

H,:P =050 n= 400
(2) o = 0.05

Since sample is large, Z-test will be used.
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. 45— 0.
(3) test-statistic: Z, = M =20

400
(4) Since it is a two-tailed test, Z-value at 5% level of significance is 1.96.

(5) The calculated value of Z¢ is more than the Z-value of the table, it falls in the

rejection region. Therefore, it is significant. We may say with 95% confidence
that the null hypothesis is not accepted and say that 50% of the children were not
immunized.

Conclusion may also be drawn by the use of p-value as:

Stated p-value Observed p-value
2P[Z < |20]]
0.05 0.0228 + 0.0228 = 0:0456

Since observed p-value is less than stated p-value, therefore, it falls in.the rejection region
and null hypothesis is rejected.

The 95% confidence limits will be

045+ 1.96 2295 o [0.401 | 0.499]
400

Since the interval does not contain{0.5, there'is significance difference.
(iii) Z-test for two samples (means)

In case of Z - test for two samples, two random samples are selected independently, one
from each population {case= control study) and the main purpose is to see whether two
populations are different'or notaSince samples are representative of two populations, we
compare two samplesmeans te.compare two populations.

Example 4.16:

A study was conducted to compare percentage of body fat for rural and urban college
male students. For this purpose, two random samples one from each area were selected.
The percentage of body fat for each sample was measured. Can we say at 5% level of
significance that there is no difference in body fat in two groups? The data are given as:

Urban Rural
Sample 193 188
Mean 12.07 11.04
s.d 3.04 2.63

(American Journal of Physical Anthropology, 1993, Vol. 54, pp. 119-112)
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Solution:
(1) Hy: 1, =W, (There is no difference between population means)

H, :w#=W, (Thereis difference between population means)

(2) .= 0.05

Since two samples are given and sample size is large, then Z-test can be used to test
the difference between means of two samples.

- X, — X

(3) test-statistic: Z¢ = M (4.10)
s? 2
St S2
ng Ny

where: X; = mean of first sample, X, = mean of second sample

sf = variance of first sample, s§ = variance of second sample

n, = size of first sample, n,= size of second sample
[12.07 - 11.04]
¢ = = 354
\/ (3.04)°  (263)°
193 188

(4) Since it is a two-tailed test, Z-value at 5% level of significance is+1.96.

(5) The calculated value‘of Z¢ is greater than the Z-value of the Table; it falls in the

rejection region. Therefore, it is significant. We say with 95% confidence that
mean fat of two groups is different, i.e. two samples are different and
consequently two populations are different.

Since mean of the wrban group is higher than rural group, therefore, we say that the
average fat in urban males is more as compared to that of rural males.

p-value may be calculated as:

Stated p-value Observed p-value
2P [Z > |3.56]]
0.05 0.0002 + 0.0002 = 0.0004

The 95% confidence limits are

(3.04)? . (2.63)2
193 188

So we can say with 95% confidence that these limits contain the difference of two
population means from which these samples are selected. Since these limits do not

(12.07 - 11.04) + 1.96\/ , (0.46,1.6)
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contain zero, therefore, there is significance difference between two samples as we
should expect.

(iv) Z-test for two sample proportions

Example 4.17:

An epidemiologist compared a sample of 100 adult cases that were suffering from certain
diseases with a sample of 120 controls (free from diseases). It was found that 69 of the
diseased and 80 of the controls were employed in subsistence occupations. Can the
epidemiologist say on the basis of this information at 5% level of significance that two
population proportions differ with respect to the proportion employed in subsistence
occupations?

Solution:
(1) H,:P, =P, p, (diseased) = &9 = 0.69
100
. 80
H :P=P, p, (controls) = 0 = 0.67
(2) a=0.05
Since sample size is large, Z-test for proportion.is used:
(3) test-statistic

C: Zg = — Jpl _ pf' » (4.12)
\/pl(l_pl) + P,(L=p>)

Ny Ny

where: p, = proportion of first sample and p, = proportion of second sample

|69=167| 02

\/(.69)(.31) , (67)(33) 102
100 120

= 0.196

(4) Since it is a two-tailed test, Z-value at 5 percent level is 1.96.

(5) The calculated value is far less than the table value, the result is non-significant,
we say with 95% confidence that there is no difference between two groups.

4.5.2 t-test for single and two samples

This is known as Student's t-distribution or t-test and was discovered by British Chemist,
W.S. Gosset. He published his work under the pseudo-name Student in 1908. When
sample size is small, t-test is applied. It is also used for one sample and two samples to
test the mean and proportion like Z-test. Followings are the assumptions and conditions
for the application of t-test.
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(i) Sampled population should be normal.

(i) The sample must be random, so that the observations are independently
distributed.

(iif) Sample is small and population variance is not known, it can also be applied
when sample is large and population variance is not known. For large sample Z-
test and t-test are almost identical. (We have seen that in all the statistical
packages only t-test is given).

(iv) In case of two samples, it is generally assumed that population variances are
equal and samples are independent.

(i) t-test for one sample mean

Example 4.18:

A new brand of oatmeal cereal claims that a 1.5-ounce serving of the cereal has 140
calories. The staff of the laboratory analyzed the 12 differentsservings of 1.5-ounces each.
The result yielded the mean equal to 153 calories with standard.deviation of 21 calories.
Can the company's claim of 140 calories be rejected based on‘the dataollected? Use 1%
level of significance.

Solution:
(1) Ho: u = 140 calories X =153 calories
H, 1 1 # 140 calories n =12 s = 21 calories
(2) a=0.01

since the sample is small“and also population standard deviation is not known,
therefore, t-test is to be used.

X —
(3) test-statistic: te =| s Il| Jn (4.12)
_ [153-140] 0144
21/412 '

(4) Since the sample size is small, we will see the t-table (Table 3.19). How to see the
table? Since it is a two-tailed test, divide 0.01 by 2. We will get 0.005. Subtract
0.005 from 1 which gives 0.995. Now see the table under 0.995 against
(12 — 1) = 11 degrees of freedom. This gives 3.1058. (This was explained in
Chapter 3 as well).

(5) Since our calculated value is less than table value, therefore, the result is non-
significant and we do not reject the null hypothesis. We conclude that the sample
mean calories is not different from the population mean. The 95% confidence
limits are:

153 + 3.1058 [21/+/12 ], or [134.17, 171.83]

Note that the Hy value lies in the interval.
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Example 4.19:

A series of 10 blood tests were run on a particular patient over several days. The variable
monitored in the total protein level. Since the blood protein level should be neither too
large nor too small, it is desirable to detect either situation p = 7.25 or p # 7.25 based on a
sample of size 10. The sample values are,

7.23,7.24,7.25,7.28,7.31,7.29,7.32,7.26,7.27,7.24
Test at 5% level of significance whether population mean is 7.25,

1-Hp: u=17.25

2-Hy:n#7.25

3-a=5%

4- Test Statistic: t-test for single sample.

Solution:
(D Ho:pn =725
H tp =725

(2) By simple calculation, we get:
X =7.269, s =0.0307
(3) o= 0.05, n=10

since the sample is small and also population standard deviation is not known,
therefore, t-test is be used:

X — 7.269 — 7.25
(4) test-statistic: tgn= M Jn = g = 1.956
s 0.0307//10

(5) Since the samplesize is small, we will see the t-table (Table 3.19). Since it is a
two-tailed test,\divide 0.05 by 2. We will get 0.025. Subtract 0.025 from 1 which
gives 0.975. Now:see the table under 0.975 against (10 - 1) = 9 degree of freedom.
This gives 2.2622.

(6) Since our calculated value is less than table value, therefore, the result is non-
significant and we do not reject the null hypothesis. We conclude that the sample
mean value is not different from the population mean, therefore the hypothesis is
not rejected and one can say with 95% confidence level that on the average blood
protein level is not different than 7.25

This example can be solved by using IBM-SPSS package as follows:
Example S4-1

To test for the mean using IBM-SPSS, for the data in example 4.19, we enter the data and
follow the following steps:
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Analyze=»Compare Means=»One Sample T-Test:

File Edit View Data Transform § Analyze IDiredMarketing Graphs  LUtilities Add-ons  Window Help
== . F
SEHE M | o AN TN
—— h= Descriptive Statistics 3 =t
Tables »
Protein var I Compare Means M1 means..
1 7.23 General Linear Madel ' [T onesampie TTest.
% 7.04 . . ) R—
CEnSaized Line SO ust: Independent-Samples T Test...
3 725 Mixed Models [
4 798 Eaned—SampIesTTest...
- Correlate 2
Al One-Way ANOVA. ..
5 7.31 Regression 2 e ;
g 7.2 Loglinear 2
U 732 MNeural Metworks 3
] 7.26
Classify k a
9 7217
Dimension Reduction 2 Y 4
10 7.24 . . ;

We move the variable into Test Variable(s) and change the Test'alue from 0 to 7.25, as

follows:
@ One-Sample T TEW

TestMariable(s): R

= e -Qphons...

& Blood protein level [... -
) | Yy Bootstrap...

Test!alue:- ——

[Beset][Cancel][ Help |

Once we click on &] we get the following output:
One-Sample Statistics

Std. Error
I Mean Std. Deviation Mean
Blood protein level 10 7.2690 03071 00871

One-Sample Test

TestWalue=7.25

95% Confidence Interval of the
Mean Difference
t df Sig. (2-tailed) Diffarence Lower Upper
Blood protein level 1.956 9 | .uszl‘_ 01900 -.0030 0410

P-Value—)
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Since Sig. (2-tailed)- p-value = .082 which is greater than 0.05, therefore hypothesis is
not rejected and one can say with 95% confidence level that on the average blood protein
level is not different than 7.25.

(ii) t-test for one sample proportion

t-test is also applied for test of sample proportions. This has been explained in the
following example.

Example 4.20:

A report claims that at least one-half of the patients with back pain who receive
acupuncture treatments obtain relief. The doctors at a major hospital in New York City
feel that the estimate of 0.50 is too high. They check the records of 25 patients at their
hospital that received similar treatment for back pain. If 12 of these patients got relief,
can figure of 0.50 be rejected as too high for patients at this hospital? Use 5% level of
significance.

Solution:
(1) H,:p =050 p = 47
H:p<05 n = 225
(2) .= 0.05 (one tailed test)

p—P
(3) Test-statistic: Z = p—| (4.13)
/Pil —P)
n
0.47 — 0.50 — 0,03
(4) Zea = | | = =-3
0.50 (1'=.0.50) 0.01

25

(5) The table value for 95% confidence level is 1.645. The calculated value is more
than the table value; therefore, we do not accept Hy and say that 50% of the
patients receiving the treatment are not getting relief.

This example can be solved be using IBM-SPSS package as follows:
Example S4-2

To test for the proportion using IBM-SPSS, for the information in example 4.20, for the
alternative H, : u = 0.50 we enter the data (twelve 1’s and thirteen 0’s) and follow the
following steps:

Analyze=»Nonparametric=» Legacy Dialog 2 Binomial:
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File Edit View Data Transform | Al

irect Marketing  Graphs

Utilities  Add-ons  Window Help

A&

Reports

T
\

Tables

| Relief H var

oo oo oo oo o oo oo alaaaaaaaa

Mixed Models
Correlate
Regression

Loglinear
Classify
Scale

orecasting

Survival

E simulation...
Quality Control
ROC Curve

Descriptive Statistics
‘Compare Means

General Linear Model

Generalized Linear Models

Neural Networks
Dimension Reduction
Monparametric Tes
Multiple Response
Missing Value Analysis

Multiple Imputation

‘Complex Samples

IBM SPSS Amos...

3

3
3
3
3
3
3
3
3
3
3
3
3
»

- -

-

A One Sample
A\ Independent Sample
A Related Samples...

5

Legacy Dialogs

We move the variable into Test Variable Lis

as follows:

© Cut point:

-

[ chi-square...

ns

ample K-S.
2Indep: it Samples..
Kin dent Samples
lated 8amples

Related Samples..

d be sure that the Test Proportion is 0.50,

Once we click on E we get the following output:

Binomial Test

Obsenved Exact Sig. (2-
Category M Prop. TestProp. tailed)
Pain Relief  Group 1 | yes 12 A48 &0
Group 2 | Mo 13 52
Total 25 1.00

P-value _/
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Since the Exact Sig. (2-tailed)- p-value = 1.000 which is greater than 0.05, therefore the
hypothesis H, : i =0.50 is not rejected.

(iii) t-test for two sample means

t-test may be used to test the difference of two population means as:

X1 = X,|

t= (4.14)
1 1
Spo|— + —
ng Ny
_ 2 _ 2
where: sp = \/(nl bs; + (0, = s (4.15)
ng+n,-2

is known as pooled standard deviation. We assume that variances are the same.

Example 4.21:

A study is conducted to compare the performances_of two groups_.of non-handicapped
children. One group is selected from those non-handicapped children who are studying
with handicapped children and one group is selected from-non-handicapped children
studying in normal school. Each group contains 16 children. A test of skill development
is administered to them the result is given as:

Children in Children in non-
handicapped-school handicapped school
Sample size 16 16
Mean score 122.69 124.85
s.d 10.50 10.50

Can we conclude at 5% level of significance that there is no difference between the mean
scores of two groups? (Journal of Exceptional Children, Vol. 51(1), pp. 41-48).

Solution:
DH i = 1,
Hl : l'llgt HZ
(2) a=0.05
Since the sample in each group is small, t-test is applied. In the application of t-test, it
is assumed that the variances of the two populations are same. The pooled variance
is:
2 (6 ~1)(10.5)2 + (16 —1)(10.5)?
P 16+16 -2
sp = 3.240

= 10.5
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. [122.69-124.85| 216

© 1.146
3.240 /i+i
16 16

(4)n =16and n,=16,d.f. =n; +n, —2=16 + 16 - 2 = 30. The table value is 2.0423.

(3) Test-statistic: =1.88

(5) Since our calculated value is less than the table value, the result is insignificant
and we do not reject the null hypothesis and say with 95% confidence that the
performance of two groups is the same.

The 95% confidence limits are
(122.69 - 124.85) + 2.0423 x 1.146, [-4.4818, 0.1618]

Example 4.22:

The objective of the study was to see whether the risk of caoronary heart disease (CHD)
could be reduced by an increased consumption of fish. Far this purpose, two groups of
men were selected, one consisting of 159 men who did not use the fish and other
consisting of 79 men who were using more than 45sgram fishyper.day. After 25 years,
their level of dietary cholesterol (one of the risk factors for‘coronary disease) present in
each was recorded. The mean levels of dietary cholesterol“along with the standard
deviation for each group are given belowTest at 5% level of significance whether
consumption of fish has real effect on the level of dietary cholesterol?

Consumption of fish Consumption of fish
Sample size 159 79
mean 146 158
s.d 66 75
(Source: New England Journal'of Medicine, Vol. 312, pp. 1205-1209, 1985)
Solution:
(D HytH, =12
Hytu= p2
(2) a=0.05

Since the sample is large, therefore Z-test should be applied. (Here we will use Z-test
and t-test and see how much these two differ when the size of the sample is large. It
has been stated before that for large sample Z-test and t-test are almost identical)

o 146 —158| 12
(3) (a) test-statistic: Z, = = = 1.208
159 79
o 146 —158| 12
(b) test-statistic: t, = = = 1.258

1 1 9.536
69.104,|——+ —
159 79
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(4) Since the sample is large and it is a two-tailed test, the table value will be 1.96 for
5% level of significance. (Even t-table gives the same value).

(5) Our calculated values under both test-statistic are less than the table value.
Therefore, under both tests the result is non-significant and we accept the
hypothesis and say with 95% confidence that on the average, there is no difference
in the level of dietary cholesterol in both the groups. We say eating fish has no
effect in reducing the risk of coronary heart disease.

(6) If Z-statistic and t-statistic give different values where as in one case it is rejected
and in other case it is accepted, then if sample size is small, we make decision on
the basis of t-test.

The 95% confidence limits are

(146-158) + 1.96 x 9.536, [-30.69 6.690]. These two limits, contain the difference
of two population means, therefore we accept the hypothesis.

(iv) t-test for testing two sample proportions

t-test for testing the difference of two proportions can be.used as:

te = |p1 - pzl 1 (4.16)
1- —+ —
VP - pe) J 0,
wh . H _ Xl + XZ
ere: p_(pooled proportions) = —=—=— (4.17)

where x, and x,are the number of cases from the total in favor of certain characteristics.

Example 4.23:

Two preparations;of drug, presented in the same table form are tested for their efficacy in
alleviating headache. Preparation A is given to 25 patients, 17 claiming it effective,
while B has been given to 20 patients, 16 claiming it effective. Does this provide
evidence of a difference between A and B? Use 5% level of significance.

Solution:
. 17
(1) H,:P, =P, p, = 2—5 = 0.68
. 16
H :P=P, p, = 2—0: 0.80
(2) . =0.05

Samples are small, and difference between two proportions is to be tested, therefore,
t-test for proportions is used. The pooled proportion is,
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17+16
25+20

= 0.733

pc(pooled proportion) =

. |0.68—O.80|
(3) test-statistic t, = = 0.905

J0.733(1-0.733) /i+i
25 20

(4) Since it is a two-tailed test, therefore, for 5% level of significance, we see the
table value under ty 475 and against (25 - 1 + 20 - 1) = 43 degrees of freedom. The
table value is 2.023.

(5) The calculated value is less than the table value. It falls in the acceptance region,
the result is non-significant, and we therefore, do not reject the null hypothesis
and say with 95% confidence that there is no difference in the preparation of A
and B.

p-value for the small-sample tests are computed in the“same<way as those for large
sample test. Since SPSS package automatically gives p-value for two-tailed test.

95% confidence limits for the difference of proportions will be:

(By = P2) % ty_gro X —= [pl _ pf' _ (4.18)
P1@—Py)  Pa(l=P3)
Ng N,
(0.68 - 0.80) + 2.023 \/ 0'733(12;0'733) + 0'733(1250'733) =[-0.37,0.13]

4.5.3 Application of SPSS ‘package

If we have two groups and the two groups are Independent’s we have to use
Analyze->Compare Means=>1ndependent Sample T-Test...

How to do the test:

1- Move the variable to be tested to IestVariable(s) and its scale variable ¢ Scale

2- Move the variable Which determines the two groups to GroupingVarable:  and it
have to be &> Nominal o il Ordinal

3- Definition of the two groups using and we use number 1 as definition
for group 1 and number 2 as definition for group 2 then click on and

Example S4-3

Two random samples each of 50 children were selected from two different populations.
Population A had iron deficiency anemia while population B have healthy children in the
same age group as population A. The hemoglobin (Hb) measurements was collected for
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each child. Can we say at 5% level of significance that mean Hb is different in the two
populations? The data is given in Table 4.5 taken from (Daniel, Biostat - 1991):

Table 4.5:
Healthy and anemic children
Sample 1
Children with iron deficiency anemia

9.6 2.2 3.6 55 39 55
4.9 5.5 8.7 79 6.0 35
7.6 9.4 9.1 119 6.4 99
6.9 7.8 6.6 78 48 10.2
2.6 5.2 6.9 47 67 84
10.5 3.7 5.3 75 47 6.2
3.3 6.9 6.9 59 106 43
7.4 4.2 7.1 6.9 467 80
74 58

Sample 2

Healthy Children

14.6 12.7 10.1 118/ 13.2 125
141 12.9 14.0 15120 134 146
11.6 12.6 13.4 13.3 146 13.0
16.0 10.6 10.5 134 113 118
10.3 14.% 10.2 149 96 119
14.5 14.4 12.3 99 140 156
14.6 131 14.1 10.6 15.2 143
12.7 13.9 12.3 11.4 139 135
105 137

Is there a difference between the Children with iron deficiency anemia and Healthy
Children in the proportion.of hemoglobin in the blood?:

Solution:
To test this Hypothesis we follow the following steps :

Analyze->Compare Means-> Independent Sample T-Test...

File Edit View Data Transform IAnaIyzelDirectMarketing Graphs  Utilities Add-ons Window Help

= A Reports » B N |
SHRE 0 = R [ CE R
== Descriptive Statistics »
I Tables 3
Anemia | population Compare Means 2 I Means...
1 9.6 1 General Linear Model .2 One—SampIeTTest
2 49 1 Generalized Linear Models # @ Independent Samples T Test
3 7.6 1 Mixed Models > : :
4 6.9 1 Eaned—Samples TTest..
- Correlate »
4l One-Way ANOVA...
5 26 1 Reagression 2 : == g
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Move the variable Anemia to TestVanable(s):
Move the variable population to Grouping Variable:

Then click on

Test Variable(s): @ Test Variable(s) @
— — & Anemia
¥ population -I
‘
rouping Variable - Grouping Variable:
& [popuiationz 2)

on (Centinue)

=
Once we click on , we get the following output:

Group Statistics
St Error
population I Mean Std. Deviation Mean
Anemia  Children with iron
deficiency anemia 50 6.5800 2.20454 ANTT
Healthy Children 50 | 12.9340 1.66226 23508
Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Anemia Eg:jmgmes 2,624 108 || 18273 98 -6.35400 39046 -7.12886 557914
Eaual variances not 16273 | 91107 000 -6.35400 39048 712860 557840

e In this example, the p-value for Levene's test is 0.108, therefore the result is not
significant, which means that both samples have equal variances. Therefore, we
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choose t-test for equal variances for equal variances assumed. The p-value for t-
test is 0.000, which is less than stated p-value, i.e. 0.05. It falls in the rejection
region and the test is significant.

o We say with 95% confidence that the means Hb of two samples are different.
Consequently the means Hb of two populations are different.

Example S4-4

Do we conclude that, on the average, lymphocytes and tumor cells differ in size? The
followings are the cell diameters (um) of 40 lymphocytes and 50 tumor cells obtained
from biopsies of tissue from patients with melanoma.

Table 4.5
Data relating to Lymphocytes and tumor cells
Lymphocytes
9.0 4.7 8.9 8.4
6.3 5.0 7.8 8.0
8.6 6.8 5.7 6:2
7.4 4.9 6.4 6.3
8.8 7.1 4.7 6.4
9.4 4.8 4.9 5.9
5.7 3.5 10.4 8.0
7.0 7.1 7.6 7.1
8.7 74 7.1 8.8
5.2 5.3 8.4 8.3

Tumbor cells
12.6 16.2 23.3 20.0 19.1
16.7 15.8 17.9 19.1 18.9
20.0 13.9 13.9 22.8 17.9
17.7 16.9 22.8 19.6 18.2
16.3 18.1 11.2 18.6 16.1
14.6 23.9 17.1 21.0 19.4
15.9 16.0 13.4 16.6 18.7
17.8 221 18.3 13.0 15.2
15.1 16.4 19.4 18.4 20.7
17.7 24.3 19.5 16.4 21.5

Can we say at 5% level of significance that on the average tumor cells differ in size?
(source Daniel, 1991)

To test this Hypothesis we follow the following steps :

Analyze=>Compare Means=>Independent Sample T-Test...
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File Edit View Data Transform iredMarkeﬁng Graphs Utilittes Add-ons  Window Help

==

52

% H Eﬂ = Reports N
|

Descriptive Statistics 3
1o Tables »
| diameters " population " ompare Means
1 9.00 1 General Linear Mode
2 6.30 1 Generalized Linear Models #
3 8.60 1 Mixed Models >
4 740 1 Correlate
5 8.80 L Rearession 3

| Means...

One-Sample T Test...

Independent-Samples T Test...

Paired-Samples T Test...
One-Way ANOVA...

Move the variable diameters to TestVariable(s):

Move the variable population to &rouping Variable:

Then click on W

Test Variable(s):
| diameters -.L W

population \ W
|
é ?muping Variable:

€2

Grouping Variable:

population(? ?)

Define Groups.

use number 1 as definition for group 1 and‘number 2 as definition for group 2 then click

on

se specified values

Group 2: |2

@ Cut point

| Continue I|w w

Once we click on @ we get the following output:

Group Statistics
Std. Error
population M Mean Std. Deviation Mean
diameters  Lymphocytes 40 6.9500 1.59683 25232
Tumor cells 50 [ 17.8200 2.96861 41883




156 Hypothesis Testing Procedures

Independent Samples Test

Levene's Testfor Equality of
Variances ttestfor Equality of Means

95% Confidence Interval of the

Wean Std. Error Differance

F Sig. t df Sig. (2-failed) Difference Difference Lower Upper
diameters - Equal vanances 9684 -21.049 88 000 | -10.87000 52118 | -12.00869 9.93431

assumed
-22.396 78.005 -10.87000 48982 -11.94515 -9.99485

Equal variances not
assumed

e In this example, the p-value for Levene's test is 0.003, therefore the result is
significant, which means that we may consider both samples have different
variances. Therefore, we choose t-test for equal variances for equal variances not
assumed. The p-value for t-test is 0.000, which is less than stated p-value, i.e.
0.05. It falls in the rejection region and the test is significant.

o We say with 95% confidence that on the average tumor cells of both the samples
differ in size.

NOTE: When the condition of normality is not satisfied, we go for non-parametric-tests
(to be discussed in Chapter 8). When the sampled populations aré decidedly non-normal,
any inference derived from the small samples (t-test) for p, "= p,is not reliable. In this

case, one alternative is to use Wilcoxon Rank-sum test.
4.5.4 t-test for Paired Observations

Till now, tests were used to find the difference between two independent samples. In this
section, t-test will be used for paired observations. Let us first examine the potential
drawback in using the t-test for two independent samples.

Suppose an elementary school teacherwants to compare two methods of teaching of
reading skills of first graders: One way is‘to choose randomly 40 students from the
available first graders. Two equal groups are formed randomly and reading achievement
test scores are obtained after completion of the experiment. t-test is used to test the
difference between two methads. A potential drawback to this method is that 1Q, reading
ability, socio- economic of the elementary graders are not taken into consideration before
dividing into two groups.

A better method of forming the group is to remove the variation of extraneous factors
such as 1Q, reading ability, etc. One way to do this is to match the first graders in pairs
according to 1Q, socio-economic status, etc. and from each pair one member is selected
randomly to be taught by Method-I and other member to be taught by Method 11, then the
difference between the matched pairs of achievement test scores would provide a clear
picture of the true difference in achievement for the two rating methods as the matching
would cancel the effects of the extraneous factors that formed the basis of matching.
Groups formed in such a way are called matched groups. In medical trial it is all the
matched frequency. Matching is done on age; on blood pressure (B.P) levels sometimes
experiments are conducted on identical timings etc.

The objective of the paired comparison test is to eliminate the effect of extraneous factors
by making the pairs similar with respect to as many variables as possible. It gives an
excellent result if one can do this but in the presence of many factors, it is not an easy
task. Therefore, the research worker prefers to form independent groups. Here we do not
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perform the analysis on individual observations but we use the differences between
individual pairs of observations. Because of this reason, the condition of the equality of
variances is not strictly required.

In this type of problems, our hypothesis is, that there is no difference between two
informations taken before and after the application of a treatment. This type of test is
commonly used in medical science. If one wants to see the effect of medicine or diet on
serum cholesterol levels, one will select a group of patients, measure their serum
cholesterol levels, apply some medicine or diet and after completion of the course again
measure the serum cholesterol levels and see the difference.

To test the significance, we proceed as:

d-0
sd/x/ﬁ

where d is the average of the differences between two¢paired<observations. s, Is the
standard deviation of the differences.

t= (4.19)

Example 4.24:

Thirty-six children were selected at random from a school"and an intelligence test was
given on the day they had breakfast. The same children were given a similar test on the
day they did not have the breakfast. Test, whethersfasting affects the test performance.
The result of the two tests are given in the following Table:

With breakfast 17 | 16 | 21 |20 | 21 | 19 | 20 | 14 | 13
Without breakfast 14 | 155418 | 15 | 16 | 15 | 16 | 17 | 15
With breakfast 10 | 23 |24 | 12 | 19 | 14 | 15 | 18 | 13
Without breakfast 9 21| 18 | 13 | 18 | 10 | 15 | 15 | 13
With breakfast 24020 | 18 | 18 | 11 | 19 | 10 | 15 | 17
Without breakfast 23, | 18 | 13 | 16 7 15 8 11 | 13
With breakfast 24 13 15 14 17 19 16 18 24
Without breakfast 24 | 12 | 14 | 12 | 12 | 18 | 19 | 16 | 22

Is there a difference between the scores with and without breakfast?

Solution:
From Table 4.7, we can see that:

Sum of the difference = >d = 72

. - 12
Average of the difference =d = % =2

»d2 = 306
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36 -1

s= \/L {306 —%} = 2151

(1) H, : There is no difference between two groups
H, :There is difference between two groups.

(2) Since the observations are paired, therefore, t-test for paired observations will be
applied

d-0 2
s/vn  2.151//36

(4) The table value at 5% level of significance for 35 d.f is 1.6896 (note that is a one-
tail test)

(5) Calculated value is much greater than table value. Therefore, the.null hypothesis is
not accepted, we say with 95% confidence that.breakfast.has positive effect on the
students’ performance as we see that experiment hasymean’increase of 2.0 points
on the test scores with standard deviation of 2.15,

=557

(3) Test —Statistics: t =

Table 4.7:
Data relating to scores with and without breakfast
With Without |Difference With Without | Difference
breakfast| breakfast d d2 "|Breakfast| Breakfast d d2
17 14 3 9 24 23 1 1
16 15 1 1 20 18 2 4
21 18 3 9 18 13 5 25
20 15 5 25 18 16 2 4
21 16 5 25 11 7 4 16
19 15 4 16 19 15 4 16
20 16 4 16 10 8 2 4
14 17 -3 9 15 11 4 16
13 15 -2 4 17 13 4 16
10 9 1 1 24 24 0 0
23 21 2 4 13 12 1 1
21 18 3 9 15 14 1 1
12 13 -1 1 14 12 2 4
19 18 1 1 17 12 5 25
14 10 4 16 19 18 1 1
15 15 0 0 16 19 -3 9
18 15 3 9 18 16 2 4
13 13 0 0 24 22 2 4
72 306
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This Problem has been also solved by using IBM-SPSS Package. Before we proceed
further the normality of the observations with breakfast and without breakfast has been
checked using Kolmogorov-Smirnov method. If the observations will be normal then the
different of these observation will be normal

Example S4-5

To test this Hypothesis that there is a difference between the scores with and without
breakfast for the data given in example 4.26, we follow the following steps :

Analyze->Compare Means—>Paired Sample T-Test...

SHE 2
|

|7:
| ws | wos |
1 17 14
2 16 15
3 21 18
4 20 15
5 21 16

File Edit View Data Iransformirectﬂarkeﬁng Graphs  Utilities

Add-ons

Window  Help

Reports
Descriptive Statistics
Tables

General Linear Model

3
3

=1

3

ns...

L One-5

Generalized Linear Models

Mixed Models
Correlate

Rearession

Then we move the variables as follows:

With breakfast
Without breakfast (WOB]

riables

e T Test..

les T Test...

Pair Varial

»>

Variable2

=0 ==

Options.

oo

Paired Variables:

& With breakfast [W8] Pair [Variable1 [variablez
59 Without breakfast [WOB] 1 With breakfas... Without break...

Once we click on @ we get the following outputs:



160 Hypothesis Testing Procedures
Paired Samples Statistics
Std. Error
Mean ¥ Std. Deviation Mean
Pair1 WAROOOO1 171667 36 3.872498 G4550
VARDOOD2 | 151667 36 380238 65040
Paired Samples Correlations
[+ Correlation Sig.
Pair1  “AROOOD1 &WAROOOOZ2 36 847 .000

Paired Samples Test

Paired Differences

95% Confidence Interval of the
Difference

Lower |
127207 |

Std. Error
Mean

35857

Upper t df
2.72793 5.578 35

Sig. (2-tailed)
.000

Std. Deviation
215141

Mean
2.00000

Pair1  VAR0ODO01 - VARDDDOZ

Note that the correlation between matched pair is _high and significant (r=0.847 and
p-value = 0.000). Since paired test is one-tailed test, we divide the p-value by 2 and we

get p=.000, therefore, the null hypothesis is not accepted. We see that mean (d) is
positive (d = with breakfast - without breakfast), therefore, we can say with 95%
confidence that fasting has bad effect on the test score.

Before we proceed to apply t-test for paired observations it is advised that one should test
the normality of the observations using Koelmogorov-Smirnov Z test. If the condition of
normality is satisfied then one should apply t-test for paired observations otherwise one
must use non-parametric tests equivalent to‘t-test for paired observations. If one is not
aware of Kolmogorov- Smirnov test, ‘one can see the significance of correlation
coefficient and can apply paired t-test/if the correlation coefficient is significant.

Example S4-6

Sixteen students were selected at random, their rates of heartbeat were taken while taking
a final examination and while they were in relaxing situation. The results are noted and
given in table 4.8. Test at 5% level of significance, whether examination has an effect on
the heartbeat?
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Table 4.8
Data relating to heartbeats during examination and relaxing situations
During Relaxing During Relaxing
examination situation examination situation
x) v) x) v)
98 78 102 80
112 76 105 74
85 80 120 86
89 76 83 78
106 82 97 74
110 85 90 80
92 75 101 87
86 76 88 72

Solution:

We note the number of variables is 16 (small sample)

Therefor we have to test the normality before testing t-test forpaired samples

And to test the normality follow the following steps:

Analyze - Nonparametric tests 2 Legacy Dialogs /=2 1-Sample K-S ...

File

Edit View Data Transform JAnal

Direct Marketing

Graphs Ulililies Add-ons™ Window Help

/= ﬁ A Reports 3 Em 1 LN
‘ = g ﬁ ! SA [ dp @
——— L= Descriptive Statisties 3 B = i \) .
Tables »
X Y v Compare Means ) 2 var var wvar var var
1 98 78 General LinearModel 3
2 112 76 Generalized Linear Models I
3 85 80 Mixed Models J
4 89 76 Correlate »
5 106 82 V< Regression »
£ 110 85 — Loglinear »
! 92 ® Neural Networks 3
8 86, 6,
5 102 4'780 Classify »
= 05 @ Dimension Reduction 2
120 BEF Scale »
23 73 O Monparametric Tests PI A One Sample..
97 74 Frpmae ' M\ Independent Samples
90 80 gma ' A Related Samples..
3
101 87 Multiple Response AL ™ @ chieauare
88 72 Missing Value Analysis... N
_ [Z Binomial...
Multiple Imputation 3 =
T Runs

Complex Samples
EZ) simulation.

Quality Control
ROC Curve

IBM SPSS Amos...

1-Sample K-S.
w 2 Independent Samples.
[ K Independent Samples...

[&] 2 Related Samples...
B K Related Samples

el

We move the two variables to TestVariable List: and select [¥ Mormal then we click on
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In the output we will be:

\IESI;:;::ZI:xZ:maﬁmm ] m
& Relaxing situation [V] (gotons |
Test Distribution
Dgniform
|| Poisson [| Exponential
One-Sample Kolmogorov-Smirnov Test
Curing Relaxing
examination situation
M 18 16
Normal Parameters™®® Mean 97.7500 TB.EBTE
Std. Deviation 10.89648 449768
Most Extreme Differences  Absolute 138 162
Positive 135 162
Megative -.088 =107
Kolmogorov-Smirnov Z Rl 650
Asymp. Sig. (2-tailed) a8 | .?‘92|

a. Test distributionds Mormal.

h. Calculated from data.

We note the p value<for both variables is greater than 0.05 which means that both
variables follow normal“distribution so we can use t-paired test (no need for a non-

parametric test)

Now to test the hypothesis that there is a difference between the during examination and
relaxing situation? We fallow the following steps: 4

Analyze

File  Edit

View Data

Transform

> Compare Means - Paired Sample T-Test...
[Fralze | Direct Warksting  Graphs  Utilies  Adc-ons  Window  Help

FHE @ =
|

Reports

) R =

=

H

Descriptive Statistics 3

Tables 4

| X " Y " Vi Compare Means L

1 98 78 General Linear Model 3
2 12 76 Generalized Linear Models »
3 85 80 Mixed Models >
4 89 76 Correlate (2
z 106 82 Reagression (2

EMeans...
E One-Sample T Test...
Independent-Samples T Test...

TH] Paired-Samples T Test..
1] One-Way ANOVA...

o)
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Then we move the variables as follows:

Paired Variables

During examination (] I Pair |variable1 [Variabls2
Relaxing situation [Y] 1 5
+

+
-
o)
Paired Variables: _ W
A - : R —— (asoistar..
[CoTzsste ] (eset] (coneet] [ Hoigl)
Once we click on @ we get the following outputs:
Paired Samples Statistics
Std. Errar
Mean I Std. Deviation Mean
Pair1  During examination | &7.7500 16 10.89648 272412
Relaxing situatian TBEBTA 16 449768 112442
Paired Samples Correlations
[+l Correlation Sig.
Pair1  Duringexamination & 16 184 058
Relaxing situation : :
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Wean Lower Upper t df Sig. (2-tailed)
Pair gg‘ri;lgnzx:mi:ﬁ‘:” . 19.06250 9.56709 239177 13.96456 2416044 | 7.970 15

We can see that on the average 19 points heartbeat is more while students are in the
examination hall with s.d. 9.6. p-value < 0.000 (one-tailed is half of two-tailed). We do
not accept the null hypothesis and say that students have greater heart beat during
examination.
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4.6 Testing a Population Variance for Single Samples

Hypothesis testing about a population variance may be carried out using chi-square (XZ)

distribution. Note that in the application of chi-square, the assumption of normality is
required whether the sample is small or large and samples selected from the population
must be random. Like t or z-tests, this can also be conducted as one-tailed and two-tailed
tests.

Table 4.9
One-tail Two-tail
2 2 2 2
Hy c° =0, c° =0,
> 2 2
H, c’ ol c’ %0,

where cé is the specified value of 2 (population variance)
The test-statistic is

-1)s?
2o 02) (4.20)

where s? is the sample variance. The degree of fréedom for  is n — 1.

x2 distribution tends to normality a$ the sample size increases (see Figure 4.9).

Fig. 4.9: Behavior of y’-distribution as sample size increases.

The general principle of testing the hypothesis is the same as mentioned before. 95%
confidence limits for population variance may be calculated as
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n-1 2
P %6025 < % <75 |=95%
G0.025

(4.21)
_ 2 _ 2
P{(”Z—l)s <o?< (”2—1)3} — 95% (4.22)
G0.025 Go.975
This provides confidence interval for o® as
_ 2 _ 2
(n 21)s and (n 21)s (4.23)

Go.975 Go.025

If we are interested in constructing confidence limits for o then these may be
approximately calculated as:

_ 2 _ 2
J (n 21)5 and J (n 21)5 (4.24)
So.975 Go0.025
Example 4.25:

A hospital conducted a study of acute leukemias, For this purpose a random sample of 25
patients was selected from an approximate normal population. The Hemoglobin (gm%)
values were recovered. The variance of. these observations was 4.6. Can we say at 5%
level of significance that the variance of population from which the sample has been
selected is 5?

Solution:
(1) H,: o® =5 s =46

H :o?%5 54.=5 n =25

1
(2) 0 =0.05
There is a single sample. It is required to test variance, therefore chi-square test for
single sample will be used (using 4.15).

(n —1)s?

2
(¢

(3) test-statistic: x>

- # — 2208

(4) Since it is a two- tail test, to see table value we will divide 0.05 by 2 (as in the
case of t or z) which come out to be 0.025. Subtract 0.025 from 1 which is 0.975.

(See Chi square table-Chapter 8) under1§_975and against (25 - 1) = 24 d.f. The
table value is 39.364.
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(5) The calculated value of y? is 22.08 for one tail test which is less than the table

value. So we do not reject the null hypotheses and say with 97.5% confidence that
this sample has been selected from a population whose variance is 5.

Note that for one tailed test (less than or greater than) we see the table directly under
X§.975 and against the desired degrees of freedoms.

f(x?)

N R

Fig. 4.10: The location of X(zl,a,z) and %2y, for'Chi-square distribution.

The confidence limits for o® (population variance) may be calculated as:

(a) We see from the table
(M X§.025 at 24 = (25 - 1) degrees of freedom = 12.401
(ii) %34,5 at 24'= (25 1) degrees of freedom = 39.364
(b) We calculate:

(n - 1s? L (%) (46) _ oo

® 12.401

2
%X0.025

_ 2
(i) (n 21)s _ 24 x 4.6 _ o8
Z6975 39.364

Therefore, the confidence limits for o are [2.8, 8.9] see Fig 4.11}

Note that the sample value 4.6 is covered by the interval and confidence limits for ¢ are
given by

(2.8 ,/8.9)=[1.67 ~ 2.98]
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4.7 Testing the Ratio of Two Population Variances

Variance test should invariably be applied before conducting a small-sample t-test, for
the difference of two means, as the condition of equality of variances is required under its
assumptions. In other words, the application of t-test for two independent samples
requires the assumption that the variances of the two populations are equal. Sometimes,
the assumptions of equality of variances need to be tested. If the variances are
significantly different than any inference based on the t-test becomes suspected.
Therefore, it is essential that we detect the significance difference between two variances
before applying the small-sample t-test for two independent samples. These variances
may also be tested through variance ratio test commonly known as F-test, i.e.

F=o?/05 (4.25)
If two variances are equal then F=1.

We know that population variances are never known and‘we also know that for large
samples,sf (variance of the first sample) and 322 (variance of the second sample) are
unbiased estimates of population variances respectively, therefore; F-is defined as:
F=S?/S% if S?>s3
=S2/S? if S2>S7 (4.26)
Here the null hypothesis is H, :of"=0c2, H: : of >c5 or 67 <oj3. Samples are
randomly and independently selected from two normal populations. Note that F takes

only non-negative values, as it.is the'ratio of two variances. The range of the F is from
zero to infinity.

Example 4.26:

An experiment was conducted to_examine the diet metabolizable energy content of
commercial cat foods. Fifty-seven domestic short hair cats were selected. Twenty eight
were fed on a diet of commercial canned cat food whereas 29 cats were fed on a diet of
dry cat food. This experiment was completed in three weeks. At the end of the
experiment, metabolizable energy content was determined for each cat. Do you say at 5%
level of significance that variation in metabolizable energy content in cats fed on two
types of food were different. The data is given as:

Canned food Dry food
Sample size Sample 28 29
standard deviation 0.96 3.70

(Feline Practice Vol. 15(2), 1986)

Solution:
1) H,: Gf = G%

.2 2
H, iof # 03
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Table (4.10)
2
o AP @— Py + BYP, - Py
(PO - Pa )2
For 5% level of significance and 90% power (Two sided), A =1.96, B = 1.28
Po

Pa 0.05]0.07 | 0.10 | 0.15| 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0s55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
0.05 1518|301 | 96 | 51 | 32 | 23 | 17 | 13 | 10 8 7 6 5 4 3 3 2 2
0.07 | 1421 930 [ 165 | 73 | 43 | 29 | 21 | 16 | 12 | 10 8 6 5 4 3 3 2 2
0.10 | 264 | 869 470 | 137 | 68 | 42 | 28 | 21 | 16 (12 | 10 8 6 5 4 3 3 2
0.15 | 79 | 144 | 437 617 | 171 | 82 | 49 | 33 | 23 |wd7 13 | 10 8 7 5 4 3 2
020 | 40 | 61 | 121 | 588 741 | 199 | 94 | 55 | 36 | 25 | 19 | 14 | 11 8 7 5 4 3
025 | 25 | 35 | 58 | 158 | 717 844 | 222 | 102759, 38w"26 | 19 | 14 | 11 8 6 5 4
030 | 17 | 23 | 35 | 74 | 188 | 825 926 | 240 [\109/| 62 | 40 | 27 | 19 | 14 | 11 8 6 4
035 | 12 | 16 | 23 | 43 | 87 | 213 | 911 987 | 252 | 113 | 63 | 40 | 27 | 19 | 14 | 10 7 5
040 | 10 | 12 | 17 | 29 | 50 | 97 | 233 | 976 1027|259 | 115 | 63 | 40 | 26 | 18 | 13 9 6
045 | 8 9 13 | 20 | 33 | 56 | 105 | 2481021 1046 | 260 | 114 | 62 | 38 | 25 | 17 | 12 8
050 | 6 8 10 | 15 | 23 | 36 | 60 | 111 | 257/(1044 1044|257 | 111 | 60 | 36 | 23 | 15 | 10
055 | 5 6 8 12 | 17 | 25 | 88 | 62| 114 | 260 |1046 1021|248 | 105 | 56 | 33 | 20 | 13
060 | 4 5 6 9 13 | 184 26, | 40 /| 63 | 115 | 259 |1027 976 | 233 | 97 | 50 | 29 | 17
065 | 3 4 5 7 10 | 14 019 w27 | 40 | 63 | 113 | 252 | 987 911 | 213 | 87 | 43 | 23
070 | 3 3 4 6 8 Tdpof. 14 | 19 | 27 | 40 | 62 | 109 | 240 | 926 825 | 188 | 74 | 35
075 | 2 3 4 5 6 8 117 14 | 19 | 26 | 38 | 59 | 102 | 222 | 844 717 | 158 | 58
080 | 2 2 3 4 5 7 8 11 | 14 | 19 | 25 | 36 | 55 | 94 | 199 | 741 588 | 121
085 | 2 2 2 3 4 5 7 8 10 | 13 | 17 | 23 | 33 | 49 | 82 | 171 | 617 437
0.90 - 2 2 3 3 4 5 6 8 10 | 12 | 16 | 21 | 28 | 42 | 68 | 137 | 470
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Table-(4.11)
H
. A JP.@ =Py + BJP, G- P,)]
(PO - Pa )2
For 1% level of significance and 90% power (Two sided), A =2.58, B =1.28
Po

Pa 0.05| 0.07| 0.10| 0.15)| 0.20 | 0.25)| 0.30| 0.35| 0.40| 0.45| 0.50|.0:55| 0.60 | 0.65| 0.70 | 0.75| 0.80 | 0.85| 0.90
0.05 2197| 444 | 145 | 77 49 35 26 20 16 13 10 8 7 6 4 4 3 2
0.07 | 1976 1346| 244 | 110 | 65 | 44 | 31 | 24 | 18 | 15 | 12 | 10 8 6 5 4 3 2
0.10 | 359 | 1208 682 | 201 | 101 | 62 | 42 | 31 | 23 | 18 | .14 |11 9 7 6 5 4 3
0.15 | 104 | 195 | 607 887 | 248 | 120 | 72 | 48 | 34 |"25mjy 194| 15 | 12 9 7 6 4 3
020 | 52 | 82 | 166 | 822 1062| 288 | 135 | 79 J .52 | 37 | /27 | 20 | 15 | 12 9 7 5 4
025 | 32 | 46 | 79 | 218 | 1007 1207| 319 | 147 1. 85w, 55| 38 | 27 | 20 | 15 | 12 9 7 5
030 | 22 | 30 | 47 | 102 | 262 | 1162 1321| 343 |"156| 89 | 56 | 39 | 27 | 20 | 15 | 11 8 6
035] 16 | 21 | 31 | 59 | 120 | 299 | 1286 1406| 369 | 161 | 90 | 57 | 38 | 27 | 19 | 14 | 10 7
040 | 12 | 16 | 22 | 39 | 69 | 136 | 328 | 1381 1461| 368 | 163 | 90 | 56 | 37 | 25 | 18 | 12 8
045 | 9 12 | 17 | 27 | 45 | 77 | 148,349 | 1446 1486| 369 | 161 | 83 | 53 | 35 | 23 | 16 | 10
050 | 8 10 | 13 | 20 | 32 | 50 | 84 | 156 | 363 | 1480 1480| 363 | 156 | 84 | 50 | 32 | 20 | 13
055| 6 8 10 | 16 | 23 | 35 | 53 | 88| 161 | 369 | 1486 1446| 349 | 148 | 77 | 45 | 27 | 17
060| 5 6 8 12 | 18 | 253 37| 56/| 90 | 163 | 368 | 1461 1381| 328 | 136 | 69 | 39 | 22
065 | 4 5 7 10 | 14 | 19 |27 |88 | 57 | 90 | 161 | 359 | 1406 1286| 299 | 120 | 59 | 31
070 | 4 4 6 8 117 150200 27 | 39 | 56 | 89 | 156 | 343 | 1321 1162| 262 | 102 | 47
075 | 3 4 5 7 9 12 | 15| 20 | 27 | 38 | 55 | 85 | 147 | 319 | 1207 1007| 218 | 79
080 | 3 3 4 5 7 9 12 | 156 | 20 | 27 | 37 | 52 | 79 | 135 | 288 | 1062 822 | 166
085 | 2 3 3 4 6 7 9 12 | 15| 19 | 25 | 34 | 48 | 72 | 120 | 248 | 887 607
090 | 2 2 3 4 5 6 7 9 11 | 14 | 18 | 23 | 31 | 42 | 62 | 101 | 201 | 682
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Table-(4.12)
H
. [AJPo(l - Po) + B{P,(1- Pa)]
(PO - Pa )2
For 5% level of significance and 90% power (Two sided), A = 1.645, B = 1.28
Po

Pa 0.05]0.070.10)0.15]0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 9:55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
0.05 1221|239 | 76 | 40 | 25 | 18 | 13 | 10 8 6 5 4 4 3 3 2 2 -
0.07 [1174 748 | 131 | 58 | 34 | 23 | 16 | 12 | 10 8 6 5 4 3 3 2 2 -
0.10 | 221 | 718 378 1109 | 54 | 33 | 22 | 16 | 12 | 10 8 6 5 4 3 3 2 2
0.15 | 67 | 121 | 362 498 | 137 | 66 | 39 | 26 | 19 |14 uy 1L 8 7 5 4 3 3 2
020 | 34 | 52 | 102 | 484 600 | 161 | 75 | 44 . 29 | 20 | 15 | 11 9 7 5 4 3 3
025 | 21 | 30 | 49 | 131 | 588 685 | 180 | 83 |, 48w}, 31 | 21 | 16 | 12 9 7 5 4 3
030 | 15 | 20 | 30 | 62 | 155 | 675 753 | 194 |'88¢| 50" | 32 | 22 | 16 | 12 9 7 5 4
035 | 11 | 14 | 20 | 36 | 72 | 175 | 745 803 | 205 | 92 | 52 | 33 | 22 | 16 | 11 8 6 5
040 | 8 11 | 14 | 24 | 42 | 80 | 191 | 798 836 | 211 | 93 | 52 | 32 | 22 | 15 | 11 8 6
045 | 7 8 11 | 17 | 27 | 46 | 86_.+203 | 833 852 {212 | 93 | 51 | 31 | 21 | 14 | 10 7
050 | 5 7 9 13 | 19 | 30 | 49 | 91 |210] 851 851|210 | 91 | 49 | 30 | 19 | 13 9
055 | 4 5 7 10 | 14 | 21 | 31 | 517} 93 | 212 | 852 8331203 | 8 | 46 | 27 | 17 | 11
060 | 4 4 6 8 11 | 15| 22, | 32/| 52 | 93 | 211 | 836 798 | 191 | 80 | 42 | 24 | 14
065 | 3 4 5 6 8 11 |16 |22 | 33 | 52 | 92 | 205 | 803 745 | 175 | 72 | 36 | 20
070 | 3 3 4 5 7 9 120 16 | 22 | 32 | 50 | 88 | 194 | 753 675 | 155 | 62 | 30
075 | 2 3 3 4 5 7 9 12 | 16 | 21 | 31 | 48 | 83 | 180 | 685 588 | 131 | 49
080 | 2 2 3 3 4 5 7 9 11 | 15 | 20 | 29 | 44 | 75 | 161 | 600 484 | 102
085 | 2 2 2 3 3 4 5 7 8 11 | 14 | 19 | 26 | 39 | 66 | 137 | 498 362
0.90 - - 2 2 3 3 4 5 6 8 10 | 12 | 16 | 22 | 33 | 54 | 109 | 378
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Table-(4.13)
H
. A JP.@ =Py + BJP, G- P,)]
(PO - Pa )2
For 1% level of significance and 90% power (Two sided), A =2.33, B =1.28
Po

Pa 0.05]0.07 | 0.10 | 0.15]0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 055 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
0.05 1908 | 383 | 124 | 66 | 42 | 30 | 22 | 17 | 13 | 11 9 7 6 5 4 3 2 2
0.07 | 1741 1169|210 | 94 | 56 | 37 | 27 | 20 | 16 | 13 | 10 8 7 5 4 3 3 2
0.10 | 319 | 1064 592 | 174 | 87 | 53 | 36 | 26 | 20 | 15 |_12 |10 8 6 5 4 3 2
0.15 | 94 | 173 | 535 772 | 215 | 104 | 62 | 41 | 30 [22wp174x| 13 | 10 8 6 5 4 3
020 | 47 | 73 | 147 | 723 926 | 250 | 118 | 69 .45 | 32 |23 | 18 | 14 | 10 8 6 5 3
025| 29 | 41 | 70 | 193 | 884 1053 | 278 | 128 |\ 74w}, 48133 | 24 | 18 | 13 | 10 8 6 4
030 | 20 | 27 | 42 | 90 | 231 |1019 1154 299 |236°| 77| 49 | 34 | 24 | 18 | 13 | 10 7 5
035 | 14 | 19 | 28 | 53 | 106 | 263 | 1127 1228 314 | 141 | 79 | 50 | 33 | 23 | 17 | 12 9 6
040 | 11 | 14 | 20 | 35 | 61 | 119 | 288 | 1209 1277|322 | 142 | 79 | 49 | 32 | 22 | 16 | 11 8
045 | 9 11 | 15 | 24 | 40 | 68 | 130.4.306 |1265 1299|323 | 141 | 77 | 47 | 31 | 21 | 14 9
050 | 7 9 12 | 18 | 28 | 44 | 73 | 137 | 318 |1295 1295| 318 | 137 | 73 | 44 | 28 | 18 | 12
055 | 6 7 9 14 | 21 | 31 | 47 | 77| 141 | 323 | 1299 1265| 306 | 130 | 68 | 40 | 24 | 15
060 | 5 6 8 11 | 16 | 220 32, | 49/ 79 | 142 | 322 | 1277 1209| 288 | 119 | 61 | 35 | 20
065 | 4 5 6 9 12 | 17 |*23 "33 | 50 | 79 | 141 | 314 | 1228 1127| 263 | 106 | 53 | 28
070 | 3 4 5 7 10 | 13mmd80| 24 | 34 | 49 | 77 | 136 | 299 | 1154 1019 231 | 90 | 42
075 | 3 3 4 6 8 10 | 13 | 18 | 24 | 33 | 48 | 74 | 128 | 278 | 1053 884 | 193 | 70
080 | 2 3 3 5 6 8 10 | 14 | 18 | 23 | 32 | 45 | 69 | 118 | 250 | 926 723 | 147
085 | 2 2 3 4 5 6 8 10 | 13 | 17 | 22 | 30 | 41 | 62 | 104 | 215 | 772 535
090 | 2 2 2 3 4 5 6 8 10 | 12 | 15 | 20 | 26 | 36 | 53 | 87 | 174 | 592
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Table-(4.14)
2
. A JP.@— Py + BYP.C—P,)]
(PO - Pa )2
For 5% level of significance and 80% power (Two sided), A =1.96, B =0.84
Po

Pa 0.05| 0.07 | 0.10 | 0.15| 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0:55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
0.05 1167|238 | 78 | 42 | 27 | 19 | 14 | 11 9 7 6 5 4 3 3 2 2 -
0.07 | 1029 716 | 131 | 59 | 35 | 24 | 17 | 13 | 10 8 7 5 4 4 3 2 2 -
0.10 | 185 | 629 363 | 108 | 54 | 34 | 23 | 17 | 13 | 10 8 6 5 4 3 3 2 2
0.15| 53 | 101 | 316 470 | 132 | 64 | 39 | 26 | 19 | 14wy 11 8 7 5 4 3 3 2
020 | 26 | 42 | 86 | 430 562 | 153 | 72 | 43 |.28 | 20 | A5 | 11 8 7 5 4 3 2
025| 16 | 24 | 41 | 114 | 527 637 | 169 | 78 | .45Wm},.29 1 20 | 15 | 11 8 6 5 4 3
030 | 11 | 15 | 24 | 53 | 137 | 609 697 | 181 | 83| 47| 30 | 21 | 15 | 11 8 6 4 3
035| 8 11 | 16 | 31 | 63 | 157 | 675 741 | 190 | 85 | 48 | 30 | 20 | 14 | 10 7 5 4
040 | 6 8 12 | 20 | 36 | 71 | 172 | 726 770 | 194 | 86 | 48 | 30 | 20 | 13 9 7 4
045 | 5 6 9 14 | 24 | 41 | 77 _|-183"| 760 782|195 | 85 | 46 | 28 | 18 | 12 8 5
050 | 4 5 7 11 | 17 | 26 | 44 | 82 | 19| 779 779 1191 | 82 | 44 | 26 | 17 | 11 7
055| 3 4 5 8 12 | 18 | 28 | 46 | 85 | 195 | 782 760 | 183 | 77 | 41 | 24 | 14 9
060 | 3 3 4 7 9 139,200 30/ 48 | 86 | 194 | 770 726 | 172 | 71 | 36 | 20 | 12
065 | 2 3 4 5 7 10 |24 |20 | 30 | 48 | 85 | 190 | 741 675 | 157 | 63 | 31 | 16
070 | 2 2 3 4 6 8 11, 15 | 21 | 30 | 47 | 83 | 181 | 697 609 | 137 | 53 | 24
0.75 2 2 3 4 5 6 8 11 15 20 29 45 78 | 169 | 637 527 | 114 | 41
080 | 2 2 2 3 4 5 7 8 11 | 15 | 20 | 28 | 43 | 72 | 153 | 562 430 | 86
085 | - 2 2 3 3 4 5 7 8 11 | 14 | 19 | 26 | 39 | 64 | 132 | 470 316
090 | - - 2 2 3 3 4 5 6 8 10 | 13 | 17 | 23 | 34 | 54 | 108 | 363
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Table-(4.15)
2
. A JP.@ =Py + BJP, G- P,)]
(PO - Pa )2
For 1% level of significance and 80% power (Two sided), A =2.58, B = 0.84
Po

Ps 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55"| 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
0.05 367 | 122 | 66 | 43 | 30 | 23 | 18 | 14 | 11 9 7 6 5 4 3 2 2
0.10 | 266 551 | 165 | 84 | 52 | 36 | 26 | 20 | 15 | 127 ] 10 8 6 5 4 3 2
015 | 75 | 462 710 | 201 | 98 | 59 | 40 | 28 | 21 | 16 | 13 | 10 8 6 5 4 3
020 | 36 | 124 | 633 845 | 231 | 110 | 64 | 42 | 307 w22 4416 | 13 | 10 7 6 4 3
025 | 22 | 58 | 166 | 780 957 | 255 | 118 | 68 | 44 (| 31 | 22 | 16 | 12 9 7 5 4
030 | 15 | 34 | 76 | 201 | 903 1044 | 272 | 124 fw7d |45 | 31 | 22 | 16 | 12 9 6 4
035 | 11 | 23 | 44 | 92 | 231 | 1003 1109 | 284|428 171 | 45 | 30 | 21 | 15 | 11 7 5
0.40 8 16 | 29 | 53 | 104 | 255 |1079 1150290 | 128 | 71 | 44 | 29 | 20 | 14 9 6
0.45 7 12 | 20 | 34 | 59 | 114 | 272 41132 1167|290 | 126 | 68 | 41 | 27 | 18 | 12 8
0.50 5 9 15 | 24 | 38 | 65 | 122, | 284 | 1161 1161|284 | 122 | 65 | 38 | 24 | 15 9
055 | 4 8 12 | 18 | 27 | 41 |68 | 126 290 |1167 1132|1272 | 114 | 59 | 34 | 20 | 12
060 | 4 6 9 14 | 20 | 29 | 44 | 714 | 128 | 290 |1150 1079 | 255 | 104 | 53 | 29 | 16
0.65 3 5 7 11 | 15 | 21 |30 | 45 | 71 | 128 | 284 | 1109 1003 | 231 | 92 | 44 | 23
0.70 3 4 6 9 12 | 160, 227131 | 45 | 71 | 124 | 272 | 1044 903 | 201 | 76 | 34
0.75 2 4 5 7 9 120 16 | 22 | 31 | 44 | 68 | 118 | 255 | 957 780 | 166 | 58
0.80 2 3 4 6 7 10 | 13 | 16 | 22 | 30 | 42 | 64 | 110 | 231 | 845 633 | 124
0.85 2 3 4 5 6 8 10 | 13 | 16 | 21 | 28 | 40 | 59 | 98 | 201 | 710 462
0.90 - 2 3 4 5 6 8 10 | 12 | 15 | 20 | 26 | 36 | 52 | 84 | 165 | 551
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Table-(4.16)
2
. AJPo@- Py + BYP,A- Py
(PO - Pa )2
For 5% level of significance and 80% power (One sided), A =1.645, B=0.84
Po

Pa 0.05| 0.10| 0.15| 0.20| 0.25| 0.30 | 0.35| 0.40 | 0.45 | 0.50 | 0.55| 0.60 | 0.65 | 0.70 | 0.75| 0.80 | 0.85 | 0.90
0.05 184 | 60 32 21 15 11 8 7 5 5 4 3 3 2 2 - -
0.10 | 150 282 | 83 | 42 | 26 | 18 | 13 | 10 8 6 5 4 3 3 2 2 1
0.15| 44 | 252 368 | 103 | 50 | 30 | 20 | 14 | 14 8 7 5 4 3 3 2 2
0.20 | 22 69 | 342 440 | 119 | 56 33 22 15 11 9 7 5 4 3 3 2
025| 14 | 33 | 91 | 418 500 | 132 | 61 | 35 | 23 | 16, | 12 9 7 5 4 3 2
030 9 20 | 43 | 109 | 482 548 | 142 | 65 W37 |24 | 16 | 12 9 6 5 4 3
035| 7 13 | 25 | 50 | 124 | 534 583 | 14967 |38 | 24 | 16 | 11 8 6 4 3
040| 5 10 | 16 | 29 | 57 | 136 | 573 606 153 | 68 | 38 | 23 | 16 | 11 8 5 4
045 | 4 7 12 19 32 62 | 145 { 600 616 | 153 | 67 37 22 15 10 7 5
050| 3 6 9 13 | 21 | 35 | 65.] 151 | 614 614 | 151 | 65 | 35 | 21 | 13 9 6
0.55 3 5 7 10 15 22 37 67 4153 | 616 600 | 145 | 62 32 19 12 7
060| 2 4 5 8 11 | 16 | 23 | 38 | 68 | 153 | 606 573 | 136 | 57 | 29 | 16 | 10
065| 2 3 4 6 8 1 (16 | 24 | 38 | 67 | 149 | 583 534 | 124 | 50 | 25 | 13
0.70 2 3 4 5 6 9 12 16 24 37 65 | 142 | 548 482 | 109 | 43 20
075| 2 2 3 4 5 7 9 12 | 16 | 23 | 35 | 61 | 132 | 500 418 | 91 | 33
0.80 - 2 3 3 4 5 7 9 11 15 22 33 56 | 119 | 440 342 | 69
085| - 2 2 3 3 4 5 7 8 11 | 14 | 20 | 30 | 50 | 103 | 368 252
0.90 - 2 2 3 3 4 5 6 8 10 | 13 | 18 | 26 | 42 | 83 | 282
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Table-(4.16)
2
. A JP.@— Py + BYP.C—P,)]
(PO - Pa )2
For 1% level of significance and 80% power (One sided), A=2.33,B=0.84
Po

Ps 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55¢] 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
0.05 312 | 104 | 56 | 36 | 26 | 19 15 | 12 9 8 6 5 4 3 3 2 2
0.07 | 1304 | 927 | 172 | 78 47 32 23 17 14 11 9 7 6 5 4 3 2 2
0.10 | 231 471 | 141 | 71 44 30 22 17 13 10 8 7 5 4 3 3 2
0.15 | 66 | 400 608 | 172 | 84 | 50 | 34 | 24 | 18| 14 |11 8 7 5 4 3 2
0.20 | 32 | 108 | 546 724 | 198 | 94 | 55 | 36, | 26 19/ 14 | 11 8 6 5 4 3
025| 19 | 51 | 143 | 672 820 | 218 | 101 | 58 .88, | 26 | 19 | 14 | 11 8 6 4 3
030 | 13 | 30 | 66 | 174 | 778 896 | 233 | 106 |61 |39 | 26 | 19 | 14 | 10 7 5 4
035| 10 | 20 | 38 | 79 | 199 | 863 952 | 244 1109 | 61 | 39 | 26 | 18 | 13 9 7 4
040 | 7 14 | 25 | 46 | 90 | 219 | 928 987,249 | 110 | 61 | 38 | 25 | 17 | 12 8 5
045 | 6 11 | 18 | 30 | 51 | 99 | 234.} 973 1003 | 249 | 109 | 59 | 36 | 23 | 15 | 10 7
050 | 5 8 13 | 21 | 33 | 56 |[A405 | 244°].998 998 | 244 | 105 | 56 | 33 | 21 | 13 8
055 | 4 7 10 | 15 | 23 | 36 | 59 | 109 | 249 |1003 973 | 234 | 99 | 51 | 30 | 18 | 11
060 | 3 5 8 12 | 17 | 25,| 388 | 61 | 110 | 249 | 987 928 | 219 | 90 | 46 | 25 | 14
065| 3 4 7 9 13 | 18 |26 1739 | 61 | 109 | 244 | 952 863 | 199 | 79 | 38 | 20
070 | 2 4 5 7 100 | 14,19 | 26 | 39 | 61 | 106 | 233 | 896 778 | 174 | 66 | 30
075 | 2 3 4 6 8 11 | 14 | 19 | 26 | 38 | 58 | 101 | 218 | 820 672 | 143 | 51
080 | 2 3 4 5 6 8 11 14 | 19 | 26 | 36 | 55 | 94 | 198 | 724 546 | 108
0.85 2 2 3 4 5 7 8 11 14 18 24 34 50 84 | 172 | 608 400
0.90 - 2 3 3 4 5 7 8 10 13 17 22 30 44 71 | 141 | 471




Chapter 5

Analysis of Variance

5.1 Introduction

In Chapter 4, we have studied the testing of hypothesis procedure with two independent
samples and for paired observations. In most practical situations, we study, more than
two populations. In such cases the application of t-test is not appropriate. Sir R. A. Fisher
and his colleagues developed designs of experiments and a statistical technique known as
analysis of variance (ANOVA) technique. In medical research usually, observational and
experimental studies are made. Observational studies are based on surveys whereas
clinical case studies are based on experiments. Experimental studies are laboratory-
controlled experiments where each experiment is designed to compare factors. The
experiments that concern clinicians are clinical trials..\WWe allocate drugs or treatments to
patients and observe the outcome. Suppose we have two new drugs to be tested along
with a control drug, a placebo. There are various waysof performing the experiments
depending on an objective. If we are interested in drugs efficacy only, then drugs are
randomly assigned to patients and their responsemnoted.”A more controlled experiment
may form blocks of patients given same age group and select randomly as many patients
from a group as the number of drugs or multiple patients per drug. One drug to each
patient in the age group called blacks is‘therrandomly given to patients. This way each
drug will get as many patients_(an equal number for all drugs) as there are blocks. The
idea is to make the units in@a block as similar as possible. The first experiment is called
Completely Randomized Design and the analysis of this design is made by using
Analysis of Variance with One-Way Classification The second one is called Randomized
Block Design and analysis of thissdesign may be made by using Analysis of variance
Two-Way Classification. Similarly other types of designs can be adopted depending on
the objectives andresources available. The main purpose of analysis of variance
technique is to see, whether there is any difference among k population means in (Note
that ANOVA can also be applied on two samples). In this chapter only analysis of
variance for one-way classification, two-way classification, repeated measure design,
Multivariate Analysis of Variance (MANOVA) and simple factorial design will be
discussed. The classification of observations on the basis of single criterion is called one-
way classification whereas the classification of observations according to two criteria is
called two-way classification. If the classifications are based on multi-way classification
with more than two factors then analysis is made using MANOVA (multivariate analysis
of variance) and repeated measure design.

5.2 Analysis of Variance with One- Way classification

Suppose there are k treatments (drugs) that are randomly assigned to experimental units.
Random allocation of treatments to experimental units is known as completely
randomized design. For the analysis of such type of data, analysis of variance with one-
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way classification is used. What we do, we select independent random samples from
different populations to make inferences about the population means associated with
various treatments.

The null hypothesis to be tested is
H0:|‘11:|J2:|J3: """ :“k

at a particular level of significance. Where [, W, MW, ... 4, are the means of k

populations. The alternative hypothesis will be that at least two means differ. The
following assumptions must be made:

In an additive model
yisu+&+e i=1,2,3..0j=1,23,. ...,k (5.1)
where p is the general mean response and &; is the effect of thedth drug.
> &=0and g~ NID (0, 6%
The assumptions are as:

(i) The observed values are all independent random. variables selected from each
sampled population

(i) Each sampled population is normally distributed
(iif) The variances of all the populations are same and constant.
When these assumptions are violated, the'inferences become doubtful.

One way analysis of variance'technique partitions the total sum of square (TSS) into two
components called, between sum of squares [SS(B)] and within sum of squares[SS(W)]
as shown is diagram 5.1.

Between sum of
squares [SS(B)]

Total sum of
sauares (TSS)

Within sum of
sauares [SS(W)]

Fig. 5.1: Partitioning of total sum of squares into different components.
If Hy is true then the two components are used to provide independent estimates of o°.
We compare the source of variability by forming F-test i.e.

Between mean squares [MS(B)]
Withinmean squares [MS(W)]
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In the definition of F both the numerator and denominator estimate the o® and
consequently if Hy is true F should be close to 1.

F is based on v; = k-1 and v, = n-k degrees of freedom where k are treatments and n
number of observations. If computed value exceeds the table value, we reject the null
hypothesis and conclude that at least two treatment-means differ with each other. The
results of the analysis of variance are usually summarized and presented in an analysis of
variance table (ANOVA table). The table shows the sources of variation, their respective
degrees of freedom, sum of squares, mean sum of squares and computed F-statistic, (in
SPSS output, p-value is also given). If there are k treatments with n observations then the
output may be displayed in the table 5.1.

Table 5.1:
ANOVA- ONE WAY
Source of variation | d.f SS MSS F-statistic
Between treatments | k-1 |SS(B) |SSB/(k-1) = MSB
Within treatments n-k |SS(W) |SSW/(n-k) = MSW<| F = MS(B)/MS(W)
Total n-1 |(TSS

We have further tests to determine which pairs ‘are significantly different. For this
purpose Multiple Range Tests are used and are given as:

(i) LSD test (V). Tukey -HSD test
(i)  Modified LSD (Bonferroni) test (vi) Tukey-B test
(iii) Duncan’s test (vii) Scheffe’s test
(iv)  Student - Newman-Keuls test (viii) Dunnett’s test

Any one of the above tests can be applied to test the difference between two samples.
LSD and Duncan's tests:are commonly applied.

Example 5.1:

Suppose we wish tandetermine the usefulness of the measurement of serum Lipid-bound
Silica Acid (LSA) in the detection of breast cancer. For this purpose, four populations are
selected as:

Population A: Normal/control. (Healthy subjects)

Population B: Patients with benign breast cancer

Population C: Patients with benign primary cancer

Population D: Patients with recurrent meta-static breast cancer

One sample from each population is selected randomly and LSA measurements (mg/dl)
are recorded. We compare these samples to find out the difference between the means.

The data regarding LSA measurements (mg/dl) are given in Table 5.2.
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Table 5.2:
Measurements of Lipid bound silica acid (LSA)

Normal/ | Patients with benign | Patient with primary | Patient with meta-static
Control breast cancer breast cancer breast cancer
18.80 24.30 18.00 22.30

18.80 18.60 16.40 22.90

20.10 24.70 22.50 22.70

14.50 22.50 18.20 22.40

15.80 23.00 17.50 25.20

18.20 14.90 21.00 18.70

15.70 22.70 23.20 22.20

20.90 18.60 19.90 23.00

20.40 20.60 19.80 25.50

16.90 24.60 16.20 19.70

180.1 214.5 192.7 224.6

Grand total = 180.1+214.5+192.7+224.6= 811.9

Test at 5% level of significance that there is no difference between 4«roups.

Solution:
(1) H,

T TR, T H TR,

H, : At least two sample means are not equal

(2) @ =0.05
(3) Test-statistic: F-test in.one=way ANOVA.

For the calculation proceed asfollows:

0
(i)
(iii)

(iv)
v)

(vi)
(vii)

Correction factor =(811.9)?/40 = 16479.5402
Total sumof squares = 18.8% + 18.8% + ...+ 19.7%- 16479.5402 = 352.2097

Between sum of squares

2 2 2 2
_(180.)"+(214.5) ;)(192-7) +(224.6) —16479.5402 = 122.9308

Note that the divisor (10) is the number of observations on which the column or
group totals are based.

Within sum of squares = TSS-SS(B) = 352.2097 - 122.9308 = 229.2789
Mean sum of squares (B) = 122.9308/(4-1) = 40.9769

Mean sum of squares (W) = 229.2789/36 = 6.3689

F-statistic = 40.9769/ 6.3689 = 6.4339

These may be presented in the ANOVA table
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Table 5.3:
One- Way ANOVA
Source of variation | d.f SS MSS Fea Fiab
Between groups 3 122.9308 | 40.9769
Within groups 36 | 229.2790 | 6.3689 40'27221/5‘;3%689 3.46
Total 39 | 352.2097 '

(4) Table value against 3 and 36 degree of freedom at 5% level of significance is 3.46.

(5) Calculated value is more than table value, result is significant, therefore we do not
accept the null hypothesis and say that at least two sample means differs with each
other.

IBM-SPSS package may be used for the calculations, as explained by the following
example:

Example S5-1

To test that there is no difference between the 4 groups for the data given in table 5.2, the
data are entered in one column and we add anothersgrouping variable with the numbers
1,2,3 and 4 corresponding to the 4 (independent) groups, then we follow the following
steps:

Analyze->Compare Means—>One-Way ANOVA:...
) Vv ~ S5-1.sav [DataSet0] - IBM S
File Edit View Data Transform § An Direct Marketing Graphs Utilities Add-ons  Window Help

SEHE I v % H &N BN

Descriptive Statistics

Taples

»
»
»
Population _I'T'IBES;im.. Cnﬂ are Means L1 [ Means..
1 170, 1880 General Linear Model b E;ne—SampleTTest...
2 i 1 _18-80 Generalized Linear Models » Indep_endenI—SampIesTTest...
3 _ 1 2010 piged Models > _
4 1 14 511 Contats R Paired-Samples T Test..
5 Tf_ 1580 gogression \ | L] One-Way ANOVA. .. M

Move the variable measurement to Dependent List:

Move the variable population to Factor:
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]

One-Way ANOVA

Dependent List:

& measurement

Factor:

- & Population

[ OK ][ Paste ][Beset ][Cancel][ Help ]

Click on Options:

m Homogeneity of variance test
Enmstrap ;:_j Brown-Forsythe

Analysis of Variance

1= One-Way ANOVA: Options x|

Statistics

\ﬂﬂ Descriptive

[] Fixed and random effects

Missing Values
@ Exclude cases analysis by analysis

© Exclude cases listwise

g

AT

We click on and on , to get the following outputs:

SPSS output for ANOVA One-way

Analysis of Variance

Descriptives
measurement
95% Confidence Interval for
Mean
M Mean Std. Deviation | Std. Error | Lower Bound Upper Bound Minimum | Maximum
Marmalf Control 10 | 18.0100 219821 69513 16.4375 19.5825 14.50 20.90
Patients with benign
breast cancer 10 | 21.4500 3.22396 1.01950 19.1437 237563 14.90 2470
Patient with primary
breast cancer 10 |T18.2700 2.42801 76812 17.6324 21.0076 16.20 23.20
Patientwith meta-static
breast cancer 10, 22,4600 2.08551 65949 20.9681 2395149 18.70 25.50
Total 40 | 20:2875 3.00517 47516 19.3364 21,2586 14.50 25.50
Test of Homogeneity of Variances
measurement
Levene
Statistic df1 df2 Sii.
1.373 3 36 267 |1

If the p-value of Levene’s test of homogeneity of variance is greater than 0.05, then the
condition of homogeneity is satisfied and ANOVA technique can be applied to test the
difference between different groups. In this example, condition of homogeneity is
satisfied (see Levene’s test p-value = 0.267), so ANOVA technique is appropriate.
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ANOVA
measurement
Sum of
Squares df Mean Sguare F Sig.
Between Groups 122,931 3 40,977 6.434 .om
Within Groups 229.279 36 6.369
Total 352210 38

See the results of F-statistic from ANOVA table, p = 0.001, which is less than the p-value
of 0.05, therefore, the null hypothesis is not accepted. We can say with 95% confidence
that at least two sample means are different.

POST HOC Test: Since samples are different, we apply any one of the multiple range
tests to see which samples (groups) are homogeneous. We have applied LSD test and
modified LSD test (Bonforroni) to see the differences betweendwo means:

Analyze->Compare Means>0One-Way ANOVA...
We chose Post Hoc:
1= One-Way ANOVA
Degpendent List: _
f measurement

e

% (Eactor:

L» &5 Population
[ Reset ][Cancel][ Help ]

Flﬂy ANOVA: Post Hoc Multiple Comparisons

EqualMariances Assumed
*9\ LSD [F] s-N-K [7] waller-Duncan
\Eéﬁomﬁmné I7] Tukey
[C] sidak [T Tukey's-b [”] Dunnett
[7] Scheffe [] Duncan v
| RE-G-WF [[] Hochberg's GT2 [ Test
[ RE-G-WQ [[] Gabriel @

Equal Variances Not Assumed

|| Tamhane's T2 [] Dunnetts T3 [] Games-Howell (| Dunnetts C
sionicance lever
[Cuntinu Cancel ][ Help ]

g
Sl
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We click on and on , to get the following outputs:

SPSS output for multiple range tests

~ LSD and Modified LSD Tests with 5% level of significance

Mean
Diff erence

(1) CODES (J) CODES (1-J) Std. Error Sig.
LSD Control Benign -3.4400* 1.1286 .004
Primary -1.2600 1.1286 272
Meta-Static -4.4500* 1.1286 .000
Benign Control 3.4400* 1.1286 .004
Primary 2.1800 1.1286 .061
Meta-Static -1.0100 1.1286 377
Primary Control 1.2600 1,1286 272
Benign -2.1800 1.1286 .061
Meta-Static -3.1900* 1.1286 .008
Meta-Static  Control 4.4500* 141286 .000
Benign 1.0100 1.1286 377
Primary 3.1900* 1.1286 .008
Bonferroni  Control Benign -3.4400* 1.1286 .026
Primary -1.2600 1.1286 1.000
Meta-Static -4.4500* 1.1286 .002
Benign Control 3.4400* 1.1286 .026
Primary 2.1800 1.1286 .368
Meta-Static -1.0100 1.1286 1.000
Primary Control 1.2600 1.1286 1.000
Benign -2.1800 1.1286 .368
Meta-Static -3.1900* 1.1286 .046
Meta-Static. Control 4.4500* 1.1286 .002
Benign 1.0100 1.1286 1.000
Primary 3.1900* 1.1286 .046

*. The mean dif ference is significant at the .05 level.

(a) The result of LSD test

(i) Control group and Primary group are homogeneous

(ii) Benign group and Primary group are homogeneous

(iii)Benign group and Meta-Static group are homogeneous

(b) The result of Bonferroni's test (Modification of LSD)

Results of Bonferroni test are the same as for LSD.

The following figure (obtained through the Means Plot) may reflect the results:
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23.007

22.007

21.007

20.007]

Mean of measurement

18.007)

18.00-]

T T T T
Mormal Cortrol Patients with benign Patient with primary  Patient with meta-static
breast cancer breast cancer breast cancer

Population

In the previous example, the sample sizes were egual, in the different groups (this is
known as a balanced model). We can use the ‘'same_procedure — under the same
conditions in case of the unbalanced model, as can be seen in the following example:

Example 5.2:

Anionwu et al. (1981) reported data on steady-state hemoglobin levels for patients with
different types of sickle cell disease«<The question of interest is whether the steady-state
hemoglobin levels differ significantly between patients with different types. The data are
given as follows.

Table 5.4

Type of Sickle Cell Disease
HB SS HB_S/-Thalassaemia HB SC
7.2 8.1 10.7
7.7 9.2 11.3
8.0 10.0 115
8.1 10.4 11.6
8.3 10.6 11.7
8.4 10.9 11.8
8.4 11.1 12.0
8.5 11.9 12.1
8.6 12.0 12.3
8.7 12.1 12.6
9.1 12.6
9.1 13.3
9.1 13.3
9.8 13.8
10.1 13.9
10.3

Source: Anionwu et al. (1981)
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By using analysis of variance technique, test whether there is any significant difference
between three types of Sickle all disease at 5% level of significance.

Example S5-2

To test that there is no difference between the 3 groups for the data given in table 5.4, that
is to test:

HO : u'1 = l’12 = HB
H, : At least two sample means are not equal,

the data are entered in one column and we add another grouping variable with the
numbers 1,2 and 3 corresponding to the 3 (independent) groups, then we follow the
following steps :

Analyze>Compare Means>0One-Way ANOVA...
File Edit View Data Transform JAnalyze |DirectMarketing Graphs Mgns Window Help

i I Reports 3 1
SHE e | R ]
3 — Descriptive Statistics .
|2: | Tables
|Popu|ation || measuram. . ompare Means v ans...
1 1 7.
= ne-Sample T Test...
2 1 7.7 i
SEEE L, T Independent-Samples T Test...
3 1 8.0 Mixed Models [y (=
Paired-Samples T Test...
4 1 8.1 Tela =
One-Way ANOVA..
5 1 8.3 BOTE 3 — i

Move the variable measurement to Dependent List:

Move the variable population to Factor:

/| Descriptive

[T] Fixed and random effects

il Homogeneity of variance test
Sreae [”] Brown-Farsythe

% | [&Popuaton | [] Welch
(Lo J[ paste ][ Reset [cancel] ke |

Missing Values

@ Exclude cases analysis by analysis
© Exclude cases listwise

Click on Options:
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We click on and on , to get the following outputs:

SPSS output for ANOVA One-way

Analysis of Variance

Descriptives
measurement
95% Confidence Interval for
Mean

I Mean Std. Deviation | Std. Error | Lower Bound UpperBound | Minimum | Maximum
HBE 55 16 B.713 8445 211 8.263 9162 7.2 103
HE S/-Thalassaemia 10 10.630 1.2841 4061 9.71 11.549 8.1 124
HE 5C 15 12.300 8419 2432 11.778 12822 10.7 13.9
Total 41 10.493 1.8564 2898 9.907 11.079 7.2 13.9

Test of Homogeneity of Variances

measurement

Levene
Statistic df df2 Sig.

4802 2 38 I[ .414'

The p-value of Levene’s test of homogeneity, of variance is greater than 0.05, (p-value =
0.414), then the condition of homogeneity is satisfied and ANOVA technique can be
applied to test the difference between'different groups.

ANOVA
measurement
Sum of
Squares df Mean Square F Sig.
Between Graups 99,889 2 409.045 | 49999
Within Groups A7.959 38 899
Total 137.848 40

See the results of F-statistic from ANOVA table, p < 0.001, therefore, the null hypothesis
is not accepted. We can say with 99% confidence that at least two sample means are
different ( we may say that the test is highly significant).

POST HOC Test: Since samples are different, we apply any one of the multiple range
tests to see which samples (groups) are homogeneous. We have applied LSD test and
modified LSD test (Bonforroni) to see the differences between two means:

Analyze->Compare Means>One-Way ANOVA...

We chose Post Hoc:
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One-Way ANOVA

Dependent List:

& measurement

Factor:

b d & Population

[ OK ][ Paste ][ Reset ][Cancel][ Help ]

Analysis of Variance

.

One-Way ANOVA: Post Hoc Multiple Comparisons

Equal Variances Assumed

¥ LSD [ 8NK [] waller-Duncan

NE'l [ Tukey 100 y

[T sidak ] Tukey's-b || Dunnett

] Scheffe || Duncan - | ’
[ REGWF [] Hochberg's GT2 Test D V|

[ rREGWaQ [7] Gabriel @ & Conto Bk '

Equal Variances Not Assumed [ N

|| Tamhane's T2 [ | Dunnetts T3 [|'Games=Howell 7| Dunnetts C

Significance level

o

We click on and on E toget the following outputs:

SPSS,output for multiple range tests
LSD and:Modified LSD Tests with 5% level of significance

Multiple Comparisons

DependentVariable: measurement
~ Mean 95% Confidence Interval
Difference (-

(1) Population J) Population J) Std. Error Sig. Lower Bound | Upper Bound
LsD HE 55 HE S/-Thalassaemia -1.9175 4029 .0oo -2.733 -1.102
HESC -3.5875 .3582 .0oo -4.315 -2.860
HE S/-Thalassaemia HEBESS 19175 4029 .0oo 1.102 2733
HE 5C -1.6700° 4080 0oo -2.496 -.844
HE 5C HE 55 35875 .3582 .0oo 2.860 4.315
HE S/-Thalassaemia 1.6700° 4080 .0oo 844 2.496
Bonferroni  HB S5 HE Si-Thalassaemia 1.9175 4029 .0oo -2.927 -.a08
HESC -3.5875 .3582 .000 -4.487 -2.688
HE S/-Thalassaemia HESS 18175 4029 .0oo .08 2.927
HE 5C -1.6700° 4080 001 -2.692 -.648
HE 5C HE 55 35875 .3582 .0oo 2.688 4.487
HE S/-Thalassaemia 1.6700 4080 001 648 2.692

* The mean difference is significant atthe 0.05 level.




Hanif, Ahmad and Abdelfattah 189

(a) The result of LSD test all groups are different than each other
(b) The result of Bonferroni's test (Modification of LSD)
Results of Bonferroni test are the same as for LSD.

The following figure (obtained through the Means Plot) may reflect the results:

Means Plots
13.0
12.0
-
c
a
E
o 1.0
=1
w
[
a
£
Y
o
= 100
[
[T}
=
9.0
8.0
HBISS HBE S.I’-Thallassaemia HBISC
Population
Example 5.3:

Vanadium is recentlysrecognized essential trace element. An experiment was conducted
to compare the concentration of vanadium in biological materials using isotope dilution
mass spectrometry. The, following table gives the quantities of vanadium (measured in
nano-grams per gram) in dried samples of oyster tissue, citrus leaves, bovine liver and
human serum. Use an appropriate method of analysis to determine whether the
distribution of vanadium concentrations for the four biological materials differ in
locations. The data is given in Table 5.5. Use 5% level of significance.

Table 5.5
Oyster tissue | Citrus tissue | Bovine lever | Human serum
2.35 2.32 0.39 0.10
1.30 3.07 0.54 0.17
0.34 4.09 0.30 0.14
0.16
0.16

(Source: Analytical Chemistry, Vol. 57(13), 1985, pp. 2475).
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Solution:

(1) H, : There is no difference between the Vanadium concentrations for the four
biological materials.

H, : At least two differ.
(2) =0.05
(3) Test-statistic. Analysis of Variance

Before applying the Analysis of Variance, test of Homogeneity is applied whether
we can apply this test or not.

Test of Homogeneity of Variances

concentration

Levene
Statistic df 1 df 2 Sig.

3.955 3 10 .043

(4) Since the p-value of the homogeneity of test is lesstthan 0.05, therefore, the
condition for the equality of variances,is not met. We may not apply Analysis of
Variance technique to find out whetherythere is any difference between
concentrations of four groups.

To solve this problem and find out significant difference, we will apply non-parametric
method called Kruskal-Wallis. Thiswill‘be discussed in Chapter 8.

5.3 Analysis of variance for two-Way classification

Suppose there are k treatments (drugs) and b blocks (age groups). If k treatments are
compared within each of biblocks k treatments are randomly assigned within each block.
This is known as randomized block design. For the analysis of such data, two-way
analysis of variance is,appropriate. In simple language, if the data are given according to
two criteria then analysis,of variance for two-way classification is the proper method for
analysis. Suppose we want to compare three types of drugs (A, B, C) on patients of
different age groups and would like to see how these different types of drugs have an
effect on patients of different age groups. To compare k drugs (treatments) on b blocks
(age groups), our hypotheses will be:

(a) HO: M= Ho= HU3=.....= Mk
(i.e. there is no difference in the treatment means)

H, : at least two treatments means differ significantly.

(b) Ho: B1=B2=... =By

(i.e. there is no difference among means of the blocks)
H, : at least two block means differ significantly.

In the additive model
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Yij = wij + &j = ut G + Byt (5.2)
i=1,23,...kj=12.3,....,b;n = bk,

where £ & =0and Z B; =0, where & is the net effect of the i" drug and B; is the net
effect of the j" age group and &ij~ NID (0, o)

The assumptions are as:

(i) The population distribution of the difference between pairs of treatment
observations within a block is approximately normal.

(i) (ii) The variance of the probability distributions is constant and same for all
pairs of observations.

(iif) (iii) The treatments (drugs) are randomly assigned to the experimental units
(age) within each block.

When the assumptions are violated, an alternative technigue known as Friedman’s test
(Chapter-8) may be used instead of ANOVA.

Like one way analysis of variance, two-way analysis of variance partitions the total sum
of squares (TSS) into three components i.e. treatment:'sumof squares [SS(T)]; Block sum
of squares [SS(B)]; and error sum of squares (SSE). This is shown in Fig. 5.2.

We compare the three sources of variation by the F-statistic
F, = (mean squares treatments)/(Mean squares Error)
F, = (mean squares blocks)/(Mean squares error).

If there are k treatments and'b blocks thensF; is based on v = k-1 and v = (b—1)(k —1)
degrees of freedom whereas F, is based on v = (b—1) and v=(b—1)(k—1) degrees of
freedom.

Treatment sum of
squares [SS(T)]

Total sum of squares Block sum of squares
(TSS) [SS(B)]

Sum of Error squares
[SS(E)]

Fig. 5.2: Partitioning of total sum of squares into different components

The results of the analysis of variance two- way classification are usually summarized
and presented in an analysis of variance (ANOVA) table and this table shows the sources
of variation, their respective degrees of freedom, sum of squares, mean sum of squares
and F-statistics. If SPSS package is used the p-value also appears in the table. If there are
k treatments and b blocks then the output is displayed as:
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Table 5.6
Two-way ANOVA

Sources of df ss MSS F(cal)

variations
Between treatments k-1 SS(T) | SS(T)/(k-1)=MST | MST/ MSE
Between blocks b-1 SS(B) | SS(B)/(b-1)=MSB | MSB/ MSE
Errors (k-1)(b-1) | SS(E) | SSE/ (k-1)(b-1)=MSE
Total Nk-1=n-1| TSS
Example 5.4:

The pharmaceutical project manager decides to replicate the study, comparing the ACC
inhibitors, grouping the subject into blocks on the basis of age. It is known that age
affects systolic blood pressure systematically. The data regarding age and the use of the
drug are as in Table 5.7

Table 5.7:
Measurements of systolic blood pressure
Age Drug A Drug B Drug C Total
20-30 100 90 110 300
30-40 105 80 90 275
40 - 50 95 80 80 255
50 - 60 110 75 100 285
> 60 90 90 95 275
Total 500 415 475 1390

Use the analysis of variance technique to find difference between the effect of drugs and
between age groups.

Solution:

Here the data is given according to two criteria, i.e. use of drugs and age groups. Two-
way ANOVA technique is applied to see the difference between drugs and between age
groups. Our null and alternative hypotheses are:

(a) H,: All the drugs are equally effective.
H,: At least there is difference between two drugs.
(b) H, : There is no difference in age groups.
H, : At least there is difference between two age groups.
(2) .= 0.05
(3) Test-statistic: F-test in Two-way ANOVA



Hanif, Ahmad and Abdelfattah 193

For calculation we proceed as:
M Correction factor = (1390)° /15 = 128806.667
(i)  Total sum of squares = 100?+ 1052+ ...+ 952 - 128806.667 = 1693.333
(iif)  Sum of squares of treatments.(drugs)
_ 500% + 415% + 475°
5

(iv)  Sum of squares of blocks.(age groups)

— 128806.667 = 763.333

_300% + 275% + ... + 2757
3

Note that the divisor is the number of observations in which'the totals are based.
(v)  Sum of squares of residuals.(error) = TSS — SS(T)- SSB
=1693.33 -763.33 - 360.0 = 570.0
This can be presented in the standard ANOVA table

— 128806.667 = 360.0

Table 5.8
ANOVA two-way

Source of F(tab)
Ve Ol | Df ss MSS F(cal) Eos
Bgtr‘ﬁgg” 2 | 763.333.| (768:833)/2= 381.667 | 381.667/71.25 = 5.357 | 4.46
Be;"‘ége” 4 | 360.00 (860)/4= 90.00 90.00/71.25=1.263 | 3.81

Error | 2x4=8 |1570.00 570.0/8=71.25

Total 14 | 1693.33

Interpretation

i) Between drugs: F., = 5.357 for drugs whereas F, (2,8) = 4.46. The calculated
value is more than the table value therefore at 5% level of significance we do not
accept the hypothesis and say with 95% confidence that effect of at least two
drugs is not the same.

ii) Between Age groups: Fe = 1.263 for blocks; Fy, = (4,8) = 3.81. The calculated
value is less than table value therefore at 5% level of significance we accept the
hypothesis and say that the effect of drugs on all the age groups is the same.

Example S5-3
To test that the null hypotheses:
(@) H,: All the drugs are equally effective.

H,: At least there is difference between two drugs.
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(b) H, : There is no difference in age groups.
H, : At least there is difference between two age groups.

for the data given in table 5.7,

the data are entered in one column and we add another two grouping variables with the
numbers 1,2 and 3 corresponding to the 3 (independent) drug groups, and the numbers
1,2,3,4 and 5 corresponding to the 5 (independent) age groups, the data and the value
labels will look as :

[ bug |  Age | measurem | & =
1 1 1 100 rValue Label
2 1 2 105 value |:| @
3 1 3 95 Label | |
4 1 4 110

5 1 5 90 Aad
6 2 1 90 Ehange
7 2 2 80 e
8 2 3 80
9 2 4 7h
10 2 5
1 3 1
12 3 2
13 3 3
14 3 4
15 3 L]

Change || 4

S |57 60"

(Lox_{cancel]_reto |

Note that, since the
each age group, we sa

a for each drug doesn’t appear more than once with respect to
t there is “no interaction”.

Now, we follow the following steps :

Analyze>General Linear Model->Univariate...

File Edit View Data Iransformiredﬂarkeﬁng Graphs Utilities Add-ons  Window H

%H@ b= Reports »
|

Descriptive Statistics 3

Tables 4

Compare Means b |var || var || var ||

| Drug || Age " measure|
1

Generalized Linear Models #

Mixed Models (4

GL
UL}

Multivariate...

Bepeated Measures...

Caorrelate 4

|| L
[ N P
o W

Variance Components...

Regression ("
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Move the variable measurement to Dependent Variable:
Move the grouping variables to Fixed Factor(s):

(=

Dependent Variable:
P r——
ol Age group [Agel )
\Q ixed Factor(s):
& measurement \E )

ol Variable:
i | measurement
Fixed Factor(s)

(Ltocer. ] (L tocer. ]
(puots. | (LPuots.. ]
s o G (i
((sae. | (L. ]
(options.. | (_gpions.. |
(gootap..| (goottas..|

Random Factor(s)

Covariate(s): Covariate(s)

WLS Weight

Random Factor(s):

G WLS Weight:
[ 1
(Lo Il eecte | meset(cancat) (e |

We click on ﬁ chose Custom, click on Type and chos in effects to remove

Specify Model
© Full factorial

Factors & Covariates

W age e |

Include intercept in model

(o) ) e ]

Specify Model

’V@ Full factorial ® Custom
Factors & Covariates: Model:
| Drug Drug

Build Term(s)

= remove
‘Sum of sguares: w [ Include intercept in model

(o o)
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We click on and on , to get the following output:

SPSS output for ANOVA Two-way Classifications

Tests of Between-Subjects Effects

DependentYariable: measurement

Type ll Sum
Saurce of Sguares df Mean Sguare F Sig.
Maodel 129930.000° 7 18561.429 | 260.511 .0oo
[T 763.333 2 381,667 5357 | [C0an)
Age 380.000 4 90.000 1.263 .360
Error 670.000 8 71.250
Total 130500.000 15
a. R Squared = 996 (Adjusted R Sguared = .992) ‘

Interpretation

(i) Calculated p-value for the age group is 0.360.which is more.than 0.05, therefore,
result is non-significant and we say with 95% confidence that there is no
difference in the systolic blood pressure on age ‘groups regarding the effect of
drugs.

(if) The p-value of the drug is 0.033, which is less,than 0.05; therefore the result is
significant, we say with confidence that there is a significant difference in the
effect of drugs. At least two.0f the drugs do not have the same effect.

POST HOC Test: Since there.is a significant difference w.r.t. the Drug, we have to
apply a Post Hoc test, say LSD test to see the differences between each two drug means:

Analyze->General Linear Model-> Univariate...

We chose Post Hoc:
We move the variable Drug only
%4 Univariate: Post Hoc Multiple Comparisons for Observed Me...

) Un'rv‘

Factor(s):. Post Hoc Tests for:
DependentVariable Drug Drug
& measurement Age
Contrasts..
Fixed Factor(s):
& Dug

% | il Age group [Age] Post Hoc g
Random Factor(s) Sa N Equal variances Assumed

- ] 5-N-K ] waller-Duncan
[Z] Bonferroni [ Tukey
Covariate(s) [] Sidak [C] Tukey's-b [} Dunnett
[] Scheffe [] Duncan h
- [T R-E-G-W-F [[] Hochberg's GT2 [ Test
[[] R-E-G-W-Q [[] Gabriel @
WLS Weight: - T
Equal Variances Not Assumed
= —
-

[Cormnul\l[ Cancel ][ Help ]
. 2
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We click on and on , to get the following outputs:

Multiple Comparisons

DependentVariable: measurement

LsD
_Mean 95% Confidence Interval
Difference (-

M Drug ) Drug Jy Std. Error Sig. Lower Bound | Upper Bound
[DrugA  Drugs | 17.00 5338 | 013} 4.69 29.31
Drug C 5.00 5,338 A76 -7.31 17.31
Drug B Drug A -17.00 5.338 013 -29.31 -4 69
Drug C -12.00 5.338 055 -24.31 31
DrugC  DrugA -5.00 5.338 376 -17.31 7.31
Drug B 12.00 5.338 055 -.31 243

The result of LSD test show that the difference is between.Drug A and Drug B only

Example 5.5:

Sixteen overweight females participated in a study.to,compare four types of diets for
weight reduction. Females were grouped according to initial weight and randomly
distributed to one of the four types of diets. At the end of the"experiment the following
weight losses in pounds were recorded.

Table 5.9:
Type of dietand weight loss in pounds
Initial weight(pounds) Diet 1 Diet 2 | Diet 3 | Diet 4
150-174 12 26 24 23
175-199 15 29 23 25
200-225 15 27 25 24
> 225 16 38 33 31

After eliminating differences, due to initial weight, do these data provide evidence to
indicate that there isino difference in different types of diets?

Solution:

This is a question of randomized block design where types of diet are treatments and
initial weight groups are blocks, therefore two-way analysis of variance technique is
applied to see the difference in different types of diet. Our null and alternative hypotheses
are:

Hy : there is no difference in the types of diet.
H, : at least there is a difference in two types of diet.

The SPSS package is used to solve this problem and the output is as:
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SPSS output for ANOVA two-way classification
Tests of Between-Subjects Effects

Dependent Variable: Type of Diet and Weight Loss in Pounds

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 698.500 6 116.417 26.694 .000
Intercept 9312.250 1 9312.250 | 2135.293 .000
Weight 161.250 3 53.750 12.325 .002
Diet 537.250 3 179.083 41.064 .000
Error 39.250 9 4.361
Total 10050.000 16
Corrected Total 737.750 15

Interpretation

Diet:  The p-value = 0.000 which is less than 0.05, therefore the result is
significant. We say with 95% confidence that effect of the types of diet in
reducing the weight is not the same.

Weight: The p-value = 0.002 which is less than'0:05;:the result is significant. We say
with 95% confidence that the effect of diets has significant effect in weight
losses.

5.4 Repeated Measure Design‘or Repeated Measure Analysis
of Variance

In Chapter 4, analysis was made ‘when each’subject was measured twice by using t-test
for paired observations. Repeated measure design is an extension of this problem. Any
design involving successive, measurements on the same subject is called a repeated
measures design. In a repeated.measures designs, units are subject to repeated measures;
for example blood. pressures,may be measured at successive intervals, say, once a week,
for a group of patients attending a clinic. In this design, measurements on the same
variable are made on‘two or more different occasions. Such data can be collected either
prospectively, following» subjects forward in time, or retrospectively, by extracting
measurements on each person from historical records.

In repeated measure design, each subject acts as its own control. This helps to control the
variability between subjects since the same subject is measured repeatedly. This design
has the ability to control for extraneous variation among subjects. Of course, when
repeated measures are taken in different time sequences, it is not possible to include
randomization.

There are four important classes of repeated measures studies i.e. split-plot experiment;
longitudinal studies, changeover studies and sources of variability studies. Because of the
limited scope of this book it is not possible to discuss all of these. Some examples of
longitudinal studies and changeover studies are given. In health sciences one can face
such types of examples.
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1. Two treatments for chronic pain are randomly assigned to subjects, and the extent
of pain relief is evaluated at weekly visits for six weeks.

2. Boys and girls from a cohort of one year old are observed every six months for
five years to assess their ability to perform a manual dexterity task (or
measurements of height, weight, or physical fitness might be made)

3. Two treatments for a dental problem are randomly assigned to children. The status
of teeth on the upper and lower jaws is evaluated every three months for one year.

4. Information on smoking is obtained for each subject by two different methods:
one was the subject’s self-report to a direct question and the other is biochemical
determination based on carbon monoxide levels in the blood. Subjects are
randomly assigned to one of the two sequence groups: for one group, the self-
report preceded the biochemical determination: and for the second group, the self-
report followed the biochemical determination.

5. The relative potency of two drugs that influence cardiovascular function is
assessed through a changeover design. VVolunteers are randomly/assigned to one of
two sequence groups. One group receives drug A duringithe first six-week study
period and drug B during the second, and the.other group receives the opposite
regimen. A two -week washout period separates the two-treatment period. During
each treatment period, three doses ofithe,drug are,tested with the drug dose being
successively increased every two weeks. At the,beginning of the treatment and at
the end of each two-week dosesinterval, heart rate is measured before and after a
treadmill exercise test.

Most of the times health scientists usesingle-factor repeated measure design. This can be
easily extended to two or mare factors.

Before we proceed for the discussion of repeated measure design it is necessary to
explain the concept of Sphericity. Sphericity refers to the equality of variance of the
difference between treatment levels. So, if you were to take each pair of treatment levels,
and to calculate their differences, then it is necessary that these differences have equal
variance. For any datay sphericity will hold when:

Variance a_g = Variance o_c = Variance g _¢

Assumptions of sphericity must hold; in other words we assume that relationship between
pairs of experimental conditions is similar i.e. level of dependence between expert,
mental conditions is roughly similar. This assumption is called the assumption of
sphericity. Sphericity is denoted by €. This can be tested by Mauchly’s test. If the p-value
of Mauchly’s test is less than 0.05 we say that there is a significant difference between
the variances of difference of each pair and say that condition of sphericity is not met. If
p-value of Mauchly’s test is greater than 0.05 we say that variance of difference are
equal. Violation of the sphericity assumption makes the usual F-test inaccurate. We can
use the corrected value of F by using either of the methods given by Greenhouse —
Geisser (1959), Huynh- Feldt (1976) and lower bound (Milliken and Johnson-1984) for
decision or multivariate analysis technique can be used. All these methods are given in
SPSS. If the condition of sphericity does not hold then we look into the p-values of



200 Analysis of Variance

Greenhouse—Geisser and Huynh—Feldt and take the average of these two. If the two
corrections give rise to the same conclusion it makes little difference, which method you
chose to draw inference.

The additive model for fixed- effect single factor repeated measure design is
Vii=pt Ci+ ﬁj + &jj i=1,2,3,...., k,J =1,2,3,....,b. (53)

where p denotes over all mean. Also &; is the net effect of i treatment and Bj is the net
effect of j" block. &; ~ NID (0, 6°).

The simplest repeated measure design is one in which, in addition to the treatment
variable, one additional variable is considered. This is known as single- factor repeated
measure design.

Example 5.6:

The purpose of the study is to determine the pharmacokinetics of phenytoin in the
presence and absence of concomitant fluconazole therapy«<Blum«t al. (1991) collected
the data (reproduced below in Table 5.10) during the course of the study.on trough serum
concentration fluconazole for 10 healthy males at different points<in time. By using a
method of repeated measure design analyze the data and see if at different times there is
any significant difference in the mean serum concentration of fluconazole.

Table'5.10:
Data relating to mean serum cancentration of fluconazole
Day 14Cmin(png/ml) Day.18Cmin(pg/ml) Day 21Cmin(pg/ml)
1 8.28 9.55 11.21
2 4,71 5.05 5.20
3 9.48 11.33 8.45
4 6.04 8.08 8.42
5 6.02 6.32 6.93
6 7.34 7.44 8.12
7 5.86 6.19 5.98
8 6.08 6.03 6.45
9 7.50 8.04 6.26
10 4.92 5.28 6.17
Solution:

(D Ho i =p2=ps
H; : At least two differ
(2) =0.05
(3) Test Statistic; Repeated Measure Design

Now, to perform the analysis we enter above data in IBM-SPSS just like the paired
samples t-test (but more than two variables) and proceeds are as under:
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Example S5-4

The data will look as:

201

| serial | Dayi4 | Day1s | Day21 |
1 1 8.28 9.55 11.21
2 2 4.71 £.05 £.20
3 3 9.48 11.33 8.45
4 4 6.04 8.08 8.42
5 5 6.02 6.32 6.93
6 6 7.34 744 8.12
7 7 586 619 598
8 8 6.08 6.03 6.45
9 9 7.50 8.04 6.26
10 10 492 528 6.17

Now, we follow the following steps:

Analyze->General Linear Model-> Repeated Measures

File Edit

View Data Transform irectMarkeﬁng Graphs

[1:

Sds i~
|

| serial " Day14 " Day

LEa R S S T

1 8.28
2 47
3 9.48 1
4 6.04
5 6.02

Within-Subject Factor Nal | i -
Number of Levels: at_

Measure Name:

Add
Change

Remove

L ]

Reports
Descriptive Statistics
Tables
Compar var " var ” W
eneral Lingar hlo 5] Univariate...
S e [ Multivariate...
x odels 4
Co » =
% Variance Components
ressio

!
e click @

A new dialogue box will be opened named as
(Repeated Measures), Select all the 3 variables
and bring them to the right side in the space
available for Within-Subjects Variables (day).

)

Within-Subjects Variables @

& serial {Day):

& Day 14 Cmin{*g/ml) = 2. @
& Day 18 Cmin(*a/ml) — 2.2 E
& Day 21 Cmin(*g/m|) = | 2_(3) @

Between-Subjects Factor(s):

£

Covariates:

(4]
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We click on , to get the following outputs:
SPSS Output for Repeated Measures Design

Mauchly's Test of Sphericity

Measure: MEASURE 1

Analysis of Variance

DAY

Within Subjects Effect| Mauchly's W

Epsilon
Approx. Greenhouse-
Chi-Square df Sig. Geisser Huynh-Feldt | Lower-bound
.645 3.513 2 .173 .738 .848 .500

(4) Since the calculated p-value of Mauchly’s test of sphericity is 0.173 for 5%
significance level, which is more than 0.05 therefore assumption of Sphericity is

met.

Measure: MEASURE_1

Tests of Within-Subjects Effects

Type 11l Sum

Source of Squares df Mean Square F Sig.
DAY Sphericity Assumed 3.286 2 1.643 2.429 116

Greenhouse-Geisser 3.286 1.476 2227 2.429 135

Huy nh-Feldt 3.286 1.695 1.938 2.429 127

Lower-bound 3.286 1.000 3.286 2.429 .154
Error(DAY) Sphericity Assumed 12.176 18 .676

Greenhouse-Geisser 12.176 13.280 917

Huy nh-Feldt 12.176 15.258 .798

Lower-bound 12.176 9.000 1.353

Looking into the above table we can interpret the result

(5) The calculated p=value,is 0.116 which is greater than 0.05. We conclude that there
is insignificant differencerin the mean serum concentration of fluconazole, taken
at different time:

Example 5.7:
A group of students investigated the consistency of marking by submitting the same
assignments to four different tutors. The marks given by each tutor was recorded for each
of the eight assignments. Data for the assignments marks is given in table 5.11.

Table 5.11
Assignments Tutor 1 Tutor 2 Tutor 3 Tutor 4
1 62 58 63 64
2 63 60 68 65
3 65 61 72 65
4 68 64 58 61
5 69 65 54 59
6 71 67 65 50
7 78 66 67 50
8 75 73 75 45
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Solution:

(1) Ho : On the average all the four tutors are equal in marking the assignments.

H, : At least two differ

(2) o :0.05
(3) Test Statistic : Repeated Measure Design

The output for the repeated measures design using IBM-SPSS package is given as
follows.

Mauchly's Test of Sphericity

Measure: MEASURE 1

Epsilon®
Approx. Greenhous
Within Subjects Effect] Mauchly's W | Chi-Square df Sig. e-Geisser Huynh-Feldt | Lower-bound
TUTOR .131 11.628 5 .043 .558 712 .333

(4) The calculated p-value of Mauchly’s test of sphericity 18,0.043, which is less than

0.05 therefore assumption of sphericity is violated.

Looking into the following table we can interpret the results.

Tests of Within-Subjects Effects

Measure: MEASURE 1

Type |1l Sum

Source of ‘Squares df Mean Square F Sig.
TUTOR Sphericity Assumed 554.125 3 184.708 3.700 .028

Greenhouse-Geisser 554.125 1.673 331.245 3.700 .063

Huy nh-Feldt 554.125 2.137 259.329 3.700 .047

Lower-bound 554.125 1.000 554.125 3.700 .096
Error(TUTOR)  Sphericity Assumed 1048.375 21 49.923

Greenhouse-Geisser 1048.375 11.710 89.528

Huy nh-Feldt 1048.375 14.957 70.091

Lower-bound 1048.375 7.000 149.768

(5) Since the assumption of Sphericity is violated at 5% level of significance then

according to the suggestion given by Stevens (1992) we have to check the
p-values for the Greenhouse-Geisser test and Huynh-Feldt test simultaneously.
The above table gives the calculated p-values for these two tests, which are 0.063
and 0.047 respectively. In this example, one interesting thing is that both these
p-values do not lead to the same conclusion because calculated p-value for the
Greenhouse-Giesser is 0.063 which is greater than 0.05 but the calculated p-value
for the Huynh-Feldt is 0.047 that is less than 0.05, so as suggested by Stevens
(1992) the average value of these two p-values should be taken which comes out

to be MZOOM =0.055, which is more than 0.05, so we choose the results of

Greenhouse-Geisser and say that at 95% confidence level there is no significant
difference among four tutors in marking the assignment of the students.
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If the condition of the sphericity is violated then other way is to go to Multivariate

Analysis of Variance (MANOVA):
Example S5-5
The data will look as :

Assignments” Tutor1 ” Tutor2 || Tutord ” Tutord |

@ |~ N =

Now, we follow the following steps :

1 62 58 63 64
2 63 60 68 65
3 65 61 72 65
4 68 64 58 61
5 69 65 54 59
6 7 67 65 50
7 78 66 67 50
8 75 73 Ta 45

Analyze->General Linear Model->Repeated Measures

File Edit View Data Transform iredMarkeﬁng
Regrts
Descriptive Statistics
Tables

SEe @ o
|

|Assignments" Tutor1 ” 1

1 1 62
2 2 63
3 3 65
4 4 68
5 5 69

We Enter Within-Subject
Factor Name “

Measure Name

[ ]

Add

Change

Remoye

Univariate...
Multivariate...

|1l Repeated Measures... b |

A new dialogue box will be opened named as
(Repeated Measures), Select all the 4 variables
and bring them to the right side in the space
available for Within-Subjects Variables (Tutor).

Click on Options:
= x
Within-Subjects Variables
&Asa\gnmems (Tutor): @
i [comse..
Tutor2(2) [ Plots.. |
. [ Pos.. |

Tutord(4) |

=

Between-Subjects Factor(s

Covariates

-

(Lox J[ paste ]| meset (cancer bep




Hanif, Ahmad and Abdelfattah

Repeated Measures: Options

Repeated Measures

Estimated Marginal Means

Factor(s) and Factor Interactions:

Display Means for:

(OVERALL)
Tutor

Display

| Descriptive statistics

| Estimates of effect size
| Observed power E
| Parameter estimates
| 33CP matrices

| Residual SSCP matrix

7| Spreadvs. level plot
| Residual plot
] Lack of it

] General estimable function

Significance level: Confidence intervals are 95.0 %

¥ 3

We click on , to get the following outputs:

&b Assignments

-

Within-Subjects Variables
(Tutor):

Tutor1(1)
Tutor2(2)
Tutor3(3)
Tutord(4)

Between-Subjects Factor(s):

Covariates

b -

SPSS Output for MANOVA

Multivariate Tests™
Effect Value F Hypothesis df | Error df Sig.
Tutar  Pillai's Trace HEy 4780" 3.000 5.000 .063
Wilks' Lamhbda 258 4:750" 3.000 5.000 063
Hotelling's Trace 2856 4.780" 3.000 5.000 063
Roy's Largest Root 2 856 4780" 3.000 5.000 063

a. Design: Intercept
Within Subjects Design: Tutor

h. Exact statistic

(6) In the output. for Multivariate Tests four kinds of tests are used to test the
significance of the model, but Wilks’ Lambda is more powerful and is frequently
used. The p-value of Wilks” Lambda is 0.063 which is greater than 0.05. We can
say with 95% confidence that there is no significant difference in evaluating the
assignments of the students.

(the other outputs are the same given in Example 5.7)

Multiple Comparison test:

If the null hypothesis is not accepted we may use the multiple comparison test to see
which two groups differ. The procedure for the multiple comparison tests is as:
Click defines and then click options.
Bring the factor name on the right side (Display Means for).
Click compare main effects.

Click confidence interval estimation (Bonferroni Test).

Click Continue.
Click ok.
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5.5 Multivariate Analysis of Variance (MANOVA)

In previous sections we have studied the methods to compare several groups; each
measured on single variable of interest; by using simple and repeated measures ANOVA.
There are several situations where we have to compare several groups; each measured on
more than one variable. For example we may be interested in comparing the effectiveness
of four medicines when reduction in blood pressure level and increase in sugar level is
obtained after applying each medicine. In these situations simple or repeated measures
ANOVA does not solve the problem and we have to use the technique known as
Multivariate Analysis of Variance (MANOVA). The MANOVA technique is used to
compare several groups and each group constitute several variables. In MANOVA the
hypothesis of preliminary interest is that mean vectors of several groups are equal. Before
we proceed for procedure to carry out MANOVA in SPSS it is worthwhile to discuss its
assumptions. These assumptions are given as under.

5.5.1 Assumptions

The following assumptions must hold for applying MANOVA.
1. Samples must be random.
2. Condition of normality must hold.

3. Errors covariance should be equal acrossvarious groups; [test of Homogeneity
(Box’s Test)].

4. Condition of additivity must.hold.
5. Condition of sphericity (Bartlett’s test) may not hold.
6. There should be several dependentvariables.

Example 5.8:

Forty-five patients suffering from.cancer were given the radiation therapy and the effects
were recorded. The, patients were grouped in four groups. The average score for the first
three days following, radiation therapy are given below Test the null hypothesis that four
radiations therapy have.equal average score for three days.
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Table 5.12

Control 25-50R 75-100R 125-250R
1 2 3 1 2 3 1 2 3 1 2 3
223 | 214 | 224 60 95 103 | 216 | 187 | 239 | 198 | 245 | 237
72 80 65 45 45 76 210 | 176 | 139 | 167 | 259 | 185
172 | 175 | 170 95 95 98 206 | 218 | 276 | 158 | 168 | 196
180 | 175 | 165 | 175 | 175 | 167 | 198 | 225 | 216 | 176 | 168 | 244
195 | 200 | 185 | 203 | 203 | 218 | 198 | 203 | 203 | 187 | 217 | 224
35 25 25 191 | 191 | 116 | 118 | 181 | 198 | 260 | 234 | 238
114 | 114 | 123 | 248 | 245 | 187 | 214 | 267 | 265
35 35 76 260 | 206 | 167 | 216 | 248 | 265
55 55 45 95 116 | 214 | 234 | 248 | 259
106 | 106 | 121 | 238 | 214 | 255 | 158 | 269 | 268

264 | 264 | 216 | 234 | 243 | 167

210 | 210 | 216 95 103 34

34 34 56 134 | 147 | 168

255 | 255 | 270 | 136 | 138 | 234

98 89 201

Solution:

(1) Ho : On the average radiation therapy has equal‘effect onsthe four groups

H, : At least two groups differ
(2) a=0.05
(3) Test Statistic : Multivariate Analysis.of Variance.

Example

S5-6

The data will look as:

o=l ;|| n] =~

[T G [T |y | | R (| (| D D
M2 g e|e| e o e|w | M=o ®

Group

L R R R R R R R R R R R R R R

_ Dayl\|
{ 223J_ 214
72 80|

172

[ . 18¢

195
35
60
45
95

175

203

191

114
35
85

106

264

210
34

265

216

210

Day2 Day3

175
175
200
25
95
45
95
175
203
191
114
35
55
106
264
210
34
255
187
176

224
65
170
165
185
25
103
76
98
167
218
116
123
76
45
121
216
216

270
239
139

23
24
25
26
27
28
29
30
Kj
32
33
34
35
36
7
3B
39
40
41
42
43

45

N A A R R N R R R R SR U R SR U SR SR SR T

206
198
198
118
248
260

95
238
234

95
134
136

98
198
167
158
176
187
260
214
216
234
158

218
225
203
181
245
206
116
214
243
103
147
138

89
245
259
168
168
27
234
267
2438
248
269

276
216
203
198
187
167
214
285
167

34
168
234
201
237
185
196
244
224
238
265
265
259
268
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the steps for applying MANOVA are as:-
Analyze>General Linear Model> Multivariate ...

File Edit View Data Transform | Analyze JDirectMarketing Graphs Utilities Add-ons  Window
== |
SRe M = T L e R
— W = Descriptive Statistics 3
Tables 2
Group Day1 Da Compare Means » var var
23 3 206 I General Linear Model PI' [ univariate...
24 3 198 Generalized Linear Models + I'@Multivariate...
25 3 198 i 3 1
RUCLEHES Repeated Measures...
26 3 118 Correlate 2 o z ;
ariance Components...
21 3 248 Rearessinn 2 -
i Multivariate T &urﬁvan'ale
Dependent Variables: Dependent Variables:
ol croup | [— P Dayl =
door % .
e s P —
f Day3 Fixed Factor(s) PostHoc Fixed Factor(s): Post Hoc.
Save = ﬂ Group Save.
2 Options.. - Options..
Covariate(s): M] Covariate(s) Bootstra
»
WLS Weight WLS Weight:
— | »
)
-

(i) Click Option then click Homageneity of variance

(if) For multiple Comparison, bring the code in right window, then click compare
main effect finally.chooserthe method for comparison

We click on , to get the following outputs:
SPSS OUTPUT OF MANOVA

Box’s Test of Equality Bartlett’s Test of Sphericity ?
of Covariance Matrice Likelihood Ratio .000
Box's M 71.735 Approx. Chi-Square 105.558
F 3.323 df 5
dfl 18 Sig. .000
df2 1962.936
Sig. .000

(4) Since the p-value of Bartlett’s Test of sphericity is less than 0.05 therefore

MANOVA can be applied.
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Multivariate Tests?

Ef fect Value F Hy pothesis df Error df Sig.

Intercept  Pillai's Trace .901 118.612° 3.000 39.000 .000
Wilks' Lambda .099 118.612° 3.000 39.000 .000
Hotelling's Trace 9.124 118.612° 3.000 39.000 .000
Roy's Largest Root 9.124 118.612° 3.000 39.000 .000

CODES  Pillai's Trace .517 2.843 9.000 123.000 .004
Wilks' Lambda .522 3.234 9.000 95.066 .002
Hotelling's Trace .842 3.524 9.000 113.000 .001
Roy's Largest Root . 745 10.175°¢ 3.000 41.000 .000

(5) Since the p-value of Wilks’” Lambda is less than 0.05, therefore there is a
significant difference between groups, regarding the effect of radiation therapy.

(6) Multiple comparison test can be performed to see which groups differ. One can
see the p-value (sig.), if it is less than 0.05 for any pair‘then these two groups
differ.

Example 5.9:

Thirty individuals were randomly assigned to three different-exercise types viz. at rest,
walking leisurely and running. Each group was given two different types of diets; low-fat
and high-fat. The pulse rate of these individualstwas recorded at three different times
during their exercise. The data obtained is given in‘table’5.14:

Table 5.14
Low-Fat High-Fat
1 15 30 1 15 30
minute| minute | minute | minute | minute | minute

85 85 88 83 83 84

o 90 92 93 87 88 90
e 97 97 94 92 94 95
80 82 83 97 99 96

91 92 91 100 97 100

86 86 84 84 86 89

o2 [ 03 103 104 103 109 90
=32 [ 90 92 93 92 96 101
= 95 96 100 97 98 100
89 96 95 102 104 103

93 98 110 95 126 143

2 98 104 112 100 126 140
= 98 105 99 103 124 140
& 87 132 120 94 135 130
94 110 116 99 111 150
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Solution:
The data entry is explained on next page.

(1) Hoz : On the average the pulse rate is equal at various time.
Hoz : On the average the pulse rate is equal for various exercises.
Hos : On the average the pulse rate is equal for various diets.
H; : At least two groups differ
(2) 2 =0.05
(3) Test Statistic: MANOVA Repeated Measure Design (Between and Within Effects)

Example S5-7
The data will look as:
Table 5.15

Exertype | Diet | Time1 | Time2 | Time3 16 2]_ 2 48 86 89
1 1 1 85 85 88 17 4 2 2003 e W
2 1 1 90 92 93 i1 € 2 2 92 9% 101
3 1 1 a7 o7 a4 19 ﬂ 2 a7 98 100
4 1 1 80 82 83 .. 20 L 2 2 102 104 103
5 1 1 91 92 91 |, 2 3 1 93 9% 110
6 1 2 83 83 8 220 3 1 98 104 112
7 1 2 o7 ag‘_ 30 7 3 1 98 105 99
8 1 2 2 G % 24 3 1 87 132 120
9 1 2 97 99 _9_6' G 3 1 a4 110 116

10 1 2 100 a7 100
£ ) % 3 2 95 126 143
1 2 1 86 86 a4 27 3 2100 126 140
12 2 1 [ a3 103 104 28 3 2103 124 140
13 2 1w 92# 93 29 3 2 91 13 130
14 2 1 95 9 100 30 3 2 99 111 150

15 2 T|— 89 9% 95

the steps for applying MANOVA are as:-
Analyze->General Linear Model-> Multivariate ...

File Edit View [Data Transform | Analyze IDirecTMarketing Graphs Utilities Add-ons  Window |
SHe @ e LH B B
s Descriptive Statistics 2
E Tables 3
Exertype | Diet | Tim| Compare Means » var var var
1 1 1 General Linear Model ¥ @ Univariate...
2 1 1 i i
- 1 1 Generalized Linear Models # @Multiuariate...
) —
4 1 1 IEITEIEE % E Repeated Measures. .
Correlate » -
5 1 1 R ) R Variance Components...
eqgression
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The steps for applying this design are as:
click:-
Against Within Subject Factor Name enter time
b. Against Number of Levels enter 3 and click then @
c. Take variables timel, time2 and time3 to Within Subject Variable box.
d. Take variables Exertype (exercise) and diet to Between Subject Factor(s) box.
¥ Repeated Measures Define Fac... T Repeated Measures
Within-Subject Factor Name; - Within-Subjects Variables
MWithin-=ubje a OII' am - time).
h-—-“me Time (1)
MNumber of Levels: —_——— + Time2(2)
Time3(3)
—
Measure Mame: Between-Subjects Factor(s):
— ST
ol Diet
Covariates:
P
[ ][ Reset ][Cancel][ Help ] ' 0K Paste ][ Reset ][Cance\][ Help ]
A \.‘"
We click on , to get thesfallowing outputs:
Multivariate Tests
Hy pothesis
Effect Value F df Error df Sig.
TIME Pillai's Trace 782 | 41.209 2.000 | 23.000 .000
Wilks' Lambda 218 | 41.209 2.000 | 23.000 .000
Hotelling's Trace 3.583 | 41.209 2.000 | 23.000 .000
Roy's Largest Root 3.583 | 41.209 2.000 23.000 .000
TIME * EXERTYPE Pillai's Trace 836 | 8.611 4.000 | 48.000 .000
Wilks' Lambda 172 | 16.214 4.000 | 46.000 .000
Hotelling's Trace 4.762 | 26.193 4.000 | 44.000 .000
Roy's Largest Root | 4.753 | 57.035 2.000 | 24.000 .000
TIME * DIET Pillai's Trace 252 | 3.865 2.000 | 23.000 .036
Wilks' Lambda 748 | 3.865 2.000 | 23.000 .036
Hotelling's Trace 336 | 3.865 2.000 | 23.000 .036
Roy's Largest Root .336 3.865 2.000 23.000 .036
TIME * EXERTYPE Pillai's Trace 518 | 4.189 4.000 | 48.000 .005
* DIET Wilks' Lambda .483 5.047 4.000 | 46.000 .002
Hotelling's Trace 1.069 | 5.881 4.000 | 44.000 .001
Roy's Largest Root | 5eg | 12,819 2.000 | 24.000 | .000
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Measure: MEASURE 1

Analysis of Variance

Mauchly's Test of Sphericity

Epsilon
Within
Subjects Mauchly 's Approx. Greenhouse | Huynh-F | Lower-
Ef fect W Chi-Sqguare df Sig. -Geisser eldt bound
TIME .924 1.814 2 .404 .930 1.000 .500

(4) Since the p-value of Wilks’ Lambda is less than 0.05 for Time therefore there is
significant difference between pulse rate at various exercise time.

(5) Since the p-value of Mauchly’s Test is greater than 0.05 therefore the errors are

spherical.

Tests of Within-Subjects Effects

Measure: MEASURE 1

Type Il Sum Mean
Source of Squares df Square F Sig.
TIME Sphericity Assumed 2066.600 2 1033.300 | 31.721 .000
Greenhouse-Geisser 2066.600 1.859 1111.668 | 31.721 .000
Huy nh-Feldt 2066.600 2.000 1033.300 | 31.721 .000
Lower-bound 2066.600 1.000 2066.600 | 31.721 .000
TIME * EXERTYPE  Sphericity Assumed 2723.333 4 680.833 | 20.900 .000
Greenhouse-Geisser 2723.333 3.718 732.469 | 20.900 .000
Huy nh-Feldt 2723.333 4.000 680.833 | 20.900 .000
Lower-bound 2723.333 2.000 1361.667 | 20.900 .000
TIME * DIET Sphericity Assumed 192.822 2 96.411 2.960 .061
Greenhouse-Geisser 192.822 1.859 103.723 2.960 .066
Huy nh-Feldt 192.822 2.000 96.411 2.960 .061
Lower-bound 192.822 1.000 192.822 2.960 .098
TIME * EXERTY. PE »»Sphericity, Assumed 613.644 4 153.411 4.709 .003
* DIET Greenhouse-Geisser 613.644 | 3.718 165.046 | 4.709 .004
Huy nh-Feldt 613.644 4.000 153.411 4.709 .003
LOWgr-bound 613.644 | 2.000 | 306.822 | 4709 | .019
Error(TIME) Sphericity Assumed 1563.600 48 32.575
Greenhouse-Geisser 1563.600 | 44.616 35.046
Huy nh-Feldt 1563.600 | 48.000 32.575
Lower-bound 1563.600 | 24.000 65.150
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Tests of Between-Subjects Effects

Measure: MEASURE 1
Transformed Variable: Av erage

Type Il Sum
Source of Sguares df Mean Sguare F Sig.
Intercept 894608.100 1 894608.100 |10296.660 .000
EXERTY PE 8326.067 2 4163.033 47.915 .000
DIET 1261.878 1 1261.878 14.524 .001
EXERTYPE * DIET 815.756 2 407.878 4.695 .019
Error 2085.200 24 86.883

(6) Since the errors are spherical therefore the Willk’s Lambda statistics is
appropriate for testing the significance of various factors.

(7) Since the p-value of exertype and diet are less than 0.05 therefore there is
significant difference among pulse rate at various exercise and diet levels.

5.6 Simple Factorial Experiment

An experiment in which two or more factors and each*factor at different levels (variables)
are investigated is called a factorial experiment. The ‘model for the two-way factorial
experiment with interaction is given below.

Yiik = H+0i +Bj +vij + &k (5.4)
i= 1,2, ...,Iljk,j = 1,2, ...,mk,k= 1,2, L.,p

The data for a two-factor factorial€xperiment.are presented in a two-way table with rows
corresponding to levels of one factor and columns corresponding to levels of another factor.

Example 5.10:

A study was made as to how the concentration of a certain drug in the blood, 24 hours after
being injected, is influenced by.age(B) and gender(A). An analysis of the blood samples of
40 patients yielded the following concentrations (in milligrams per cubic centimeter).

Table 5.16:
Age groups(B)

11-25 | 26-40 | 41-65 | Over 65
Bl Bz Bg B4
52.0 52.5 53.2 824
56.6 49.6 53.6 86.2
Male A 68.2 48.7 49.8 101.3
Gender (A) 82.5 44.6 50.0 92.4
85.6 43.4 51.2 78.6
68.6 60.2 58.7 82.2
80.4 58.4 55.9 79.6
Female | A 86.2 56.2 56.0 81.4
81.3 54.2 57.2 80.6
77.2 61.1 60.0 82.2
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(1) test the hypothesis that gender does not affect the blood concentration
(2) test the hypothesis that age does not affect blood concentration
(3) test the hypothesis that there is no interaction between age and gender

Here, there are 4 types of age groups and two types of gender. This experiment involves
two factors. Factor “A” has two levels (Aj, Ay) whereas factor “B” has 4 levels (B;, B,
Bs, B,), Each of the 2 x 4 combinations of this table represent the treatments of the
experiment. For this reason the experiment is referred as 2x 4 factorial experiment.

In factorial experiment, when the difference between the mean levels of factor “A”
depends on the different levels of factor “B”, we say that factors A and B interact. If the
difference is independent of the levels of “B”, then there is no interaction between factors
A and B.

Following assumption should be kept in mind while applying factorial experiment

1. The population of the observations for any <factor< level combination is
approximately normal.

2. The variance of the probability distribution is constant and same for the factor
level combinations.

3. The treatments, factor level combinations, “are’ randomly assigned to the
experimental units.

4. The observations for each factor level combination represent independent random
samples.

When the assumptions for the'factorial experiment are violated, then we use non-
parametric test equivalent to simple factorial experiment.

The hypotheses for the'simple factorial experiment are:

(1) Factor Ax(main effect)
Ho : there is no,difference among the means for main effect “ A”
H; : At least two of the main effect differ

(2) Factor B ( main effect)
Ho : there is no difference among the means for main effect “B”
H; : at least two of the main effect B means differ

(3) Interaction factor (AB)
Ho : there is no interaction between factors A and B

H, : factors A and B interact.
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An easy graphical representation is sometimes illuminating and can also throw light on
the presence or absence of interaction. Plot levels of one factor on the x-axis and y-axis
represent observations. Each line indicates the changes in responses in arrange Y for the
different levels of factor A. See Fig. 5.3.

Factor By

Factor B,
Factor B,
/ Factor B

Observation

Level of one factor

Fig. 5.3: Main effect and interaction plots

A diagram (5.3) showing parallel lines indicates absence of nteraction. Intersecting lines
estimates presence of interaction etc.

The analysis of variance for the two=factor factorial experiment is very similar to the
analysis of variance of two-way classification: The sum of squares of rows and blocks are
now replaced by sum of squares of twofactors, SS(A), and SS(B), called main effect sum
of squares and the interaction’sum of squares, SS(AB).

Finally, because we have more than ‘one observation per cell for the two-way table, we
calculate a sum of squares of error, called SS(E).

The partitioning .of,the sum of squares of the total into different components is shown in
Figure 5.4.

Main effect sum of squares

Factor-A [SS(A)]
Main effect sum of squares
Factor-B [SS(B)]
Total sum of squares (TSS)
Sum of squares for the interaction
between Factors-A and B [SS(AB)]
Error sum of squares

[SS(E)]

Fig. 5.4: Partitioning of total sum of squares into different components
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These results are usually presented in the two-way factorial experiment as:

Table 5.17 ANOVA table for two- factor factorial experiment

Source of
Variation Df S5 MS Fea
A a-1 SS(A) MS(A)=SS(A)/(a-1) MS(A)/MSE
B b-1 SS(B) MS(B)=SS(A)/(b-1) MS(B)/SSE
2-way
interaction
Ax B (a-1) (b-1)| SS(AB) | MS(AB) = SS(AB)/(a-1)(b-1) | MS(AB)/MSE

Residual

(error) ab(r-1) SSE MSE = SSE/[ab(r-1)]

Total abr-1=n-1| TSS

Ftab

r = replication, n=a xbxr.

Note that in running the SPSS package, one should follow.€xactly.the same procedure as
has been suggested by ANOVA two-way classification except.that twoways interaction

should be clicked instead of no interaction.

Example S5-8
The data will look as:
Table 5.18

Gender | Age D Coﬁen?atioiu L :21
1 1 1 1 20 0 22
2 1 1 2 566 4 23
3 1 1 3 68.2 24
4 1 1 4 825 25
5 1 1 5 856 26
6 1 2 1 525 27
7 1 2 2 496 23
8 1 2 3 487 29
9 1 2 4 446 30
10 1 2 5 434 3
11 1 3 1 53.2 32
12 1 3 2 536 33
13 1 3 3 496 kTl
14 1 3 4 500 35
15 1 3 5 512 36
16 1 4 1 824 37
17 1 4 2 86.2 38
18 1 4 3 101.3 39
19 1 4 4 92.4 40
20 1 4 5 78.6

e R R R R R s e R R R B B B R R R - A

E = R R T TR ST PN R L R R . . B . B N i . e e

(2 T U U X RN O U - Rl R U U IR L R S UR ey

65.6
80.4
86.2
81.3
7.2
60.2
58.4
56.2
542
61.1
587
559
56.0
57.2
60.0
82.2
79.6
81.4
80.6
82.2
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the steps for applying the two-way factorial experiment are as:-

Analyze>General Linear Model-> Univariate ...

File Edit View Data Iransformlgna'ryze I-Diredﬂarketing Graphs  Utilities Add-ons  Window |

SHE E =] = LM A B¢

Descriptive Statistics

Tables }

Gender | Age 1] Compare Means b | var var var

1 General Linear Model rI

Univariate...

1 1

2 1 1 4 Generalized Linear Models * S

3 ] ] . = @ Multivariate...
K ; b

4 1 1 4 T IeiEE Repeated Measures...

Caorrelate 2 )

5 1 1 g Variance Components...

1 Reagression ("

The steps for applying this design are as:

2 Univariate =] ‘ ‘?am E

Dependent Variable s DependentVariable
»
ﬁs:::?;up-[égpt & D & Geneentration [Conc
&;.\D Fixed Factor(s): Fixed Factor(s):
& Concentration [Con.#| [ | & Gender =
1L 180 | e roup he
Random Factor(s): Random Factor(s)
»
Covariate(s): Covariate(s):
: .
WLS Weight: ‘ WLS Weight:
Y e L —
) |
A\ | Sl

We click on , to getithe following outputs:
SPSS Output for Simple Factorial Experiment (Univariate Analysis)
ANALYSIS OF VARIANCE

Tests of Between-Subjects Effects

DependentVariable: Concentration

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 7847.511° 7 1121.073 23770 .000
Intercept 176863.401 1 176863.401 | 3750.065 .00o
Gender 227.529 1 227.529 4824 .035
Age 7133193 3 2377.731 50.415 .000
Gender * Age 4B86.789 3 162.263 3.440 .028
Error 1509.208 32 47.163
Total 186220120 40
Caorrected Total 9356.719 39

a. R Sguared= 839 (Adjusted R Sguared = 803)
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The interpretation of the results is given as:
Gender (Factor A)

p-value = 0.035, which is less than 0.05 there is a significant difference between gender
regarding concentration of drug in the blood, .. Gender does affect the blood
concentration.

Age groups (Factor B)

p- value = 0.000, which is less than 0.05 the result is significant, therefore, there is a
significant difference between age groups with respect to concentration of blood.

Interaction between age and gender (AB)

p-value = 0.028, which is less than 0.05 which shows that age and gender interact. This
simply means that the response of treatment at different ages«does not show the same
pattern for both males and females.

Example 5.11:

An experiment is devised to test the hypothesis that an.elderly person’s memory retention
can be improved by a set of oxygen treatments. A group of scientists administer these
treatments to men and women. The men and women are“eachsrandomly divided into 4
groups of 1, 2, 3, 4 (the two groups not given.any treatments are served as control). The
treatments are set up in such a manner so that alltindividuals thought they are receiving
the oxygen treatments for the total three weeks<After the treatment ended, a memory
retention test was administered. The result (higher scores indicating higher memory
retention) are as follows:

Table'5.19

Number/of week’s oxygen treatments (scores)
0 1 2 3
42 39 38 42
54 52 50 55
Male 46 51 47 39
38 50 45 38
Gender 51 47 43 51
49 48 27 61
44 51 42 55
Female 50 52 a7 45
45 54 53 40
43 40 58 42

i) Test the hypothesis that length of treatment does not affect the memory retention.
ii) Test the hypothesis that there is no difference in gender.
iii) Test whether or not there is interaction effect.

Solution:
SPSS package is used and output is on next page:
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SPSS output for simple factorial experiments
Tests of Between-Subjects Effects

Dependent Variable: DATA

Type Il Sum

Source of Squares df Mean Square F Sig.

Intercept Hy pothesis 86862.400 1 86862.400 | 1589.431 .000
Error 218.600 4 54.6502

GENDER Hy pothesis 19.600 1 19.600 441 .543
Error 177.900 4 44.475P

WEEKS Hy pothesis 60.000 3 20.000 311 .817
Error 772.000 12 64.333¢

SCORES Hy pothesis 218.600 4 54.650 .790 .579
Error 341.288 4.933 69.183¢

GENDER *  Hypothesis 18.000 3 6:000 151 .927

WEEKS Error 475.500 12 39.625

GENDER *  Hypothesis 177.900 4 44.475 1.122 391

SCORES Error 475.500 12 39.625

Interpretation

Length of treatment: p = 0.817, which is greater.than,0.05 the result is not significant,
therefore, we say with 5% level of significance that the length of treatment does not
affect the memory retention.

Gender: p = 0.543, which is greater than 0.05 therefore the result is not significant. We
say with 95% confidence that there is no’difference in males and females regarding
memory retention.

Interaction age and gender:p=0.927, which is greater than 0.05 therefore gender and
time period have no interaction.

Example 5.12:

Twenty overweight individuals, each more than 40 pounds over-weight, were randomly
assigned to one of 2 diets. After 10 weeks, the total weight loss (in pounds) of the
individuals on each of the diets was as in Table 5.20:

Table 5.20
dietl 222 234 242 161 94 125 186 322 8.8 7.6
diet2 242 16.8 146 13.7 195 176 112 95 30.1 215

Test at 5% level of significance that two diets have equal effect.

Suppose 10 people placed on each diet consisted of 5 men and 5 women. The data are
given in Table 5.21.
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Table 5.21

Diet 1 Diet 2

7.6 19.5

8.8 17.6

Women 125 16.8
16.1 13.7

18.6 21.5

22.2 30.1

23.4 24.2

Men 24.2 9.5

32.2 14.6

9.4 11.2

(i) Test the hypothesis that the diet has the same effect on men and women
(ii) Test the hypothesis that there is no interaction between gender and diet.

Solution:
This question is left to the students to solve by using SPSS Package.

5.7 “n of 1 Trials”: Controlled Trials in Single Subjects

Controlled trials in individual patients have longsbeen-used in behavioral science and
have recently been discussed and used by many.authors. March et al. (1994) show that
controlled trials offer a methodology for informed decision making. Johansson (1991)
argues that “n of 1 trials” may be more economical and speedy in new drug development
than the conventional clinical trials."Mahon et al. (1996) show that ‘n of 1 trials’ lead to
better outcome over standard practice interms of use of less medication.

In Statistics, we need a sample of| reasonable size to draw valid inference for the
population from which'a sample isdrawn. Statistics do not deal with individual units.
However, in Fisher tea testing problem, a woman was asked to detect whether milk had
been added before or aftera:-tea infusion. She was given a number of cups of tea purely in
random order. It wasinot envisaged for this tea testing experiment whether women in
general could detect thedifference between milk added before or after tea infusion. If a
group of such individuals is involved in the tea testing experiment, the results can be
generalized.

In medical sciences and other areas like Psychology, behavioral medicine, etc. doctors
are interested in the individual patients, and as such single case studies are more relevant
to subjects of researchers.

In order to deal with individual units, a method of ‘n of 1’ trial or “controlled trial in
single subjects” has been developed. The basic concept of “n of 17 trial is that two
treatments can be compared on the same patient and that “n of 17 trials have been
developed to find appropriate treatment for individual patients.

It is true that observations on one individual are not independent and so many
conventional statistical techniques are inapplicable but Campbell (1994) professes that
data measured serially are not necessarily dependent. He gave an example of
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independence in “randomly generated numbers purporting to be blood pressure
recordings at 5 minutes intervals 20 minutes before and 20 minutes into a psychological
stress test”. The example seems to contradict itself as ‘randomly generated numbers’
cannot represent blood pressure recordings in individual patients. In statistics, particularly
in Business and Economic Statistics, methods that can be applied to serially dependent
observations are available and so these methods can be applied to data measured serially
in medicine.

5.7.1 Statistics in “n of 1 trials”

In “n of 1 trial” experiments, treatments and/or treatment periods are randomly allocated
to a single subject. The outcomes of such an experiment are observations that are not
generally independent.

A study was carried out by March et al. (1994) on individual patients where each patient
was treated with a particular dose. Patients, doctors and research assistants were all
blinded so far as treatment was concerned. Besides basic statistics,«graphs of daily scores
were plotted. Values from the second weeks are compared over'the cycle by a paired t-
test with 2 degree of freedom. The sign test was also used to assess the effect of the dose.

Because of danger of one dose over the other in a particular types of patients, the dose is
not prescribed without an “n of 1 trial” to each patient. It was seen that ‘n of 1 trials”
provided useful decision about the patients. It further avoided unnecessary treatment with
a particular medicine.

The main idea of “n of 1 trials” is that each patient is his own control as well as treated
subject. Each treatment and treatment/periods are randomly assigned to individual
patient. Responses to each treatment and treatment periods are recorded. Many clinicians
are confident that controlled single-subject-trial can be used to solve difficult issues. See
Guyatt et al. (1990), Johann Essen (1991), Levis (1991), etc. However not all clinical
drugs are appropriate for n of.1 trials./(Guyatt et al. 1988, Johannessen et al. 1991).

Group trials or “n of 1 ‘trials” are similar in nature as in statistics. Treatments and
treatment periods-are randemly allocated to subjects. With single subject, the number of
treatment periods (sample size) is minimal or very low giving rise to large type Il error
but the “n of 1 trial” violates some of the assumptions needed in statistical tests.

There is no reason to conduct “n of 1 trial” or for this purpose any experiment, if drug
effect is well known and works for all patients. The “n of 1 trial” should be adopted in
those cases where the efficiency of a drug is intended to be used in long-term
management.

In research where drugs efficiency needs to be tried, “n of 1 trials” may give new insight
into the problems. In development of new drug, “n of 1 trials” could prove very useful
instead of experiments run over many subjects. March et al. (1994) says, “In conclusion,
the single subject trial bridges gap between research and clinical practice. It may provide
new insight into vaguely defined conditions, improve therapeutic decisions, strengthen
the doctor-patient relationship and create a more critical attitude towards drug treatment
both among patients and doctors”.
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The “n of 1 trial” avoids one of the biggest problems of finding enough suitable patients
for clinical research. ‘n of 1’ trials are advocated for such clinical conditions that are
chronic and curable with repeated doses and that an individual patient responds to a
particular treatment.

In large number of cases in “n of 1 trials”, determination of variations within and between
patients is possible and could provide information about the average effect.

In an experiment, a patient is treated with a placebo and a drug over 12 treatment periods.
The drug along with placebo is administered to particular patient in a double blind,
randomized multiple cross over sequence. Each treatment period is randomly assigned.
Patient is asked to give score in a scale of 6 for pain for each treatment period. Measures
of responses are obtained for each treatment period.

Table 5.22
Scores given by a patient by treatment and treatment period
Patient Treatment Period Drug Score out of 6
1 Drug (D) 4
1 Placebo(R) 2
1 P 2
1 D 4
1 D 5
1 P 3
1 P 1
1 D 4
1 P 2
1 D 5
1 P 3
1 D 4

The data is summarized in:Table’5.17 (next page) and is represented by single bar charts
as given in Fig. 5.5.

Score

O B N W b~ 00O

o p P D D P P D P D P D
Treatment periods

Fig. 5.5: Bar diagram of drug/placebo
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Table 5.23
Summary Statistics
Drug Score Placebo Score
4 2

4
5
4
5

NFR|W|N

4 3
4.33 2.17

Average (Standard Deviation) is 2.17 (£ 0.75) for Placebo and 4.33 (x 0.52) for Drug per
treatment period. The ratio of drug to placebo seems to be 2 to 1.

5.7.2 Use of Analysis of Variance for “n of 1 trials”

The ‘n of 1 trials’ is a special case of cross over design orgepeated measure designs. The
research unit is a human or an animal subject. Each subject.is measured under several
conditions, or at different points of time.

Suppose we have n patients and each patient is subject tosp treatments or each patient is
administered a drug p times (viz. days) and each time a measurement of some character is
made. The data format is as follows:

Subjects Repeated'/Measures
Sy Y11 Yaz ..o Yip
Sz Y21 Y220t Y
Sn ynl yn2 ------ ynp

The correct analysis of such datasissmore complex than if each patient is measured once.

A simple additive model“israpplicable with usual conditions.

Yij =M+ b + g i=1,2,..,n
i=12,..,p
1 p ... p
1 ..
r=c’ P P =s* (1-p)l + pJ
pp ... 1

where X t; = 0, g ~ NID (0, Z), J is a square matrix of 1’s and I is an identity matrix.
Bock (1963) and Huyuh and Feldt (1970) showed that the most general condition under

which univeriate F-type remains valid is that C £ C' = cs,2 where C is (p-1) xp matrix
whose rows are orthogonal contrasts. In clinical trials where n and p are sufficiently
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large, usual model conditions are met. When = = o°l, an approximate F-test for repeated
measures is applicable with reduced degree of freedom

v tE-=/pP
C(p-Dt(2-Jz/p)

Cases dealing with missing data can also be dealt with (Crepean et al, 1985). Bland and
Altmar (1994) generated simulated data on 5 subjects with un-correlated pairs of
measurements:

(5.5)

Table 5.24

Subject  1|Subject 2 |Subject 3[Subject  4|Subject 5

A B|A B|A B|A B|A B

48 58163 28138 40|51 46 |55 62

56 53|74 24|56 41146 36|51 50

49 44169 26|46 40136 41 (54 66

38 53|55 19143 41149 43|46 51

50 56|73 22|52 34 (46 45|55 52

Subject mean |48.2 52.8|66.8 23.8147.0 . _39.2|45.6° 42.2|52.2 56.2
Correlation r=-0.02 r=0.32 r=-0.30 r=0.37 r=0.55
coefficient p=0.97 p=0.59 (lwp =063 p =0.55 p=0.33

A and B may be two drugs. Each drug is administered 5times to each subject.

Bland and Altma (1994) made a cofrelation.analysis on the repeated data. The same can
be used to study variation between subjects, and A and B within subjects.

There are 5 subjects and two types of drugs. It is a crossover design. Subjects and drugs
cannot be randomized. However, drugs Aand B can be randomized within subjects. Each
subject is given the two.drugs. 5 times at random with all the medical conditions like drug
A can be given say after drug Buis:given. We have 5 observations from each of the drugs
for each of the subjects.

Drugs x1 X2 X3 x4 x5
1 48 63 38 51 55
1 56 74 56 46 51
1 49 69 46 36 54
1 38 55 43 49 46
1 50 73 52 46 55
2 58 28 40 46 62
2 53 24 41 36 50
2 44 26 40 41 66
2 53 19 41 43 51
2 56 22 34 45 52

Analysis is done and the result is given on the next page.
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ANOVA TABLE

Multivariate Tests

Hy pothesis Error

Effect Value F df df Sig.

SUBJECTS Pilla's Trace 965 | 34.475 4.000 | 5.000 | .001
Wilks' Lambda 035 | 34.475 4.000 | 5.000 | .001
Hoteling's Trace | 27.580 | 34.475 4.000 | 5.000 | .001
Eg‘c’)ts Largest 27.580 | 34.475 4.000 | 5.000 | .001

SUBJECTS * DRUGS _ Pillai's Trace 1996 | 303.053 4.000 | 5.000 | .000
Wilks' Lambda .004 | 303.053 4.000 | 5.000 | .000
Hotelling's Trace 242.443 | 303.053 4.000 | 5.000 .000
Eggts Largest 242.443 | 303.053 4.000 | 5.000 | .000

Mauchly's Test of Sphericity

Measure: MEASURE 1

Epsilon
Within Mauchly 's Approx. Greenhouse
Subjects Eff ect W Chi-Square df Sig. -Geisser Huy nh-Feldt
SUBJECTS .104 14.499 9 116 .679 1.000
Tests of Within-Subjects Effects
Measure: MEASURE 1
Type Il Sum Mean
Source of Squares df Square F Sig.
SUBJECTS Sphericity Assumed 910.000 4 227.500 | 8.732 .000
Greenhouse-Geisser 910.000 | 2.714 335.261 | 8.732 .001
Huy nh-Feldt 910.000 | 4.000 227.500 | 8.732 .000
Lower-bound 910.000 | 1.000 910.000 | 8.732 .018
SUBJECTS * DRUGS Sphericity Assumed 3856.720 4 964.180 | 37.01 .000
Greenhouse-Geisser 3856.720 2.714 1420.890 | 37.01 .000
Huy nh-Feldt 3856.720 | 4.000 964.180 | 37.01 .000
Lower-bound 3856.720 | 1.000 | 3856.720 | 37.01 .000
Error(SUBJECTS) Sphericity Assumed 833.680 32 26.052
Greenhouse-Geisser 833.680 |21.714 38.393
Huy nh-Feldt 833.680 |32.000 26.052
Lower-bound 833.680 8.000 104.210
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Tests of Between-Subjects Effects

Measure: MEASURE 1
Transf ormed Variable: Av erage

Analysis of Variance

Type Il Sum
Source of Sguares df Mean Square F Sig.
Intercept 112338.000 1 112338.000 | 1979.873 .000
DRUGS 1039.680 1 1039.680 18.324 .003
Error 453.920 8 56.740

Repeated measurements are assumed independent as drugs were randomly administered
to patients having no knowledge what drug is being administered to them. Subjects are
significantly different whereas drugs are effective.

‘n of 17 with at least singly-blinded, can be easily analyzed and valid conclusion can be
drawn. The results of 5 subjects can be pooled provided between subjects variation is not
significant. Power of test and type | error can be usually calculated.



Chapter 6

Regression and Correlation

6.1 Introduction

In this Chapter, we will discuss and analyze the relationship between two and more than
two variables. For example, a medical researcher may be interested in the relationship
between a patient's blood pressure, X, and heart rate, Y; he may be interested to see the
relationship of a certain drug and its effect in lowering the heart rate in adults; he may be
interested in the relationship between the increase in age or weight and its effect on
systolic blood pressure and so on. In each case, the objective of his interest is not merely
academic but the medical researchers wish to determine whether bleod pressure is a good
indicator of a patient’s heart rate or increase in weight.

One of the methods to investigate the increase (decrease) in,one variable with the
increase (decrease) in another variable is a regression.method. Regression method refers
to a set of techniques for studying the straight-line relationship among two or more than
two variables, one of them is dependent“(response).variable and others are all
independent (explanatory) variables(s). The'terms dependent and independent do not
imply any cause and effect relationshipsbetween’the two variables. It simply means that
one variable is independent and the other variable depends on the first one. In the
example of blood pressure and weight of patients, blood pressure is the response variable
that depends on the weight, which is the explanatory variable. In case, regression is used
for prediction, blood pressure is the outcome and weight is the predictor. Possibly the
simple line could be Y ='a + b X, where a and b are constant numbers, a is called
intercept, b is slope of the straight line. It is not possible to determine a unique line that
fits all points. We find the best possible line that passes through the nearest places of all
these points.

If we are interested in finding whether some sort of relationship exists between two or
more than two variables, then it is a study of correlation. In fact correlation indicates
relationship between two variables. The correlation refers to measurements of the
strength of relationship between two or more than two variables. A numerical value of
correlation is called a correlation coefficient.

Note that in linear regression the dependent variable is always quantitative.

6.2 Simple Linear Regression Analysis
We explain the concept of simple regression analysis, with an example:

Example 6.1:
The following data and Table 6.1 show the age (X) and blood pressure B.P (Y) of 20
healthy persons taken from a large population.

227
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Table 6.1
Age (x) B.P. (y) Age (x) B.P. (y)
20 120 46 128
43 128 53 136
63 141 70 146
26 126 20 124
53 134 63 143
31 128 43 130
58 136 26 124
46 132 19 121
58 140 31 126
70 144 23 123

We can visualize the bivariate relationship by constructing a scatter diagram for this
sample data.

The scatter diagram is a useful aid in studying the relationship_between two variables.
The basic purpose of scatter diagram is to see whether there isiany relationship between
the two variables. The scatter diagram [6.1] allows visual examination whether there is a
linear, non-linear or no relationship between variables:, Plotting pairs of sample
observations on two-dimensional graph paper construct a scatter diagram, i.e. age
(independent variable) on the x-axis and bloadspressure (dependent variable) on y-axis. If
we draw a straight line through these points as.shownyin Figure 6.2, the line will not pass
through all these points. It can be seen.that bload pressure increases linearly as the age
increases. Thus we could select a model that proposes a straight line relationship between
age and blood pressure. We do not.expect that the relationship, Y = o + BX will hold
exactly for every healthy persenaThis'modelwill be adequate if all the points fall exactly
on the straight line. This model is known‘as a deterministic model. This ideal situation
generally never occurs in practice.

A more reasonable model is onesthat allows unexplained variation in blood pressure
caused simply bysrandom phenomena.

150
o
o
a
o
140 o
o o
o
o
i 130 @
o oo
s o
o o
o
a
120 °
10 hd bd d hd bl hd
10 20 30 40 50 60 70 80
AGE

Fig. 6.1: Scatter diagram of age and blood pressure
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A model that accounts for this random error is called a probabilistic model, i.e.
Y, =o+BX; +¢;,,i=12,........ n, (6.1)

where ooand B are constants and ¢; are the deviations of points from the line.

150

140 9

130 ¢

B.P

120 4

“ Observed

110 9 Linear
10 20 30 40 50 60 70 80

AGE

Fig. 6.2: Straightline by-the method of least squares

This is known as a full linearsregression model. We assume that ¢; follows a normal

distribution with mean = 0/and variance = o i.e. N(0, ), o is the intercept and B is

called the slope of thedine. The slope shows the amount of increase (or decrease) in the
deterministic componentof Y for.every 1-unit increase (or decrease) in X.

One interpretation of thexregression line is that for a healthy person with age (X), the
corresponding blood pressure (YY) will be normally distributed with mean =a +BX and

2

variance o?. If o° were 0, then every point would fall exactly on the regression line.

However, the larger the o2, the greater the deviations of points from the regression line.

How can we interpret 8 ?

(@ p>0 () p<0 (@ p=0

Fig. 6.3: Regression lines for different values of B
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If B is greater than O then as X increases, the expected value of y = +Bx increases [see
Fig. 6.3(a)]. If B is less than zero then as x increases, the expected value of y decreases
[see Fig. 6.3(b)]. If B = 0 then there is no relationship between x and y [see Fig. 6.3(c)]
and y-points lie around a line parallel to x-axis.

Moreover the effect of 2 on a regression line may be seen from Figure 6.4.

o? >0 (imperfect fit) o’ =0 (perfectfit)

Fig. 6.4: The effect of 6* on a regression.line

As with most statistical procedures, the validity ofithe.inferences depends on certain
assumptions being satisfied. The assumptions about the random error, ¢, required for a
linear regression analysis are as:

(i) The probability distribution of ¢ is normally distributed with “zero” mean

« GZ 5

and variance.

(if) The errors associated with any two observations are independent, i.e. the error
associated with one walue of y hasso effect on the errors associated with other
values of y.

Note that there are some ‘mere assumptions i.e. non-zero variance of independent
variable, Additivity, multizcolinearity, homo-scedasticity and normality; these are not
mentioned here. The outcome variable must be quantitative.

6.2.1 Method of Least Squares

One way to use regression is to fit a straight line through a set of points. Many straight
lines can be drawn, but a straight line fitted by the method of least squares is the best
fitted straight line.

The best line is that which passes as nearly as possible through the points i.e. deviations
of points from the straight line is smallest. If sum of squares of all deviations of all the
points from y of the straight line is minimized, then the line obtained through this process
shall be the best-fitted line for the data. This method is called the Method of Least
Squares. If the regression line of Y on X is linear, we have an equation (6.1), where ¢;

represent measurement errors in Y but not in X.
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By the method of Least Squares, we minimize Zsiz (sum of the squares of errors) with
i

respectto o and B . We get two least squares equations. If we solve them, we get

a=y —by X
and

o (6.2)

)
n n

where “a“ is an estimate of o and by, is an estimate of By,.
The derivation of the formula is not given here.
6.2.2 Some Applications of Simple Regression
0] In studying the effect of a certain drug in reducing heart rate in adults.

(ii)  Instudying the relationship between an objective measurement of anxiety and
heart rate in adults.

(iii)  In studying the relationship between age and.systolic blood pressure.

(iv)  In studying the relationship between birth weight and cholesterol level in
pregnant women near term.

(v)  In studying thesrelationship etween HDL cholesterol and alcohol
consumption.

The solution of example 6:1.is first explained by manual process, then by using SPSS
Package.

b.p. Age b.p.
No. | Age (x) (yF; x2 Xy No. (3) (y‘; X2 Xy
1 20 120 400 2400 11 46 128 2116 5888
2 43 128 | 1849 | 5504 12 53 136 2809 7208
3 63 141 | 3969 | 8883 13 70 146 4900 10220
4 26 126 676 3276 14 20 124 400 2480
5 53 134 | 2809 | 7102 15 63 143 3969 9009
6 31 128 | 961 3968 16 43 130 1849 5590
7 58 136 | 3364 | 7888 17 26 124 676 3224
8 46 132 | 2116 | 6072 18 19 121 361 2299
9 58 140 | 3364 | 8120 19 31 126 961 3906
10 70 144 | 4900 | 10080 | 20 23 123 529 2829
Total | 862 | 2630 | 42978 | 115946
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2y =26302x=862, y =131.50 x =43.10

Yx2 = 42978 Yxy = 115946
115046 862 2630

b= —20 2020 _ 0445089 ~0.445
42978 (862
20 |20

The linear regression equation is
a=y-h,x=112317
The fitted Regression line will be
Y-y =h, (X-X) (6.3)

§ -131.50 = 0.445 (x - 43.10)
or
§ =112.317 + 0.445 x

Regression line may be fitted, alternatively, by using the'SPSS package.

How to use the IBM-SPSS package? And how.to enter the data to fit linear regression
line? It has been explained at the end of the Chapter. The IBM-SPSS package has been
used:

Example S6-1

To see how we plot the scatter diagram and construct the regression equation, draw the
regression line, we follow the following steps:

The data will be in.eolumns as follows:

Mo Age B.P
1 1 20 120
2 2 43 128
3 3 63 141
4 4 26 126
5 5 53 134
6 6 31 128
7 T 58 136
8 3 46 132
9 9 58 140
10 10 70 144
11 11 46 128
12 12 53 136
13 13 7o 146
14 14 20 124
15 15 63 143
16 16 43 130
v 17 26 124
13 18 19 121
19 19 31 126
20 20 23 123
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We plot the scatter diagram as follows:
Graphs—>Chart Builder...

From the Gallery select “Scatter/Dot”

o€
P

Double click or move the icon

Move the variable Independent variable “Age” to the X-axis:

Move the variable Dependent variable “Blood Pressure” to the Y-axis:

Legacy Dialogs

T T

Choose from:

Favorites

= Llele
é%#?ggg @ |11

Boxplot
Dual Axes

&] Paste ww w

We click on E to get the following Figure:
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Fig. 6.5: The Scatter Diagram

We obtain the regression equation as follows:

Analyze> Regression-> Linear ...

File Edit View Data Transform
= 7 3
HHE E ,
| | b
[No| Age| BP | 8
1 120 1200 N
2 2 43 Az N
3 363 N
4 4 %) 1), R
5 5 53 E‘l Regression 3
9 | d :ﬂl =9 Loglinear 13
r 7-I_ 58 1% Meural Metworks 3
8 8 46 132 )
Classify 3
9 9 58, 140 ) ) )
0 10 70 144 Dimension Reduction 3
1 1 46 128 Scale '
12 12 53 136 Monparametric Tests 3
13 13 70 146 Forecasting »
14 1420 124 B2 b
15 15 53 143 Multiple Response »
16 16/ 43 130 3] missing Value Analysis
1w 17 26 124 Multiple Imputation
18 18 19 121 Complex Samples 3
19 19 31 126 E simulation. .
20 200 23 123 Quality Control 3
21 ROC Curve..
2 IBM SPSS Amos
7

[ Automatic Linear Modeling..

Curve Estimation...
Partial Least Squares...
E Binary Logistic

il Multinomial Logistic...
B ordinal...

Probit...

ﬂonlinear...

m Weight Estimation

[ 2-stage Least Squares...

Optimal Scaling (CATREG)...
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Move the variable Independent variable “Age” to the Independent(s):

Move the variable Dependent variable “Blood Pressure” to the Dependent:

t,.’n Linear Regression =) '{,J Linear Regressicn ot |
_ Dependent. _ Dependent:
& P _Se— o Y iR e
& Age ,aﬂcﬁ-nm & hge Block 1 of 4
& Blood Pressure [B.PP#]

Next
Independent(s): Independent(s): -
N pyes
= >
Method: |Enter 4 Method: |Enter >
Selection Variable: Selection Variable:
Case Labels: Case Labels:
C » [
WLS Weight. :J WLS Weight:
=
We click on , to get the following outputs:
SPSS output for simple regression
Model Summary
Adjusted Std. Error of
Model R R Square R Sguare | the Estimate
1 .9672 .935 .931 2.12
a. Predictors: (Constant), Age of the Patients
ANOVAP
Sumof
Model Squares df Mean Square F Sig.
1 Regression 1154.116 1 1154.116 256.838 .0002
Residual 80.884 18 4.494
Total 1235.000 19
a. Predictors: (Constant), Age of the Patients
b. Dependent Variable: Blood Pressure
Coefficient$
Standardi
zed
Unstandardized Coefficien
Coefficients ts
Model B Std. Error Beta t Sig.
1 (Constant) 112.317 1.287 87.241 .000
Age of the Patients .445 .028 .967 16.026 .000

a. Dependent Variable: Blood pressure
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The output is divided into three general parts:
2 2
(@) R, R and Adjusted R
(b) ANOVA Table
(c) Parameters in the equation

These need some explanations.

a) R, R2 and Adjusted R2

(i) Simple or Multiple Correlation R:

The basic objective of correlation is to obtain a measure of the degree of relationship
that exists between two or more than two variables. This is an index of correlation
coefficient. For simple linear regression, it is the simple correlation coefficient, but if
independent variables are more than one, it is a study of multiple correlations.
Multiple correlations are the combined effect of all independent variables on
dependent variable. The range of simple correlation coefficient is from -1 to 1 and for
multiple correlation coefficients, R varies from 0 to +1«

(ii) R2 (coefficient of determination):

R2, which is commonly known as coefficient of,determination, is the proportion of
the variance of dependent Y that can be explained by the independent variable X. R2
ranges from 0 to 1. The closer the value of'R2 to"1 the better the model is that

accounts for the variation in the data. If R2 =4, then all the variation in the dependent
variable Y can be explained by/the variation in independent variable X and all the
points fall on the regression line.In this situation, once we know X, we can predict Y,
exactly with no error in prediction, If R?.= 0 then independent variable does not give
any information about dependent variable.

R2 can also be calctlated from the ANOVA Table as:
2 Regression sum of squares

= 6.4
Total(Regression + Residuals) sum of squares ©4

For this example the value of RZ s
2 1154.116

1154.116+80.884

= 0.93451

R2 depends on the value of the sum of squares of the residuals. If sum of the squares
2
of the residuals are zero then R = 1. This means all the points will fall on the
- . . 2
regression line. As the sum of the squares of the residuals increases, the R decreases.

In this table R2 is about 0.935 which means that 93.5% of the variation in Y (blood
pressure) is explained by the X (age), or in other words we can say that 93.5% of the
sum of squares of deviations of the y-values about their mean is attributable to the
linear relationship between Y and X. The practical interpretation of the coefficient of

determination, R2 is briefly described as:

About 100% (R of the information in X explains Y.
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(iii) Adjusted R*:

This value indicates the loss of predictive power or shrinkage. This tells us how
variation in Y would be accounted for if the model has been derived from the
population from which the sample has been taken. In this example R? = 0.935 and
adjusted R? = 0.931, therefore the shrinkage is about 0.4 % (0.935 — 0.931). This
means if the model were derived from the population rather than sample, it would be
approximately 0.4% less variance in the outcome variable. This can be calculated by
using Stein’s formula reported by Stevens (1992).

. -1 -2 1
AdjustedR2=1—Kn2k_lj(n2k_2j[n: j(l—Rzﬂ, (6.4)

where k is the number of predictors.
(b) ANOVA Table:
The terms in ANOVA table are defined below.

(i) Degrees of Freedom (df)

Degrees of freedom (df) is always 1 for a straight line model and the degrees of
freedom of the total is one less than the total number of observations minus the
number of parameters (in regression) estimated, [(in this example, 20 - 1 = 19),
whereas the degrees of freedom for the residual is, 19»=1 = 18 (degrees of freedom of
total - degrees of freedom of regression model):

(ii) Sum of squares
Sum of Squares column separates the variation in the data into portions that are
attributable to the regression.model and to'the residual (error).

(iii) Total sum of squares
= Regression sum of squares + Residual sum of squares

(iv) Mean sum of squares

This is equal‘to thessums of squares of regression, divided by the degree of freedom.
The Mean Square Error equals the sum of squares of errors divided by the error
degrees of freedom.

Sumof squares of regression of errors
Degrees of freedom

MS (Regression Model) =

_ A0 1154116
and
Sumof squares of errors ~ 80.884

= 4.9
Error degrees of freedom 18

MS (Error) =
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(v) t-statistic

t is test-statistic and p-value is associated with the test of the hypothesis. For example,
the value of t-statistic from the t-table at 5% significance level is 2.10 for 9 d.f.
whereas calculated t-value is 16.06.

(c) Parameters in the Equation

(i) Intercept

One constant term is the intercept of the line. Positive value of the intercept indicates
that the line is passing through a point above the origin whereas negative constant
value indicates that the line is passing through a point below the origin on the x-axis.

(ii) p-Value

p-value is the level of significance at the observed value of the test- statistic. It is the
probability of observing a value beyond the value of test- statistic. It is sometimes
matched with the given level of significance. The calculatedp-value is 0.0000, which
is less than 0.05 (table value). (This has been explained in details in Chapter 4).

(iii)  Slope

The second parameter is the slope of the line. 1f{3 =0, y isconstant. If § > 0, then y
increases (decreases) when x increases (decreases).and if B < 0, y decreases
(increases) when x increases (decreases). These values are the coefficients of
independent variable. The interpretation “of.the regression lines depends on the
positive or negative values of B(B). If B.= 0 thenythere is no relationship between

two variables. If p < 0.05, the wariables are significant and if p > 0.05, then the
variables are non-significant.

Suppose that variables aressignificant, thewresults are interpreted as:

(i) If the coefficient (B ) oflindependent variable is positive then we say that
independent.variable has/a positive effect on the dependent variable.

(if) If the,coefficient is negative then we say that independent variable has
negative effect'on the dependent variable.

(iii) The coefficient of independent variable tells us about the rate of change per
unit in the dependent variable.

We can draw inference from this example as:

The coefficient of X is about 0.45, and is positive. The increase of one year in age
there is 0.45 points increase in blood pressure. To see the increase in blood pressure
in 10 years in age, multiply the coefficient of X by 10, which gives 4.5. We say that
with the increase of 10 years in age, there is 4.5 points increase in the blood pressure.

Note: We obtain the regression line over the scatter diagram as follows:

Double click on the scatter diagram in Fig 6.5 to open the Chart editor
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Fig. 6.6: The Scatter Diagram with Regression line
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Example 6.2:

An experiment was conducted to study the relationship between an objective
measurement of anxiety and heart rate in adults. The data relate to 12 normal adults and
is given in Table 6.2. Fit a linear relationship between heart rate per minute and objective
measurement of anxiety by using the method regression and interpret the result.

Solution:
Here X is independent and Y is considered as a dependent variable so a regression line

E(Y)=oa+pX is fitted.

Table 6.2
Heart rate per minute | Objective measurements of anxiety
X) (Y)
50 48
55 41
60 45
65 11
70 42
75 36
80 38
85 36
90 30
95 32
100 34
105 25

The IBM-SPSS package is.used to solve the problem as explained in the following
Example:

Example S6-2
The data will be in.columns:
We obtain the regression equation as follows:

Analyze-> Regression=» Linear ...
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File Edit View Data Transform irect Marketing  Graphs Ulilities Add-ons Window Help
% p Reports » E == %
Sl I e :

= Descriptive Statistics » M
| Tables 3
X || Y ” var Compare Means 3 ” var || var || var
1 50 48 General Linear Model 3
2 55 M4 Generalized Linear Models b
3 60 45 Mixed Models »
4 6 4 Correlate 4
£ 70 42 -
Automatic Linear Modeling...
6 7 36 —_—— | = 2
oglinear
] 80 38 Meural Metworks 3
8 85 36
Classify 3 )
9 90 30 artial Least Squares
— % 32 Dimension Reduction 3
Bi L tic...
Seale N [ Binary Logistic
11 100 34 = _
12 105 25 ﬁonparawechesm 3
13 Forecasting 3
14 Survival 3
15 Multiple Response 3
16 [ Missing Value Analysis...
17 Multiple Imputation
18 Complex Samples caling (CATREG)..
19 %Sjmu\aﬁon.
20
21 ROC Curve...
22
22

Dependent:
|l¢¥ Objective measurements of a... |

rBlock 1 of 1
Independent(s):

& Heart rate per minute [X]

Previous

Selection Variable:

Rule...

Case Labels:

WLS Weight:

2 |
(aste ) {Resat ) (cance) _ap
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We click on , to get the following outputs:

Regression and Correlation

SPSS output for simple regression

Model Summary

Adjusted Std. Error of
Model R R Square R Square | the Estimate
1 .9218 .849 .834 2.67
a. Predictors: (Constant). Heart Rate Per Minute
ANOVA?
Sum of
Model Sguares df Mean Square F Sig.
1 Regression 399.448 1 399.448 56.087 .0002
Residual 71.219 10 7.122
Total 470.667 11
Coefficient$
Standardi
zed
Unstandardized Coefficien
Coefficients ts
Model B Std. Error Beta t Sig.
1 (Constant) 63.239 3.544 17.845 .000
Heart Rate Per Minute =334 .045 -.921 -7.489 .000

2
(i) R =0.849, so about 85% of variation in objective measurement of anxiety has
been explained by'heart rate per minute.

(i) Adjusted R? = 0.834, one can say that a loss of predicted power by using this

model i51.5%:1(0.849,— 0.834).

(iif) Constant = 63:24
(iv) Slope (B) =-0.334 (negative)

Therefore, the regression line takes the following form.

y =63.24-0.334 X

The p-value of heart rate per minute is 0.000, which is significant; therefore one can say

that heart rate has an effect on anxiety.

Moreover B =-0.33427 ~-0.33, we say that with one unit increase in heart rate, the
anxiety decreases by 0.33 units, i.e. for common understanding we multiply -0.334 by 10,
which comes out to be -3.34. This means that with 10 points increase in heart rate,

anxiety decreases by 3.34 points.
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6.3 The Coefficient of Correlation

In Section 6.2 we have discussed that least squares slope byx (Byx) = b provides useful
information between two variables Y and X. Another way to measure relationship is to
compute the Pearson product moment correlation coefficient. This is commonly known
as r. The correlation coefficient provides a quantitative measure of the strength of the
linear relationship between two variables. Note that unlike the slope, the correlation
coefficient r is scale less. The value of r is always between -1 and +1, no matter what the
units of two variables are. Since r and B provide information about the utility of the
model, it is not surprising that there is a similarity in computation. The correlation
coefficient r is calculated as:

Dy X 3y
= n n n (6.5)
(=) oyt (Y
n n n n
The correlation coefficient is symmetrical in x and y. The derivation of the formula (6.5)
may be seen in any textbook on statistics. If r = 1 or =1then we say that there is a perfect
positive or a perfect negative correlation. Positive value of r implies that y-value increases

as x-value increases. Negative value of r{implies thatyy-value decreases as x-value
increases. r = 0 means that there is no correlation. It.can'be seen from the Fig. 6.5.

A correlation coefficient measures<the linear relationship between two variables. A
coefficient of +1 means that a higher value of one variable is always associated with a
higher value of another, and a_coefficient of -1 means that a higher value of one is always
associated with a lower value of the other and this relationship is perfect linear. The
correlation coefficient does hot indicate how much each variable changes but it indicates
the degree of relationship between two variables.

y ¥
1

X -

a) Positive r: Y increases as X increases b) r near 0: little or no linear relationship
between Y and X
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¢) Negative r: Y decreases as X
increases

y

Regression and Correlation

—- X

d) r = 1: a perfect positive relationship
between Y and X

-y

e) r =-1: a perfect negative relationship between Y and X

Fig. 6.7: Value of the correlation coefficient for different pattern of variables

. . - 2
Since the two numerical descriptive measures r and R are very closely related, there may
be some confusion as to when eachsshould be used. The recommendations are as:

Coefficient of correlation'measures relationship between two variables X and Y, whereas
the coefficient of detérmination (R?) determines how well the least squares straight-line

model fits the data.

Example 6.3:

The followings are the systolic blood pressure of each of 25 pairs of identical twins.

Table 6.3

First twin (x)

118

116

118

120

122

122

122

120

124

125

138

140

Second twin (y)

115

119

116

119

118

138

124

128

126

130

130

125

First twin (x)

142

144

145

162

180

180

182

185

170

172

150

152

155

Second twin (y)

164

160

158

145

184

190

188

180

174

170

160

155

160

Calculate the correlation coefficient and interpret the result.
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Solution:

We can proceed with the calculations as:
2(x) = sum of the x-values = 3604
>(y) = sum of the y-values = 3676

2 = sum of the squares of x-values =532832

Zyz = sum of the squares of y-values =555618
2xy = sum of the product of xy =~ =543120

n=25
543120 3604 3676
25 25 25 ~0.93

532832 (3604)° (555618 (3676’
25 25 25 25
Alternatively IBM-SPSS package may be used to solve thissproblem as explained in the
following Example:

r =

Example S6-3
The data will be in columns.
We obtain the Correlation coefficient:

Analyze-> Correlate> Bivariate ...
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File Edit View Data Transform

SHE M e
\

[ x [ ¥ ] v
1 1§ 115
2 M6 119
3 M8 116
4 120 119
b 122 118
6 122 138
T 122 124
8 120 128
9 124 126
10 125 130
1 138 130
12 140 125
13 142 164
14 144 160
15 145 158
16 162 145
17 180 184
18 180 190
19 182 188
20 185 180
21 170 174
22 172 170
23 150 160
24 152 185
25 1585 160

Move the two variables to the

Repors 3
Descriptive Statistics
Tables

Compare Means

General Linear Model

Generalized Linear Models
Mixed Models

Loglinear

Meural Metworks
Classify

Dimension Reduction
Scale

Nonparametric Tests

Forecasting

r ¥ v¥ v r v v v

Sunvival

Multiple Response
Missing Value Analysis..

Multiple Imputatio »

Complex Sample: »
F simulation...

Quali ntrol
ROGC

IBM SP:

[ Distances...

Variables:

Carrelation Coefficient

Pearson [| Kendall's tau-b [] Spearman

est of Signiﬁum 1Ce

@ Two-tailed © One-tailed

Flag significant correlations

o (meset ] (cancel et |
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We click on , to get the following outputs:

SPSS output for correlation coefficient

Correlations

First Twin | Second Twin
First Twin Pearson Correlation 1.000 .931*
Sig. (2-tailed) . .000

N 25 25

Second Twin  Pearson Correlation .931*4 1.000
Sig. (2-tailed) .000 .

N 25 25

**. Correlation is significant at the 0.01 lev el (2-tailed).

r = 0.931, we can say there is about 93% correlation between two like twin. Since
p-value = 0.00, therefore, it is highly significant. This means that the population from
which this sample has been taken is highly correlated with respect of identical twins.

6.4 Regression Model for Prediction

After we have statistically checked the usefulness of the/straight-line model and are
satisfied that X contributes information for, thesprediction of Y, we are ready to
accomplish our original objective using the model for estimation and prediction. The
probabilistic model for making inferences can be divided into two categories, viz.

(i) Estimating the mean value ofY,.e. E (Y), for a specific value of X.
(ii) Predicting Y value for a given value‘of X.

In the first case, we want to estimate the mean value of Y for a very large number of
experiments at a given Xyvalue: For‘example, the psychologist may want to estimate the
mean creativity score for alhmentally retarded children with flexibility score of 3. In the
second case, we wish to predict the outcome of a single experiment at a given X value.
For example, he may want to predict the creativity score of a particular mentally retarded
child who exceeds 3 on the flexibility test. We use the least squares model

y=a+ bX, (6.6)

both to estimate the mean value of Y, i.e. E(Y), and to predict a value of Y for given X.
For this, consider an hypothetical data given in Table 6.4:

Table 6.4
Child Flexibility score (X) | Creativity score (Y)
1 2 2
2 3 5
3 4 7
4 5 10
5 6 11
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Suppose we fit least squares model relating creativity score, y, to flexibility score, X to be
§=-22+23x

We estimate for the mean creativity score of all mentally retarded children that have a
flexibility score of 3.

We need to find estimate of E(Y). On the basis of least squares model, our estimate is
simply . Then, when x = 3, we have

§ =-22+(23)(3) =47

Thus, the estimated mean creativity score for all mentally retarded children with
flexibility score 3 is 4.7.

We also use the least squares model to predict the creativity score of a particular retarded
child whose flexibility score is 3. Just as we use y fromdthe least squares model to

estimate E(y), we also use y to predict a particular value of y‘for a given value of x.
Again when x = 3, we obtain §, = 4.7. Thus we predict that a retarded child with a
flexibility score of 3 would have a creativity score of 4.7.

Since the least squares model is used to obtain both the estimator of E (YY) and the
predictor of y, then how do these two methods differ. Therdifference lies in the accuracy
with which the estimate and prediction are made.<Thisaccuracy is best measured by the
repeated sampling errors of the least’squares line when it is used as an estimator and
predictor, respectively. The 95% confidencerinterval for the mean creativity score for all
mentally retarded children with a flexibility score of 3, will be 3.645 to 5.755 whereas the
95% prediction interval, predict the creativity score of a particular retarded child if his
flexibility score is 3 will be 2.503 to 6.897. (These limits can be calculated by using
SPSS packages easily.see Chapters 4 and 5.) It is important to note that the prediction
interval for an individual mentally retarded child is wider than the corresponding
confidence interval. for the mean creativity score. (Note that this will always be true).
Over the range of the sample data, the widths of both intervals increase as the value of x
gets farther from X. Thus, the more x deviates from X, the less useful the interval will be
in practice. In fact, when x is selected far away from X so that it falls outside the range
of the sample data, it is dangerous to make any inference about E(y) or y.

Example S6-4
The data will be in columns.
We obtain the Correlation coefficient:

Analyze-> Regression-> Linear ...
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File Edit View Data Transform |Analyze | DirectMarketing Graphs Ulilities Add-ons  Window Help
=1 A Reports 3 i e
S H& o H % & B

i Descriptive Statistics }
13: Tables 3
Chid | X | Y va Compare Means b | var var var
1 1 2 2 General Linear Model }
2 2 3 5 Generalized Linear Models »
3 4T Mixed Models b
& 4 5 10 Caorrelate 3
5 5 6 M -
- Regression PI [=] Automatic Linear Modeling...
o N
7 Loglinear 4 I:inear...
3 METEINEIRTS . Curve Estimation...
Classi }
q _aSSIB(_ _ Partial Least Squares...
Move the X variable to the Independent(s):

Move the Y variable to the dependent(s):

Click on Save

@ Linear Regression M
Dependent:
= Statistics
& child ‘ |
&9 Flexibility score [X] | ~Block10r1 4 e
& Creativity score [Y] ™ m
\\\ h,
S ndependent(s) -
- Bootstrap...

Method

Selection Variable:
L &

—

(r

CaseLabels:
|

o WLS Weight
|

Lox]

@

For predicted values Mark on
Unstandardized

Predicted Values
&
[C] Adjusted

[] &.E. of mean predictions

dardized

We click on (Sontinue] e (LK ] to get the following output:

Coefficients®
Standardized
Unstandardized Coefficients Coefficiants
Model B Std. Error Beta 1 Sig.
1 {Constanf) -2.200 812 -2.708 073
Flexibility scare 2.300 191 .980 12.011 .001

a DependentVariable: Creativity score

And the predicted values for Y will be added to the data file:
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Child | x| v PRE_1
1 1 2 2 2 40000
2 2 @ 5 4 70000
3 3 AT 7.00000
4 4 5 10 9.30000
5 5 6 11 11.60000

(Note that if the value wanted to be predicted is not one of the X values, we add it to the
Data file and repeat the same steps and the predicted value of Y will be add
automatically).

6.5 Multiple Regression Analysis

This is more complex than simple regression model. In example 6.1, two variables such
as weight and blood pressure were used, additional variables'such as age, family history,
diet, etc. might also be related to blood pressure. Thus We woutld want to incorporate
these and other potential variables into the model if we need to make accurate predictions
of blood pressure. A more complex model relating blood pressure,to various independent
variables such as age, weight, family history is called'a:general linear statistical model.

The general linear model is
Y =o+B X B, X5 +B3 X5+ ..+ B Xy +€ (6.7)

where X, X,, X,, ... could be weight, height,and family history etc. Here Y is dependent
and X;, X,, X,, ... are independent,variables. B's determine the contribution of the
independent variable X's and ¢ as usualiisrandom error component of the model.

6.5.1 Applications of multiple-regression
Some applications of regression
(i) Relationship between age, HDL cholesterol and alcohol consumption

(if) Relationship “between hypertension (mean arterial blood pressure) and age,
weight, body surface area, duration of hypertension, basal pulse and measure of
stress.

(iii) Relationship between birth weight of a child and gestation period and smoking
(note that smoking is a qualitative variable).

(iv) Relationship of systolic blood pressure, birth weight and age of infants.

Method of least squares will also be used to fit linear model to a set of data. This process,
along with the estimation and test procedure associated with it, is called a multiple
regression analysis. Since computations involved in the multiple regression are complex,
therefore, all calculations will be made on the computer by using SPSS package. We will
follow the same steps as in case of simple model, i.e. the assumptions about the random
error term ¢ in the general linear model are same as in case of simple model.
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6.5.2 Fitting the model and interpretation of coefficients
Several cases will be discussed as:
(i)  All independent variables are quantitative.

(if) Some independent variables are quantitative and some are qualitative of two
levels.

(iii) Some independent variables as quantitative and some are qualitative of three
levels.

Case 1: All the independent variables are quantitative

Example 6.4:
The data given in Table 6.5 were collected using a simple random sample of 20
hypertensive patients.

Y = mean arterial blood pressure (mmHg)
X1 = age (years), X, = weight (kg), X3 = body surface aréa (sqms)
X4 = duration of hypertension (years), Xs = basal pulse (beats/min)

X = measures of stress

Table 6.5
Patient Y X1 Xs X3 Xa Xs Xe
1 105 47 85.4 1.75 51 63 33
2 115 49 94.2 2.10 3.8 70 14
3 116 49 95.3 1.98 8.2 72 10
4 117 50 94.7 2.01 5.8 73 99
5 112 51 89.4 1.89 7.0 72 95
6 121 48 99.5 2.25 9.3 71 10
7 121 49 99.8 2.25 2.5 69 42
8 110 47 90.9 1.90 6.2 66 8
9 110 49 89.2 1.83 7.1 69 62
10 114 48 92.7 2.07 5.6 64 35
11 114 47 94.4 2.07 5.3 74 90
12 115 49 94.1 1.98 5.6 71 21
13 114 50 91.6 2.05 10.2 68 47
14 106 45 87.1 1.92 5.6 67 80
15 125 52 101.3 2.19 10.0 76 98
16 114 46 94.5 1.98 7.4 69 95
17 106 46 87.0 1.87 3.6 62 18
18 113 46 94.5 1.90 4.3 70 12
19 110 48 90.5 1.88 9.0 71 99
20 122 56 95.7 2.09 7.0 75 19

Discuss the effect of all the independent variables on mean arterial blood pressure, by
using the method of multiple regression. Comment on the individual variable. (Source
Daniel, 1981).
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Example S6-5

The data will be in columns.

We obtain the multiple regression coefficients as follows:

Analyze-> regression - Linear ...

Regression and Correlation

File Edit View Data Transform -irecl Marketing Graphs Utiities Addons Window Help
: i} Reports 2 =
EL Y :
il . =, Descriptive Statistics 3 = =
|5 : | Tables 3
|Pat\ent“ Y ” X1 " Compare Means + " var " var ” var

1 1 108 47 General Linear Model B

2 2 18 49 Generalized Linear Models » [}

3 3. M6 49 Mixed Models » [0

4 4 mr 50 Correlate 4 0 N

5 5 112 a1

= AT o Segression matic Linear Modeling

Loglinear inear

i 7 121 49 Meural Networks 3 v—

8 8 110 47 s stimat

) 9 110 49 assily [ Parti uares...

Qimenswon Reduction 13

10 10 114 48 Seale ary Logistic...

i " 14 47 Nogparame ic Tests tinomial Logistic...

12 12 115 49 - i dinal

13 13 114 80 Forecasfin ¢ - -

14 14 108 45 Sunival S

15 15 135 52 | [ Nonlinear...

16 16 114 46 is... Weight Estimation...

17 17 106 46 4 -Stage Least Squares...

18 18 113 46| 4 Optimal Scaling (CATREG)...

19 19 110 43 g

2 20 12 s aity Contrl v o

21 & B C Curve

& — IBM SPSS Amos..

Move the variable Independent,variables “X1,...,X6” to the Independent(s):

Move the variable Dependent variable “Y” to the Dependent:

A Linear Regression

Dependent:

| Patient

Block 1 0f 1

Previous Next

Independent(s):

Selection Variable.

Case Labels:

WLS Weight:

(»)
>
(>
(»)
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We click on , to get the following outputs (for the “Enter” Method):

SPSS output for multiple regression

Coefficients®
Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.

1 {Constant) -13.845 2.687 -5.1563 .000
age (years) 728 054 336 13.403 .000
weight (ka) Aa57 063 757 16.085 .000
hody surface area (sgms) 3923 1.621 .099 2418 0
?;;’::'S‘;” ofhypertension 063 051 026 | 1244 | —jm235
hasal pulse (beats/min) -074 052 -.052 -1.418 —‘1 a0
measures of siress 004 003 029 1318 |—Pw210

a. Dependent Variable: Mean arterial blood pressure

We may note that X1, X2 and X3 are Not Significant (as the:P-values > 0.05). Here we
advise to use an alternative method than the Enter method. We will use the Stepwise
method, which not only select the significant variables; but also it'select them in order of
importance as follows:

Move the variable Independent variables “X1,...,X6”.to the Independent(s):
Move the variable Dependent variables¥” to the Dependent:
Chose the Stepwise Method:

{3 Linear Regression ﬁ \I

Dependent:
& Patient ‘ \ »j | & Mean arterial blood pressure ..

& age (vears) Wil FBlock 1 of 1
& weight (ka) [x2)
Q& body surface area (... Mext
f duratien of hyperten... Independent(s):
& basal pulse (beats/... & age (years) ] -
f measures of stress.. & weight (k) [X2]

f body surface area (sgms)... [+

Method:

Selection Variable:

»

()

[+
»

[ Past

|
Case Labels:
|

WLS Weight:
| |
| OKH 2} ][ Reset ][Cancel][ Help ]

We click on , to get the following outputs (for the “Stepwise” Method):




254 Regression and Correlation

Model Summary

Change Statistics
Adjusted Std. Error of | R Square F Durbin-
Model R R Square R Square | the Estimate Change Change | Sig. F Change | Watson
3 .997 .995 .994 .43705 .003 9.255 .008 1.896

2
In multiple regression analysis, the value of R is used as how much variation in the
dependent variables has been explained by independent varlable As an alternative to

using R as a measure of model accuracy, the adjusted R is computed. Unlike R

adjusted R takes into account the loss of predictive power by this model, if the model
were dzerived from the population rather than sample. Adjusted R2 will always be smaller
than R and cannot be forced to 1 by simply adding more and more independent variables
to the mogiel as the case with R2. Consequently, analysts<prefer more conservatizve
adjusted R , when choosing the measure of model accuragy. The«value of adjusted R =

0.99 which is slightly smaller than RZ. Our interpretation is that after adjusting for sample
size and number of parameters in the model, approximately 99% of sample variation in
means arterial blood pressure has been explainedyby.the linear model and loss of
predictive power or shrinkage is about 0.3% (0.997 — 0.994).

(1) We see that R2 (coefficient of determination)»=.0.995, this implies that by using
these independent variables (age, weightfand body surface area) in a first order
model to predict y, 99.5% wariation_has been explained of mean arterial blood
pressure by age, weight, body surface area, whereas duration of hypertension,
based pulse and measurerof stress are‘not playing part in explaining the variation
of mean arterial blodd pressure asithey are non-significant. Adjusted R? is 0.994,
the loss of predictive power is 0.6% if this model will be used for the purpose of
forecasting.

ANOVA
Sum of
Model Sguares df Mean Square F Sig.
Regression 556.944 3 185.648 | 971.934 .000
Residual 3.056 16 191
Total 560.000 19

Coefficients

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
(Constant) -13.667 2.647 -5.164 .000
Weight (kg) .906 .049 717 | 18.490 .000
Age (years) .702 .044 .323 | 15.961 .000
Body surface area (sqm) 4.627 1.521 116 3.042 .008
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Excluded Variables

Collinearity

Partial Statistics

Model Beta In t Sig. Correlation Tolerance
?;g';’)” of hypertension | o6 | 1350 | .104 331 866
basal pulse (beats/min) -.014 -.452 .658 -.116 .355
measures of stress .018 .988 .339 247 .992

(2) Variables age, weight and body surface area are in the equation. They are highly
significant (p < 0.0001), we say that these variables have very strong effect on the
mean arterial blood pressure.

(3) Since the variables, basal pulse, duration of hypertension.and measure of stress are
not in the equation, these are non-significant (p > 0{05) [can be seen in SPSS
output]. Therefore, we say that these variables have no_geffect on mean arterial
blood pressure. This does not mean that these variables.are less important.

The general model takes the following form:

Mean arterial blood pressure
=-13.667 + 0.702 age + 0.906'Weight + 4627 body surface area
or

§ =-13.667 + 0.702X; + 0.906X, + 4.627X; (6.8)

Coefficients of age, weight and bady surface area are positive, therefore, these factors
have positive effect on mean arterial blood pressure. These can be interpreted as:

Age: with 10 years increase in age the mean arterial blood pressure is increased by 7
points provided.all other variables are held constant.

Weight: with 10 kg increasein weight the mean arterial blood pressure is increased
by 9 points provided.all other variables are kept constant.

Body surface area: with one square meter increase in the body the mean arterial
blood pressure is increased by 4.6 points when all other variables are kept
constant.

Starting from Version 19, The IBM-SPSS add the “Automatic Linear Modeling” for the
regression. Here, we will show the steps for using it:

Example S6-5b (Automatic Linear Modeling)

Before we use the Automatic Linear Model, we have to be sure that we define the
Dependent Variable “Target” and the independent variable(s) “Input”. We Change the
Role as follow:
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File Edit View Data

Transform  Analyze DirectMarketing Graphs  Utilities

Add-ons

Regression and Correlation

Window  Help

S e~ BLAM A EX B0 099 %

| Name || Type ” Width ” Decimals || Label ” Values ” Missing ” Columns || Align || Measure ” Role ‘
1 Patient  Numeric 8 0 None Mone 4 Right &5 Nominal & Mone
2 Y MNumeric |8 0 Mean arterial bl... None Mone 4 Right & Scale
3 X1 MNumeric 8 0 age (years) None Mone 4 Right & Scale “ Input
4 X2 MNumeric 8 1 weight (kg) None MNone 4 = Right & Scale v Input
5 X3 Numeric |8 2 body surface ar... None Mone 4 Right &’ Scale N Input
6 X4 MNumeric 8 1 duration of hyp... None Mone 4 = Right & Scale “w Input
T X& Mumeric 8 0 basal pulse (be... None MNone 4 Right & Scale N Input
8 X6 MNumeric |8 0 measures of str... None None 4 = Right & Scale N Input

We obtain the Automatic Linear Modeling as follows:

Analyze-> regression 2> Automatic Linear Modeling ...

File Edit

View Data

Transform |

| Analyze [Pireciﬂarketing Graphs gtw Add-ons  Window Help

== - Reports » . -
. H (=] ad & A
e = Descriptive Statistics 3 B =
| Tables 3
IF’atiem." Y || X1 || Compare Means | J_AEF var || var ||
1 1 105 a7 General Linear Model » 3|
2 2 15 43 Generalized Linear Models| K i y
3 3 M6 49 Mixed Models e
4 4 nr 50 Correlate * 9
5 8 112 81 — =
i E Automatic Linear Modeling...
6 6 121 48 3 —
7 7 121 49 \ y...D ' Linear...
3 3 110 47 | C::: Ewa } [&] Ccurve Estimation...
9 9 110 49 b Partial Least Squares...
| Dimension Reduction 3
10 10 11#_ IET y | , [ Binary Logistic...
" 1 N4, 47 . Multinomial Logistic...
Nonparametric Tests » =
12 124, 115 49 _ I ordinal
13 130 114 50 Forecasting 3 @ . —m
D : robit...
14 14 106 45 SRt b =
15 15 12g" 52 Multiple Response (3 E Maonlinear...
16 16 114 46 Missing Value Analysis... [iid] Weight Estimation...
17 17 106 46 Multiple Imputation 4 [ 2-Stage Least Squares...
18 18 13 46 Complex Samples 2 Optimal Scaling (CATREG)...
19 19 110 48 B2 simulation...
20 20 122 56 Quality Control » 8
21 ROC Curye...
e IBM SPSS Amos..
23

The dependent variable (Target) and the independent variables (Predictors or inputs) will
be chosen in an automatic manner:
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& Automatic Linear Modeli M_
@ [objective: Standard model

FIeids | Buis Optons_ Model Otons

@ Use predefined roles
© Use custom field assignments

Fields:
S - | i
Sort |Nune | v . - Target:
& Patient | & Mean arterial blood pressure

Predictors (Inputs):

,f age (years)
& weight (ka)

& measures

A

b

We just click on Run to get/the following results:

Model Summary

Target Mean arterial blood pressure

Automatic Data Preparation On

Model Selection Method Forward Stepwise

Information Criterion -26.905

The information criterion is used to compare to models.
Models with smaller information criterion values fit better.

Worse Better
99.4%
- r T T T 1
- 0% 25% S0% 75% 100%

..' Accuracy
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The Forward Stepwise was chosen automatically and the R? is given as the “Accuracy”

with the value of 99.4%.

Many features can be study from the Automatic Linear Modeling, we will mention the
most important two of them:

When we click on

—

corresponding Importance as predictors for the Target (dependent variable):

Predictor Importance
Target: Mean arterial blood pressure

, the significant independent variables will be shown with

wiight (hg)

age (years)

body suntace area (sams)

| E—

X3_Transformed

1

X2_Transformed
[4

f
Least Important

When we click on

Coefficients
Target: Mean arterial blood pressure

Model Term Coefficient P‘| Sig. Importance
Intercept -13.667 .0oo
X2_transformed 0.906 .0oo 0.564
X1_transformed 0.702 .0oo 0.420
X3_transformed 4627 .0os 0.015

f I
Least Important Most Important

Display coefficients with sig. values less than...

.0001 0005 .001 .005 .01 .05 .10 20 1.00

Most Important

and.chose “Table”, we get the Coefficients of the model:
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Case 2: Multiple regression analysis when qualitative variables are involved as
independent variable(s)

Multiple regression analysis can also be performed if in the data, qualitative (non-metric)
independent variables are also involved. Qualitative variables, unlike quantitative
(metric) variables, cannot be measured on a numerical scale. Therefore, we need to code
the values of the qualitative variable (called levels) before we perform regression
analysis. These coded variables are called dummy variables, since the humbers assigned
to various levels are selected arbitrarily.

A convenient method of coding the values of a qualitative variable at two levels involves
assigning a value one to one of the levels and a value zero to another. For example, the
dummy variable used to describe smoking status could be coded as follows:

. 1 =smoker
Smoking status X =
0 = non —smoker

The choice of which level is assigned to 1 and which “is, assignedsto O is arbitrary
(nominal scale). The advantage of using a, (0, 1) coding.schemeiis that the B -coefficients

are easily interpreted. This is explained as:

It is a common observation that smoker mothers give birth to babies with low weight as
compared to non-smoker mothers. We can write @model for average weight of babies as

E(Y) =By +BX
The dummy variable used to describe smoking status could be coded as:

X = 1= smoker
0= non —smoker

The model allows us to compareithe average weight of smoker and non-smoker mothers.
Smoker mother (X“=11): E(Y) =By+ By(1) = Bo+ B
Non-smoker mother (X = 0): E(Y)=B,+ B;(0) = By

First note that [, represents the average weight of babies with non-smoker mothers.

When a 0-1 coding convention is used, B, will always represent the mean response

associated with the level of the qualitative variable assigned to value 0 (called the base
level). The difference between the mean weight of the babies between smoker and non-
smoker mothers is B, i.e.

sy —Hsy = (Bo+B1)—Bo = By

Therefore, with the 0-1 coding convention, B, will always represent the difference
between mean responses for level assigned the value 1 and the mean for the base level.

For models that involve the qualitative independent variable at more than two levels,
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additional dummy variables must be created. In general, the number of dummy variables
used to describe a qualitative variable will be one less than the number of levels of the
qualitative variable, i.e.

E(Y) =Bo B X1 4B, X,

X = |1 if level A
Y0 if not

X, = 1 if level B
0 if not

Base level = level C.
Interpretation of B's will be as:
By = mean level of base level

B, = mean level of base A - mean level of base C
B, = mean level of base B - mean level of base C

To interpret B's we write:

Level 1: X, =1if A otherwise 0

E(Y) =B+ [31(1)+[32 (0) =By +B4
Level 2. X, =1if B otherwise0

E(Y):B0+ Bl(o)+B2(1):BO+B2
Level 3: X =0 X;=0

E(Y)=Bo "'51(0)""32 (O):BO

By = mean of the base (level 3)
B, = mean of the base level (1) - mean of the base level 3
B, = mean of the base level (2) - mean of the base level 3

Example 6.5:

Following data based on a random sample of 32 births regarding smoking and non-
smoking mothers. The birth weight of each baby at the time of birth and gestation period
for each mother was recorded. Using multiple-regression, analyze the data and interpret
the results. Data is given on next page.

Solution:

In this problem there are three variables, one dependent (birth weight = Y) and two
independent variables (gestation period = X; and smoking status = X,). Smoking status is
a qualitative variable.



Hanif, Ahmad and Abdelfattah 261

Table 6.6

Birth weight | Gestation | Smoking | Dummy code

Case | (grams) (weeks) i:zttlﬁ]seg S=1|S=0

Y X1, X NS=0[NS=1

2

1 2940 38 S 1 0
2 3130 38 N 0 1
3 2420 36 S 1 0
4 2450 34 N 0 1
5 2760 39 S 1 0
6 2440 35 S 1 0
7 3226 40 N 0 1
8 3301 42 S 1 0
9 2729 37 N 0 1
10 3410 40 N 0 1
11 2715 36 S 1 0
12 3095 39 N 0 1
13 3130 39 S 1 0]
14 3244 39 N 0 1
15 2520 35 N 0 1
16 2928 39 S 1 0
17 3523 41 N 0 1
18 3446 42 S 1 0
19 2920 38 N 0 1
20 2957 39 S 1 0
21 3530 42 N 0 1
22 2580 38 S 1 0
23 3040 37 N 0 1
24 3500 42 S 1 0
25 3200 41 S 1 0
26 3322 39 N 0 1
27 3459 40 N 0 1
28 3346 42 S 1 0
29 2619 35 N 0 1
30 3175 41 S 1 0
31 2740 38 S 1 0
32 2841 36 N 0 1

(Source: Daniel, 1991)

For smoking status, the answer is either smoker or not smoker. These are coded as:

1 smoker
X, = .
0 otherwise
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Length of Gestation

Fig. 6.6: Birth weight length of gestation (weeks)
Fitted regression lines for smoking (A) and non-smoking mothers (e).
SPSS package was used to fit multiple-regression and the output is as:

SPSS output for multiple regression

Model, Summary

Adjusted Std. Error of
Model R R Square R Square | the Estimate
1 9472 .896 .889 115.5302

R? = 0.896, therefore oné,can say that 89.6% variation of birth weight of babies has been
explained by gestation period and smoking status.

Adjusted R* = 0.889, the loss of predictive power by using this model is 0.3%
[0.889 — 0.896]. Since R? = 0.896 and is closer to 1 therefore fitted model is reasonably
reliable for prediction.

ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 3348720 2 | 1674359.837 125.446 .0002
Residual 387069.8 29 13347.235
Total 3735790 31
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Coefficient®

Standardi
zed
Unstandardized Coefficien
Coefficients ts
Model B Std. Error Beta t Sig.
1 (Constant) -2389.573 349.206 -6.843 .000
Gestation (weeks) 143.100 9.128 .963 15.677 .000
Smoking Status 1 -244.544 41.982 -.358 -5.825 .000

The fitted linear model will be:
Expected birth weight = -2389.573 +143.1(gestation)-244.544 (smoking status).
§ = -2389.573 + 143.1 X1 - 244.544 X2 (6.9)
If we wish to consider only the birth to smoking mothers, then put’X, = 1 in the equation
(6.9) then.

§ =-2389.573 + 143.1 X1 - 244.544 (1)
or
§ =-2634.117 + 143.1 X1 (A)

If we wish to consider only the births to non-smoking mothers, then put X2 = 0 in the
model as:

§ =-2389.573 + 143.1 X1 - 244544 (0)
or
§ =-2389.573 + 143.1 X1 (B)

The slope of the equations,(A) and«(B) is the same, but there is difference in intercepts for
smoking and non=smoking mothers. The intercept for the equations associated with non-
smoking mothers “is, larger than smoking mothers. Therefore, we conclude from this
sample that babies born to mothers who do not smoke, weighed, on the average, more
than babies born to mothers who smoke, provided there is no change in gestation period.
On the average, the amount of difference in weight is about 245 grams (2634.1 - 2389.5).

A general rule is stated below to interpret the result for qualitative variables.
General Rule

(i) If the coefficient is negative, the higher code has negative effect.

(ii) If the coefficient is positive, the higher code has positive effect.
Let us reconsider the equation (6.9)

y =-2389.573 + 143.100 X, - 244.544 X,

X, is a qualitative variable and coded as smoker = 1, non-smoker = 0. The coefficient of
X, is negative and the code of smoker is 1, therefore, the mothers who smoke will give
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birth to babies, who on the average will be less in weight than those babies born to non-
smoking mothers.

If the smoker is coded as 0 and non-smoker as 1, then the output for multiple-regression,
using SPSS is as:

SPSS output for multiple regression

Model Summary

Adjusted Std. Error of
Model R R Square R Square | the Estimate
1 9478 .896 .889 115.5302

R? and adjusted R? are the same as in the previous analysis.

ANOVAP
Sum of
Model Sguares df Mean Square = Sig.
1 Regression 3348720 2 | 1674359.837 125.446 .0002
Residual 387069.8 29 13347.235
Total 3735790 31

The result for the ANOVA is the same as the previous analysis.

Coefficients

Standardi
zed
Unstandardized Coefficien
Coefficients ts
Model B Std. Error Beta t Sig.
1 (Constant) -2634.117 358.872 -7.340 .000
Gestationi(weeks) 143.100 9.128 .963 15.677 .000
Smoking Status 2 244.544 41.982 .358 5.825 .000
The regression equation'is as:
y =-2634.117 + 143.100 X, + 244.544 X, (6.10)
For smoking mothers put X, = 0 as:
§ =-2634.117 + 143.100 X1 + 244.544 (0)
y =-2634.117 + 143.100 X, ©

For non-smoking mothers, put X, = 1 as:

§ =-2634.117 + 143.100 X, + 244.544 (1)
§ =-2389.57 + 143.100 X, (D)
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The slopes of equations (C) and (D) are the same but there is difference in intercepts. The
intercept for non-smoking mothers is greater than smoking mothers, therefore, non-
smoking mothers, will give birth to a child on the average more than smoking mothers
and again the difference in weight is 245 grams.

We can apply the general rule, mentioned before, to fitted regression equation (6.9). The
code for non-smoker is 1, the coefficient of X, is positive, therefore, higher code has
positive effect. Therefore, non-smoker mothers give birth to babies, who on the average
are more in weight than smoking mothers. This rule can be applied to any qualitative
variable when they are coded.

Example S6-6
The data will be in columns were X2 has a Nominal measurement level.
| Name H Type H Width H Decimals H Label || Values || Missing H Columns H Align H Measure || Role
Case Numeric 8 0 Mone None 4 y = Right & Scale © None
Y Numeric 8 0 Birth weight (grams) None None 3 » = R\ght & Scale @) Target
X1 Numeric 8 0 Gestation (weeks) MNone None 2 = Right & Scale N Input
o~ -
X2 Numeric 8 1] Smoking status of mothers {0, Non Sm... None 2 B E Right & Nominal v Input

The values of X2 are as follow:

F2 Value Labels

Value Labels
Eabel| |
0 ="Non Smoking®
1="5moking”
y 4
o
|
li— =

We obtain the multiple regression coefficients as follows:

i

Analyze-> regression - Linear ...

File Edit View Data Transform IAnaTyz_e IDiredMarketing Graphs

LUtilities  Add-ons  Window Help

SHE ke~

Reports

YLD

Descriptive Statistics 3
4 Tables 3
Case | Y |X1|X2 Compare Means 2 var var var
1 12940 38 1 General Linear Model »
2 2 3130 38 0 Generalized Linear Models »
3 32420 36 1 Mixed Models »
4 4 2450 34 0 Correlate N
: : iz:g j: 1 ?eglression : [ Automatic Linear Modeling. .
AR RETRTRU R 1 =
g 8 3301 42 1 Chaseiy = , EQUF\TEESIIH’IBIIOH..
9 9 2729 37 0 . F'artlal Least Squares...
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Move the variable Independent variables “X1, X2” to the Independent(s):

Move the variable Dependent variable “Y” to the Dependent:

@ Linear Regression

Dependent:
¢ Case - [ Birth weight (grams) [Y]
& Gestation (weeks) [X..| _gocc 1 o1
&5 Smoking status of m...
Independent(s):

& Gestation (weeks) [X1]
&5 Smaking status of maothers [

Selection Variable:

‘EBSE Labels: |

Y
)
WLS Weight
\ |
e
We click on , to get the following output (as before):
Coefficients®
Standardized
Unstandardized Coefficients Coeflicients
Model B Std. Error Beta t Sig.
1 (Constant) -2388.573 349.206 -6.843 .000
Gestation (weeks) 143.100 9128 963 15677 .aon
Smoking status of
mathers -244 544 41.982 -.358 -5825 .0on
a. DependentVariable; Birth weight (grams)
We obtain the figure threugh the following steps:
Graphs 2 Chart Builder ...
File Edit View Data Transform Analyze DirectMarketing JGraphs JUtilities Add-ons Window H
_— il Chart Builder...

S H&E e [ b =H

Legacy Dialogs

Graphboard Template Chooser... "

=
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Variables: Chart preview uses example data
é’case

f Birth weight (grams)...
f Gestation (weeks)[...
&> Smoking status of ..

Drag a Gallery chart here to use it as your
starting point

OR

Click on the Basic Elements tab to build a chart
element by element

No categories {scak
warkabie)

Choose from:
Favorites
Bar

Line

Area
Pie/Polar

istogram
High-Low
Boxplot

Dual Axes

f(hse
f Birth weight (grams

Choose from:

Element
Favorites
Bar o ¢ d:ﬁ u H
Line P o p
Area
Pie/Polar
Scatter/Dot o i
Histogram o a g
High-Low
Boxplot
Dual Axes
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We click on E to get the following figure:

Regression and Correlation

Smokin
status
mathers
" Non Smoiking
3500+ g (O Smoking
b o
o
o
E 3250 o o
=2 a o
E [e]
= o
£ 300+
£ 8 8
m [}
2750 - & o o
o
5]
2500 o
o o o
1 1 U 1
34 3 k] 42
Gestation
Double click the
At
i ) B
[s)
'E 3250 o
e
s o s
=
[} o
; 000 (s
F
E
[
27E0-
2500

T T T
3 35 i)

Gestation (weeks)
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Case 3:  Multiple regressions when qualitative variable is of three levels

We, now consider the situations where the independent qualitative variable is of three
levels.

Example 6.6:

A team of mental health researcher wishes to compare three methods A, B, C of treating
severe depression. They took a sample of 36 patients and randomly assign the method of
treatment.

Y = measure of effectiveness
X = age of the patients
X, = method of treatment

Use the method of regression to study (1) the relationship between age and treatment
effectiveness (ii). The relationship between age and treatment effectiveness as well as
interaction (if any) between age and treatment the data are givenin Table (6.7)

Solution:
There are two variables.

(i) Age = X; (quantitative)
(if) Method of treatment = X, (qualitative)

There are three levels A, B, C, therefore create two dummy.variables say X, and X, as:
(iiif) 1fX,=Athen X, =1 and X,=0
(iv) IfX=BthenX,=1and X3=0
(v) If X3=Cthen X3=0and X3=0

We want to consider the relationship between age and treatment effectiveness as well as
an interaction (if any) between age and treatment.

Table 6.7

Y X1 X2 y X1 X2
56 21 A 65 43 A
41 23 B 55 45 B
40 30 B 57 48 B
28 19 C 59 47 C
55 28 A 64 48 A
25 23 C 61 53 A
46 33 B 62 58 B
71 67 C 36 29 C
48 42 B 69 53 A
63 33 A 47 29 B
52 33 A 73 58 A
62 56 C 64 66 B
50 45 C 60 67 B
45 43 B 62 63 A
58 38 A 71 59 C
46 37 C 62 51 C
58 43 B 70 67 A
34 27 C 71 63 C

Source (Daniel 1985)
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If we use dummy variable the data will take the following form.
Table 6.8

Measure of Age | Method of | Dummy Measure of Age| Method of | Dummy
> treatment | variables > treatment | variables
effectiveness X1 X2 X3 | X4 effectiveness X1 X X3 | X4
56 21 A 1 0 65 43 A 1 0
41 23 B 0 1 55 45 B 0 1
40 30 B 0 1 57 48 B 0 1
28 19 C 0 0 59 47 C 0 0
55 28 A 1 0 64 48 A 1 0
25 23 C 0 0 61 53 A 1 0
46 33 B 0 1 62 58 B 0 1
71 67 C 0 0 36 29 C 0 0
48 42 B 0 1 69 53 A 1 0
63 33 A 1 0 47 29 B 0 1
52 33 A 1 0 73 58 A 1 0
62 56 C 0 0 64 66 B 0 1
50 45 C 0 0 60 67 B 0 1
45 43 B 0 1 62 63 A 1 0
58 38 A 1 0 71 59 C 0 0
46 37 C 0 0 62 51 C 0 0
58 43 B 0 1 70 67 A 1 0
34 27 C 0 0 71 63 C 0 0

The SPSS package is used and the output.is as:

SPSS output formultiple regression
Madel Summary

Adjusted Std. Error of
Model R R Square R Square | the Estimate
1 .9562 .914 .900 3.92

a. Predictors: (Constant), X1X4, Age, X3, X4, X1X3

R2 = 0.914, therefore ‘about 91% of the variation of dependent variable, measure of
effectiveness, has been explained by the independent variables.

Adjusted R? = 0.900 therefore one can say that the loss of prediction power by using this
model is 0.14%.

ANOVAP
Sum of
Model Sguares df Mean Sqguare F Sig.
1 Regression 4932.852 5 986.570 64.043 .000?
Residual 462.148 30 15.405
Total 5395.000 35

a. Predictors: (Constant), X1X4, Age, X3, X4, X1X3
b. Dependent Variable: Measure of Effectiveness
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Coefficient$

Standardi
zed
Unstandardized Coefficien
Coefficients ts
Model B Std. Error Beta t Sig.
1 (Constant) 6.211 3.350 1.854 .074
Age 1.033 .072 1.218 14.288 .000
X3 41.304 5.085 1.591 8.124 .000
x4 22.707 5.091 .874 4.460 .000
X1X3 -.703 .109 -1.298 -6.451 .000
X1X4 -.510 .110 -.922 -4.617 .000

a. Dependent Variable: Measure of Eff ectiveness

The fitted regression line will be
y =6.211 + 1.033 age + 41.304X, + 22.707X, - 0.703X X, - 0.510X X,

X X, and X X, are the interactions terms between guantitative and<qualitative variables.
X, X, will be zero as when X, =1, X, =0 and X, = 1,2X,=,0.

Put X, =1, X, =0, we get
y =47515+0.33 X,

If we put X, =0and X, =1, then
§ =28.918 + 0.5233.X,

If we put X, =0and X, =0, then
§ =6.211 + 1.033 X,

In order to draw the conclusion, one can look into slopes and the constants, i.e.

Table 6.9
Intercept (constant) Slope Tan1lo
47.52 0.327 18.11°
28.91 0.523 27.61°
6.21 1.020 45.57°

We draw graph with the given angles and intercepts as given in Fig. 6.7:

Slope of A and B are not much different but there is much difference in the intercept.
Looking at the graph, we can say:

(i) Treatment A is better than treatment B up till the age of 65 but this difference is
very small after age 65.

(ii) Treatment C is less effective at younger age but it is as effective as treatment A
and treatment B at higher age.
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Now look at intercepts: Treatment A has higher intercept value than B and C. C has the
minimum intercept. We can say that on the average treatment A is more effective than B,
C is less effective at younger ages.

Now we look at the slopes: Treatment C has slope 1.033 which is higher than the other
two, so one can say that at later stage this treatment is more effective than B and C. The
difference in slopes of B and C are not much, therefore, at later stage both have almost
equal effect.

a0
i
z
I
T
+
w
T
E
8
=
o ‘B, C
‘e B
20
15 25 35 45 55 G5 75t A
Age
Fig. 6.7: Treatment effect

Example S6-7
The data will be in columns were X2'has a Nominal measurement level.

J Name Type Width Dec\ma\s—u—i Label Values Missing Columns Align Measure Role
Case Numeric 8 0 | None None 4 &> Nominal & None
Ad Numeric 8 40} Measure of effectiveness None Mone 3 & Scale ©) Target
X1 Numeric 8 0 Age None Mone 2 & Scale S Input
X2 Numeric 1 0 —7 Method of treatment {1, AL None 3 &5 Nominal “w Input

The values of X2 are as follow:

(2 Value Labets =)
Value Labels
gane|| \
1="A"
=g
3=C
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We obtain the figure through the following steps:
Graphs 2 Chart Builder ...

File

Edit View Data Transform Analyze Direct Marketing

SHE Mo Bk
|

273

T —

& Method of treatment ...

Drag 3 Gallery chart here to use it as your
starting point

OR

Glick an the Basit Elernents tab ta build a chart
element by element

i Category 1
[ Category 2

@ Method of treatment,,,

Variables Chart preview uses example data Variables: Chart preview uses example data
@) Case &, Case

| | & Weasure of effective. & Measure of effective:

| | Aoepen 1 Age IX11

Chaose from

(Gaton | sasicEtements | caupseomi)|

=l

Favorites
Bar

Line
Area
Pie/Polar

High-Low
Boxplat
Dual Axes

1

7

o¢

p §<P

°||BE

&

%o

Tt

We click on E to gett

14

Method of
Trsatmaent
a0= .
L)
o
.
o o
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"
“ .
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g 50 SafT 0,

] s}
k=]
o . * . -
§ ‘ :
&
‘6 50~ [=]
g . *
2 v
]
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30
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Double click the Fig to add change colors

At Chart Editor add lines through E

Method of
treatment
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* .
L 4 e
L 4 ~~A
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70 ° ¢ ~c
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)
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2 Lt e I A A R Linear = 0,565
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W *
S so-fy=47.52+0.37% o
e
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Example 6.7:

Data for the risk factors given in the Appendix associated with low infant birth weight are
given at the end of Chapter. Data.Wwere collected at Baystate Medical Center, Spring
Field, Massachusetts, during 1986 for 489 females. The code sheet for these data is
provided as:

Variables and Code Abbreviation
Age of mother in years AGE
Weight of mothers at'the last menstrual period (pounds) LWT
Smoking status (1'=yes; 0°=no) SMOKE
Race (1 =‘whitep2,= black, 3 = others) RACE
History of premature labor (0 = none, 1 = one) PTL
History of hypertension (1 = yes, 0 = no) HT
Pressure of uterine irritability (1 = yes, 0 = no) Ul
Number of physician visits (0 = none, 1 = one, 2 = two) FTV
Birth weight in grams BWT

Use the multiple-regression to analysis the data and interpret the result. Data are given in
the Appendix at the end of this chapter.

Solution:

In this example, there are 9 variables. Birth weight in grams (BWT) is dependent variable
whereas all others are independent variables. Age and weight of mother are quantitative
variables whereas all others are categorical variables. Race and number of visits of
physicians have more than two categories, therefore, dummy variables will be created for
these two variables, such as, two dummy variables for race and three dummy variables
for number of visits of physicians. For the race two dummy variables may be created as:
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Race 1 = {1
0

1
Race 2 = {
0

if race = white
otherwise
if race = black
otherwise

Race = others If race 1 =0and race 2 =0

275

Similarly dummy variables may be created for FTV. Because of complex calculation,
SPSS package has been used and output is given as:

SPSS output for multiple regression

Model Summary

Change Statistics

Adjusted Std. Error of | R'Square Sig. F Durbin-
Model R R Square | R Sguare [ the Estimate Change Change | Watson
5 492 .242 .222 643.26688 .026 .013 .556
ANOVA
Sum of
Model Squares df Mean Square F Sig.
Regression 24203675.763 5 | 4840735.153 | 11.698 .000
Residual 75723987.549 183 413792.282
Total 99927663.312 188
Coefficients
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
(Constant) 3041.608 75.924 40.061 .000
Pressure of uterine
initability -539.739 133.708 -.264 | -4.037 .000
History of hypertension -656.615 201.852 -211 | -3.253 .001
History of premature labor | -250.013 114.848 -.160 -2.177 .031
RACE1 383.822 98.436 .264 3.899 .000
Smoking Status -283.067 112.951 -.190 | -2.506 .013
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Excluded Variables

Regression and Correlation

Collinearity
Partial Statistics
Model Beta In t Sig. Correlation Tolerance
Age of mother in years .005 .068 .946 .005 .939
Weight of mothers at the
last menstrual period 121 1.861 .064 137 .967
(pounds)
Number of Phy sician
visits -.013 -.198 .843 -.015 .973
RACE2 -.009 -.130 .896 -.010 .812

R? = 0.242, this means that about 24% variation of dependent variable (birth weight) has
been explained by the independent variables.

If we look at the output, hypertension (HT), premature birth (PTL), racel, smoking and
uterine irritability (Ul) appeared as significant variables, whereas_ age, number of
physicians' visits (FTV), weight at the last menstrual period (LWT) and race2, appeared
as non-significant variables.

The fitted regression model is

§ =3596.619 — 530.610 HT - 276.611 PTlu+ 383.822 race 1
— 283.067 smoke - 539.739 Ul

The interpretation of these coefficients is as:

(i) History of hypertension(HT)

Since higher code is assigned for hypertensive cases and the coefficient for this
variable is negative, therefore, all hypertensive cases will have a low weight at the
time of birth on the“average, provided all other variables are held constant.

(ii) History of-premature (PTL)

Since higher code is assigned to premature cases and the coefficient is negative,
therefore, all casesiwho have premature labour will have babies which will have less
weight on the average; provided all other variables are held constant.

(iii) Race (1)

The coefficient of race (1) is positive. This indicates that white race will have the
babies which on the average are more in weight than black and others provided all
other variables are held constant. Note that other race is our reference point.

(iv) Smoking (smoke)

Since higher code is for non-smoker and the coefficient is negative, therefore,
smoking mothers will give birth with low weight on the average, provided all other
variables are held constant.

(v) Presence of urine irritability (Ul)

Since higher code is for the presence of irritability and the coefficient is negative,
therefore, all those cases who have urine irritability will have the babies with low
weight on the average, provided all other variables are held constant.
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6.6 Partial Correlation

It is a linear relationship between two variables when the effect of other variables has
been removed (or kept constant). Here we stick to three variables only and it is explained
by the following examples.

Example 6.8:
The following data obtained on 12 males between the ages of 12 and 18 years. Calculate
all partial correlation coefficients.

Table 6.10
Height Radius length Femur length
()] ) 3)
149.00 21.00 42.50
152.00 21.79 43.70
155.70 22.40 44475
159.00 23.00 46.00
163.30 23.70 47.00
166.00 24.30 47.90
169.00 24,92 48.95
172.00 25.50 49.90
174.50 25.80 50.30
176.10 26.01 50.90
176.50 26.15 50.85
179.00 26.30 51.10

Solution:
Using SPSS package, partial correlation coefficients calculated and the SPSS output is as:

Variable Mean s.d. cases
Height 166.0083 10.2065 12
Radius,length 24.2392 1.8396 12
Femur length 47.8208 3.0132 12
My31 = 0.9011, M3~ -0.0856 M,3= 0.5080

r»3 = partial correlation between 1 and 2 while 3 is kept as constant.
Example S6-8

We obtain r23.1 = partial correlation between X2 (Radius length) and X3 (Femur length)
while X1 (Height) is kept as constant, through the following steps:

Analyze - Correlate> Partial ...
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File Edit View Data Transform } Analyze irect Marketing  Graphs  Utilities Add-ons  \
Reports 3
=1-1= l e~ |
Diescriptive Statistics 3
Tables 3
I X1 ” X2 || X3 || Compare Means 3 || var " var
1 149.000 21.00 42.50 General Linear Model 3
2 152.00 21.73 4370 Generalized Linear Models
3 155700 2240 4475 Mixed Models >
I|159_[]U 23.00) 46.00 Correlate 3 Elivariate...
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We click on @ to get the following output:

Correlations @l

Contral Variahles Radius length ur length
Height Radius length  Correlation 1.000 901
Significance (2-tailed) . .ooo
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Significance (2-tailed) .ooan .
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6.7 Intra-Class Correlation Coefficient

In the previous section, we have discussed simple correlation coefficient (Pearson's
correlation coefficient). Pearson correlation is based on regression analysis and is a measure
of the extent to which the relationship between two variables can be described by a
regression line. One of the properties of the correlation is that it provides a relative, rather
than absolute, measure of agreement between pairs of scores for the same person. If the
differences between the scores for the same persons are small relative to the differences
between scores of different persons, then the test will tend to show a high reliability
(Chapter 10). Conversely, if the differences between scores for the same persons are large
relative to the scores of different persons, then the scores will show low reliability.
Moreover, the perfect fit is obtained resulting in a Pearson correlation coefficient of 1.0
despite the fact that the intercept is non-zero and the slope is not equal to 1.

Let us consider the use of correlation coefficient to quantify measurement error.
Measurement error is the variation between measurements of the same quantity on the
same individual. A common design for the investigation ofdmeasurement error is to take
pairs of measurements on a group of subjects. Followingdata relate to pairs of
measurements of FEV (liters) a few weeks apart from 20 Scottish children taken from a
large study

Table 6.11 (Measurements)

Subject No. 1st 2nd {wSubjectNo. 1st 2nd
1 1.19 1.37 11 154 | 1.57
2 1.33 1.32 12 1.59 1.60
3 1.35 |#1.40 13 161 | 1.53
4 1.36 1.25 14 1.61 1.61
5 1.38" ), 1429 15 162 | 1.68
6 138 | 1.37 16 1.78 | 1.76
7 1.38 1:40 17 1.80 1.82
8 1.40 |11.38 18 1.85 | 1.89
9 1.43 1.38 19 194 | 2.10
10 1434 151 20 210 | 2.20

One way for the investigation of measurement error is to calculate the correlation
coefficient between pairs of measurement. We know that in general, the correlation
coefficient between repeated measurements depends on the variability between subjects.
Samples containing subjects who differ greatly will produce larger correlation
coefficients than will samples containing similar subjects. The correlation coefficient
between the pairs of the above data is 0.96. Suppose we split this group in which we have
measured forced expiatory volume in one second (FEV1) into two sub samples, the first

10 subjects and the second 10 subjects. We see that the correlation coefficient for the first
sub sample is r = 0.26 and for the second is r = 0.97. These values are not equal to full
sample. Moreover if we change the order of even number of the sample then r = 0.94
which is not equal to 0.96. The Pearson correlation coefficient depends on the way the
sample is chosen. If we select subjects to give a wide range of the measurements, the
natural approach when investigating measurement error, this will inflate the correlation
coefficient. The correlation coefficient between repeated measurements is often called the
reliability of the measurement method. It is widely used in the validation of
psychological measures such as scales of anxiety and depression, where it is known as
the test-retest method of reliability (see Chapter 10).
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Another problem with the use of correlation coefficient between the first and second
measurements is that there is no reason to suppose that their order is important. If the
order were important the measurement would not be repeated observations of the same
thing. We have seen that reversing the order of some subjects the correlation coefficient
is changed.

To avoid this problem we study intra-class correlation. Intra-class correlation is the
proportion of the total variance of an observation that is associated with the class to
which it belongs.

As already stated that perfect fit is obtained resulting in a Pearson correlation coefficient
of 1.0 despite the fact that the intercept is non-zero and the slope is not equal to one, by
contrast the intra-class correlation coefficient will yield a value 1.0 only if the
observations on each subject are identical which indicate slope of 1 and intercept is zero.
This suggests that Pearson correlation coefficient is an inappropriate and a liberal
measure of reliability. The intra-class correlation coefficient estimates the average
correlation among all possible orderings of pairs. It also.extends»easily to the case of
more than two observations per subject, whereas it estimates the average correlation
between all possible pairs of observations. The best, way to,calculate the intra-class
correlation coefficient is via analysis of variance one way classification. In the above data
there are 20 subjects and each subject has 2 observations."We have used SPSS package to
perform ANOVA-one way. The results are given as:

Analysis of variance (one"'way)
Sum of Mean sum F
squares' | of squares | ratio

Between subjects o2|.19 | 2.3638 0.1244 43.65 | 0.0000
Within subjects o, 204 0.0570 0.0029 - -
Total o2 39/| 2.4208 - - -

Sources of Variables df p-value

The intra-class correlation may be calculated as:
ms. =hs?

2
(m - 1) St

(6.11)

where m is number of observations per subject. Using (6.11)

_2(2.3638) — 2.4208

R
(2 —1) 2.4208

=0.953

The intra-class correlation coefficient is 0.953 with p = 0.000.

In practice, there will be not much difference between Pearson correlation coefficient and
intra-class correlation coefficient for true measurements. If, however, there is a
systematic change from the first measurement to the second, as might be caused by a
learning effect, intra-class correlation coefficient will be less than Pearson correlation
coefficient. If there were such an effect the measurements would not be made under the
same conditions and so we would not measure reliability.
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The correlation coefficient can be used to compare measurements of different quantities,
such as different scales for measuring anxiety. We could make repeated measurements of
all the quantities on the same subjects and calculate intra-class correlation coefficients.

Example 6.9:

The data in Table 6.14 relate to the repeated peak expiatory flow rate (PEFR)
measurements for 20 school children. Use the method of intra-class correlation
coefficient to quantify the measurement error.

Table 6.12

Child PEFR (1/MIN) Child PEFR (1/MIN)
No. 1st 2nd 3rd 4th No. 1st 2nd 3rd 4th
1 190 220 200 200 11 300 300 310 300
2 220 200 240 230 12 270 250 330 370
3 260 260 240 280 13 320 330 330 330
4 210 300 280 265 14 335 320 335 375
5 270 265 280 270 15 350 320 340 365
6 280 280 270 275 16 360 320 350 345
7 260 280 280 300 17 330 340 380 390
8 275 275 275 305 18 334 385 360 370
9 280 290 300 290 19 400 420 425 420
10 320 290 300 290 20 430 460 480 470

Solution:

There are 20 subjects and each subject has'4 items.“We have performed analysis of
variance one way classification to<calculate ‘intra-class correlation coefficient. SPSS
package was used and the result for ANOVA was as follows:

SPSS out put
Analysis of variance (one way)

Sum of Mean sum F
Source df . p-value
squares of squares ratio

Between children Gtz) 1971285318.4375 | 15016.7599 | 32.608 | 0.0000
Within children (55\, 60 | 27631.2500 | 460.5208 - -
Total G—%— 79 | 312949.6875 - - -

Using (6.12), the intra-class correlation coefficient is

n - 4(285318.4375) — 312949.6875

. =0.882
(4 — 1) 312949.6875

Therefore, the measurement error is (1 — R;) 100 = (1 — 0.882) 100 = 11.8.
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APPENDIX

c
—

| age | Lwt [race | pti | smoke | ht | | ftv [ bwt |

19 182 2 0 0 0 1 0 2523
33 155 3 0 0 0 0 3 2551
20 105 1 0 1 0 0 1 2557
21 108 1 0 1 0 1 2 2594
18 107 1 0 1 0 1 0 2600
21 124 3 0 0 0 0 0 2622
22 118 1 0 0 0 0 1 2637
17 103 3 0 0 0 0 1 2637
29 123 1 1 1 0 0 1 2663
26 113 1 1 1 0 0 0 2665
19 95 3 0 0 0 0 0 2722
19 150 3 0 0 0 0 1 2733
22 95 3 0 0 1 0 0 2750
30 107 3 0 0 0 1 2 2750
18 100 1 1 1 0 0 0 2769
18 100 1 1 1 0 0 0 2769
15 98 2 0 0 0 0 0 2776
25 118 1 1 1 0 0 3 2782
20 120 3 0 0 0 1 0 2807
28 120 1 1 1 0 0 1 2821
32 121 3 0 0 0 0 2 2835
31 100 1 0 0 0 1 3 2835
36 202 1 0 0 0 0 1 2836
28 120 3 0 0 0 0 0 2863
25 120 3 0 0 0 1 2 2877
28 167 1 0 0 0 0 0 2877
17 122 1 1 1 0 0 0 2906
29 150 1 0 0 0 0 2 2920
26 168 2 1 1 0 0 0 2920
17 113 2 0 0 0 0 1 2920
17 113 2 0 0 0 0 1 2920
24 90 1 1 1 0 0 1 2948
35 121 2 1 1 0 0 1 2948
25 155 1 0 0 0 0 1 2977
25 125 2 0 0 0 0 0 2977
29 140 1 0 1 0 0 2 2977
19 138 1 0 1 0 0 2 2977
27 124 1 0 1 0 0 0 2992
31 215 1 0 1 0 0 2 3005
33 109 1 0 1 0 0 1 3033
21 185 2 0 1 0 0 2 3042
19 189 1 0 0 0 0 2 3062
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| age | Lwt | race | pti | smoke [ ht | ut [ ftv [ bwt ]
23 130 2 0 0 0 0 1 3062
21 160 1 0 0 0 0 0 3062
18 90 1 0 1 0 1 0 3076
18 90 1 0 1 0 1 0 3076
32 132 1 0 0 0 0 3 3080
19 132 3 0 0 0 0 0 3090
24 115 1 0 0 0 0 2 3090
22 85 3 0 1 0 0 0 3090
22 120 1 0 0 1 0 1 3100
23 128 3 0 0 0 0 0 3104
22 130 1 0 1 0 0 0 3132
30 95 1 0 1 0 0 2 3147
19 115 3 0 0 0 0 0 3175
16 110 3 0 0 0 0 0 3175
21 110 3 0 1 0 1 0 3203
30 153 3 0 0 0 0 0 3203
20 103 3 0 0 0 0 0 3203
17 119 3 0 0 0 0 0 3225
17 119 3 0 0 0 0 0 3225
23 119 3 0 0 0 0 2 3232
24 110 3 0 0 0 0 0 3232
28 140 1 0 0 0 0 0 3234
26 133 3 2 1 0 0 0 3260
20 169 3 1 0 0 1 1 3274
24 115 3 0 0 0 0 2 3274
28 250 3 0 1 0 0 3 3303
20 141 1 2 0 0 1 1 3317
22 158 2 1 0 0 0 2 3317
22 112 1 2 1 0 0 0 3317
31 150 3 0 1 0 0 2 3321
23 115 3 0 1 0 0 1 3331
16 112 2 0 0 0 0 0 3374
16 135 1 0 1 0 0 0 3374
18 229 2 0 0 0 0 0 3402
25 140 1 0 0 0 0 1 3416
32 134 1 1 1 0 0 3 3430
20 121 2 0 1 0 0 0 3444
23 190 1 0 0 0 0 0 3459
22 131 1 0 0 0 0 1 3460
32 170 1 0 0 0 0 0 3473
30 110 3 0 0 0 0 0 3475
20 127 3 0 0 0 0 0 3487
23 123 3 0 0 0 0 0 3544
17 120 3 0 1 0 0 0 3572
19 105 3 0 0 0 0 0 3572

283



284 Regression and Correlation

| ftv | bwt |

c
—

| age | Lwt | race | pti | smoke | ht |

23 130 1 0 0 0 0 0 3586
36 175 1 0 0 0 0 0 3600
22 125 1 0 0 0 0 1 3614
24 133 1 0 0 0 0 0 3614
21 134 3 0 0 1 0 2 3629
19 235 3 0 1 0 0 0 3629
25 95 1 1 1 0 1 0 3637
16 135 1 0 1 0 0 0 3643
29 135 1 0 0 0 0 1 3651
29 154 1 0 0 0 0 1 3651
19 147 1 0 1 0 0 0 3651
19 147 1 0 1 0 0 0 3651
30 137 1 0 0 0 0 1 3699
24 110 1 0 0 0 0 1 3728
19 184 1 0 1 0 0 0 3756
24 110 3 1 0 0 0 0 3770
23 110 1 0 0 1 0 1 3776
20 120 3 0 0 0 0 0 3770
25 241 2 0 0 0 0 0 3790
30 112 1 0 0 0 0 1 3799
22 169 1 0 0 0 0 0 3827
18 120 1 0 1 0 0 2 3856
16 170 2 0 0 0 0 3 3860
32 186 1 0 0 0 0 2 3860
18 120 3 0 0 0 0 1 3884
29 130 1 0 1 0 0 2 3884
33 117 1 0 0 0 1 1 3912
20 170 1 0 1 0 0 0 3940
28 134 3 0 0 0 0 1 3941
14 135 1 0 0 0 0 0 3941
28 130 3 0 0 0 0 0 3969
25 120 1 0 0 0 0 2 3983
16 95 3 0 0 0 0 1 3997
20 158 1 0 0 0 0 1 3997
26 160 3 0 0 0 0 0 4054
21 115 1 0 0 0 0 1 4054
22 129 1 0 0 0 0 0 4111
25 130 1 0 0 0 0 2 4153
31 120 1 0 0 0 0 2 4167
35 170 1 1 0 0 0 1 4174
19 120 1 0 1 0 0 0 4238
24 116 1 0 0 0 0 1 4593
45 123 1 0 0 0 0 1 4990
28 120 3 1 1 0 1 0 709
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| age | Lwt | race | pti | smoke [ ht | ut [ ftv [ bwt ]
29 130 1 0 0 0 1 2 1021
34 187 2 0 1 1 0 0 1135
25 105 3 1 0 1 0 0 1330
25 85 3 0 0 0 1 0 1474
27 150 3 0 0 0 0 0 1588
23 97 3 0 0 0 1 1 1588
24 128 2 1 0 0 0 1 1701
24 132 3 0 0 1 0 0 1729
21 165 1 0 1 1 0 1 1790
32 105 1 0 1 0 0 0 1818
19 91 1 1 1 0 1 0 1885
25 115 3 0 0 0 0 0 1893
16 130 3 0 0 0 0 1 1899
25 92 1 0 1 0 0 0 1928
20 150 1 1 1 0 0 2 1928
21 200 2 0 0 0 1 2 1928
24 155 1 1 1 0 0 0 1936
21 103 3 0 0 0 0 0 1970
20 125 3 0 0 0 1 0 2055
25 89 3 0 0 0 0 1 2055
19 102 1 0 0 0 0 2 2082
19 112 1 1 1 0 1 0 2084
26 117 1 1 1 0 0 0 2084
24 138 1 0 0 0 0 0 2100
17 130 3 1 1 0 1 0 2125
20 120 2 1 1 0 0 3 2126
22 130 1 1 1 0 1 1 2187
27 130 2 0 0 0 1 0 2187
20 80 3 1 1 0 1 0 2211
17 110 1 1 1 0 0 0 2225
25 105 3 0 0 0 0 1 2240
20 109 3 0 0 0 0 0 2240
18 148 3 0 0 0 0 0 2282
18 110 2 1 1 0 0 0 2296
20 121 1 1 1 0 1 0 2296
21 100 3 0 0 0 0 3 2301
26 96 3 0 0 0 0 0 2325
31 102 1 1 1 0 0 1 2353
15 110 1 0 0 0 0 0 2353
23 187 2 1 1 0 0 1 2367
20 122 2 1 1 0 0 0 2381
24 105 2 1 1 0 0 0 2381
15 115 3 0 0 0 1 0 2381
23 120 3 0 0 0 0 0 2395
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| age | Lwt | race | pti | smoke [ ht | ut [ ftv [ bwt ]
30 142 1 1 1 0 0 0 2410
22 130 1 1 1 0 0 1 2410
17 120 1 1 1 0 0 3 2414
23 110 1 1 1 0 0 0 2424
17 120 2 0 0 0 0 2 2438
26 154 3 0 0 1 0 1 2442
20 105 3 0 0 0 0 3 2450
26 190 1 0 1 0 0 0 2466
14 101 3 1 1 0 0 0 2466
28 95 1 0 1 0 0 2 2466
14 100 3 0 0 0 0 2 2495
23 94 3 0 1 0 0 0 2495
17 142 2 0 0 1 0 0 2495
21 130 1 0 1 1 0 3 2495



Chapter 7

Analysis of Categorical Data

7.1 Introduction

The chi-square test is often used in experimental work where the data consist of
frequencies or counts. For example, the number of boys and number of girls in a class
who have had their tonsils out is distinct from quantitative data obtained from the
measurement of continuous variable such as height, weight, temperature and so on.

The most common use of the test is probably with categorical data such as level of
education, marital status, etc. The test can also be used in experiments designed to assess
the effect of inoculation in immunizing people against«disease’and in clinical trials
involving drugs.

The test is frequently employed to determine if therg is an association between variables.
When the word association is used in the statistical sense;sa comparison is implied. For
example, if we say that there is an association between inoculation and immunization
against some disease, we mean that proportionyof inoculated people who contracted
disease is different from the proportion of not‘inoculated-people who do so. Of course the
two proportions might be expected to differ in some measure due to chance factor of
sampling, and for other reasons which might:be ‘attributed to random causes, but the test
enables us to calculate the probability that a difference as great as or greater than that
obtained could have arisen in‘this'way.

Before we introduce the test, it would be better to illustrate the word classification. It is
possible to classify a populatien in many different ways. For instance, population may be
classified as males and females, ‘married and unmarried, smokers and nonsmokers, etc.
These classifications™are,known as dichotomous classifications. If the population is
divided into more than two groups, like poor, good, very good, and high, medium, low
education, etc., then“these classifications are known as multiple (polychotomous)
classifications. If the classification is dichotomous or multiple, it must be exhaustive and
mutually exclusive. An example of dichotomous classification is given in Table 7.1.

Table 7.1
Number of patients with hypertension and no hypertension
Stroke history

Present | not-present
(+) )

Hyper | Present (+) alb _
tension 15 185 a+b =200
History | Not-present (-) c|d _

5 795 c+d =800
a+c =20 | b+d =980 |a+b+c+d = 1000

287
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This table is known as 2x2 contingency table or two-dimensional table or fourfold
contingency table. The entries in the cells of the Table (7.1) may be frequencies and may
be transformed into proportions or percentages. The frequencies of four cells may be
represented by a, b, ¢, d. An example of multiple classification, which is called 2x4
contingency table is given in Table 7.2:

Table 7.2
Distribution of patients by Diet and cancer tumor
Diet
high fat | High fat | low fat | low fat Total
no fiber | Fiber |no fiber | fiber
Cancer Yes 27 20 19 14 80
Tumor No 3 10 11 16 40
Total 30 30 30 30 120

Note that contingency table is always read as row._(r) by column (c) i.e. rxc. It is
important to note that, in whatever form the entries‘are presented;«the data are originally
frequencies or counts. Of course, for the application“ofithe ehi-square test, continuous
data can often be put into discrete form. For example, weight is a continuous variable, but
if population is classified into different weight groups then'different weight groups can be
treated as if they were discrete groups. Below.are given some examples where the chi-
square test is applicable to test the association.

(i) Cigarette smoking and premature death from cardiovascular disease.

(if)  Smoking and lung cancer

(iif) Smoking and myocardial infarction.

(iv) Post laparotomy-woundsinfection in patients receiving antibiotic versus placebo.

(v) Two chemotherapy regiments for advanced acute lymphoblastic leukemia in
children.

(vi) Nutritional status and academic performance.
(vii) Incidence of miscarriage among woman exposed to agricultural pesticides.

(viii) Fat diet and cancer tumor.

7.2 Assumptions

(i) The sample must be random so that the observations are independently
distributed.

(if) Each individual or unit in the sample has the same probability being from a
particular cell and the sample is large.

(iii) Each observation may be categorized either into class 1 or class 2, etc.
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7.3 Uses of Chi-Square Test
The chi-square test can be used in different forms to test:
(i) The variance for a single sample. This has been discussed in Chapter 4.

(if) Goodness of fit. (This is not described here as health scientists use it very
rarely).

(iii) Independence of attribute and homogeneity of groups.

(iv) Association when the data have linear trend (Mantel-Haenszel).
(v) Association in matched samples.

(vi) The significance of relative risk and odds ratio.

In the application of chi-square test, there are two sets of frequencies, one set is called
observed (actual) frequencies and other set is called expected frequencies. Observed
frequencies are those which we get from a sample and are categorized into two or more
than two classifications. Expected frequencies are the number of ebservations in our
sample that we would expect to observe if some null' hypothesis about the variable is true.
For example, if we have a sample of 39 patients, who visit the hospital in a particular
time, 13 out of them are old, 15 are young and 11 are children. These will be known as
observed frequencies while in this case we wouldiexpectthat sample must contain 13 old
persons, 13 young persons and 13 children. /Thisudistribution gives us expected
frequencies. Since expected frequencies,are not known, we can estimate them from
observed frequencies under the same hypothesis, An example, showing calculations of
expected frequencies, is given as:

Example 7.1:

In a study of the relation between blood type and disease, large samples of patients with
peptic ulcer, patients with gastric cancer and control persons free from these diseases
were classified as to blood type (O, A, B). The observed frequencies are as follows:

Table 7.3
Distribution of patients by blood type and Disease
Disease
Blood type | Peptic ulcer | Gastric cancer | Controls Total

@] 983=0,, 383=0,, 2892 =0,, | Ry =4258

A 679=0,, 416 = 0, 2625=0,, | R2=3720

B - - — R; =788

134=0,, 84 =0,, 570=0,, 3
Total C,=1796 C, =883 C;=6087 | n=28766

(Source: Snedecor and Cochran, 1980)
Oj; is the observed frequencies in the (i,j)th cell.

If we assume that disease and blood type are independent then the expected frequencies
are calculated as:
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where R; are the i'" row total and C; the j™ column total.

Thus we have:

£, = 1796x 4258
1 8766 '

£, = 883x3720
22 8766

, etc.

Table 7.4

Analysis of Categorical Data

Distribution of expected patient by blood type and Disease

Blood type | Peptic ulcer | Gastric cancer Controls Total
') 872.39=E11 428.91 = E12 2956.70 =E13 | 4258
A 762.16 = E21 374.72 = E22 2583.12 = E23 | 3720
B 161.45=E3; 79.37 = E32 547.18 = E33 788
Total 1796 883 6087 8766
7.4 Independence and Homogeneity
7.4.1 2x2 Contingency Table
This test can also be thought of as a test of differenceibetween two proportions.
Example 7.2:
Following data relate to deaths of males andifemales due to T.B.
Table 7.5
Observed frequencies of deaths by gender and form of T.B. Gender
Formof T. B Males Females Total
T.B. of respiratory system 3534 1319 4853
Othenform of T.B. 270 250 520
Total 3804 1569 5373

Are the two classifications of the people in the sample independent? (Maxwell, 1961)
Solution:
(1) Hp: Classification of people and the form of T.B. from which people die are
independent.

H1: They are not independent. (There is association)

(2) o= 0.05

(3) test-statistic: Chi-square (data is qualitative)

0. —E.
(i) Chi-square (y?) = ZZM,
i Fi

(7.1)

(where Oj; = observed and E;; = expected frequencies).
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(ii) If it is a 2 x 2 contingency table, then calculation may be simplified by using
the following formula:

2_ (ad —bc)?n
(@a+b)(c+d)a+c)b+d)

x (7.2)

where n=a+ b + ¢ +d: The placement of a, b, ¢ and d is shown in Table 7.1.

(4) To calculate chi-square we need expected frequencies, the calculations of
expected frequencies have been explained in table 7.4 and for this example are
given in Table 7.5.

Table 7.6
Expected Frequencies of deaths by gender and form of T.B. Gender
Form of T.B Males Females Total
TB. of Respiratory | Ey = 3804 x 4853 E, = 1569 x 4853
system 5373 5373 4853
=3435.8 =1447.2
£ = 3804 x 520 £ = 1569 x522
Other form of T.B. | ™ = 5373 2" 5373 520
=368.2 =151.8
Total 3804 1569 5373
The chi-square value is calculated as:
(O-E) (O=E)? (O-E)X/E
98.2 9643.24 2.807
-98:2 9643.24 6.804
-98.2 9643.24 26.190
98.2 9643.24 63.526
Total 99.327

v® =99.326

If we use (7.2), then there is no need to calculate expected frequencies. We can
use the observed frequencies directly to calculate chi-square.

» _ (3534 x 250 — 270 x 1319)25373
(4853)(520)(3804)(1569)

=99.213

(There is a difference in result between two methods. This is because in first
method approximation is involved. So it may be better to use the second form).

(5) Since it is a one-sided test we can see the table value for the desired degree of
freedom under chi-square 0.95 for 5% level of significance. The degree of
freedom is determined as (r - 1) (c - 1) = (2 - 1) (22—1) = 1. (Note that in
2 x 2 table, degree of freedom is always 1). (See table of y given at the end of this
Chapter).
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(6) The calculated value is 99.213, which is greater than table value (3.841) for one
degree of freedom Therefore, the data do not show that the two variables are
independent and we say with 95% confidence that two classifications of the
people in our sample are not independent (see Fig. 7.1).

Xc2).95
Fig. 7.1

To put it differently we may say that distribution of type of TB does depend on sex. In
the application of chi-square, one point to be noted about the magnitude of the expected
frequencies. If the expected frequencies are too small then chi-square will not reflect the
departure of observed from expected frequencies.

There is no general rule regarding the minimum value of the expected/observed
frequencies, but values of 3, 4 or 5 are widely used as®minimum. If one should get
expected/observed frequencies too small, it.can be combined with expected/observed
frequencies in an adjacent class interval. Generally;.if itis‘less than 5 then Pearson's chi-
square is not strictly valid.

7.4.2 Phi Coefficient

The Phi coefficient is a degree of assoeiation between two attributes and is calculated as:

2
Phi= ¢ = ad - bg v (7.3)

- J@ibcrd@rcobrd VUn

= /M =0.13589
2373

The degree of associationbetween death of people and form of T.B., with which people die,
is about 13.6%. The range of ¢ is from -1 to 1. If ¢ is 0, the attributes are independent. If ¢
=1, there is complete positive association and for —1 there is complete negative association.
This happens only when entries are only in the leading diagonal when b = ¢ = 0 and
consequently ¢ = 1 (or a = d = 0). This measure is not very satisfactory since it does not
necessarily have an upper limit of 1. This is used when scale is nominal.

7.4.3 Contingency coefficient (C)

It also measures the degree of association. This coefficient lies between 0 and 1 and

2
attains its lower limit in case of complete independence, that is when x = 0. It is also
calculated when scale is nominal. It is calculated as:

c = |-k (7.4)
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= | 9921346 _ 0.1346 or 13.5%
99.21346+ 5373

C cannot attain its upper limit even in case of complete association.
7.4.4 Cramer's-V (V)

This coefficient also measures the degree of association. For 2x2 table Cramer's-V is
identical to Phi. It is designed in such a way that it can attain upper bound 1. This is often
used for general contingency table of size r x c. It is calculated as:

v | K (7.5)
min(r—1,c-1)

99.21346

5373 _ (13589
(2-1)

7.4.5 Adjusted Chi-square (Yates’ Correction)

Some times in 2 x 2 contingency table, expected frequency jis less than 5 where pooling
of data is impossible. Yates (1934) recommended an.adjustment as correction for
continuity known as Yates’ correction. This is\done byssubtracting 1/2 from the positive
discrepancies (O - E) and adding 1/2.tothe negative discrepancies (O - E) before these
values are squared. For this (7.1) takes the following form.

2
, |0y - E;| #05]
xe=2XX = (7.6)
ij ij
Alternatively, this correction can'be adjusted in (7.2).
5_  Jladsbc[-05n] n 1)

" (a+b)(crd)@+c)b+c)’

where |A] means absolute value of A. (It is desirable to apply the Yates’ correction at all
times, whether or not expected frequencies are greater than 5, but it is essential to do so
in cases when expected frequencies are less than 5 and sample size is small). If the

sample size is reasonably large, the correction will have little effect on the value of X2_

The same result may be obtained using IBM-SPSS package. The entry of the data for the
calculation of chi-square has been explained in the next example.
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Example S7-1

Analysis of Categorical Data

A part of the data will be in columns as follows:

| id || FormofT.B || gender ||
1 1 1 1
2 2 1 1
3 3 1 1
4 4 1 1
5 5 1 1
[ 6 1 1
i 7 1 1
8 8 1 1
9 9 1 1
10 10 1 1

The Variable View is as follows:

H = B = (Al Al
SRE M e~ BLEE A B = - apd © %
Name || Type H Width H Decimals H Label H Values || Missing r Align 4, H Measure H Role
1 id Numeric 12 0 None None 127 =Right’ & Scale N Input
2 FormofT.B Numeric 12 0 Form of T.B. {1, TB ofr... Eme Y 12 Einjﬂ & Nominal N Input
gender Numeric 12 0 (1. Male} . [None | 2 = Right &> Nominal  Input
The labels are defined as:
Formof T.B.: Gender
T Value Labels ue Labels =]
rValue Label e Label
Label: |

1 ="T.B. of respiratory system”
2="0Otherform of TB"

Label. | |
’ 1="Male”

Add 2="Female”

B

(o (cancer) i )

We apply the Chi-square test for Independence as follows:

Analyze-> Descriptive Statistics> Crosstabs ...

File  Edit View Data

Graphs  Utilities  Add-ons

S|HE i
| |

| id ” FormofT.B || gende|

o || e fw
L= R T I
PO RS L R R Y

Tables

Compare Means

General Linear Model

Mixed Models

Ratio...
[ P-P Plots...
= o-a Plots...

Correlate

Regression

3
b
b
Generalized Linear Models 4
b
b
b
b

Loglinear
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Move the variable “Form of T.B” to the Row(s):
Move the variable “gender” to the Column(s):
We click on and mark on “Chi-square”,

We also mark on “Contingency coefficient” and “Phi and Cramer’s V” then click

on (Ganne)

13 Crosstabs (=5 | | i Crosstabs: Statistics (230
Row(s): . =1 .
- 5 [+ Chi-square [] correlations
& i & Form of T.B. [FormofT B] — ﬂ L =
Siatistics
b “ Mominal Ordinal
Cells... . ]
Column(s) [¥iContingency coeflicient| | [[] Gamma
& gender [+ Phi and Cramers V [] somers'd
A[i Lambda [] Kendall's tau-b
ootstrap. . ==
Layer 1 of 1 [] Uncertainty coefficient [ Kendall's tau-c
Mominal by [nteral &} Kappa
- [[] Eta [7] Risk
g ‘_ i [T MchNemar
I Cochran's.and Mantel-Haenszel statistics
[7] Display clustered bar charts co
[[] Suppress tables

4

pL. e m——
A ¥

Now to show the expected values beside the.observed values, and the percentages,

We click on and markwon Expected, Rows and Column, then click on
@ Cross‘: Cell Displa‘ v @

Sounts <5 &V z-test

[ Observed [] Compare column proportions
¥ Expected i
*Ei Hide small counts

FPercentages Residuals
ﬂ_ [] Unstandardized

[+ Column [] standardized

[] Total [7] Adjusted standardized

Moninteger Weights
® Round cell counts @ Round case weights
© Truncate cell counts © Truncate case weights

© Mo adjustments

|Conﬁnﬁl Cancel Help
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Now click on , to get the following outputs:
SPSS output for chi-square

Form of T.B. * gender Crosstabulation

gender
Male Female Total

Formof T.B.  T.B. ofrespiratory system  Count 3534 1319 4853
Expected Count 34358 1417.2 4853.0

% within Form of T.B. 72.8% 27.2% 100.0%

% within gender 92.9% 84.1% 90.3%

Cther form of T.B. Count 270 250 520

Expected Count 368.2 151.8 5200

% within Form of T.B. 51.9% 48.1% 100.0%

% within gender T1% 15.9% 9.7%

Total Count 3804 1569 5373
Expected Count 380440 1568.0 53730

% within Form of T.E. T70.8% 25.2% 100.0%

% within gender 100.0% 100.0% 100.0%

Chi-Square Tests

Asy mp. Sig. | Exact Sig. | Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 99.213° 1 .000
Continuity Correctio 98.205 1 .000
Likelihood Ratio 91.588 1 .000
Fisher's Exact Test .000 .000
;?:gcrigzoh'"ear 90.195 1 .000
N of Valid Cases 5373

a. Computed only for a 2x2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is

151.85.
Symmetric Measures
Value Approx. Sig.
Nominal by Phi .136 .000
Nominal Cramer's V .136 .000
Contingency Coefficient .135 .000
N of Valid Cases 5373

Four results of chi-square are given at the end of the IBM-SPSS output, i.e. (i) chi-square
Pearson, (ii) chi-square continuity correction, (iii) chi-square likelihood ratio and (iv)
linear trend (Mantel-Haenszel). The important point is to choose the appropriate result,
here we choose Pearson chi-square as the scale is nominal and no frequency in the cell is
less than 5 (minimum expected frequency = 151.85), p-value = 0.000, which is less than
0.05 (observed p-value). We confirm our previous result. Note that there is small
difference between the results of chi-square in our manual and computer calculations.
Other forms of chi-square will be explained later. Phi, Cramer’s V and contingency
coefficient measure degree of association between two attributes and are calculated when
scale is nominal.
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Example 7.3:

patients:

The following data relate to suicidal feelings in samples of psychotic and neurotic
Table 7.7
Distribution of Patients by type of patents and suicidal feelings
Psychotics | Neurotics Total
suicidal feelings 2 6 8
no suicidal feelings 18 14 32
Total 20 20 40

Test at 5% level of significance whether there is an association between two psychotics

groups and the presence or absence of suicidal feelings.

Solution:

(1) Ho : Two groups are independent with presence and absence.of suicidal feelings.

H, : Two groups are not independent.

(2) o= 0.05

(3) test-statistic: Chi-square is applied, but we compute expected frequencies to see

if Yates’ correction can be applied?

Expected frequencies

Psychotics | Neurotics Total
Suicidal feelings 4 4 8
No suicidal feelings 16 16 32
Total 20 20 40

In two cells, €xpected frequencies are less than 5, so Yates’ correction is

applicable. Using (7.6), weshave:

Corrected

2 2
O-E discrepancy ©-B) ©-B)7/E
2 [2]-05=15 2.25 0.5625
2 |2]-05=15 2.25 0.5625
2 |2]-05=15 2.25 0.140625
2 |2]-05=15 2.25 0.140625
Total 1.40625

The calculated value of xz =1.40625

This can be solved by using the formula given in expression (7.2) as:

2= 121418 6|05 x 40 (40)

8x32x20x20

which is the same as above.

= 1.40625
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(4) The table value for 5% level of significance at 1 degree of freedom is
% 595= 3.841.

(5) Calculated value is less than the table value, therefore, we say with 95%

confidence that there is no evidence that psychotics and neurotics groups differ
with respect to symptoms.

Note that minimum value of chi-square is zero. It is only possible when the expected
minus observed value in each cell is zero.

7.4.6 Fisher's exact test

The method of Yates’ correction was useful when manual calculations were done. Now
different types of statistical packages are available. Therefore, it is better to use Fisher's
exact test rather than Yates’ correction as it gives exact result. It is used when expected
frequency in the cell is less than 5 and sample size is small. The formula of Exact Test is
R! R C! CJ ’
n! a! b! ¢! d!
where R, R, are rows totals and C,, C, are columns, totals: Note'that Fisher's exact test
for 2x2 contingency table does not use the chi-square approximation.

Fisher’s Exact test = (7.8)

IBM-SPSS package has been used for the'abovesdata and computer output is given
below. Since expected frequencies are less than 5/in two cells we do not choose Pearson
chi-square, we either choose chi-square with Yates’ correction (continuity correction) or
Fisher's exact-test.

SPSS output for chi-square
(Yates’ correction and Fisher's exact test)

suicidal feeling * type of disease Crosstabulation

ty pe of disease

1.00 2.00 Total
suicidal 1.00 Count 2 6 8
feeling Expected Count 4.0 4.0 8.0
% within suicidal feeling 25.0% 75.0% 100.0%
% within ty pe of disease 10.0% 30.0% 20.0%
% of Total 5.0% 15.0% 20.0%
2.00 Count 18 14 32
Expected Count 16.0 16.0 32.0
% within suicidal feeling 56.3% 43.8% 100.0%
% within ty pe of disease 90.0% 70.0% 80.0%
% of Total 45.0% 35.0% 80.0%
Total Count 20 20 40
Expected Count 20.0 20.0 40.0
% within suicidal feeling 50.0% 50.0% 100.0%
% within type of disease 100.0% 100.0% 100.0%
% of Total 50.0% 50.0% 100.0%




Hanif, Ahmad and Abdelfattah 299

Chi-Square Tests

Asymp. Sig. | Exact Sig. | Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 2.500° 1 114
Continuity Correctiod 1.406 1 .236
Likelihood Ratio 2.594 1 .107
Fisher's Exact Test .235 .118
Linear-by-Linear
pelipeiedin 2.437 1 118
N of Valid Cases 40

a. Computed only for a 2x2 table
b. 2 cells (50.0%) hav e expected count less than 5. The minimum expected count is

4.00.
Symmetric Measures
Value Approx. Sig.
Nominal by Phi -.250 .114
Nominal Cramer's V .250 114
Contingency Coefficient .243 114
N of Valid Cases 40

a. Not assuming the null hy pothesis.

b. Using the asymptotic standard'error assuming the null
hy pothesis.

Since the p-value for Yates’ correction (continuity. correction) is 0.236(two tailed) and for
Fisher's exact test is 0.235 (two tailed)«whichiis greater than 0.05 therefore the data give
no evidence that psychotics.and neurotics differ with respect to symptoms (we confirm
our above findings). Note that the p-value found in SPSS output by the use of Pearson
Chi-square test, the Yates’ ‘correction/and Fisher's test reflect a number of general points
about the three tests when,applied to'small and moderate sized samples.

(i) Yates’ correction and Fisher's test give similar results.

(if) p-value obtained by Yates’ correction and Fisher's test are higher than those
given by Pearsan's chi-square method.

(iif) In large samples, it is well known that all three methods give almost identical
results.

Fisher’s exact test is also available in statistical packages for 3 x 3, 4 x 4 etc. contingency
tables.

Example 7.4:

An interaction study of two social groups of children was conducted. Two independent
random samples of 15 children each were selected with and without development delays
(mild mental retardation). After observing in a control playground environment, the
children during free play the researcher recorded the number of children for each group
who exhibited disruptive behavior (i.e. ignoring, rejecting other children, taking toys
from another child). The data are summarized in the two-way table. Analyze the data
given in Table 7.7 and interpret the results.
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Table 7.8
Behavior
Disruptive | Non-disruptive | Total
Behavior Behavior
With development delay 12 3 15
Without development delay 5 10 15
Total 17 13 30

(Doop, Baker and Brown, American Journal on Mental Retardation, VVol. 96(4), 1992.
Solution:

(1) Ho: There is no difference between with development delay and without
development disruptive behavior.

H;: There is difference.
(2) =0.05
(3) Test-statistic: Chi-square

After the calculations of expected frequencies, we will decide whether we apply
Pearson chi-square or adjusted chi-square (Yates’ correction). The expected
frequencies as:

Disruptive j»non-disruptive | total

Behavior behavior
with development delay 8.5 6.5 15
without development delay.« 8.5 6.5 15
Total 17 13 30

Since no expected cell is less than 5, we use the method of Pearson chi-square
(7.2)

_ 2
2 _ (2x10-3%5) — 665
15%15x17 x13

(4) Table value for 5% level of significance against one degree of freedom is 3.841,
which is less than calculated value. The result is significant and we say that there
is difference between with development delay and without development delay in
disruptive behavior.

7.4.7 R x C contingency table

It is a generalization of the 2x2 contingency table. The case, where there are r rows and ¢
columns, called the r x c contingency table. Suppose we have r populations and one
random sample from each population is drawn. Each observation in each sample is
classified into one of rx c different categories. The assumptions are:

(i) Each sample is random.

(if) The outcomes of various samples are all mutually independent.

(iii) Each observation may be categorized into exactly one of the categories or
classes.
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Example 7.5:

The researchers randomly divided 120 laboratory rats into four groups of 30 each. All
rats were injected with a drug that causes breast cancer, then each rat was fed a diet of fat
and fiber for 15 weeks. However, the levels of fat and fiber varied from group to group.
At the end of the feeding period, the number of rats with cancer tumor was determined

for each group. The data are given in Table 7.9.

Table 7.9
Diet
high fat High fat low fat low fat total
with no fiber | with fiber | with no fiber | with fiber

Yes 27 20 19 14 80

Cancer (22.5%) (16.7%) (15.8%) (11.7%)
Tumor No 3 10 11 16 40
Total 30 30 30 30 120

Is there any evidence to indicate that diet and presencé/absence of cancer are
independent? Use 5% level of significance.(source: Journal“of«he National Cancer
Institute, 1991)

Solution:
(1) Ho : Diet and presence/absence of cancer are independent.
H, : They are not independent.
(2) a.=0.05
(3) test-statistic: Xz
SPSS output for Chi-square
Chi-Square Tests

Asy mp. Sig.
Value df (2-sided)
Pearson Chi-Square 12.9002 3 .005
Likelihood Ratio 14.183 3 .003
™| w1 o
N of Valid Cases 120

a. 0 cells (.0%) hav e expected count less than 5. The
minimum expected count is 10.00.
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Symmetric Measures

Asy mp.

Value Std. Errof* | Approx. T | Approx. Sig.
Nominal by Phi .328 .005
Nominal Cramer's V .328 .005
Contingency Coefficient 312 .005
Ordinal by Kendall's tau-b .289 .074 3.810 .000
Ordinal Kendall's tau-c .333 .087 3.810 .000

N of Valid Cases 120

a. Not assuming the null hy pothesis.
b. Using the asy mptotic standard error assuming the null hy pothesis.

(4) Calculated p-value is less than the observed p-value (0.05). The result is
significant therefore, the null hypothesis is not accepted. We can say with 95%
confidence that diet and presence/absence of cancer.are notindependent and there
is about 33% association between these two factors,(Cramer’s, V). We can see
from the table that direction of departure from low fat fiber to high fat fiber
leading to less cases of cancer.

Example 7.6:

In a study of the relation between blood type and. disease;-large samples of patients with
Peptic ulcer, patients with gastric cancer and controligroup were classified as to blood
type O, A and B. The data are given in-Example 7.1 and represent in Table 7.10.

Table'7.10
Disease
Blood type | Peptic ulcer, | ‘Gastric cancer | Controls | Total
@) 983 383 2892 4258
A 679 416 2625 3720
B 134 84 570 788
Total 1796 883 6087 8766

(Source: Snedecor and Cochran, 1980)
Test the hypothesis that the blood type is the same for the three samples.
Solution:
(1) H, = All the blood types are same
H; = blood type are not same
(2) =0.05
(3) Test-statistic 32
By using SPSS package, we get X2 = 40.54339, p-value = 0.0000

(4) Since p-value is less than 0.05, therefore, the result is significant. The hypothesis
is not accepted and we can say that the blood types are not dependent.
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If we look into the data carefully and convert into percentage as

303

Blood type | Peptic ulcer (%) | Gastric cancer (%) | Controls (%)
) 983 (54.7) 383 (43.4) 2892 (47.5)
A 679 (37.8) 416 (47.1) 2625 (43.1)
B 134 (7.5) 84 (9.5 570 (9.4)

We see that there is not much difference between blood type distributions for gastric
cancer patients and controls but peptic ulcer patients differ from both in blood type O.
We go back to the data and see if there is any difference between the blood type in gastric
cancer patients and control.

Blood type | Gastric cancer | Controls | Total
O 383 2892 3275

A 416 2625 3041

B 84 570 654
Total 883 6087 6970

2
The calculated value of y = 5.6361 with p-values=,0.05972. Therefore, there is no
difference in blood types between gastric cancer patients and:controls.

Further we combine the gastric cancer and controls and omit blood type O and try to test
whether the distribution of blood type A and Blis;the same‘or different. By doing so, we
get the table as:

Blood type Peptic ulcer Gastric + Controls
A 679 3041
B 134 654

The calculated value of XZ = 0.68471, p-value = 0.408. The result is insignificant and
there is no difference between, blood type A and B.

We further test whether theyproportion of O type versus A + B type in the sample is the
same. We get

Blood type | Peptic ulcer | Gastric + Controls | Total
) 983 3275 4258
A+B 813 3695 4508
Total 1796 6970 8766

The calculated value of X2 = 34.298 with p-value = 0.000. The result is significant,

therefore, we conclude that low p-value or high value of X2 is due primarily to an excess
of O type blood among the peptic ulcer.

7.4.8 Application of Kendall's Tau b (z,)

It takes into considerations the ties and is based on the number of concordant and
discordant pairs. An example is presented where the application of Kendall's Tau b
coefficient is fruitful. The solution of the following example will be given using IBM-
SPSS:
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Example S7-2

An animal epidemiologist tested dairy cows for the presence of a bacterial disease. The
disease is detected by the analysis of blood samples, and the disease severity for each
animal was classified as None (0), Low (1) and High (2). Moreover, the size of the herd
that each cow belongs to a category is classified as Large (1), Medium (2) and Small (3).
The number of animals in each of the 9 cells are recorded as:

Table 7.11
Disease severity
Size of the herd | None (0) | Low (1) | High (2) | Total
Large (1) 11 88 136 235
Medium (2) 18 4 19 41
Small (3) 9 5 9 23
Total 38 97 164 299

The disease is transmitted from cow to cow by bacteria, S0, the.€pidemiologist wants to
know if disease severity depends on herd size.

Does disease severity increase as herd size increases?

Solution:
Since the categories for herd size and for disease, severity are ordered, therefore, both
characteristics are ordinal.

The y—statistic tests the independente of herd size and disease severity, but the test does
not show whether there is a trend"in disease severity related to increasing herd size and
as such Kendall's Tau-b can besused.

The Variable View is as follows:

Name Type ‘rﬂdth —”E\mals jbe\ Values Missing Columns Measure Role
1 id Numeric 8 B 0 None None 2 Unknown “ Input
2 Size Numeric 8 0 Size of the herd {1, Large} = None 5 ol Ordinal “ Input
5 Disease Numeni 8 <h) Disease severity {0, None}...  None 6 &5 Nominal “ Input
The labels are defined\as:
Size of the herd Disease severity
= Value Labels sl Value Labels
Value Labels Value Labels
Label | | Lavel: |
1="Large” 0="None”
2 ="Medium” 1="Low"
3="small" 2 ="High"

We apply the Chi-square test for Independence and calculate Kendall's Tau-b as follows:

Analyze-> Descriptive Statistics> Crosstabs ...
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Now click on , to get the following outputs:

SPSS output for Chi-square and related indices

Size of the herd * Disease severity Crosstabulation

Disease severity
MNone Low High Total

Size ofthe herd  Large Count 11 as 136 235
Expected Count 2849 V6.2 1284 2350

% within Size of the herd 4.7% 37.4% 57.9% 100.0%

% within Disease severity 28.9% 90.7% 82.9% 78.6%

Medium  Count 18 4 19 41

Expected Count 6.2 13.3 225 1.0

% within Size of the herd 43.9% 98% 46.3% 100.0%

% within Disease severity 47 4% 41% 11.6% 13.7%

Small Count g <3 9 23

Expected Count 28 75 12.6 230

% within Size of the herd 39.1% 21.7% 39.1% 100.0%

% within Disease severity 23.7% 7.2% 55% 7.7%

Total Count 38 87 164 289
Expected Count 380 g7.0 164.0 289.0

% within Size of the herd 12.7% 32.4% 54.8% 100.0%

% within Disease severity 100.0% 100.0% 100.0% 100.0%

Chi-Square Tests

Asy mp. Sig.
Value df (2-sided)
Pearson Chi-Square 67.0412 4 .000
Likelihood Ratio 56.642 4 .000
Linear-by-Linear
Associaz’ion 23.636 1 .000
N of Valid Cases 299

a.1cells (11.1%) have expected count less than 5. The
minimum expected count is 2.92.

Symmetric Measures

Asy mp.
Value Std. Error’ | Approx. P Approx. Sig.
Ordinal by Kendall's tau-b -.217 .061 -3.402 .001
Ordinal Kendall's tau-c -.148 .044 -3.402 .001
Spearman Correlation -.233 .066 -4.131 .000°
Interv al by Interval Pearson's R -.282 .066 -5.058 .000°
N of Valid Cases 299

a. Not assuming the null hy pothesis.
b. Using the asymptotic standard error assuming the null hy pothesis.
C. Based on normal approximation.
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Bar Chart
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severity
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The value of the Kendall's Tau-b is -0.217, which(is a measure of association between
disease severity and herd size. A negative value means that'asione variable decreases, the
other increases. In this example, -0.217 means. that the disease severity increases as the
herd size decreases. This is exactly what one may:conclude looking at the observed cell
and expected cell frequencies.

One can get incorrect result if thedorder) of.the values does not match an increasing or
decreasing trend. One can associate, large with"1, medium with 2 and small with 3.
However, one could receivedncorrect result/if the order of the values do not match an
increasing or decreasing trend. For example, if we associate large as 2, medium as 1 and
small with 3, Kendall's Tau=b is meaningless. In general, one needs to look at the values of
the variables (both character and.numeric) when using Kendall's Tau-b, and make sure that
the "order" of values is one that makes sense. The approximate 95% confidence limits are;

-0.21731 1.96 (0.06065) or - 0.21731 + 0.11887 [-0.984 ~ -0.336]

Since the confidence limits do not include zero (0), one can be fairly sure that the
association between disease severity and herd size is an increasing one.

Example 7.7:

A simple random sampling procedure was used to select 5 primary health care (PHC)
centers out of 9 from Al-Khobar area. Within each selected PHC center, a systematic
sampling scheme was applied and 659 patients were selected to determine the pattern of
laboratory (Lab) utilization. The data of lab utilization (proper and improper) are as:

Table 7.12
Primary Health Care Centers
Utilization 1 2 3 4 5 Total
Proper 48 51 44 103 77 323
Improper 67 51 37 96 85 336
Total 115 102 81 199 162 659
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Moreover, these data are further divided as over utilization, proper utilization and under-
utilization. These data are given as:

Table 7.13
Primary Health Care Centers
Utilization 1 2 3 4 5 Total
Over 18 4 15 21 29 87
Proper 48 51 44 103 77 323
Under 49 47 22 75 56 249
Total 115 102 81 199 162 659

Use a statistical technique to analyze the data and to see the difference, if any, between
primary health care centers regarding lab utilization.

Solution:

In the first table, we will apply chi-square test as the rows are divided into two categories
"yes" and "no". In the second table, the rows are ordinal and. columns are nominal. There
should be no longer any hesitation in applying the rank test to situations that have many
ties. The alternative and frequently used method is\ Kruskal-Wallis. (This will be
described in Chapter 8). In fact the Kruskal-WallissHtest is, excellent test to use in
contingency tables, where rows represent ordered scale and columns represent nominal
scale.

7.4.9 2 x 2 x K Tables (Meta Analysis)

Sometimes it is possible that a number of«2x2 tables, all bearing on the same question
may be available. It becomes of interest how to combine all the tables so that meaningful
results may be derived. For.example, in,andnvestigation into occurrence of lung cancer
among smokers and non-smokers, data may be obtained from several different areas and
for each area the datamight be arranged in 2x2 table. Again, in an investigation of the
occurrence of lung cancer. in‘smokers and non-smokers in different parts of China, data
may be obtained from each of several different areas. The question is how this separate
information may he, pooled? This is explained in the following example. Firstly it is
solved manual processiand then by using SPSS Package.

Example 7.8:
The following data relating to Chinese smoking and lung cancer study in different parts

of China (S = smoker; S = non-smoker). Analyze the data to find out whether there is
any association between smoking and lung cancer.
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Table 7.14
) Smoking Lung Proportion ) p- )
City Status Cancer Total of lung X value Phi %
Yes No cancer
S 126 | 100 | 226 0.558
Beijing S 35 61 96 0.365 10.033 | 0.002 |0.177| 3.17
161 | 161 | 322
S 908 [ 688 | 1596 0.569
Shanghi S 497 | 807 |1304 0.381 101.326 | 0.000 (0.187( 10.07
1405 [ 1495 | 2900
S 913 [ 747 |1660 0.550
Shenyang s 336 | 598 | 934 0.360 86.660 | 0.000 |0.183] 9.31
1249 [ 1345 | 2594
S 235 | 172 | 407 0.577
Nanjing s 58 121 | 179 0.324 31.925 | 0.000 |0.233| 5.63
293 | 293 | 586
S 402 | 308 | 710 0.566
Harbin S 121 | 215 | 336 0.360 38.743 | 0000 |0.192| 6.22
523 | 523 [1046
S 182 | 156 | 338 0.538
Zhebzou S 72 98 170 0.423 5,976 |0.01410.108| 2.44
254 | 254 [ 508
S 60 99 159 0.377
Taiyuan s 11 43 54 0.204 5.470 |0.018 (0.160| 2.34
71 142 | 213
S 104 89 193 0.539
Nanchang s 21 36 57 0.368 5.113 [ 0.023 (0.143| 2.26
125 | 125 1250 285.246 41.46
Source:  Liu, Z (1992),smaking and lung cancer in China. Inter. J. Epidemiology,
Vol. 21, 197-201
Solution:

There are several methods to pool the data.

(i) Pooling the data into 2x2 table

One way is to pool the data in a single table and usual chi-square is calculated. This
procedure is applicable or legitimate if the corresponding proportions in the various
tables are alike. If the proportions vary from table to table, or we suspect that they
vary, then this procedure should not be used, as the combined data will not accurately
reflect the information contained in the original tables. In fact in some cases it so
happens that combining several tables each having the two attributes are highly
associated and results in a table shows no association. For example, in the lung cancer
and smoking study conducted in China at eight places, it may well be the case that the
occurrence of lung cancer is more frequent in some areas than the other. If we
combine the data into 2x2 table, we get
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C C
s 2930 2359
S 1151 1979

v2=273.091  Phi=0.180 p < 0.0001

The occurrence of lung cancer is associated with localities of China. Since there is
variation in proportion of lung cancer, we may not combine all the groups in a single
2x2 table.

(i) Adding the value of 2

The second technique that is often used is to compute the usual chi-square value
separately for each table and then add them together. The resulting value may then be
compared with the value of chi-square from tables with k degrees of freedom, where k
is the number of separate tables. This is not a good method since it does not take into
account the direction of the difference between the proportions’in various tables and
consequently lacks power in detecting a difference that show up consistently in the
same direction in all or most of the individualsa If we use .this method, we get

% ;Zjooled = 285.246. The table value for 8 degrees of freedom (since there are 8 tables)

is 15.507. Since table value is much less than calculated value, therefore the result is
significant and we can say that there is association between smoking and lung cancer.

(iii) The method of summing y rather. than ;;2
If the sample sizes of the individual tables do not differ greatly (say by more than a
ratio of 2 to 1) and the values taken by the proportions are between approximately 0.2

and 0.8, then a method based on the.sum of the square root of the xz statistic, taking
account of the signs of the differences in proportions, may be used. This will be

normally distributed, with. mean /zero and standard deviation JK if the sample is
large. Then

Using Table 7.12 we have Z = 1.96. Since calculated Z is much more than 1.96 (table
value at 5% level of significance), therefore result is significant and there is a strong
association between smoking and lung cancer.

If the sample sizes and the proportions do not satisfy the conditions mentioned above,
the addition of the y value tends to lose power. Tables that arise from very small
sample size cannot be expected to be as much of use as those where the sample size is

moderate to large in detecting the difference in the proportions, yet in the +/x2

method all tables receive the same weight. When differences in the sample sizes are
extreme, some method of weighting the results from individual tables is needed.
Cochran (1954) suggested a test to solve this problem. Another test procedure for
examining series of 2x2 tables is that suggested by Mantel and Haenszel (1959). By
combining this test, it is known as Cochran -Mantel -Haenszel test.
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(iv) The Cochran- Mantel-Haenszel test
To apply Cochran-Mantel-Haenszel test, some further calculations are required.
These calculations are made in the Table 7.15.

Table 7.15
Smo- | Lung Cancer a+b)(c+d)(a+c)(b+d
City [ king v N Total w:E(a) ( X 2)( X ) a-E(a)
Status| 'S 0 n“(n-1
S 126 | 100 [ 226
1 S 35 | 61 | 96 113.0 16.9 13.0

161 [ 161 | 322
S 908 | 688 | 1596
2 S 497 | 807 | 1304 773.2 179.3 134.8
1405 | 1495 [ 2900
S 913 | 747 | 1660
3 S 336 | 598 | 934 799.3 149.3 113.7
1249 | 1345 [ 2594
S 235 | 172 | 407
4 S 58 | 121 | 179 203.5 311 31.5
293 | 293 | 586
S 402 | 308 [ 710
5 S 121 | 215 | 336 355.0 57.1 47.0
523 | 523 | 1046
S 182 [ 156 | 338
6 S 72 98 170 169.0 28.3 13.0
254 | 254 [ 508
S 60 99 159
7 S 11 43 54 53.0 9.0 7.0
71 | ¥42 | 213
S 104 | 89 193
8 S 21 36 57 96.5 11.0 7.5

125 125 | 250 482.0 367.5

(367.5)2

Cochran-Mantel-Haenszel (CMH) test = = 280.2. This test has a large sample

chi-squared distribution with 1 d.f. We can see that the result is highly significant. A
statistical analysis that combines information from several studies is called meta analysis.
This meta analysis may provide stronger evidence of an association than any single
partial table.

Calculation of Cochran-Mantel-Haenszel (CMH) test to perform Meta Analysis using
IBM-SPSS package.

Example S7-3

In example 7.8 there are eight study areas regarding smoking and lung cancer. In order to
apply Cochran-Mantel-Haenszel (CMH) technique these informations will be entered in
the following way.
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e Enter the data in the following manner.

| cty | Row | Coumn | Data | | cty | Rw | Coumn | Daa |
1 1 1 1 126 1 Beijing! Smokers Yes 126
2 1 1 2 100 2 Beijing Smokers No 100
3 1 2 1 35 3 Beijing  MNon Smokers Yes 35
4 1 2 2 61 4 Beijing  Non Smokers No 61
5 2 1 1 908 & Songhai Smokers Yes 908
6 2 1 2 688 6 Songhai Smaokers No 688
T 2 2 1 497 T Songhai  Non Smokers Yes 497
8 2 2 2 807 8 Songhai Non Smokers No 807
El 3 1 1 913 El Shenyang Smokers Yes 913
10 3 1 2 4T 10 Shenyang Smokers No 47

The Variable View is as follows:

Name || Type || Width ” Decimals ” Label ” Values H Missing || Columns H Align || Measure || Role
City MNumeric 8 0 {1, Beijing}... None 8 ight &> Mominal N Input
Row Numeric 8 0 Smoking Status {1, Smokers... Mone 10 Right &5 Nominal N Input
Column MNumeric 8 0 Lungs Cancer {1, Yes} Mone 8 &> Mominal N Input
Data Numeric 8 0 None Mone 8 Scale N Input

The labels are defined as:
City

rValue Label:

Label: |Nanchang |

T=DeNng.
2 ="Shanghi”
3 ="8henyang”
4 ="Nanjing”
5 ="Harbin"

1="5mokers”
Add 2="Non Smaokers™

o J cancat | e

rValue Label

Label: | |

1="Yes"
2="No”

[0k [cancei]| v |
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To proceed for analysis
1. Click Data and then click Weight Cases (Weight the cases by the variable data)

File  Edit View Transform  Analyze  Direct Marketing

E= ﬁ [DJ [ Define Variable Properties
pi—| L TV
_._-,fj Set Measurement Level for Unknown...

= Copy Data Properties...

=
B Define Dates...
Define Multiple Response Sets...

Validation L4 @ Weight Cases @

g Identify Duplicate Cases

F3 Identify Unusual Cases ® Do notweight cases

& Ciy © Weight cases by
&5 Smoking Status [R... -

&/ il ee- &5 Lungs Cancer [Col...
Sort Variables... y Datd s wem e - - - -:I

', Compare Datasats

0| o||~f@| o) e =
2]

1:] =l Transpose. |

12 Merge Files 4

13 [ Restructure...

& SEDUEL IR Current Status: Do not weight cases
15 Propensity Score Matching...

18 Case Control Malching Paste Cancel || Help
i FE1 Aggregate L

13 Splitinto Files

20 Orthogonal Design »

21 F, Copy Dataset

22 = splitFile

23 A selectCases

24 mﬂe\gm Cases (ﬂhl ..I
2. Click Analyze then click Descriptive Statistics and then click Cross-tab.

Analyze-> Descriptive Statistics> Crosstabs ...

File  Edit View & Data’ \Transform /| Analyze  DirectMarketing  Graphs  Utilities  Add-ons )

%}ﬁ[g]mﬁ- Reporls » | ¥R ER B
— W s = ~ Descriptive Statistics [ Frequencies...
. i

— TZLES 4 E Descriptives...
City Row Compare Means » &, Explore
1 1 General Linear Model N
- - @ Crosstabs...
2 1 Generalized Linear Models »
3 9 ) TURF Analysis
Mixed Models »
4 1 Caorrelate » Ratio...
5 2 BerisenT y | P-PPlots .
6 2 Loglinear » |EEoQPiots..
7 2 T

Move the variable “row” to the Row(s):

Move the variable “column” to the Column(s):

We click on and mark on “Chi-square”,

We also mark on “Cochran-Mantel-Haenszel” then click on
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5 Crosstabs = 5 Crosstabs: Statistics ==
& Data Rg[;:nuking Status [Row] i COUeIaﬁons
=/ Ordinal
Column(s): [] Contingency coefficient [[] Gamma
= &b Lungs Cancer [Column] [] Phi and Cramers V [] Somers'd
[7] Lambda [7] Kendall's tau-b
Layer 1af 1 [] Uncertainty coefficient [7] Kendall's tau-c
Next
Mominal by Interval [] Kappa
& Oy [ Eta [ Risk
[] McMemar
B [l Display layer variables in table layers ﬁoch@n's and Mantel-Haenszel statistics
| Display clustered bar charts -
E\ Su:mssslames = est common odds ratio equals:
gy Lemen Lo

Now click on and on , to get the following outputs:

Case Processing Summary

Cases
Valid Missing Total
N Percent N Percent N Percent
Smoking Status *
Lungs Cancer * CITY 8419 100.0% 0 .0% 8419 100.0%




Hanif, Ahmad and Abdelfattah

Smoking Status * Lungs Cancer * CITY Crosstabulation

Count
Lungs Cancer
CITY Yes No Total
Beijing Smoking  Smokers 126 100 226
Status Non-Smokers 35 61 96
Total 161 161 322
Shanghi Smoking  Smokers 908 688 1596
Status Non-Smokers 497 807 1304
Total 1405 1495 2900
Shenyang Smoking  Smokers 913 747 1660
Status Non-Smokers 336 598 934
Total 1249 1345 2594
Nanjing Smoking  Smokers 235 172 407
Status Non-Smokers 58 122 179
Total 293 293 586
Harbin Smoking  Smokers 402 308 710
Status Non-Smokers 121 215 336
Total 523 523 1046
Zhebzou Smoking  Smokers 182 156 338
Status Non-Smokers 72 98 170
Total 254 254 508
Taiyuan Smoking Smokers 60 99 159
Status Non-Smokers 11 43 54
Total 71 142 213
Nanchang Smoking  Smokers 104 89 193
Status Non-Smokers 21 36 57
Total 125 125 250

The Chi-Square along with'significance level (p-value) for each table is given as

CITY Chi-Square Tests df | Asymp. Sig. (2-sided)
Beijing 10.033 1 0.002
Shanghi 101.327 1 0.000
Shenyang 86.661 1 0.000
Nanjing 31.925 1 0.000
Harbin 38.743 1 0.000
Zhebzou 5.976 1 0.014
Taiyuan 5.470 1 0.019
Nanchang 5.113 1 0.024

315



316 Analysis of Categorical Data

Tests for Homogeneity of the Odds

Asymp. Sig.

Statistic Chi-Squared df (2-sided)
Conditional- Cochran's- 280.38 1 .000
Independence Mantel-Haenszel 279.37 1 .000
Homogenei Breslow-Day- 5.200 7 .636
Tarone' 5.200 7 .636

Under the conditional independence assumption, Cochran's statistic is
asvmptotically distributed as a 1 df chi-squared distribution, only if the number of
strata is fixed, while the Mantel-Haenszel statistic is always asymptotically
distributed as a 1 df chi-squared distribution. Note that the continuity correction is
removed from the Mantel-Haenszel statistic when the sum of the differences
between the observed and the expected is O.

There is a small difference in Chi- Square value in manual‘calculation and in computer
application as approximation is involved in manual process.

Example 7.9:
Data regarding incidence of tumors in the two hemispheres for three sites in the cortex is
available as:

Table 7.16
Sr. . Benign | Malignant Proportion of
No. Site of tumor tumogrs turr?ors Total maligr?ant tumors
Left hemisphere 17 5 22 0.2273
1 | Right hemisphere 6 5 11 0.4545
23 10 33
Left hemisphere 12 3 15 0.2000
2 | Right hemisphere 7 5 12 0.4167
19 8 27
Left hemisphere 11 3 14 0.2143
3 | Right hemisphere 11 9 20 0.4500
22 12 34

Can we say that there is association between type of tumor and among hemisphere?

Solution:
We left this problem to the students to solve by using IBM-SPSS package on the lines
suggested in Example 7.9.

7.5 Matched Samples (McNemar test)

One to one matching is frequently used by research workers to increase the precision of
the comparison. This point has also been discussed in Chapter 4 in details as well. The
matching is usually done on variable such as age, sex, weight, etc. and like information
about which data can be obtained easily. Two samples matched in a one-to-one way must
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be thought of correlated samples and consequently are not independent. As a result, the
ordinary chi-square test is not strictly applicable for assessing the difference between
frequencies obtained with reference to these samples. The appropriate test for comparing
frequencies in matched samples is one due to McNemar (1955). This is a special case of
Cochran-Mantel-Haenszel test.

Suppose the data are nominal with two categories that we call 1 and 0, i.e. Xj =1 or 0 and
Yi=1,0,ie.

Table 7.17
Sample 1
Xj i Total
Yes =1 No =0
Yes=1 (1,1) (1,0) a+b
alb
Sample 2 No=0 c|ld c+d
(0, 1) (0,0)
Total a+c b+d a+b+c+d

Since we are concerned with the difference between sample 1'and sample 2. There is no
difference in the cells of the table corresponding to cell‘a and cell d therefore, the
comparison is confined to cells b and ¢ only. In these.situations, our null hypothesis will
be that the two samples do not differ as regardsto the attribute. We would expect cell b
and cell ¢ to be equal. We expect ' that the values in these two cells would each be
(b + c)/2. Then the null and alternative hypotheses are

(1) H, : Two samples donot differ with regards to the attributes
H, : These are not equal.

(2) =10.05
Lo 2
(3) test-statistic: LMcNemar

2 _(b-oy

AMcNemar = "¢ (7.9)

If the frequency in the cell b or ¢ or in both is less than 5 then corrected value of
McNemar test will be calculated as:

2 [o-d-1f

“McNemar (€)= ~ pac (7.10)

7.5.1 Layout of Tests of Significance

The following layout will be useful to understand the applications of chi-squares and
McNemar's tests.
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LAYOUT OF TEST OF SIGNIFICANCE

Cross sectional Casel-control Cohort
Not
matched
Not
matched Matched
Chi- Not Matched
square matched
Chi- NMcNemar
square
Chi- McNemar
square

McNemar test is applicable in‘case-eontrol and cohort matched samples.

Example 7.10:

Following data relate.to 400 study subjects, consisting of 200 matched-pairs. For 7 pairs
both the smokers and non-smokers developed myocardial infarction (MI) and for 150
pairs, neither did. In 14 pairs only the non-smoker have myocardial infarction whereas in
29 pairs only the smoker did. This data relate to the results of a cohort study of
myocardial infarction in 200 smoking and 200 non-smoking men matched by age, blood
pressure and serum cholesterol concentration. Cells a and d represent those matched pairs
in which both exposed and non-exposed members develop the same outcome whereas b
and c represent those matched pairs in which members experience opposite results. The
data are given as:
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Table 7.18
Smokers
Non-Smokers MI not Ml Total
7 14
Ml 1,1) (1,0) 21
alb
cld
Not Ml (0,2) (0, 0) 179
29 150
Total 36 164 200

Test the significance between smoking and myocardial infarction at 5% level of
significance.

Solution:
(1) H, : Smoking has no effect on myocardial infarction:
H, : Smoking and myocardial infraction are associated.
(2) a.=0.05

(3) test-statistic: Since the pairs are matched, the value of chi-square depends on the
observed frequencies in the two discardanticells b and c. It is interpreted in the
same way as the usual y2 with 1.d.f. McNefmar chi-square procedure is used below
(using equation 7.1):

2 [29-14F

XMcNemar ~ 29114 =9:233

(4) Table value of x*for 5% level of significance and for 1 degree of freedom is 3.841

(5) Since the calculated\value is more than the table value, we do not accept the null
hypothesis and“say,that smokers are indeed at risk for subsequent myocardial
infarction.

McNemar test is also applicable to situations in which the same subjects are observed on
two occasions.

Example S7-4
In Re-solving example 7.10 using IBM-SPSS,

o Enter the data in the following manner.
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Non_smakers || Smakers | MNon_smokers || Smokers |
1 1 1 1 M MI
2 1 1 2 M MI
3 1 1 3 M MI
4 1 1 4 M I
5 1 1 5 M MI
6 1 1 6 M MI
7 1 1 7 M MI
8 1 2 8 M Not MI
9 1 2 ] M Mot MI
10 1 2 10 M Mot M

(up to row 200)

The Variable View is as follows:

| Name || Type H Width || Decimals || Label || Values ” Missing || Cal Measure || Role
Mon_smokers Numeric 8 0 Mon smokers {1 M Mone 9 Mominal “ Input
Smokers MNumeric 8 0 Smokers {1. MI}... Mone 8 MNominal “ Input

The labels are defined as:

Non smokers

[Value Label

Labsl: ‘

1="Mr
2="Mot MI"

1="Mr

2="Not MI"

[ o[ cancal | wew |

Click Analyze then click Descriptive Statistics and then click Cross-tab.
Analyze-> Descriptive Statistics> Crosstabs ...

File Edit View Data Transform Utilities  Add-ons |

SEHE W « j '
| T —————

irect Marketing ~ Graphs

Descriptive Statistics | [Z2] Frequencies...

Tables Descriptives...

B, Explore...

| Non_smokers || Smokers Compare Means

General Linear Model

Generalized Linear Models ——
TURF Analysis

* ¥ ¥ v v v v v

1 1 1
2 1 1

2 1 1 Mixed Models

= 1 1 Correlate Ratio...

> ! 1 Regression [ P-P Plats...
f j j Loglinear B a-aPiots...
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Move the variable “Non-smokers” to the Row(s):

Move the variable “Smokers” to the Column(s):

We click on and mark on “McNemar”,

= o
7] Crosstabs = Crosstabs: Statistics EX|
Rowi{s): e =
[] Chi-square [[] Correlations
&5 Non smokers [Non_sm - = -
Statistics..
- “ Nominal Ordinal
Column(s): || Contingency coefficient "] Gamma
@ Smokers [Smokers] [T] Phiand Cramers V [ Somers'd
[ [

=] Lambda "] Kendall's tau-b

Layer 1 of1 | Uncertainty coefficient |I”| Kendall's tau-c
Mominal by Interval [] Kappa
[[] Eta I Ri
- = \i
[] Cochran’s/@and Mantel-Haenszel statistics

[”] Display clustered bar charts

M dSp-

m Cancel Help

| Suppress tables

Now click on and on , to get the following output:

Chi-Square Tests

Exact Sig. (2-
Value siced)

Mcldemar Test kRS
M oafValid Cases 200

a. Binamial distribution used.

Since the P-value= 0.0382.andis less than 0.05, we do not accept the null hypothesis and
say that smokers areindeed at risk for subsequent myocardial infarction.

Example 7.11:

Two drugs A and B are used to same patients on two different occasions in the treatment
of depression and are compared in terms of possible side-effects, nausea. The drugs are
given to the patients on two different occasions and the incidence of nausea recorded in
the following table.

Table 7.19
Drug A
Nausea No-Nausea Total
Drug B Nausea 9 3 12
No-Nausea 13 75 88
Total 22 78 100

Compare the effect of two drugs.
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Solution:

Here we are dealing with correlated rather than independent observations since the same
group receives both drugs A and B, the comparison of the drugs will be made by using
McNemar's test.

(1) H, : Incidence of nausea is same for the two drugs

H, : Incidence of nausea is different for the two drugs
(2) a.=0.05
(3) test-statistic: McNemar

Since one of the values in the one cell is less than 5, therefore we will apply (7.10) to
calculate test-statistic, i.e.

2 _ (3-13]-1)% _
XMcNemar = = 3,13 >0
(4) Table value of X2 for 5% level of significance and for.1 degree of freedom is
3.841.

(5) Since calculated value is greater than the table value, we do not accept the
hypothesis and say that incidence of nausea is different for the two groups of
drugs.

(Note that the P-value when using ABM-SPSS will be equal 0.021 which gives the same
result for significance)

7.6 Mantel-Haenszel Test for Linear Association

If the exposure variable, is ordinal, then the ordinary chi-square test does not take into
account the inherent order.amongrthe categories. It merely tests the overall departure of
observed from expected.across the r x 2 cells of the table. A test of linear association
between columns and rows will be statistically inefficient, because it fails to distinguish
between one-and two-category differences. Following example is given to explain this
concept.

Example 7.12:

The following table gives a summary of the results of a cohort study in which children
with otitis media (Middle-ear infection) were treated with oral amoxicillian in either the
dosage range recommended (RD) by the manufacturer, a dosage above that
recommended dose (HD), or a dosage below the recommended dose (LD). The children
were followed for the duration of their 10-days course of treatment for the occurrence of
diarrhea, a well-known side effect of oral amoxicillian.
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Table 7.20
Response
Diarrhea | no diarrhea | total
high dose 12 38 50
Dose | recommended dose 13 87 100
Low dose 4 46 50
Total 29 171 200

Is the dose response relation significant?

Solution:
Health Scientists will immediately apply Pearson chi-square (ordinary chi-square) to see
the association between dose and response. The test is not applicable because of existence

of linearity in one of the categories.

Suppose we apply ordinary chi-square.

Response
Dose D D Total
HD 12 38 50
(7.25) (42.75)
RD 13 87 100
(14.50) (85.50)
LD 4 46 50
(7.25) (42.75)
Total 29 171 200
where: D = Diarrheg; D = Not diarrhea
HD = High dose; RD = Recommended dose
LD = Lower dose

The y? = 5.5253qwith p-value = 0.06312, but at 5% level of significance, there is no
association between:dose - response.

For this type of problem a preferable test is chi-square with linear trend (Mental-
Haenszel). The formula for chi-square for linear trend is

2 n[n=t;w; —t=n;w;]?
Mt n -t =tw? - (Enw;)?]

(7.11)

where: n = sum of all the frequencies

wj = weight (score) assigned to ith category

tj = number of subjects within the ith category
who experience the target outcome

nj = number of subjects in the ith exposure category
t = total number who experience the outcome
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% & has one degree of freedom. To solve this, the table can be rearranged as

Weight
D D Total
w1 =+1 _ _
t1=12 50=n
HD 1 38 1
W2 =0
tp =13 100 =n
RD 2 87 2
W3 =-1
t3=4 46 50=n
LD 3 3
Total t=29 171 n = 200
(-1t
(Note that if there are four categories the weight will be assigned as +3, +1, -1, -3
and so on).

Using the above formula of chi-square for linear trend, we'get x> 5.137 at 1 degree with
p-value = 0.023 (two tailed). The result is significant and we can say with 95%
confidence that there is dose-response relationship.

This example is solved by using IBM-SPSS package and the steps are as follows:
Example S7-5

o Enter the data in the following manner.

Q Dose @Responsay) Dose Response
1 1 I High  Diarthea
2 Pl o1 2 High  Diarthea
3 8 PN _1| 3 High Diarrhea
4 N 1 | 4 High Diarthea
5 ]I_ W 1 5 High Diarrthea
G A 1| 1 6 High Diarrhea
_T A 1 1 7 High Diarrhea
B 1 1 8 High Diarrhea
9 _+ 1 1 o High Diarrhea
10 1 1 10 High Diarrhea
1 ' 1 1 1 High Diarrhea
12 1 1 12 High Diarrhea
13 1 2 13 High' Mo diarthea
14 1 2 14 High Mo diarthea

(up to row 200)

The Variable View is as follows:

J Name Type Width Decimals Label Values Missing Columns Align Measure Role
Dose Numeric 8 0 Dose {1, High}...  None 9 = Right &> Nominal “w Input
Response MHumeric 8 0 Response {1, Diarrhea} . None 8 = Right & Nominal “ Input
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The labels are defined as:

Dose Response
rValue Label rValue Label
Label: | | Label: | \
1="High™ 1="Diarrhea”

2="Recommended”
3="Low"

2="MNo diarrhea”

(Lo cancat | _nap | (o J[cancet [ ep

To proceed for analysis

Click Analyze then click Descriptive Statistics and then click

Analyze-> Descriptive Statistics> Crosstabs ...

File  Edit View Data Transform
= F
Sl a2 I e

| Dose " Response

Descriptives..
£, Explore.. F

TURF Analysis
Ratio...
[ P-P Plots
Q- Plats...

dio | L R

We click on

o) E Chi-square Correlations
& Dose [Dose] =

Column(s) Caontingency coeflicient Gamma

&5 Response [Response] E Phi and Cramer's V Somers'd
£3 T

Lambda Kendall's tau-b

Layer 1 of 1 Uncertainty coefficient Kendall's tau-c
Next rNominal by Interval Kappa
E] Eta Risk
McNemar

[ Display layer variables in table layers ;Com@n's and Mantel-Haenszel stafistics
Display clustered bar charts Test common odds ratio equals: |4

Suppress tables

(Lo o) g o) o
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Now click on and on , to get the following output:

SPSS output
Chi-Square Tests

Asy mp. Sig.
Value df (2-sided)
Pearson Chi-Square 5.5252 2 .063
Likelihood Ratio 5.313 2 .070
Linear-by-Linear
Associa{ion 5.137 1 023
N of Valid Cases 200

a. 0 cells (.0%) hav e expected count less than 5. The
minimum expected count is 7.25.

Symmetric Measures

Asy mp.
Value Std. Errof Approx. 1b Approx. Sig.
Nominal by Phi .166 .063
Nominal Cramer's V .166 .063
Interv al by Interval Pearson's R 161 .069 2.290 .023¢
Ordinal by Ordinal Spearman Correlation .161 .069 2.290 .023¢
N of Valid Cases 200

a. Not assuming the null hy pothesis.
b. Using the asy mptotic standard erfor assuming the null hy pothesis.

C. Based on normal approximation.

There is a simple way to calulate y2,, i$:as;
2 2
Awmn = (N-1) 15 (7.12)

where r is the correlation coefficient between two attributes, n is the total number of
frequencies. Here n'= 200, r=0.161, thus

Yiw = (200 - 1) (0.161)° = 5.158

which gives little different result as in manual calculation some approximations are
involved. We can also apply if both variables are linear or on ordinal scale.

Note, that failure to consider the ordinal nature of the exposure variable in the analysis
would thus have led to a loss of statistical efficiency. In these types of situations, Mann-
Whitney-U-test can be used. This will be discussed in Chapter 8.
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7.7 Testing the Statistical Significance of Relative Risk

and Odds Ratio
In this section, a great deal of discussion is devoted to definition, estimation and
statistical significance of relative risk and odds ratio. The theoretical background of the

relative risk and odds ratio are not discussed as this has been given in detail in books on
epideomology.

7.7.1 Relative Risk (RR) Estimate

Relative risk is a measure of the association between exposure to a particular factor and
risk of a certain outcome. For two dichotomous variables viz. exposure (E) and disease
(D), the relative risk (RR) estimate in 2x2 table is defined as

_ P[D=yes/E=yes]
P[D =yes/E = No]

RR

_ risk of disease if exposed to therisk
risk of disease if not exposed to therisk

_ incidence of disease in exposed group
incidence of disease in non - expesed group

Consider a 2x2 table

Table 7.21
Disease
D D Total
E a b a+b
Exposed E c d c+d
Total atc b+d atb+c+d
where: E = exposed, E = not exposed
D = disease; D"=no disease
and a, b, c, d are frequencies in the relevant cells.
= M = & where p; = and p2 = L (713)
c/c+d) p, a+h c+d

Note that relative risk is calculated for cohort, longitudinal or experimental studies.
Relative risk does not measure the probability that someone with this factor will develop
the disease but it measures the strength or magnitude of exposed-outcome association.
The greater the value of RR the stronger the association between exposure and disease to
risk factor. If the value of RR is 1, this indicates that exposure and disease are unrelated.
If the value of RR is less than 1, this indicates that there is a negative association between
exposure and the disease. If the value of RR is greater than 1, this indicates that there is a
positive association between exposure and disease. In case-control study, the relative risk
cannot be calculated directly. Therefore, in case-control study risk can be estimated by
the odds ratio. It acts as an approximation to the relative risk.
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7.7.2 Odds ratio

If the two possible states of the variable are labeled success and failure, then the odds
ratio is a measure of the odds of a success in one group relative to that in the other.

The steps in the calculation of odds ratio are given below:
Consider the data in Table 7.22.

Table 7.22
Case Control Total
E a b atb
E C d c+d
Total at+tc b+d atb+c+d
(i Rate of exposure in cases = 2 (7.14)
a+c
. . b
(ii)  Rate of exposure in controls = —— (7.15)
b+d
(iif) ~ The odds that an individual exposed to the risk has the disease is
a/(a+b) = alb (716)
b/(a+b)
(iv)  The odds that an individual who_has not been exposed to the risk factor has the
disease.
C/(C+d) = c/d (717)
d/(c+d)
(v)  Odds of expasure in,cases= a/c.
(vi)  Odds efiexposure in controls = b/d.
(vii) OR= al@tb)  c/c+d) _ ad (7.18)
b/a+b) d/(c+d) bc
The odds ratio can directly be calculated from the table by using
or=2d (7.19)
bc

Note that relative risk is a ratio of two probabilities and the odds ratio is a ratio of two
odds.

7.7.3 Attributable risk (Risk difference, Rate difference)

It is a measure of association between exposure to a particular factor and the risk of a
particular outcome and is calculated as:

Incidence rate among exposed — Incidence rate among non-exposed
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In terms of a 2 x 2 table, it is calculated as:

AR= & __© (7.20)
a+c c+d

It measures the amount of the incidence that can be attributed to one particular factor.

Before we pass on to the statistical significance of relative risk and odds ratio, the
following steps should be kept in mind.

(a) General results

(i) If RR or OR is greater than 1, exposure is associated with increased risk of
outcome (positive association).

(i) If RR or OR is less than 1, it indicates that exposure protects against the
development of the outcome (negative association).

(iii) If RR or OR is equal to 1, exposure and outcome are independent (no
association).

(b) Warning

If any cell has zero frequency, then 0.5 is added.to each cell and odds ratio can be
calculated.

(c) Test of significance for relativesisk and.odds ratio

RR or OR may occur greater or_lessthan 1 by chance, if Hy is true. For this purpose, it is
advisable to test the significance as:

(i) Chi-square

(i) If RR or ORis greater than 1 and chi-square gives significant result, then
exposuresis.associated significantly with increased risk of the outcome.

(if) If RR orOR is less than 1 and chi-square is significant, there is a protection
of exposure against outcome.

(iii) If RR or OR is less than or greater than 1 and chi-square is non-significant
then RR or OR is by chance.

(ii) Confidence limits

The confidence limits of RR and OR are derived by Miettinen (1969). We may
construct 95% or 99% confidence limits for RR or OR. If the interval does not include
1, then RR or OR is statistically significant. The result can be interpreted on the basis
of the values of the RR and OR.

Example 7.13:
The data regarding cohort study of 200 smokers (cases) and 200 non-smokers (controls)
for occurrence of myocardial infarction (MI) are given in Table 7.23.
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Table 7.23
MI Mi Total
Smoker 32 168 200
alb
Nonsmoker c|d
15 185 200
Total 47 353 400

where MI = myocardial infraction and MI = no myocardial infraction
Calculate relative risk of myocardial infarction in smokers.
Solution:

MI in smokers = 32/200 = 0.16 (16%)

MI in non-smokers = 15/200 = 0.075 (7.5%)

R= 32/200 _ a/(a+b):2_13
15/200  c/(c+d)

This indicates that those who smoke have 2.13 times=more chance of myocardial
infarction than those who do not smoke.

AR = 32168 =0.681-0.476.= 0.205
47 353

(i) Testing of significance of relative risk
The significance of relative riskemay be tested by the method of chi-square. Confidence
limits can also be constructed for RR and AR.

Commonly, health scientists\use the confidence limits to draw inference. However, it is
advisable that method of chi-square’be used as this method has a general application and
is commonly understandable: Using formula (7.2)

» _ [32x 185 — 168 x 15] x 400
B 200 x 200 x 47 x 353

@ x = 6.97

The table value for 1 degree of freedom at 5% level of significance is 3.841. Since our
calculated value is more than the table value, therefore, the result is significant. Since

relative risk is greater than 1 and XZ gives significant result, therefore, smoking has
positive effect on myocardial infarction.

(i) Confidence limits

95% confidence limits of RR are

(i) (R _ (2139985 _11 5 373) (7.21)
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a o

1196 a+b,ord

(i) RRe @ ¢ —[119, 3.80] (7.22)

These limits do not include 1, so the value of the relative risk is not by chance. This can
also be calculated by using IBM-SPSS package. The entry of data is just like, the entry of

data for the calculations of XZ.
Example S7-6

e Enter the data in the following manner.

| Risk_factor || Response || Risk_factor || Response ||
1 1 1 1 Smaoker il
2 1 1 2 Smoker M
3 1 1 3 MI
4 1 1 4 il
E] 1 1 4] il
] 1 1 ] il
T 1 1 T il
8 1 1 8 I
9 1 1 9 il
10 1 1 MI
The Variable View is as follows:
| Name H Type H Width || Decimals H || Missing || Columns H Align || Measure H Role |
Risk_factor  Numeric 8 0 e} None 9 = Right & Nominal N Input
Response Numeric 8 0 Mone 8 = Right & Nominal “ Input
The labels are defined
Risk Factor Response
= x
Value Label! [ Value Label
Label: | ‘ Label: | |
1="8moker" ="
| Add 2="Non Smoker” | Add(|2="No M
| Change | Change
| Remove | Remove

To proceed for analysis

Click Analyze then click Descriptive Statistics and then click Cross-tab.
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Analyze—> Descriptive Statistics> Crosstabs ...
Move the variable “Risk factor (smoking)” to the Row(s):
Move the variable “Response (MI)” to the Column(s):

We click on and mark on “Phi and Cramer’s V” and on Risk”,

& Crosstabs _
@ ta Crosstabs: Statistics
Row(s):
= -Exact = —_
= &) Smoking [Risk_factor] [ Chi-square "] Correlations
Statistics
-& Mominal Ordinal
Cells
Column(s): [] Contingency coefiicient | | [C] Gamma
Format. o —
&) Myocardial infarction [R... g‘ 7 Somers' d
. B
[] Lambda [7] Kendall's tau-b
Bootstrap. — —
Layer 1 of 1 || Uncertainty coefficient |Z] Kendall's tau-c
Mominal by Interval || Kappa
- [Cleta (j‘l Risk
[ MeNemar
[E| Cochran's and Mantel-Haenszel statistics
[”] Display clustered bar charts st b L
[] Buppress tables
ontinu Cancel Help
(gl con L

Now click on and on , to,get the following output:

SPSSioutput forRelative Risk
Chi-Square Tests

Asymp. Sig. | Exact Sig. | Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 6.968° 1 .008
Continuity Correctiod 6.172 1 .013
Likelihood Ratio 72110 1 .008
Fisher's Exact Test .012 .006
Linear-by-Linear
Associa:'ion 6.950 1 .008
N of Valid Cases 400

a. Computed only for a 2x2 table

b. 0 cells (.0%) hav e expected count less than 5. The minimum expected count is
23.50.
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Symmetric Measures

Value Approx. Sig.

Nominal by Phi 132 .008
Nominal Cramer's V .132 .008
N of Valid Cases 400

a. Not assuming the null hy pothesis.
b. Using the asy mptotic standard error assuming the null

hy pothesis.
Risk Esti mate
95% Confidence
Interv al
Value Lower Upper
E)ld/d;)Ratlo for SMOKING 2349 1.299 4.491
For cohort myocardial = 1 2.133 1.193 3:815
For cohort myocardial = 2 .908 .845 .976
N of Valid Cases 400

The confidence limits calculated on the basistof. equation<7.22 matches with computer
output.

Example 7.14:

The director of community health‘for a certain state observes that women living in rural
parts of the state have a high rate.of miscarriage than women living in urban areas as they
are exposed to pesticides. The director takes 100 cases from the rural parts and 100 from
urban areas and both groups are followed up. The results are in Table 7.24.

Table 7.24
Miscarriage | Not Miscarriage total
Exposed 30 70 100
Not-exposed 10 90 100
Total 40 160 200

Calculate relative risk for the women who are exposed to pesticide.

Solution:
. L 30
Miscarriage in exposed group = 100 = 0.3 (30%)

Miscarriage in not exposed group =10/100 = 0.1 (10%)

30/100 _

R I t_ - k- d = =
elative risk in exposed group = -7
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Those women who are exposed to pesticide, have 3 times more chance of miscarriage
than those women who are not exposed to the pesticide.

The significance of relative risk may be tested by using formula Chi-Square, (7.2)

> _ [30x90 - 70x10]* x200 _
100x100x40x160

@ x 12.5

The 5% table value of chi-square with 1 degree of freedom is 3.841. The calculated value
is much greater than table value, therefore, the incidence of miscarriage in women
exposed to the pesticide differs significantly. Since relative risk is 3 and the value of chi-
square gives significant result, therefore, exposure to pesticides has three times more
chances of miscarriage.

The confidence limits for relative risks may be used to test the significance.

(i) 3HL96/V125 = [1 63 557

30 10

100, 100
(ii) 3ei1.96 30 10 = [1.55,5.80]

Both sets of confidence limits do not includey1, so the value of relative risk is not by
chance. IBM-SPSS Package may be used for calculations
7.7.4 Relative risk of matched-pairs

Paired matching is often used in observational ‘studies to reduce confounding. If pair
matching is used in the designgthe statistical.analysis will be more efficient (have greater
power of the test).

When both exposure and eutcome are dichotomous and the matching is by pairs, the
result can be expressed asiin Table 7.25.

Table 7.25
Non Smokers
Smokers M Mi
Ml A b a+b
Mi c d c+d
at+c b+d atb+c+d

where MI = myocardial infraction and MI = no myocardial infraction

Cells a and d represent those matched pairs in which both the exposed and non-exposed
members develop the same outcome, whereas cells b and ¢ represent those matched pairs
in which the members experience opposite results.
A .. a+c . .
The relative risk of matched pair is = P is a ratio of exposed to non-exposed matched
+

pairs. The chi-square relative risk of matched pairs may be calculated by using (7.9):
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The matched-pair 2 -test, [also called McNemar y? test], is the test generally used for
comparing proportions in two pair matched groups. It is analogous to categorical data of
the paired t-test (discussed in Chapter 4) for continuous variables.

Example 7.15:
Calculate the Relative Risk from Example 7.9 and test its significance.
Solution:
The relative risk of matched pairs is
7+29 36
RR =—= —==171
Matched 7414 1

Therefore, smokers have 1.71 time more chance of myocardial infarction than non-
smokers.

L2 _ (b-cf
M) “McNemar = e

(7.9)

_ (14-29)?
14+ 29

=5.233

The 5% table value of x* at 1 degree of freedomiis 3.841. The calculated value of
chi-square test, is greater thanthe'table value, therefore, result is significant. Since
RR is greater than 1 and the value ofichi-square gives significant result, therefore,
smokers have 1.71 times more.chance of myocardial infarction than non-smokers.

(i) Confidence limits (using formula 7.21)

(1.71)195¥823% 5111 08, 2.69]

This doestotrinclude 1, therefore. The result is significant and smokers have 1.71
times more chance of Myocardial Infarction than non-smokers.

When the expected frequency in any cell is less than five, then correction factor
(Yates” Correction) may be used in the calculation of chi-square as explained in
sub-section (7.4.5).

7.7.5 Odds ratio and tests of significance

As we know that odds ratio is calculated for case-control study. It is assumed that the
[exposure = yes, disease = yes] cell is on the main diagonal of a matrix.

Example 7.16:
We have taken an hypothetical example to show how odds ratio is calculated. The data is
given in Table 7.26.
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Table 7.26
Smokers
Non Smokers Case Coltrol Total
Ml MI
MI a=90 b =40 a+b=130
Ml c=10 d=60 c+d=70
Total a+c=100 b+d=100 | a+b+c+d=200
Solution:

Rate of exposure in cases: a/(a + ¢) = 90/100 = 90%
Rate of exposure in controls: b/(b + d) = 40/100 = 40%
Using (7.19)

Odds ratio = 90 < 60 =135

x 10

This shows that smokers have 13.5 times moreschance of,developing myocardial
infarction than non-smokers.

(i) Test of significance
(a) Using the method of chi-square

» _ (90x60 — 40x10)*200
130x70x100x100

=549

Since calculated value of chi-square gives significant result, therefore, we say
with 95% confidence that smokers have 13.5 times more chance of myocardial
infarction than nen-smokers.

(i) Confidence limits (using,7.21), we get

(i) (L3.5)196¥542 o 16,87, 26.55]

1111
+1.96, | —+—+—+—
(ii) (OR) e abecd

11 1 1

(7.23)

+1. +—+—+
(13.5)e 190 4010 60 gor [6.275 ~ 29.04]

This does not include 1, therefore, we confirm our previous result.
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Example S7-7

e Enter the data in the following manner.

MNon_smokers | Smokers Non_smokers | Smokers

1 1 1 1 Case MI
2 1 1 2 Case Ml
3 1 1 3 Case MI
4 1 1 4 Case M
[ 1 1 5 Case MI
T 9 9 6 Case MI
7 9 9 7 Case MI
3 1 1 8 Case MI
g 1 1 9 Case MI
10 1 1 10 Case I
(up to row 200)
The Variable View is as follows:
Hame Type Width | Decimals Label Values Missing | Columns ||7A\ign7 Measure Role
MNon_smokers Numeric 8 0 Myocardial infarction {1. Case}... Nunei 9 a4 & Nominal N Input
Smokers Numeric 8 0 Myocardial infarction {1, MI}... None 5 & Nominal N Input

To proceed for analysis

Click Analyze then click Descriptive Statistics and theni¢lick Cross-tab.
Analyze-> Descriptive Statistics>.Crosstabs ...

Move the variable “Non-smoking” to,the Row(s):

Move the variable “Smoking” to the Column(s):

File  Edit \iew Datal | Transform Direct Marketing ~ Graphs  Utilities  Add-ons  \
=1_1E) v (L | 6 2
e —— — || Descriptive Statistics * 1 [ Frequendies...
142 : Smokers 2
— l = LGS 4 E Descriptives...
MNonysmokers | Smokers Compare Means »
== e A Explore...
1 1 1 General Linear Model »
A - @ Crosstabs.. 1
2 1 1 Generalized Linear Models r
3 1 1 ) TURF Analysis
Mixed Models » )
4 1 1 Correlate » EEm
5 1 1 TevEseT | PP Plats..
6 1 e y |EoaPits..
7 1 1 T

We click on and mark on “Cochran’s and Mentel-Haenszel statistics”,
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(7] Crosstabs ta Crosstabs: Statistics
Rowls: W iChi-square {[F] Correlations
& Myﬂl:afd\a‘ infarction [N = i ok
- Mominal Ordinal
Column(s): [7] Contingency coefiicient| | [] Gamma
= &> Wyocardial infarction [S [”] Phi and Cramer's V ] Somers' d
[] Lambda [] Kendall's tau-b
Layer 10f 1 [7] Uncertainty coefficient [] Kendall's tau-c
Nominal by Interval [] kappa
] Eta [ Risk
- - I
[C] McNemar

| Display clustered bar charts

| Suppress tables

[¥/] Cochran’s and Mantel-Haenszel statistics

Test common odds ratio equals:
|Con£ f: Cancel Help

Now click on and on , to get the following output:

Mantel-Haenszel Common Odds Ratio Estimate

Estimate

In(Estimate)
Std. Error of In(Estimate)
Asymp. Sig. (2-sided)

Asymp. 95% Confidence
Interval

Commaon Odds Ratio

InfCommon Qdds Ratio)

6.275 )
29.043 4

1.837

3.369

Lower Boun
Upper Bound

The Mantel-Haenszel common adds ratio estimate is asymptotically normally
distributed under the.common otlds ratio of 1.000 assumption. Sois the natural log

of the estimate.

7.7.6 Matched analysisiin.case-control study

A matched analysis inycase-control is similar to the analysis of matched Cohort studies

with dichotomous exposure and outcome.

Example 7.17:

Data regarding case-control study of breast feeding (BF) as a possible protective factor
against subsequent gastroenteritis (intestinal infection) in first year of life in 100 pairs
(200 total subjects) of infant matched for age, sex and socio-economic status is given in

Table 7.27.
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Table 7.27
Cases

BF BF Total
BF 6 26 32

Controls alb

c|d
BE 9 59 68
Total 15 85 100

Calculate the odds ratio for case-control study.

Solution:
The matched odds ratio is defined as the ratio of the number of pairs discordant for
exposure history i.e.

9
ORMatched = £ = 2 =035 (7.24)

Since OR is less than 1, so we say that breast-feeding has a protective effect against
gastroenteritis.

(i) Test of significance
(a) Using chi-square
Matched pairs: McNemar test is used to calculate chi-square.

2 _ (b-0’ ¢ (9-26)2 1289

- =8.25
McNemar bic. 0+26) 35

(i) Confidence limits
(0.35)"1-9%8-2500r 10,17, 0471]

This does not includend;, therefore, result is significant and we confirm our above
findings.

7.8 Relation between odds ratio and relative risk

The physicians’ health study research group at Harvard Medical School takes the
following data from a report on the relationship between aspirin use and myocardial
infarction. The physicians’ study was a five-year randomized study testing whether intake
reduces mortality from cardiovascular disease. Physicians were blind in the study and did
not know which type of pill they were taking. The results are given in Table 7.28.

Table 7.28
Myocardial Infarction
Group Yes No Total
Placebo 189 10845 11034
Aspirin 104 10933 11037
Total 293 21778 22071
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Solution:
p, = 189/11034 = 0.0171; p,=104/11037 = 0.0094

The estimated standard error is (see Chapter 3)

=0.0015

J0.0l?l x 0.9829 N 0.0094 x 0.9906
11034 11037

The 95% confidence limits are
0.0171 - 0.0094 + 1.96 x 0.0015 or [0.005, 0.011]

Since this interval contains only positive values, we conclude that taking aspirin reduces
the risk of myocardial infarction.

The odds ratio for aspirin study is

_ (189)(10933) _
(104)(10845)

1.832

The estimated odds of myocardial infarction for physicians taking placebo equal 1.832
times the estimated odds for physicians taking aspirin. The estimated odds were 83.2%
higher for the placebo group.

A sample odds ratio of 1.832 does not mean thatp, is'2:832 times p,; that would be the
interpretation of a relative risk. The relative risk will:

_189/11034 _ 0.0171
104/11037 ~ 0.0094

The relationship between odds ratio and relative risk is given as:

=1.819

Consider OR = %% and RR = a/(a+b)

c/(c+d)
Then odds ratio = ad = Relative risk afc+d) (7.25)
bc b/(a+b)
=1.832=1.819x 09906 _ 1.833
0.9829

When the proportion of success is close to zero for both the groups, the fraction in the last
term of this expression approximately equals to 1.0, then odds ratio and relative risk take
similar values. In the above table for each group, the sample preparation of myocardial
infarction cases is close to zero. Thus, the sample odds ratio of 1.83 is similar to the
sample relative risk of 1.82. In such a case, an odds ratio of 1.83 does mean that
P, [: a/(a+b)] is about 1.83 times p, [: c/(c+d)]- The relationship between the odds

ratio and the relative risk is useful as for some data sets, calculation of relative risk is not
possible, yet one can calculate the odds ratio and use it to approximate the relative risk.
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7.9 Mantel-Haenszel Procedure for Relative Risk and Odds Ratio

When exposure and outcome variables are all categorical and the number of variables is
small, stratification is usually the procedure of choice. We have seen in Chapter-3 that
stratification controls sampling error. Here a more commonly used approach is the
Mantel-Haenszel procedure in which the result from each stratum are weighted
approximately according to the sample size of stratum to yield an overall relative risk or
odds ratio.

The Mantel-Haenszel procedure is the most appropriate and widely used technique for
controlling a small number of categorical confounding factors. As the number of
confounding factors increases, the computations become difficult, moreover, there may
be some loss of control when continuous confounding variables are arbitrarily
categorized. For these situations multiple logistic regressions (to be discussed in Chapter-
8) is commonly used for multiple confounding factors. Note that Mantel-Haenszel tests
are generally not affected by tables with zero cell.

Example 7.18:
For a Cohort study, data of success (S) and failure (F)-for two medical treatments (T 1 and

T2) which may control confounding variable. (gender) are given below in Table 7.29.

Table 7:29
Outcame
Treatment S F Total
T1 40 60 100
T2 60 40 100
Total 100 100 200
Compare T, and T, and test its significance.
Solution:
40/100
Using (7.13), the relative risk of success [T1, T2] = =0.667.
g(7.13) [T1, T2l 50/100

This shows that T1 is less efficient than treatment T2. The crude relative success of T,

versus T, is 0.667, which may be biased by the confounding effect of sex. To test its
significance, the chi-square is calculated using (7.2).

) (40 x 40 — 60 x 60) 200

= 8.000
X Pearson 100 x 100 x 100 x 100

Since 5% table value for 1 degree of freedom is 3.841, therefore, the result is significant.
We say that success of T, is as less efficient than T»,.

If the data is stratified by sex, then relative risks for each gender are as follows:
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Table 7.30
Stratification of data by sex
Treatment Males Females
S F Total S F Total
T, 24 3 27 16 57 73
T, 58 30 88 2 10 12
Total 82 33 115 18 67 85
24127
RR (males) of success (T1, T2) = ——— =1.349
( ) (T1, T2) =3/88
RR (females) of success (T1, T2) = 126//% =1.315

In males, treatment T1 is 1.349 times more effective than T2 _ln females, treatment T1 is
1.315 times more effective than T».

This means that relative success rate T1 versus T2 has almost equal effect on both sexes.

Example S7-8

o For the data given in table 7.30, Enter the.data in the following manner.

Gender Treatments Result l Gender Treatments Result

1 1 1 1 ¥V 4 Male il Success

2 1 1 1 A E Male TI  Success

3 1 1 1 A 3 Male TI  Success

4 1 1 1 4 Male T Success

5 1 1 1 5 Male ™ Success

6 1 1 1 ] Male T Success

7 1 1 1 T Male ™ Success

8 1 1 1 8 Male T Success

q 1 1 1 9 Male T Success

10 1 1 1 10 Male ™ Success

(up to row 200)
The Variable View is as follows:

Name Type Width | Decimals Label Values Missing Columns Measure Role
1 Gender Numeric 8 0 {1. Male}..  None 8 & Nominal N Input
2 Treatments  Numeric 8 0 Medical treatments {1, T1}. None 9 &5 Nominal N Input
3 Result Numeric 8 0 {1. Success... None 8 & Nominal v Input

To proceed for analysis for table 7.29 (regardless of gender),
Click Analyze then click Descriptive Statistics and then click Cross-tab.

Analyze-> Descriptive Statistics> Crosstabs ...



Hanif, Ahmad and Abdelfattah 343

File Edit View Data Transform

S5HE r'{

Utilities  Add-ons )

132:
| | I Descriptives. ..
| Gender " Treatments Compare Means > & Explare
1 1 1 General Linear Model » =
&
2 1 1 Generalized Linear Models 3 w
3 1 1 _ TURF Analysis
Mixed Models L
4 1 1 Correlate 2 Ratlo...
5 1 1 S | P-PPIdts...
lII 1 1 Loglinear » |[E o0Pts..

Move the variable “Treatment” to the Row(s):

Move the variable “Result” to the Column(s):

We click on [88is] and mark on “Chi-square” and “Risk?,

Row(s):
| Gender | E &> Medical lreatments [Tre... [T] Correlations
Ordinal
Column(s) El Gamma

&b Result [ Somers'd
[[] Kendalr's tau-b

[7] Uncertainty coefficient [] Kendall's tau-c

Layer 1 of 1

Previous

rNominal bylnteNaIA || Kappa
[ Eta Risk
[] McNemar

[T Cochran's and Mantel-Haenszel statistics

[C] Display clustered bar charts Testcommon odds ratio equals: |4

[T Suppress tables

Now click on W and on @ to get the following outputs:

Risk Estimate
95% Confidence Interval
Value Lower Upper
Odds Ratio for Medical
s Ratio for Medica 444 962 783

treatments (T1/T2)

For cohort Result=
Success
Forcohort Result=

Failure
M ofValid Cases 200

500 .8a0

1.500 1.124 2.002
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Chi-Square Tests

Asymp. Sig. Exact Sig. (2- Exact Sig. (1-
YValue df (2-sided) sided) sided)
Pearson Chi-Square ( B_UUUf) 1 005
Continuity Correction” 7.220 1 .oo7
Likelihood Ratio 5.054 1 .0os
Fisher's Exact Test .oo7 004
M ofvalid Cases 200

a. 0 cells (0.0%) have expected count less than 5. The minimum expected countis 50.00.
b, Computed only for a 2x2 tahle

The results are exactly as given by hand calculation.

=
Now to proceed for analysis for table 7.30, we first split the fileusing E= according to

the gender, as follows:

& Wedical treatments [

&b Result

Current §

Now, click Analyze then click Descriptive Statistics and then click Cross-tab.

Analyze-> Descriptive Statistics> Crosstabs ...

File  Edit View Data Transform alyze irect Marketing ~ Graphs  Utilities  Add-ons !

. B Repors »
HHE 2 : =
: — EScrip] atistics [ Frequencies...
132:
| | Tables g Descriptives...
| Gender || Treatments Compare Means » Cizma
1 1 1 General Linear Model » =
= Crosstabs... |
2 1 1 Generalized Linear Models > “
3 1 1 ) TURF Analysis
Mixed Models (4
Ratio...
& 1 1 Correlate 3 natio
b 1 1 Regression N | P-P Plots...
6 1 1 Logiinear y |[E oaPiots..

Move the variable “Treatment” to the Row(s):
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Move the variable “Result” to the Column(s):

We click on and mark on “Risk”,

Row(s): A — )
@ Gender & Wedical trealments [Tre.. - € et | CoITEIMIONS
Statistics..
w ~Nominal Ordinal
I5...
Columnis) [] Contingency coeflicient| | [[] Gamma
& Result [] Phi and Cramers \/ ] somers’ d
9 = =
an [] Lambda [] Kendall's tau-b
Layer 1 of 1 [] Uncertainty coefficient [] Kendall's tau-c

N\ [C] Kappa
[ Eta ﬁ Risk

[] McNemar

rNominal by Interval

M Display layer variables in table layers [T Cochran's'and Mantel-Haenszel statistics
[7] Display clustered bar charts 1 ndde ratin amale
[C] Suppress tables

Now click on and on @ to get the following.outputs:

Medical treatments * Result Crosstabulation

Count
Fesult
Sender Success Failure Total
Male Medical treatments  /T1 24 3 27
T2 58 30 a8
Total a2 33 115
Female  Medical treatments  T1 16 ar 73
T2 2 10 12
Total 18 67 85
Risk Estimate
95% Confidence Interval
Gender Yalue Lower Upper
Odds Ratio for Medical
Male 4138 1152 14.862

treatments (T1/ T2)

Forcohort Result=
Suceass 1103 1649

Forcohort Result=

Failure 328 108 o8
M of Valid Cases 115
Female Odds Ratio for Medical 1,404 275 7 0GR

treatments (T1/7T2)

Forcohort Result=
Success 345 5.008

Forcohort Result=
Failure

M ofvalid Cases 24

937 a08 1.241

The results are exactly as given by hand calculation.
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7.9.1 Mantel-Haenszel relative risk

The relative risk is calculated as

_ Xaj(c; +d;)/n,

" S (a; +by)/n; (7.26)

RRMH

The Mantel-Haenszel relative risk analysis combines the stratum-specific result to yield
an un-confounded overall result. Using (7.28) we get

24(58-+30) _ 16(2+10)

115 85  _
=134
58(24+3) N 2(16+57) 3
115 85

This is not very much different from the relative risk of males and females.

RRMH =

7.9.2 Mantel-Haenszel chi-square

As we know that this is a method of controlling_confounding infstratification. This
requires that the confounder be categorical variable. If it isscontinuous, categorized, the
formula of chi-square given by Mantel-Haenszel for the significance of Mantel-Haenszel
relative risk is

2
{Zaidi —bici}
. Ni (7.27)
MH 5 NiiC1iCoi
(n; —1)“i2

with 1 df, where ry; and r,; are row totals for different strata and cq; and ¢y are column
totals for different strata.\Using,(7.27), we get.

{24x30—58x3+16x10—57x2}2
2 115 85 _
AMH = 57 88%82x33 73x12x18x67 =468

2 + 2
114 x (115) 84 (85)

which is more than 3.841 (table value). The result is significant, we say that gender does
not play role as confounder. We conclude that the higher success rate of T, observed in
the sample arose was by chance.

The output of SPSS Package is given as below there are some minor difference in the
result, which is due to approximation in manual calculations.
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Tests for Homogeneity of the Odds

Asymp. Sig.

Statistics Chi-Squared df (2-sided)
Conditional Cochran's- 4.703 1 .030
Independence Mantel-Haenszel 3.819 1 051
Homogeneity Breslow-Day- 1.096 1 .295
Tarone's 1.092 1 296

Under the conditional independence assumption, Cochran's statistic is

asymptotically distributed as a 1 df chi-squared distribution, only if the number of
strata is fixed, while the Mantel-Haenszel statistic is always asymptotically
distributed as a 1 df chi-squared distribution. Note that the continuity correction is
removed from the Mantel-Haenszel statistic when the sum of the differences

between the observed and the expected is 0.

347

The p-value for 5% degree of freedom for two tailed is 0.030 for one tailed will be

2x 0.030 =0.06
Risk Estimate
95% Confidence
Interv al
Sex Value Lower Upper
Males Odds Ratio for
Treatment (T1/ T2) 4.138 1.152 14.862
For cohort Males'='S 1.349 1.103 1.649
For cohort Males = F .326 .108 .985
N of Valid Cases 115
Females  OddsRatio for
Treatment (T1 /T2) 1.404 .279 7.066
For cohort Females =S 1.315 345 5.008
For cohort Females = F 937 708 1.241
N of.Valid Cases 85
Mantel-Haenszel Common Odds Ratio
Estimate 2.853
In(Estimate) 1.048
Std. Error of .507
Asymp. Sig. (2-sided) .038
Asymp. 95% Confidence  Common Odds Lower Bound 1.057
Interval Ratio Upper Bound 7.699
In(Common Lower Bound .056
Odds Ratio) Upper Bound 2.041

The Mantel-Haenszel common odds ratio estimate is asymptotically normally

distributed under the common odds ratio of 1.000 assumption.
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7.9.3 Mantel-Haenszel odds ratio

For case-control study the odds ratio is calculated as:

a;d; /n;
OR = 11 |
MH zbic; /n;
Example 7.19:
A hypothetical data regarding coffee drinkers and renal cancer are as:
Table 7.31
Renal Cancer
Coffee drinker RC RC Total
CD 400 333 733
CD 100 167 267
Total 500 500 1000
Solution:
Using (7.19), the odds ratio is
_ 400 x 167 2006
100 x 333
Using (7.2), the chi-square is
2
> _ (66800 —33300)“1000 5 9

X = 733 % 500 x 50050267

Analysis of Categorical Data

(7.28)

Since y” is significant, OR is 2; therefore, coffee drinkers have double the risk of renal

cancer than non-coffee drinkers.

We take smokingrasiconfounding factor. The data for smokers and non-smokers are given

as:

Table 7.32
Stratification of data according to smokers and non-S smokers

Smokers non-smokers
RC RC Total RC RC Total
CD 350 80 430 50 253 303
CD 75 20 95 25 147 172
Total 425 100 525 75 400 475

The odds ratios for smokers and non-smokers are 1.17 and 1.16. The Mantel- Haenszel

the odds ratio using (7.28) is:

350 x 20 N 50 x 147

_ 525 475
ORMH = 50575 | 253x 25
525 475

=1.16
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Using (7.27), the chi-square is
%2y =0.619

Since at 5% level of significance, the calculated value of y* value is less than the table
value, therefore, OR > 1 is by chance, therefore smoking does not play any role as
confounder.

Here is the results using IBM-SPSS:
Example S7-9

o For the data given in table 7.32, Enter the data in the following manner.

Smoking Coffee Renal Smoking Coffee Renal

1 1 1 1 1 Smoker Yes Yes

2 1 1 1 2 Smoker Yes Yes

3 1 1 1 3 Sfhoker Yes Yes

4 1 1 1 4 Emukﬂ y Yes Yes

5 1 1 1 5 Smoker Yes Yes

6 1 1 1 B A Smoker 7 Yes Yes

7 1 1 1 ?_ Smok;'— y Yes Yes

8 1 1 1 8 Smoker Yes Yes

g 1 1 1 L 9 + ETnol-cer Yes Yes

10 1 1 1 10 Smoker Yes Yes

(up:to row 1000)

The Variable View is as follows:
J Name Type Width | Decimals |_smulabel _}L Valuesg Missing Columns Align Measure Role
Smoking MNumeric ] 0 y | {1 Smoker... None 3 Right &5 Nominal “ Input
Coffee Numeric ] 0 | | Coffee Drinker_ {1 Yes}... None 8 ight & Nominal “w Input
Renal Numeric 8 0 N Renal Cancer | | {1, Yes} Mane 8 Right &> Nominal “ Input

To proceed for analysis for table,7.31 (regardless of Smoking),
Click Analyze then click:Descriptive Statistics and then click Cross-tab.

Analyze-> Descriptive Statistics> Crosstabs ...

File  Edit View Data Transform {Analyze  |DirectMarketing  Graphs  Utilities  Add-ons )
= At . Reports » l .T% =
i Descriptive Statistics ¥ [FF] Frequencies...

Tables " | & pescriptives..

i 3
Smoking Coffee Compare Means A, Explore...

1 1 1 General Linear Model ' e

) 1 1 e e |
Generalized Linear Models L4 %

3 9 1 ) TURF Analysi
Mixed Models L4 )

4 1 1 Correlate » [ Ratio..

5 1 1 s » | P-PPIots..

6 1 1 oglinear v |EoQPriots..

Move the variable “Coffee” to the Row(s):

Move the variable “Renal” to the Column(s):
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We click on and mark on “Chi-square” and “Risk”,

Row(s):
& Coffee Drinker [Coffee]

¥ Chi-square [7] Correlations

@ Smoking |

rNominal————— [Ordinal

Column(s): ["] Contingency coefiicient [[] camma
&b Renal Cancer [Renal] [T] Phi and Cramer's V [[] Somers'd
|| Lambda || Kendall's tau-b
Layer tof l————————— = [7] Uncertainty coefficient [ Kendall's tau-c

rNominal by Interval

[ et

[7] Kappa

[7] McNemar

¥ Cochran's and Mantel-Haenszel statistics

["] Display clustered bar charis Test common odds ratio equals:

[C] Suppress tables

(C.) st o) ) gy

Now click on and on @ to get the following outputs:

Mantel-Haenszel Common Odds Ratio Estimate

Estimate —_— —_— .
In(Estimate) G96
Std. Error of In(Estimate) 147
Asymp. Sig. (2-sided) .000
Asymp. 95% Confidence Commaon Odds Ratio Lower Bound 1.505
Interval Upper Bound 2674
In{Camman COdds Ratio)  Lower Bound 409
Upper Bound 983

The Mantel-Haenszel common ddds ratio estimate is asymptotically normally
distributed under the eommonddds ratio of 1.000 assumption. So is the natural log
ofthe estimata.

Chi-Square Tests

Asymp. Sig. Exact Sig. (2- Exact Sig. (1-
Walue df (2-sided) sided) sided)

Pearson ChiSquare 22.037° 1 C o
Continuity Correction® 22287 1 oo
Likelihood Ratio 231268 1 .0oo
Fisher's Exact Test 000 .0oo
Pl pow | 1| ow
M ofValid Cases 1000

a. 0 cells (0.0%) have expected count less than 5. The minimum expected countis 133.50.
b. Computed only for a 2x2 tahle

The results are exactly as given by hand calculation.
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=
Now to proceed for analysis for table 7.32, we first split the file using E=2 according to
the Smoking, as follows:

& Coffee Drinker [Coff.. | ©
&5 Renal Cancer [Renal]

do not create groups

Organize output by groups

Groups Based on:

@ &5 Smoking

@ Sortthe file by grouping variables
© File is already sorted

Current Status: Analysis by groups is off.

Now, click Analyze then click Descriptive Statistics

Analyze-> Descriptive Statistics> Crosstabs ...

File  Edit View Data Transform |# 3 hs  Utilities  Add-ons

" DescripieStatistics ¥ | ) prequencies.

| Smaoking " ﬂi 3

Descriplives...
A Explore...

3
1 1 5
£ eralized Linear Models 3
g Wixed Models 3 -
4 Correlate r [ Ratio...
Z Regression y | EP-PPIots...
f Loglinear 3 B a-aPiots...

We click on

Row(s)

[~ Correlations

& Coffee Drinker [Coffee] E
@ Mominal Ordinal

& Smoking I

Column(s): [7] contingency coefficient [[] Gamma
[”| Phi and Cramers V "] somers' d

i &5 Renal Cancer [Renal]
[] Lambda [T] Kendall's tau-b

Layer 101 "] Uncertainty coefficient 7] Kendall's tau-c

Previous Next
MNominal by Interval Kappa
(%) e
[ McNemar

B Display layer variables in table layers Cochran's and Mantel-Haenszel statistics

[T Display clustered bar charts Testcommon odds ratio equals

[7] Suppress tables
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Now click on and on , to get the following outputs:

Risk Estimate
95% Confidence
Interv al
Sex Value Lower Upper
Smokers Odds Ratio for Treatment
(Coffee Drinker / 1.167 .673 2.022
Non-Cof f ee Drinker)
E‘;rnggrort Males = Ranal 1.031 921 1.155
For cohort Males =2 .884 571 1.368
N of Valid Cases 525
Non-Smokers  Odds Ratio for Treatment
(Coffee Drinker / 1.162 .690 1.957
Non-Cof f ee Drinker)
(F:c;rng;):]ort Males = Ranal 1135 730 1767
For cohort Males =2 977 .902 1.058
N of Valid Cases 475
Tests for Homogeneity of the Odds Ratio
Asy mp. Sig.
Statistics Chi-Squared df (2-sided)
Conditional Cochran's .621 1 431
Independence Mantel-Haenszel 476 1 .490
Homogeneity Breslow-Day .000 1 .992
Tarone's .000 1 .992

Under the conditional independence assumption, Cochran's statistic is

asy mptoticallyddistributed as a 1 df chi-squared distribution, only if the number of
strata is fixed, while the Mantel-Haenszel statistic is always asymptotically
distributed.as a 1 df  chi-squared distribution. Note that the continuity correction is
remov ed from the'Mantel-Haenszel statistic when the sum of the diff erences
between the observed and the expected is 0.

Mantel-Haenszel Common Odds Ratio Estimate

Estimate 1.164
In(Estimate) .152
Std. Error of In(Estimate) 193
Asy mp. Sig. (2-sided) 1431
Asy mp. 95% Confidence Common Odds Lower Bound 797
Interv al Ratio Upper Bound 1.700

In(Common Lower Bound -.226

Odds Ratio) Upper Bound .530

The Mantel-Haenszel common odds ratio estimate is asy mptotically normally
distributed under the common odds ratio of 1.000 assumption. So is the natural log of
the estimate.
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Example 7.20:

353

Calculate the odds ratio from the data given in Example 7.10. Also calculate odds ratio
using Mantel-Haenszel method.

Solution:
Table 7.33
City Sglg:(l:r;g I\_(Lér;g Car:\lcoer Total Odds ratio

S 126 100 226

1 S 35 61 96 2.20
161 161 322
[S 908 688 1596

2 S 497 807 1304 2.14
1405 | 1495 2900
[S 913 747 1660

3 S 336 598 934 2.18
1249 | 1345 2594
[S 235 172 407

4 S 58 121 179 2.85
293 293 586
S 402 308 710

5 S 121 215 336 2.32
523 523 1046
S 182 156 338

6 S 72 o8 170 1.59
254 254 508
S 60 99 159

7 S 11 43 54 2.37
71 142 213
S 104 89 193

8 S 21 36 57 2.00
125 125 250

126x 61/322 +....+104 x 36/ 250
ORMH = =

© 35x100/322+....+21x89/250

Testing the Significance

(i) Using %2 method
The Mantel-Haenszel chi-square has been calculated in Example 7.10 and is 280.2

2
which is much more than the table value of y for 1 df. Therefore, there is a strong
evidence that smoking causes cancer.
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(i) Using confidence limits

The formula for the calculation of standard error is very complex [Robinson et al.
(1996)] but SPSS Package is used to compute the standard error. 95% confidence
interval is (1.98, 2.38) which does not include 1. Therefore one can conclude that
smoking causes cancer.

The IBM-SPSS output for odds ratios and confidence limits is as:

Mantel-Haenszel Common Odds Ratio Estimate

Estimate

In(Estimate)

Std. Error of In(Estimate)
Asy mp. Sig. (2-sided)

Interv al

Asy mp. 95% Confidence Common Odds

2.174

77

.047

.000

Lower Bound 1.984

Ratio Upper Bound 2.383
In(CCommon Lower Bound .685
Odds Ratio) Upper Bound .868

The Mantel-Haenszel common odds ratio estimate'is asy mptotically normally

distributed under the common odds ratio of 1.000 assumption.,So is the natural log of

the estimate.

(The student has to check the results using IBM-SPSS)

7.10 Sensitivity, Specificity and Kappa-Statistic

7.10.1 Screening test

A test is reliable if it provides consistent result when performed more than once. The test
is valid if it correctly identifies those who probably have the disease (true positive) and
those who are probably free from disease (true negative). Validity is measured by both

sensitivity and specificity.

7.10.2 Validity of a'screening test

Consider the screening test results of patients in the 2x2 contingency table, where

P = patients with disease, P = patients with no diseases.

Table 7.34
Disease status
Screening test P P Total
Positive a=TP b=FP a+b
Negative c=FN d=TN c+d
Total a+c b+d a+tb+c+d

TP = true positive;

TN = true negative;

FP = false positive;

The result is positive and patient possesses the disease.
The result is negative and patient possesses no disease.
The result is positive and patient doesn't possess the disease.

FN = false negative; The result is negative and patient has disease.
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(i)

(i)

(iii)

(iv)

v)

(vi)

Sensitivity is the proportion of truly ill people in the screened population who
are identified as ill by the screening test. It is the ability of the test to identify
accurately those who have the disease. It is calculated as a/(a + c).

Specificity is the proportion of truly healthy people who are so identified by the
screening test. It is the ability of the test to identify accurately those who do not
have the disease. It is calculated as d/(b + d).

Positive predictive value (rate) is the probability of a person having the disease
when the test is positive. (This is also called predictive value of a positive test)

-

Negative predictive value (rate) is the probability of a person not having the
disease when the test is negative. (This is also called predictive value of a

negative test) | d/(c +d) | .
False positive rate is the proportion that a disease-free person has a positive test
result | b/(b+d) | .

False negative rate is the proportion thatta diseased individual will have a

negative test result | c/(c +d) | .

(vii) Prevalence of disease = (a+¢) / (a +b +ic +d)

Example 7.21:

In a BCP screening test of 1600 cancer for breast patients, the results are given below:
Table 7.35
Disease
Test Dt D Total
alb
Positive 570 150 720
TP | FS
cld
Negative 30 850 880
FN| TN
Total 600 1000 1600

Compute validity of screening test and discuss the result.

Test = BCP, Disease = Breast cancer

Solution:

(i)

- a
Sensitivity = —— = 570 =0.95 x 100 =95%
a+c 600
It shows that 95% of patients are correctly identified as cases of disease and 5%
are incorrectly identified as cancer patients.
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(if) Specificity = 4 = 850 =0.85 x 100 = 85%
b+d 1000
It shows that 85% of patients correctly identified as cases of free from disease.
. - a 570
(iii) Positive predictive value =——= ——=10.792 x 100 = 79.2%
a+b 720
0.792 is the probability of patients having the disease as the test result is
positive.
. . . d 850
(iv) Negative predictive value = —— = ——=10.966 x 100 = 96.6%
c+d 880
Since the test is negative 0.966 is the probability of not having the disease.
(V) False positive rate = L = 150 =0.15x 100 = 15%
b+d 1000
15% of the patients that are diseased free have a positive tést result.
. . c 30
(vi) False negative rate = ——= ——=0.034%"200 = 3.4%
c+d 880

3.4% of the patients that are diseased individual and have negative result.

a+c 57030 _ 600
a+b+c+d"\570+150+30+850 1600

(vii) Prevalence of disease= =37.5%

Since the sensitivity and specificity aresboth large whereas false positive and false
negative are small, therefore, the testiisasefuliand valid.
The IBM-SPSS package results are as follows:-
Example S7-10

o For the data given in table 7.35, Enter the data in the following manner.

Test Disease Test Disease
1 =|‘f‘ 1 1 1 Positive D+
2 0 1 1 2 Puositive D+
3 1 1 3 Positive D+
4 1 1 4 Positive D+
5 1 1 5 Positive D+
6 1 1 6 Paositive D+
7 1 1 7 Positive D+
8 1 1 8 Positive D+
9 1 1 9 Paositive D+
i 1 1 10 Positive D+
(up to row 1600)
The Variable View is as follows:
Name Type Width Decimals Label Values Missing Columns Align Measure Role
Test Numeric 8 0 {1, Positive}... MNone : Right & Nominal ™ Input

Disease Numeric 8 0 {1, D4} MNone 8 Right &5 Nominal “ Input
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Click Analyze then click Descriptive Statistics and then click Cross-tab.

Analyze—> Descriptive Statistics> Crosstabs ...

File Edit View Data Transform JAnalyze | Direct Marketing Graphs  Utiliies  Add-ons  \
: I T
SEe I e
| | Lallss Descriptives...
Test Di r
| es " Isease " Compare Means % Explore...
1 1 1 General Linear Model 4 1
n I
2 1 1 Generalized Linear Models > T —
3 9 9 . TURF Analysis
Wixed Models L . )
& 1 1 Correlate 4 Em
5 1 1 Teoessn » [ P-P Plots...
& 1 1 Loglinear » | EoaPits
7 A1 1 T

We click on 28] and mark on “Row” and “Column” Percentages;

Row(s) z-tes
- &b Test mpare column proportions
Adjust p-values (Bonferroni method)
Column(s).
&5 Disease
-

Layer 10f 1

[[] unstandardized

Previous

W Column
[7] Total

[[] Standardized
[7] Adjusted standardized

[T] Display clustered bar charts
[C] Suppress tables

(ox J(esste |

M Display layerv

Ples in table layers

rMNoninteger Weight:
@ Round cell counts @ Round case weights

© Truncate cell counts O Truncate case weights

© No adjustments

EuwﬁUEwUquJ

Now click on and-on @ to get the following outputs:

Test,* Disease Crosstabulation

Positive

Disease

predictive value
-

Test Fositive

Count
% within Test
% within Disease

Megative

Count
% within Test
% within Disease

False Positive rate

—— Sensitivity

[—

Total

Count
% within Test
% within Disease J

Negative
predictive value

r
I

'
False Megative rate

Specificity
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7.10.3 Diagnostic Tests (Sensitivity and Specificity)

The simplest diagnostic test is one where the results of an investigation, such as an x-ray
examination or biopsy, are used to classify patients into two groups according to the
presence and absence of symptom. For example, the following table (7.32) shows the
results of a test on a liver scan and the correct diagnosis based on necropsy, biopsy, or
surgical inspection. The data is given in Table 7.36.

Table 7.36
Results of liver scan and correct diagnosis
Pathology
Liver scan | Abnormal (+) Normal (-) Total
Abnormal (+) 231 32 263
Normal (-) 27 54 81
Total 258 86 344

How good is the liver scan as diagnosis of abnormal pathology?

One approach is to calculate the proportions of patients with nermal and abnormal liver
scans who are correctly diagnosed by the scan. The terms positive and negative are used
to refer to the presence or absence of the condition of interest; here abnormal pathology.
Thus there are 258 true positives and 86ytrue negative. The proportion of these
two groups that were correctly diagnosed' by the,scan were 231/258 = 0.895 and
54/86 = 0.628. These two proportions aresknown as sensitivity and specificity
respectively. We can thus say that, based on the sample studies, we would expect about
90% of patients with abnormal pathelogy to have abnormal liver scans, while about 63%
of those with normal pathologyswould have normal lever scans.

Sensitivity and specificity are one approach to quantify the diagnostic ability of the test.
In clinical practice, however, the test result is all that is known, so we want to know how
good the test is at predicting abnormality .In other words, what proportion of patients
with abnormal test.results are truly abnormal? The whole point of a diagnostic test is to
use it to make a diagnosis,’so we need to know the probability that the test will give the
correct diagnosis. Theisensitivity and specificity do not give us this information. Instead
we must approach the data from the direction of the test results, using predictive values,
i.e. positive predictive value and negative predictive value.

If we go back to the above table we see that 231 from 263 patients with abnormal liver
Scans had abnormal pathology, giving the proportion of correct diagnoses as 231/263 =
0.878 ~ 88%. Similarly, among the 81 patients with normal liver scans, the proportion of
correct diagnoses was 54/81 = 0.667 ~ 67%. These proportions are of limited validity,
however, the predictive values of a test in clinical practice depend critically on the
prevalence of the abnormality in the patients being tested. This may well differ from the
prevalence in a published study assessing the usefulness of the test.

In the liver scan study, the prevalence of abnormality is 258/344 = 0.75 ~ 75%. If the
same test was used in a different clinical setting where the prevalence of abnormality was
0.25 (25%), we would have positive predictive value of 0.45 and a negative predictive
value of 0.95. The rare the abnormality the more sure we can be that a negative test
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indicates no abnormality and the less sure that a positive result really indicates an
abnormality. Predictive values observed in one study do not apply universally. The other
ways of calculating the positive and negative predictive values (PPV and NPV) are:

sensitivity x prevalence
sensitivity x prevalence + (1 — specificity) (1 — prevalence)

PPV =

(7.29)

_ specificity x (1 — prevalence)
(1—sensitivity) x prevalence + specificity x (1 — prevalence)

NPV (7.30)

If the prevalence of the disease is very low, the positive predictive value will not be close
to 1 even if both the sensitivity and specificity are high. Thus in screening the general
population it is inevitable that many people with positive test results will be false
positive.

The prevalence can be interpreted as the probability that.the subject has the disease,
before the test is carried out, known as the prior probability of disease. The positive and
negative predictive values are the revised estimates of the same probability for those
subjects who are positive and negative on theftest and are<known as posterior
probabilities. The difference between the prior and posterior probabilities is one way of
assessing the usefulness of the test.

For any test result, we compare the probability of having a positive result the patient is
truly diseased with the corresponding probability if he or she were healthy. The ratio of
these probabilities is called likelihood ratio and'is calculated as

sensitivi
LR = ty

=7 7.31
1—specificity (7:31)

The likelihood ratio indicates the value of the test for increasing certainty about a positive
diagnosis. For the lever scan data.the prevalence of abnormal pathology was 0.75, so the
pretest odds of disease were 0.75/(1 - 0.75) = 3.0. The sensitivity was 0.895 and the
specificity was 0.628. The post-test odds of disease given a positive test is 0.878/(1 -
0.878) = 7.22 and thelikelihood ratio is 0.895/(1 - 0.628) = 2.41. The posttest odds of
having the disease can be'calculated as:

Pretest odds x likelihood ratio = 3.0 x 2.41 = 7.23.

A high likelihood ratio may show that the test is useful, but it does not necessarily follow
that the positive test is a good indicator of the presence of disease.

7.10.4 Kappa (Cohen's Kappa)-Statistic

In Chapter 6, we have discussed the method of correlation that is used to measure the
degree of agreement between two variables. Pearson's correlation coefficient is calculated
when the variables are continuous whereas Spearman's rank correlation (Chapter-8)
coefficient is used when the variables are ordinal.

For qualitative variables, a frequently used index of agreement between observers is
known as Cohen's Kappa coefficient (Cohen-1960). This measure has the desirable
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feature of showing how much more agreement there is than would be expected by
chance. Kappa has been extended to situations where more than one rater is to be
compared and where the variable is polychotomous rather than dichotomous (Fliess-
1981).

Kappa (K) statistic is calculated as:

P, — P,
1-P,

where Pg = observed proportion of agreement, and Pc = expected proportion of
agreement under the assumption of independence.
Landis and Koch (1977) provided the following guidelines for the evaluation of Kappa.

These guidelines are arbitrary but potentially useful benchmarks for evaluating observed
values of the Kappa coefficient. They are as follows:

Table 7.37

K Strengthsof,agreement
0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost perfect

In general practice K > 0.75 means excellent agreement; 0.4 < K < 0.75 means good
agreement; less than 0.4 means poor agreement (Fleiss 1981). This method is often used
to investigate the reliability of the €ategorical scale usually by evaluating agreement
between the two observers. lt.is not, however, an adequate measure of agreement since it
ignores agreement between thenobservers that might be due to chance. To illustrate the
problem we takesome.examples.

Example 7.22:

A diet questionnaire wasiadministered by male to 537 females on two different occasions
several months apart regarding beef consumption. The data regarding beef consumption
reported by 537 females at two different surveys are as:

Table 7.38
Consumption of beef
Survey 2 Total
= 1 serving/week | > 1 serving/week
= 1 serving/week 136 92 228
Survey 1 | > 1 serving/week 69 240 309
Total 205 332 537

Solution:
Since in the calculations expected frequencies are involved, therefore, these are
calculated as:
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Expected Frequencies
Survey 2

= 1 serving/week | > 1 serving/week Total
= serving/week 87 141 228
Survey 1 | > serving/week 118 191 309
Total 205 332 537

P, = % = (observed proportion of agreement) = 0.70

P.= % = (expected proportion of agreement) = 0.52
= 070052 _ 4 375 = 37.5%
1-0.52
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2
IBM-SPSS package is used to calculate Kappa, the data are entered.as for y statistic, as
in the following example;

Example S7-11

For the data given in table 7.38, Enter the'data inithe following manner.

I =7
1 1
2 1 @
3 1
4 1
5 N
6 \ ¢
b N -
8 1
. N ~ N
10 1

The Variable View is as follows:

S1
52

Name

Type
Numeric
Numeric

Width Decimals
8 0
3 ]

Label
Survey 1

S2.4

| S1 52
1 -~ O = senving/week =1 sening/week
1 __ 2V = senving/week =1 sening/week
A __ 3 = senvingfweek = 1 senving/week
1 74 = senvingfweek = 1 senving/week
1 5 = senvingfweek = 1 senving/week
| R 6 = senvingfweek = 1 senving/week
o 7 = senving/week = 1 senving/week
1 8 = senving/week = 1 senving/week
1 9 = senving/week = 1 senving/week
1 10 = senvingfweek = 1 senving/week
(up to row 537)
Values Missing Columns Align Measure
{1, = serving _ MNone 8 = Right & Nominal
{1.=1seni... None 8 = Right & Mominal

Survey 1

Click Analyze then click Descriptive Statistics and then click Cross-tab.

Analyze-> Descriptive Statistics> Crosstabs ...

Role
“ Input
N Input
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File Edit View Data Transform

Graphs  Utilities  Add-ons )

| Tables [&] Descriptives...
| 51 " 52 " Compare Means r A, Explore...
13 1 1 General Linear Model 4
i 1 1 Generalized Linear Models 3 e
15 9 1 TURF Analysis
Mixed Models P
| Ratio...
16 1 1 Correlate 3 _alo
17 1 1 TerEEsT v |EP-PPIots..
18 1 1 e y |Eoarits..

We click on (2] and mark on “Chi-square”, “Phi and Cramer’s V” and “Kappa”;

Row(s):

[[] correlations

E & Survey 1[S1]
% Ordinal
Cnlumn(s) ’D Gamma
E — [ somers'd
[7] Kendall's tau-b
Layer 10f 1 [] Kendall's tau-c
Previous Mext
Kappa
- ‘ [T Risk
[T] McNemar

I Display layer variables in table layers [] Cochran's and Mantel-Haenszel statistics

Test common odds ratio equals: |1

[ Display clustered bar charts
[T Suppress tables

(Lo ) Ceeste ) (moset ) (cance

Now click on @ and on E to get the following outputs:
SPSS output for KAPPA

Survey 1 * Survey 1 Crosstabulation

Count
Survey 1
=1 =1
seningiweelk seningiwesk Total
Survey 1 = seninaweek 136 92 228
= geningweek GY 240 309
Total 205 332 537
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Chi-Square Tests

Asymp. Sig. | Exact Sig. | Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 77.417° 1 .000
Continuity Correctior? 75.844 1 .000
Likelihood Ratio 78.396 1 .000
Fisher's Exact Test .000 .000
g::éigfio';'near 77.273 1 .000
N of Valid Cases 537

a. Computed only for a 2x2 table

b. 0 cells (.0%) hav e expected count less than 5. The minimum expected count is

87.04.
Symmetric Measures
Asymp. Std.

Value Error® Approx. T° | Approx. Sig.
Mominal by Mominal Fhi s e 380 .0o0
Cramer's ¥ 380 .0o0
Measure of Agreement  Kappa s 3are 040 8,794 .00o

M ofValid Cases 537
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a. Mot assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Since K = 37.8 %, therefore, according to scale suggested by Fliess (1981), there is a
poor agreement between the two related information. The. details of Kappa-statistic will
be discussed in Chapter 10. Phi (¢p)= 0.37969 is almostidentical to Kappa.

For some research workers, informal evaluation of observed Kappa values will not be
sufficient, instead they will be interested in, testing hypotheses about the population
Kappa. For this purpose standard error of Kappa needed to be calculated. Fleiss, Cohen
and Everitt (1969) derived an asymptotic,large sample variance of K. This is beyond the
scope of this book. The standard error and confidence limits for population Kappa may
be derived by using SPSS Package. This may be calculated as:

In the above example, the value of SE (K) = 0.040. Approximate 95% confidence limits
for population Kappa are

0.375 + 1.96 x 0,040 ~ [ 0.297 , 0.453].

Example 7.23:

The data regarding the agreement about the severity of byssinosis for first and second
examinations for 183 patients are given below. Calculate the agreement index between
two examinations.

Table 7.39
Agreement about the severity of byssinosis
2nd examination

Normal | Grade 1 | Grade 2 | Total

1% Normal 72 6 0 78

Examination Grade 1 6 47 17 70

Grade 2 1 14 20 35

Total 79 67 37 183
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Solution:
The expected frequencies (as required) are

2nd Examination
Normal | Grade 1l | Grade 2 | Total
1st Normal 33.7 78
Examination Grade 1 25.6 70
Grade 2 7.1 35
Total 79 67 37 183
Observed proportion of agreement = W =0.76
Expected proportion of agreement = %53(%71 =0.36
_ 0.76 - 0.36 62,50
1-0.36

According to the scale suggested by Fleiss (1981);sthere is.62.5% agreement that is
considered as good agreement. This table is 3x3, we ¢an calculate Cramer's VV which is
0.6227 (almost identical). This difference is because of zero'frequency in one cell.

IBM-SPSS package is used to calculate Kappa-statistic as follows:
Example S7-12

o For the data given in table7:33, Enter thedata in the following manner.

[first segond | first second
1 o @ 1 ) I 1 Mormal Mormal
2 1 1 2 Mormal Mormal
A N
3 o 1 1 3 Mormal Mormal
4 I 1 1 4 Mormal Mormal
s, 1 1 5 Normal Normal
6 4|_ 1 1 6 Normal Normal
7 1 1 7 Normal Normal
8 1 1 8 MNormal Normal
9 1 1 ] MNormal Normal
10 1 1 10 MNormal Normal
(up to row 183)
The Variable View is as follows:
| Name Type Width | Decimals Label Values Missing Columns Align Measure Role
first MNumeric 8 0 1st Examination {1, Mormal} . Mone 3 = Right & Nominal N Input
second Numeric 8 0 2nd Examination {1, Normal}... Mone 8 = Right & Nominal “ Input

Click Analyze then click Descriptive Statistics and then click Cross-tab.

Analyze-> Descriptive Statistics> Crosstabs ...
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File  Edit View Data Transform JAnalyze  |Direct Marketing  Graphs  Utiliies  Add-ons

é o, F
SEe M v =
Y = Descriptive Statistics |123 Frequencies...
|1B4 goccond | Tables b Descriptives
| first " second ” Compare Means » 'y Explore
1 1 1 General Linear Model » =
2 1 1 Generalized Linear Models 4 e
3 1 1 ) TURF Analysis
Mixed Models L
| Ratio...
4 1 1 Correlate b —
5 1 1 Regression y | EdP-PPIots..
6 1 1 LGrTTEE y |Eo-QPiots..

We click on [€eis. Jand mark on “Observed” and “Expected”;

{Fad X X
| | & 1ot Exammation s (Smstcs. | T AT TR
== E) d Adjust p-values (Bonferroni method)

Column(s) H&’
&> 2nd Examination [secon
.

Layer 10f 1 ‘
u
Previous Next Standardized
c ‘ Adjusted standardized
-
nteger Weight:

dcell counts @ Round case weights

Display layer variables in table layer;
W Display la © Truncate cell counts © Truncate case weights

Display clustered bar chars
© No adjustments

Suppress tables

¥ Chi-square Caorrelations

Mominal Ordinal

Gamma
Somers'd
Kendall's tau-p

Layer 1of 1 —————————— Uncertainty coefficient Kendall's tau-c
Previous Next
rMominal by Interval Kappa
- Eta Risk
Mchemar

[H Dispiay layer variables in table layers
Display clustered bar charts
Suppress tables

(Lo ) (sse ) mese ) (cancel] _nap |

Cochran's and Mantel-Haenszel statistics

Testcommon odds ratio equals: |4

Now click on @ and on ﬁ to get the following outputs:
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SPSS output for Kappa-statistic
EXAML * EXAM2 Crosstabulation

EXAM2
1 2 3 Total

1 Exam L Count 72 6 0 78
Expected Count 33.7 28.6 15.8 78.0

2 Count 6 47 17 70

Expected Count 30.2 25.6 14.2 70.0

3 Count 1 14 20 35

Expected Count 15.1 12.8 7.1 35.0

Total Count 79 67 37 183
Expected Count 79.0 67.0 37.0 183.0

Chi-Square Tests

Asy mp. Sig.
Value df (2-sided)
Pearson Chi-Square 151.9072 4 .000
Likelihood Ratio 173.160 4 .000
Linear-by -Linear
el e 109.463 q .000
N of Valid Cases 183

a. 0 cells (.0%) hav e expected count less than 5. The
minimum expected count is, 7.08:
Symmetric Measures

Asy mp.
Value Std. Erro ApPProx. Tb Approx. Sig.
Nominal by Nominal Phi 911 .000
Cramer's' V .644 .000
Measure of Agreement Kappa .623 .048 11.541 .000
N of Valid Cases 183

a. Not assuming the null hy pothesis.
b. Using the asy mptotic standard error assuming the null hy pothesis.

The 95% confidence, limits®for population Kappa is
0.623 +1.96 x 0.048 ~ (0.53, 0.72).

Example 7.24:
The joint ratings of the two clinicians (psychiatrists) regarding 118 patients have been
displayed in Table 7.40.

Table 7.40
Rating of two cliniciens

Psychiatrist 1
D1 D2 D3 D4 D5 Total
D1 22 2 2 0 0 26
D2 5 7 14 0 0 26
Psychiatrist 2 D3 0 2 36 0 0 38
D4 0 1 14 7 0 22
D5 0 0 3 0 3 6
Total 27 12 69 7 3 118
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Calculate the degree of agreement between the two clinicians.
Solution:
. 22+7+36+7+3
Observed proportion of agreement = =0.636
118
. 591+26+222+13+0.2
Expected proportion of agreement = =0.273
118
0.636 — 0.273
= —— X =0.499 =49.9%
1-0.273
The IBM- SPSS package is used and the output is as:
SPSS output for Kappa-statistic
PSYCH1 * PSYCH2 Crosstabulation
PSYCH2
1 2 3 4 5 Total
PSYCH1 | 1 Count 22 2 2 0 0 26
Expected Count 5.9 2.6 15.2 1.5 7 26.0
2 Count 5 7 14 0 0 26
Expected Count 5.9 2.6 15.2 15 7 26.0
3 Count 0 2 36 0 0 38
Expected Count 8.7 3.9 22.2 2.3 1.0 38.0
4 Count 0 1 14 7 0 22
Expected Count 5.0 2.2 12.9 1.3 .6 22.0
5 Count 0 0 3 0 3 6
Expected Count 1.4 .6 3.5 4 .2 6.0
Total Count 27 12 69 7 3 118
Expected Count 27.0 12.0 69.0 7.0 3.0 118.0
Symmetric Measures
Asy mp.
Value Std. Erro® | Approx. Tb Approx. Sig.
Measure of Agreement Kappa .498 .057 10.335 .000
N of Valid Cases 118

a. Not assuming the null hy pothesis.

b. Using the asymptotic standard error assuming the null hy pothesis.
The 95% confidence limits for population K may be calculated as:
0.49842 + 1.96 (0.05660)
or  (0.387 ~0.609)

the agreement between psychiatrist 1 and psychiatrist 2 is about 50% which according to

Landis and Koch (1977) is moderate.



368 Analysis of Categorical Data

Table 7.42:
Percentage points of the x2-distribution

P(x’,0<31.410) = .95

df Xz.oos X2.025 X2.05 X2.90 X2.95 X2 975 X2.99 X2.995

1 .0000393 |.000982 | .00393 | 2.706 3.841 5.024 6.635 7.879
2 .0100 .0506 .103 4.605 5.991 7.378 9.210 | 10.597
3 .0717 .216 .352 6.251 7.815 9.348 | 11.345 | 12.838
4 .207 484 711 7.779 9.488 | 14.143 | 13.277 | 14.860
5 412 .831 1.145 9.236 | 11.070 12.832 | 15.086 | 16.750
6 676 1.237 1.635 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548
7 .989 1.690 2.167 | 12.017 | 14.067 | 16.013 [<18.475 | 20.278
8 1.344 2.180 2.733 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955
9 1.735 2.700 3.325 | 14.684 | 16:919.| 19.023 | 21.666 | 23.589

10 2.156 3.247 3.940 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188
11 2.603 3.816 4.575 | 17.275,| 19.675 (21.920 | 24.725 | 26.757
12 3.074 4.404 5.226 | 18.549 | 21:026 | 23.336 | 26.217 | 28.300
13 3.565 5.009 5.892 | 19.812 { 22.362 | 24.736 | 27.688 | 29.819
14 4.075 5.629 6.571 | 21.064 | 23.685 | 26.119 | 29.141 | 31.319
15 4.601 6.262 7.261 |22.307 | 24.996 | 27.488 | 30.578 | 32.801
16 5.142 6.908 7.962 (| 23.542 | 26.296 | 28.845 | 32.000 | 34.267
17 5.697 7.564 8.672 1244769 | 27.587 | 30.191 | 33.409 | 35.718
18 6.265 8.231 9.3900 | 25.989 | 28.869 | 31.526 | 34.805 | 37.156
19 6.844 8.907 | 10.117 | 27.204 | 30.144 | 32.852 | 36.191 | 38.582
20 7.434 9.591 *|,10.851 | 28.412 | 31.410 | 34.170 | 37.566 | 39.997
21 8.034 10.283 | 11.591 | 29.615 | 32.671 | 35.479 | 38.932 | 41.401
22 8.643 10:982 |,12.338 | 30.813 | 33.924 | 36.781 | 40.289 | 42.796
23 9.260 11.688 | 13.091 | 32.007 | 35.172 | 38.076 | 41.638 | 44.181
24 9.886 12.401 | 13.848 | 33.196 | 36.415 | 39.364 | 42.980 | 45.558
25 10.520 13.120 | 14.611 | 34.382 | 37.652 | 40.646 | 44.314 | 46.928
26 11.160 13.844 | 15.379 | 35.563 | 38.885 | 41.923 | 45.642 | 48.290
27 11.808 14573 | 16.151 | 36.741 | 40.113 | 43.194 | 46.963 | 49.645
28 12.461 15.308 | 16.928 | 37.916 | 41.337 | 44.461 | 48.278 | 50.993
29 13.121 16.047 | 17.708 | 39.087 | 42.557 | 45.722 | 49.588 | 52.336
30 13.787 16.781 | 18.493 | 40.256 | 43.773 | 46.979 | 50.892 | 53.672
35 17.192 20.569 | 22.465 | 46.059 | 49.802 | 53.203 | 57.342 | 60.275
40 20.707 24.433 | 26.509 | 51.805 | 55.758 | 59.342 | 63.691 | 66.766
45 24.311 28.366 | 30.612 | 57.505 | 61.656 | 65.410 | 69.957 | 73.166
50 27.991 32.357 | 34.764 | 63.167 | 67.505 | 71.420 | 76.154 | 79.490
60 35.535 40.482 | 43.188 | 74.397 | 79.082 | 83.298 | 88.379 | 91.952
70 43.275 48.758 | 51.739 | 85.527 | 90.531 | 95.023 |100.425 | 104.215
80 51.172 57.153 | 60.391 | 96.578 |101.879 |106.629 | 112.329 | 116.321
90 59.196 65.647 | 69.126 |107.565 |113.136 |118.136 |124.116 |128.299
100 67.328 74.222 | 77.929 |118.498 |124.342 | 129.561 | 135.807 | 140.169




Chapter 8
Non-Parametric Tests

8.1 Introduction

The application of some parametric tests has been discussed in Chapter 4. It dealt with
the comparison of means or proportions of two or more than two samples, paired or
independent. This Chapter presents a number of alternative methods relating to the same
problems when the conditions for parametric tests are not met. Suppose that a researcher
wants to study the population and needs to draw inference about a measure of central
tendency, i.e. mean, proportion, median based on a small sample then he has to have the
assumption of an approximately normal population needed to justify using a t-test for a
hypothesis or construct confidence limits. In absence of this assumption, the t-test would
be inappropriate and as such one would not apply the parametric tests. An this Chapter, we
will study some statistical tests that may be used to draw inferences‘about the population
when assumption of normality is not met. These include some of‘the statistical methods
that are collectively referred to as non-parametric methods or distribution free methods.

These methods use, for example ranks of observations to perform tests rather than
observations. Since these methods are using‘ranks rather than actual observations, the
result obtained through these methods will not be as robust as by the methods used in
Chapter 4. In brief, these methods'are applied when; (i) data are in the form of ranks or
the data are converted into ranks, and (ii) data.do not satisfy the condition of normality.

Non-parametric tests are distribution-free, that is, they rely on very few assumptions
about the probability distributions of sampled population. These methods are commonly
used in medical and health sciencesy as their samples are always small. Sometimes they
are forced by the situationsito take small samples because of non-availability of patients
and expenditure involvedxThese methods are used, as they are relatively easy to apply as
compared to the parametric tests.

One of the advantages of non-parametric statistical procedures is that they can be used
with data that are based on a week measurement scale. These scales have been discussed
in detail in Chapter 1.

Note: We use the non-parametric tests if the measurement level of the dependent variable
has either nominal or ordinal scale level, or if its measurement level is scale, but not
drawn from a normal population specially for the case of small samples.
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The following non-parametric tests are discussed in this Chapter.
(i) The sign test (one sample) (i)  The sign test (two samples)
(iii) The Wilcoxon signed-rank test  (iv)  McNemar test
(v) The Wilcoxon rank-sum W-test (vi)  Mann-Whitney U-test

(vii) The Median test (viii) The Kruskal-Wallis H-test
(ix) Fridman's test (x)  Kendall's W-test and
(xi) Cochran Q-test. (xii)  Kolmogorov-Smirnov test

8.2 The Sign Test

When the population is non-normal and the size of the sample is less than 30, the t-test is
not valid. We look for a non-parametric test. The simplest nons parametric test to apply in
this situation is the sign test. This test is specifically designed for testing hypotheses
about the median of any continuous population. Like mean, median isalso a measure of
central tendency, because of this the sign test is sometimes referred to as a test for
location. The only assumption underlying the test is that the distribution of a variable of
interest is continuous. The sign test gets its name from the fact that plus and minus signs,
rather than numerical values, provide the raw,data used in the calculations. Since the
signs are either yes (+) or no (-), and trials are independent, the properties of a binomial
experiment listed in Chapter 2 are satisfied. We use binomial probability table to
calculate the p-value. The sign test is explained first for one sample then for paired
observations (paired samples). The following points should be kept in mind while using
the sign test?

(@) The sample is randomly selected from the population.

(b) If any sign is zere, it'is.ignored and the number of trials are counted on the basis
of (+) and (-) signsonly.

8.2.1 The Sign test for a single sample

Example 8.1:

The Environmental Protection Agency (EPA) sets certain pollution guidelines for major
industries. For a particular company that discharges waste water into a nearby river, the
EPA criterion is that the median amount of pollution in water from the river may not
exceed 5 parts per million (ppm). Responding to numerous complaints, the EPA takes 10
water samples from the river at the discharge point and measures the pollution level in
each sample. The results (in ppm) are as:

5.1,43,53,6.2,5.6,4.7,8.4,5.9,6.8, 3.0

Do the data provide sufficient evidence to indicate that median pollution level in water
discharged at the plant exceeds 5 ppm? Use 5 percent level of significance.
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Solution:
(i)  Ho: Mg (median) =5
H;: My >5
(ii) o = 5% (This is the one tailed test. Note that one-tailed and two-tailed tests
have been explained in detail in Chapter 4).
(iif) Test-statistic: The sign test for a single sample:

To apply the sign test, we calculate the scores above (+) and below (-) the
specified value of the median (in our case it is 5).

Table 8.1
Epm 51 |43 | 53 | 6.2 |56 | 47 | 844 59 | 6.8 |3
Score + - + + + - + + + -

It is expected that p(+) = p(-) = 0.5. In this example total number of (+) scores
are 7 and (-) scores are 3. There is no zero, therefore, m= 10: Suppose one of the
scores is zero then n will be 9 instead of 10. The p-value will be calculated by
using the binomial probability table for (p = 0.5, n'= 10, X > 7).

Note: We calculate the probability (p-value) of the number of pluses or minuses
that is larger than the observed pluses or minuses.

p-value = P(> 7) = P(7)+P(8)+P(9)+P(10) = 1-P(< 6) = 1-0.8281 = 0.1719.
We can also calculate it for-number of minuses using binomial distribution as
follows:

10\ ~x 10-x

( )p (1-p) “ywherex=0,1,23andp=0.5,then (8.1)
X

p-valie = (15) ©5)%0.5) " + (110) (05)10.5)°

; (120) (05/(05)’ + ({f) (0.5/%(0.5) = 0719

or directly we see binomial table for p = 0.5, n = 10, X = 3, we get 0.1719.
(iv) Stated p-value (o-value) = 0.05, observed p-value = 0.1719

Since observed (calculated p-value) is more than stated p-value, therefore, result is
non-significant, we cannot reject the null hypothesis. (See the rule for rejection and
acceptance of null hypothesis using p-value in Chapter 4). That is, there is insufficient
evidence to indicate that median pollution level of water discharge from the plant exceeds
5 or the permissible level.

Like parametric test, it can be one-tailed or two-tailed test as:
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One-tailed Two-tailed
Ho: M =M, Ho: M =M,
Hi:M>M;or M <M, Hi: M =M,
Observed p-value Observed p-value
= P[X > number of “+” signs] | 2P[X > number of “+” signs]

The method of acceptance and rejection is as follows

(i)

(i)

(iii)

Reject the null hypothesis if, p-value (observed p-value) < (stated p-value) =
.

If n exceeds 10 then we may use test statistic:
X —=np

Jnpg

where X is the maximum number of “+” signst Thens‘the null hypothesis is
rejected on the basis of Z-value from the table. Forsexample; in this case n =

10 then p= 0.5, np=5and /npq = 1.58,X=7, thenusing (7.2) we get

Z = (8.2)

_ 15 2 1
05410 158

where X is the number of sample observations that exceeds the median. In this
case X=7. The p-valug‘can be,seen from the normal Table 2.6 given in
Chapter-2, which is 0.102.This is more than stated p-value, therefore, we
cannot reject the hypothesis.. As<n increases, binomial distribution tends to
normality. When p = 0.5 .The ‘normal approximation performs reasonably well

even for n as small as 10 if p is near % Thus for n > 10, we can conduct the

sign test using the formula (8.2).

For two-tailed test one may calculate the test statistic as either x, = number of
observations), greater than Mgy for number of successes in n-trials.
X, = number of observations less than Mg, the number of failures in
n-trials. Note that x; + X, = n.

Note: We can obtain the p-value for the Sign test through IBM-SPSS by one of two
methods; 1st by the choice is manually through Legacy Dialogs while the 2nd method
will be automatically which gives also the decision rule of rejecting or not rejecting the
null hypothesis as follows:
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Example S8-1

The data will be in columns as follows (we add a column for the median):

| EPA | Wedian |

1 510 5.00

2 4.30 5.00

3 5.30 5.00

4 6.20 5.00

5 5.60 5.00

6 4.70 5.00

T 8.40 5.00

8 5.90 5.00

9 6.80 5.00

10 3.00 5.00
The Variable View is as follows:
| Neme | Type | Width | Decimals | Label | Values | Missing | Columps | _Align | Measure | Role |
EPA Numeric 8 2 Mone Mone 8 = Right & Scale N Input
Median Numeric 8 2 Maone Maone J .iight 7\ Input

A (the Sign test manually)
We apply the Sign test manually as follows:
Analyze> Nonparametric Tests=> Legacy Dialogs=.2 Related Samples ...

File Edit View Data Transform Wﬁ] iliies  Add-ons  Window  Help
BB 4 e
! = [

HHE =
| EPA || Median H || var H var H var || var H var
1 510 5.00 3
2 4.30 5.00 3
5] 530 5.00 »
4 6.20 5.00 »
5 5.60 5.00 "
6 4.70, 5.00° >
T
T 840, 5.00 »
8 5.90° 5.00
— Classify »
9 6.80 5.00
D Dimension Reduction »
10 3.00 5.00
1 v Scale (3
12 Nonparamelric Tests Pl A onesample
13 b ' M\ Independent Samples..
14 Survval L M Related Samples..
Multiple Response 3
I = ’ Legacy Dialogs [ chi-square...
16 [ wissing value Analysis " g .
Bi |
17 Multiple Imputation 3 £ HNTE
18 Complex Samples 3 ] Runs..
—
19 F) simulation [l 1-sample K-S...
20 Quality Contral 3 [ 2 Independent Samples
21 ROC Curve. ig\ndependem Samples...
2 1BM SPSS Amos.. '\
B | I K Related Samples
24

Move the variable “EPA” to Variablel:

Move the variable “Median” to Variable2:
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[7] Marginal Homogeneity

#2 Two-Related-Samples Tests Iéj
Y Test F'airls | | Exact.
EPA Pair Variable1 Variable2
& Median 1 [EPA] Median] |+
2
Test Type

o) e e [ e

Now click on , to get the following output:

SPSS output for Sign test

Frequencies

Median - EPA

MegativeDifferences?®
Positive Differencest
Ties®

Total

a. Median = EFA
h. Median> EPA

¢/ Median = EPA
Test Statistics®
Median - EPA
Exact Sig. (2-tailed) 344

a. Sign Test

h. Binornial distribution used.

Note: The p-value for one tailed test will be 0.344/2 = 0.172, as given before.

B (the Sign test automatically)

We apply the Sign test automatically as follows:

Analyze=> Nonparametric Tests=> 2 Related Samples ...

375
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File  Edit View Data Transform |Analyze | DirectMarketing Graphs Utilities Add-ons Window H

EC LT ’ Bk
S Descriptive Stalistics L3 =
| Tables >
| EPA H Median || Compare Weans 3 " var H il " R
_ 1| 510 5.00 General Linear Model L4
2 4.30 5.00 Generalized Linear Models 3
530 500 Mixed Models '
6.20 500 | corelate b
.5 | 5.60 5.00 Regression 3
6 4.70 5.00 Loglinear 3
8.40 5.00 Meural Networks 3
590 5.00
? 580 500 Classify >
o 100 £ 00 Dimension Reduction 3
— Scale 4
= onparametric Tes | A One Sample...
= Forecasling Y| A independent Samples
M | S i v —
I Multiple Response L3 -
T Misswng\;’a\uer\na\gsis.
=7 | Wultiple Imputation L4
= 18 | Complex Samples >
T B3 simulation...
20 Quality Control
| [ Roc cune
22 IBM SPSS Amos
23

We may choose either Zutomatically campa
automation , Or Eustomize analysis 55 follows:

Nonparametric Tests: Two or More Related Sa

|ovche | s sunse

ore nonparametric tests. Nonparametric tests do notassume

D

Automatically compare observed data to hypothesized data using McNemar's Test, Cochran's @, Wilcoxon Matched-Pair
Signed-Rank, or Friedman’s 2-Way ANOVA by Ranks. The test chosen varies based on your data.

(2 on] [ psste [ moset | cancel || @ i

We choose the Sign test and click on to move the variables:
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13 Nonparametri Tests Two of More Reloted Samples. ki B | (2 Narpaaeetin Tests Twa o ere Related Sampies =
(Onjsae | Faigs | Sstinzs | obisenve Fieids || satings |
Select an iteen.
Chooss Tests © Aglomatcally cnooss e 16513 based on 1a dats
= o @ LIsa prec:fined rol ™ — SR
TestOptans = 6 e e s T 3slectonty 21estNalds o run 2 slaled 3ampla eats,
PR— o
| s petpias
|| | |
& EPA
| uscian.
1 Cocvans g sametes)
i -
etes
conea
- L2 Frisam: I i
1 arginal Homegeney test (2 samgles) = I
: | | 2 gl
() () (s (onc) (@ (i) (Easte ] (st (canal) (O]

We click on to get the following final result:

Hypothesis Test Summary

Null Hypothesis Test

Related-
Samples
Sign Test

1 [he median of differences hetween
PA and Median equals O.

=~

Asymptatic significances are displayed. The significance level is .05

1Exact significance is displayed for this test.

Note: We obtain the p-value and the decision rule. of not rejecting (Retain) the null
hypothesis.

8.2.2 The Sign test for samples ofpaired ebservation

The sign test may also be used with samples of paired observations in which each
member of one sample is matched with'aimember of the other sample to form a sample of
matched pairs. This is equivalent to t<test for paired observations.

Example 8.2:

A sample of 15 patients suffering from asthma participated in an experiment to study the
effect of a new treatment en:pulmonary function. Among various measurements recorded
were those of forced expiratory volume (liters) in one second (FEV;) before and after
application of the treatment. The results are given in Table 8.2. Can we conclude that
treatment is effective in increasing the FEV; level? Use 5% level of significance.

Table 8.2

Subject | Before | After | Subject | Before | After
1 1.69 1.69 9 2.58 2.44
2 2.77 2.22 10 1.84 4.17
3 1.00 3.07 11 1.89 2.42
4 1.66 3.35 12 1.91 2.94
5 3.00 3.00 13 1.75 3.04
6 0.85 2.74 14 2.46 4.62
7 1.42 3.61 15 2.35 4.42
8 2.82 5.14
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Solution:
(1) H, : Median (before) = Median (after)
H, : Median (after) > Median (before)
(2) .= 0.05
(3) Test-statistic: The sign test for paired observations.

For the purpose of calculations, we proceed as follows:

Subject | Before | After |Before-After|Subject | Before | After |Before-After

1 1.69 1.69 0 9 258 | 2.44 +
2 277 | 2.22 + 10 1.84 | 4.17 -
3 1.00 | 3.07 - 11 1.89.0 2.42 -
4 1.66 | 3.35 - 12 191 | 294 -
5 3.00 | 3.00 0 13 1.75 J3.04 -
6 0.85 | 2.74 - 14 246 | 4.62 -
7 142 | 3.61 - 15 2.35 |14.42 -
8 2.82 | 5.14 -

X, = total plus signs = 2; X, = total minus signs.= 1 and there are two are zeros

and zeros are ignored, therefore, n = 15 - 2 =:13. The p-value may be calculated
using (8.1) when n = 13, and X.=2. The p’= value

—P[X<2] :(15) (0.5)°0.5)" + (113) ©.5) 05" + (123) 0.5 (05)" = 0.0112
This p-value may directly beseenfrom binomial probability table when n = 13,

p=0.5and X <2.

(4) The stated p-valuenis 0.05 (one-tailed test). The observed p-value is 0.0112
(calculated p-value)=Since observed p-value is less than the stated p-value, we do
not accept the hypothesis, therefore, new treatment is effective.

Since n = X1 + X2 is > 10, therefore, the sign test can also be carried out using
normal approximation to the binomial distribution, i.e. p =np =13 x 0.5 =6.5 and

o= 13x05x05 = 1.80

33
2 )72
Z

= (8.3)

05,13

1) 13
(2+2j_2 25-6.5
Z= 7= |25-6.
| 1

1.80
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which is more than 1.64, therefore, we reject the null hypothesis, we say with 95%
confidence that new treatment is effective.

The p-value may also be found using Z-table, p-value = 0.0091, which is less than
0.05, we confirm our previous result.

Another possible test to test the hypothesis P[+] = P[-] = 1/2 is the chi-square test.
Given observed values, X; and X,, the expected values are calculated as:

Observed X X,
X;+X X +X
Expected 21t %2 Zat %2
2 2
Now
2 _ (X1 —Xp)? 8.4)
X+ X,
where X; and X, represent the number of ‘2 and “= signs. In this example

X1 =2and X, =11, then chi-square will be

2. @1 _81
2+11 13

X =6.23

Since it is one-tailed test, the table value of chi-square for one degree of freedom is 5.024
(see Chapter-4). Therefore, we reject thesnull hypothesis and confirm our above findings.
IBM-SPSS package has been used to solve this problem and the output has been given in
the following example (using the automated way).

Example S8-2
The data will be in columns as follows:
serial before after
o 1 169 1,69
2 277 222
3 1.00 3.07
4 1.66 3.35
5 3.00 3.00
6 85 274
7 1.42 361
8 2.82 514
g 258 244
10 1.84 417
11 1.89 242
12 1.91 2.94
13 1.75 3.04
14 246 4.62

[

2.35 4.42
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The Variable View is as follows:

Mame || Type H Width || Decimals || Label || Values H Missing || Columns H Align ” Measure H Role
serial MNumeric 8 0 Mone None 8 = Right &5 Nominal = | ™ Input
before Numeric 8 2 None None 8 = Right & Scale *w Input
after MNumeric 8 2 None None 8 = Right & Scale “ Input

(The Sign test for samples of paired observation automatically)
We apply The Sign test for samples of paired observation automatically as follows:

Analyze-> Nonparametric Tests> 2 Related Samples ...

File Edit View Data Transform irect Marketing  Graphs  Utilities  Add-ons  Window  Helg
= O m -  Reports 2 == 52 ﬁ
% H Er_!'j = i Descriptive Statistics L3 E=
8 | Tables 4
| serial || before ” after " Compare Means 4 i ” L

1 1 169 169 General Linear Model 3

2 2 277 222 Generalized Linear Models + y

3 3100 30T migedmodels

4 4 1.66 335 Correlate € -

5 5 3.00 3.00 Regression

i & 85 27 Loglinear —

b 7 142 361 Neural Metworks

8 8 282 5.14 Classiy

9 9 258 244 S

10 10 1.84 417

1" " 1.89 242

12 12 1.91 294 |E

13 13 175 3.04) | N\ Independent Samples...

1 u 2usffie|

15 15 235 442 b

16 Ed ing Value Analysis...

17 A U ltiple Imputation 3

18 A —| Complex Samples 3

19 ] + F simulation ..

20 ! Quality Control 2

2 _[_ ROC Curve..

— - IBM SPSS Amos...

23

We will choose Eustomize analysis  as follows:
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Nonparametric Tests: Two or More Related Sample E

i p— | |

Identifies differences between two or more related fields using one or more nonparametric tests. Nonparametric tests do not assume
your data follow the normal distribution.

‘What is your objective

Each objective corresponds to a distinct default configuration on the Settings Tab that you can further customize, if desired.

@M{omaﬁ:a\ly compare observed data to hypothesized,

© Customize analysis

D

Automatically compare observed data to hypothesized data using McNemar's Test, Cochran's Q,
Signed-Rank, or Friedman’s 2-Way ANOVA by Ranks. The test chosen varies based on your da

We choose the Sign test and click on

M
—
et e 30w

‘Selectan tom
Choose Tests. | O Automancaily choose the tests Based on the data
TestOpticns | ® customos ests

T T ne—

Test Pl

(] 2 | s | o2 1)

We click on E to get the following final result:

Hypothesis Test Summary o
Null Hypothesis Test Sig. _./' ecision
. . Related- |
The median of differences between
1 Samplas 0221
before and after equals 0. Sign Test

Asymptotic significances are displayed. The significance levelyis .05 —-/

1Exact significance is displayed for this test. 2 P-value

Note: The p-value for one tailed test will be 0.022/2 = 0.011, and the decision rule is to
reject the null hypothesis (as before).

381
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8.3 The Wilcoxon Signed-rank test

The test is applied to paired observations when the condition of normality is not met. For
the application of this test, we have random sample like all other non-parametric tests.
The variable must be continuous. The measurement scale is interval. This test is better
than the sign test as the sign test completely ignores the magnitude of the differences
between paired observations whereas this test takes into consideration this point. The
Wilcoxon signed-rank test for matched pairs for one-tailed and two-tailed tests is
explained below:

Let X and Y represent the population variables then
One-tailed test Two-tailed test
1. H,:XandY are identical H, : Xand Y are identical

H; : X is shifted to the left of X or H, . X shifted either to the right or to the left
Y is shifted to the left of X

2. Calculate the difference between the n matched pairs of observations. Take absolute
value of differences. Then rank the absolute values from the smallest to the highest.
Attach sign to ranks based on the signs of differences:

3. T(-)orT(+) Tythe smaller of T(-) or T(+)

4. Rejection region
T(-) < Ty (table value)

T <T, (table val
or T(+) < T, (table value) o (table value)

5. Note that zero is eliminated'and matched pairs are counted without zero.

Example 8.3:
Use the data given in Example 8.2 (Table 8.2) and apply Wilcoxon -Signed-rank test to
see whether the treatment is effective in existing the FEV, level?

Solution:
To solve this question follow these steps (table given below):

(i) Take the differences between the paired observations i.e. y — x = d. These
differences are calculated in column 4 of the above table.

(if) Take the absolute values of the differences (discard the algebraic sign). This is
done in column 5 of the above table.

(iii) Assign the ranks to differences (as in column 6) assigning rank 1 to the smallest
observed differences. If there is a tie then use the method of tied rank and ignore
zero. This step is completed in column 7.

(iv) Sum of positive ranks is 87 and sum of the negative ranks is 4.

(v) The table against number of matched pairs 13 (excluding zeros), at 5% level of
significance is 17.
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1 2 3 4 5 6 Rank 7
. Positive | Negative
Subject | Before (x) | After (y) d |d] Ranks ranks ranks

1 1.69 1.69 0.0 0 - - -

2 2.77 2.22 -0.55 | 0.55 3 - -3

3 1.00 3.07 2.07 2.07 8.5 8.5 -

4 1.66 3.35 1.69 1.69 6 6 -

5 3.00 3.00 0.0 0.0 - - -

6 0.85 2.74 1.89 1.89 7 7 -

7 1.42 3.61 2.19 2.19 11 11 -

8 2.82 5.14 2.32 2.32 12 12 -

9 2.58 2.44 -0.14 0.14 1 - -1

10 1.84 4.17 2.33 2.33 13 13 -

11 1.89 2.42 0.35 0.35 2 2 -

12 1.91 2.94 1.03 1.03 4 4 -

13 1.75 3.04 1.29 1.29 5 5 -

14 2.46 4.62 2.16 2.16 10 10 -

15 2.35 4.42 2.07 2.07 85 8.5 -
20.08 87 -4

(vi) Reject Hy if calculated value is less than table value. In‘this example calculated
value is 4 which is smaller than 87 and 4, and table' value is 17, so the null
hypothesis is rejected and we say that the new treatment is better than the old

one.

In IBM-SPSS package, the data areentered' like t-test for paired observations. The
difference between the calculationof thesestests and t-test for paired observations is that
in the former case we click non-parametric rather than click compare means. The IBM-
SPSS package is used and the'results (using/Analyze-> Nonparametric Tests=> Legacy
Dialogs—> 2 Related Samples ...) are.given as:

Ranks

SPSS output for Wilcoxon Singed-Rank Test and the Sign Test

Sum of Ranks

AFTER - BEFORE Negative Ranks
Positive Ranks

Ties
Total

N Mean Rank
22 2.00
11P 7.91
20
15

4.00
87.00

a. AFTER < BEFORE
b. AFTER > BEFORE
C. AFTER = BEFORE

Test Statistics?

AFTER -

BEFORE
z -2.9012
Asy mp. Sig. (2-tailed) .004

a. Based on negativ e ranks.

b. Wilcoxon Signed Ranks Test
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The calculated p-value is 0.008 for one tailed test, which is less than 0.05, therefore we
do not accept the null hypothesis and say with 95% confidence treatment is effective.

Example S8-3
The data will be in columns as in example S8-2.
(The Wilcoxon signed-rank automatically)

We apply the Wilcoxon signed-rank for samples of paired observation automatically as
follows:

Analyze-> Nonparametric Tests=> Related Samples ...

File  Edit View Data Transform Ealyze IDiredMarketing Graphs  Utilittes  Add-ons  Window  Helg

SHE E e q | e BT
— g 1 | B, AN
— W — Descriptive Statistics 2 _ @ h=
8: Tables +
senal || before | after Compare Means + | MPvar 4 var var
I
1 1 169 169 General Linear Model + &
2 2 271 22 Generalized Linear Models y
3 3100 307 Mixed Models 3 N
g 4 1.66 3.3 Correlate [ €4 _’_
i 5 .00 .00 Regression 3
6 6 .85 274 ;
Loglinear k -~
i T 142 361 Neural Netwaorks A
8 8 282 514
Classify 3
9 9 2.58 244 ) \
Dimension Reduction 2
10 10 1.84 417 ;c : N
ale
" 1 1.89 242 = =
12 12 191 294 1 s est A One Sample
13 13 175 3.04 SLi 5 M Independent Samples...
i » .
14 14 24640 s62'| Sowmal | Related Samples...
) y |
15 15 238 442 Multiple Response G
16 Missing Value Analysis..
17 Y Multiple Imputation 2
18 D | Complex Samples 2
19 P _r_ % Simulation..
20 N I Quality Control >
Al e ROC Curve.
2 - IBM SPSS Amos
23

We will choose Gustomize analysis a5 follows:
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e o O o
i
[ oomte et e
i

Identifies differences between two or more related fields using one or more nonparametric tests. Nonparametric tests do notassume

your data follow the normal distribution.

What is your objective’
Each objective corresponds to a distinct default configuration on the Settings Tab that you can further customize, if desired.

(@: Automnatically compare observed data o hypothesized;

© Customize analysis

D
Automatically compare observed data to hypothesized data using McNemar's Test Cochran’s Q, Wil
Signed-Rank, or Friedman’s 2-Way ANOVA by Ranks. The test chosen varies based on your data

Matched-Pair

We choose the Sign test and click on

1] e Houwodsueih 162 (5 Exaiee)
L]
e QY sescony2ustnecsssmn 2reais same s
Testpaics:
(3]
1821 0baour @ Teswass oef
| |[osseisn | o vimwme cvooe mo
Teiea wu pu |
] =z §240
5 koL [ [ 6 Y e s [ == (mpCessi]) (seso) (Gance) (O isn)
We click on @ to get the following final result:
Hypothesis Test Summary
Null Hypothesis Test Sig.
Related-
; ; Samples
The median of differences between qul?
before and after equals 0. \é\flglﬁgéoli?ank
Test

Asymptotic significances are displayed. The significance level is .05. ) P-value

Note: The p-value for one tailed test will be 0.004/2 = 0.002, and the decision rule is to
reject the null hypothesis.
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8.4 Test for Two Independent Samples

In Chapter 4, we have discussed t-test for two independent samples. When the conditions
for t-test are not met then any one of the following alternative tests may be used.

(i) The median test, (ii) The Mann-Whitney test
(iii) Wilcoxon test (iv) Kolmogorov-Smirnov Test

8.4.1 The median test

The median test can be used for two or more than two independent samples to test
whether two or more than two populations have the same median. This is a replacement
for t-test for two independent samples and one way-ANOVA technique. For this, 2x2 or
r X ¢ contingency table is constructed. The number in each cell is the number that is
below or above the median (the median of all observations in two or more than two
samples). Commonly the median test is used for t-test for two» independent samples. If
samples are more than two then Kruskal-Wallis test is useds Kruskal-Wallis test will be
discussed in next section.

Assumptions:
(i) Sample is a random sample
(i) Samples are independent.
(iii) The measurement scale is at least ordinal.

(iv) If any cell has zero frequency, then'this test cannot be used. The null and
alternative hypotheses arée

H, : two (or more) populations have the same median.
H, : at least two of the populations have different medians.

Example 8.4:

A study was conducted to.compare the amount of time (in minutes) spent watching
television each day by rural‘and urban elementary school children in Eastern Province of
Saudi Arabia. Eight urban and nine rural children were randomly selected from
elementary schools. The results are given in Table 8.3.

Table 8.3
Urban children | Rural children
60 140
240 80
190 45
75 210
30 120
150 135
220 30
190 120

200
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Is there any difference between two types of elementary school children in television
viewing habits? Use 5% level of significance.

Solution:

(1) H, : The median time for two types of children is the same.
H, : The median times are not equal.
(2) a=0.05

(3) Test-statistic: Since two samples are independent, one possible test is the median
test. To apply median test, we proceed as:

(i) Arrange the observations in order in the combined samples, i.e. 30, 30, 45,
60, 75, 80, 120, 120, 135, 140, 150, 190, 190, 200, 210, 220, 240. The median
=135.

(ii) Prepare 2x2 contingency table as:

If Hg is true then the common median may. be estimated<from the combined
sample this is precisely what the test does. Testing the equality of proportions
can therefore test any difference in the Urban and rural pattern.

Urban Rural Total
Above median 5 3 8
b
d
Below median 3 6 8
Total 8 9 17=n

Note that if any observation is equal to median, it may be ignored in analysis.
(iii) Apply chi-square

2
[lad —bcl—n} n
2 2

x = (8.5)
(@+b)y(c+d)(@a+c)(b+d)
(number inthecellsisless than 5)
2
[|30—9|—127} 17
x? = = 0.576

9x8x8x8

(4) The table value of chi-square for 5% level of significance is 5.024 which is more
than calculated value, therefore, we say that there is no difference between two
types of children regarding watching the television

SPSS package can be used and one can follow these steps:

(i) Enter the data on SPSS package like t-test for two independent samples.
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(i)  Choose a non-parametric test.
(iii)  Choose "more than two independent samples".

(iv)  There are two tests:

(a) |_Kruskal Wallis (b)

Choose either of them; you will get the same result.

It is advised that the median test should be used for two samples and the Kruskal-Wallis
is to be used for more than two independent samples. The IBM-SPSS package is used and
the result (using Analyze=> Nonparametric Tests=> Legacy Dialogs> 2 Independent
Samples ...) is as follows:

SPSS output for Median test

Descriptive Statistics

N Mean Std. Deviation | 2Minimum 4f Maximum

TIME 17 131.47 69:39 30 240

CATEGORY 17 1.53 51 1 2
Median,Test

Frequencies

CATEGORY
1 (Urban) 2 (Rural)
TIME « > Median 5 3
<= Median 3 6

Test Statistics?

TIME
N 17
Median 135.00
Exact Sig. .347

a. Grouping Variable: CATEGORY

Calculated p = 0.347, which is more than 0.05, the result is non-significant. Therefore,
there is no difference between two types of children belonging to urban and rural
facilities of watching the television.
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Example S8-4

(The Median test automatically)

The data will be in columns as follows:

| Group || time ||
1 1 60
2 1 240
3 1 190
4 1 75
5 1 30
6 1 180
7 1 220
8 1 190
9 2 140
10 2 80
1 2 45
12 2 210
13 2 120
14 2 135
15 2 30
16 2 120
17 2 200

=
AE?
W oo~ o e R =

Group

|| time ||

10 4

.

[

:

Y,

Urban children
Urban children
Urban children
Urban children
Urban children
Urban children
Urban children
Urban children
Rural children
|_'Rural children
Rural children
Riral children
Rural cmn
—Rll“daldren
Rur_al children

i16 i Rural children

A4

Rural children

60
240
190

75

30
150
220
190
140

80

45
210
120
135

30
120
200

389

We apply the Wilcoxon signed-rank test for samples of paired observation automatically

as follows:

Analyze=> Nonparametric Tests=> Independent Samples ...

File

Edit

View

Da Transform

g7 4

RIR R N R R R N S

240
190
s
30
150

190
140

80

45
210
120
135

30
120
200

Marketing

Graphs

Utilities

Add-ons

Wwindow

H

Compare Means

General Linear Model
Generalized Linear Models
Mixed Models

Correlate

Regression

Loglinear

Neural Networks

Classify

Dimension Reduction

Scale

=

E

Nonparametric Tests
Forecasting
Survival
Multiple Response
3 missing Value Analysis...
Multiple Imputation
Complex 8amples
) Simulation..
Quality Control
ROC Curve.
IBM 5PSS Amos

LR AR b A B A A A B B A B AR

A One Sample...
Independent Samples

A Related Samples...

Legacy Dialogs 3
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We may choose either © Compare mediang across groups o Customize analysis — gogy

will give the same result. Choosing © Compare medians across aroups || give the result
of the median test directly. We will choose Eustomize analysis  as follows:

I e
S

owo s

I3enmnes cifsrencas Mare grougs

cata llow
the peemal distiibusen.

'\\h&lijwl joctise’

onthe Settings . ¥ desived.

\ (=] Cnnwlomaniwm sroups

V4 }
T
v

We choose the Median test and click on ‘

to move the variables:

T == |

@@.W&

O @t
Testoptons ® customizs tosts
;
[/ Mann Whikey U (2 samplez] salds

TastFislas

——
[ Kolmogorow-Smimev (2 sameles) |y Testfor o
Uaneihee

7} Testseguence ferrancermnezs
(Vialg-vioonit for 2 samples)

W@
() ) ) ) @)
We click on W to get the following final result:
Hypothesis Test Summary
Null Hypothesis Test Sig. ecision
The medians of amount of time (in  Independent- Retain the
1 minutes) are the same across Samples 34712 Yl
categaries of Group. Median Test * ypothesws.}

Asymptotic significances are displayed. The significance level is \05.

"Exact significance is displayed for this test.
2Fisher Exact Sig. 2 P-value

Note: The p-value for two tailed test is 0.347, and the decision rule is to reject the null
hypothesis.
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8.4.2 The Mann-Whitney and Wilcoxon Rank sum-W tests
Two tests are given in this section.
(a) The Mann-Whitney test
This test is based on two independent random samples.
Assumptions
(i) These samples are random and independent.
(if) The measurement scale is at least ordinal.

Example 8.5:

In a controlled environment laboratory, 10 men and 10 women were tested to determine
the room temperature (in Fahrenheit) they found to be the most comfortable. The results
are given in Table 8.4:

Table 8.4
Men 74 | 72 | 77 | 76 | 76 | 73w 751 73 L 74 | 75
Women | 75 | 77 | 78 | 79 | 77 | X3 | 78 | 79| 78 | 80

Assuming that these temperatures resemble a random sample from their respective
populations. Is the average comfortable temperature the'same for men and women? Use
5% level of significance.

Solution:

(1) Ho - The average (median) comfortable temperature for men and women is the
same.

H; - The average comfortable temperature is not the same.
(2) a.=0.05
(3) test-statistic:,. Mann=Whitney test

To apply the Mann-Whitney test, we will proceed as:

(1) Arrange the observations of two samples together in ascending order, like
the Median test, i.e. 72, 73, 73, 73, 74, 74, 75, 75, 75, 76, 76, 77, 77, 77,
78,78,78,79, 79,80

(i)  Rank these observations as:
1,3,3,3,55,55,8,8,8,10.5, 10.5, 13, 13, 13, 16, 16, 16, 18.5, 18.5, 20.

(iif)  Rq (sum of the ranks of first sample)
=55+1+13+105+105+3+8+3+55+85=68.5.

R2 (sum of the ranks of second sample)
=85+13+16+19+13+16+3+ 16+ 19 +20=1435.

(iv)  Calculate:
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n,(n; +1)

M1 =ning + -Ry, M2 =ngny + %ﬁ) -R; (8.6)

M1 =10x 10 +55-68.5=86.5 H, =10x 10+ 55-143.5=9.5

(v)  Take the smaller value, which is 9.5.
(4) The table value for 10 by 10 at 5% level of significance is 28.

(5) Our calculated value 9.5 does not fall in the acceptance region, therefore, the
average comfortable temperatures for the men and women are not equal.

IBM-SPSS package is used for Mann-Whitney U-Test and Wilcoxon Rank Sum W-Test
and the result (using Analyze> Nonparametric Tests> Legacy Dialogs> 2
Independent Samples ... ) is as follows:

SPSS output for Mann-Whitney U-Test and Wilcoxon'Rank Sum W-Test

Test Statistics?

temprature
Mann-Whitney U 13.000
Wilcoxon W 68.000
z -2.817
Asy mp. Sig. (2-tailed) .005
Exact Sig. [2*(1-tailed a
Sig.)] o 004

a. Not corrected for ties.
b..Grouping Variable: CATEGORY

Median test is not as robust as Man-Whitney test because median test loses information
of equal ranks whereassMan-Whitney/'use these information.

IBM-SPSS package is ‘used for Two samples Kolmogorov-Smirnov test and the
result (using Analyze=sNonparametric Tests> Legacy Dialogs> 2 Independent
Samples ... ) is as fallows:

Two-Sample Kolmogorov-Smirnov Test

Test Statistics?

temprature

Most Extreme Absolute .700
Diff erences Positive .700
Negative .000

Kolmogorov-Smirnov Z 1.565
Asy mp. Sig. (2-tailed) .015

a. Grouping Variable: CATEGORY

The p-value for this test is 0.015, which is less than 0.05; hence we confirm our previous
findings.
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Example S8-5

(The Mann-Whitney U-test automatically)

The data for example 8.5 will be in columns as follows:

I Group H Temperature ”
1 1 74
2 1 72
3 1 77
4 1 76
5 1 76
6 1 73
T 1 75
1 73
9 1 74
10 1 75
11 2 75
12 2 7
13 2 78
14 2 79
15 2 L
16 2 73
17 2 78
18 2 79
19 2 78
20 2 80

follows:

I Group Temperature [

1 Men

2 Men

3 Men

4 Men

5 Men

6 Men

T Men

8 Men

9 Men

10 Men

ik Women

12 4 ~ Women

13 Women

j “Women
T N vonel)

o 16 Wdmen

. 17 4 " Women

B MB ey Women
19 Women
DAl women

We apply the Mann-Whitney U-test for samples<of paired observation automatically as

Analyze=> Nonparametric Tests=> Independent Samples ...

File  Edit

View  Dat:

Graphs  Utilities  Add-ons

Window

He

escriptive Statistice
ables

Compare Means
General Linear Model
Generalized Linear Models
Mixed Models
Correlate
Regression
Loglinear

Neural Metworks
Classify

Dimension Reduction

Scale

.

=R

Nonparametric Tesis

A\ One Sample

Forecasting

Survival

Multiple Response
ﬂ Missing Value Analysis

Multiple Imputation

Complex Samples
% Simulation

Quality Control
ROC Curve

IBM SPSS Amos...

LR B R L I L I A I A B R

A Related Samples
Legacy Dialogs

M\ Independent Samples. |

b

3

74
72
i
76
76
73
75
73
74
7h
75

393
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We may choose either © Compare medians across groups ,or Customize analysis . Both

will give the same result. Choosing © Compare mediang across groups || give the result
of the median test directly. We will choose &ustomize analysis a5 follows:

Pl —
e s s

the peemal dstibuscn.

FWhatis your objectiss? —

#dssiven.

O Automatcaty compare dstibutons across Groups.

\Ocnummanawmgw

o

() i) () Cconet) (@21) (J

We choose the Median test and click on : i to move the variables:
43 Nonpsrametric Tests Two or More Independert Sampies

Choose Tests. Agfomstically choose the Jels bssed on the dts
TeztOptons. Qustomiza tasts.

S s
Flloues sute 1y G

= unnnmmmm tor

1) Tost seguancs for andomness. H
(SNONTL 0 2 SAMPIES)

Comase Ranges scross Groups ——— | Cun:qusA
s ‘V“

TesiFisios:

] Moses o2 les)

‘Estmate Comgence rtenal aciozs:
7] Hodges-Lenmann stimazs (2 samy |@ 3]

(o) ) (o)) ) ) ) )

'

We click on @ to get the following final result:

Hypothesis Test Summary

Null Hypothesis Test Sig. ﬁecisinn
Independent-
The distribution of Temperature is  Samples Reﬁect the
1 the same across categories of Mann- 004
Group. Whitney U
Test ~

Asymptotic significances are displayed. The significance Ies&l is .05.
1Exact significance is displayed for this test. 2 P-value

Note: The decision rule is to reject the null hypothesis.
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(b) The Wilcoxon Rank-sum-W test

This test is based on two independent random samples. The Mann-Whitney and
Wilcoxon-Rank sum tests are identical. Any one of the tests can be applied.

Assumptions
The assumptions of this test are the same as in case of the Mann-Whitney test.

Example 8.6:

A preliminary study was conducted to obtain information on the background levels of the
toxic substance polychlorinated biphenyl (PCB) in soil sample in the United Kingdom.
Such information could then be used as a benchmark against which PCB levels at waste
disposal facilities in the United Kingdom can be compared. Table 8.5 contains the
measured PCB levels of soil samples taken at 14 rural and 15 urban locations in the
United Kingdom. (PCB concentration is measured in 0.0001 gram per kilogram of soil).
From these preliminary results, the researchers reported "a significant difference between
(PCB levels) for rural areas and for urban areas". Do the data support the researcher's
conclusion regarding significance difference? Test using 5% level of significance
(source: Chemosphere, Feb. 1986).

Solution:
(1) H, : There is no difference in PCB levelsiin two areas.
H, : There is a difference in PCB levels intwo areas.
(2) a.=0.05
(3) test-statistic: Three possible tests.can.be used.
(i) The Median test, (ii) The Mann-Whitney test, and (iii) Wilcoxon rank sum-W

test
Table 8.5
Rural R1 Urban R2
53 55 24 24.0
8.1 7.0 29 25.0
1.8 4.0 16 18.0
9.0 9.0 21 21.0
1.6 3.0 107 28.0
23.0 23.0 94 27.0
1.5 2.0 141 29.0
53 55 11 12.5
9.8 11.0 11 12.5
15.0 17.0 49 26.0
12.0 14.5 22 22.0
8.2 8.0 13 16.0
9.7 10.0 18 19.5
1.0 1.0 12 14.5
18 19.5
1205=T, 3145=T,
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The Median test and Mann-Whitney test have been explained before. Now, here
we demonstrate the application of Wilcoxon rank sum test. The test-statistics is

nn+1
2

where S is the smaller sum of the ranks of the rural and urban areas.

T=5- , (8.7)

Q) Rank the rural (sample-1) and urban (sample-2), considering it as one sample.
This has been done in the above table.

(i)  Add the ranks for each sample.
T,=1205and T, = 314.5

(iii) S = Smaller {T;, T,}. Since T, is less than T2 then, we calculate the test-
statistic using n=14, S=T,

T=1205- %: 155

(4) Table value for Wilcoxon Rank against n1 =r14.and _ny =15 for 5% level of
significance is 67.

Since calculated value of 15.5 is less than the table value, therefore, we do not accept the
null hypothesis and say with 95% coenfidencesthat there is a significance difference
between PCB levels for rural and urban areas. The IBM-SPSS package is used and the
results for Mann-Whitney U and»Wilcoxon Rank sum tests and the result (using
Analyze> Nonparametric Tests—> Legacy/Dialogs> 2 Independent Samples ... ) is
as follows:

SPSS output for. Mann-Whitney U test and Wilcoxon Rank-Sum W test

Test Statistics?

PCB
Mann-Whitney U 15.500
Wilcoxon W 120.500
Z -3.908
Asy mp. Sig. (2-tailed) .000
Exact Sig. [2*(1-tailed a
S0 g- [2%( .000

a. Not corrected for ties.
b. Grouping Variable: CATEGORY
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Test Statistics?

PCB
Most Extreme Absolute .786
Diff erences Positive .000
Negative -.786
Kolmogorov -Smirnov Z 2.114
Asy mp. Sig. (2-tailed) .000

a. Grouping Variable: CATEGORY

Observed p-value < 0.000, which is less than stated p-value (0.05), therefore, we confirm
our above findings.

For the Median test SPSS output is as:

Median Test
Frequencies
CATEGORY.
d(rural) 2(urban)
PCB > Median 2 12
<= Median 12 3

Test' Statistics®

PCB
N 29
Median 12.0000
Exact:Sig: .001

a. Grouping Variable: CATEGORY
p-value is less than 0.05:(observed p-value), again we confirm the previous findings.

8.5 Test for K-Independent Samples
There are two possible tests that can be used for K-independent samples.

(a) The Median test
(b) The Kruskal-Wallis-H test

The Median test has already been explained for two samples in section 8.4, here SPSS
package will also be applied to more than two samples. We describe the Kruskal-Wallis-
H test in details first and application of the Median test later on in this section.

8.5.1 The Kruskal-Wallis test (or H-test)

The Kruskal-Wallis test provides a non-parametric alternative to the one-way ANOVA
for comparing more than two independent samples. Like Median test, the Mann-Whitney
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test and Wilcoxon test, no assumption regarding the normality or equality of variances of
sampled populations is required.

Assumptions

(i) The K-samples are randomly and independently selected from their respective
populations.

(if)  In addition to randomness within each sample, there is mutual independence
among various samples.

(iii)  The measurement scale is ordinal.

(iv)  For the chi-square approximation to be adequate, there should be five or more
observations in each sample.

Following rules must be taken into consideration to see the significance of the Kruskal-
Wallis test.

0] If there are two or three groups, all groups are 5or.less in size and there are no
ties, ties determine the significance of computed table.

(i) If there are three groups and number of observations in each group are five or
more consult chi-square table.

(iii)  If there are four or more groups, consult,chi-square table for the significance
of the result.

Example 8.7:

Vanadium is recently recognized essential trace element. An experiment was conducted
to compare the concentrationfof vanadium in biological materials using isotope dilution
mass spectrometry. The following table gives the quantities of vanadium (measured in
nanograms per gram) in dried samples of oyster tissue, citrus leaves, and bovine liver and
human serum. Use an)appropriate’ method of analysis to determine whether the
distribution of vanadium eoncentrations for the four biological materials differ in
locations. The data is givenin Table 8.6. Use 5% level of significance.

Table 8.6
Oyster Ranks Citrus Ranks Bovine Ranks Human Ranks
tissue tissue lever serum
0.10 1
2.35 12 2.32 11 0.39 8 0.17 5
1.30 10 3.07 13 0.54 9 0.14 2
0.34 7 4.09 14 0.30 6 0.16 3.5
0.16 3.5
Total T.= 29 T, = 38 T3 =23 T4=15

(Source: Analytical chemistry, Vol. 57(13), 1985, pp. 2475).
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Solution:

(1) H, : There is no difference between the Vanadium concentrations for the four
biological materials. (Population distributions are all identical).

H, : They are different.
(2) @ =0.05

(3) Test-statistic: Since there are more than two independent samples, therefore, the
Kruskal-Wallis (H) test is used. We proceed as follows:

0] Rank all the observations as if it were a one sample. This is done in the
above table.

(i) The sum of the ranks in each sample is also given.
T1=29,T2=38,T3=23and T4 =15

(iii)  test-statistic

2
H= 12 EK:T—i-B(n+1), (8.:8)

nn+iz n;

where:

n=nyp+n2+n3+ng=3+3+3+5=14

k = number of groups = 4

Tj = sum of the_ranks inthe ithgroup (T, =29, T, =38, T3 =23, T4 = 15.

H=_12 (%+%+@+EJ-3(14+1):11.17
14x25\ 3 3 3 5

(4) Rejection region is calculated as:

There are k =4 samples. The degrees of freedomare k - 1 = 3.
The table value of chi-square for 5% level of significance is 9.348.
(See the %*-Table 7.1, Chapter 7).

(5) The calculated value is more than the table value so we do not accept the null
hypothesis and say that there is difference between the vanadium concentrations
for four biological materials, or we say that populations are not identical.

Note that the entry of data in SPSS package is like one-way ANOVA and we click non-
parametric methods for K-independent samples. The following methods appear on
monitor:

(i) The Kruskal-Wallis  (ii) The Median

We choose one of them. If any cell is zero, the Median test fails. The Kruskal-Wallis test
is usually more powerful than the Median test The IBM-SPSS package is used and (using
Analyze=> Nonparametric Tests=> Legacy Dialogs=> K Independent Samples ... ) is
as follows:
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SPSS output for the Kruskal-Wallis and the Median tests

CATEGORY N Mean Rank

Concentration 1 (Oyster) 3 9.50
2(citrus) 3 12.67
3(bovine) 3 7.83
4(Human) 5 3.00
Total 14

Test Statistics®P

Concentration
Chi-Square 11.116
df 3
Asy mp. Sig. .011

a. Kruskal Wallis Test
b. Grouping Variable: CATEGORY

(a) p-value = 0.011 which is less than 0.05,we.rejectithe null hypothesis and confirm
our above findings.

(b) We apply the median test, as the frequencies in the cell are less than 5 and two
cells have zero frequency.

So far, we have seen only ene picture of the application of the Kruskal-Wallis H-test,
which is a substitute of one way-ANOVA. There are recent advances in the theory of
rank tests. There should no‘lenger be any hesitation in applying the rank test to situations
that have many ties. In fact Kruskal<Wallis H-test also gives an excellent performance in
contingency table;.where rows represent ordered category (rows are ordinal) and columns
represent different populations (columns are nominal).

The IBM-SPSS Package is used to apply Median test for the Example 8.8 and the
output (using Analyze=> Nonparametric Tests> Legacy Dialogs2> K Independent
Samples ... ) is as follows:

SPSS Output for Median Test

identification

1.00 2.00 3.00 4.00
> Median 2 3 2 0

<= Median 1 0 1 5

concentration
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Test StatisticsP

concentration

N

Median
Chi-Square
df

Asy mp. Sig.

14
.3650
8.6672

3
.034

a. 8 cells (100.0%) have expected frequencies less
than 5. The minimum expected cell frequency is 1.:

b. Grouping Variable: identification

401

p-value for median test is 0.034 which is less than 0.05, we can conclude at 5% level of

significance that there is significant difference in concentration’of different categories.

Example S8-6

(The Kruskal-Wallis H-test automatically)

The data for example 8.7 will be in columns as follows:

I

(== R MU U S RS =S R S Y

allallall=
W o a|w

14

Group vanadium

1
1
1
2
2
2
3
3

3

|

2.35
1.30
34
2.32
3.07
409
39

@'%gb
|’L

4 10

2| ===
el M =

Group
Cryster tissue
Cryster tissue
Cryster tissue

Citrus tissue
Citrus tissue
Citrus tissue

Bovine lever

Bovine lever

Bovine lever
Human serum
Human serum
Human serum
Human serum
Human serum

vanadium
2.35
1.30
34
2.32
3.07
4.09
.39
54

We apply the Kruskal-Wallis H-test for independent samples automatically as follows:

Analyze-> Nonparametric Tests=> Independent Samples ...
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File Edit View Data Transform | Direct Marketing ~ Graphs  Utilities  Add-ons  Window  Ht
| Reports 2 =
SHae M e 4 i
= Descriptive Statistics 3
19 [ Tables 3
| Group ” vanadium H Compare Means 3 var ” var || var ”
1 1 235 General Linear Modsl 3
2 1 1.30 Generalized Linear Models r
3 1 34 Mixed Models b
4 2 232 Correlate r
£ 2 307 Regression 3
& 2 403 Loglinear 3
7 3 38 Neural Networks +
8 3 54
Classify 3
9 3 .30
Dimension Reduction 3
10 4 10 - 5
Scal
" 4 AT e =l
B s a A one semple..
13 4 16 . [ A Ieper oSl ]
14 4 16 ETE] i ; -
15 Multiple Response 3
16 Missing Value Analysis.
17 Multiple Imputation
18 Complex Samples
19 B2 simulation...
20 Quality Control
21 ROC Curve.
22
23

will give the same result. Choosing

of the Kruskal-Wallis H-test

edians across groups yj| give the result
hoose Customize analysis g follows:

a gistindt detault

comgare dstribulons agoss groups

\ © Compars medans across groups

0N the Sattings Tad gl you Can durie customizs, i desired.

Customize analysis Jlows
Seings tab are the Kolmogorov-Smimov, Moses extrems reaction, and Waid-Wollowitz for 2 samples, and the

the fests

their cptions. Ofher tests avadable co the

P ¥samples. An

() o) () o) )

Lahmann ak0 availatls for 2 53mplss

or Customize analysis  ggip



Hanif , Ahmad and Abdelfattah 403
We choose the Kruskal-Wallis H-test and click on @ ! to move the variables:
42 Nonparametric Tests: Two o More Independent Ssmplez. i

42 Nenparametric Tests: Two or Meee Independent Sample: Tl
[rr—— Setings

s

Ghooss Tests

Median test (x samples)
58 12ac50n {2 samples) s

Hodges-Lenmann essmate (2 samples)

|
|
|
|
|
|
|

»ﬁ Paste | | Reser | [(Cancel | (@ Hew.

Otscte [Fress. Sefings

TestFields

SIY T — |

[ENENIES)

&@] o ) (eaes) (Somcn) (Oi605)

We click on to get the following final result:

Hypothesis Test Summary

Null Hypothesis S

Testl & Sig.%ﬁecision

The distribution of concentration of
1 vanadium is the same across
categories of Group.

Independent- 4 .
ghrcs a1 [Efﬁemhe
Kruskal- :

Wallis Test

k hypothesiy

Asymptotic significances are displayed. Thefsignificance level is Y5

P-value

Note: The decision rule is toaeject the null hypothesis. Double click on the output will

yield the following comparisons:

Independent-Samples Kruskal-Wallis/ Test

Total N 14

500+
£
§ 400 Test Statistic 11.196
% 300
H 300 Degrees of Freedom 3
E 200+
o . . .
§ 1o ] Asymptotic Sig. (2-sided test) on

—
000 T T T T 1. The test statistic is adjusted for ties.
Dvyster tissue Citrus tissue Bovine lever Human serum
Group

Example 8.8:

Three instructors gave the grades to students. They assigned scores over the past semester
and to see if some of them tend to give lower grades than others. The data is given below:
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Table 8.7
Grades Instructors

Iy P I3
A 4 10 6
B 14 6 7
C 17 9 8
D 6 7 6
E 2 6 1

Can we say at 5% level of significance that three instructors graded evenly with each
other?

Solution:
(i) H, : There is no difference in 3 instructors in grading the students.
H, : At least two differ.
(i)  «=0.05
(iif)  test statistics : Kruskal-Wallis, using (8.8), we have H'=10.845

(iv)  p-value = 0.6447, which is greater than 0.05. Therefore, there is no difference
in these instructors in assigning the grades.

The IBM-SPSS package is used and the result is:
SPSS output for the Kruskal-Wallis H Method

Test Statistics?P

score
Chi-Square .878
df 2
Asymp. Sig. .645

a. Kruskal Wallis Test
b. Grouping Variable: CATEGORY

Example 8.9:
A simple random sampling procedure was used to select 5 primary health care centers out
of 9 from Al-Khobar area. The data regarding lab utilization are given as:

Table 8.8
Primary health care centers
Utilization 1 2 3 4 5 Total
Over 18 4 15 21 29 87
Proper 48 51 44 103 77 323
Under 49 47 22 75 56 249
Total 115 102 81 199 162 659
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Use proper method of analysis to the data and to see the difference, if any, between
primary health care centers regarding laboratory utilization.

Solution:
(i) H, : There is no difference in lab utilization
H, : At least two differ.
(i) o=0.05

(iif)  test statistics : Kruskal-Wallis
(as rows are ordinal and columns are nominal)

(iv)  The IBM-SPSS package is used and output is given as:
SPSS output for Kruskal-Wallis H-test

Test Statistics®P

Lab Utilization
Chi-Square 4.183
df 4
Asy mp. Sig. .388

a. Kruskal Wallis Test
b. Grouping Variable: CATEGORY

Calculated p-value = 0.388, we say that there is no difference in all PHC centers in
utilization of laboratory facilities.

8.6 K-Related Samples

In Section 8.2, we_have discussed two tests for related samples but in this section, we
consider some tests for more than two related samples. These are:

(i The Friedman, test
(i)  Kendall's coefficient of concordance (Kendall's W-test)
(ili)  Cochran's test

8.6.1 The Friedman test

It is an extension of sign test for two related samples. This is a better-known test for the
experimental situation, but it has less power in some situations. The test is appropriate
whenever the data are measured on ordinal scale and can be meaningfully arranged in a
two-way ANOVA classification. The problem of several related samples arises in an
experiment that is designed to detect differences in k possibly different treatment (k > 2).
The observations are arranged in blocks, which are groups of k experimental units.
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Assumptions
(i) The variables are mutually independent.

(i) Within each block the observations may be ranked according to some criterion of
interest.

(1) H, : The k-populations are identical.

H, : At least two of the k-populations are different.

(2) o =005
(3) test-statistic:
2.2 SRz _gn(kay (8.9)
T k) E ’ '

where k = number of samples or treatments
n = number of blocks

Rj = sum of the ranks for the ith treatment

Example 8.10:
There are three observers who assess a total of,10 patients for some attributes, say,
sadness on a 10-point scale. Their scores are shown on Table 8.9:

Table 8.9
Patients Observer 1 | Observer 2 | Observer 3
8

oo~ wN R
~N R OU® U WON A O
©CO~N~NOARNON
oo oun o

10

Can we say that there is a difference in three observers in assessing the sadness on 10-
point scale? Use 5% level of significance.
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Solution:
We proceed as;

(i) Rank the observations according to rows as in the following table:

Patients | Observer 1 | Ranks | Observer 2 | Ranks | Observer 3 | Ranks
1 6 1 7 2 8 3
2 4 1 5 2 6 3
3 2 2 2 2 2 2
4 3 1 4 2 5 3
5 5 2 4 1 6 3
6 8 1 9 2 10 3
7 5 1 7 2 9 3
8 6 1 7 2 8 3
9 4 1 6 2 8 3
10 7 1 9 3 8 2

Sum R, =12 R, = 20 R; =28

(i) Sum the ranks in each column and calculate
12
10x 3(3+1)

(ili)  The table value of chi-square for 2.-degree of freedom at 5% level of
significance is 3.841.

A2 [122 + 202 + 282)=3(10)(3+ 1) = 12.8

(iv)  The calculated value of XZ isimuch\greater than the table value, therefore, we
reject the null hypothesis and say.that the observers are different in assessing
the sadness rank,on 10-point scale.

Example S8-7
(The Friedman teshautomatieally)

The data for example 8:9.will be in columns as follows:

Patients Observer1 Observer2 Observer3

[=F I & TR T = T = = ]

Wi~ ||w| k=
W oo = oyt E L RS
~ = o Mmoo W R,
W o — o~ W0 b s R =)

—y
[a=]
—
(=]
oo 0 Co W
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We apply the Friedman test for related samples automatically as follows:

Analyze-> Nonparametric Tests=> Related Samples ...

File  Edit View Data Transform \reaﬂarkeung Graphs  Utilities  Add-ons  Window H

= L T Reports 3 = 52 E
3 ﬁ H E"-:j = 3 Descriptive Statistics 3 m =
‘ | Tables 3
| Patients " Obsenvert " Compare Means 3 ‘ var H var H var

1 1 6 General Linear Model 3

2 2 4 Generalized Linear Models 13

3 3 2 Mixed Models L3

4 4 3 Correlate 3

£ 5 5 Regression 3

: 6 8 Laoglinear »

i 7 5 Neural Networks 3

8 & Classify 3

9 9 4

10 10 7 Dimension Reduction 3

T Scale L3 &

12 Nonparametric Tests L3

1 Forecasting 13

14 Survival 3

15 Multiple Response »

16 [ missing Value Analysis... ‘

17 Multiple Imputation 2

18 Complex Samples

19 B2 simulation

20 Quality Cony

21 ROC Curve

22

23

We may choose either @Agtomatic&mhw‘datato hypothesized . or Customize analysis
to choose Friedman test .manually., Both™ will give the same result. Choosing

© Adtomatically compare Ubse“‘ﬂﬁﬂ‘ﬂm “?DWM will give the result of the Friedman test
directly, as follows:

We click ‘ tommoyve the variables, and then we click on and choose

@ Automatically compm\mewed da!a to hypothesized -

@varnumww;_ ==
[oteco) e somngal

7 your 3 tokow he pemal astibuton.

O Use pregsines e
® Use s eld assigments

(09 sstsctonly 2usstcs torun 2 alsed sampletosts

\What iz your atjectne?

TestFeles \
& Coaecvert Ayornancaly compare obsened data o Fypcinasized

& Cossemi2

& Ozenend / © Customes anatyzis

Hessinea

i

Descipon

et Cothrn's O
SigneaRank,

W@ | 2802
(e e ) o @ e () () (et (o) (O]




Hanif , Ahmad and Abdelfattah 409

We click on to get the following final result:

Hypothesis Test Summary
Null Hypothesis Test Sig. /ﬂg:ision

Related-
Samples
The distributions of Ohsemver 1, Friedman's
1 Observer 2 and Observer 3 are the  Two-Way 001
same. Analysis of
Wariance by
Ranks

Reﬁect the

A
Asymptotic significances are displayed. The significance level is .05, P-yalue

Note: The decision rule is to reject the null hypothesis. Double click on the output will
yield the following comparisons:

Related-Samples Friedman's Two-Way Analysis of Variance by Ranks
Observer 1 Observer 2 Observer 3

Mean Rank=1.20 ean Rank=2.00 Mean Eii::iﬁu

Muey

Rank
LA S S §

T T 1 T T T
60 6000 20 40 6.0 8000 20 40 60 6.0

Frequency Frequency Frequency
Total N 10
Test Statistic 14.222
Degrees of Freedom 2
Asymptotic Sig. (2-sided test) 001

8.6.2 Kendall's coefficient of concordance or W-statistic

A statistic, called Kendall's W coefficient was introduced by Kendall (1939). It may be
used in the same situation where Friedman's test statistic is applicable. It has a special
advantage that it gives the index of agreement. It is calculated as:

- 12 K [o nk+DT
W= n?k (k +2) (k_1)i§ [R' 2 } ' (8.10)

where n, k an Rj has been defined in (8.9).

If there is perfect agreement in the observers in all the blocks, the result of W is 1.0. If
there is a perfect disagreement among observers then W is 0 or very close to zero. W can
be easily calculated using Example 8.10. If IBM SPSS package is to be used, the entry of
data is like the previous example.
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SPSS output for Friedman and Kendall's Coefficient W

Friedman Two-Way ANOVA
Cases | Chi-Square | D.F. | Significance
10 12.80 2 .0017

Kendall Coefficient of Concordance
Cases w Chi-Square | D.F. | Significance
10 711 14.22 2 .0008

We conclude at 5% level of significance that there is disagreement between the
observers. Since W = 0.71, we say that there is 71% agreement.

Example S8-8
(The Kendall's coefficient of concordance automatically)

The data for example 8.9 will be in columns as follows:

Patients Observer1 Observer2 —Obseweﬂ

1 1 6 7 8
2 2 N @& - el
3 3 s T
4 4 3 N

5 5 S, W 6
6 6 8 9 10
7 Py sl 7 9
8 3 6 7 8
9 9 470 ¢ 6 8
10 S0 7 9 8

We apply the Kendall's coefficient of concordance automatically as follows:

Analyze-> Nonparametric Tests=> Related Samples ...

File Edit View " Data Transform |Analyze IDiremMarketmg Graphs  Utilites  Add-ons  Window H
= =
[HE - L
L - Descriptive Statistics 3 & bt
Tables 3
Ratients Observer1 Compare Means » ar var ar
1 7 1 6 General Linear Model 3
2 2 4 Generalized Linear Models ~ *
3 3 2 Mixed Models 3
4 4 3 Correlate [
5 5 5 Regression »
g & 8 Loglinear »
g 7 5 Neural Networks 3
8 6
Classify 3
9 9 4
Dimension Reduction r
10 10 7 g : N
cale
" =
= Nonparamelric Tests 1 A one sample
13 Forecasting ' | A independent samples
3
14 ETE L Related Samples..
= 3 1
15 Multiple Response Teoacy Dialogs u'
16 [EZl Missing Value Analysis..
17 Multiple Imputation »
18 Complex Samples »
19 EZ simulation
20 Quality Control 3
Al [ roc cune
= IBM SPSS Amos...
23
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We may choose either © Automatically compare observed data to hypothesized or Customize analysis
to choose Kendall's coefficient of concordance test manually. Both will give the same

result. We will Choose GCustomizeanalysis and click on Kendall's coefficient of
concordance, as follows:

e . N ) ([ R . % ==
o —
[osjecae. Ftos | setings| [onjecns siga | setinca
Sesctan e
ChosaTeets © hutomsicaly chooss e ess based ca e dsts
g{:‘:: :’mu&.."::: :::.,.,,..,,h @ Sslactonly 205t 16165 10 un 2 ralated S3Mpla tasts, Tost Oztons. B Qustomizs fsts
- UserUiszing Values.
$ad 12
Fields. - 7 TestFielcs: B A
feoct [iome ~|l& & Ovsennt1 1 7] \ios0n malched-ssir signed-1ank (2 s3mples)
TS cuasearz
& Paterts ; fosind| Estimat Confidence sl
7 Cohearis Q (e samples) = o
: 7] Hocges-Lshmann (2s3mpiss)
| Ouanaty Associztons
|V |Kendal's coeMcient of concerds 1
4 7
| ) Frieaman's 2-wap ANOYA by ranks (x samples)
| 1 Ui imogenety test 2 samptes) | | -
@@ 2 a2 V & L
(o yp) Ceaste ) Cese) (cance) (@21e0) (e (et (Resst) (oset) (@)

We click on to get the following final result:

Hypothesis Test Summary

Null Hypothesis ‘& i ecision

Related-
Samples
The distributions of Chsener, Kendall's Reject the
1 Observer 2 and Obseryer 3 are the  Coefficient .001 nuHI

same. of N ypothesis.
Cancordanc
F P-value

Asymptotic significances are displayed. The significance level is .05.

Note: The decision rule.is ta reject the null hypothesis. Double click on the output will
yield the following comparisons:

Related-Samples Kendall's Coefficient of Concordance

Observer 1 Observer 2 Observer 3
#7 MeanRank=1.20 Mean Rank = 2.00 Mean Rank = 2.80 ™
3 3 2
=
[+
22 2 =
1 m
I T T T 1 T T T T T T T T
[1s] 20 40 6.0 8000 20 4.0 6.0 8000 20 40 6.0 8.0
Frequency Frequency Frequency
Total N 10
Kendall’s W 711
Test Statistic 14.222
Degrees of Freedom 2
Asymptotic Sig. (2-sided test) 001
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8.6.3 Cochran's Q test

Sometimes the use of a treatment results in one of two possible outcomes, i.e. the
medicine is effective or not effective, a certain treatment may result in a success or a
failure. If there are several treatments and each is applied in several different trials, the
result is given in the form of a 2x2 contingency table and treatment differences may be
tested using chi-square method. If the treatment result is classified into one of two
categories then Cochran (1950) proposed a test known as Cochran's Q-test. This is an
extension of McNemar test, which has been discussed in Chapter 7.

Each of k treatments is applied independently to each of n blocks and the result of each
treatment is recorded as either 1 or 0, i.e. success or failure. Then the table takes the
following form:

Table 8.10
Blocks Treatment
(patients) 1 2 3 K Total

1 1 0 1 1 R,
2 0 1 1 1 R,
3 0 0 0 0 :
4 1 0 0 1 R,
n

Total C, C, Cy

Assumptions:

Responses within blocks are correlated and the blocks (patients) are independent and as
such are randomly selected.

The outcome of the treatment within each block may be dichotomized so the outcomes
are tested as either 0 or .

0] H, : Allthe treatments are equally effective.
H, : There,is difference in effectiveness.
(i)  a=0.05
(iii)  test-statistic: Cochran's test.
k (k —1) i C - (k-1N°
2 =1

xc = . , (8.11)
kN -> R?
i=1
where k is the number of treatments or samples

Cj is the sum of the columns
Rj is the sum of rows

(iv) x% is calculated and is compared with table value of %* with (k - 1) degree of
freedom and significance is determined accordingly.
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Example 8.11:

One hundred people were asked to taste four new brands of cough syrup and state which
new brands taste better than the present formula and which brands do not. As indicated in
the following table, 15 subjects preferred the new taste to the old for all four brands, 3
subjects preferred brands A, B and C over the old brand but did not prefer brand D over
the present formula, and so on. Test the null hypothesis that there is no significant
difference in preferences among the four new brands of cough syrup.

Table 8.11
Brand Number of subjects
A B C D with this response
1 1 1 1 15
1 1 1 0 3
1 1 0 1 3
1 0 1 1 6
0 1 1 1 21
1 1 0 0 1
1 0 1 0 X
0 1 1 0 1
1 0 0 1 2
0 1 0 1 2
0 0 1 1 19
1 0 0 0 3
0 1 0 0 3
0 0 1 0 2
0 0 0 1 13
0 0 0 0 5
Total 8 8 8 8 100

Solution:
(1) H, : Thereis.no difference among A, B, C and D

H, : There is difference.
(2) .= 0.05
(3) test-statistic: Cochran's Q-test.
The SPSS package is used and the result is given as

SPSS output for Cochran's Q test
Cases | Cochran's Q-test | d.f | Significance
100 58.015 3 0.0000

Note that the data entry on SPSS package is like data for t-test (paired).

The result is significant at 5% level of significance and we conclude that there is
difference in the taste of all the four brands of cough syrup. Note that at the time of
entering the data, each set is entered a number of times mentioned against each set (see
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application of SPSS package). If there are two treatments then the experimenter has a
choice to use either Cochran's Q-test or McNemar test. Algebraically for two treatments
Cochra's Q-test is identical to McNemar test and these are approximated by x? with one
degree of freedom. The McNemar test is used for brand A and B. The result is significant
at 5% level of significant; therefore, we conclude that there is a difference in taste in two
brands of syrup A and B.

SPSS output for McNemar test
Var 1 by Var 2

Var 2
0 1 Total
Var 1 0 27 39 66
1 22 12 34
Cases 100

Chi- square = 5.0256 Significance = 0.0250

Example S8-9
(The Cochran’s Q test automatically)

The data for example 8.11 will be in 4 columns and 200 rows. The 1% 18 case, as a part of
the data is as follows:

File  Edit View Data /Transform  Analyze  Direct Marketing

S i g~ B

A=
e L
75:A |

:

b

d |

j;wmwmllmhwm

2= ==
o ||| | R

=y
-
o o o . A o s A s A A o aa

=y
==}
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We apply the Cochran's Q test automatically as follows:

Analyze-> Nonparametric Tests=> Related Samples ...

File Edit View Data Transform Eﬁly?lD\redMarkeling Graphs  Utilities  Add-ons  Window  E
ﬁ O [ Reports ’ B 5%
— Descriplive Statistics 3 =
|75:A | Tables 3
I A B Compare Means 3 var var var
f 1 1 General Linear Model »
2 1 1 Generalized Linear Models P
3 1 1 Mixed Models 3
4 1 1 Carrelate »
5 1 1 Regression 3
£ ! 1 Loglinear 3
y 1 1 Neural Networks 3
8 1 1 .
Classify 3
9 1 1
Dimension Reduction 3
10 1 1 ; | 5
cale
ik 1 1 =
12 1 1 Nonparametric Tests "l‘ A One sample
13 1 Bl Forecasting ¥ J\ Independent Samples...
14 1 1 Suvival X i Related Samples
3
15 1 1 Multiple Respanse -Legacymogs “l'
16 l 1| | &l Missing value Analysis.
17 1 1 Multiple Imputation 13
18 1 1 Complex Samples 3
19 1 1| | B3 simulation
20 1 1 Quality Control »
21 1 1 ROC Clirve...
2 1 g IBK SPSS Amos
22 1 n

We may choose either © Agtomatically compare®@bserved data to hypothesized or Customize analysis
to choose Kendall's coefficient of concordance test manually. Both will give the same

result. We will Choose Gustomizganalysis and click on Kendall's coefficient of
concordance, as follows:

e e e =] B e = % ==}
[onecval P03 sutings| L N [onocte o seamorg
t Setedanikm

O use prscetneg ross

Chosse Tosts \ © Aumarcaty coze e tezts tased on e dts
® Use guslom el assssnmants

(i" ‘Select only 2 test el ta run 2 relted samele tests. TestOgtans ® Gustomes tests

& i g

felos:

] Wlcatcn matched pal aknad.cack 2 samps)

Extimate Coetinie ranes
7 Cochrans 0 0 samites) a7
) 1] HosgesLehmann (2 s3gles)

T

-

Quantty Asseciatons
e
] Kandsifs costoiert of conccecance (x sameles)

L T —
Margial Homzganiit 451 (2 3amptas) =

We click on to get the following final result:
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Hypothesis Test Summary

Null Hypothesis % Test % Sig.%ﬂﬁecisiona\
The distributions of Brand A, Brand gelateld- FEelject the
1 B, Brand C and Brand D are the Gsmﬁaensts a 000N null
same. Tast * ypothesisl
o

Asymptotic significances are displayed. The significance Ieve/s 05,
P-value

Note: The decision rule is to reject the null hypothesis. Double click on the output will
yield the following comparisons:

Related-Samples Cochran's Q Test

1000 Total N 100

2

58.015

k?

Frequency

k?

20,1

tmpt c Sig. (2 sided test) .000

0.0

Brand A Brand B Brand C Brand D

8.7 Measures of Rank Correlation

It is commonly known as Spearman‘Rank Correlation. This is frequently used because of
its simplicity. This measure of ‘correlation ' may be used with ordered data or data
transformed to ranks withoutsany requirements concerning the scale of measurement
although it is difficult to /interpret unless the scale of measurement is interval. The
measure of correlation as given by Spearman (1904) is usually designated by p (rho) and
if there is no tie, then

6xd?

=1- —1
P n(n?'<1)

(8.12)

where Zdiz is the sum of square of the differences. If there are not many ties, the
procedure for calculation is as:

Q) Rank the values of one set (say x) from 1 to n and also rank the value of
second set (say y) from 1 to n.

(i)  Find the differences (dj) between the ranks of first set and the second set.
(i) Find =d?.

Example 8.12:

Twelve sets of identical twins were given psychological tests to measure their
aggressiveness. The emphasis is on examination of the degree of similarity between twins
within the set. The data were measures of aggressiveness and are given in Table 8.12:
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Table 8.12
Twin Set 1 2 3 4 5 6 7 8 9 |10 |11 | 12
First Born 86 |72 |77 |68 |91 |73 |75|92 |70 | 71|88 | 87
SecondBorn | 88 | 77 | 76 | 64 | 96 | 72 | 65 | 90 | 66 | 80 | 81 | 73

Calculate the rank correlation coefficients between the two measures aggressiveness and

test the significance of this correlation coefficient.

Solution:

First Born (x) | R1 | Second Born (y) | R2 | (R1-R2)=dj | d?
1) (2 3 4 (5) (6)

86 8 88 10 -2 4

72 4 77 7 -3 9

77 7 76 6 +1 1

68 1 64 1 0 0

91 11 96 12 X 1

73 5 72 4 1 1

75 6 65 2 4 16

92 12 90 11 1 1

70 2 66 3 -1 1

71 3 80 8 -5 25

88 10 81 9 1 1

87 9 73 5 4 16
Total 76

The rank of x and y are given in column 2 and 4 respectively of the above table.
N=12 Yd*=76
Using formula (8.12);we.can calculate p as

1. OO _ 7343
12(12° -1)
with p < 0.007
If we calculate Pearson correlation coefficient then r = 0.7215 with p < 0.003

The significance of this can be tested as:

Q) Ho : The measure of aggressiveness of two identical twins are mutually

independent.

H, : There is either a positive correlation or a negative correlation between

the two measures of aggressiveness.
(i) p=0.05
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(iii) It is a two tailed-test, the table value at 5% level of significant for 11 df is
0.623.

(iv)  The calculated value of p is 0.7343 which is greater than the table value.

Therefore, it is significant and we say that there is a relation between the
measures of aggressiveness. The SPSS package is used to calculate the rank
correlation coefficient. The entry of data is like Pearson's correlation.

Example S8-10

The data for example 8.12 will be as follows:

set first second
1 1 86 88
2 2 72 77
3 3 77 76
4 4 68 #|
5 5 91 96
6 6 73 N
7 7 75 Tsl
8 8 @2 0 30
9 9 Top 68
10 10 71 30
11 1 88 81
12 20, By, 73

We apply the Spearman Rank Correlation'as follows:

Analyze-> Correlate-> Bivariate ...

File Edit View (Data Transform . JAnalyzé | DirectMarketing  Graphs  Ufilties  Add-ons

= m L [5F . Reports »
L I= U thes * g |
i\ | | Descriptive Statistics »
8: | Tables »
_set _”_ first Compare Means L4 var var
1 1 86 General Linear Model 2
a——— = . N
2: z 2 Generalized Linear Models »
T 3 m Mixed Models >
;1 _"— ;1 g? Comelate L Bivariate...
Regression » "
£ 6 73 Loglinear » el
7 7 75 29 |3l Distances
MNeural Networks L
8 & 92
Classify b
9 9 70
Dimension Reduction »
10 10 7 - ,
Scale
" 11 88 - L
»
12 12 87 Monparametric Tesis
»
13 Forecasting
i »
14 Survival
15 Multiple Response 2
16 Missing Value Analysis
17 Multiple Imputation 2
18 Complex Samples 3
19 B2 simulation
20 Quality Control b
21 ROC Curve
Z IBM SPS8 Amos
23




Hanif , Anmad and Abdelfattah 419
Move the two variables to “Variables”. Mark on Spearman.
1 Bivariate Correlations S| [ Buariate Conelations
Variables: --0 = Variables: - =
L TSR CAk &b Twin Set [sef] & FirstBorn [firsl] Qpfions
& First Born [firs] — & Second Born [secon..
& Second Born [secon. s —
oeflicients Correlation Coeflicients
7] Kendall's tau- [C] Pearson [[] Kendall's tau-b [# Spearman
Test of Significance Test of Significance
@ Two-tailed © One-tailed @ Two-tailed © One-tailed
[¥/] Flag significant correlations 7 Flag significant correlations
\ i
We click on to get the following final result:
Correlations
First Bormn ™| Second Bom
Spearman's rho  FirstBorn Correlation Coefficient 1.000 < T34 :i‘- _Spearman
Sig. (2-tailed) _ 007 Coefficient
M 12 12 \
Second Born  Correlation Coefficient 734 1.000 P-value
Sig. (2-tailed) .0o7 .
M 12 12

** Correlation is significant at the 0.01leyel (2-tailed).

The p-value = 0.007, the result is significant therefore we can say with 95% level of
confidence that there is 73:4% correlation between the measure of aggressiveness in the
population where from this sample has been selected.
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Chapter 9
Logistic Regression

9.1 Introduction

In Chapter 6, we studied linear regression but this method of analysis is generally not
applicable when the dependent variable is binary or has only two values (yes, no), or has
a nominal measurement level with more than two values. An other method known as
logistic regression is commonly used for such situations. Before this, a method of
discreminatnt analysis was also in practice but this allows direct prediction of group
membership but the assumptions of multivariate normality if.independent variables is
required for prediction rule to be optimal. Logistic regression model requires fewer
assumptions than discriminant analysis and even whengthe assumptions required for
discriminant analysis are not met, logistic regression, still“performs well. [see Hosmer
and Lemesho (1989) and Kleinbaum (1992).] In dogistic regression one can directly
estimate the probability of an event whereas in linear.regression it'is not possible as they
do not fall in the inteval 0 to 1.

The method of logistic regression has become the'standard method of analysis for the last
three decades, when the dependent variable'is binary”or dichotomous (yes, no). The
difference between logistic and linear regression lies both in the choice of a model and
assumptions. Once the difference is accounted for, then logistic method of analysis
follows the same general principles as used in linear regression. To illustrate logistic
regression, let us consider @ dichotomous<disease outcome with zero representing not
diseased and 1 representing diseased;fi.e. coronary heart disease (CHD) may be classified
as either zero (withouttCHD), or 1 (with CHD). The CHD is an outcome of some cause,
so we call CHD as dependent variable. Suppose we are interested in a single dichotomous
exposure variablejizes, smoking which is classified as “yes” for smoker and “no” for non-
smoker. To evaluate,the extent to which smoking is associated with CHD, we perform
analysis by the method of logistic regression. We can take into consideration some
control variables, if we like, such as age, race, sex, etc. The difference between logistic
regression and odds ratio is:

i) The method of logistic regression, is applicable in even elementary analysis.

ii) The probability of an event is calculated by the use of logistic method, whereas
we cannot calculate the probability of an event by the method of odds ratio.

iii) Odds ratio tells us only how much risk of CHD is involved after a certain period
but does not explain how much the risk of CHD is involved with the increase in
age whereas the method of logistic regression explains this point also in an
elegant way.

In fact, logistic regression is needed by health scientists and others despite the fact that
some approximation is involved because of the tranformation of the data from one mode
to another mode. This subject is very vast and it is not possible to cover all the aspects of

421
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logistic regression in this book. We have tried to summarize the necessary points which
are useful for health scientists.

The logistic regression model is given as:

z
f(z)=Prob (event) = € = ! (9.1)
1+e* 14¢e77?

where z = Bg + B1X1(simple model) and z = Bg + B1Xx, + B2X2 + ---- for multiple model
and By, B1, B2, .... are coefficients,

Prob (Event) = log. [ p J p is the proportion of the event of “yes” or “no” and e is the
1

base of natural logarithms.
The probability of the event not occurring is estimated as:
Prob (no event) =1 - Prob (event) (recall binomial distribation)

Many distribution functions have been proposed forsuseiin the analysis of a dichotomous
outcome (See Cox-1970) but logistic regression method is very popular for the following
reasons.

(1) Logistic function [f(z)] ranges between 0“and 1 and is the primary reason for its
popularity. The model is designed to describe prababilities, which is always some
number between 0 and 1. In.epidemiolagical terms, such a probability gives the
risk of an individual getting a disease,i.e: individual risk is measured by 0 < Prob
< 1. By using the logistic.model; we can never get a risk estimate either above 1 or
below 0. This is the primary reason why logistic method is the first choice.

(2) The shape of the logistic model f(z) is s-shaped. This is considered to be widely
applicable for ‘the multivariable nature of an epidemiological research. The
s-shape of f(z) indicates that the effect f(z) on an individual's risk is minimal for
low z's until somerthreshold is reached. This risk then rises rapidly over a certain
range of intermediate z values, and then remains extremely high around 1. The
shape is indicatediin Fig. 9.1.

1 f@)=1
a2
.t
(Dm0 (B >-shape
ey 0 T+ 0
— ! —

Fig.9.1: Shape of the logistic regression
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By the use of logistic model, we can estimate the probability that the disease will develop
during a defined period say ty to t,.

9.2 Fitting of Simple Logistic Model
For fitting of logistic regression following example is given.

Example 9.1:
In a study of 100 subjects that participated in the study, the age in years alongwith the
presence (yes=1) and absence (no = 0) of evidence of coronary heart disease is recorded.

Table 9.1
Age and Coronary Heart Disease Status (CHD) of 100 Subjects

ID | AGE CHD | ID | AGE CHD ID AGE CHD
1 20 0 35 38 0 68 51 0
2 23 0 36 39 0 69 52 0
3 24 0 37 39 1 70 52 1
4 25 0 38 40 0 71 53 1
5 25 1 39 40 1 72 53 1
6 26 0 40 41 0 73 54 1
7 26 0 41 41 0 74 55 0
8 28 0 42 42 0 75 55 1
9 28 0 43 42 0 76 55 1
10 29 0 44 42 0 77 56 1
11 30 0 45 42 1 78 56 1
12 30 0 46 43 0 79 56 1
13 30 0 47 43 0 80 57 0
14 30 0 48 43 1 81 57 0
15 30 0 49 44 0 82 57 1
16 30 1 50 44 0 83 57 1
17 32 0 51 44 1 84 57 1
18 32 0 52 44 1 85 57 1
19 33 0 53 45 0 86 58 0
20 33 0 54 45 1 87 58 1
21 34 0 55 46 0 88 58 1
22 34 0 56 46 1 89 59 1
23 34 1 57 47 0 90 59 1
24 34 0 58 47 0 91 60 0
25 34 0 59 47 1 92 60 1
26 35 0 60 48 0 93 61 1
27 35 0 61 48 1 94 62 1
28 36 0 62 48 1 95 62 1
29 36 1 63 49 0 96 63 1
30 36 0 64 49 0 97 64 0
31 37 0 65 49 1 98 64 1
32 37 1 66 50 0 99 65 1
33 37 0 67 50 1 100 69 1
34 38 0

*AG = Age groups

It is of interest to explore the relationship between age and presence or absence of CHD
in this study.
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Solution:

Logistic Regression

The outcome (dependent) variable is CHD, which is dichotomous, therefore, multiple
linear regression cannot be fitted, instead logistic model will be fitted. Because of the
complexity in calculations the IBM SPSS package is used to fit the logistic regression, as
can be seen in the following steps:

Example S9-1

The data will be in 3 columns and a part of the data is as follows:

The Variable View is as follows:

o wla|~o| m e s
o

Age
20
23
24
25
25
26
26
28
28
29

W om = m e W k]

o

CHD

o oo oo a0 ooco
&~

Name Type Width Decimals Label lah!esA\;MlssﬁJLﬁmna Align Measure
1 D MNumeric 8 0 MNone 'None 4 = &> Nominal
2 Age MNumeric 8 0 MNone None 4 & Scale
3 CHD Numeric 8 0 Coronary Heart.. . None None 6 = Right & Nominal
We apply the Binary logistic as follows:
Analyze-> Regression-> Binary'Logistic. .
File Edit VWew Data Transform JA irect Marketing ~ Graphs  Ulilities  Add-ons  Window H
= =
S H R )i IEEEE
— =, - _|4 Descriptive Statistics » B B e
[ Tables »
1D Age_"_CHD Compare Means > var var var
1 JT‘_ U 20| . 0 General Linear Model L
2 72 23 0 Generalized Linear Models +
3 E‘_ 24 0 Mixed Models »
4 4 2 0 Correlate 4
5 3 25 1 s
5 6 2% 0 Regression " {5 Automatic Linear Modeling...
Loglinear ¥ E e
7 7 26 0 = .
Neural Metworks P e
3 3 28 0 N Curve Estimation...
Classif
9 9 28 0 o Partial Least Squares...
Dimension Reduction »
1 0 2 ol \
cale |
" n 30 0 Nenparametric Tests » E Multinomial Logistic. “
12 12 30 0 - H ordinal
Forecasting + g
13 13 30 0 E o
= robi
14 1w 30 0 Sunivl Y 5
I 15 30 0 Multiple Response + | [ Monlinear..
16 16 10 1 | Ef missing Value Analysis... [l weignt Estimation..
7 17 32 0 Multiple Imputation L3 2-Stage Least Squares..
18 18 32 0 Complex Samples ’ Optimal Scaling (CATREG)...
19 19 33 0 | B simulation..
20 20 33 0 Quality Control 3
2 21 34 0 ROC Curve.
Z 2 # 0 IBM SPSS Amos...
27 27 u 1

Role
© None
“ Input

© Target =
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Move the variable “CHD” to Dependent:

Move the variable “Age” to Covariates:;

oo I S| (G R ==
Dependent Cotegarical Dependent (categial. ]
s ] E D E & Coronary Heart Disease Statu E
& ne 4 — & nge Blockfof1———————
&, Coronary Heart Dis. #4 E
Preyious HNext [ Previous [ nex |
Age
\ -
a7
Method: [Enter - Method: [Enter -
Selection Variaple Selection Variable:
o D D D

Click on (.28tens= ] and select the following:

Logistic Regression: O

ptions

tatistics and Plot:
|| Classification plots

[”] Hosmer-Lemeashow goodness-offit
[ casewise listing of residuals

@ Qutliers outside |2
® Al cases

Classification cutoff
Maximum Herations:

Now click on (Contnse] e m to get the following outputs:

SPSS output for logistic regression
Model Summary

-2 Log Cox & Snell Nagelkerke
Step likelihood R Square R Square
1 107.353 .254 .341

The value -2 log likelihood for model containing independent variables = 107.353.
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Classification

a

Logistic Regression

Predict
CH Percenta
Observe 0 1 Corre
CH 0 45 12 78.
1 14 29 67.
Overall 74.

a. The cut value is

From the above Classification Table for CHD we see that 45 patients without CHD were
correctly predicted by the model not to have CHD. Similarly 29 men with CHD were
correctly predicted to have CHD. A total of 26 (12 + 14) men were miss classified in the
analysis- 12 men with negative CHD and 14 men with positive CHD, whereas 78.95% of
the men were correctly classified without disease and 67.44% were correctly classified as
with CHD. Overall 74% of the 100 men were correctly classified.

Omnibus Tests of Model

The value of model chi-square is¢29.31 with p = 0.000. This is highly significant.

Chi-square df Sig.
Step 29.310 1 .000
Block 29.310 1 .000
Model 29.310 1 .000

Therefore we are 95% confident that.the fitted madel is appropriate.

Variables.in‘the Equation

95.0% C.l.for EXP(B)
B S.E. Wald [ df | Sig. Exp(B) Lower Upper
S&ep AGE 111 .024 21.25 .000 1.117 1.066 1.171
1 Constant }-5.309 |,1.134 [ 21.94 1 | .000 .005

a. Variable(s) entered on step 1: AGE.
Interpretation of results
(1) exp(e® ) = OR = " = 1.1173

A value of 1.12 of odds ratio means that with the increase of one year in age the risk
of CHD is increased 1.12 times provided all other factors are kept constant. Since one
year increase does not give any significant change, therefore, we can see the
significant change after 10 years. This is calculated as:

years x 3 10 x 0.1109
e =e

=3.03

This indicates that with an increase of 10 years in age the risk of CHD increases
3.03 times.
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(2) Wald's statistic, W

2
w=[prsep)] =(%j = 2118, 92)

This estimate, under the hypothesis that Bq = 0, follows a standard normal
distribution, N(0, 1). In this example, Wald statistic shows that age has significant
affect on CHD, i.e. as age increases, chances of CHD increases. Hauck and Donner
(1977), examined the performance of Wald statistic and found that it behaved in an
aberrant manner, after failing to reject when the coefficient is significant. Moreover, it

has an undesirable property, i.e. this method fails when the coefficient ([3) is large. If

the coefficient is large, the SE ([3) is too large, then the Wald-statistic is too small, to

reject the null hypothesis, when in fact the null hypothesis should be accepted.
Therefore, when coefficient is large, one should not rely on Wald-statistic, instead
one should build a model with and without that variable andase the hypothesis test
on chi-square test.

(3) Partial Correlation Coefficient(R)

R ranges from -1 to +1. A positive value of R indicates'thatias the variable increases
in value so does the likelihood of the event occurring. If R is negative, the opposite is
true. Small value of R indicates that the variableshas little contribution to the model.

9.2.1 Application of simple logistic model for prediction

We can apply the simple logistic model.to find the chances of a disease of a person at a
given age. If the probability is.less than 0.5,/we say that the event is not likely to occur
but if the probability is 0.5 or more we say.that there is a chance of the occurrence of an
event. The higher the probability the greater the chance of occurrence of the disease.
Using the results of Example 9.1. in (9.2)

Z=-5.31 £0.111 (age)
The probability of the occurrence of an event (CHD) may be calculated as:

1

P(CHD) =
(CHD) 1+e*

Suppose the age is 40 years then
Z=-5.31+0.111(40) = -0.87 and e 8" = 2.39
Using (9.1) the probability of CHD will be

P(CHD) = - 1239 =0.29
+ Z.

On the basis of data given if the age of a person is 40, there is a small chance of CHD as
the probability is less than 0.50 or we say that there is only 29% chance of CHD.
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Again suppose the age = 60, then from the model Z = 1.35 and e_l'35 = 0.26. The
probability of the occuring of CHD will be

P(CHD) = N =0.79
1+ 0.26

Since the probability is high, so a person who is approaching the age of 60 has about 80%
chances of CHD.

We will show how to calculate the probabilites directely through the IBM SPSS in the
following example:

Example S9-2

We will add the age of 40 and age of 60 to the data and apply the Binary logistic and get
the predicted values directly, as follows:

Analyze-> Regression-> Binary Logistic...

File  Edit View Data Transform | Analyze IDireclMarketing Graphs  Utiliies  Add-opns  Window  Help
ETETEY ) [qiNE R 50
— L= g Descriptive Statistics 3 : - BEE e

or: Tables »

D Age CHD Compare Means Foglvar var var
85 85 57 1 General Linear Model 3
a6 a6 58 0 Generalized Linear Models »
87 &7 58 1 flixed Madels r
88 83 58 1 Correlate b
89 89 59 1 - L]
= %0 P c NG5 51011 ¥ [&] Automatic Linear Modeling
y Loglingar L T
91 91 60 0 S ST
- Meural Networks P = R
9 92 50 1 B, \ [&] curve Estimation...
& — assi
= 03 61\_ ; 4 fy . \ [ Partial Least Squares...
mension Reduction
94 94 62 1 ; : N EBinary Logistic...
— cale 1
95 sgr 62 1 D — v | bl Muttinomial Logistic...
96 96\ . 63 1) & I ordinal
. N - b dinal...
a7 97 6 0 Forecasting @P ot
i robit...
98 98 6 1 EmE 4 =
99 99 65 1 Multiple Response 2 Eﬁonlinear..
100 100 69 9 Missing Value Analysis... [ weight Estimation...
101 . A0 R Multiple Imputation » g—Stage Least Squares...
102 . 60/ . Complex Samples L Optimal Scaling (CATREG)...
103 | FZ) simulation...
104 Quality Control »
105 ROC Cure...
106
IBM 3P35 Amos...
107

Move the variable “CHD” to Dependent:

Move the variable “Age” to Covariates: choose “save”

Click on and choose “Probabilites” for the Predicted Values, as follows:
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#5 Logistic Regressian @ @ Logistic Regression: Save @
Dependent -
+ epenten Predicted Values Residuals
% D | &5 Coronary Heart Disease Statu...‘ senmmemmn
Age Block 1 of 1 = & ilifies [7] Unstandardized
m_ [F] Group membership | | [] Logit
Next 2 e &
Covariates Influence ] Studentized
Age 7 Cook's [”] Standardized
- [] Leverage values [] Devance
[] DfBeta(s)
Export model information to XML file
Selection Variable: | | [Emwse ]
» I:l [ Include the covariance matrix
(conine)  carce )(_tise )

Now click on then , to find out the predicted values added to the data

directly, as:
90

TT467

91 91 60 Il @ | _?gﬂ
92 92 60 1 79344
93 93 61 1 81103
a4 a4 62 0 10w 82745
95 5 w2 O 82745
96 96| EL 1 84272
97 97, 64 0 85687
98B o8 64 4 1 85687
99 =_ 9 _ e 86994
1000, | 100 | 69 1 91246
T 40 . 2947
1020, 60 _

9.2.2 Confidence limits for odds ratio

95% confidence limit may be calculated as:

eﬁil.QGS.E(ﬁ)

0.111 + 1.96 (0.0241)

=e or [1.07,1.17]

The odds
playing a

(9.3)

ratio is greater than 1 and the confidence limits does not include 1 so age is
significant role in the CHD. We can say as the age increases there are more

chances of CHD. The other formula for the calculation of confidence limits is as:

(OR +e296SEB) oR x e1965E0)) = 11,07, 1.17]

(9.4)

Anyone of the above formula can be used for the calculation of confidence limits.

We will show how to calculate the confidence limits for the odds ratio, through the IBM

SPSS in the following example:



430

Exampl

e S9-3

Logistic Regression

We apply the Binary logistic for the data in example S9-1, as follows:

Analyze-> Regression> Binary Logistic...

File

Edit Vview Data Transform

S8 I « 5
|

| D | Age | cHD |

1 1 20 ]
2 2 23 ]
3 3 24 ]
4 4 25 0
5 5 25 1
13 6 26 0
7 T 26 ]
8 g 23 ]
9 9 28 0
10 10 29 0
11 130 0
12 12 30 0
13 13 30 ]
14 14 30 ]
15 15 30 0
16 16 30 1
17 17 32 0
18 18 32 0
19 19 33 ]
20 20

Al pal

2 2

277 27

Move the variable “CH

Logistic Regression

Analyze | Direct Marketing

Graphs  Utilities  Add-ons  Window  H

Reports

Descriptive Statistics
Tables

Compare Means

General Linear Model
Generalized Linear Models
Mixed Models

Correlate

Regression

=N

* ¥ ¥ v v v v v

Automatic Linear Modeling...

Loglinear
Meural Metworks
Classify

Dimension Reduction
Scale

Monparametric Tests
Forecasting

Sunvival

EZ] missing valu

i Nonlinear..

Weight Estimation..

4 2-Stage Least Squares...
Optimal Scaling (CATREG).

G I ==

Dependent:
&, D | Q ‘ & Coronary Heart Disease Statu.. |
& Age Blocktoft—————————
Previous m
Covariates:
Age

(»]

=athe

Method: |Enter =

Selection Variable:

(Lox J [ paste | mosat [cancel| rists

tatisti

[F] case:

© Al ca

[CJiClassification plots!

[] Hosmer-Lemeshow goodness-of-fit

@ Outliers outside

and Plot:

[C] Correlations of estimates

[ Iteration history
orrope b ]

wise listing of residuals

rd std. dev.

ses

Display
® At gac

hstep © Atlaststep |

Entry: Removal

y for Stepwise

Classification cutoff:
Maximum lterations:

[ Conse

rve memory for complex analyses or large datasets

Include constantin model

@WW
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Now click on (Continue then = ] to find out the 95% Confidence limits for odds ratio,
as:

Variables in the Equation

A 95% C.Lor EXP(B)
E SE. Wald df Sig. Exp(B) [ Lower Upper
Step1®  Age A1 024 21.254 1 .0oo 1.11?\ 1.066 1171 f
Constant -5.308 1.134 21.935 1 .000 .005
a.Variahle(s) entered on step 1: Age. \‘-———"/

9.3 The Multiple Logistic Model

Like linear regression model we will generalize the simple logistic regression model to
the case of multiple logistic regression model. This has been defined before and is as:

e? 1
1+e4 1+e7?

Prob(event) =

where:
Z= B0 + lel + B2)(2 oot BKXK

Example 9.2:
Suppose the disease of interest is CHD. Here CHD..is coded as 1 if a person has the
disease and O otherwise. There are_three independent variable such as X, = Age

(quantitative); X, = ECG (electro-cardiogram status) is 1 if abnormal and O if normal;
X, = CAT (catecholamine level) is"Lif high and O if low. The data are of 609 white males
[Kleinbaum (1992)].

Solution:

Here CHD is a dependent variable and dichotomous. In order to see the effect of Age,
ECG and CAT, we fit multiple‘logistic regression model taking Age, ECG and CAT as
independent variablessThese, 609 people are followed for 9 years to determine CHD
status.

Multiple logistic regression model was fitted using IBM SPSS package and the
coefficients are obtained

B, =-3.911, B, =0.029, B, =0.342 and B, = 0.652, therefore
Z =-3.911 + 0.029(Age) + 0.342(ECG) + 0.652(CAT) (9.5)

The odds ratio for the variables alongwith coefficients are as:-

Table 9.3
Variable Coefficient OR
Age 0.029 1.03
ECG 0.342 1.41
CAT 0.652 1.92
Constant -3.911
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Since the odds ratio are greater than 1 in all cases, therefore, Age, abnormal ECG, (code
is 1 if abnormal) and high CAT (catecholamine level is 1 of high) will have significant
role in CHD. The odds ratio for the age is 1.03, therefore the increase of one year in age
increases the risk of CHD by 1.03 times more. The odds ratio for ECG is 1.41 and the
code is 1 if ECG is positive, therefore the risk of CHD is 1.41 more if the ECG is
negative. Similarly the odds ratio for the CAT is 1.92 and code for abnormal CAT is 1,
the risk of CHD is 1.92 time more if CAT is abnormal.

Suppose we want to use our fitted model, to obtain the predicted risk for a certain
individual. For this purpose, we would like to specify the values of Age, ECG and CAT.
suppose the Age is 45, ECG =1 and CAT =0, then from (9.5)

Z=-3.911 + 0.029(45) + 0.342(1) + 0.652(0) = -2.264

1 1 1
= = = 9.4%
1+ efz 1+ e2.264 10.62

P(predicted risk) =

Then the individual has 9.4% risk of CHD over thedperiod of follow up study. If we say
that Age = 45, ECG =1 and CAT =1, then we have

Z =-3.911 + 0.029(45) + 0.342(1) + 0:652(1) = -1.16

. . 1 1
P(predicted risk) = = = 16.6%
G )= e (1B 6.013 ’

The person has 16.6% risk of CHD awver the period of follow up study.

From the above example we conclude that a person whose age is 45, ECG is abnormal
(1) but CAT is low (0), the risk of CHD is 9.4% whereas, the same person whose CAT is
also high the risk of CHD, is'16.6%.

The risk ratio cansbe.calculated as:

_ P(CAT=1) 0.166
P(CAT=0) 0.094

=177 (9.6)

Thus using a fitted model, we find that the person with high CAT has 1.77 times more
risk than a person with low CAT.

Note that two conditions must be satisfied to estimate risk ratio (RR) directly. First that
we must have follow up study so that we can legitimately estimate individual risk.
Second, for the two individuals being compared, we must specify values for all the
independent variables in our fitted model to compute risk for each individual. If either of
the above condition is not satisfied we cannot estimate risk ratio directly but it may be
possible to estimate risk ratio indirectly. For this purpose odds ratio is computed. In fact
the odds ratio is the only measure of association directly estimated from a logistic model,
regardless of whether the study design is follow up, case-control or cross-sectional.
Though logistic model is applicable to case-control and cross-sectional studies, there is
one important limitation in the analysis of such studies. This model cannot be used to
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predict individual risk for case-control or cross-sectional studies whereas in follow-up
studies a fitted logistic model can be used with specified independent variables. In fact
estimates of odds ratio can be obtained for case-control and cross-sectional studies.

For a 2x2 table, risk estimates can be used only if the data are derived from a follow-up
study, whereas odds ratio is appropriate if the data are derived from case-control or cross-
sectional study.

Example 9.3:

The treatment and prognosis depends how much the disease has spread. One of the
regions to which a cancer may spread is the lymph nodes. If the lymph nodes are
involved the prognosis is generally poorer than if they are not, that is why it is desirable
to establish as early as possible whether the lymph nodes are cancerous. For certain
cancers exploratory surgey is done to determine whether the nodes are cancerous, since
this will determine what treatment is needed. If one could predict whether the nodes are
affected or not on the basis of data, then surgery is not required. By doing so considerable
discomfort and expense could be avoided. For this purpose Brown (1982) took a sample
of 53 men with possible prostrate cancer.

For each patient age, serum acid phophate(ACID). the stage.of the disease (STAGE); an
indication how advanced the disease is, the grade of:thestumor; an indication of
malignancy, X-Ray, as well as the cancer has spread to the /regional lymph nodes at the
time of surgery was recorded. This data is giveniniTable'9.4 and has been analysed using
logistic model and prediction whether nodes have been affected are made.

Solution:

X-Ray, STAGE, GRADE are qualitative(' 0," 1) variable and are coded as 1 if
X-Ray indicates positive result;the value is 1 if the Stage is advanced, the value is 1 if it
is malignant tumor. Node involvement is‘dependent variable coded as yes or no or 1 or 0.
The result of the Logistic regression model using IBM SPSS package is given as :

(i) 2x2 Table

Table 9.4:
predicted
0 1
0 28 5 84.85%
Observed ) 7 13 65.00%
35 18 77.36%

-2log likelihood = 70. 252

It can be seen from the table that 28 men with negative nodes are predicted correctly
by the logistic model; 13 men with positive nodes were correctly predicted to have
positive nodes. The off diagonal entries (12) of the table were missclassified, 5 men
with negative nodes and 7 men with positive nodes; 84.85% were correctly classified
without diseases. 65% were correctly classified with diseased nodes. Overall 77.36%
of 53 men were correctly classified.
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(ii) Coefficients

Table 9.5

variable | coeff. | S.E W_?Id StatII:StIC p-value R OR
age -.069 | 0.058 | 1.20 1.44 0.23 0.00 | 0.93
ACID 0.024 | 0.013 | 1.84 3.39 0.06 0.14 | 1.02
X-Ray 2.045 | 0.807 | 2.53 6.40 0.01 0.25 | 7.73
GRADE 0.761 | 0.771 | 0.99 0.98 0.32 0.00 | 2.14
STAGE 1564 | 0.774 | 2.02 4.08 0.04 0.17 | 4.78
Constant | 0.618 | 3.460 - - - - -

Let us first interpret the result through Wald’s statistic. In the table given above only
X-ray and stage appear as significant as the t- values are more than 1.96 at 5% level
of significant variables. We conclude that positive result of X-ray and Stage will
indicate that nodes are affected. As mentioned earlier one cannat rely on the results of
Wald’s statistic as this method fails when coefficients,are large., The p-values of
X-Ray and Stage also indicate that variables have.significant contribution. All other
variables appear as non significant. This can be interpreted through odds ratio as:

Since the coefficient of X-ray is positive, and high code is 1 for X-ray which indicates
positive result, odds ratio is 7.33, therefore'a;man whose X-ray report is positive has
7.33 times more chances that nodes are affected than,the person whose X-ray result is
negative. Again the coefficient of the,Stage is positive and high code is 1 if the stage
of the disease is advanced,odds ratio-is 4.7, therefore a person whose stage is
advanced has about 5 times more chances that nodes are affected.

The probability( predicted) of the involvement of nodes will be calculated

P(nodal involvement) =
1+e7?

where:
z = 0.618-0.069(age) + 0.024(ACID) + 2.045(X-Ray)
+0.761(GRADE) + 1.564(STAGE).
Case 1

Suppose the age of a person is 66 years; his serum phosphatase level is 48 and all other
have zero values then

z=0.0618 - 0.693(66) + 0.0243(48) = -3.346,
The probability of nodal involvement may be calculated using (9.3)

. 1
P(nodal involvement) = —————— = 0.034 = 3.4%
14 e (43349

Since the probability is very low, it can be predicted that nodes are unlikely to be
malignant.
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Case 2

Age = 60 years; serum Acid Phophatase = 62; X-ray =1(positive)
the z value will be

z=0.0618 - 0.0693(60) + 0.0243(62) + 2.0453(1) = -0.54
The estimated probability will be = P (malignhant node) = 0.37

Again the probability is less than 0.50, therefore we conclude that nodes are unlikely to
be malignant.

Case 3

Age =60, ACID =62, X-Ray = 1, Grade = 1 Stage =0
The z is 0.22. Therefore the estimated probability will be = P(malignant node) = 0.554
Since it is more than 50% we say under the rule that nodes are likely to be malignant.
Case 4

Age =60, ACID = 62, X-Ray =1, Grade = 1, Stage =11
The estimated probability will be

P(malignant node) = 0.73
There is a high chance that nodes are likely to be'malignant..

Example 9.4:

Data for the risk factors associated with low infant birth weight were given in example
Chapter-6 alongwith code sheet. The dependent variable is low birth weight. It is 1 if
weight is less than 2500 pounds, otherwise = 0, the independent variables
are Age of the mother,(Age); weight in pounds at the last menstural period (LWT);
smoking status (yes = 1,.no =0); race (white = 1, black = 2, other = 3); History of
premature labor (noner=,0,.yes = 1), history of hypertension (yes = 1, no = 0), presence of
uterine irritability (yes = 1, no = 0), number of physician visit (none = 0, one = 1). Fit the
multiple logistic regression and interpret the result.

Solution:

The data are entered like multiple linear regression, instead of clicking linear regression
we now go to logistic regression. Here Low birth weight with coding system is dependent
variable where age, number of visits of physicians, history of hypertension, weight at the
last menstrual period, history of premuature labor, race, smoking, and uterine irritability
are independent variables.

Because of the complexity of the data the caculations are done using SPSS package and
the output is given below

SPSS output for Logistic Regression
Model Summary
-2 Log Likelihood | Cox & Snell R Square | Nagelkerke R Square
201.614 0.160 0.226
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The value of —2log likelihood for model containing independent variable = 201.614.

Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step 33.058 8 .000
Block 33.058 8 .000
Model 33.058 8 .000

Model chi-square gives significant result with p = 0.000, therefore the model is an
appropriate one.

Classification Table

Predicted
Observed 0 1 Percentage Correct
0 120 10 92.3
1 37 22 37.3
Overall 75.1
Percentage

From the above Classification Table we can see that 120 children.with high birth weight
were correctly predicted 22 children with low birth: weight_were predicted correctly
classified a total of 47 children were miss-classified 10 with high birth weight, and 37
with low birth weight. 92.03% of high birth weights are“correctly classified, whereas
37.3% with low birth weight were correctly. classified overall 75.1% children were
correctly classified.

Variables in the Equation

95.0% C.l.for

Exp EXP(B)
B S.E. | Wald | df [ Sig. (B) Lower Upper
AGE -.033 | <036 | .798 1 |.372 | .968 .901 1.040
LWT -.010 | .007 |2.324 1 |(.127 | .990 977 1.003
RACE 482 | .217 [4.934 1 |.026 [1.620 1.058 2.480
PTL .926 | .399 [5.388 1 |.020 [2.523 1.155 5.513
SMOKE .694 | .431 [2.599 1 |.107 [2.002 .861 4.656
HT 1.933 | .685 |7.972 1 |.005 [6.911 1.806 | 26.442
ul .799 | .457 |[3.065 1 |.080 (2.224 .909 5.443
FTY .055 | .189 | .086 1 |.770 [1.057 .729 1.532
Constant -.563 | 1.27 | .198 1 [.656 [ .569

Variable(s) entered are AGE, LWT, RACE, PTL, SMOKE, HT, Ul, FTV.

If we look into the result of Wald’s statistics, hypertension (HT), weight at the last
menstrual period (LWT), history of premature labor (PTL), race, smoking (Smoke) and
presence of uterine irritability (Ul) are appearing as significant variables.. Since Wald’s
statistic does not provide reliable result, therefore we try to inference through odds ratio.
The elimination process will be used by the SPSS package and the results are as follows:

Note that step 4 is the final answer.
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SPSS output after Elinimation Process

Model Summary

-2 Log Cox & Snell Nagelkerke
Step likelihood R Square R Square
1 224.638 .052 .073
2 217.790 .085 .120
3 212.363 111 .157
4 208.303 .130 .183

Classification Tablé&

Predicted
BWT1 Percentage
Observed 0 1 Correct
Step 4 120 10 92.3
44 15 25.4
71.4

a. The cut v alue is .500

Variables in the Equation

437

95.0% C.l.for
EXP(B)

1.470 5.393

1.604 6.056
1.488 19.843

1.066 2.237
1.845 7.608
1.436 20.459

1.036 2.199
1.698 7.164
1.648 23.805
1.034 5.953

Exp
B SE. Wald» | df | Sig. (B) Lower Upper

Step  PTL 1.035 | .3320/09.750 | 1 | .002 |2.816
1 Constant |-1.074 | .188 |.8249 | 1 | .000 | .342
Step  PTL 1.137 | .3397| 11.25 | 1 | .001 |3.117
2 HT 1.693.| 661 | 6562 | 1 | .010 |5.434
Constant | ) 547 | 202 | 36.37 | 1 | .000 | 296
Step  RACE 4341 189 | 5270 | 1 | .022 |1.544
3 PTL 1321 | .361 | 13.36 | 1 | .000 |3.747
HT 1.690 | 678 | 6.220 | 1 | .013 |5.421
Constant |-2.096 | .451 | 21.55 | 1 | .000 | .123

Step  RACE 412 | 192 | 4604 | 1 | .032 |1.510
4 PTL 1.249 | .367 | 11.58 | 1 | .001 |3.488
HT 1.835 | 681 | 7.255 | 1 | .007 |6.264

ul 909 | .447 | 4142 | 1 | .042 |2.481
Constant |-2.194 | .460 | 22.70 | 1 | .000 | .112

Here Hypertension, Histrory of premature labor, race and uterine irritability are appearing

as significant variables with odds ratio 6.3,3.5, 1.5, and 2.5 respective

ly.

Now dummy variables can be created by the automatic process of the logistic regression

model and the result is given as:
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Categorical Variables Codings

Parameter coding
Freqguency (1) (2)
RACE 1 95 1.000 .000
2 26 .000 1.000
3 68 .000 .000

Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step1 Step 10.034 1 .002
Block 10.034 1 .002
Model 10.034 1 .002
Step 2 Step 6.847 1 009
Block 16.882 2 .000
Model 16.882 2 .000
Step 3 Step 4.763 1 .029
Block 21.644 3 .000
Model 21.644 3 .000

Model Summary

-2 Log Cox & Snell Nagelkerke
Step likelihood R Sguare R Square
1 224.638 .052 .073
2 217.790 .085 .120
3 213.028 .108 .152

Classification Tabl&

Predicted
BWT1 Percentage
Observed 0 1 Correct
Step 3 BWT1 0 121 9 93.1
1 45 14 23.7
O Il P t
verall Percentage 1.4

a. The cut v alue is .500
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Variables in the Equation

95.0% C.l.for
EXP(B)

B S.E. Wald | df Sig. Exp(B) | Lower Upper

Step PTL 1.035 .332 | 9.750 1 | .002 2.816 1.470 5.393
1 Constant | -1.074 .188 | 32.49 1 | .000 .342

Step PTL 1.137 .339 | 11.25 1 | .001 3.117 1.604 6.056

2 HT 1.693 .661 | 6.562 1 | .010 5.434 1.488 | 19.843
Constant | ;17 | 202 | 3637 | 1 |.000 | 296

Step PTL 1.075 .345 | 9.725 1 | .002 2.930 1.491 5.758

3 HT 1.852 .666 | 7.730 1 | .005 6.372 1.727 | 23.509

Ul .967 .439 | 4.863 1 | .027 2.630 1.114 6.212
Constant | -1.373 .220 | 38.92 1 | .000 .253

Note that race is not appearing as significant whereas Racel appear as significant in set
variables not in the equation. It happens so as the race race2is,not significant.

Variables not in the Equation

Scare df Sig.
Step  Variables AGE 2.354 1 125
3 LWT 3.771 1 .052
RACE 5.495 2 .064
RACE(1) 5.492 1 .019
RACE(2) 1.190 1 .275
SMOKE .857 1 .355
FTY 242 1 .623

Note that in automatic{process Racel/is not appearing as significant variable
Interpretation of.the Coefficients

1. Hypertension (HT)

The odds ratio for hypertension is 6.4 and code for hypertension is high, therefore
hypertensive mothers have 6.4 times more chance of having low weight babies on the
average. The confidence limits for this variable 1.727 to 23.509. This does not incude
1, so hypertension plays a significant roll.

2. History of premature labor (PTL)

Since the odds ratio is 2.93, therefore all those cases which have premature labor will
have 2.93 times chance of having low birth weight than those who do not have
premature labor. The confidence limts for the PTL are 1.491 ~ 3.758 which does not
include 1 so this factor plays a significance roll.

3. Presence of Uterine Irritability

The odds ratio for uterine irritability is about 2.6, therefore all those mothers who
have problem of uterine irritability will have 2.6 times more chance of having low
weight babies at birth.
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4. Race

Before the interpretation of the result one should look into the coding system of the
race. After the creation of dummy variables the odds ratio for white race is 0.44. If we
recall Chapter 6, the code is 1 for white race and the odds ratio is less than 1 therefore
white race has protection against low birth weight. In simple language other race will
have babies less than average weight. If we look into the analysis without creating the
dummy variables we see that the coefficient of race is positive and the odds ratio for
the race is 1.5; code for other race is 3 therefore other race will have the babies low in
weight on the average,than the black and white repectively.

The method of multiple regression analysis was also used to analyse this data in Chapter-
6 and was found that variables like hypertension,history of premature labor, race, uterine
irribability and smoking turned out to be significant. In logistic regression hypertension,
premaiure labour, race and uterine irritability are significant factors, where smoking is
insignificant. The reason is very simple as multiple regression’uses actual birth weight
whereas in logistic regression we used binary system for.birth weight, therefore some
information is lost. It is recommended that logistic regression besed binary data is to be
analysed.

Example 9.5:

The variables given in Table 9.7 relate to the study of risk factors associated with ICU
mortality. Data were collected at Baystate Medical center, Sprinng Field, Massacuhusetts
U.S.A. The primary out come (dependent variable).isivital status (live or dead) at hospital
discharge (STA). The major goal of this.study was to develop a logistic model to predict
the probability of survival to hospital discharges of patients. The variables associated
with this study and code sheet are given below. ‘Analyze the data by logistic regression
and interpret the results. The«data is given at the end of this Chapter. Analyze the data
and interprete the result.

Table 9.7
S# Variable Code Number ID
1 |vital status 0=live,1=dead ST
2 |Age Years AGE
3 |Gender 0=male,1=female GE
4 |Race 1=white,2= black,3=other | RA
5 |service at ICU O=medical, 1= surgical SE
6 [Cancer 0=no, 1=yes CA
7 |history of chronic renal failure 0=no, 1= yes CR
8 |infection probable at ICU admission 0=no, 1=yes IN
9 |CPR prior to ICU 0=no,1=yes CP
10 [systolic blood pressure mmHg BP
11 | heart rate at ICU admission beat/min HR
12 [previous admission to an ICU within 6 months [No=0, yes=1 PA
13 [type of admission 0= elective, 1= emergency | TY
14 {long bone, multiple, neck, single area, 0=no, 1=yes FR
or hip fracture
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St Variable Code Number ID
15 [PO2 from initial blood 0if>60, 1if <60 PO
16 |Ph from inital blood gases 0if>7.251if<7.25 PH
17 |POC2 from initial blood gases 0if <45, 1if>45 PC
18 |bicarbonate from initial blood gases 0if>18,1if<18 Bl
19 | creatinine from initial blood gases 0if<2,1if>2 CE
20 | Level of consciousness at ICU admission 0 = no coma or stupor, LO
1= deep stupor, 2= coma

Example S9-4

The data will be in columns and a part of the data is as follows:

age | gen | ra| se|ca| cr| in|cp| bp | hra | pa |ty | fr | poy ph| pc| bi | ce| lo | st
1 27 11 0 0 0 1 0 142 88 0 1 E|_ 00 0 0 0 0 0
2 59 01 0 0 0 1 0 M2 80 1 1_‘_0 o0 0 0 0 0 O
5 v 0 1 1 0 0 0 0 100 00 00 0| 0 [11_ o o0 0 0
4 54 01 0 0 0 0 0 142 103 0 1 1 a 000 0 0 0 0
5 87 1 1 10 0 1 0 110 154/ 1 1 0 _Dr 0]—0 o 0 0 0
6 69 01 0 0 0 1 0 M0 13270 Ay, 1 0 0 1 0 0 0
7 63 0 1 10 0 1 0 104 66 UL o 0 0 0 0 0 0 0 O
8 30 1 1 0 0 0 0 0 Q44pt10 0 _11_ 6 0 0o 0o 0 0 0 O
9 35 0 2 0 0 0 0 0 108 60 D—l—1 6 0 0 0o 0 0 0 O
10 70 1 1 1 i1 0 0,0 138 403 0 0 0 0 0 0 0 0 0 O
We apply the Binary logistic as follows:
Analyze-> Regression-> Binary Logistic...
File Edit View Data Transform - Direct Marketing ~ Graphs  Utilties  Add-ons  Window
== = l.v . - Reports L ﬁ H BB & §
— _ ﬂ_ _L _: Descriptive Statistics » E =
1:age )27 Tables b
age g;‘& se | ca Compare Means b |po | ph|pc| bifce|lo]| st
1 Y 27' 1 1 0 0 General Linear Model 2 0 0 0 0 0 0 0
2 _ﬂ_sg 01T 0 0 Generalized Linear Models b 000 0 0 0 0 0
3 mo0 110 Mixed Modsls » 00000 00
4 af_ 010 0 . v | 00 0 0 0 0 0
5 & 1 1 1) 0 Regression ') [E] Automatic Linear Modeling...
6 69 0 1 0 0 Loglinear L E JiresE
7 63 01 1 0 N_ T n =
3 10 1 1 0 o0 eural Netwarks [E curve Estimation...
Classify 2
9 35 02 0 0 @ Partial Least Squares...
0 70 1 1 1 1 Dimension Reduction L4 E =
Scale v inary Logistic.. F I
" 5 1 1.1 0 N Emultmom\al Logistic.
Nonparametric Tests 2
12 48 0 2 1 1
13 66 4 4 y 0 Forecasting 2 E Ordinal.
n 61 1 1 0 0 Sunvival b |HH provi.
15 66 0 1 0 0 Multiple Response 2 Eﬂunlmear..
16 52 001 1 0 Missing Value Analysis [ weight Estimation
17 55 0 1 1 0 Multiple Imputation b |l 2-Stage Least squares...
18 59 01 0 0 Complex Samples 2 Optimal Scaling (GATREG)
19 63 0 1 0 0 |BHsimulation. U U U U U U U
20 72 0 1 1 0 Quality Control b 00 0 0 0 0 0
21 B0 0 1 0 0 EEE 00 0 0 0 0 0
22 78 o1 1 0 IBM SPSS Amos.. 00 0 0 0 0 0
23 16 1.1 0 0 o0 0 0 0 0 0
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Move the variable “st” to Dependent:
Move all other variables to Covariates:

File Edit View Data Transform -iredMarkeﬁng Graphs  Utiliies  Add-ons  Window He

1 i Reports 3 e x
FHEHE O = 4 s
i = Descriptive Statistics » R -
| | Tables (2
| age || gen || ra " se Compare Means [ " fr " po " ph " pc " bi " = " lo "
1 27 female  White M.. General Linear Model 3 Mo 0O 0 0 0 0 0
2 59 male  White M.. Generalized Linear Models » Mo, 0O 0 0 0 0 0
3 I male  White S.. Mixed Models b o Ne O 0O 0 0 0 0
4 54 male  White M.. Cormelate b |--Yes O 0 0 0 0 0
5 87 female  White 5. =
- | Regression V] [ Automatic Linear Modeling...
6 69 male  White M..
- Loglinear
T 63 male  White S.. Neural Networks
8 30 female  White M._. )
Classify
9 35 male  Black M..
8 Dimension Reduction
10 70 female  White S.. g |
cale
" 55 female  White S.. -
= . . — T = NonnarametricTestsn

Logistic Regression

& senvice atICU [sg]
&5 Cancer [ca]
&5 history of chronic
& infection probabl...
&5 CPR priorto ICU .
f systolic blood pre
& heartrate aticu ...
&5 previous admissi....
&5 type of admissio
& long bonle, multip...
& PO2 frominitial b
& Phfrominital blo
S Poc2 frominitial ..
¥ bicarbonate from...
& creatininie from in...
& level of conscio..

Selection Variable:

_Paste ]| Roset ] cancel [ ep |

Click on Categorical to specify the categorical variables (i.e with Nominal or Ordinal
measurements)

Now click on Method then choose Forward LR (to select the best Model):
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8 gt Resression:Dene s o I | S

Covariates:

Categorical Covariates:

& age

f senvice atICU [se]
f systolic blood press...
& heartrate atICU ad... E
& P02 from initial bloo...

& Phfrominital blood ..
& POC2 frominitial bl...
f bicarbonate fromini...
f creatinine from initia...
f level of consciousn...

ra(lndicator)
caflndicator)
cr{indicator)
in(Indicator)
cp{Indicator)
pa(lndicator)
ty(Indicator)

fr(indicator)

rChange Contrast

Contrast:

Reference Category: @ Last

inacaor = (cnange)

© First

Logistic Regression

Dependent

(tete]

& sewice atICU [se]
& Cancer [ca]

&b history of chronic ..
& infection probabl...

» & st
Block 1 of 1

Previous

&5 CPR priorto ICU ...

& systolic blood pre... g
& heartrate atICU ... age
& previous admissi... en(
& type of admissio... Cat)
& long bane, multip b>

& PO2 frominitial b... ca(l
& Phirominital bload I N
& POC2 from initial ...

& bicarbanate from .
& creatinine fromin...
& level of consciou

Ao owmhoa Al Al e

Enter

Se
Forward: Conditional

Forward: LR

Forward. wald

Backward: LR.
Backward: Wald

Backward: Conditional

Now click on m to get the following outputs:

SPSS output after the creation of dummy variables by automatic process

Model Summary

-2 Log Cox & Snell Nagelkerke
Step likelihood R Square R Sguare
1 172.697 .128 .203
2 163.558 .167 .264
3 151.540 .216 .341
4 144.907 .241 .382
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Hosmer and Lemeshow Test

Step Chi-square df Sig.

2 .003 1 .955
3 .167 2 .920
4 5.496 8 .703

Classification Table?

Predicted
Vital Percentage
Observed 0 1 Correct
Vital 0 153 7 95.6
1 29 11 275
Overall 82.0

a. The cut value is .500

Variables in the Equation

95.0% C.lI.for
EXP(B)
B S.E. Wald df Sig. Exp(B) Lower Upper

Step 4 AGE .028 .012 | 5.878 1] .015 1.028 1.005 1.052

CR 1.191 .546 | 4.756 1] .029 3.291 1.128 9.599

TY 2.742 | 1.041 | 6.945 1 | .008 15.526 2.020 | 119.356

LO 4657 2| .097

LO(1) -1.949 .924 | 4.446 1| .035 142 .023 .872

LO(2) 8.517 | 22.75 1140 1 | .708 |4998.533 .000 | 1.2E+23

Constant -3.927 | 1.576(| 6.212 1| .013 .020

Interpretation of the variables

Age, history of <chronic.renal failure (CR), level of consciousness (LO) and type of
admission (TY) are-appearing as significant variables with odds ratio 1.03,3.3, .016, 0.14
and 15.5. The interpretation of individual variable is given below:

Age

The coefficient is positive and odds ratio is 1.03, therefore as the age increases by one
year the chances of death of the patient is increased 1.03 time.

History of chronic renal failure

The coefficient is positive, therefore a patient who is suffering with this problem has
more chance of death. The odds ratio is 3.3. The chances of death of the patient suffering
from renal failure appears 3.3 times more than those who are not suffering with renal
failure.

Type of admission

The coefficients is positive and odds ratio is 15.5, therefore a patient admitted under
emergency has 15.5 times more chances of death.
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Level of Consciousness at ICU admission

If we look into the coding sheet,low code is for that patient who has no coma stupor and
high code for the coma patient at the time of admission. We created dummy variables
with base zero i.e a patient admitted in the hospital without coma. The odds ratio is 0.142
which is less than 1 and the coefficient is negative. We say that a patient without coma
has about 86% chances that he would be discharged alive.

9.4 The Ordinal Regression

Ordinal Regression allows us to model the dependence of a polytomous ordinal response
on a set of predictors, which can be factors or covariates. The design of Ordinal
Regression is based on the methodology of McCullagh (1980, 1998.

Standard linear regression analysis involves minimizing the sum-of-squared differences
between a response (dependent) variable and a weighted .€combination of predictor
(independent) variables. The estimated coefficients reflect how changes in the predictors
affect the response. The response is assumed to be numerical, inthe sense that changes in
the level of the response are equivalent throughout the range offthe response. For
example, the difference in weight between a person who is 70°kg weight and a person
who is 60 kg weight is 10 kg, which has the same meaning as, the difference in weight
between a person who is 90 kg weight and a person who is 80 kg weight. These
relationships do not necessarily hold for ordinal, variables, in which the choice and
number of response categories can be quite arhitrary.

As an example, Ordinal Regression could be used to study patient reaction to drug
dosage. The possible reactions may be classified'as none, mild, moderate, or severe. The
difference between a mild and.mederate reaction is difficult or impossible to quantify and
is based on perception. Moreover, the difference between a mild and moderate response
may be greater or less thanithe difference between a moderate and severe response.

Generalized linear models. JAn_alternative approach uses a generalization of linear
regression called.a.generalized linear model to predict cumulative probabilities for the
categories. With this methad, we fit a separate equation for each category of the ordinal
dependent variable.“Each equation gives a predicted probability of being in the
corresponding category or any lower category.

Generalized linear models are a very powerful class of models, which can be used to
answer a wide range of statistical questions. The basic form of a generalized linear model
is shown in the following equation:

link (v;;) = 0; —[byXiy +byXi5 +...+By X |

where
link() isthe link function
Yii is the cumulative probability of the j™ category for the i" case
0; is the threshold for the j" category
P is the number of regression coefficients

Xi1.--Xip  are the values of the predictors for the i" case
Bi...p, are regression coefficients
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Link function. The link function is a transformation of the cumulative probabilities that
allows estimation of the model. Five link functions are available, summarized in the
following table.

Function Form Typical application

Logit log( x/ (1-x) ) |Evenly distributed categories
Complementary log-log | log(—log(1—x)) | Higher categories more probable
Negative log-log —log(—log(x)) |Lower categories more probable

Probit F-1(x) Latent variable is normally distributed
Cauchit (inverse Cauchy) |tan(n(x—0.5)) | Latent variable has many extreme values

Note: If we didn’t chose the link function then the default is the (logit)

Example 9.6:

Data for a study done to predict a baby’s weight category, given various medical and
personal characteristics for 189 women. From their database, the Birth Weight Category
is the (dependent) variable, with four ordinal levels: >3500 grams, 3000-3500 grams,
2500-3000 grams , and <2500 grams. Potential predictors consist of warious medical and
personal characteristics of women, including age, race (white = 1, black = 2, other = 3), );
smoking status (yes = 1, no = 0), premature labor (none:=x0; yes = 1), hypertension
(yes = 1, no = 0), and Uterine Irritability (yes=1, no =/0)

Example S9-5
The data will be in 7 columns and a‘part of the data is as follows:
AGE RACE | SMOKE | /[P HT ul BWC

1 28 Y . | 4 1 0 1 4
2 29 | | 1 é 0 0 0 1 4
5 34 N N 2 | | 1 0 1 0 4
4 25 R 3 y 0 1 1 0 4
5 25 R _Sr 0 0 0 1 4
6 27 _3 0 0 0 0 4
7 23J_ _3\ 0 0 0 1 4
8 24 T 2 0 1 0 0 4
9 24 3 0 0 1 0 4
10 21 1 1 0 1 0 4

The variable view is as follows:

J Name Type Width Decimals Label Values Missing Columns Align Measure Role
AGE MNumeric 11 0 None MNone 1 = Right & Scale N Input
RACE MNumeric i 0 {1. white}...  None 1 = Right & Nominal v Input
SMOKE Mumeric 11 0 Smoke status {0. No}._. MNone 1 = Right & Nominal “w Input
PTL MNumeric 11 0 premature labor | None MNone 1 = Right & Scale “ Input
HT MNumeric 1 0 Hypertension {0. No}... MNone 1 = Right & Nominal “ Input
ul Numeric 1 0 Uterine Irritability {0, Noj... None 1 = Right & Nominal “ Input
BWC MNumeric 8 0 Birth Weight C__. {1, 3500 gr._.. None 12 = Right il Ordinal @) Target

The target variable is the baby’s weight category and we apply the Ordinal regression as
follows:
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Analyze> Regression> Ordinal ...

File Edit View Data Transform DiredMarkeﬁng Graphe Utiiies Addons Window Help

ﬁHﬁ,—%ﬂ = Reports »
: |

Descriptive Statistics 3
CE Tables »
| AGE " R Compare Means r | PTL " HT "
1 28 General Linear Model 3 1 0
2 29 Generalized Linear Models » 0 0
3 34 Mixed Models > 0 1
4 2 Correlate 4 1 1
2 ;i [ [ Automatic Linear Modeling...
7 23 Loglinear ’ = Linear...
a 24 ;;’L:;ID‘NQMNKS : Curve Estimation
q 24 Least Squares...
= 21 Dimension Reduction »
11 32 Scale '
12 19 Monparametric Tests 3
13 25 Forecasting 4
14 16 g
15 25 Multiple Response
16 20 Missing Value Analysis..
17 21 Multiple Im i age Least Squares...
18 24

2

Optimal Scaling (CATREG)...

Dependent:

| Target ordinal variable

&5 RACE
&b Smoke status [SMO...

&b Hypertension [HT]
&b Uterine Irritability [UI]
ol Birth Weight Catego...

& premature labor [PTL] Q Categonca]

Factor(s)

variables
Covariate(s)
@ Containous
variables

(o)

(B care) e

U

o o o o g
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Ordinal Regression

B

Dependent:

Factor(s)

[l Bith weignt Categor.. |

&> Smake status [S...
W | & Hypertension [HT]
&~ Uterine Irritability ..

]

Covariate(s)

& AGE

é’ premature labor [PTL]

[ OK ‘l'M\Easte ][ Reset ][Cancel][ Help ]

v

Now click on , to get the following outputs:

SPSS outputs

Case Processing Summary

N Marginal Percentage
>3500 grams 46 24.3%
. . 3000-3500.grams 46 24.3%
Birth Weight Category 55653000 grams . 38 20.1%
<2500_grams 59 31.2%
white 96 50.8%
RACE black 26 13.8%
other 67 35.4%
0,
Smoke status $§S 1%2 gggoﬁ
. No 177 93.7%
Hypertension Yed 12 6.3%
0,
Uterine Irritability $§S 12213 ?igoﬁ;
Valid 189 100.0%
Missing 0
Total 189

N -N provides the number of observations fitting the description in the first column. For
example, the first four values give the number of observations for which the “Birth
Weight Status” is >3500 grams, 3000-3500 grams, 2500-3000 grams and <2500 grams,

respectively.

Marginal Percentage - The marginal percentage lists the proportion of valid
observations found in each of the outcome variable's groups. This can be calculated by
dividing the N for each group by the N for "Valid". Of the 189 subjects with valid data,
46 were categorized as birth weight >3500 grams. Thus, the marginal percentage for this
group is (59/189) * 100 = 31.2 %.

Valid - This indicates the number of observations in the dataset where the outcome
variable and all predictor variables are non-missing.
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Missing - This indicates the number of observations in the dataset where data are missing
from the outcome variable or any of the predictor variables.

Total - This indicates the total number of observations in the dataset--the sum of the
number of observations in which data are missing and the number of observations with
valid data.

Model Fitting Information

Model -2 Log Likelihood | Chi-Square | df Sig.
Intercept Only 423.904
Final 386.608 37.295 7 .000

Link function: Logit.

Model - This indicates the parameters of the model for which the model fit is calculated.
"Intercept Only" describes a model that does not control for any predictor variables and
simply fits an intercept to predict the outcome variable. "Final" describes a model that
includes the specified predictor variables and has been arrived at through an iterative
process that maximizes the log likelihood of the outcomes<Seen in‘the outcome variable.
By including the predictor variables and maximizing the log,likelihood, of the outcomes
seen in the data, the "Final" model should improve upen the "Intercept Only" model. This
can be seen in the differences in the -2(Log Likelihood), values associated with the
models.

-2(Log Likelihood) - This is the product of(-2:and the legdikelihoods of the null model
and fitted "final" model. The likelihood of the madel is used to test of whether all
predictors' regression coefficients in_the,modeldare simultaneously zero and in tests of
nested models.

Chi-Square - This is the Likelihood Ratio (LR) Chi-Square test that at least one of the
predictors' regression coefficient is not equal to zero in the model. The LR Chi-Square
statistic can be calculated by -2*lg(null’ model) - (-2*L(fitted model)) = 423.904-
386.608= 37.295

df - This indicates the degrees of freedom of the Chi-Square distribution used to test the
LR Chi-Square statisticrand.isidefined by the number of predictors in the model.

Sig. - This is the probability of getting a LR test statistic as extreme as, or more so, than
the observed under the ‘null hypothesis; the null hypothesis is that all of the regression
coefficients in the model are equal to zero. In other words, this is the probability of
obtaining this chi-square statistic (37.295) if there is in fact no effect of the predictor
variables. This p-value is compared to a specified alpha level, our willingness to accept a
type | error, which is typically set at 0.05 or 0.01. The small p-value from the LR test,
<0.00001, would lead us to conclude that at least one of the regression coefficients in the
model is not equal to zero. The parameter of the Chi-Square distribution used to test the
null hypothesis is defined by the degrees of freedom in the prior column.

Pseudo R-Square

Cox and Snell 179
Nagelkerke 191
McFadden .072

Link function: Logit.
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Pseudo R-Square - These are three pseudo R-squared values. Logistic regression does
not have an equivalent to the R-squared that is found in OLS regression; however, many
people have tried to come up with one. There are a wide variety of pseudo R-squared
statistics which can give contradictory conclusions. Because these statistics do not mean
what R-squared means in OLS regression (the proportion of variance for the response
variable explained by the predictors), we suggest interpreting them with great caution.

Parameter Estimates

95% Confidence Interval
Estimate | Std. Error Wald df Sig. Lower Bound | Upper Bound
Threshold  [BWC=1] -4.437 957 21.487 1 .aoo -6.313 -2.561
[BWC = 2] -3198 A3 11.796 1 001 -5.025 -1.374
[BWC = 3] -2.236 17 5.949 1 015 -4.033 -439
Location AGE -.o10 027 A4 1 707 -.062 042
PTL 367 300 1.500 1 22 -220 955
[RACE=1] -1.014 329 9.500 1 .002 -1.658 -.368
[RACE=2] 275 438 382 1 A -.585 1.134
[RACE=3] 0? . . 0 . . .
[SMOKE=0] -1.093 a2 12.296 1 .00 -1.704 -.482
[SMOKE=1] 0? . . 0 . . .
[HT=0] -1.023 473 KR RN 1 a74 -2.147 A0
[HT=1] 0? . \ 0 . . .
[UI1=0] -1.023 408 6.281 1 012 -1.823 -223
[UI=1] 0@ 0

Link function: Logit.
a. This parameter is setto zero because itis redundant.

Threshold - This represents theresponse variable in the ordered logistic regression. The
threshold estimate for [birth weight category= 1.00] is the cutoff value between
birthweight<2500 and_birthweight 2500-3000 grams and the threshold estimate for
[birthweight_stauts = 2.00] is'the cutoff value between 2500-3000 grams and 3000-3500
grams and so on. Underneath Threshold are the predictors in the model.

Estimate - These are the ordered log-odds (logit) regression coefficients. Standard
interpretation of the “ordered logit coefficient is that for a one unit increase in the
predictor, the response variable level is expected to change by its respective regression
coefficient in the ordered log-odds scale while the other variables in the model are held
constant. Interpretation of the ordered logit estimates is not dependent on the ancillary
parameters; the ancillary parameters are used to differentiate the adjacent levels of the
response variable. However, since the ordered logit model estimates one equation over all
levels of the outcome variable, a concern is whether our one-equation model is valid or a
more flexible model is required. The odds ratios of the predictors can be calculated by
exponentiating the estimate.

Age - This is the ordered log-odds estimate for a one unit increase in Age on the expected
birthweight category given the other variables are held constant in the model. If age of
mother were to increase by one point, then ordered log-odds of being in a higher
birthweight category would increase by 0.001 while the other variables in the model are
held constant.
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[SMOKE=0] - This is the ordered log-odds estimate of comparing smoking status on
expected birthweight given the other variables are held constant in the model. The
ordered logit for [SMOKE=0] being in a higher birthweight category is 1.093 more than
smoker mothers when the other variables in the model are held constant.

Wald - This is the Wald chi-square test that tests the null hypothesis that the estimate
equals 0.

df - These are the degrees of freedom for each of the tests of the coefficients. For each
Estimate (parameter) estimated in the model, one df is required, and the df defines the
Chi-Square distribution to test whether the individual regression coefficient is zero given
the other variables are in the model.

Sig.- These are the p-values of the coefficients or the probability that, within a given
model, the null hypothesis that a particular predictor's regression coefficient is zero given
that the rest of the predictors are in the model. They are basedn the Wald test statistics
of the predictors, which can be calculated by dividing the square of the predictor's
estimate by the square of its standard error. The probability. that a particular Wald test
statistic is as extreme as, or more so, than what _has been observed under the null
hypothesis is defined by the p-value and presented here. The Wald test statistic for the
predictor age is 0.002 with an associated p-value 0f0.963. If:we set our alpha level to
0.05, we would fail to reject the null hypothesis and conclude that the regression
coefficient for age has not been found to be statistically different from zero in estimating
birthweight_status given other predictor(s) are4dn the‘model. The Wald test statistic for
the predictor smoke is 11.150 with.an associated p-value of 0.001. If we set our alpha
level to 0.05, we would fail to reject the null:hypothesis and conclude that the regression
coefficient for smoke has been found to be statistically different from zero in estimating
birthweight_status given other predictor(s) are in the model.

95% Confidence Interval - This is the Confidence Interval (Cl) for an individual
regression coefficient given the other predictors are in the model. For a given predictor
with a level of 95% confidence, we'd say that we are 95% confident that the "true"
population regression coefficient lies in between the lower and upper limit of the interval.

9.5 The Multinomial Logistic Regression

Linear regression is not appropriate for situations in which there is no natural ordering to
the values of the dependent variable. Multinomial Logistic Regression is useful for
situations in which we want to be able to classify subjects based on values of a set of
predictor variables.. This type of regression is similar to binary logistic regression, but it
is more general because the dependent variable is not restricted to two categories.

For a dependent variable with k categories, consider the existence of k unobserved
continuous variables, Z;, ... Zx, each of which can be thought of as the "propensity
toward" a category. In the case of a many categories to chose from, Z, represents a
customer's propensity toward selecting the k" category, with larger values of Z
corresponding to greater probabilities of choosing that category (assuming all other Z's
remain the same).

We will generalize the binary logistic regression model to the case of multinomial
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logistic regression model. This has been defined before and is as:

g Zk ezik
Prob(event Z;) = = 1i=1,2,...k

k zi1 Zjj Zik

Zezij e +--4+e 4 te
i=t

where:
Prob(event Z;) is the probability the i case falls in category k
Zix is the value of the k™ unobserved continuous variable for the i" case
Xi is the j" predictor for the i" case
byjis the j™ coefficient for the k™ unobserved variable
j is the number of predictors
If Z, were observable, we would simply fit a linear regression to each Z, and be done.
However, since Zy is unobserved, we must relate the predictors to the probability of
interest by substituting for Z,.
Z\ is also assumed to be linearly related to the predictors.
Zik = byo + bia Xiz + bioXip + ... + b X

Example 9.7:

In order to market new drugs, pharmacy copmany want:te-predict what to test two new
drugs in compare with an old one. By performing a Multinomial Logistic Regression, the
company can determine the strength of influence a person's age, gender, and marital
status has upon the type of drug they used. The company can then slant the advertising
campaign of a particular drug toward aigroup of people likely to use it. The variables
given in Table 9.8 relate to the study: Thesvariables associated with this study code and
data sheet are given below. Analyze.the data by logistic regression and interpret the
results.

Table 9.8

S# Variable Code Number ID

1 | Agein years Years Age

2 | Sex 1=male,2=female Sex

3 | Maritabstatus | 1=Unmarried,2= Married Marital

4 | Drug 1= Regular drug,2=Drug A, 3=Dug B | Drug
Age | Sex | Marital | Drug | Age | Sex | Marital | Drug | Age | Sex | Marital | Drug
50 1 2 3 59 1 2 3 26 2 2 3
23 2 2 3 70 2 2 2 61 1 2 2
30 2 1 3 62 1 2 2 41 2 2 2
44 1 2 3 30 1 1 1 67 1 2 3
32 2 1 1 25 1 1 1 44 1 2 3
65 1 2 2 61 2 1 2 28 1 2 3
36 2 2 1 28 2 2 3 29 1 1 1
39 2 2 1 48 2 2 2 52 2 2 2
46 2 2 3 66 2 1 2 22 2 1 3
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Example S9-6

The data will be in 4 columns as follows:

w
X

Age

Marital

D

_,
c

g

50

2

23

30

44

32

65

36

39

46

59

70

62

30

25

61

28

48

66

26

61

41

67

44

28

29

52

NINFRRFRIRPFPINEFEININNINDINIPFRRINEFE NN FRINEINN |- (O

22

FRINEININNINININIERININER(RERINNINININININE (NN

WINFP(WIWWININIWININWIN(FPIFPININWIWFR|IPINPWWWww

Age | Sex Marital Drug

50 | Male Married Drug B
23 |Female| Married Drug B
30 |Female | Unmarried Drug B
44 | Male Married Drug B
32 |Female | Unmarried | Regular drug
65 | Male Married Drug A
36 |Female| Married |Regular drug
39 |Female| Married |Regular drug
46 |Female| Married Drug B
59 | Male Married Drug B
70 |Female | Married Drug A
62 | Male Married Drug A
30 | Male |Unmarried |Regular drug
25 1 Male Unmarried
61 2 Female Unmarried
28 2 Female Married
48 2 Female Married
66 2 Female Unmarried
26 2 Female Married
61 1 Male Married
41 |Eemale | Married Drug A
67| Male Married Drug B
44 | Male Married Drug B
28 | Male Married Drug B
29 | Male |Unmarried |Regular drug
52 |Female | Married Drug A
22 |Female | Unmarried Drug B

453

The target variable is'the Drug and we apply the Multinomial Binary logistic as follows:

Analyze-> Regression—> Multinomial Logistic...
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File Edit View Data Transform iredMarketng Graphs Utilities Add-ons  Window Help

SEEHe| = W EIES
i . Descriptive Statistics b
16: | Tables »
| Age ” Sex Compare Means 3 || var || var || var
1 50 General Linear Model r |3
2 23 Generalized Linear Models » 3
3 30 Mixed Models N
4 44 Correlate Rk
5 3z
= 65 @ ﬂutomaﬁcLinearModeIing...
7 6 gzt [l Linear...
g 19 SETERELELS ’ [&] curve Estimation...
g | 46 Classiy ' Partial Least Squares...
— Dimension Reduction b
_ 10 59 gcale N [i] Binary Logistic...
i 70 =
= 12 62 Monparametric Tests 3
13 20 Forecasting »
m 25 Survival b
T 61 Multiple Response
T 16| 28 Missing Value Analysis
T A8 Multiple Imputation e Least Squares...
18 66 Complex Sample ptimal Scaling (CATREG)
19 26 B simulation...
20 61 2
21 4 2
22 67 3
23 44 3

Move the variable “Drug”

Move the categorical

X

Dependent:
P2 e — %
& Sex[Sex]
[sae. - &,u:ummm ((sae. |

ugl A Factor(s):

B

Covariate(s): Covariate(s):
& Ageinyears [Age]

A
~o [esat (cancel [ iep | (Lo [ zaste | moset ] [cance e

Click on Reference Category to specify the reference category (First Category, which is
the Regular drug)



Hanif, Ahmad and Abdelfattah

455

*:4 Multinomial Logistic Re... @

\%eference Category
iEirstCategorf

© Last Category
© Custom

Category Order
@ Ascending
@ Descending

Multinomial Logistic Regression

a1 (o,
‘Reference Category....

Critgria...
s

& Sex[Sex] —

&% Marital status [Marital]

Bootstrap.

Covariate(s):
é’ Age in years [Age]

[Conn‘n{ﬂ Cancel || Help

) o gene g ) e

Now click on , to get the following outputs:

SPSS output after the creation of dummy variables byrautomatic process
Case Processing Summary

N[ Marginal Percentage

Regular drug 6 22.2%

Drug Drug A 9 33.3%

Drug B 12 44.4%

Sex Male 12 44.4%

Female 15 55.6%

Marital status Unmt_arried 8 29.6%

Married 19 70.4%

Valid 27 100.0%
Missing 0
Total 27
Subpopulation 26°

According to the case processing summary, the modal category is the new Drug B, with

44.4% of the cases.

Model Fitting Information

Model Model Fitting Criteria Likelihood Ratio Tests

-2 Log Likelihood Chi-Square df Sig.
Intercept Only 57.286
Final 32.164 25.122 6| .000

This is a likelihood ratio test of our model (Final) against one in which all the parameter
coefficients are 0 (Null). The chi-square statistic is the difference between the -2 log-
likelihoods of the Null and Final models.
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Since the significance level of the test is less than 0.05, we can conclude the Final model
is outperforming the Null.

Pseudo R-Square

Cox and Snell .606
Nagelkerke .688
McFadden 439

Pseudo R-Squared Statistics. The r-squared statistic, which measures the variability in the
dependent variable that is explained by a linear regression model, cannot be computed for
multinomial logistic regression models. The pseudo r-squared statistics are designed to
have similar properties to the true r-squared statistic.

In the linear regression model, the coefficient of determination, R?, summarizes the
proportion of variance in the dependent variable associated with the predictor
(independent) variables, with larger R? values indicating that more of the variation is
explained by the model, to a maximum of 1. For regression models with a categorical
dependent variable, it is not possible to compute a single R? statistic that has all of the
characteristics of R? in the linear regression model, so these.@pproximations are
computed instead. The following methods are used togestimate the coefficient of
determination:

Cox and Snell's R? (Cox and Snell, 1989) is based on thelog likelihood for the model
compared to the log likelihood for a baseline model. However, with categorical
outcomes, it has a theoretical maximumuvalue 'of less than 1, even for a "perfect” model.
Nagelkerke's R? (Nagelkerke, 1991) is an adjusted version of the Cox & Snell R-square
that adjusts the scale of the statistic to«cover the full range from 0 to 1. McFadden's R2
(McFadden, 1974) is another version, based on the log-likelihood kernels for the
intercept-only model and the full estimatéd model. What constitutes a “good” R? value
varies between different areas of application. While these statistics can be suggestive on
their own, they are most,useful when comparing competing models for the same data.
The model with the largest R? statistic is “best” according to this measure, which is given
here by Nagelkerke.

Likelihood Ratio Tests

Effect Model Fitting Criteria Likelihood Ratio Tests
-2 Log Likelihood of Reduced Model | Chi-Square df Sig.
Intercept 32.164° .000 0 .
Age 51.582 19.418 2 .000
Sex 38.322 6.158 2 .046
Marital 34.940 2.776 2 .250

The likelihood ratio tests check the contribution of each effect to the model. For each
effect, the -2 log-likelihood is computed for the reduced model; that is, a model without
the effect. The chi-square statistic is the difference between the -2 log-likelihoods of the
reduced model from this table and the Final model reported in the model fitting
information table. If the significance of the test is small (less than 0.05) then the effect
contributes to the model. And since the significance of the test is less than 0.001, we can
say that the effect contributes to the model.
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Some effects can be difficult to test. For example, the intercept cannot be tested in this
model because removing the intercept simply causes one of the previously redundant
factor levels to become non-redundant.

Parameter Estimates

95% Confidence Interval for Exp
)]
Drug? B Std. Error Wald df Sig. Exp(B) Lower Bound Upper Bound
Drug A Intercept -10.2683 5.796 3130 1 077
Age 278 134 4,259 1 038 1.320 1.014 1.718
[Sex=1] -4.774 2867 2773 1 088 .0os 3.063E-005 2.328
[Sex=2] ot . . 0 . . . .
[Marital=1] -2.276 4607 2585 1 B14 103 1.499E-005 704428
[Marital=3] 0P . . 0 .
DrugB  Intercept 1.137 2518 204 1 662
Age 013 065 .040 1 a4 1.013 892 1.151
[Sex=1] - 106 1.266 007 1 933 649 075 10.746
[Sex=2] hE . . 0 . . . .
[Marital=1] -2.145 1.383 2407 1 A21 A17 .008 1.759
[Marital=2] 0° 0

a. The reference category is: Regular drug.
h. This parameter is setto zero because itis redundant.

The parameter estimates table summarizes the effect of each predictor. The ratio of the
coefficient to its standard error, squared, equals the Wald statistic. If the significance
level of the Wald statistic is small (less than 0.05) thenthe parameter is different from 0.
Age is the only signficant. The odds.fatio with its.confidence intervals was also given.

« Notes: Parameters with significant negative coefficients decrease the likelihood of that
response category with respect to the, reference category. Parameters with positive
coefficients increase the likelihood of that response category. The parameters associated
with the last category of each factor is redundant given the intercept term.

Example S9-7

We will add a Married male case of age of 55 to the data and apply the Multinomial
logistic and get the predicted values directly, also we will see how to calculate the correct
percentage for the prediction as follows:

Analyze=> Regression-> Multinomial Logistic...
Move the variable “Drug” to Dependent:

Move the categorical variables to Factors:

Move the containous variable (Age) to Covariate(s):

Click on and choose “Estimate response probabilites” and “Pridicted category”,
as follows:
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Dependent:
@ Drug(First)
Factor(s):

& Sex[Sex]
&5 Marital status [Marital]

Covariate(s):

W Predicted category
Predicted category probability

[ Aage | sex Marital | Drug | Esti1 | Este1 | Esma1 [ PRE1 [ var

2 67 1 2 3 02 82 16 2

23 44 1 2 3 A7 01 82 3

24 28 1 2 3 20 00 80 3

2 29 1 1 1 68 00 32 1

2% 52 2 2 2 01 90 08 2

27 22 2 1 3 67 00 33 1

2% i 1 i » 12 P 16— 72 )
29 1 T 1

It can be seen that a Married male case of age of 55 is predicted to prefere Drug B.

Note also that using the Cross tabulation between the Predicted Response Category and
the actual Drug will lead to the following crosstabulation table:
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Predicted Response Category * Drug Crosstabulation

Drug
Regular drug Drug A Drug B Total

Predicted Response Regulardrug  Count 4 0 2 6
Category % of Total 14.3 0.0% 7.4% | 22.2%
Crrug A Count 0 5} 2 10

% of Total 0.0% 29.6% 7.4% 37.0%

Drug B Count 2 — ] 1

% of Total 7.4% 37% ( 29.6% : 40.7%

Total Count 6 9 12 27
% of Total 222% 33.3% 44 4% 100.0%

459

According to this table, we can see that the correct prediction percentage for this model

equals to 14.8+29.6+29.6 = 74.0%
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Answering a Statistical Question
(Measurment level)
Question 1 (Scale) (Ordinal) (Nominal)
& ll &
(Histogram),
Li
(E:ul:se)e) (Bars),
N .

How can we represent Data? (Boxplot) (Pie)

(Error bar)

(Scatter plot)

(Measurment level)

Question 2 (Scale) (Ordinal) (Nogl)inal)

& Ll >
How can we describe the (Mean), (Median); (Mode),
variable? (Standard deviation) | (Interquartile range) | (Proportions)

(Measurement level)
Question 3 (Scale) (Orxdinal) (Nominal)
& ull &
(Seale) (Pearson) (Ordinal Bi-serial) (Point Bi-serial)
Is th . & (Eta)
Stherels 2 Ordinal) (Kendall )

relation il (Ordinal Bi-serial) (Spearman) (Bi-serial)
between (Gamma)
variables? (Phi)

(Nominal)

s

(Point'Bi-serial)
(Eta)

(Bi-serial)

(Contingency Coefficient)

(Lambda)

Note that we can use SPSS to calculate each of Ordinal Bi-serial, Point Bi-serial, Bi-
serial, by the same way we calculate Pearson correlation coefficient.

Question 4

Measurment level of Dependent variable

(Scale)

&

(Ordinal)

ull

(Nominal)

&

How Can we
predict?

(Liner Regression)
(Nonliear Regression)

(Ordinal regression)

(Logistic regression)




Logistic Regression

470
(Measurment level)
Question 5 (Scale) (Ordinal) (Nominal)
& n &
How Can we Estimate? (CI for Mean) (CI for Median) | (CI for Proportion)

Measurment level of Dependent variable

groups

Scale 4 Ordinal Ll Nominal o
Question 6 Scale R?fl; l;’l;);ifile Binomial
(from Normal (Two Possible
Population) Normal Outcomes)
Population)
1 (One sample (Wilcoxof test) (Binomial test)
group t test)
2
. (Independent \ v .
independent sample t test) (Mann-Whitney) | (Chi-square test)
groups
2
Is there a i
difference matched (Pa";ei sstz;mple (Wilcoxon test) (McNemar)
groups
between 3+
groups? independent | (One-way ANOVA) | (Kruskal-Wallis) | (Chi-square test)
groups
3 (Repeated
matched Miedburements) (Friedman test) | (Chi-square test)
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Selecting a Statistical test using SPSS
Measurement level of Dependent variable
Goal Scale Rank or Scale Binomial
(from Normal (from Non-Normal (Two Possible
Population) Population) Qutcomes)
Analyze—> - Analyze= Descriptive
Describe one | Descriptive Ana!yz_e-» Descriptive Statistics=>
O Statistics® Frequencies .
Group Statistics=> S Frequencies »
o - Statistics... S
Descriptives... Statistics...
Analyze=
Compare one Analyze~ Compare Nonparametric Tests—=> Analyze->

group to a
hypothetical
value

means—* One-sample
T Test...

2 Related samples =
Wilcoxon (after adding
median value as the
2nd variable)

Nonparametric Tests=>
Binomial...

Compare two

Analyze=> Compare
means—>

Analyze=>
Nonparametrie, Tests=

Analyze=> Descriptive
Statistics~>

u?gj‘”:d Independent-sample |2 Independent)samples gtr:t?ssttiizs.::Chi-
group T Test... - Mann-Whitney'J
square
Analyze=> Analyze=>

Compare two
paired groups

Analyze= Compare
means—> Paired-
sample T Test...

Nonparametric Tests=>
2 Related'samples =
Wilcoxen

Nonparametric Tests=>
2 Related samples =
McNemar

Compare three

Analyze= Compare

Analyze=

Analyze= Descriptive
Statistics=>

or more Nonparametric Tests=>
—> = -
unmatched ZﬁaorQ/SA gy kdndependent samples g{gﬁsstt,igs-> Chi-
groups =+ Kruskal-Wallis H
square
Compare three |Analyze~> General Analyze=> Analyze=>

or more Linear Model= Nonparametric Tests? |Nonparametric Tests=>
matched Repeated k Related samples = k Related samples =
groups Measures... Friedman Cochran’s Q
~ —

Quantify Analyze—> é?a?:gﬁis +Descr|pt|ve
association Correlate® Analyze= Correlate Crosstabs. =
between two Bivariate = Bivariate ® Spearman P

roups Pearson Statistics. .~
group Contingency coefficient
Predict value Analyze—> Analyze—> Analyze=>
from another . . . . .

Regression—> Regression= Ordinal | Regression= Binary

measured Linear Logistic
variable 9
Predict value Analyze>

from several
measured or
binomial
variables

Regression—>

Linear... (chose more

variables)

Analyze—>
Regression= Ordinal

Analyze—>
Regression=>
Multinomial Logistic...
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Chapter 10

Survival Analysis

10.1 Introduction

Study data may be collected in many different ways. In addition to surveys, which are
cross-sectional, biomedical research data may come from different sources.

The two fundamental designs being retrospective and prospective.

Retrospective studies gather past data from selected cases and controls to determine
differences, if any, in exposure to a suspected risk factor.

They are commonly referred to as case—control studies; each<case—control study is
focused on a particular disease.

In a typical case—control study, cases of a specific/disease are ascertained as they arise
from population-based registers or lists of hospital admissions;.and controls are sampled
either as disease-free persons from the population at risk' or as hospitalized patients
having a diagnosis other than the one under study:

The advantages of a retrospective study-are that.it is economical and provides answers to
research questions relatively quickly because'the cases are already available. Major
limitations are due to the inaccuracy. of<the exposure histories and uncertainty about the
appropriateness of the controlssample;, these problems sometimes hinder retrospective
studies and make them less preferred than:prospective studies.

Prospective studies, also called cohort studies, are epidemiological designs in which
one enrolls a group of personsiandsfollows them over certain periods of time; examples
include occupational,mortality studies and clinical trials.

The cohort study design focuses on a particular exposure rather than a particular disease
as in case—control studies, Advantages of a longitudinal approach include the opportunity
for more accurate measurement of exposure history and a careful examination of the time
relationships between exposure and any disease under investigation.

An important subset of cohort studies consists of randomized clinical trials where follow-
up starts from the date of enrollment and randomization of each subject.

Basic survival analysis and Cox’s proportional hazards regression—were developed to
deal with survival data resulting from prospective or cohort studies.
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Retrospective studies

gather past data from selected cases and controls to
determine differences. if any. in exposuretoa
suspected risk factor. These are commonly referred to

Comparative Studies as case-control studies

Prospective Studies

Also called cohort studies . enroll group or groups of
subjects and follow them over certain periods of time.

:':> Survival Analysis

Survival analysis, which was developed to deal with data resulting from prospective
studies, is also focused on the occurrence of an event, such.as death or relapse of a
disease, after some initial treatment—a binary outcome.

The basic difference with the logistic regression analysis is.that:

a- For survival data, studies have staggered entry, and subjects are followed for
varying lengths of time; they do not'have'the same probability for the event to
occur even if they have identical characteristics, a basic assumption of the logistic
regression model.

b- Second, each member of the cohort belongs to one of three types of termination:

1. Subjects still alive on‘the analysis date
2. Subjects who died on a known date within the study period

3. Subjects who are “lost to‘follow-up after a certain date (This is known as
Censoring)s

That is, for many study subjects, the observation may be terminated before the
occurrence of the main-event under investigation: for example, subjects in types 1 and 3.

10.2 Survival analyses

Survival analyses or time to event analyses are frequently used in medical sciences where
the interest is in observing time to death either of patients or of laboratory animals. There
are certain aspects of survival analysis data, such as censoring and non-normality, that
cause great difficulty when trying to analyze the data using traditional statistical methods
such as t-test, ANOVA and linear regression etc.

A censored observation is defined as an observation with incomplete information. There
are four different types of censoring possible: right truncation, left truncation, right
censoring and left censoring.

Right truncation occurs when the entire study population has already experienced the
event of interest (for example: a historical survey of patients on a cancer registry).
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Left truncation occurs when the subjects have been at risk before entering the study (for
example: a life insurance policy holder where the study starts on a fixed date, event of
interest is age at death).

Right censoring occurs when a subject leaves the study before an event occurs, or the
study ends before the event has occurred. For example, we consider patients in a clinical
trial to study the effect of treatments on stroke occurrence. The study ends after 5 years.
Those patients who have had no strokes by the end of the year are censored. If the patient
leaves the study at time te ; then the event occurs in (te,o).

Left censoring is when the event of interest has already occurred before registration in
study. This is very rarely encountered.

In this chapter we will focus exclusively on right censoring for a number of
reasons. Most data used in analyses have only right censoring. Furthermore, right
censoring is the most easily understood of all the four types of censoring and if a
researcher can understand the concept of right censoring«thoroughly it becomes much
easier to understand the other three types. When an observation issright censored it
means that the information is incomplete because the.subject did,not.have an event during
the time that the subject was part of the study. The(point ofssurvival analysis is to follow
subjects over time and observe at which point in time they“experience the event of
interest. It often happens that the study does net span enough time in order to observe the
event for all the subjects in the study. This could bexdue to a number of reasons. Perhaps
subjects drop out of the study for reasons unrelated to the study (i.e. patients moving to
another area and leaving no forwarding address). The common feature of all of these
examples is that if the subject had‘been able to stay in the study then it would have been
possible to observe the time of.the event eventually.

Outcome Variable: Time until an Event occurs
Start Follow-up 2 Time 2. Event
Event of Interest: Death

Disease
Relapse
Recovery
died
lost
>
withdrawn
alive >
lost
>
died
+ ]
(1] 5 10 15

years in study
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Censoring: Don’t know survival time exactly

Reasons of Censoring?
Study ends — no event
Lost of follow-up
Withdraws

Two Key Quantities of interest in survival analysis

1. S(t) = survivor function
2. h(t) = hazard function

Survivorship or Survival Function S(t)
Survivorship or Survival Function, S(t), is the probability that an individual's time, T, is
greater than a specified time, t. In mathematical terms:

S(t) = Prob(survives longer than t)
= Prob(T>t)
=1-F(t)
where F(t) is the cumulative distribution function ofT.

Hazard Function h(t):

Hazard Function, h(t), is the conditional failure rate. It'is the probability of failure during
a small time interval given that the individual hasysurvived until the beginning of the
interval.

 P(t<T <t+At|T>t)
h(t)= lim
At—0 At

Relationship between S(t)/& h(t)

S(t)

Life Table Analysis

A life table presents the proportion surviving, the cumulative hazard function, and the
hazard rates of a large group of subjects followed over time. The analysis accounts for
subjects who die (fail) as well as subjects who are censored (withdrawn). The life-table
method competes with the Kaplan- Meier product-limit method as a technique for
survival analysis. The life-table method was developed first, but the Kaplan-Meier
method has been shown to be superior and with the advent of computers is now the
method of choice. However, for large samples, the life-table method is still popular in
that it provides a simple summary of a large set of data.
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Example 10.1:

We will give a brief introduction to the subject in this section. For a complete account of
life- table analysis, we suggest the books by Lee (1992) and Elandt-Johnson and Johnson
(1980).

Lee (1992) constructs a life table. The survival experience of 2418 males with angina is
recorded in years. The life table will use 16 intervals of one year each. (1=Events and
0=Censored).

Time Event Count Time Event Count
0.5 1 456 1.5 0 39
1.5 1 226 2.5 0 22
2.5 1 152 3.5 0 23
3.5 1 171 4.5 0 24
4.5 1 135 5.5 0 107
55 1 125 6.5 0 133
6.5 1 83 7.5 0 102
7.5 1 74 8.5 0 68
8.5 1 51 9.5 0 64
9.5 1 42 10.5 0 45
10.5 1 43 11.5 0 53
11.5 1 34 12.5 0 33
12.5 1 18 13.5 0 27
13.5 1 9 14.5 0 23
14.5 1 6 15.5 0 30

The IBM-SPSS package is used as shown in the following Example:

Example S10-1
The data will be in 3 columns and a part of the data is as follows:

Time —Eﬂl b countd | Time Event Count
1 5 1 456 1 5 Events 456
2 ~ 15 4 296 2 15 Events 226
3 Z'SJ_ 9 152 3 245 Events 152
4 35 1 171 4 35 Events 171
5 45 O 1 135 5 45 Events 135
[ 55 1 125 6 55 Events 125
T 6.5 1 83 7 6.5 Events 83
g 75 1 74 8 75 Events 74
9 8.5 1 51 A] 9 8.5 Events 51
10 9.5 1 42 0 10 95 Events 42
11 10.5 1 43 “1-‘4[ " 10.5 Events 43
12 11.5 1 34 12 1.5 Events 34
13 12.5 1 18 13 12.5 Events 18
14 13.5 1 9 14 135 Events 9
15 14.5 1 6 15 14.5 Events 6
16 15 0 39 16 15 Censored 39
17 25 0 22 17 25 Censored 22
18 35 0 23 18 35 Censored 23
19 4.5 0 24 19 45 Censored 24
20 55 0 107 20 55 Censored 107
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We first weight data by count as follows:

Data - Weight Case
File Edit View ransform  Analyze Direct Marketing |
@ . [ Define Variable Properties.
24 SetMeasurement Level for Unknown E
| Copy Data Properties. L
= ® New Custom Attribute... ]‘
= & Define Dates...
Define Multiple Response Sets...
3
4 validation >
5 EE Identify Duplicate Cases...
6 F7J Identify Unusual Cases...
7 T Compare Datasets
& Sort Cases...
9
B8 sort Variables
10 -
" &} Transpose.
12 Merge Files
173 = Restructure...
14 551 Agaregate. .
15 Orthogonal Design
16 i Copy Dataset
il E= splitFile..
18
19
20

Weight Cases by: Select “count”

7T © Do not weight cases
& gz:t ® Weight cases by
Frequency Variable:

[#camt ]

Current Status: Do not weight cases
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Now click on E to start Survival analysis as follows:
Analyze—> Survival-> Life Tables...

File Edit View Data Transform miredmarketing Graphs Utilities Add-ons  Window

: % H E;-_Ej = Reports 3 %
i . Descriptive Statistics 3
| | Tables 3
I Time || Event Compare Means b pr ” var " var "

1 5 General Linear Model »

2 15 Generalized Linear Models »

3 25 Mixed Models 3

4 3.5 Correlate b

5 45 Regression r

8 5.5 Loalinear »

; ?: Meural Metworks 3 ~

= 55 Classify 3 AL

= 9t Dimension Reduction (7 4 v 4

Scale 3 ~ =

1; 13: Nonparametric Tests —I— _"

13 125 Forecasting

14 1356

15 14.5

16 1.5

7 25 f] Cox wi Time-Dep Cov...

18 2R

Move the Survival Time Variable (time) to-Time

For: Display Time Intervals we.define it from/0 through 16 by 1
Click on “Define Event” , mark on “Single value:” put 1

Click on “Continue”

Life Tables
Time "
& count [& ime | m&v

Display Time Intervalg
’Vmﬂruughﬂﬁ by |1 )
e

—
Status
[Event(z 2) |

Define EventE
Factor:

Define Range

By Factor.

Define Range

M Paste @]M@L}
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alue(s) Indicating Event Has Occurred

® Single value:

© Range ofvalues:

through

Also click on “Options” and mark on “Life Table”

For “Plot”, mark on Survival, Hazard and Density

[+l Life table(s)

rPlot
[ Survival
[ Hazard
[] One minus sunival

[] Log survival

rCompare Levels of First Facto
@ None

@ Overall
@ Painwise

following outputs:

Survival Analysis

A B C H 1 J K M
L W e Tavie” _\ —1 \ L
& Std. Error
of
Cumulative [Cumulative
HNumber Proportion | Proportion Std. Error

Interval | Number |Withdrawing Number of Surviving | Surviving of Std. Error
Start Entering during Terminal | Proportion | Proportion | atEnd of | atEndof |Probabilit | Probabilit| Hazard |of Hazard
Time Interval Interval Events |Terminating| Surviving Interval Interval | y Density | y Density Rate Rate

0 2418 0] 2418.000 458 19 81 M [i}] 189 [IE] 21 .01
il 1962 39| 18423500 226 12 88 72 01 094, 006 12 01
2 1697 22| 1686.000 152 09 a1 65 01 065 005 .09 .01
g 1523 23] 1511.500 171 " .89 .58 m 074 005 A2 .01
a 1329 24| 1317.000 135 10 90 52 01 059 005 11 01
5 1170 107 1116.500 125 1 .89 AB 01 058 005 A2 .01
[5 938 133] 871.500 83 10 a0 42 m 044 005 A0 .01
[7 T2 102| &671.000 T4 11 .89 ar 01 048 i) A2 .01
2 546 88 512.000 51 10 90 33 01 037 005 10 01
[2 427 64| 395.000 42 1 .89 .30 01 036 005 A1 .02
[10 el 45| 298.500 43 14 .88 .28 m 043 00d A .02
[11 233 53| 208300 34 16 84, 21 01 042 o7 18 03
12 146 33] 129.500 18 14 86 A8 01 030 a7 AL 04|
[12 a5 27 81.500 9 " .89 A m 0z0 a7 Az .04
[14 59 23 47.500 5] 12 a7 14 01 021 0og Rk .05
_DUD a 0.00 1.00 14 01 0.000 0.000 0.00 0.00
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Column A
Interval start time

Indicates the intervals of supervision in years; 0 = up to 1 year, 1 = 1 year up to 2
years, etc.

Column B
Number entering this interval
The number of cases still alive up to the beginning of the interval (t).

Bi=(Br1) — (Cia+ Era)
B, = (1697) — (22 + 152) = 1523

Column C
Number withdrawn during interval
Censored cases.

These censored cases are called “withdrawn’) since they do not appear in later
intervals (t).

Column D
Number exposed to risk
This is the average number exposed to risk inthe interval and calculated as:

The number of cases entering the interval minus 1/2 the cases withdrawing (censored
cases) during the intervali

Di=(B) - (Cy (0.5)
D, = (1523) — (23),(0.5)= 15115

Column E
Number of terminal events
The number of cases that were died in the interval, i.e. coded 1 in the database
Column F
Proportion Terminating

This is the proportion of cases that were died in the interval, which is the probability
of death in the interval.

Fe=(E)/ (D)
Fs=(171)/(1511.5) =~ 0.1131

Column G

Proportion surviving
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The proportion of cases still alive through the end of the interval, the probability of
being successful through the end of the interval

Gi=(L0-F)
G, = (10— 0.1131) =~ 0.8869

Column H
Cumulative proportion surviving at end
The probability of a case remaining alive up to and through the end of the Interval.

H; = (H1) (G)

Hs = (Haa) (G)

H, = (0.6524) (0.8869)
H, =~0.5786

Column |
Standard error of the cumulative proportion surviving.

The error associated with the estimated probability of a case surviving up to and
through the end of the interval.

Column J
Probability density.
The estimated Probability of revocation during interval (t).
Je=(Hea) - (H)
Column K
Standard error of the probability density.
Estimated error of the probability density estimate.
Column L
Hazard rate.

The proportion of case that have survived, i.e. been on probation, up to the interval (t)
who are expected to fail in the interval.

Le=(E)/[D-E(05)]
Column M
Standard error of the hazard rate.
Estimated error of the hazard rate.
The Median Survival Time

How many years elapse before half the survivors died? Median survival time = 5.3313
years means By 5.3313 years, half the patients in the sample were died.
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Graphs Section:

Cum Survival

Density

Hazard

Survival Function

1.0
05
05
0.4
0.2+
0.0
T T T
10 15 20
time
Cases weighted by freg
Density Function
020
0.5
010
005 .
o o a
a
=]
o
T T T T T
B8 10 12 14
time
Cases weighted by freq
Hazard Function
0.20-
015 = o
o
o o 5
0:10- a o
0.05-
000 o
T T T T T
& 8 10 12 12
time

Cases weighted by frag

483



484 Survival Analysis

The Survival Function: A plot of the cumulative proportion of cases surviving up to the
end of each interval of time.

The Density Function: A plot of the probability density associated with each interval of
time. This illustrates the difference between the proportion of cases that began each
interval and the proportion that survived to the end of the interval.

The Hazard Function: A plot of the hazard rate. This illustrates the proportion of
cases that have survived up to the beginning of the interval that are expected to fail in the
interval. As a rate, it can take values greater than 1.

Over all write up for the Life Table Analysis

This table shows the estimated survival probabilities within 15 intervals for a total of
2418 items. It shows how many items were at risk at the start of each interval, how many
failed before the end of the interval, and how many were withdrawn (censored) during
the interval. The column labeled Cumulative Survival shows'the estimated probability of
an item surviving as least as long as the beginning of thelinterval. The column labeled
Hazard is the estimated hazard function (instantaneous failure rate).over each interval.
Density shows an estimate of the density function of the corresponding lifetime
distribution. Standard errors are also shown in parentheses.for each of the three functions.

10.3 Kaplan Meier

There are many situations in which weswould want to examine the distribution of times
between two events, such as length of employment (time between being patient and
leaving the hospital).

However, this kind of data‘usually includes some censored cases. Censored cases are
cases for which the second event isn'tirecorded.

The Kaplan-Meier procedure,is a<method of estimating time-to-event models in the
presence of censored cases.

The Kaplan-Meier model is based on estimating conditional probabilities at each time
point when an event oceurs and taking the product limit of those probabilities to estimate
the survival rate at each point in time.

Kaplan-Meier Product Limit Estimation:

The life table method is the oldest and most commonly used technique for estimating the
survival function (and the hazard and probability density functions). However, the exact
estimates from the life table will depend on the choice of the number and widths of
survival time intervals. The Kaplan-Meier product-limit method estimates the survival
function directly from the survival times, without tabulation.

Kaplan-Meier product-limit estimator is defined as follows

1 if T,

min

Il 1—$ if Toin <T
A<T,<T h

>T
S(T)=
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The variance of S(T) is estimated by Greenwood’s formula
AT A A2 d.
V|S(T)|=S(T -
[SM]-sm) adrer 1 (1 —d;)
Nelson-Aalen Hazard Estimator
The Nelson-Aalen estimator is recommended as the best estimator of the cumulative
hazard function, H(T). This estimator is give as
0 if Toin >T
2 r.

A<T<T

if T <T

min

Example 10.2:
Dataset given below was reported by Crowley and Hu (1977) pertaining to the survival of
heart transplant patients.

The data is as follows:

id |time |Censoring| hospital J|age |antigen|mismatch|status
1 1 | Censored BINER 54 0 0.47 0
2 1 |Censored | ST AND [ 35 0 0.67 0
3 | 3 |Censored | HILLVIEW | 40 0 1.66 0
4 | 10 | Complete |HILLVIEW:), 55 1 2.76 1
5 | 10 | Complete 1
6 | 12 | Censored | HILLVIEW | 29 0 0.61 0
7 | 13 | Censored | HILLVIEW | 28 1 0.77 0
8 | 15 | Censored | HILLVIEW | 54 0 1.11 0
9 | 23 | Censored | HILLVIEW | 56 0 2.05 0
10| 25 | Complete | ST AND | 53 1 1.68 1
11| 26 | Censored | ST AND | 52 1 0.82 0
12| 29 |,Complete | ST AND | 54 0 1.08 1
13| 30 |[Censored | ST AND | 45 0 0.16 0
14 | 39 | Complete 1
15| 39 | Complete | HILLVIEW | 42 0 1.38 1
16| 44 |Censored | ST AND | 36 0 0 0
17| 46 | Complete | ST AND | 42 0 0.61 1
18| 47 | Complete | ST AND | 61 1 0.87 1
19| 48 |Censored | BINER | 53 0 3.05 0
20| 50 | Complete | BINER | 49 0 0.66 1
21| 50 | Complete | HILLVIEW | 46 0 2.25 1
22| 51 | Complete | HILLVIEW | 47 0 1.38 1
23| 51 | Complete | ST AND | 52 0 1.51 1
24 | 54 | Complete | HILLVIEW | 49 0 2.09 1
25| 60 | Complete | HILLVIEW | 64 0 0.69 1
26 | 63 | Complete | BINER 56 1 2.16 1
27| 64 | Complete | ST AND | 54 0 1.89 1
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id |time |Censoring| hospital [age|antigen|mismatch|status
28| 65 | Complete | ST AND | 45 1 1.68 1
29| 66 | Complete | HILLVIEW | 51 0 1.12 1
30| 68 | Complete | HILLVIEW | 51 1 1.33 1
31| 110 | Censored | BINER 23 1 1.78 0
32| 127 | Censored | ST AND | 48 0 0.36 0
33| 136 | Complete | ST AND | 52 1 1.62 1
34 | 161 | Complete BINER 43 0 1.2 1
35| 167 | Censored | BINER 26 0 0.46 0
36 | 228 | Censored | HILLVIEW | 19 0 1.02 0
37 | 237 | Censored | ST AND | 47 0 0.33 0
38 | 253 | Complete | HILLVIEW | 48 1 1.08 1
39 | 280 | Complete | BINER 49 0 1.12 1
40 | 297 | Complete | BINER 42 0 0.6 1
41 | 305 | Censored | HILLVIEW | 49 0 0.81 0
42 | 322 | Complete | ST _AND | 48 1 1.82 1
43 | 339 | Censored | HILLVIEW | 54 0 068 0
44 | 389 | Censored | BINER 48 1 1.44 0
45 | 439 | Censored | ST AND | 52 1 1.94 0
46 | 456 | Censored | ST AND | 46 0 1.41 0
47 | 499 | Censored | HILLVIEW | 52 1 1.7 0
48 | 551 | Censored | HILLVIEW | 48 0 0.12 0
49 | 589 | Censored BINER 47 0 0.97 0
50 | 592 | Censored BINER 26 1 1.46 0
51| 624 | Complete | HILLVIEW,| 51 0 1.32 1
52 | 660 | Censored | ST _AND | 48 0 1.2 0
53 | 730 | Complete’l ST _AND 4| 58 0 0.96 1
54 | 815 | Censored | BINER 32 1 1.93 0
55 | 836 | Complete BINER 44 0 1.58 1
56 | 838 |‘Censared BINER 41 0 0.19 0
57 | 875 | Censored |"ST AND | 38 0 0.98 0
58 | 994" Complete | BINER 48 0 0.81 1
59 |1024| Complete | BINER 43 0 1.13 1
60 |1106| Censored | HILLVIEW | 36 0 1.35 0
61 |1264| Censored BINER 45 0 0.98 0
62 |1350| Complete | BINER 54 0 0.87 1
63 [1367| Censored | BINER 48 0 0.75 0
64 |1536| Censored BINER 49 0 0.91 0
65 |1549| Censored | HILLVIEW | 40 0 0.38 0
66 |1775| Censored | ST AND | 33 0 1.06 0

The first variable in this data set is survival time, that is, the date of the heart transplant
and the date when the respective patient either died or dropped out of the study (could no
longer be contacted). Variable Censored is the censoring indicator variable with the
codes that identify whether a respective time represents an observation that is completely
specified or a censored observation (0-Complete; 1-Censored). The variable Hospital is a
(fictitious) grouping variable which identifies to which one of three different hospitals a
respective case belongs.
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Example S10-2
Given below is a part of the Data in SPSS Data sheet.

time Censoring hospital age antigen mismatch status
1 1 1 3 54 0 A7 0
2 1 1 2 35 0 87 0
3 3 1 1 40 0 166 0
4 10 0 1 55 1 2.76 1
5 10 0 . . . . 1
6 12 1 1 29 0 61 0
7 13 1 1 28 1 a7 0
8 15 1 1 54 0 1.1 0
9 23 1 1 56 0 205 0
10 25 0 2 53 1 1.68 1

We start Kaplan-Meier as follows:

Analyze-> Survival> Kaplan-Meier...

File Edt Vew Data Transform IW‘ Direct Marketing  Graphs “Ulililes Add-ons  Window |
_’fr = [%] = Reports » @ % 52\_! e .ljli[J |
Descriptive Statistics b=
Tables L4
time Censoring Compare METY ~ :||— mismatch status
! ! ! General Linear hModel b 0 A 0
2 1 1 - 0 67 0
Generalized Linear Models L
L e RN o
5 10 0 Correlate s ) _ 1
B 12 gy Resson "o 61 0
7 13 1 Loglinear " 77 0
8 15 [ | 1 Neural Networks L 0 111 0
9 239 W ' it "o 205 0
10 25 W _U'_ Dimension Reduction L P! 168 1
11 % 0 Scale Pl 82 0
12 29 0 Nonparametric Tests L} 1.08 1
13 30Jr 1 Forecasting P lo .16 0
14 39 0 Survival " Y& Life Tables 1
13 39 0 Multiple Response 4 Kaplan-Meier 1
16 44 1 Missing Value Analysis... B Cox Regression... 0
17 46 0 Multiple Imputation ’ e B 1
18 47 0 Cnmnley Qamnlec DS cor 1

Move the Survival Time Variable (time) to Time
Click on “Define Event” , mark on “Single value:” put 0

Click on “Options” and mark on Survival table(s), Mean and median survival and
Survival
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[ HosptalName |

& Age of the Patie...
& A measure of An... E]
& Tissue Mismatc ..
&) status

alue(s) indicating event has occurred

 Single value:

through

© Range of values:

© List of values:

Add

(enmge |

Kaplan-Meier

Time:

‘Survival table(s}

Mean and median survival

One minus survival
Hazard
Log Survival

Survival Analysis
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Now click on Cantinue] e (LK J, to get the following outputs:

Survival Table

489

Cumulative Proportion N of N of
. Surviving at the Time : S
Time | Status Std Cumulative | Remaining
Estimate ' Events Cases
Error

1| 1.000 |Censord 0 65
2 | 1.000 |Censord 0 64
3 | 3.000 |Censord 0 63
4 | 10.000 [Complete . . 1 62
5 | 10.000 [Complete .968 .022 2 61
6 | 12.000 |Censord 2 60
7 | 13.000 |Censord 2 59
8 | 15.000 |Censord 2 58
9 | 23.000 |Censord . . 2 57
10| 25.000 |Complete .951 .027 3 56
11| 26.000 |Censord . . 3 55
12| 29.000 |Complete .934 .032 4 54
13| 30.000 |Censord 4 53
14| 39.000 |Complete . : 5 52
15| 39.000 |Complete .899 1039 6 51
16| 44.000 |Censord : . 6 50
17| 46.000 |Complete .881 .042 7 49
18| 47.000 |Complete .863 .045 8 48
19| 48.000 |Censord . . 8 a7
20| 50.000 |Complete { . 9 46
21| 50.000 |Complete .826 .050 10 45
22| 51.000 [Complete, . ) 11 44
23| 51.000 {Complete .789 .054 12 43
24| 54.000 |Complete 771 .056 13 42
25| 60.000 [Complete .753 .058 14 41
26| 63.000 [Complete 734 .059 15 40
27| 64.000 [Complete 716 .060 16 39
28| 65.000 [Complete .698 .062 17 38
29| 66.000 [Complete .679 .063 18 37
30| 68.000 [Complete .661 .064 19 36
31{110.000 | Censord 19 35
32(127.000 | Censord . . 19 34
33{136.000 |Complete .641 .065 20 33
34{161.000 |Complete .622 .065 21 32
35|167.000 | Censord 21 31
36 |228.000 | Censord 21 30
37{237.000 | Censord . . 21 29
38(253.000 |Complete .601 .067 22 28
39 |280.000 |Complete .579 .068 23 27
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Cumulative Proportion N of N of
. Surviving at the Time . -
Time | Status Std Cumulative | Remaining
Estimate ’ Events Cases
Error

40| 297.000 [Complete .558 .068 24 26
41 | 305.000 | Censord . . 24 25
42 |322.000 [Complete .535 .069 25 24
43 |339.000 | Censord 25 23
44 |389.000 | Censord 25 22
45 |439.000 | Censord 25 21
46 | 456.000 | Censord 25 20
47 1499.000 | Censord 25 19
48 |551.000 | Censord 25 18
49 |589.000 | Censord 25 17
50|592.000 | Censord . . 25 16
51 |624.000 [Complete, .502 .073 26 15
521660.000 | Censord . . 26 14
53| 730.000 |Complete .466 .076 27 13
541815.000 | Censord . ) 27 12
55 |836.000 [Complete, 427 .079 28 11
56 |838.000 | Censord 28 10
57 |875.000 | Censord . : 28 9
58 |994.000 [Complete, .380 .083 29 8
59 1024.000|Complete| 332 .085 30 7
60 |1106.000| Censord 30 6
61 |1264.000| Censord . . 30 5
62 [1350.000/Complete .266 .090 31 4
63 /1367.000| Censord 31 3
64 |1536.000| Censord 31 2
65 |1549.000,.Censord 31 1
66 |1775.000| Censord 31 0

This table shows estimated survival probabilities based on the data in Time. Each row of
the table represents a single data value, displayed in increasing order. If the data value
represents a failure or death, the status column indicates Event.
represents a censored observation, the status column indicates Censored. The number at
risk is the number of items which have survived up until each data value. For each
unique failure time, the data displays the estimated survival probability, the standard error
of that estimate, and the estimated hazard function.

If the data value
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Means and Medians for Survival Time

Mean® Median
95% Confidence 95% Confidence
. Std. Interval . Std. Interval
Estimate Error Lower | Upper Estimate Error Lower Upper
Bound | Bound Bound Bound
783.645 | 109.726 | 568.582 [998.708 | 730.000 (312.810| 116.893 {1343.107

a. Estimation is limited to the largest survival time if it is censored.

Median Survival Time: This is not the conventional median, this is the time associated
with the first case to have a cumulative survival probability < 0.5

Survival Function

— 1 Survival Function

1.0 E —+= Censzored

0.67 1

Cum Survival

0.4+ |
- -
0.2
0.0
I ] T T I
0 500 1000 1500 2000

Survival time in Days

Test of Significance for comparison of Kaplan Meier Survival Curves

Are Kaplan Meier survival curves statistically equivalent? There are three Tests available
in SPSS for the comparison of KM survival curves

1. Log-Rank (Mantel-Haenszel Test)
2. Breslow Generalized Wilcoxon Test

3. Tarone-Ware Test
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Log-Rank Test

In survival analysis, the log-rank test is a hypothesis test to compare the survival
distributions of two or more samples. It is a nonparametric test and appropriate to use
when the data are right skewed and censored. Log-rank test is widely used in clinical
trials to establish the efficacy of a new treatment compared to a control treatment when
the measurement is the time to event (such as the time from initial treatment to a heart
attack). The test is also called the Mantel-Cox test, named after Nathan Mantel and
David Cox.

The log-rank (Mantel-Cox) test is the more powerful of the two tests if the assumption of
proportional hazards is true. Proportional hazards means that the ratio of hazard functions
(deaths per time) is the same at all time points. One example of proportional hazards
would be if the control group died at twice the rate as treated group at all time points.
Prism actually computes the Mantel-Haenszel method, whichqis nearly identical to the
log-rank method (they differ only in how they deal with twosubjects with the same time
of death).

In Log-Rank test all cases weighted equally, log-rank.is least conservative of the three
tests available in SPSS

Breslow Test

The Gehan-Breslow-Wilcoxon method gives more weight to deaths at early time points.
This often makes lots of sense, but the results ‘can’be misleading when a large fraction of
patients are censored at early time points. In contrast, the log-rank test gives equal weight
to all time points. The Gehan-Wilcoxon test does not require a consistent hazard ratio, but
does require that one group consistently have.a higher risk than the other.

You need to choose which/P value to,report. Ideally, this choice should be made before
you collect and analyze your.data.

If in doubt, report the log-rank“test (which is more standard) and report the Gehan-
Wilcoxon results‘onlyzif.you have a strong reason.

Tarone-Ware Test

Breslow test and Tarone ware test are identical the only difference is Tarone-Ware test
uses Square root of the number of cases at risk at event time (t) as weights (i.e Weights
earlier cases less heavily than the Breslow Test does). Tarone-Ware Test is mid-
conservative of the three tests.

SPSS Procedure

Analyze - Survival > Kaplan Meier
Time: Survival Time Variable (time)
Status: Censored Variable
Define: 0-Complete; 1-Censored

Factor: Choose Hospital as factor variable
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Options: Plots: Choose Survival

@ Kaplan-Meier
Time: Compare Factor.
& Age of the Patie... | # | & Survival time in ... “b'
& Ameasure of An..

. Status:
& Tissue Mismatc... | | w, Censorng(0) m

&b status

[etne ver. |

Factor:
& Hospital Name [h...
Strata:

- )

Label Cases by:

Test Statistics
Log rank [ Breslow

Now click on en E to get the following outputs:

Case Processing Summary

Hospital Name | Total N |N of Events Censored

N Percent
HILLVIEW 22 10 12 54.5%
ST_AND 21 10 11 52.4%
BINER 21 9 12 57.1%
Overall 64 29 35 54.7%

493
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Overall Comparisons

Chi-Square df Sig.
Log Rank (Mantel-Cox) 3.013 2 .222
Breslow (Generalized Wilcoxon) 5.195 2 .074
Tarone-Ware 4.523 2 .104

Test of equality of survival distributions for the different levels of Hospital Name.

Three tests have also been performed to determine whether there is a statistically
significant difference between the survival probabilities of the 3 groups (hospitals).
Since the smallest P-value is greater than or equal to 0.05, there is not a statistically
significant difference between the groups at the 95% confidence level.

10.4 Cox — Regression
(Proportional Hazards Model (PHM))

Cox Regression builds a predictive model for time-to-event datas The model produces a
survival function that predicts the probability that the event of interest has occurred at a
given time t for given values of the predictor variables. The shape of the survival function
and the regression coefficients for the predictors areestimated from observed subjects;
the model can then be applied to new cases that have measurements for the predictor
variables.

Note that information from censored subjects, that is, those that do not experience the
event of interest during the time of observation, contributes usefully to the estimation of
the model.

Cox (proportional hazards) regression-analysis models the relationship between a set of
one or more covariates and the hazard rate. Covariates may be discrete or continuous.
Cox Regression can be used to study the impact of various factors on survival. You may
be interested in the impact of diet,.age, amount of exercise, and amount of sleep on the
survival time after.an individual has been diagnosed with a certain disease such as cancer.
Under normal conditions,the obvious statistical tool to study the relationship between a
response variable (survival time) and several explanatory variables would be multiple
regression. Unfortunately, because of the special nature of survival data, multiple
regression is not appropriate. Survival data usually contain censored data and the
distribution of survival times is often highly skewed. These two problems invalidate the
use of multiple regression. Many alternative regression methods have been suggested.
The most popular method is the proportional hazard regression method developed by Cox
(1972).

The Cox (1972) expressed the relationship between the hazard rate and a set of covariates
using the model
P

(1) =y (1)

In[h(T)]=1In[h, (T)]+éxiBi
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The Regression Coefficients can thus be interpreted as the relative risk when the value of
the covariate is increased by one unit. Unlike most regression models, this does not
include and intercept term. This is because if an intercept term were included, it would
became part of hO(t).

Example 10.3:

You have data on 48 participants in a cancer drug trial. Of these 48, 28 received treatment
(drug=1) and 20 receive a placebo (drug=0). The participant range in age from 47 to 67
years. You wish to analyze time until death, measured in months. Yoo have data given

below.
study time | died | dru age Study time | died | drug | age
1 1 0 61 10 0 1 49
1 1 0 65 11 0 1 61
2 1 0 59 13 1 1 62
3 1 0 52 15 0 1 50
4 1 0 56 16 1 1 67
4 1 0 67 19 0 1 50
5 1 0 63 20 0 1 55
5 1 0 58 22 1 1 58
8 1 0 56 23 1 1 47
8 0 0 58 32 0 1 52
8 1 0 52 6 1 1 55
8 1 0 49 10 1 1 54
11 1 0 50 17 0 1 60
11 1 0 55 19 0 1 49
12 1 0 49 24 1 1 58
12 1 0 62 25 0 1 50
15 1 0 51 25 1 1 55
17 1 0 49 28 1 1 57
22 1 0 57 28 0 1 48
23 1 0 52 32 0 1 56
6 1 1 67 33 1 1 60
6 0 1 65 34 0 1 62
7 1 1 58 35 0 1 48
9 0 1 56 39 0 1 52
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Example S10-3
Given below is the preview of cases in SPSS Data sheet.

Analyze - Survival > Cox Regression

File Edit View Data Transform | Analyze irect Marketing  Graphs  Utilities  Add-ons  Window

= 4 5 Reports 4 H
ﬁ H = L Descriptive Statistics p
| Tables 2
I time " died Compare Means b par || var " var |

1 1 General Linear Model 2

2 1 Generalized Linear Models #
3 2 Mixed Models »
N S 3 Correlate » y
57 4 Regression r & .
6: 4 Loglinear _|.
;: : Neural Networks [ &
9: 3 Classify 2 { —'—
T 8 Dimension Reducti

1 P Scale —

12 8

13 "

14 11 [ Life Tables...

15 12 [ Kaplan-meier...

16 12 y

17 15

18 17 omplex Samples 3

19 2_2J_ __ imulation...

20 B Quality Control »

21 e ROC Cure...
% _EI IBM SPS5 Amos...

Time: Survival Time Variable (time)

Status: Censored Variable

Define:  1-Complete; 0-Censored

Covariates: Choose independent variable(s) (Drug, Age)

Categorical: Choose factor variable(s) (Drug)
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Categorical...

Define Event...

rBlock 1 of1

Previous

Covariates:
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Walue(s) Indicating Event Has Occurred

@ Single value: 0

© Range of values:

© List of values:

through

Add
Change

Eemove

rBlock 1 of 1

Previous

Covariates:

= T

(e J

Metnoa: [Enter < |

Strata:
|

(Bssst](Gancal] _Hetp |
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Now click on Cantinue] e (LK J, to get the following outputs:

a

2Log Overall (score) Change From Previous Step Change From Previous Block
Likelihood Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.
83.061 773 2 .679 .901 2 .637 .901 2 .637

Beginning Block Number 1. Method = Enter

Variables in the Equation

B SE Wald df Sig. Exp(B)
drug 879 1.068 678 1 410 2.408
age 008 051 026 1 872 1,008

The output shows the results of fitting a cox regression model.to describe the relationship
between Time and 2 independent variable(s) drug and age. The hazard function at a
selected combination of the input factors x is a multiple of thesbaseline hazard function
h(t|0), as shown below:

h(t}x)=h(t|0)*exp(0.00820993*Age + 0.878992*Drug=1)

In determining whether the model can be simplified, notice that the highest P-value for
the likelihood ratio tests is 0.8723, belonging'to Age:. Because the P-value is greater or
equal to 0.05, that term is not statistically significant at the 95.0% or higher confidence
level. Consequently, you should consider removing Age from the model.






Chapter 11
Reliability Coefficient

11.1 Introduction

The degree of stability is exhibited when measurement is repeated under identical
situation. Reliability refers to the closeness of measurements of observations obtained
under identical situations. If the cholesterol concentration of two portions of the same
serum specimen is measured in an automated chemical analyzer, ideally two results
should be exactly the same.

Note that all the fluctuations in measurements or observations<are attributable to lack of
reliability. The attributes themselves usually vary in a vafiety of ways. Consider the
distribution of blood pressure found in a community survey indwhich, each subject has
two measurements. The major components of variation in the distribution are as follows:

1. Difference among subgroups
For example, older persons have higher blood pressure than younger ones.

2. Difference among individuals withimsubgroups
For example, among old men aged 60, Some individuals have higher blood
pressure than the others.

3. Difference within each individual
Due to variety of influences each individual’s blood pressure varies from one
moment to another.

4. Measurement errors
Even if the blood pressure measured were exactly the same, it would appear to
vary because of'the observers’ failure in accurate measurements.

5. Sampling variations
We know/ifisample is.small, sampling error is more whereas if sample is large,
sampling error is less, moreover if repeated samples are selected from a
population, the findings in each sample will differ from one to the other.

Daily experiences constantly remind us of measurement errors for instance, bath room
scales are typically accurate to no better than £ 1 kg, home thermometer is accurate to
about + 0.2c etc. Therefore we can say that error of measurement is a relatively small
fraction of the observations.

The definition of reliability is

Subject variation withingroups

Reliability = R, = - —
Subject variation + Measurement error

(11.1)

or
Variance components among subjects (cf)
Variance components among subjects (cs_f) + Variance of error (cé)
(11.2)

Reliability =

501
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11.2 Reliability of a Test

The reliability coefficient for a test of scores from a group of examinees is the coefficient
of correlation between that set of scores and another set of scores on an equivalent test
obtained independently from the members of the same groups.

The analytical approach is based on the statistical technique called Analysis of Variance.
This will be explained by an example.

Example 11.1:
The data given in Table 11.1 relate to degree of sadness of 10 patients rated by 3
observers.

Table 11.1
Patients Observer 1 Observer 2 Observer 3

1 6 7 8
2 4 5
3 2 2 2
4 3 4 5
5 5 4 6
6 8 9 10
7 5 7 9
8 6 7 8
9 4 6 8
10 7 9 8

Mean 5.0 6.0 7.0

Calculate the reliability coefficient among patients with regards to three observers.

Solution:

This problem relates to TWO WAY ANOVA. This method of analysis has been
explained in Chapter 5. There are three observers and 10 patients. There could be three
sources of variations-Patients-Observers and Error.

The IBM-SPSS package;is.used as shown in the following Example:
Example S11-1

The data will be in 3 columns and a part of the data is as follows:

Observers Patients Score

w00 ||~ ||| B k||
[T R R T & [ Y VT (L. QY

—
=

My & & & & & & & & &
—
=

e e RIE =t A T = - TR & L T U T L I SR = )

-
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We apply the TWO WAY ANOVA as follows:
Analyze> General Linear Model-> Univariate...

|

118

| Observers || Patients ||

[E R RV R

R R N e

;B W R

| File  Edit View Data Transform \rectMarkeﬁng Graphs  Utilities  Add-ons  Window

Reports
Descriptive Statistics
Tables
Compare Means

eneral Linear Model
Generalized Linear Models
Mixed Models
Correlate

Regression

Move the variable “Score” to Dependent Variable:

Move both “Observers” and “Patients” to Fixed Factor(s):

#3 Univariate

&b Observers
&b Patients
Score

@ Dependent Variable:

ﬁfixed Factor(s):

Random Faclor(s)

Covariate(s):

=5

var

- |

Univariate...
Multivariate. .
Repeated Measures...

Variance Components..

d Factor(s).
& Observers
&5 Patients

Random Faclor(s)

Covariate(s):

WLS Weight

503

Specify Model -’ -
[@ Full factorial om ‘
Factors & Covariates: Model:
"' Observers Observers
1! Patients Patients

Sum of squares: Type lll ~

o Include interceptin model

W@
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Now click on (Cotinue] e, (oK ] ¢ get the following outputs:

SPSS Output for ANOVA 2 Ways
ANALYSIS OF VARIANCE
scores
by observers
patients
unigue sum of squares
all effects entered simultaneously
Source of Sum of Mean

Variation E(MS) Squares DF Square F Sig

OBSERVER | of +1053 | 20.000 | 2 | 10.000. 18.000 | .000
PATIENTS | o2+ 303 | 114.000 | 9#(412.667( 22.800 | .000
Residual ol 10.000 | 184 0:556

Total 144.000,| 29 | 4.966

By simple calculations we get variance components:

o2 = o = MS(E) = 0.556

62 = o (patients) ={MS(P) -MS(E) }/3 = {12.667-556}/3 = 4.037

o’ (observers).= {MS(O) -MS(E) }/10 = {10.00-0.556}/10 = 0.94

Q
o
]

o” (patients) .and o” (observers) are called variance components of sources of
variation. The reliabilityxmay be calculated using (11.2) as

2
— 2P ="(4.037)/{4.037 + 0.556} = 0.88,
Op + O

Re =

where R; is the coefficient of reliability.

This shows that 88% of the variance in the scores results from true variance among
patients. This coefficient is known as reliability coefficient.

11.3 Different Forms of Measuring Reliability Coefficients

Reliability is measured by performing two or more independent measurements and
comparing the findings, using an appropriate statistical index. There has been a number
of methods suggested in literature but no method is perfect. There are some drawbacks
and good points in each method.

There has been a considerable debate in the literature regarding the most appropriate
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choice of the reliability coefficients. Four tests of measuring the reliability are given and
for each case an example is presented so that it should be very clear which method is
applicable under what situation. However, more than one methods can be used for one
problem. The methods are given as:

(i) Test -retest method
(ii) Split-half
(iiif) Kuder and Richardson-20 method
(iv) Cronbach's Alpha (o)
11.3.1 Test-Retest Method

In test-retest method comparison may be based on observations by different observers or
interviews by different observers or repeated measurements or interviews using the same
questionnaire. Replicated tests may be made on the same blood specimens. A question
may be repeated in the same questionnaire, or differently worded.questions asking for the
same information may be included. The results of test-retest.comparison depend on the
interval between the tests. A questionnaire based megasure of overall health, for example,
was found to have test-retest reliability of about 0.85 over a 1-month period, but only
about 0.56 over a 3-year interval (Ware, J.E -1984).

The methods of correlation and KAPPA-Statistictmay be used to test-retest method of
testing reliability coefficient. They are as:

Q N
Continuous Data ‘ﬁi 0 ata ':[i Categorical Data o0

(i) Person correlation (1) Spearman-Brown (1) KAPPA-Statistic
coefficient correlation coefficient

(i) Intra-class'correlation | (2) Kendall’s Tau(t) (2) i- Phi
coefficient ii- Cramer's V

(i) Person and intra-class correlation coefficients
This has been explained in Section 6.4. Spearson Brown formula (rank correlation) is
used when data is ordinal. Kendall's tau can also be categorized in this rank.

(if) Kappa-Statistic

There are many situations in medicine which has only two levels i.e. presence or
absence, positive or negative, normal or abnormal. A straightforward approach is to
calculate simple agreement: the proportion of responses in which the two
observations agreed. For such types of qualitative variable a frequently used index of
reliability or agreement between observers is known as Cohen's Kappa coefficients
(Cohen-1960). This index or measure has the desirable feature of showing how much
more agreement there is than would be expected by chance. This measure is very
strongly influenced by the distribution of positive and negative values. If there is a
preponderance of either normal or abnormal causes, there will be high agreement. The
Kappa-Statistic explicitly deals with the situations by examining the proportion of
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responses in the two agreement cells in relation to the proportion of responses in these
cells, which would be expected by chance.

_ P(O)-P(C)
1-P(C)
by using (7.34), where:
P(O) = observed proportion of agreement and
P(C) = expected proportion of agreement
This has already been explained in the context of Chi-square (Chapter 7)

Example 11.2:

Suppose we were to consider a judgment by two observers of the presence and absence of
a Babinski sign, an up going toe following scratching of the‘bottom of the foot, on a
series of neurological patients. The data are given in Table 14.2 by 2x2 table.

Table 11.2:
Observer 1
Observer 2 | Present | Absent | Total
Present 20 15 35
Absent 10 55 65
Total 30 70 100

Calculate the agreement index between two observers using Kappa-statistic.

Solution:
Since in the calculation of Kappa index expected frequencies will be used therefore these
are given as:

Observer 1
Observer2"| Present | Absent | Total
Present 10.5 24.5 35
Absent 19.5 455 65
Total 30 70 100
p(0)= 2255 _475
100
P(C) = 10.5 + 45.5 — 0.56
100
The Kappa index is
K = 0.75 - 0.56 — 0.43.
1-0.56

We say that there is good agreement between two observers.
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The IBM-SPSS package is used as shown in the following Example:
Example S11-2

The data will be in 2 columns and a part of the data is as follows:

| Observerl || Observer2 || I Observert || Observer2 ||
| 1 1 1 1 Present Present
| 2 1 1 2 Present Present
1 1 3 Present Present
1 1 4 Present Present
1 1 5 Present Present
III 1 1 6 Present Present
1 1 7 Present Present
1 1 8 Present Present
III 1 1 9 F'_resent Present
,T‘ 1 1 10 y Preseﬂl Present

The variable view is as follows:

| MName | Type | Width | Decimals | Label | walues | M\mmm l Measure | Role |
Observer! MNumeric 8 0 Observer 1 {1. Present}... None 8 = Right & Nominal  Input
Observer2 Numeric 8 0 Observer 2 {1, Present}... None ] = Right & Nominal ™ Input

We calculate Kappa index as follows:

Analyze-> Descriptive Statistics> Crosstabs..:

File  Edit View Data Transf irect Marketing ~ Graphs  Utilities  Add-ons
== |=| ED} Reports 3 _ —
— = 1 I iptive Statistics ' 1 & Frequencies...
|46 :Observert ables 3 Descriptives
| Ohsem ‘Serverz l‘ Compare Means 2 A, Expiore
1 1J_ 1l General Linear Model 3 =
= - Crosstabs... [, |
2 o 1, 1 Generalized Linear Models 4
3 1 1 ) TURF Analysis
. Mixed Models 3
Ratio...
4 _1 1 Correlate (4 @_am
5 1 1 S y | PP PIots...
6 1 1 Loglinear » | B a-aPlts..

Move the variable “Observer1” to Row(s) and “Observer2” to Column(s):
Click on Statistics:
Mark on both “Kappa” and “Phi and Cramer’s V”’:
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+\.r" Crosstabs = | '{,-\ Crosstabs: Statistics Iéj\
s Exact. | Chi-square | Corelations
&5 Observer 1 [Obsenvert] = = S ————— =
Mominal Ordinal
- ccent| |m1c
Column(s): | Contingency coefficien [[] Gamma
= Format.
& Observer 2 [Observer2] \V Phi and Cramer's [] Somers'd
=] Lambda || Kendall's tau-b
Layer 10f1 "] Uncertainty coefficient [] Kendall's tau-c
Mominal by Interval !! Kappa
- [Tl Et= [Z Risk
[] McNemar
[] Cochran's and Mantel-Haenszel statistics
| Display clustered bar charts
| Suppress fables
Now click on Centinue] o (LK J, to get the following outputs:
Observer 1 * Obsenver 2 Crosstabulation
Count
Chserver 2
Present Absent Total
Observer1  Present 20 15 35
Absent 10 55 G5
Total 30 70 100
Symmetric Measures
Asymp. Std.
Value Error® Approx. T® | Approx. Sig.
MNominal by Nominal Phi 435 .0oa
Cramer's ¥ 435 .0oa
Measure of Agréement  Kappa 432 095 4,346 .0oo
M ofvalid Cases 100

a. Mot assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null hypothesis.

Note that phi, Cramer's V and coefficient of contingency are other methods of testing of
association. The results obtained from these indices are almost identical with Kappa
index. An alternative form of testing the reliability for such cases, without collecting

information second time, has been suggested by Kuder-Richardson, given in Section
11.3.3.

Kappa index can also be used for multiple-classification (n x n table). This has been
explained in Chapter 8. Cramer’s V, which is close to Kappa, can be used in nxm table.
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11.3.2 Split-half Method

Another approach to test the reliability or homogeneity of a scale is called split-half
method. Here the items are randomly divided into two halves which are then correlated.
The easiest way is to put all odd number items in one half and even number items in the
second half randomly and calculate Pearson correlation coefficient and Guttman split-half
coefficient. It also depends on the order in which observation are written down. One
problem with method is that the resulting correlation coefficient under estimates of the
true reliability of the scale, as the reliability of a scale is directly proportional to the
number of items in it. Since the sub-scales being correlate are only half the length of the
version that will be used in practice, the resulting correlation coefficient will be low or
too low. The Pearson-Brown formula is used to correct this occurrence. The equation for
correlation coefficient is

kr

p(Rho) = m ;

(11.3)

where, k is the factor by which the scale is increased andr<s the ariginal correlation
coefficient.

If we need only the reliability of a test twice as in the case ofireliability estimation by
split-half method, the formula is simple as
2r

p(Rho) = . (11.4)
1+r

If for example 40-items scale has been‘divided into two-half and found that correlation
coefficient between two half«s 0.82, we,can‘use (11.4) to increase the reliability. This is
known as Guttman Reliability Index. Zhe revised index by using (11.4) will be 0.90.

It is not self- evident why this methad should help, but the answer lies in the statistical
theory. As long as the test items are not perfectly correlated, the true variance will
increase as the squarerof,the number of the items, whereas the error variance will increase
only as the number-of items decreases. So if the test length is doubled, the true variance
will be 4 times as large.and error variance 2 times as large as the original test.

This method of testing the reliability is commonly used when study of knowledge,
attitude and practice is conducted and questions are in the form of Likert's scale (Likert-
1952). In a Likert scale a person expresses an opinion by rating his agreement with a
series of statements such as:

(i) Recent research doubled the association between smoking and lung cancer

Strongly Somewhat Somewhat Strongly
not sure : .
agree agree disagree disagree
(ii) Passive smoking is always harmful
Strongly Somewhat Somewhat Strongly
not sure : ;
agree agree disagree disagree

The application of this method is shown below:
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Example 11.3:
There are four questions and five students for an essay contest. Their scores are given
below. (These scores may be regarded as the rating by four judges of the performances of
five students).

Table 11.3
Students | Question 1 | Question 2 | Question 3 | Question 4
1 2 1 1 3
2 6 4 5 6
3 3 2 1 1
4 6 3 3 3
5 6 4 4 3

Use the Split-half method and calculate the reliability index.

Solution:
In this question there are 4 items. We can combine odd-<items_together and even items
together as:

Q1
Q3
Q2
Q4
and apply the method of split-half toicalculate the reliability.
The SPSS package was used@nd the result is'given as:
SPSS output for Split-Half Method

RELIABILITY ANALYSIS - SCALE (SPLIT)
Analysis of Variance

Source of Sum Mean
Variation of Sq. DF Square F Prob.
Between students 41.2000 4 | 10.3000
Within questions 13.2000 3 4.4000 | 18.8571 .0001
Residual 2.8000 12 .2333
Total | 57.2000 19 3.0105
Grand Mean 3.2000

Reliability Coefficients
N of Cases =5.0 Nofltems= 4
Correlation between forms =.9529  Equal length Spearman-Brown =.9759
Guttman Split-half =.9757  Unequal-length Spearman-Brown =.9759
2 Items in part 1 2 Items in part 2
Alphaforpart1 =.9320 Alphaforpart2 =.9815
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Since there are many ways to divide a test into two halves, so there are in fact many
possible coefficients of reliability. A 10-item test can be divided into 126 ways, a 12 item
test 462 ways and so on. (These numbers represent the combination of n items taken n/2
at a time). The reliability coefficients may differ quite considerably from one split to
another split. This can be seen as:

Table 11.4
Different Person correlation Split-half
halves coefficient reliability
1,3and 2,4 0.9011 0.9278
1,2and 3,4 0.7863 0.8763
1,4and 2,3 0.9423 0.9691

This is one of the major objection of the application of this test. A refined form of this
test has been suggested by Cronbach, known as Cronbach's Alpha(a) (see section 11.3.4
below).

The IBM-SPSS package is used as shown in the following Example:
Example S11-3

The data will be in 5 columns and the data is as follows:

Student ot |\ @y @3 Q4

1 1 2 1 1 3
2 2 6.\ 4 5 6
3 3 3 2 1 1
4 4 El 3 3 3
5 5 6 4 4 3

We calculate Split-half Method as follows:
Analyze-> Scale>. Reliability Analysis...

File Edit View Data, Transform IAnaly?.e ID\redMarkeling Graphs  Utilities Addons  Window  Help

S HE DN 4 %5 B aq

Descriptive Statistics
var var var va

Tables

Student Qi Compare Means

General Linear Model

Generalized Linear Models

Mixed Models

[ R R
;o W e N

Correlate

@[] fw|n| =

Regression
Loglinear
Neural Networks
Classify

||~

Dimension Reduction

Scale

-
| [2] Reliability Analysis...

L5 f

[ Muttidimensional Unfolding (PREFSCAL )

[ Muttidimensional Scaling (PROXSCAL)...

Nonparametric Tests
= Forecasting

14 Sunvival

v+ v v w|lvlvr v v v v v v v v v v v ¥

Multidimensional Scaling (ALSCAL)...
Multiple Response
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Move the variables “Question 1,..., Question 4” to Items:
Click on Model:
Chose Split-half:

Items:
— | e

ol Question 1[Q1]
Al Question 2 [02)

ll question 3103 |
ol Question 4 [04) E
-

Model
Scale label ‘ o
ER

Now click on

Reliability Statistics

Cronbach's Alpha Part1 Walue 932

M of tems o8

Part 2 Walue BET7

M of Items b

Total N of ltems 4

Carrelation Between Forms 781

Spearman-Brown Equal Length 877

Coefficient Unequal Length BT
Guttman Split-Half Coefficient @

a. The items are: Question 1, Question 2. *—
h. The items are: Question 3, Question 4. *—_
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11.3.3 Kuder-Richardson Formula-20

Kuder-Richardson formula-20 is appropriate for scale items which are answered
dichotomously such as ‘true - false’, ‘yes - no’, ‘present - absent’ etc. Their formula 20

IS
=X {1—2"2‘1} (11.5)

k-1 o
where k = the number of items in the test
p = proportion of correct response to a particular item

g = proportion of incorrect response to that item

o2 = variance of the total scores of the test.

To compute the reliability we measure the proportion of the'people answering positively
to each of the questions and the variance of the scores mustibe known. This is explained
with the following example.

Example 11.4:
Ten students took a six -item test. The results were as follows:
Student Q1 Q2 Q3 Q4 Q5 Q6

1 1 1 1 1 1 1
2 1 1 1 1 1 0
3 1 1 1 1 0 0
4 1 1 1 1 0 0
5 1 1 1 0 0 0
6 1 1 0 0 0 1
7 1 1 0 1 0 0
8 1 0 0 0 1 0
9 0 0 0 0 1 1
10 0 0 0 0 0 1

where 1 means true answer and 0 means false answer.

The distribution of the scores of the students and item scores are given in Table 11.5.
Calculate the reliability coefficient using Kuder-Richardson formula-20.

Table 11.5

Student scores Item scores
Score | Frequency Score | Frequency

6 1 8 1

5 1 7 1

4 2 6 0

3 3 5 2

2 2 4 2

1 1 - -
Total 10 Total 6
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Solution:
Score of the students
Score (x) Frequency (f) fx fx°
6 1 6 36
5 1 5 25
4 2 8 32
3 3 9 27
2 2 4 8
1 1 1 1
Total 10 33 129
sfx = 33, Ifx? = 129
2
2 129 (33 =[2.01]
RET) [100 [201]
Item scores
Score Frequency p q pxq
8 1 0.8 0.2 0.16
7 1 0.7 0.3 0.21
6 0 0.6 0.4 0.24
5 2 0.5 0.5 0.25
4 2 0.4 0.6 0.24
Total 1.35

Similarly ¢* = 2.01 and =pg = 1.35, k = 6. Using (11.5), we get the reliability coefficient
as:

5

-6 1—@ =10.394 whichis low.
2.01

Example S11-4

The data will be in 7 columns and the data is as follows:
Student Q1 Q2 Q3 Q4 Qs Q6

(= = e I = B B e T R L
o o o o o a4 a4 a o a
=== == Y
[= N e = =T =T = ey
R == - R — R R Ry

o o . 4+ a4 o
o o =2 = s s a0

=
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Where 1 means true answer and 0 means false answer.
We calculate Kuder-Richardson formula-20 as follows:
Analyze-> Scale-> Reliability Analysis...

515

File  Edit View Data Transform iredﬂarkeﬁng Graphs  Utilities

Add-ons

Window  Help

% . Da e A Reports »
1 — ] Descriptive Statistics 3
| Tables »
I Student " [} " Compare Means 3
1 1 1 General Linear Model »
2 2 1 Generalized Linear Models 4
3 3 1 Mixed Models >
4 4 1 Correlate 3
5 5 1 Regression »
9 6 1 Loglinear »
] 7 ! Meural Networks 4
8 8 1 )
Classify 3
9 9 0
Dimension Reduction 4
10 10 0 —
11
12 i
13 Forecasting
14 Sumvival »
= Multinle Resnans s

ensional Scaling (ALSCALY)...

jonal Scaling (PROXSCAL).

Items:

&5 Student &5 Question 1 [Q1]
&> Question 2 [Q2]
&5 Question 3[03]
&5 Question 4 [Q4]

&> Question 5 [Q5]

| g5 Question 6 [Q6]

Model

Scale label:

i

Wwww
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Now click on , to get the following output:

Reliability Statistics
Cronhach's o | ="

apha T orltems
304 B

Kuder-Richardson

Note that in case of 0/1 response, Kuder-Richardson is the same as Cronbach’s Alpha.

11.3.4 Cronbach’s Alpha (o)

Cronbach's alpha is an extension of KR-20, allowing it to be used when there are more
than two response alternatives. If alpha were used with dichotomous items, the result
would be identical to KR-20. The formula for alpha is very similar to KR-20, except that

the standard deviation for each item is substituted for p g

L
k-1

(0]

1 ZGiZ
o7

where k = number of items

2 _
G —

Yo? =sum of the rating variances for all persons

2 _

oT = variance of the sum of the ratings fromsall the persons

Conceptually, both the formulas dive the'average of the possible split-half reliabilities of

scale. This method is explained.as:

(11.6)

variance of the scores on a particular question or from a particular person

Example 11.5:
This example was used.as in split-half method. The data is given as:
Student | Question 1) Question 2 | Question 3 | Question 4 X N
1 2 1 1 3 7 49
2 6 4 5 6 21 441
3 3 2 1 1 7 49
4 6 3 3 3 15 225
5 6 4 4 3 17 289
Total (y) 23 14 14 16 67 1053
529 196 196 256 1177
Solution:

20 question scores squared = 22+62+...+32 =283

5 student totals squared = 724212+ .. +172 =1053

4 question totals squared

=232 +142 + 142 + 162= 1177

For the solution we will calculate the variance of the total score as:
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2
o? =?—(6—57J = 31.0
» _ 283 1177

ZGi 5 52

=95

Using formula (11.6), we get
%[1—%} = 0.924
Thus the reliability question 0.924 whereas in split-half method 0.9278.
The IBM-SPSS package were used as follows:
Example S11-5
The data will be in 5 columns and the data is as follows:

| student | @1 | @, a
1

ra&T

1 1 2 1 3
2 2 4 5 6
3 3 3 : 1 1
4 4 6 3[ 3 3
We calculate Cronbach's Alpha as‘follows:
Analyze-> Scale-> Reliability Analysis...
Fle Edt View Data  Transform rectMarketing ~ Graphs  Ufilies  Add-ons  Window  Help
Repoits » ﬁ @ = é‘l‘v E (a] ¢
= A |5 \
Descriptive Statistics 3 e '—é |_1N
Tables 3
Compare Means » || var " var ” var || var
1 1_I_ 2 General Linear Madel v B
2 2 . 6 Generalized Linear Models v B
3 3 3 Mixed Models yo
4 4 6 Correlate » B
: 5 6 Regression 4 p
8 Loglinear 4
; Neural MNetworks »
- Classify 3
= Dimension Reduction »
- ~ Scale " W Reliability Analysis ..
- — 1
1 He B eSS | &= muttidimensional Unfolding (PREFSCAL
13 FUEEETE " | B2 mutiicimensional Scaling (PROXSCAL)...
Survival 3 -
14 Multidimensional Scaling (ALSCAL)
“c Multiple Response 3

Move the variables “Question 1,...,Question 4” to Items:
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Reliability Analysis. = Reliability Analysis =
i Items: || tems:
& Stugent | ﬁ & Student fl Question 1[a1] ﬁ
ol Question 1[a1] ol Question 2 (03]
ol Question 2 (2] ol Question 3 (03]
Ml Question 3[Q3] - sl Question 4 [a4]
ol Question 4 [a4) i a
P —— W o)
Scale label: [

] Scalelabel: |

(o Jeee (st [conse [tee

(Lo ) (zeste ] meset ] (cancer) e |

Now click on ﬁ to get the following output:

Reliability Statistics
Cronbach's
Alpha M of ltems
824 4

K2
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