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No say anything “I shall be sure to do so and so 

tomorrow”, except “if ALLAH so wills” And 

remember your Lord when you forget [it] and say, 

"Perhaps my Lord will guide me to what is nearer 

than this to right conduct.  

Surat Al-Kahf (23-24) 
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FOREWORD 

 

 When I was a doctorate student at Johns Hopkins School of Public 

Health. I used to take Biostatistics as a course, which I have to accept and 

live with it. I did not have much of a problem with it, but I could have 

enjoyed it more if it were presented to me in more attractive way. I mean in 

relation to real life rather than abstracts of figures. With this innovative 

writing of Prof. Hanif and Prof. Ahmad, I can see that the science of numbers 

and ratios is being wisely integrated with epidemiology.  

 

 Through feedback from the learners, I am sure that more will be added to 

this healthy relation between Biostatistics and other medical and public 

health sciences.  

Prof. Zohair Sebai 

Saudi Arabia 
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PREFACE TO SECONED EDITION 
 

 

 In this Edition the analysis of statistical data have been done on the basis of IBM 22 

SPSS Package. In logistic regression (Chapter 9) basic concept with analysis of ordinal 

logistic regression and multinomial logistic regression have been added. A new Chapter 

of survival analysis is included as Chapter 10. The previous Chapter 10 (Reliability 

Coefficient) from the old addition is now Chapter 11. We are thankful to Dr. Nadeem 

Shafique Butt of COMSATS Institute of Information Technology, Lahore for the addition 

of new material in this Edition. We are also thankful to Mr. M. Imtiaz and M. Iftikhar of 

Islamic Countries Society of Statistical Sciences (ISOSS) for excellent typesetting of this 

book.  

 

Muhammad Hanif 

Munir Ahmad 

Ezz H. Abdelfattah 
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PREFACE 
 
 The use of statistical techniques of data analysis has been observed to have 

dramatically increased recently, particularly for application in the biomedical and social 

sciences. This may be partially attributed to the developments during the last few decades 

of sophisticated methods for analyzing quantitative and categorical data. It also reflects 

the increasing methodological sophistication of scientists and applied statisticians. The 

Islamic Educational Scientific and Cultural Organization (ISESCO) realized that the 

knowledge of these statistical methods in health and medical research as well as in 

clinical practice was very important for dealing with uncertainty in diagnosis, treatment 

and prognosis. Moreover these methods are useful for health professionals, since they 

have to evaluate their day-to-day clinical data and research material. Such statistical 

analyses could improve their understanding and skills for treatment of patients, as well as 

planning, implementation and evaluation of health programs. Considering all these 

reasons, ISESCO formed a committee headed by Dr. Munir Ahmad in 1993 to develop a 

curriculum regarding Bio-statistics for medical colleges in the Islamic Countries. The 

senior author was also member of this committee. The curriculum was developed and 

circulated among the medical colleges of the Islamic Countries. Most of the Islamic 

Countries sent their comments and suggestions, which were incorporated in the 

curriculum before approval. Then we decided to write this manual for the medical, health 

and social sciences students. This is a self-reading manual written in a simple language, 

which can easily be comprehended and could be of use for health related and social 

studies, both at the undergraduate and postgraduate levels. 

 

 This manual consists of 10 chapters and presents the most important methods for 

analyzing quantitative and categorical data. It summarizes methods that have long played 

a prominent role, such as parametric and non-parametric tests; linear regression, chi 

square tests and measures of association including the tests of significance of relative 

risk, odds ratio and Mental-Haenszel odds ratio. A chapter on various types of sampling 

techniques and estimation of sample size has been added which is normally not included 

in common books on Bio-statistics. Various methods of reliability co-efficient with 

applications have been put together to facilitate the research workers. This manual puts 

special emphasis on logistic regression, a newly developed technique for qualitative data 

analysis. Another feature of this manual is that one can easily understand and use SPSS 

(Statistical Package for Social Sciences) software. Much emphasis has been given to the 

ability to select an appropriate test for the analysis of data with medical interpretation in 

the context of the problem. 

 

 The technical components of the manual have been explained in a way that does not 

require familiarity with mathematics such as calculus and matrix algebra. Examples 

relating to health problems have been solved using SPSS software. Permission has been 

taken for the examples and tables included in this manual. 

 

 In general most statistical methods require extensive computations. We have tried to 

avoid details of complex calculations, since software for data analyses are available. It is 

recommended for the users of this manual to use software, where possible, in solving the 
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problems. The data entry system has been explained either in the text or at the end of 

each chapter. However, for those who wish to solve problems manually, all the steps 

have been clearly demonstrated. At the end of each chapter the applications of SPSS 

software have been demonstrated in details. 

 

 We are deeply grateful to Prof. Zohair Al-Sebai Ex-Professor of Family and 

Community Medicine King Faisal University Dammam for providing full facilities to 

write this manual. We are also thankful to Dr. Nabil Yasin Kurashi, Dr. Adnan Al-Bar, 

Dr. Abdullah Mangood, Dr. Kasim Al-Dwood, Dr. Sameeh Al-Maie and Post-Graduates 

students of the Department of Family and Community Medicine, King Faisal University, 

Dammam, Saudi Arabia for encouraging us to write this manual. In this respect we also 

appreciate with gratitude to the National College of Business Administration and 

Economics for providing for administrative work. 

 

 We particularly appreciate the efforts of Dr. M. Samiuddin, Ex. Professor of  

King Abdul Aziz University, Jeddah, who read the manuscript critically and suggested 

useful changes to improve the text of the manual. We express our gratitude to  

Prof. Akhlaq Ahmad of Islamic Countries Society of Statistical Sciences (ISOSS), 

Lahore for reading the first and final draft of the manuscript and suggesting useful 

changes in the text and to Prof. M. Afzal, Ex-Joint Director, PIDE, Islamabad for 

critically reviewing the book. 

 

 Last but not the least, we are indebted to Mr. Mohammad Junaid, of King Fahd 

University of Petroleum and Minerals, Dhahran, Saudi Arabia, for composing the 

manuscript. 

 

 We would like to thank Mr. Muhammad Iftikhar and Mr. Muhammad Imtiaz of 

Islamic Countries Society of Statistical Sciences (ISOSS) for assistance in adjusting the 

corrections in the manuscript. 

 

Muhammad Hanif 

Munir Ahmad 
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1 

Chapter 1 
 

Basic Concepts and Data Presentation 
 

1.1 Introduction 

The word statistics seems to have been derived from the Latin word status or the Italian 

word statist. Both these words mean a political state. The word statist was also used by 

Shakespeare and Milton in the sense of a statesman, i.e. a person well versed in the 

affairs of the state. Modern concept of statistics was illustrated by Sir R.A. Fisher  

(1890-1962), J. Neyman (1894-1983), E.S. Pearson (1895-1981) and many others. 

The word statistics is used in the plural sense to refer to numerical facts in any field of 

study. It concerns with collection, organization, summarization, analysis and drawing 

inferences from a data set. This word is also used in singular sense to refer to the science 

comprising methods, which are used in collection, presentation, analysis, and 

interpretation of numerical data. 

Bio-statistics is the branch of statistics that concerns with the applications of statistical 

methods to medical and biological data. 

In medical field, statistical methods enable us to study the effectiveness of different 

treatments in medicines. Recently, it has been found that applications of statistical 

methods in medical data are very effective. Testing of hypothesis, analysis of variance, 

chi-square, non-parametric methods, regression and correlation, logistic regression etc. 

are frequently used in the analysis of data in the health and medical sciences. 

Knowledge of statistical methods is very important in health and medical research and in 

clinical practice for dealing with uncertainty in diagnosis, treatments and prognosis. 

These methods are useful and important both for clinicians as well as medical 

researchers, since they have to evaluate both clinical and research materials to improve 

their understanding and skills while treating patients.It is necessary to explain some basic 

terms and their definitions to understand statistical concepts in depth. 

Here is a quick chart for the steps for scientific research: 
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2 Basic Concepts and Data Presentation 

 

 

1.1.1 Population versus Sample 

Population means an aggregate of individuals having a particular characteristic. In 

medical science it is generally human population but it may be a population of patients. 

The group of all patients in any hospital is known as a population of patients of that 

hospital. Population of smokers, population of cancer patients, etc. are some examples of 

population. In medical science we sometimes consider a target population about which 

inferences are to be drawn. Generally, population is of two types viz. Finite and Infinite 

population. A population is said to be finite if one can count individuals, otherwise, it is 

known as an infinite population. An infinite population comprises infinitely large number 

of elements. In statistics, if the number of individuals in a population is countable, it is 

known as a finite population and if it is not, then it is treated as infinite population. 

A sample is defined as a representative part of any population. This representative part is 

not haphazard but some scientific method is used to select this part. At this stage, one 

should only remember that random technique, giving all members of the population an 

equal chance of selection, is applied to select the sample. Sample is considered to be 

large if the number of individuals in the sample is 30 or more, otherwise it is considered 

as a small sample. (Details of this will be discussed in Chapter 3). 

1.1.2 Parameter versus Statistic 

Parameter is a value (known or unknown) concerning some characteristic of a 

population. For example, average age of patients in a certain hospital admitted at a certain 

time is a parameter. It is a fixed quantity and always to be estimated. 
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Statistic is a value concerning some characteristic of a sample. For example, sample 

average can be defined as a statistic. Sample average may vary from sample to sample 

even drawn from the same population.  

1.1.3 Descriptive versus Inferential Statistics 

Descriptive statistics is a branch of statistics devoted to the organization, summarization 

and description of data. Inferential statistics is the branch of statistics concerned with 

using sample data to make inferences about a population. Proper sampling technique 

provides a measure of reliability for the inference. In inferential statistics, predictions are 

made and conclusions are drawn for the target population based on the sample. 

 

1.1.4 Descriptive versus Analytic Studies 

A study has one of two objectives; either descriptive or analytic. In a descriptive study, 

statistical data is collected, organized and summarized according to one or more 

characteristics. The study of means, proportions, rates, standard deviations, graphic 

representations of data fall under the category of descriptive studies. Association or 

correlation is sought but no cause-effects are inferred. In fact no causal inference is 

involved in descriptive studies. Measuring of incidence, and most of the vital statistics, 

i.e. death rate, birth rate, fertility rate, etc. also come under descriptive study. Study of 

child growth and development comes under descriptive study. How many people are 

suffering from AIDS is an example of cross-sectional study. This study measures the 

prevalence of disease at a point in time and also determines the association between a 

factor and disease. Some other types of descriptive studies are case-report, case-series 

(analysis of cases) etc. In analytic studies, a sample data is studied to draw inference 

about the nature of the data set from which the sample is selected. The main objective of 

analytic studies is to draw inference.  

1.1.5 Cohort Study 

Cohort refers to the fact that the study group is followed forward in time to the future. A 

Cohort study is a follow up study in which people that are exposed (or not exposed) to 

the suspected causal factor or compared to the subsequent development of the disease. It 

determines the association between exposure and disease. Incidence of disease can be 

estimated in exposed and non-exposed groups. In a Cohort study, a long time period is 

required. It is very costly, and is conducted relatively on common diseases.  
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4 Basic Concepts and Data Presentation 

 

For example, consider a cohort of 1000 persons of which 400 are smokers and 600 are 

non-smokers. The entire cohort is followed for 15 years and it is found that 50 out of 

1000 develop lung cancer. Of these 45 were smokers and 5 were not. The information is 

summarized in a 2x2 table. 
 

Disease 

 Lung cancer Without lung cancer Total 

Smokers 45 355 400 

Non-smokers 5 595 600 

Total 50 950 1000 

1.1.6 Case versus Control study 

A case-control study is backward looking study. This starts with the outcome of a disease 

and goes back to suspected cause. People with the disease are compared with people who 

are free from disease (control). The term case-control study is often called a retrospective 

study. This is a short time study, relatively less expensive and suitable for rare disease 

however incidence rate cannot be determined. 

Suppose we like to determine the association between smoking and lung cancer. Suppose 

100 cases having lung cancer (case) and 100 cases free from lung cancer (control) are 

selected. Both cases and controls are asked if they are smokers or non- smokers. 

The information is summarized in a 2 x 2 table as: 

 

 Cases Control 

Smokers 90 40 

Non-smokers 10 60 

Total 100 100 

Of 100 lungs cancer cases 90 were smokers and 10 were non- smoker. Of 100 persons 

who are free from cancer 40 were smokers and 60 were non- smokers. Study of such 

cases fall under the category of case-control study. NCBA&E



Hanif, Ahmad and Abdelfattah  5 

 

 

1.1.7 Experimental study 

Experimental studies are considered special types of cohort studies where all conditions 

of the study are specified by an investigator, namely selection of treatment group, nature 

of interventions, management during follow up, etc. The bearings of children, exposure 

to hazards, or personality type, are not normally subject to experiment. 

1.1.8 Intervention Studies 

Epidemiological experiments that are designed to test cause-effect hypotheses may be 

termed intervention studies. Intervention studies may be group-based or individual-based. 

If the effect of fluoride on dental caries is investigated by fluoridating, the water supplies 

of some towns and comparing the subsequent occurrence of dental caries in these towns, 

it is a group-based experiment. On the other hand, when the administration of oxygen,[to 

premature infants causing retrolental fibroplasia (a blinding disease)], is tested by 

administering oxygen continuously to some babies then it is an individual-based 

experiment. 

1.2 Variable 

A variable is a characteristic of an individual which takes different values at different 

situations i.e. age, height and weight of patients, level of education, marital status, 

pulmonary blood flow (PBF), pulmonary blood volume (PBV), stage of a disease type of 

accidents, number of visits to a hospital, gestation age (weeks), smoking status etc. are a 

few examples of a variable. The values assumed by these variables are either categorical 

or numerical. A numerical variable may further be divided into two types: discrete 

variable or continuous variable. 

1.2.1 Categorical Variable 

A categorical variable is one for which the observations recorded result in a set of 

categories. For example, gender is a categorical variable as it falls into two categories 

only such as male and female. Recovery from disease is a categorical variable as it may 
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be recorded into three categories as, not recovered, partially recovered or completely 

recovered. Similarly level of education is a categorical variable. Categorical variable is 

often referred to as a qualitative variable. 

1.2.2 Numerical Variable 

A numerical variable is one for which the observations are recorded in numerical values 

such as, age, height, etc. It has further two types viz. discrete and continuous. A 

numerical variable is often referred to as a quantitative variable. 

(a) Discrete Variable 

A variable that is capable of taking a set of discrete numerical values such as 10, 15, 

1, 199, etc. but not every possible value between two given numbers, is termed as 

discrete variable. The number of heart beats in a fixed time period, number of 

successful operations in a hospital; number of cases reported at a casualty ward of a 

certain hospital etc. are a few examples of discrete variables. 

(b) Continuous Variable 

A variable, which is capable of taking every possible value between two given 

number is termed as a continuous variable. Age, weight, length, etc. are a few 

examples of continuous variables. 

1.2.3 Dependent and Independent Variables 

Variables can further be divided into dependent (response) and an independent (predictor 

or explanatory) variable. Some examples of dependent and independent variables are as 

follows: 

a. In a study of a prevalence of a disease in different age groups, the presence of the 

disease may be referred to as a dependent variable, whereas age is an independent 

variable. 

b. In the study of the effect of smoking on lungs, smoking is an independent 

variable; whereas effect of smoking on the lungs is a dependent variable. 

c. In a study of an association between birth weight of a child gestation period 

(weeks) and smoking status are possible factors that may influence the birth 

weight of a child. Birth weight is dependent variable whereas smoking status and 

gestation period are independent variables. 

d. In the study of early sitting, smiling and walking of a child, the factors such as 

age, gender, birth weight, type of feeding, education of mother and father, birth 

order, number of siblings, etc. are independent variables. 

e. In a study of mental disorders among elderly population; gender, age, family type, 

education level, income, family history, etc. may be taken as independent 

variables. 
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8 Basic Concepts and Data Presentation 

 

(a) An Interval Scale  
This scale considers as pertinent information not only the relative order of the 

measurements as in the ordinal scale but also the size of the interval between 

measurements, that is the size of the difference (in a subtraction sense) between two 

measurements. We know, for example, that the difference between measurement of 

10 and a measurement of 20 is equal to the difference between measurements of 20 

and 30. The ability to do this implies the use of a unit distance and a zero point, both 

of which are arbitrary but it is not important which measurement is declared to be 

zero or which distance is defined to be the unit distance. Temperature has been 

measured quite adequately for some time by both the Fahrenheit and Centigrade 

scales, which have different origin and scale. The principle of interval measurement is 

not violated by a change in scale or location or both. In simple words, we can say that 

an interval scale may have an arbitrary zero unit, for example, temperature measured 

on a Celsius scale is an interval scale as 25°C = 72°F and 50°C = 112°F but the 

intervals of Celsius scale and Fahrenheit scale are not equal, e.g. [25 , 50]  [72 , 112]. 

(b) The Ratio Scale  

Unlike, the interval scale, the ratio scale has an absolute zero point, for example, 

weight measured on metric scale is a ratio scale because  

 1 ton = 1016 Kg; and 2 tons = 2032 Kg therefore [1 : 2] = [1016 : 2032] 

The ratio scale of measurement is used when the order and interval size are important, 

and the ratio between two measurements is meaningful. The ratio scale is appropriate 

for measuring crop yields, distances, weights, heights, income, length, time, mass, 

volume, etc. 

1.4 Types of Statistical Data 

An observation recorded or measurement taken in a planned study with some objectives 

in mind may result in a letter like "A" type blood or number like "120 mmHg" blood 

pressure. A collection of such observations may be termed as data or statistical data. 

Data may be classified into two types, viz. Qualitative Data and Quantitative Data. 

1.4.1 Qualitative Data  

When a population is classified into several categories, it is possible to count the number 

of individuals in each category. These counts are the qualitative data. A diagnostic test 

for pregnancy gives either positive (+) or negative(-) result. Colour of hair, colour of 

eyes, gender, non-resident, vaccinated or not, blood types, etc. are few examples of 

qualitative data. Observations recorded qualitatively (non-numerical measurements) give 

rise to qualitative data. 
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1.4.2 Quantitative Data  

Observations, which are measured quantitatively (numerical measurements) give rise to 

quantitative data, such as measurement of serum cholesterol level, systolic blood 

pressure, blood urea nitrogen (BUN), etc. are some examples of quantitative data. 

 

 

S1 Introduction to IBM-SPSS 

S1.1 The origins of SPSS 

In 1968, Norman H. Nie, C. Hadlai (Tex) Hull and Dale H. Bent, three young men from 

disparate professional backgrounds, developed a software system based on the idea of 

using statistics to turn raw data into information essential to decision-making.  

Nie, a social scientist and Stanford doctoral candidate, represented the target audience 

and set the requirements; Bent, a Stanford University doctoral candidate in operations 

research, had the analysis expertise and designed the SPSS system file structure; and 

Hull, who had recently graduated from Stanford with a master of business administration 

degree, programmed. 

This revolutionary statistical software system was called SPSS, which stood for the 

Statistical Package for the Social Sciences. SPSS is renamed as PASW (Predictive 

Analytic Soft Ware) in version 18 after owned by IBM in 2009. Starting from version 19 

IBM gave the name IBM-SPSS for the statistical package. 

Today: IBM-SPSS is recognized as a leader in the predictive analytics market space. 

Predictive analytics, combines advanced analytics and decision optimization.  
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The symbols used for data according to the measurement level: 

 

 

S1.2 The Views of IBM-SPSS 

SPSS has two views, the Data view and the Variable view. The Data view displays the 

actual data values or defined value labels, while in the Variable view, the variables are 

defined with label, measurement levels and other important features.  

Many of the features of Data view are similar to the features that are found in spreadsheet 

applications. There are, however, several important distinctions: 

 Rows are cases. Each row represents a case or an observation. For example, each 

individual respondent to a questionnaire is a case. 

 Columns are variables. Each column represents a variable or characteristic that 

is being measured. For example, each item on a questionnaire is a variable. 

S1.3 The Toolbar 

 
Icon Use Function 

 
Open file 

In addition to files saved in SPSS format, we can open Excel, 

SAS, and Stata, tab-delimited and other files without 

converting the files to an intermediate format or entering data 

definition information. 

 
Save file 

In addition to saving data files in SPSS format, we can save 

data from SPSS in a wide variety of external formats 

 
Print 

PRINT displays the values of variables for each case in the 

data.  

 
Recall Recall recently used dialogs 

 
Undo Undo a user action 
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Icon Use Function 

 
Redo Redo a user action 

 
Go to case To go to a specific case  

 

Go to 

variable 
To go to a specific variable 

 

Variables To see the definition for a specific variable 

 
Find To search for a specific word or number 

 
Insert case To insert case between two cases 

 

Insert 

variable 
To insert variable between two variables 

 

Split file 

Split File splits the data file into separate groups for analysis 

based on the values of one or more grouping variables. If we 

select multiple grouping variables, cases are grouped by each 

variable within categories of the preceding variable on the 

Groups Based On list. 

 

Weight 

cases 

Weight Cases gives cases different weights (by simulated 

replication) for statistical analysis. 

 

Select 

cases 

Select Cases provides several methods for selecting a subgroup 

of cases based on criteria that include variables and complex 

expressions. We can also select a random sample of cases. 

 

Value 

labels 

When labels have been assigned to the category codes of a 

categorical variable, these can be displayed by checking Value 

Labels 

 

Use 

variable 

sets 

This is to define sets for group of variables e.g. to construct a 

set called "demography" to contain all demographic variables 

only. 

 

Show all 

variables 

This is to show all variables, not only the pre-defined variable 

sets 

 

Spell 

check 
This for checking the spelling. 
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S1.4 The Menu 

 

 

We use the file menu to read the data, an existing SPSS data file, 

spreadsheet, text, or database files created by other software. 

 
Used to perform the standard Windows functions to cut copy & 

paste selections & to find data values. 

 
Used to display gridlines, labels, the status bar & toolbars, & to 

change the display font. 

 
Used to access the SPSS facilities that make global changes to 

SPSS data files. 

 

Used to access SPSS facilities that modify or create new variables 

in the data file. We can compute new variables, bin values of scale 

variables, manipulate date/time variables, & record variables from 

this menu. 

 

Used to analyse the SPSS statistical & reporting procedures we 

have installed with SPSS. This menu contains all of the SPSS 

procedures included in the SPSS base system. EX .frequencies, 

cross tabs as well as other descriptive procedures, regression, 

analysis of variance & many more. 

 Has some recent applications in Marketing researches 

 

Used to create charts using the Chart Builder or the Interactive 

Graphics system. Some statistical procedures also optionally 

generate charts. 

 

Used to display variable information, to define & use variable sets 

to control the variables that appear in the Data Editor & in the 

variable lists of dialogue boxes. 

 
Used to add new products of SPSS, not included in SPSS base 

system.  

 
We use the Window menu to switch between SPSS windows & 

manipulate how they appear on the screen. 

 Used to provide access to the many Help features of SPSS.  
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S1.5 The Variable View 

 

 
Each variable must be assigned a unique name no longer than 64 

characters. 

 
the type or format of the variable( numeric , string, dollar, etc.) 

 
the total number of columns( width) of the variable values 

 
the number of decimal positions of the variable value (should be set 

to 0 with nominal or ordinal variables) 

 Variable label for the variable 

 Value label for any nominal or ordinal variable 

 
the values which should be flagged as user-missing and excluded by 

default from most analysis 

 
Changes the display width of the column in the data view. 

 
Placement of the report relative to its margins. LEFT, CENTER, or 

RIGHT can be specified in the parentheses following the keyword. 

 
The level of measurement for the variable 

 
Used to define the dependent variable (target) and independent 

variables (input) to be used automatically : 
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Example S1-1 

Suppose for example, we have the following simple questionnaire,  

 

It is clear that: 

Variable Measure Symbol Value 

Serial No Scale (any)  

Age Scale 
 

 

Gender Nominal 
 

1=male 

2=female 

Pain level Ordinal 
 

1=Mild 

2=Moderate 

3=Severe 

Preferred medicine Nominal 
 

0=No 

1=Yes 

- Each variable has a column 

- For the Preferred medicine, each choice is considered a variable, so that it has 

three variables (columns), this is known as "Multiple response". 

Now suppose that the 1st patient's response was as follows: 
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Then the corresponding data should be entered as a raw as follows: 
 

Serial Age Gender Pain level Pills Injection Syrup 

1 26 female Mild Yes No Yes 

Now suppose that we have 10 patients with the following responses: 
 

Serial Age Gender Pain level Pills Injection Syrup 

1 26 female Mild Yes No Yes 

2 21 female Moderate Yes No No 

3 18 male Moderate No No Yes 

4 35 male Mild Yes Yes No 

5 41 female Severe Yes Yes Yes 

6 22 male Severe Yes No No 

7 22 male Moderate Yes No No 

8 31 female Mild Yes Yes No 

9 19 male Severe No Yes Yes 

10 26 male Severe Yes No No 

Variables in Variable View: 
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Data in Data View: 

Showing the numbers  
Showing the values of the numbers  

(for Nominal or Ordinal) 

 

Push 

 

 

 

 

 

1.5 Graphical Presentation of Qualitative Data 

The medical scientists while writing their papers or reports always present their 

information in the forms of diagrams and graphs as they are made to summarize the data 

and a guide to further analysis. Graphs are used to compare two or more than two sets of 

data. Every graph or chart should have a title that should give a clear description of the 

diagram or chart. A suitable scale should be used. The horizontal and vertical axes should 

be marked so that the graph or chart should be self-explanatory. There are many ways to 

present the data by charts and diagrams. We will discuss only commonly used charts or 

diagrams. Data involving a categorical variable measured on a nominal or ordinal scale 

can be displayed by (i) Simple Bar Charts (ii) Subdivided and Multiple Bar Charts and 

(iii) Pie Charts. 

When representing the data graphically, we can use the "Graphs  Chart Builder"  

 

1.5.1 Bar Charts  

Bar chart is mainly used for graphical presentation of categorical data. Bar chart is 

obtained by plotting categories (of some constant widths) along X-axis and erecting bars 

of the heights equal to the corresponding numbers along Y-axis. Usually some fixed gap 

is left between two bars. Some non statisticians make the bar diagram for the data which 

relate to time, which in fact is not an appropriate chart. 
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Example 1.1:  

Table 1.1 shows the blood groups of 230 patients visiting in January 1994 in the Blood 

Bank of King Fahd Teaching Hospital of the King Faisal University at Al-Khobar. 
 

Table 1.1:  

Blood groups of patients 

Blood Group A+ A- B+ B- AB+ O+ O- 

No. of Patients 35 10 45 5 20 105 10 

Draw a suitable diagram for these data. 

Solution:  
Since the data given in the table are categorical, the most appropriate diagram is Bar 

Chart. There are 230 patients falling in 7 categories of various blood groups and each 

category is presented by a bar of height equal to the number of patients in that category as 

shown in Figure 1.1 presents each. 
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 Blood group 

Fig. 1.1: Bar chart of blood groups 

Example S1-2 

To obtain the simple bar chart using IBM-SPSS, we enter the data and follow the 

following steps: Graphs Chart Builder: 
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We drag or double click the icon , then we move the variables as follows: 

 

Once we click on , we get the following chart: 

 

Once we click on the graph twice, we will change to the “Chart editor” then we can 

manipulate the figure (e.g. change the color, change it to 3D, etc…) and then using the 

icon , we can add the numbers. 
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1.5.2 Subdivided  and Multiple Bar Charts 

If the data is grouped on the basis of two categorical variables then categories of one 

variable are displayed by erecting bars of height which corresponds to the values of these 

categories and the categories of second variable are displayed by dividing each bar into 

parts of size equal to the values of the sub-categories, whereas in multiple bar charts two 

bars for each category are constructed side by side. 

Example 1.2: 

Table 1.2 shows the type of investigation conducted on patients with breast disease for 

study 1 and study 2, in a New Bury Hospital of Berkshire from October 1 to December 

31, 1989 (study 1) and from April 16 to July 19, 1990 (study-2) 
 

Table 1.2:  
Type of investigations by study type 

No. Type of Investigation Study 1 Study 2 Total % 

1 Mammogram 11 15 26 23.9 

2 FNAC* 5 8 13 11.9 

3 FNAC + Mammogram 17 25 42 38.5 

4 Cyst Aspiration  2 2 4 3.7 

5 Cyst Aspiration + Mammogram 3 6 9 8.3 

6 NIL 8 7 15 13.7 

 Total 46 63 109 100 

 *Fine needle aspiration for catalogue 

Prepare suitable charts. 

Solution (a):  

Subdivided Bar Chart - The numbers in each category are added and bar chart is prepared 

for each category. Further, each bar is divided into two types of study as shown in  

Fig. 1.2. 

To obtain the subdivided bar chart using IBM-SPSS, we enter the data and follow the 

following steps: Graphs Chart Builder: 
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We drag or double click the icon , then we move the variables as follows: 

 

Once we click on , we get the following chart: 

 

Fig. 1.2: Subdivided bar chart for Types of investigations performed 

Solution (b):  

Multiple Bar Chart - In this diagram, same data is used and two bars for each type of 

investigations of both studies are placed side by side as shown in Figure 1.3. 

The advantage of the multiple bar chart is that comparison can be made easily. If there 

could be more than two studies, more than two bars are created side by side. 

To obtain the subdivided bar chart using IBM-SPSS, we enter the data and follow the 

following steps: Graphs Chart Builder: 
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We drag or double click the icon , then we move the variables as follows: 

 

Once we click on , we get the following chart: 

 
Fig. 1.3: Multiple bar chart for Types of investigations performed 
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1.5.3 Pie Chart  

Pie chart is a pictorial presentation of the data. If a set of observation has K categories, it 

is represented by pies i.e. K sectors in a circle. The angle of the i
th

 sector at the center of 

the circle, denoted by Ai, is proportional to the number in that category. It is given by: 

  Ai = 
categoriesallofvalueTotal

categoryitheofValue th

x 360; i = 1, 2, 3,......, K 

This is explained by the following example. 

Example 1.3:  

Table 1.3 shows the reported cases of AIDs in the 5 continents as of 17 Jan. 1992 

(WHO). 
 

Table 1.3:  
Number of cases of AIDs by continents 

Continents No. of Cases 

America 252,977 

Africa 129,066 

Europe 60,195 

Oceanic 3,189 

Asia 1,254 

Total 446,681 

Prepare a suitable chart for the given data. 

Solution:  
One can say that this data may be represented by bar charts, the answer is no, as the 

difference between the minimum value and maximum value is so much (more than 1:10) 

that bar charts for these data cannot be presented on normal paper. Besides we may be 

interested in the proportional share of each continent ratio than actual numbers. Therefore 

we look for another solution. The appropriate chart for this type of data is, Pie Chart that 

is shown in Fig. 1.4. 

The angles and percentages are calculated as follows: 

 

Table 1.4:  

Computation of AIDS case by continent for Pie Diagram 

Continents No. of Cases of AIDS Ai Cumulative Ai 

America 252977 204° 204° 

Africa 129066 104° 308° 

Europe 60195 48° 356° 

Oceanic 3189 3° 359° 

Asia 1254 1° 360° 

Total 446681 360°  
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 American Continent  = A1 = 
681,446

977,252
 x 360° = 204° 

 African Continent  = A2 =
681,446

066,129
 x 360° = 104° 

 Europe Continent  = A3 = 
681,446

195,60
 x 360° = 48° 

 Australia Continent  = A4 = 
681,446

189,3
 x 360° = 3° 

 Asia Continent  = A5 = 
681,446

254,1
 x 360° = 1° 

 

Fig. 1.4: AIDs cases in different continents 

 

Note that it will be convenient to draw the chart if you calculate cumulative Ai. If one is 

using computer then there is no need of this column. 

Example S1-3 

To obtain the pie chart using IBM-SPSS, we enter the data and follow the following 

steps: Graphs Chart Builder: 

56.6% 

0.7% 

28.9% 

0.3% 

13.5% 
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We drag or double click the icon , then we move the variables as follows: 

 

Once we click on , we get the following chart: 

 

Once we click on the graph twice, we will change to the “Chart editor” then using the 

icon , we can add the percentages. 
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1.6 Summarization of Quantitative Data 

In this section construction of grouping frequencies into tables, is explained. Relative 

frequency, and relative cumulative frequency have also been defined and are calculated. 

Their uses have also been discussed. 

1.6.1 Frequency Table and Frequency Distribution 

Frequency table is a two-column tabular presentation of the data. First column shows the 

different values of variable and second column the corresponding frequencies. To explain 

this, suppose we take 120 students from King Faisal University and record their weights 

to the nearest Kg.  
 

Table 1.5:  
Weights of 120 students in Kg 

67 
45 
56 
58 
57 
61 
65 
60 
60 
67 

63 
57 
50 
56 
58 
86 
81 
60 
60 
68 

57 
64 
74 
56 
59 
64 
82 
72 
65 
69 

85 
68 
74 
57 
58 
91 
76 
72 
65 
68 

67 
67 
67 
60 
58 
64 
77 
79 
66 
73 

60 
86 
77 
60 
61 
64 
81 
70 
65 
68 

75 
63 
61 
63 
62 
61 
76 
70 
73 
74 

55 
60 
85 
64 
91 
62 
66 
58 
73 
68 

67 
98 
66 
85 
74 
69 
62 
78 
71 
67 

68 
83 
66 
80 
72 
57 
63 
58 
73 
76 

51 
76 
60 
75 
57 
81 
62 
71 
66 
52 

54 
70 
61 
75 
73 
66 
63 
76 
73 
79 

This is known as raw or ungrouped data. As the data is presented, it is difficult to 

understand how the weights of students are distributed. Only after some search, we can 

find that the minimum value is 45 and maximum value is 98. One can say that the weight 

of the 120 students of this University varies from 45 Kg to 98 Kg. Therefore, for better 

understanding we need some more manipulation of raw data. 

In order to get a clear picture of the data, the data are presented in a condensed form, 

which is only possible if the data are grouped into a number of classes. If someone is 

working on the statistical packages, like SPSS or SAS he can directly condense the data 

into sufficient number of groups or classes. 

How many groups should be there and how to make groupings? These two questions are 

very common for medical scientists. Let us deal with these, one by one. 

Before grouping the data, it is important to decide upon the number of groups to be made. 

As a general rule, the number of groups should neither be too small so that all the 

information is lost nor should be so large that no useful summarization is obtained. 

Usually the number of groups is taken from 5 to 15 and preferably from 5 to 10. 

Regarding second question, let K be the number of groups to be made, d the width of 

each of the group. The number K may be obtained by using Sturge's Rule as: 

  K = 1 + 3.322 (log
10 

n), 
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where d = R/K, and R = maximum - minimum value of the data, n is the total number of 

observations. Smallest value in the data set may be taken as the lower limit of the first 

group. If, however, it is not an integer the next higher integer value is selected. Note that 

this formula provides a guideline only and the value of K thus obtained, can be increased 

or decreased, for better presentation. In the above data, maximum value is 98 and 

minimum value is 45, thus R = 98 - 45 = 53, n = 120. 

Using the Sturge's Rule 

  K = 1 + 3.322 (log10120) = 1 + 3.322 (2.079) = 7.906 ~ 8 

  R = 53, then d (width) = 
8

53
 = 6.6 ~ 7 

Most statisticians prefer to group the data starting with a number with a multiple of 2 or 5 

or 10 as the class may be. 

Select 45 as the lower of the class limit and make the following groupings called class 

intervals: 

 45 to 51, 52 to 58, 59 to 65, 66 to 72, 73 to 79, 80 to 86, 87 to 93 and 94 to 100. 
 

Table 1.6:  
Distribution of students by weights in Kg. 

Weights (class-limits/intervals) Number of students 

45 - 51 
52 - 58 
59 - 65 
66 - 72 
73 - 79 
80 - 86 
87 - 93 

94 - 100 

3 
18 
33 
29 
23 
11 
2 
1 

Total 120 

This is known as grouped data. This table is known as frequency table or frequency 

distribution. To make frequency distribution by using SPSS package proceed as follows: 

(i) Enter raw data  

(ii) Click tool and then click recode, and click recode into different variable  

(iii) Bring the original variable to the right hand side and create a new variable  

(say, x) and change variable, finally  

(iv) Click old and new variable, recode data according to the groups you want to 

make. 

Note that, the class intervals given in table 1.6 are called discrete class intervals. If 

someone is interested to present this data in form of appropriate diagram then one cannot, 

as the groups are discrete. Therefore continuous groups are must. To make it continous 

see the upper limit of the first group and lower limit of the second group, find their 
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difference and divide by 2. Add this number in the upper limit of the group and subtract 

from the lower limit of the group i.e. 45 – 0.5 = 44.5 and 51 + 0.5 = 51.5. Now these 

class limits will be called class boundries The class limits of table 1.6 is rewritten as class 

boundaries in table 1.7 (Column 1). 
 

Table 1.7:  
Distribution of Students by Weights in Kg. Percentage  

 
Class  

Boundaries 
 

(1) 

Number  
of  

students 
 

(2) 

Relative 
frequencies 

or 
Proportion 

(3) 

 
Percentage 

 
 

(4) 

 
Cumulative 
frequencies 

 
(5) 

Relative 
Cumulative 
frequencies 

 
(6) 

44.5 - 51.5 
51.5 - 58.5 
58.5 - 65.5 
65.5 - 72.5 
72.5 - 79.5 
79.5 - 86.5 
86.5 - 93.5 
93.5 - 100.5 

3 
18 
33 
29 
23 
11 
2 
1 

0.025 
0.150 
0.275 
0.242 
0.191 
0.092 
0.017 
0.008 

2.5 
15.0 
27.5 
24.2 
19.1 
9.2 
1.7 
0.8 

3 
3 + 18 = 21 
21 + 33 = 54 
54 + 29 = 83 
83 + 23 = 106 
106 + 11 = 117 
117 + 2 = 119 
119 + 1 = 120 

0.025 
0.175 
0.450 
0.692 
0.883 
0.975 
0.995 
1.000 

Total 120 1    

If we do not know as to how many grouping there should be by using the given formula, 

we can use the following rule to calculate class interval. 

Find the maximum and minimum values from the data. Calculate the range i.e. difference 

between maximum and minimum value. Divide the difference by the number of groups 

one likes to make. For example, in the above data maximum value is 98 and minimum 

value is 45, the range is 98 – 45 = 53. Suppose we like to make 10 groups then  

53/10 = 5.3, roughly the groups will be made with an interval of 5 or 6. We shall prefer 

the interval to be 5 

1.6.2 Relative Frequency  

Relative frequency of a class interval is proportion of the class frequency relative to the 

total frequencies. Relative frequencies are in column (3), Table 1.7. The purpose 

ofcalculating the relative frequencies is to obtain the idea of proportion, and percentage 

which are, in fact, useful to understand the basic concept of different types of rates, ratios 

and consequently the idea of probability. From the Table 1.7, we can immediately say that 

there are about 27.5% students whose weight lies in the weight group 58.5 - 65.5 Kg. 

1.6.3 Cumulative Frequency 

The cumulative class frequency of class interval is the total number of observations 

having values less than the upper limit of that class interval. One of the advantages of the 

construction of cumulative frequency table is that, one gets immediately the picture, how 

many students have weight less than or equal to a certain point. For example there are 

117 students whose weights are less than or equal to 86.5 Kg. The cumulative frequencies 

are given in column 5 of Table 1.7. 
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1.6.4 Relative Cumulative Frequency 

The cumulative frequency of a class interval divided by the total frequencies is called 

relative cumulative frequency. It is generally expressed in the form of percentages and is 

known as percentage cumulative frequency. One of its advantages is that one can 

immediately get an idea, of the percentage of the students whose weight is less than or 

equal to a certain point. For example 69.2% students have weight less than or equal to 

72.5 Kg. In other words one can say that about 31% students have weight above 72.5 Kg. 

The relative cumulative frequencies are given in column (6), Table 1.7. 

1.7 Graphical Presentation of Quantitative Data 

A grouped data involving a quantitative variable may be presented by various graphs. 

Some commonly used graphs are histogram, frequency polygon, frequency curve and 

cumulative frequency curve. 

Example S1-4 

We can use the IBM-SPSS, to change the raw date into a frequency table, then to obtain 

the frequency and cumulative table, through the following steps: 
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Now, we define the classes as follows: 
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Now, in the “Variable View” we use the Values” to define the “Value Lables” 

 

 

Then we can obtain the frequency table through:  

Analyze Descriptive Statistics  Frequencies,  
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Once we click on , we get the following table: 

  

1.7.1 Histogram  

Histogram is a graphical display of a frequency distribution and is obtained by plotting 

the class intervals along the X-axis and frequencies along the Y-axis. On each class 

interval (taken as width), we draw adjacent vertical bars of the heights equal to the 

corresponding frequencies. The graph thus obtained is called histogram. Histogram is 

constructed by using the data given in Table 1.7 and is shown in Figure1.5. 

1.7.2 Frequency Polygon  and Frequency Curve  

Frequency Polygon is a graph obtained by joining by straight lines the mid points of the 

tops of the bars of the histogram. Frequency curve is a smoothed curve, which does not 

necessarily pass through the mid points like frequency polygon. The ends of the graph 

drawn in this way do not meet the X-axis, but remain open ended. This curve is very 

important as analysis of the data depends on the shape of the curve drawn. Frequency 

curve is plotted by using the data given in Table 1.7 and is shown in Fig.1.5.  
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To draw histogram we proceed as follows: 

i. Enter the mid-points of groups in the first column 

ii. Enter the frequencies in the second column 

iii. On data menu, click weight cases 

iv. Bring the frequency to the right hand side in frequency variable and click Ok 

v. On graphs menu, click Histogram 

Note: the histogram is ready but may not be according to your requirements 

vi. Click at any point on X-axis of the diagram a new histogram will appear, click 

any point on the X-axis 

vii. Click custom and then click define 

viii. Adjust interval and interval width as per your data  

ix. Histogram can be made directly from the raw data. For this purpose 

x. Enter the required data 

xi. Click graph and click histogram, then follow steps vi-viii 

 

Fig. 1.5: Histogram frequency polygon and frequency curve 

Example S1-5 

To obtain the Histogram (automatically) using IBM-SPSS, we enter the data and follow 

the following steps: Graphs Chart Builder: 

Weight of students

97.090.083.076.069.062.055.048.0

n
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Std. Dev = 9.55  

Mean = 67.9
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We drag or double click the icon , then we move the variable as follows: 

 

Once we click on , we get the following chart: 
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Also, we can obtain the Histogram (automatically) along with the Normal curve using 

IBM-SPSS, through the following alternative steps:  

Analyze Descriptive Statistics  Frequencies,  

 
 

 
 

Once we click on , we get the following chart: 
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1.7.3 Types of Frequency Curve 

Frequency curves are generally of two types; (i) symmetrical and (ii) asymmetrical or 

skewed. Asymmetrical or skewed curve is either positively skewed or negatively skewed. 

In symmetrical curves, observations are equidistant from the central maximum. 

Normal curve (to be discussed later) is an important example of this type. In 

asymmetrical curves, the tails of the curves is longer on one side than the other side. If 

the longer tail is to the right, the curve is said to be positively skewed. If the longer tail is 

to the left, the curve is said to be negatively skewed.  
 

   

(i) Symmetrical (ii) Positively Skewed (iii) Negatively Skewed 

Fig. 1.6: Symmetrical and Asymmetrical curves 

1.7.4 Cumulative Frequency Curve 

Cumulative frequency curve is a graph obtained by plotting the upper limits on X-axis 

and the corresponding cumulative frequencies along Y-axis and joining the points by 

freehand. The graph of cumulative frequency using the data given in Table 1.7 is shown 

in Figure 1.7.  
 

Weights of Students 
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20 
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Fig. 1.7: Cumulative frequency curve 

If we use SPSS package we proceed as follow: 

1. Enter the upper limits of group in one column 

2. Enter cumulative frequencies in the second column 

3. Follow the guidelines given on page 32. 
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1.8 Historigram: Graphical Presentation of Data Relating to Time 

Sometimes data is relating to time. People without going into details of the nature of data 

draw either bar diagram or pie charts for this type of data. In fact bar diagram or pie 

charts are not appropriate. The line diagram is drawn for the data relating to time. This 

graph is known as Historigram. One can see the trend of the data and may guess which 

type of analysis for this type of data. 

Below are the data relating to number of students (males and females) admitted in King 

Faisal University from 1975-1976 to 1993-1994 in medical college. We are interested to 

present this data in an appropriate diagram. 

Example 1.4:  

Table 1.8 shows the data relating to admission of students in King Faisal University. 

Draw a suitable graph for this data. 
 

Table 1.8:  
Distribution of students by gender admitted in King Faisal University  

from 1975 to 1994 

Year Male Female Total 

1975-76 
1976-77 
1977-78 
1978-79 
1979-80 
1980-81 
1981-82 
1982-83 
1983-84 
1984-85 
1985-86 
1986-87 
1987-88 
1988-89 
1989-90 
1990-91 
1991-92 
1992-93 
1993-94 

170 
316 
537 
702 
910 
1096 
1269 
1439 
1577 
1876 
1898 
2088 
2146 
2234 
2226 
2259 
2430 
2681 
3145 

0 
35 
77 
170 
248 
334 
544 
770 
1018 
1371 
1608 
1760 
1880 
2126 
2371 
2725 
2704 
3000 
3120 

170 
351 
614 
872 
1158 
1430 
1813 
2209 
2595 
3247 
3506 
3848 
4026 
4360 
4597 
4984 
5134 
5681 
6265 

Solution:  

Fig (1.8) shows time series graphs of years and students by gender This Fig is given on 

next page. 
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Fig. 1.8: Number of students admitted in King Faisal University 

Example S1-6 

For the data given in example S1-1, represent each of the age, gender and pain level using 

IBM-SPSS: 

Variable Measure Symbol Value Graph 

Age Scale 
 

 Histogram 

Gender Nominal 
 

1=male 

2=female 
Pie 

Pain level Ordinal 
 

1=Mild 

2=Moderate 

3=Severe 

Bar 

We have two ways for representing data, either through the "Graphs  Chart Builder"  

 

Or, we can Graph using Descriptive as follows: 

(Analyze Descriptive Statistics Frequencies) 

Years
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For the scale variable "Age": 

Move the "Age" into variable,  

Push on "Charts" 

Select "Histogram" 

  

Push on " " then " ", to get: 
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For the Nominal variable "Gender": 

Move the "Gender" into variable,  

Push on "Charts" 

Select "Pie charts" 

  

Push on " " then " ", to get: 
 

 

 

For the ordinal variable "Pain level": 

Move the "pain" into variable, 

Push on "Charts" 

Select "Bar charts" 
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Push on " " then " ", to get: 

 

 

1.9 Descriptive Statistics 

After the graphical presentation and summarization of statistical data, the next step is to 

proceed to different measures for statistical analysis. The methods of statistical analysis 

for qualitative and quantitative data are different. Proportion, percentage, ratio, indices, 

ranks, association, test of independence, etc. are possible methods of statistical analyses 

for qualitative data whereas percentage, indices, averages, variations, correlation, 

regression, analysis of variance, etc. are possible methods of analysis for quantitative 

data. For qualitative data, we shall describe the methods wherever it is necessary but we 

begin with quantitative data analysis. 

1.9.1 Rates 

Suppose, in a specified population, n events occur during a fixed period of time. If n(A) 

of these events possess some characteristic, say A, then rate of the event having the 

characteristic A is given by 
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  R(A) = 
n

An )(
 . base (K) 

per base (K) unit, where base is usually taken as 1,100,1000, or 100000, etc. 

*  If base is 1 then R(A) becomes proportion of A as given in column 3 of Table 1.6. 

*  If base is 100 then R(A) becomes percentage of A as given in column 4 of Table 1.6. 

*  In some of the cases base is either 100 or 1000 or 100000, like the death rate, birth 

rate. For very small proportions such as cancer patients base may be 10,000 or even 

100,000. 

(i) Prevalence Rate (P.R.) 

Prevalence rate of an attribute or a disease in any group, is the proportion of individuals 

in the groups having that attribute at one point in time. This is also known a prevalence 

ratio. 

  

K
diseasethetoosedexpsindividualofnumberTotal

timegivenaatdiseasewithsindividualofNumber
R.P   

(ii) Incidence Rate (I.R.) 

The risk of developing the disease over a period of time is called incidence rate and is 

calculated as: 

  

K
disease  thedeveloping ofrisk at  Population

 timeof period aover  disease of cases new ofNumber 
R.I   

(iii) Crude Death Rate (CDR) 

  

K
01July year  midon  population Total

year calander  a during deaths Total
CDR   

  K is either 1000 or 100000. 

(iv) Specific Death Rate (SDR) 

  

K
01July on  group specific in the population Total

year calander  a during group-sub specificin  deaths Total
SDR   

(v) Crude Birth Rate (CBR) 

  K
01july on  populaiton Total

year  theduring births live Total
CBR   

(vi) Maternal Mortality Rate (MMR) 

  K
yeartheduringbirthsliveTotal

yearaduringcausespuerperalallfromDeaths
 MMR   
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The preferred denominator for this rate is the number of pregnant women during the year 

but it is difficult to determine. A death from a puerperal is a death that can be ascribed to 

some phase of child bearing i.e. pregnancy or puerperal. 

(vii) Infant Mortality Rate (IMR) 

  K
yeartheduringbirthsliveofTotal

yearaduringageofyearoneunderDeaths
IMR   

(viii) Neo-natal Mortality Rate(NNMR) 

  K
yeartheduringbirthsliveofTotal

yearaduringdays28to0fromDeaths
NNMR   

(ix) Fetal Death Rate (FDR)  

  

K
yeartheduringdeliveriesTotal

yearaduringdeathsfetalTotal
FDR   

A fetal death is defined as a product of conception that shows no sign of life after 

complete birth. 

(x) Pre-Natal Mortality Rate (PMR) 

  

Totalfetaldeathsof 20(24) weeksor more Infant deaths under 7 days

Total births (aliveanddead)
PMR K


   

(xi) General Fertility Rate (GFR) 

  K
years4415agedwomenofpopulationTotal

years4415agedwomentobirthliveTotal
GFR 




  

(xii) Body Mass Index (Quetelet’s Index) 

   
2

Weight of person
BMI    

Height of the person

a
  

(xiii) Ponderal Index  

  =
  3/1
Weight

Height
  

Note: Units for weight and height are arbitrarily assigned. 

1.9.2 Ratios 

Suppose in a specific population, n events occur during a fixed period of time and n(A) of 

these events possess some characteristic "A" and n - n(A) of these events do not possess 

this characteristic, then the ratio of these events possessing the characteristic "A" is given 

as 
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  Ratio (A) = 
)(

)(

Ann

An


 

For example, gender ratio, which is commonly used, is defined as  

  Gender Ratio = 
malesofNumber

femalesofNumber
 

Some more examples are: 

(i) Fetal Death Ratio 

  
yearaduringbirthsliveofnumberTotal

yearaduringdeathsfetalofnumberTotal
FDR   

(ii) Immaturity Ratio 

  
yearaduringbirthsliveofnumberTotal

yearaduringgrams2500underbirthsliveofNumber
IR   

(iii) Case-Fatality Ratio 

  
diseasetoduecasesofnumberTotal

diseasetoduedeathsofnumberTotal
CFR   

1.9.3 Odds Ratio 

Suppose the number of observations possessing a characteristic "A" say case and control 

and is further classified according to another factor "B" called diseaseed and not diseased 

and we make a cross tabulation then these information may be presented 2 x 2 table also 

called contingency table as: 
 

Table 1.9: 
2 x 2 table for case-control versus disease-non-disease 

Characteristics 

 Case Control  

 A A  Total 

Disease B a b a + b 

Non-disease B  c d c + d 

Total a + c b + d a + b + c + d 

 A = exposed   A = non-exposed 

 B = disease (case) B = no disease (control) 

then the rate of diseased persons among exposed = 
ca

a


. The rate of non-diseased 

persons among exposed persons is 
ca

a


. Then the rate of exposure  
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among exposed case is 
ca

a


 ÷ 

ca

c


= 

a

c . Similarly the rate of exposure among controls 

= 
db

b


 ÷ 

db

d


= 

d

b
, 

The odds ratio is the ratio of these odds and is given by 

  OR = 
c

a
 ÷ 

d

b
 = 

bc

ad
 

If any cell is zero, the odd ratios can be calculated by adding 
1

2
 to each cell.The details 

of odd ratio with its statistical meaning attached to it along with its statistical significance 

will be discussed in Chapter 7. 

Example 1.5:  
In a case-control study, let us take artificial example of alcohol and liver cirrhosis. The 

data are given table 1.10. 
 

Table 1.10:  
Liver cirrhosis 

Alcohol 
Case Control 

Total 
LC CL  

A 400 a 333 b 733 

A  100 c 167 d 267 

Total 500 500 1000 

  LC = liver cirrhosis  LC  = no liver cirrhosis 

  A = alcohol drinking   A  = no alcohol drinking 

The different indices are calculated as: 

i) Odds of alcohol among cases =
500

400
/

500

100
 = 

100

400
 = 

c

a
 

ii) Odds of alcohol among controls =
500

333
/

500

167
= 

167

333
 = 

d

b
 

iii) Odd ratio (OR) =
d/b

c/a
 = 

bc

ad
 = 

100333

167400




 = 2.006 

Example 1.6: 

Consider the following example of the relationship between smoking and lung cancer in a 

case-control study: 

 Cases Controls 

Smokers 145 107 

Non- or ex-smokers 55 93 

Calculate the odds ratio and give its meaning. 
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Solution: 

             
  ⁄

  ⁄
 
      ⁄

    ⁄
      

The value 2.29 can be interpreted as an estimate of the ratio of the odds, in the 

population, of smoker developing lung cancer to the odds of a non-smoker developing 

this disease. 

In other words we can say that a smoker has 2.29 times more risk of developing lung 

cancer, than a non-smoker.  

Example S1-7 

Consider the following example of the relationship between smoking and lung cancer in a 

case-control study: 
 

 Cases Controls 

Smokers 145 107 

Non- or ex-smokers 55 93 

Calculate the odds ratio and interpret its meaning. 

Solution: The data in the IBM-SPSS file is as follows: 

The variable view is: 

 

We define the values of the variable as follows 
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The Data are entered in two columns. The 1st column is for smoking, in which the value 

"1" which is corresponding to "Smokers" is entered 252 times, the value "2", which is 

corresponding to "Non – or-ex-smokers" is entered 148 times.  

The 2nd column is for disease, in which the value "1" which is corresponding to "case" 

and the value "2" which is corresponding to "control", is entered as follows: "1" 145 

times than "2" 105 times, then "1" 55 times than "2" 93 times. A part of the data view is: 

 

To calculate the odds ratio, we follow the following steps: 

Analyze Descriptive Statistics Crosstabs 
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Then we will get the following windows, in which we will move the variable "smoke" to 

"Row" and the variable "disease" to "Columns". Then, we push on Statistics, as follows: 

 

We mark on "Cochran's and Mantel-Haenszel statistics", then we push on continue, as 

shown in the following figure:  

 

Now Click on  to get the following results: 
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The first table gives the observed values. The second table gives the odds ratio.  

Note: The table also gives the 95% confidence value, with lower value equals 1.511 and 

upper value equals 3.476. It means that with 95% confidence, a smoker has (at least) 

about 1.5 times the risk of developing lung cancer than a non-smoker. 

1.9.4 Measures of Central Tendency 

Central tendency is a characteristic of a data set that relates to its average value. It is the 

central value in the sense that it is located in the middle and the data points cluster around 

it. Since it is the most representative point of the data and a comparison between two or 

more data sets may, therefore, be made by their respective central points. In simple way, 

it can be said that methods of measures of central tendency are useful for the purpose of 

comparison of two or more similar types of data sets. Most commonly used measures are, 

arithmetic mean, median and mode. Quartiles, deciles and percentiles are also position 

indicators and useful for comprehensive comparison of two or more sets of data. 

(i) Arithmetic mean 

Arithmetic mean or simply mean is most commonly used measure of central tendency. It 

has a very important property, viz., when it is subtracted from all the values of data, the 

sum of the differences of mean from observations is zero. It uses all observations fully in 

its calculation. 

(a) Mean for ungrouped data 

Add all the observations in a set of data and divide by the total number of 

observations, i.e. 

 
nsobservatioofnumbertotal

setdataofnsobservatiotheallofsum
Mean   

If “xi” denotes the value of the i
th

 observation and “n” the number of observations, 

then the mean ( x ) is 

 
n

x

n

x......xxx
x i1321 




            (1.1) 
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Example:  
Suppose the weights of 14 patients are 62, 64, 65, 66, 68, 70, 70, 70, 70, 74, 74, 77, 

77, 79 in kg, the mean for this data is 

  
kg74

14

036,1

14

79656462
Mean 





 

(b) Mean for grouped data 

Given a grouped data, we first find the midpoints of the groups, which are multiplied 

by the corresponding frequencies of those groups. All these products are added. This 

sum is divided by the sum of all the frequencies. Suppose the weights of 14 patients is 

given, the mean can be calculated as: 
 

Table 1.11:  
Distribution of patient by Weights 

Weight of 
patients (kg) 

(1) 

Number of  
patients (fi) 

(2) 

Mid-points of  
groups (xi) 

(3) 
fi xi 

60-64 
65-69 
70-74 
75-79 

2 
4 
6 
2 

62 
67 
72 
77 

124 
268 
432 
154 

Total 14  978 

 Mean = 
14

978
 = 69.857 kg 

If xi are the mid values of the groups and fi are the frequencies, then the mean ( x ) is 

 
i

ii

n21

nn2211

f

xf

f.....ff

fx......fxfx
x









           (1.2) 

The mean obtained from grouped data may be different from the mean obtained from 

ungrouped data. This is because in grouped data we assume that all the values in that 

group is placed at the mid-value of the class interval. 

(ii) Median, quartile, decile and percentile [quantile] 

The median of data set arranged in order of magnitude is the middle most value. If the 

numbers of observation are odd, the middle value is the median. If the numbers of 

observations are even, the arithmetic mean of the two middle most values is the median 

value. Median tells us that 50% of the observations are on both sides of the median point. 

Median is a suitable measure for a data set which is measured on an ordinal or a ratio 

scale. Like median, quartiles are points dividing an ordered data set into 4 equal parts, 

deciles divide ordered data set into 10 equal parts and percentiles divide an ordered data 

set into 100 equals parts. Note that for comprehensive comparison for two or more than 

two data sets of the same type, percentile is relatively a better measure. Since SPSS 

package will be used for the calculation of all these measures, therefore, detailed 

discussion on this topic will not be useful. By using SPSS package (as explained at the 

end of the chapter) median and other measures can be calculated easily. If we use SPSS 
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package on the raw data given in Table 1.5 the median comes out to be 66.5 kg and lower 

(first) quartile is 60.0 kg and upper (third) quartile is 74.9 kg whereas for different deciles 

or percentiles the values are as: 

 

Percentiles 10 20 30 40 50 60 70 80 90 

Value (kg) 57 60 61.3 64 66.5 68 74 75.8 81 

(iii) Mode 

Mode is the most frequently occuring number in the data set. The mode of the given data 

is 60, as 60 has occurred more times in the data set than anyother number. It is not an 

effective measure. Sometimes, there is no mode and sometimes there are more than one 

modal values. Sometimes, the distribution is bi-modal or is multimodal. In such cases, 

mode does not provide true picture of the central tendency. It is not generally done, but 

one way of finding a mode in multimodal data, is to find the average of all modes.The 

average mode may be considered as mode of the data set. For example the scores of 

medical students in a test are 2, 2, 2, 3, 5, 5, 5, 6, 6 in this case 2 and 5 are two modes. 

The average mode is (2 + 5)/2 = 3.5 

1.9.5 Measures of Dispersion 

The average value of a set of observations fails to describe the distribution without some 

degree of variation of the observations about the averages. Statistical measures of 

dispersion are used to measure the extent to which individual observations disperse or 

cluster around the average. They, like mean are also used to compare two or more data 

sets of same nature. Here only two measures, which are commonly used in medical 

science, will be described. These are range and standard deviation 

(i) Range 

Range is the difference between maximum and minimum values of data set, such as 

blood pressure, blood cholesterol level, hemoglobin (Hg/dl) etc. This is a useful but a 

crude measure in medical sciences as it provides a quick value of variation. The range of 

the data set, given in Table is 1.5, 98 - 45 = 53 kg. [Maximum Value – Minimum Value]. 

(ii) Standard Deviation 

The most widely used and stable measure of dispersion is the standard deviation. This is 

a square root of variance. The variance is defined as mean squared deviation about the 

mean. The standard deviation (s.d) for the ungrouped data is calculated as: 

 Standard Deviation
 













 


n

x
x

n

1
)(

2
i2

i         (1.3) 

For dealing with frequency table we have  

 Standard Deviation )( = 
 

















 i

ii2
ii

i f

xf
xf

f

1
       (1.4) 

The computation of standard deviations for grouped data for population and sample is 

shown as:  
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Table 1.12:  
Computation of mean, variance and standard deviation 

Weight 
(kg) 

Number of 
students 

(f) 

Mid-Points of 
weight 

(xi) 

frequency & 
Mid-Points 

(xifi) 

Frequency * 

(Mid-Points)
2

 

44.5 - 51.5 
51.5 - 58.5 
58.5 - 65.5 
65.5 - 72.5 
72.5 - 89.5 
89.5 - 86.5 
86.5 - 93.5 
93.5 - 100.5 

3 
18 
33 
29 
23 
11 
2 
1 

48 
55 
62 
69 
76 
83 
90 
97 

144 
990 
2046 
2001 
1748 
913 
180 
97 

6912 
54450 
126852 
138069 
132848 
75779 
16200 
9409 

Total 120 580 8119 560519 

  Mean = 
120

8119
 = 67.658 kg 

Using (1.4) the standard deviation comes out as: 

  Standard Deviation (σ) =













120

)8119(
560519

120

1
2

= 9.661 kg (Population). 

Assuming that this data is a sample from a certain population. 

  Standard Deviation (s) =













 120

)8119(
560519

1120

1 2

= 9.702 kg (Sample) 

The variance of population σ
2 

= (9.661)
2

= 93.334 kg, whereas the variance of sample  

s
2
= (9.70)

2

= 94.129. Difference will be only marginal if  if  is large. The only 

difference between population standard deviation and sample standard deviation is that in 

sample standard deviation the divisor is total number of observations minus 1, i.e. (n - 1) 

or 1f i  . 

Note that Mean, Median, Mode, variance and standard deviation may be calculated 

directly from the grouped data by using IBM-SPSS package. For this purpose one should 

follow the following steps. 

Example S1-8 

1. enter the required mid points in one column and enter frequencies in another 

column 
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2. Click DATA and click weight cases, bring the frequencies to right hand side and 

click ok 

3. Click analysis, then frequencies, mark mean median mode etc.  

 

 

 

 

 

 

Now Click on  to get the following results: 
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Note also that the mean of ungrouped data (raw data) is 67.625 kg and standard deviation 

is 9.488 kg whereas in grouped data the mean is 67.658 kg and the standard deviation is 

9.661 kg. Note that grouped and ungrouped data results are close to each other. The 

difference (error) coming in the results is due to the grouping. When raw data is grouped, 

it loses some information. If a different grouping of the same is made then the mean and 

standard deviation are different. In grouped data it is assumed that all the values lying in 

that group correspond to the mid-value of the group. When a statistical package is used, 

these measures are calculated from raw data directly. Note that when you transfer the 

observations from one media to another one, some information are lost
1
. 

From the example given in table 1.5, new groups are formed as in table 1.13: 
 

Table 1.13: 
Computation of mean 

Weight 
(1) 

Number of students 
(2) 

Mid-points of groups 
(3) 

2 x 3 

45-52 
52-59 
59-66 
66-73 
73-80 
80-87 
87-94 
95-101 

3 
18 
32 
28 
24 
12 
2 
1 

48.5 
55.5 
62.5 
69.5 
76.5 
83.5 
90.5 
97.5 

145.5 
999.0 
2000.0 
1946.0 
1836.0 
1002.0 
181.0 
97.5 

Total 120 584.0 8207.0 

 Mean =
120

8207
 = 68.392 kg. 

The mean with the first grouping is 67.658 kg whereas the mean with new grouping  

is = 68.392 kg. Therefore, we see if the groups are changed the mean is also different. 

The mean and standard deviation calculated from a raw data are always exact. 

1.9.6 Relative Measure 

All the measures we have so far discussed are called absolute measures, that is, these are 

measured in terms of their basic units. Suppose there are two sets of data of the same type 

but these are measured in different units (weights in kilograms and in pounds) and we 

want to compare two sets of data. Even if the standard deviation of one set of data is less 

than the standard deviation of another set of data, we cannot say that the first set of data 

is less scattered than the second set of data. We cannot make such comparison, as the 

basic units are different. Measures, which enable us to make such comparisons, are free 

of units and are called Relative Measures. Some of the useful and commonly used 

relative measures are: (i) Coefficient of variation (ii) Z-score. 

  

                                                 
1
This point will be explained while applying the logistic regression (Chapter 9). 
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(i) Coefficient of Variation 

We know that in central tendency mean is the best measure among the group and in 

measure of dispersion standard deviation is the best measure then these two measures are 

used to establish an index called coefficient of variation. If the units of the two or more 

data sets are different then coefficient of variation is the best method for comparison. 

Coefficient of variation (C.V) is a relative measure of variation in any variable and is 

defined by  

  C.V =
meansample

deviationstandardsample
x 100 = 

x

s
x 100       

 (1.5) 

  C.V =
population standard deviation

population mean
x 100 (for population) =




x 100  (1.6) 

Note that, if one is comparing two or more data sets, then, a data set, which has less 

Coefficient of Variation is more consistent, more homogeneous and more stable than a 

data set that has larger C.V. 

The coefficient of variation is a useful measure of relative spread in data and is used 

frequently in the biological sciences. For example, suppose the authors of the study on 

diet and lipoproteins want to compare the variability in the ratio of total/HDL cholesterol 

with the variability in vessel diameter change for the 18 patients who had no lesion 

growth. The mean and the standard deviation of total/HDL cholesterol (in mill moles per 

liter) are 5.81 and 1.20, respectively; for the vessel diameter change (in millimeters), they 

are 0.12 and 0.29, respectively. A comparison of 1.20 and 0.29 makes no sense because 

cholesterol and vessel diameter are measured on different scales. The coefficient of 

variation adjusts the scales so that a sensible comparison can be made.  

Variation, as measured by the standard deviation, is small relative to the mean. Therefore, 

readers of their article can be confident that the assay results were consistent. From this 

formula, the CV for total/HDL cholesterol is (1.20/5.81) (100) = 20.7%, and the CV for 

vessel diameter change is (0.29/0.12) (100) = 241.7%. Therefore, we can conclude that 

the relative variation in vessel diameter change is much greater than (more than 10 times 

as great as) that in cholesterol ratio.  

A frequent application of the coefficient of variation is in laboratory testing and quality 

control procedures. For example, screening for neural tube defects is accomplished by 

measuring maternal serum alpha fetoprotein. DiMaio et al. (1987) evaluated the use of 

this test in a prospective study of 34,000 women. The reproducibility of the test 

procedure was determined by repeating the assay ten times in each of four pools of 

serum. They calculated the mean and the standard deviation of the ten assays in each pool 

of serum and then used them to find the coefficient of variation for each pool. The 

coefficients of variation for the four pools were 7.4%, 5.8%, 2.7%, and 2.4%. These 

values indicate relatively good reproducibility of the assays because the variation, as 

measured by standard deviation, is small relative to the mean. Therefore readers of their 

articles can be confident that the assay results were consistent 
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Example 1.7:   

In the following table, data are given relating to collection of blood and to compare two 

methods of coagulation. The data are related to the arterial activated partial 

ehromboplastin time (APTT). Values are recorded for 30 patients in each of two groups. 

Do these data indicate the difference in the distribution of APTT times? 

Table 1.14: 

METHOD 1: 

20.7 
31.2 
24.9 
22.9 
52.4 

29.6 
38.3 
29.0 
20.3 
20.9 

34.4 
28.5 
30.1 
28.4 
46.1 

56.6 
22.8 
33.9 
35.5 
35.0 

22.5 
44.8 
39.7 
22.8 
46.1 

29.7 
41.6 
45.3 
54.7 
22.1 

METHOD 2: 

23.9 
53.7 
23.1 
38.9 
41.3 

23.2 
31.6 
34.6 
24.2 
23.7 

56.2 
24.6 
41.3 
21.1 
35.7 

30.2 
49.8 
34.1 
40.7 
29.2 

27.2 
22.6 
26.7 
39.8 
27.4 

21.8 
48.9 
20.1 
21.4 
23.3 

Solution:  

These information relate to two data sets (groups), and these two groups are not selected 

from any population(s). We like to see which method is better than the other by 

comparing two data sets. All the basic measures are calculated using IBM-SPSS package 

regarding two methods through: 

Analyze Descriptive Statistics  Frequency 
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and the output is given on next table. 

SPSS output for Descriptive Measures 
 

Table 1.15: 
Different values of the descriptive measures 

 

If we cannot reach any decision by using mean and standard deviation, we go ahead for 

coefficient of variation.  

We know that by looking at the mean we cannot reach any conclusion unless we go 

ahead for standard deviation. Method 2 has less standard deviation than the data collected 

by Method 1, therefore, we say that Method 2 of taking the blood is better than Method 1. 

To be sure we go ahead to relative measure (coefficient of variation COV). The 

coefficient of variation of data collected by Method 2 is less than the coefficient of 
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variation of the data collected by Method 1. Therefore, we confirm our decision that data 

collected by Method 2 is more consistent, more homogeneous and more stable than 

Method 1. One can calculate the C.V by hand to get: 
 

Table 1.16: 
Coefficient variation 

 Method 1 Method 2 

Mean 
Standard deviation 

33.693 
10.730 

32.010 
10.459 

Coefficient variation 31.85%  30.67% 

Note that Coefficient of Variation is not available directly in IBM-SPSS Package, unless 

we add a dummy variable of 1’s and use the Ratio. For example, to calculate the C.Vfor 

Method 1, we do as follows: 
 

We add a dummy variable of 1’s

 
 

 

We can calculate other measures beside the C.V, 

such as Confidence Intervals, etc…

 

Now Click on  to get the following results: 
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(ii) Z-Score 

Z-score is also a relative measure of a variable and is defined as 

  
deviationstandardPopulation

meanPopulation(x)variableofValue
Z


         (1.7) 

Example 1.8:   
A student's average grade in Pharmacology is 67 and in Bio-statistics is 87. If the class 

means and standard deviation in Bio-statistics is 80 and 5 respectively, whereas in 

Pharmacology the mean and standard deviation is 79 and 8 respectively, then find the  

Z-scores in these subjects and interpret the results. 

Solution:  

The Z-scores in these two subjects are: 
 

Subject Z-score 

Bio-statistics 4.1
5

8087



 

Pharmacology 5.1
8

7967



 

Z-score in Bio-statistics is 1.4, i.e. 1.4 times standard deviation above the mean of the 

class whereas in Pharmacology the Z-score is -1.5, which means 1.5 times standard 

deviation below the mean of the class. Thus Z-score measures his ability in relation to his 

class and is free of unit measure. Note that the variable Z has mean = 0 and standard 

deviation =1 (details will be given later) 

Note that we can obtain the Z-score for all the values as in the following steps: 
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The default outcome is as in the following table: 

 

And the Z-scores are added directly to the data. Here is first ten for both variables: 
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1.10 Mean ± k  Standard Deviation  

What percentage of observations falls within mean ± k × s.d. (k = 1, 2, 3). Empirically  

it is known that, for a reasonably large set of data having a bell shaped frequency curve 

(symmetrical curve), about 68% of the observations fall within mean ± 1 s.d, about  

95% of the observations fall within mean ± 2 s.d and 99% of the observation fall within 

mean ± 3 × s.d. (details will be discussed at a later stage). 

The advantage of this empirical rule is, if we do not have the data and only mean and 

standard deviation are known, then one can calculate the ranges where 64% to 68%, 95% 

and 99% of the data are lying. For example, the mean and standard deviation of raw data 

are, mean is 67.625 and s.d = 9.488 respectively, then the weight of about 68% of the 

students is lying between 58 to 77Kg., and the weight of 95% of the students will be 

lying between 49 to 87 Kg etc. 
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Chapter 2 
 

Basic Concepts of Probability 

and Probability Distributions 
 

2.1 Introduction 

Different methods of summarizing the statistical data along with their graphical 

presentations have been discussed in Chapter 1. This chapter deals with the basic 

concepts of probability and probability distributions. The purpose of this chapter is not to 

teach probability to medical students and research workers but to clarify some of the basic 

concepts involved in understanding the interpretation of the results. For example, a major 

reason for performing clinical research, however, is to generalize the findings from a set 

of observations on one group of subjects to other similar groups of subjects. If we are 

interested to study whether smoking causes lung cancer, or it leads to cardiac problems, it 

is not possible to study all the persons who smoke. We investigate a small group of 

smokers selected from a larger group. The conclusion may indicate that smokers run a 

greater risk of lung cancer or a myocardial infarction. We say that smokers may have 

more chance of lung cancer than non-smokers. The term chance in the statistical language 

is designated as probability. A sample rarely tells us precise story about the population 

from which it is selected. There is always uncertainty about how far the sample estimate 

will depart from the true population value. Measures of the amount of uncertainty 

associated with estimate play a major role in statistical inference. How do we measure the 

uncertainty associated with events? The answer is probability. The concept of probability 

is very useful in understanding and interpreting statistical data. It helps us to understand 

the confidence limits, p-value (will be discussed in chapter 4) and the terms like 

significance and non-significance. 

Whenever one deals with the probability, one faces the word experiment. This word has 

very broad meaning. An experiment is a process of making observations or taking 

measurements on one or more experimental units. An experiment can be repeated many 

times. Each replication is called a trial. One or more outcomes can result from each trial. 

Consider a large number of trials. The probability of a specific outcome is the number of 

times that the specific outcome occurs divided by the total number of trials. If E is an 

event then the probability of an event will be defined as: 

  
experimentanintrialsofnumberTotal

experimentaninoccursEtimesofNumber
P(E)   

If the number of trials is very large this ratio is generally seen to be fairly stable from one 

instance to another. 

An estimate of the probability may be determined empirically or it may be based on 

theoretical model. If we flip a coin, the chance of getting a head or a tail is 50%. If this 

coin is flipped, say 20 times, there is no guarantee that exactly 10 heads will be observed. 
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Then again if the coin is tossed 2,000 times the ratio of number of heads to total number 

of trial will be very near to 21 . The frequency of the heads may vary from 0 to 2000, 

though in each case the chance of getting the head is 50%.  

2.2 Definition and rules of probability 

We will describe some examples to illustrate the concept of probabilities. 

Example 2.1   

Following data relate to total circulating albumin (gm) for 30 normal males aged 20-29. 

 
Table 2.1 

Distribution of males by total circulating albumin(gm) 

Total circulating 
albumin (gm) 

Number 
of males 

Relative  
frequency 

99.5-109.4 2 2/30 
109.5-119.4 6 6/30 
119.5-129.4 6 6/30 
129.5-139.4 7 7/30 
139.5-149.4 8 8/30 
149.5-159.4 1 1/30 

Total 30 1.00 

Suppose a person is picked up at random, the probability that the person belongs to the 

group 119.5-129.4 is 6/30, which in fact is a relative frequency of this group. It means 

that of 30 persons, 6 belong to the group 119.5 - 129.4. 

Example 2.2  

In a study of the relation between blood type and disease, a sample of patients with peptic 

ulcer, patients with gastric cancer and control persons that are free from these diseases are 

classified into the blood type (O,A,B). The data are given in table 2.2: 
 

Table 2.2 
Distribution of patients by disease and blood 

Blood 
type 

Peptic 
 ulcer 

Gastric 
cancer 

Controls Total Probability 

O 983 383 2892 4258 0.486 

A 679 416 2625 3720 0.424 

B 134 84 570 788 0.090 

Total 1796 883 6087 8766 1.0 

Probability 0.205 0.101 0.694 1.0  

   Source: Snedecor and Cochran (1980) 

In presenting this problem one can easily determine the probability that a patient selected 

at random will fall in blood group O or A or B or he/she is suffering from peptic ulcer or 

gastric cancer. 

The probability that a person selected at random from 8766 cases falls in blood type O 

group will be 
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  P(blood type O) = 4258/8766 = 0.486. 

Again the probability that a person selected at random from 8766 cases belongs to peptic 

ulcer group will be 

  P( peptic ulcer) = 1796/ 8766 = 0.205. 

If we add the probabilities of blood type O, A, and B it comes out to be 1 0 

(see Table-2.2). The value can be zero if no patient is in a group and can be 1 if all the 

patients fall in that group. Therefore two important results can be drawn from this:  

i) The sum of all the probabilities of all possible outcomes of an experiment is equal 

to 1. 

ii) The probability of each outcome (blood type or type of disease) is greater than or 

equal to zero but cannot be greater than 1 or less than zero. 

Therefore a general rule can be stated that the probability of any outcome lies between  

0 and 1, both ends inclusive. 

  0  P(A)  1.                  (2.1) 

The probability that a selected person does not belong to blood type O, will be 1 – P 

(with blood type O) = 1- 0.486 = 0.514, as the total probability is 1 this is such because a 

person either falls in blood type O group or does not falls in blood type O group. 

2.2.1 Additive Rule of Probability for Mutually Exclusive Events 

Before we explain the additive law of probability it is essential to understand an event and 

mutually exclusive events. An event may be defined as either a single outcome or a set of 

outcomes of an experiment. Two or more events are mutually exclusive if the occurrence 

of one event precludes the occurrence of another event. In the above example, a person 

cannot have a blood type O or A at the same time, therefore blood type O and A are 

mutually exclusive events. 

Suppose the probability of blood type O = 0.486 whereas the probability of blood type  

A = 0.424. The probability of blood type O or A will be 

  P(O or A) = P(O) +P(A)= 0.486+0.424=0.91.          (2.2) 

This is known as an additive law of probability for mutually exclusive events. 

2.2.2 Independent Events and Multiplicative Rule of Probability  

If the outcome of one event does not affect the outcome of another event then these events 

are called independent events. If two events A and B are independent then the probability 

that both A and B occur is equal to the product of their respective probabilities i.e. 

 P(A and B) = P(A) P(B).                (2.3) 

Suppose two coins are tossed. The probability that heads occur on both coins i.e. P (two 

heads) = P (H1 and H2) = P(H1) P(H2), where H1 denotes the head on first coin and H2 

head on the second coin. Since P (H1) = P (H2) =
2

1
 therefore P (H1 and H2) = 

4

1
. 
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2.2.3 Additive Rule for non Mutually Exclusive Events 

Let us now examine the situation for finding out the probability that either of the two 

events occur, when they are not mutually exclusive. For example, type of peptic ulcer and 

patients with blood group O is not mutually exclusive. The additive rule of the probability 

can be modified otherwise the probability that both events occur will be added twice into 

the calculated probability. The probability that a randomly selected person has a peptic 

ulcer = 1796/8766 = 0.205 and the person has blood type O = 4258/8766 = 0.486. Here 

the joint probability of being ulcer and has a blood type O has been added twice. This 

joint probability of being peptic ulcer and have a blood type O = 983/8766 = 0.112 must 

be subtracted from the calculated probability, i.e. 

  P( peptic ulcer or blood type O)  = P(peptic ulcer) + P(blood type O)  

              – P(peptic ulcer and blood type O)  

            = 0.205 + 0.486 - 0.112 = 0.579. 

Therefore the additive law of probability for non-mutually exclusive events may be stated 

as: 

The probability that either event A or an event B or both occur is 

  P(A or B) = P(A) + P (B) - P(A and B).          (2.4) 

If A and B are mutually exclusive then the P(A and B) = 0. 

2.2.4 Conditional Probability  

The probability of an event A, given that an event B i.e. P (A B)] has occurred, is called 

the conditional probability of A given B, is defined as: 

  
)B(

)BandA(
)B|A(

P

P
P  ,                 (2.5) 

and 

  
)A(

)BandA(
)A|B(

P

P
P  .                (2.6) 

The probability of a person selected at random has a peptic ulcer given that he has blood 

type O. 

  P(peptic ulcer  blood type O) = 983/ 4258= 0.231. 

This may also be calculated using (2.5). 

  P(peptic ulcer and blood type O)  

   = P[Peptic ulcer | blood type O]  P[blood type O] 

   = 
983 4258 983

4258 8766 8766
  = 0.11. 
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Like wise P (peptic ulcer  blood type O) = 
983 8766 983

0.231
8766 4258 4258

   . 

2.2.5 Rule of multiplication for non-independent events 

The probability of A and B  

  )B|A()B()A|B()A()BandA( PPPPP            (2.7) 

P(gastric cancer and blood type B) = P(gastric cancer) P(blood type B  gastric cancer) 

  
883 84

0.0096
8766 883

   
   

   
.  

2.2.6 Properties of Probability 

1.  The probability of any event always lies from 0 and 1. 

2.  If we list all possible events mutually exclusive and exhaustive, the sum of their 

probabilities is always 1. 

3.  If two events A and B are mutually exclusive, then the probability that either A or 

B occurs is equal to P(A) + P(B). 

4.  If two events A and B are independent then the probability of both A and B 

occurring together is equal to the product of their probabilities i.e. P(A and B) = 

P(A) P(B). 

5.  If two events A and B are not mutually exclusive, the probability that either A or B 

or both occur is equal to P(A) +P(B) -P(AB). If A and B are mutually exclusive 

then P(A and B) = 0. 

6.  The probability of an event A, given that B has already occurred, is called the 

conditional probability of A given B i.e. P(AB). 

7.  The probability that both events A and B occur is  

    )A|B()B()B|A()A()BandA( PPPPP          (2.7) 

Example 2.3: 

The following data relates to Chinese smoking and lung cancer study in Beijing during 

1990. Various types of probabilities can be calculated based on the data. 

 

Table 2.3 Status of lung cancer by smoking 

Lung Cancer 

  Yes No Total 

Smoking 
Yes 126 100 226 

No 35 61 96 

  161 161 322 
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(i)  The probability that a selected person has a lung cancer 161
0.50

322
  . 

(ii)  The probability that a selected person is smoker 
226

0.702
322

  . 

(iii) The probability that a man has a lung cancer given that he is smoker  

 
126

126 322
0.56

226226
322

 
   
 
 

. 

(iv) The probability that a man is smoker given that he has lung cancer    

  
126

126 322
0.78

161161
322

 
   
 
 

. 

(v)  The probability that a man does not have lung cancer given that he is not 

smoker  
61

61 322
0.64

9696
322

 
   
 
 

. 

(vi) The probability that a man is not smoker given that he has lung cancer    

35
35 322

0.22
161161

322

 
   
 
 

. 

(vii) The probability that a man is smoker and does not have lung cancer   

100
0.31

322
  . 

(viii) The probability that a man is either smoker or lung cancer or both   

226 161 126
0.81

322 322 322
    . 

(ix) The probability that a man is smoker and has lung cancer 
126

0.39
322

  .  

Or P (smoker and cancer) = P(smoker) P(cancersmoker) 

226 126
0.39

322 226

   
    
   

 

(x)  The probability that a man is not smoker and does not have lung cancer   

61
0.19

322
  . 
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(xi) P (no smoker and no cancer) =P(no smoker) P(no cancer  no smoker)  

 = 96 61
0.19

322 96

   
   

   
. 

2.3 Probability distribution 

In order to understand the concept of probability distribution, the explanation of some 

terms is necessary. 

(a) A random variable is a quantity whose value depends upon the outcome of an 

experiment. Random variable has two types (i) A discrete random variable is one 

that assumes a countable number of values and (ii) A continuous random variable 

assumes any value on an interval on a line. 

(b) Probability distribution is a table or formula listing all possible values that a 

random variable can take alongwith associated probabilities. If the random 

variable is discrete then this distribution is called discrete probability distribution 

otherwise it is called continuous probability distribution. While discussing 

continuous random variable the number of possible values become infinite and 

cannot be listed. This is taken care of by considering probability density function, 

which we will discuss later. Binomial, Poisson and Normal distributions are some 

examples of probability distributions. 

Regardless of whether a random variable is continuous or discrete its probability 

distribution must conform to the basic rules of probability (i) 0  P (A)  1 and (ii) the 

sum of the probabilities of all the values of random variable must be 1. 

2.3.1 The Binomial Probability Distribution 

Frequently in health sciences, investigations are made in which the investigator is 

interested in one of the two possible outcomes; test is positive or negative, a patient is 

suffering with diabetes or not, or in general a person is suffering with some disease or not. 

The outcome may be called success and failure. When a single trial of some experiment 

can result in only one of the two mutually exclusive outcomes then the trial is called a 

Bernoulli trial. The probability of positive test is denoted by p whereas the probability of 

negative with q. Note that (q+p = 1). When such experiment is repeated n times under 

same conditions and X of them has some specific proposition then this distribution is 

known as binomial probability distribution. This distribution is named after a Swiss 

mathematician James Bernoulli (1654-1705). 

A binomial experiment is one that possesses the following properties. 

(i)  Each experimental unit results in an outcome that may be classified as a 

success or a failure. 

(ii)  The random variable X counts the number of successes or failures in n trials. 

(iii) The probability of single experimental unit of success denoted by p, remains 

same (constant) from trial to trial. 
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(iv) The outcome for any one experimental unit is independent of the outcome of 

another experimental unit (draws are independent). 

The binomial distribution gives the probability that a specified outcome occurs in a given 

number of independent trials. The binomial distribution can be used to model the 

inheritability of a particular trait in genetics, to estimate the occurrence of a specific 

reaction, such as the single packet (quantal release) of acetylcholine at the neuromuscular 

junction, or to estimate the death of a cancer cell in an in vitro test of a new 

chemotherapeutic. Binomial distribution is useful in understanding the relative risk, odds 

ratio, sensitivity (true positive), specificity (true negative), false negative and false 

positive etc. (all these terms will be discussed in Chapter 7). 

To develop the concept of binomial distribution let 5 coins be flipped. Suppose there are 

three heads and two tails. The outcome of a head is considered as a success whereas an 

outcome of a tail is a failure. The probability of success (S) is denoted by p whereas the 

probability of failure (F) by q (q=1–p). Since the trials are independent, according to 

multiplicative law of probability, the probability of a sequence S, S, F, F, S is: 

  P(S, S, F, F, S) = p p q q p = p
3
 q

2
  

The probability of a head or a tail of a coin is equal and is 0.50, therefore  

  P(S, S, F, F, S) = 0.5
3 
0.5

2 
= 0.03125. 

If we make all possible arrangements of 3 heads and 2 tails it will appear in 10 possible 

ways. Therefore the probability of 3 heads when 5 coins are flipped will be 

  P (3 heads and 2 tails) = 10 (0.5)
3 
(0.5)

2 
= 0.3125 

If we take x = 3 and n = 5 (5 coins are tossed and 3 heads appeared) then we may easily 

write the formula to calculate the probability of x successes in an n trials as 

  P (X successes)  = 
n

x

 
 
 

 p
x 
q

n-x
, for x = 0,1,2,3,…, n.         (2.8) 

       = 0, otherwise 

where 
n

x

 
 
 

 means that x things are taken from n 

and 
!

,
! ( )!

n n

x x n x

 
 

 
 and n = n(n-1) (n-2) . . . . . . (2)(1),  

and 0=1. 

If, in this formula, we put x=3 and n= 5 we get the required probability. 
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
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When sample size is large, it is difficult to calculate the probability. In this case we can 

use Tables given at the end of the Chapter. Without going into details of derivation, the 

mean and standard deviation of the binomial distribution are: 

   = np and  = )p1(np                 (2.9) 

Example 2.4: 

The probability of death with certain disease is 40%. Five such patients are admitted in 

the hospital, what is the probability that exactly 3 of them die? 

Solution: 

Here p = 0.4, q = 1-0.4 = 0.6, and n = 5 the probability that exactly 3 of them will die is 

  P(X=3) = 
5

3

 
 
 

 (0.4)
3 
(0.6)

2 
= 10 (0.4)

3 
(0.6)

2
 = 0.2304 

Instead of calculating the probability, table of cumulative binomial probability can be 

consulted to find the probability. These tables are available in any book on statistics. For 

ready reference a portion of the table has been reproduced at the end of the chapter.  

Probability for n=5, x = 3 and p = 0.4 is 0.2304. Since in the table, cumulative probability 

is given therefore,  

  P (X = 3) = P(X  3) - P(X  2) 

From the table for n=5, x=3 and p=0.4, we get 

  P (X=3) = 0.9130 - 0.6826 = 0.2304. 

Example 2.5: 

The dairy industry is capitalizing on new medical research in the field of osteoporosis (an 

age related condition characterized by decreased bone mass and increased susceptibility 

to fractures) to promote its product. According to the National Institute of Health, by the 

age of 90, 32% of women and 17% of men will suffer a hip fracture because of 

osteoporosis (American Demographics, Oct. 1985). Find the probability that (a) in a 

random sample of 5 women aged 90, exactly three have suffered a broken hip due to 

osteoporosis, (b) at least two of the 5 women have suffered a broken hip due to 

osteoporosis, and (c) at most three have suffered a fractured hip due to osteoporosis. 

Solution: 

  P(women with hip fracture) = 0.32  P(men with hip fracture)=0.17 

   (i) n = 5, x = 3;   (ii) n = 5, x  2 

(a) For women with hip fracture 

 (i) n = 5, x = 3 , p =.32 

   P (X = 3) = P(X  3) - P (X  2) = 0.9610- 0.809 = 0.1515. (from the table) 

 (ii) n = 5, x  2 , p = 0.32 
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 The P (X 2 ) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) 

 since the total probability = 1, therefore the  

  P(X  2 ) = 1-P (X  1) = 1- 0.4875 =0.5125 (from the Table 2.4). 

(b) for men with hip fracture 

n = 5 and x  3, p = 0.17 we are interested to find P(0) +P(1))+P(2)+P(3) for this one 

can consult the Table 2.4 directly against x = 3 and p = 0.17 which is 0.9964. 

Example 2.6: 

One of the most comprehensive studies of drug used in junior high school was conducted 

in U.S.A. The survey of 1,532 eighth-grade students found that 25% believed they would 

use marijuana and 11% believed they would use cocaine by the time they enter high 

school (Alligator, Sept. 27, 1984). A representative of the community group that 

conducted the study claims that these results are applicable nationwide. Consider a 

random sample of 10
 
eighth- graders selected from a school. Assume that the result is 

applicable nationwide, find the probability that (a) exactly 5 of the eighth-graders believe 

they will use marijuana before entering high school (b) at least 2 of the eighth- graders 

believe they will use marijuana before entering high school and (c) at most three of the 

eighth-graders believe they will use cocaine before entering school. 

Solution: 

(a) The Probability of students using marijuana = P(marijuana) = 0.25,  

(b) The probability of students using cocaine = P(cocaine) = 0.11 

(a) p = 0.25, n = 10, x = 5, then 

  P (X = 5) = P (X  5) – P (X  4) = 0.9803- 0.9219  

    = 0.0584 (from the table 2.4) 

(b) p =.25, n=10, P(X  2) = 1- P(X  1 ) = 1-0.2440 = 0.776 ( Table 2.4) 

(c) p = 0.11, n= 10, x=3, then P(X = 3) = P(X  3) + P(X  2) 

  = 0.9822 - 0.9116 = 0.706 (Table 2.4) 

Example 2.7:  

A physician claims that only 10% of all American adults suffer from high blood pressure. 

The American Medical Association conducted a study involving 1,200 randomly selected 

American adults. Find the mean number of adults in the sample who suffer from high 

blood pressure, and standard deviation of adults with high blood pressure if the 

physician’s claim is true.  

Solution: 

The probability of adults having blood pressure p = 0.1 and n = 1200;  

(i) The mean number of adults who suffer from high blood pressure  

  = np = 1200  0.10 =120 
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(ii) The standard deviation is 

  39.10)10.01()10.0(1200)p1(nps   

Using empirical rule, the limits will be 120  2  10.39 ~ (99 ~ 141) there are about 95% 

chances that people suffering with blood pressure will lie between 8.25% ~ 11.75% in a 

population. 

2.3.2 The Poisson Probability Distribution 

Like the binomial distribution, Poisson distribution is also a discrete probability 

distribution. This distribution is named after the French mathematician S.D. Poisson. The 

use of this distribution is extensive in biology and medicine. Poisson distribution is used 

to determine the probability of rare events: i.e. it gives the probability that an outcome 

occurs a specified number of times when the number of trials is large and the probability 

of occurrence is very small. 

Poisson distribution is used to plan the number of beds a hospital needs in the intensive 

care unit; the number of ambulances needed on call in a certain hospital. This is a useful 

distribution for estimation of bacteria in colonies. It can also be used to model the number 

of cells in a given volume of fluid; the number of bacterial colonies growing in a certain 

amount of medium.  

A Poisson experiment is one that possesses the following three properties:  

(i)  The number of outcomes occurring in one time interval is independent of the 

number in any disjoint time interval, 

(ii)  The probability that a single outcome will occur during a very short time interval 

is proportional to the length of the time interval and does not depend on the 

number of outcomes occurring before this time or on the past history of the 

process, 

(iii) The probability that more than one outcome will occur in such a short time 

interval is negligible 

A random variable X taking on one of the values 0,1,2 …. is said to be a Poisson random 

variable with parameter  if for some  > 0, its probability distribution is  

    ....,2,1,0x,
!x

e
XP

x







∞             (2.10) 

where e stands for constant and is approximately 2.7183, and  is the parameter of the 

distribution and is the average number of outcomes occurring in a given time interval. 

Some examples of random variables are given which usually follow Poisson distribution: 

(i)  The number of people in a community living up to 100 years of age. 

(ii)  The number of  - particles discharged in a fixed period of time from some 

radioactive material. 
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(iii)  The number of wrong telephone numbers that are dialed in a small interval of 

time. 

(iv)  The number of sudden deaths of healthy men in a small interval of time period. 

 Note that the both mean and standard deviation of Poisson distribution is . 

Example 2.8   

The probability that a person dies from certain respiratory infection is 0.002. Find the 

probability that (i) less than 5 of the next 2000 persons so infected will die (ii) exactly 5 

will die. 

Solution: 

  p= 0.002, n= 2000, x = 5, mean =  = np = 2000  0.002 = 4 

 (a) P(X < 5) = P (X  4 ) = 0.629 [table 2.5] 

 (b) P(X = 5) = .156.0
120

1240183.0

!5

4e 54







 

Like binomial distribution, probability for the Poisson distribution may also be calculated 

using the cumulative probability table. For this purpose a portion of the table has been 

reproduced for ready reference at the end of this chapter (Table 2.5). 

We consult the table to see the probability for  

  P (X = 5) = P(X  5) - P (X  4) = 0.785 - 0.629 = 0.156 

Example 2.9:  

The probability that a student fails the screening test for scoliosis (curvature of the spine) 

at a local high school is known to be 0.004. 1500 students are selected for such a test. 

Find the probability that (i) less than 5 will fail the test (ii) not more than 4 will fail the 

test. 

Solution: 

p= 0.004, n = 1500,  (i) we find P (X < 5),  

      (ii) P (X  4 ) mean = = np = (0.004) (1500) = 6. 

(i) P(X < 5 ) = P (X =0 ) +P(X=1) +P(X=2) +P(X=3) + P(X=4) = P(X  4) 

   = 0.285 [table 2.5] 

(ii) P(X  4) = 1 - P(X  3 ) = 1- 0.151 = 0.849[table 2.5] 

2.3.3 The Normal Probability Distribution 

One of the most useful models frequently used is the Normal probability model. This 

model has not only wide application in mathematics and statistics but also in medical and 

social sciences. This distribution is continuous unlike binomial and Poisson distributions. 

The graph of the normal distribution is known as normal curve. The shape of the normal 

distribution is shown as: 
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Fig. 2.1: The shape of the normal distribution 

The area under the normal curve is always used as a reference value in order to draw any 

conclusion about any experiment. The laboratory investigations of any suspected patient 

are always compared with the standard (healthy person) value in order to draw any 

conclusion. If the readings of the investigation fall within the limits of the standard value, 

it is always considered that a suspected patient is out of the dangerous zone. Exactly in 

the same way the findings of an experiment are compared with the values of normal 

distribution and conclusions are drawn accordingly. This concept will be explained in the 

remaining chapters. 

This distribution was discovered by DeMoivre in 1733 and was developed by Gauss 

(1777-1855). Sometimes this probability distribution is known as Gaussian distribution. 

We will use the word normal for this distribution, as it is very familiar to social and 

medical scientists. 

Much can be discussed regarding normal distribution but we will limit ourselves with the 

application for medical scientists. If X is a continuous random variable with mean  and 

standard deviation  then the probability density function of the normal distribution will 

be  

  

2
x

2

1

e
2

1
)x(f
















 .              (2.11) 

where  = 3.14159, e = 2.71828, –∞ < X< +∞ and σ > 0. 

The mean measures the location of the distribution and standard deviation measures the 

spread. The mathematical equation of the normal distribution depends on two parameters 

 and . It is usually written as X ~ N (, 
2
) and read as, X is normally distributed with 

mean =  and variance = 
2
. 

Since the values of  and  vary from one normal distribution to another, the easiest way 

to express a distance from mean is in terms of a Z- score,  

  





X
Z                   (2.12) 

This is distance between X and , expressed in units of , Z is commonly known as 

standard normal variable (variate) with mean = 0 and variance = 1 and is written as  

Z~ N (0, 1). The equation of the standard normal distribution is 

 - 3  - 2  -    +   + 2  + 3 

NCBA&E



Basic Concepts of Probability and Probability Distributions 74 

  .ze
2

1
)z(f

2Z
2

1







           (2.13) 

Probability of any part of the curve can be calculated by the method of integration. Since 

this is difficult to calculate for medical scientists, therefore table for the standard normal 

distribution has been provided at the end of this chapter (Table 2.6). In order to calculate 

the area under the curve of the normal distribution the general equation is converted into 

standard equation by using the standard normal variable and the table is consulted to 

calculate the probability. 

This curve is symmetric about the mean value. About 68% of the area lies between  

  1 , about 95% between   2  and about 99% lies between   3 . This 

approximately agrees with the empirical rule stated in Chapter 1. Note that areas under 

the normal curve have a probabilistic interpretation. If a population of measurements has 

approximately normal distribution, then the probability that a randomly selected 

observation falls in the interval   2 is approximately 95%, but area between   1.96 

 is exactly 95% (Fig. 2.4). Medical scientists usually use the value 2 rather than 1.96 

because of convenience. The area under normal curve beyond a value of Z is known as p-

value. For a given Z=1.3, the p-value is P (Z  3) = 0.0968. Some of the properties of the 

normal distribution are as follows: 

(i)  It is symmetrical about the mean value therefore half of the probability of this 

distribution is on the right of the mean and half on the left of the mean. 

(ii) The total area under the curve is equal to 1. 

(iii) Mean, median and mode are equal. 

(iv) It is completely determined by mean and standard deviation. 

Example 2.10:   

Given the standard normal distribution ~ N (0, 1), calculate the probability that 

(a) (i) P(Z  -1.96) (ii) P( Z  1.96) (iii) P( -1.96  Z  +1.96) 

(b) (i) P(Z  -2.58) (ii) P( Z  2.58) (iii) P( -2.58  Z  +2.58)  

(c) (i) P(Z  -2.33) (ii) P( Z  -1.65). 

Solution: 

It is always advised to sketch a diagram of normal distribution before solving the problem 

as it makes things easier and also errors in calculation are avoided. 

(a)  (i) P(Z  -1.96) = probability from - to -1.96. In the Table 2.6 cumulative 

probability is given, therefore we can see the table directly and set the value 

0.0250. 
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z 

 

Fig. 2.2 

 (ii) The curve is symmetrical, therefore P (Z  1.96) = P (Z  -1.96) = 0.0250 or it 

may be calculated as 

    P (Z 1.96)
 
= 1 – P (Z  1.96) = 1 - 0.9750 = 0.0250. 

 

 

 

Fig. 2.3 

 (iii) P (-1.96  Z  +1.96) =1 - [P(Z  -1.96) + P(Z  1.96)] = 1- [0.0250 + 0.0250] 

= 0.95  

   or this may be calculated as 

    = P( Z  1.96) - P ( Z  -1.96) = 0.9750 - 0.0250 = 0.95 

 

 

 

Fig. 2.4 

Therefore 95 % of the probability of the normal distribution is between -1.96 to 1.96, 5 % 

is lying beyond these limits. In other words if p = 0.0250, then either z is greater than or 

equal to 1.96 or less than or equal to -1.96. This probability is usually referred to as two-

tailed probability.  

0 

0.025 

Z 

– 1.96 

 0.025  0.025 

-1.96 1.96 0 

0 
Z 

1.96 

0.025 
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(b) (i) P( Z  -2.58) = .0049  0.005,  

 

 

 

 

 

Fig. 2.5 

 (ii) P(Z  2.58) = P ( Z  -2.58) or 1 - P (Z  2.58) = 1 - 0.9951= 0.049=.5049  

0.005. 

 

 

 

 

 

Fig. 2.6 

 (iii) P (-2.58  Z  2.58) = P (Z  2.58) - P(Z  -2.58) = 0.9951 - 0.0049  

= 0.9902  99%. 

Therefore 99% of the probability of the normal distribution is between - 2.58 

and 2.58 and only 1% probability is beyond these two points. 

 

 

 

 

 

Fig. 2.7 

(c)  (i) P (Z  -2.33) = 0.0099  1%  

 

 

Fig. 2.8 

Z 

 = 0 .01 

-2.33 0 

Z 

0 

0.005 

Z 

– 2.58 

0 

0.005 

2.58 

Z 
0 

0.005 

2.58 

0.005 

– 2.58 
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 (ii) P( Z  -1.65) = 0.0495 

 

 

Fig. 2.9 

From the above calculations, it is clear as the probability {p-value} decreases z-value 

increases and vice versa. 

Example 2.11:   

Medical research has linked excessive consumption of salt to hypertension. The average 

amount of salt consumed per day by an American is 15 gram, although the actual 

physiological minimum daily requirement for salt is only 220 milligrams. Suppose that 

the amount of salt per day is approximately normally distributed with a standard deviation 

of 5 grams. What proportion of all Americans consume between 14 and 22 grams of salt 

per day? 

Solution: 

The proportion of Americans who consume between x = 14 and x = 22 grams salt is 

shown in the shaded area of the graph 2.10. 

 

 

Fig. 2.10 

Since mean = 15 grams with standard deviation = 5. This does not follow standard normal 

distribution. In order to find the proportion, it is to be converted into the standard normal 

distribution by using standardized normal variable (z - variate) 

   = 15,  = 5,  

  40.1
5

1522
20.0

5

1514
zz 21 





  

This can be shown by the diagram 

 

0.0495 

-1.65 0 

Z 

15 22 

x 
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Fig. 2.11 

  P(-0.20  Z  1.40) = P(Z  1.40) - P(Z  -0.20) 

     = 0.9192 -0.4207 = 0.4985 

  49.85%  50% of the Americans consume between 14 to 22 grams of salt per day. 

Table 2.4 

 Cumulative Probabilities of Binomial Distribution for n=5 and n=10 
(i) n=5 

x p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 

0 .5584 .5277 .4984 .4704 .4437 .4182 .3939 .3707 .3487 .3277 

1 .9035 .8875 .8704 .8533 .8352 .8165 .7973 .7776 .7576 .7373 

2 .9888 .9875 .9821 .9780 .9734 .9682 .9625 .9563 .9495 .9421 

3 .9993 .9991 .9987 .9983 .9978 .9971 .9964 .9955 .9945 .9933 

4 1.000 1.000 1.000 .9999 .9999 .9999 .9999 .9998 .9998 .9997 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

x p .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 

0 .1564 .1454 .1350 .1252 .1160 .1074 .0092 .0916 .0845 .0778 

1 .5077 .4875 .4675 .4478 .4284 .4094 .3907 .3724 .3545 .3370 

2 8234 .8095 .7950 .7801 .7648 .7491 .7330 .7165 .6997 .6826 

3 .9653 .9610 .9564 .9514 .9460 .9402 .9340 .9274 .9204 .9130 

4 .9971 .9966 .9961 .9955 .9947 .9940 .9931 .9921 .9910 .9898 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

(ii) n=10 

x p .22 .23 .24 .25 .26 .27 .28 

0 .0834 .0733 .0643 .0563 .0492 .0430 .0374 

1 .3185 .2921 .2673 .2440 .2222 .2019 .1830 

2 .6169 .5863 .5558 .5256 .4958 .4665 .4378 

3 .8413 .8206 .7988 .7759 .7521 .7274 .7021 

4 .9521 .9431 .9330 .9219 .9096 .8963 .8819 

5 .9896 .9870 .9839 .9803 .9761 .9713 .9658 

6 .9984 .9979 .9973 .9965 .9955 .9944 .9930 

7 .9998 .9998 .9997 .9996 .9994 .9993 .9990 

8 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

-2 0 1.4 
z 
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Table 2.5 

 Cumulative probability for Poisson distribution 

x  3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 

0 .027 .022 .018 .015 .012 .010 .008 .007 

1 .126 .107 .092 .078 .066 .056 .048 .040 

2 .303 .269 .238 .210 .185 .163 .143 .125 

3 .515 .473 .433 .395 .359 .326 .294 .265 

4 .706 .668 .629 .590 .551 .513 .476 .440 

5 .844 .816 .785 .753 .720 .686 .651 .616 

6 .927 .909 .889 .867 .844 .818 .791 .762 

7 .969 .960 .949 .963 .921 .905 .887 .867 

8 .988 .984 .979 .972 .964 .955 .944 .932 

9 .996 .994 .992 .989 .985 .980 .975 .968 

10 .999 .998 .997 .996 .994 .992 .990 .986 

11 1.000 .999 .999 .999 .998 .997 .996 .995 

12 - 1.000 1.000 1.000 .999 .999 .999 .998 

13 - - - - 1.000 1.000 1.000 .999 

14 - - - - - - - 1.000 

 

x  5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 

0 .006 .005 .024 .003 .002 .002 .002 .001 

1 .034 .029 .024 .021 .017 .015 .012 .010 

2 .109 .095 .082 .072 .062 .054 .046 .040 

3 .238 .213 .191 .170 .151 .134 .119 .105 

4 .406 .373 .342 .331 .285 .259 .235 .213 

5 .581 .546 .512 .478 .446 .414 .384 .355 

6 .732 .702 .670 .638 .606 .574 .542 .511 

7 .845 .822 .797 .771 .744 .716 .687 .658 

8 .918 .903 .886 .867 .847 .826 .803 .780 

9 .960 .951 .941 .929 .916 .902 .886 .869 

10 .982 .977 .972 .965 .975 .949 .939 .927 

11 .993 .990 .988 .984 .980 .975 .969 .963 

12 .997 .996 .995 .993 .991 .989 .986 .982 

13 .999 .999 .998 .997 .996 .995 .994 .992 

14 1.000 .999 .999 .999 .999 .998 .997 .997 

15 - 1.000 1.000 1.000 .999 .999 .999 .999 

16 - - - - 1.000 1.000 1.000 .999 

17 - - - - - - - 1.000 
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Table 2.6 

 Probabilities of the Normal Distribution 

(Areas between -  and z) 

 

 
z -.09 -.08 -.07 -.06 -.05 -.04 -.03 -.02 -.01 -.00 

-3.80 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 

-3.70 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 

-3.60 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002 

-3.50 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 

-3.40 .0002 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 

-3.30 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0005 .0005 .0005 

-3.20 .0005 .0005 .0005 0006 .0006 .0006 .0006 .0006 .0007 .0007 

-3.10 .0007 .0007 .0008 .0008 .0008 .0008 .0009 .0009 .0009 .0010 

-3.00 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0013 .0013 .0013 

-2.90 .0014 .0014 .0015 .0015 .0016 .0016 .0017 .0018 .0018 .0019 

-2.80 .0019 .0020 .0021 .0021 .0022 .0023 .0023 .0024 .0025 .0026 

-2.70 .0026 .0027 .0028 .0029 .0030 .0031 .0032 .0033 .0034 .0035 

-2.60 .0036 .0037 .0038 .0039 .0040 .0041 .0043 .0044 .0045 .0047 

-2.50 .0048 .0049 .0051 .0052 .0054 .0055 .0057 .0059 .0060 .0062 

-2.40 .0064 .0066 .0068 .0069 .0071 .0073 .0075 .0078 .0080 .0082 

-2.30 .0084 .0087 .0089 .0091 .0094 .0096 .0099 .0102 .0104 .0107 

-2.20 .0110 .0113 .0116 .0119 .0122 .0125 .0129 .0132 .0136 .0139 

-2.10 .0143 .0146 .0150 .0154 .0158 .0162 .0166 .0170 .0174 .0179 

-2.00 .0183 .0188 .0192 .0197 .0202 .0207 .0212 .0217 .0222 .0228 

-1.90 .0233 .0239 .0244 .0250 .0256 .0262 .0268 .0274 .0281 .0287 

-1.80 .0294 .0301 .0307 .0314 .0322 .0329 .0336 .0344 .0351 .0359 

-1.70 .0367 .0375 .0384 .0392 .0401 .0409 .0418 .0427 .0436 .0446 

-1.60 .0455 .0465 .0475 .0485 .0495 .0505 .0516 .0526 .0537 .0548 

-1.50 .0559 .0571 .0582 .0594 .0606 .0618 .0630 .0643 .0655 .0668 

-1.40 .0681 .0694 .0708 .0721 .0735 .0749 .0764 .0778 .0793 .0808 

-1.30 .0823 .0838 .0853 .0869 .0885 .0901 .0918 .0934 .0951 .0968 

-1.20 .0985 .1003 .1020 .1038 .1056 .1075 .1093 .1112 .1131 .1151 

-1.10 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 .1357 

-1.00 .1379 .1401 .1423 .1446 .1469 .1492 .1515 .1539 .1562 .1587 

-0.90 .1611 .1635 .1660 .1685 .1711 .1736 .1762 .1788 .1814 .1841 

-0.80 .1867 .1894 .1922 .1949 .1977 .2005 .2033 .2061 .2090 .2119 

-0.70 .2148 .2177 .2206 .2236 .2266 .2296 .2327 .2358 .2389 .2420 

-0.60 .2451 .2483 .2514 .2546 .2578 .2611 .2643 .2676 .2709 .2743 

-0.50 .2776 .2810 .2843 .2877 .2912 .2946 .2981 .3015 .3050 .3085 

-0.40 .3121 .3156 .3192 .3228 .3264 .3300 .3336 .3372 .3409 .3446 

-0.30 .3483 .3520 .3557 .3594 .3632 .3669 .3707 .3745 .3783 .3821 

-0.20 .3859 .3897 .3936 .3974 .4013 .4952 .4090 .4129 .4168 .4207 

-0.10 .4247 .4286 .4325 .4364 .4404 .4443 .4483 .4522 .4562 .4602 

0.00 .4641 .4681 .4721 .4761 .4801 .4840 .4880 .4920 .4960 .5000 

0.975 1.96 
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Table 2.6 (contd.) 

 
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.00 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

0.10 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

0.20 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

0.30 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .5617 

0.40 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

0.50 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

0.60 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

0.70 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

0.80 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

0.90 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.00 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

1.10 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.20 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.30 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.40 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.50 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.60 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

1.70 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.80 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.90 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.00 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.10 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.20 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.30 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

2.40 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.50 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

2.60 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

2.70 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

2.80 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

2.90 .9981 .9982 .9982 .9983 .9984 .9985 .9985 .9985 .9986 .9986 

3.00 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

3.10 .9990 .9991 .9991 .9992 .9992 .9992 .9992 .9992 .9993 .9993 

3.20 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

3.30 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

3.40 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

3.50 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 

3.60 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

3.70 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

3.80 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 
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Chapter 3 
 

Sampling Procedures and 
Sample Size Estimation 

 

3.1 Introduction 

Most survey work involves sampling from finite populations. There are two parts to any 

sampling strategy (design). First, there is a selection procedure, the manner in which 

sampling units are selected from a population. Second, there is an estimation procedure 

that prescribes how inferences are to be drawn from sample to the population 

Sampling is procedure or process of selecting some units from the population with some 

common characteristics and is primarily concerned with the collection of data of some 

selected units of the population. Census is another method of data collection and is 

defined as a complete enumeration of the population. A list of population units from 

which the sample is selected is called a sampling frame. 

Since sample is a part of population, the result based on the sampled observations will not 

be equal to that of population values. There must be some difference, which is inevitable. 

This difference is known as error. This error is arising due to drawing inferences about 

the population on the basis of sampled observations, therefore, it is termed as sampling 

error, e.g. the prevalence of tuberculosis based on a sample cannot be identical to its 

prevalence in the population. The sampling error usually decreases as the sample size 

increases. In many situations, the decrease is inversely proportional to the sample size, in 

fact, to the square root of the sample size. The sampling error is reduced to minimum if 

the choice of the sampling unit, sampling design, selection procedure, sample size and 

method of data analysis are appropriate. Note that in the reduction of sampling error, 

sample size plays an important role. 

Error arising from the causes not associated with the sampling process is known as non-

sampling error, which is common, both to complete enumeration and sample surveys. 

Non-sampling error includes (i) response error (ii) non-response error (iii) measurement 

and coding error, (iv) improper method for statistical analysis (v) non- coverage of 

population, (vi) interviewers error, (vii) data entry error etc. As the sample size increases, 

non-sampling error increases. Generally if the sample is proper representative of a 

population, sampling error is minimum. A representative sample must possess all the 

important characteristics of the population under study. If one is to investigate 

malnutrition in children under five, then our population will be all children from 0 to 4 

years of age. 

A question naturally arises why sampling? The answer is as follows: 

There are some advantages to select a sample from a population. These are: 

(i)  A sample is a part of population; the information can be collected more cheaply 

and more rapidly as compared to complete enumeration. 
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(ii)  A sample makes it possible to concentrate on individual units and to obtain 

relevant information comprehensively and accurately. 

(iii)  Selection of appropriate sampling design reduces non-sampling error.  

(iv)  More precise results can be obtained by survey and sampling experts. 

3.2 Types of Sampling 

There are, generally, two types of sampling, i.e. (i) probability sampling and (ii) non-

probability sampling. 

3.2.1 Probability Sampling 

A probability sample or a random sample is one in which the probability of selection of 

each unit in the population is known. The probability of selection of each unit may or 

may not be independent. If a sample is selected at random then it is known as a 

probability sample. In fact probability sampling is a general name given to the sampling 

plan in which 

(a) every individual in the sampled population has a known probability of entering in 

the sample, (b) the sample is chosen by a process involving one or more steps of 

automatic randomization, (c) in the analysis of the samples, weights (probabilities) 

appropriate to the probabilities given in (a) above are used. 

3.2.2 Non-Probability Sampling 

A sample selected by a non-random process is termed as a non-probability sample. 

Judgment samples, purposive samples and quota samples are examples of non-probability 

samples. These types of selection procedures are useful when the population units are 

highly variable and the sample is small. In these selection procedures, there is no way to 

check the precision and to obtain the precise estimates. There is no way to determine the 

sampling, non-sampling errors. 

3.3 Some Commonly Used Selection Procedures 

In this section some commonly used selection procedures of probability sampling and 

estimation of mean, variance, confidence intervals are described. 

3.3.1 Simple Random Sampling 

Random sampling or more precisely simple random sampling is a term covering two of 

the most straightforward selection procedures used in the probability sampling. In both 

these procedures population units are drawn (selected) one by one with equal probability 

until the sample is achieved of the required size. If unit once selected is not allowed to be 

selected again, the procedure is known as simple random sampling without replacement 

(srswor). If the selection at each draw is from the whole population, the procedure is 

known as simple random sampling with replacement (srswr). Selection of units using 

srswr is independent from draw to draw, but if srswor is used the selections are not 

independent. This is because in srswor the probability of selection of a population unit at 

any given draw depends on whether or not it has been selected at some previous draws. It 
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is generally assumed that the characteristic for which the sample is selected does not 

change during sampling operation and selection must be independent of the characteristic 

under investigation. This selection procedure is explained in the following example: 

Example 3.1:   
Suppose there are 500 households in a certain area and we are interested in holding a 

tuberculosis (TB) survey to check the prevalence of TB in that area. First, we get a map 

of that area. We will allot our own numbers starting from 001 to 500. Suppose we want to 

select 5 percent sample from this population, which comes out to be 25 households. Then 

select any three columns from the random number tables (table 3.10) as population is of 

three digits. 

Include all those numbers, which are between 001 and 500 both ends inclusive and reject all 

others. If any number previously selected is repeated ignore it. As an example a sample of 

25 houses has been drawn using the random digits. These random digits are given in Table 

3.17. Note, if any number is repeated ignore it. 

In cases where respondents do not cooperate or household is closed, we need to have 

some randomly selected reserve sample so that it can be utilized if any non-response 

occurs. It has been observed that 5 to 10 percent is the non-response rate, so it is 

advisable while selecting a sample, to select a reserve sample at that time. If, for 

example, the 9
th

 house (house number 466) in our actual sample is not co-operating or is 

closed then it can be substituted by the 26
th

 house (house number 270), which is the first 

house in our reserved sample and so on. In any case the interviewer has no personal 

choice to select the house. 

 

Table 3.1 
Selected actual and reserved samples 

Sr. 
No. 

Random number/House 
number in our list 

Sr. 
No. 

Random number/House  
number in our list 

Actual Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

427 
275 
356 
463 
112 
497 
054 
163 
308 
062 
466 
143 
465 
078 
467 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

218 
014 
146 
292 
174 
405 
094 
158 
103 
122 
270 
104 
120 
030 
476 
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If we like to investigate the quality of the X-ray films in a certain laboratory, then all X-

ray films will be our study population. Each x-ray film must have ID number and 

required sample will be selected accordingly.  

Simple random sampling selection procedure is very simple and easily understandable as 

each unit of population has an equal chance to be in the sample and also each selected 

sample has an equal probability. This design is ineffective if the population units are 

highly variable. 

Many samples can be selected but in practical life, only one sample is selected and it is 

assumed that this sample will be the representative sample of the population under study. 

The sample mean or sample proportion is assumed to be the estimated value of 

population mean or population proportion. 

3.3.2 Estimation of mean and variance for sample mean and sample proportion 

An unbiased estimator of population mean is 

  




n

1i
iy

n

1
y                    (3.1) 

A sample will yield unbiased estimate under the following conditions. 

(i) All the units of the population to be sampled are listed . Failure to do so causes 

bias, known as coverage bias. 

(ii) Each unit of the population to be sampled must have a known probability, other 

than zero. Failure to do so causes bias known as sample selection bias. 

(iii) The measurements, observations or responses must be obtained from each 

sample unit. Failure to do so causes bias known as non-response bias. 

(iv) Actual values of measurements, or observations or responses are obtained. 

Failure to do so causes bias known as response bias. 

(v) Appropriate sample design must be used. Failure to do so causes bias known as 

sample design bias. 

(vi) Appropriate method of estimation is to be used. Failure to do so causes bias 

known as sample estimation bias. 

(vii) One should not collect information from the next door if sampled unit is not 

available. Failure to do so causes bias known as substitution bias. 

(viii) Finally, all the arithmetic, clerical and other operations entailed in sample 

selection and estimation must be performed properly. Failure to do so causes 

bias known as operational bias. 

The variance expressions of sample mean for without and with replacement sampling are 

respectively given as:  

  
,

n

S
)f1(

n

S

N

nN
)y(Var

22

wor 


             (3.2) 
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  f = n/N and 

  

 
2 21 1

1wr

N S S
Var y

N n N n

  
   

 
            (3.3) 

where  






N

1i

2

i
2 YY

1N

1
S                 (3.4) 

For large N correction factor is ignored and we get the same expression for sampling with 

and without replacement i.e. 

  
  nSyVar 2                   (3.5) 

An unbiased variance estimator for without replacement and with replacement sampling 

are given respectively as: 

  .
n

s
)f1()yvar(

2

wor                   (3.6) 

and 

  
.

n

s
)yvar(

2

wr                    (3.7) 

where  






n

1i

2
i

2 yy
1n

1
s                 (3.8) 

For large N the unbiased variance expression for with and without replacement is: 

    nsyvar 2                    (3.9) 

In case of qualitative data such as smoker and non-smoker, educated and non-educated 

etc. the proportion (p) of smokers, educated etc. is calculated. If p is an unbiased 

proportion of population proportion P, then the variance expressions of sample proportion 

for with and without replacement sampling are respectively given as: 

  
,

n

PQ

1N

nN
)p(Var wor




  (srswor)              (3.10) 

and 

  
n/PQ)p(Var wr   (srswr)               (3.11) 

For large N, N-1 approaches to N, and if fpc is ignored than we get the same expression 

for with and without replacement given as: 

  Var(pwr) = PQ/n                   (3.12) 

An unbiased variance expression for with and without replacement is: 

  1n

pq

N

nN
)pvar( wor




 ,                (3.13) 

and 

  1n

pq

N

1N
)pvar( wr




                 (3.14) 
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Ignoring fpc we get: 

  
)1n/(pq)pvar(                   (3.15) 

For large n, if Nn  is small, we get: 

  var (p) = pq /n                  (3.16) 

3.3.3 Estimation of Sample Size 

The most important question for statisticians and non-statisticians is how large a sample 

should be? In a survey sampling, it is always a problem for an experimenter to know or to 

determine the size of the sample when the result is required with least sampling error. 

Should a sample be 2% or 5% or 10% or any other fraction? Although the sample size is 

a matter of choice with the planner, yet great care and weight is needed in its 

determination. Since sample is a proportion of the population, it should neither be too 

large to involve a lot of expenditure and non-sampling error nor too small to make the 

results less reliable. In fact the sample size depends on the cost involved and time and 

precision required. Optimal sample size minimizes sampling error. Although sampling 

error is decreased by the increase of sample size but without optimal sample size there is 

a danger of large non-sampling error. 

The following formula may be used for different situations. 

(a) Sampling for Proportions 

 (i) Sample size for absolute precision 

  

   
2

2
21

0
d

p1pZ
n





 ,                (3.17)  

where d is the difference between estimated and actual value. i.e. absolute precision 

required on either side of the proportion p. It is usually taken as 5%. If sample size is 

large, then for 95% probability level or confidence level Z1- /2 is taken as 1.96, for 

99% level, 2.58, and for 90% the confidence level is 1.645. For convenience, sample 

size has been calculated for different values of p and d, [Tables 3.12 and 3.13 are 

given at the end of this chapter]. 

Example 3.2: 

The Ministry of Health wishes to estimate the prevalence of tuberculosis among 

children under 5 years of age. How many children should be there in the sample so 

that the prevalence may be estimated within 5% points of the true value with 95% or 

99% confidence level, if it is known that the true rate will not exceed 15%. 

Solution: 

In This exemple we have  

  p = 0.15, 1–p = 0.85 

Probability level or confidence level (1 – α) = 95% or 99%. 

  d = 5 percentage points  
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  05.0for96.1Z 21   and 01.0for58.2Z 21   

Using the formula, we have 

   
2

2

0
)05.0(

)85.0()15.0()96.1(
n   = 196 for 1– α = 95% 

and 

  
2

2

0
)05.0(

)85.0()15.0()58.2(
n   = 339 for 1 – α = 99% 

If population is finite then an approximation of sample size can be obtained as  

n
1
 = 

N/)1n(1

n

0

0


. If the population of children less than 5 years of age is 20,000, 

then the sample size may be estimated as, by an approximation, 

 
20000/)1196(1

196
n1


  = 

00975.1

196
 = 194 

This is not different from 196, so 196 or 194 may be taken as a sample size. 

Example 3.3:  

Ministry of Health would like to estimate the proportion of children who are receiving 

medical care regularly. How large should be the sample if the estimate falls within 

5% of true proportion with 95% confidence level. 

Solution:  
In this question, the assumption regarding proportion of children who are receiving 

regularly medical care is that 50% of the population of children is receiving medical 

care. Using p = 0.50, maximum sample size will be obtained.  

If we take 

 p = 0.5; 1 -  = 0.95, 0.99; d = 0.05  

then 

 
2

2

0
)05.0(

)5.0()5.0()96.1(
n   = 384 for 95% 

 
2

2

0
)05.0(

)5.0()5.0()58.2(
n   = 666 for 99% 

Suppose N = 600 then, then the sample size for 95% level comes to be: 

 n
1
 = 

600/)1384(1

384


 = 

638.1

384
 = 234 (2nd approx.) 
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 n
2
 = 

600/)1234(1

234


 = 

388.1

234
 = 169 (3rd approx.) 

 n
3
 = 

600/)1169(1

169


 = 

280.1

169
 = 132 (4th approx.) 

This process will continue till difference between the last two approximations 

becomes minimal. 

 (ii) Sample size for relative precision 

If the coefficient of variation (or for relative precision) is given, the formula for the 

determination of sample size is 

 n = 
pD

)p1(z
2

2
2/1  ,                 (3.18) 

where D denotes coefficient of variation or relative precision. 

For convenience, sample sizes have been calculated for different values of p and D. 

[see Tables 3.14 and 3.15] 

Example 3.4:   
Ministry of Health of Eastern Province would like to conduct a survey regarding 

hypertension of elderly persons (above the age of 60). It is known from the past 

experience that the prevalence of hypertension is 25%. How large a sample should be 

so that the resulting estimates falls within 10% (not 10% points) of the true proportion 

with 95% confidence level? 

Solution:  
In this question p = 0.25, Confidence level = 95% and relative precision is 10% of 

25%. There are two ways to solve this problem. 

(i) Using relative precision formula 

  n = 
)25.0()05.0(

)75.0()96.1(
2

2

 = 4610 

(ii) Using absolute precision formula 

 Since d = 0.05 x 0.25 = 0.0125 

  n = 
2

2

)0125.0(

)75.0()25.0()96.1(
 = 4610 

 If population size is known to be 2000, then 

  n
1
 = 

2000/)14610(1

4610


  = 

3045.3

4610
 = 1395 

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

91 

  n
2
 = 

2000/)11395(1

1395


  = 

697.1

1395
 = 822 

  n
3
 = 

2000/)1822(1

822


  = 

4105.1

822
 = 583 

This process will continue till there is not much difference between the last two 

approximations. We see that after 10
th

 approximation, we get the sample size of 

212. 

If p = 25% to 40% and relative precision D = 0.05 then for different values of  

p and with 95% confidence level, the sample size will be: 

 

Table 3.2 

p 0.25 0.30 0.35 0.40 

n 4610 3585 2854 2305 

The relative precision (D) may be converted into absolute precision (d) as 

  d = p x D = 


















0200.05.040.

0175.005.35.

0150.005.30.

0125.005.25.

 

The sample sizes for different values of d and p and for 95% confidence level are 

given as: 

Table 3.3 
Sample sizes for different values of p and d 

p d 0.0125 0.0150 0.0175 0.0200 

0.25 4610 3201 2352 1801 

0.30 5163 3585 2634 2017 

0.35 5593 3884 2854 2184 

0.40 5901 4098 3010 2305 

If the range is given, i.e. the prevalence is 10 to 25%, then it is always advisable to 

use prevalence 25% for precision. If the range is 45% to 55% then for precision use p 

= 50% but for relative precision use 55%. 

(b) Sampling with Continuous Data (absolute precision) 

If mean and sample variance is known then the formula for determination of sample 

size  

  n
0
 = 

2

22
2/1

d

sz    (Ist approx.)               (3.19) 

 If the population size is known then 
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  n
1
 = 

N

n
1

n

0

0



  (2nd approx.) 

 or 

  n
2
 = 

N

n
1

n

1

1



  (3rd approx.) 

 and so on. 

Example 3.5:  

A physician would like to know the mean fasting blood glucose of patients seen in the 

diabetes clinic over the past 10 years. Determine the number of records the physician 

should examine in order to obtain 90% and 95% confidence level for population if the 

desired width of the interval is 8 units and pilot sample yields a standard deviation of 

60 units. 

Solution:  

Here s = 60, D = 4, as the total width is 6 which is on the both sides of the mean. 

Therefore, the sample size for 90% confidence will be 

 n = 
2

22

)4(

)60()645.1(
 = 609 for 90% 

and for 95 % 

 n = 
2

22

)4(

)60()96.1(
 = 864 for 95% 

3.3.4 Standard Deviation and Standard Error 

When numerical findings are reported in research articles or medical dissertation, 

regardless of whether or not their statistical significance is quoted, they are often 

presented with additional statistical information. The distinction between standard 

deviation and the standard error is often misunderstood. By contrast, the standard error is 

a measure of the uncertainty in a sample statistic.  

The standard deviation is relevant when variability between individuals is of interest 

whereas the standard error is relevant to summary statistics such as mean, proportions, 

differences between means and proportions, etc. 

The standard error of the sample statistic, which depends on both the standard deviation 

and the sample size, is recognition that a sample is most unlikely to determine the 

population value exactly. In fact, if a further sample is taken in identical circumstances, it 

will almost certainly produce different estimates of the same population. The sample 

statistic is therefore imprecise and the standard error is a measure of this imprecision. 

The standard error of sampling mean is given as: 

  
)yvar()y(SE                   (3.20) 
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3.3.5 Confidence Limits  

It is not possible for a sample to evaluate characteristics of a population exactly, but it 

estimates the characteristics as accurately as possible. One way out may be to find 

intervals which are functions of observations and which cover the parameter with pre-

assigned probabilities. In case the variable is normally distributed with known variance, 

the sampling distribution of means is also normally distributed. The interval x  ± 1.96 SE 

( x ) will cover sample means in 95% of the cases.  

The confidence intervals are calculated whenever an inference is to be made from the 

sample to the population from which the sample has been drawn. The calculated interval 

provides a range of values within which lies the population value. Confidence limits are 

calculated with (1 - )% confidence coefficient. The width of the confidence coefficient 

intervals depends on three factors. Firstly the size of sample (large sample sizes give 

narrower confidence intervals), secondly the standard deviation of the characteristic 

being studied (smaller the standard deviation, narrower the confidence interval) and 

finally the degree of confidence is required. 

The confidence limits for sample mean are: 

  mean ± Z1-/2 S.E (mean)               (3.21) 

For 95% reliability the confidence limits will be: 

  
)y(E.S96.1yand)y(E.S96.1y              (3.22) 

For sample proportion the confidence limits will be 

  p ± Z1-/2 
n

)P1(P 
               (3.23) 

(i) Confidence limits for large sample 
This is explained with the following example. 

Example 3.6: 

The serum cholesterol level of healthy persons is given. Select a sample of 30 persons 

from the population of 90 persons and estimate the average cholesterol level of persons in 

the population. Construct 95% confidence limits for the mean of the population (the data 

is given on in Table 3.4) 

Solution:   
We have 90 persons in the population, or we say N = 90. The purpose is to select a 

random sample of 30 persons from the given population of 90 persons. One should 

remember that random number table or a computer psuedo random numbers are used to 

select 30 persons out of 90.The mean cholesterol level of persons in the population is 

19316/90 = 21462. One should remember that population mean or proportion is never 

known before it is always to be estimated on the basis of sample. In this example actual 

population values are given and sample has been selected so that comparison could be 

made. We can calculate the mean of the selected sample and can compare it with 

population mean.  
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Table 3.4 
Serum cholesterol level of 90 healthy persons 

Person
s 

Cholester
ol level 

Persons Cholestero
l level 

Persons Cholestero
l level 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

154 
212 
222 
259 
239 
201 
204 
208 
197 
205 
196 
212 
218 
196 
169 
179 
210 
204 
212 
191 
239 
251 
160 
211 
188 
236 
248 
189 
174 
138 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

172 
219 
247 
186 
257 
222 
208 
170 
202 
222 
236 
248 
186 
259 
218 
208 
226 
160 
171 
238 
175 
208 
239 
255 
221 
160 
224 
156 
230 
262 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

235 
253 
263 
266 
200 
200 
223 
155 
201 
234 
263 
233 
223 
198 
177 
197 
221 
220 
231 
222 
200 
225 
279 
283 
258 
253 
234 
276 
265 
221 

total     19316 

A random sample of 30 using the random digits given at the end of the chapter has been 

selected and the values of the sample are given in Table 3.5. 
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Table 3.5 
Selected sample of 30 persons 

Sr. 
No. 

Random number Cholesterol level 
x 

 
x

2
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

88 
25 
56 
07 
31 
47 
73 
16 
89 
03 
72 
74 
43 
17 
83 
62 
37 
65 
79 
06 
33 
32 
12 
02 
45 
13 
66 
23 
20 
35 

276 
188 
160 
204 
172 
226 
223 
179 
265 
222 
233 
198 
186 
210 
279 
253 
208 
204 
231 
201 
247 
219 
212 
212 
218 
218 
200 
160 
191 
257 

76176 
35344 
25600 
41616 
29584 
51076 
49729 
32041 
70225 
49284 
54289 
39204 
34596 
44100 
77841 
64009 
43264 
41616 
53361 
40401 
61009 
47961 
44944 
44944 
47524 
47524 
40000 
25600 
36481 
66049 

Total  6452 1415392 

The sample and population means are 6452/30 = 215.07 and 19316/90 = 214.62, 

respectively. We see that one random sample has been selected and mean cholesterol 

level on the basis of the sample is 215.07 whereas mean cholesterol level of the 

population is 214.62. The difference between sample and population mean is not much. 

As mentioned before, in practical life, we never know population mean and proportion 

this is assumed to be an estimate of the population mean. The sample mean, 215.07 is an 

estimated value of population mean, 214.62. To locate the position of population mean, 

we construct 95% or 99% confidence limits, then we say with confidence that is, we are 

95% or 99% confident that these two limits contain population mean. For this purpose we 

calculate first sample standard deviation and then standard error. The sample standard 

deviation is: (using Equation 3.8)  
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  s = 













30

)6452(
1415392

29

1 2

 = 30.952 

If a sample is large, we divide by 30 = n or 29 = (n - 1) which does not make much 

difference but remember if the sample size is less than 30, it is essential that the divisor 

for standard deviation is n-1. 

The standard error of sample mean is: 

  S.E ( x  = mean) = 
n

s
 = 

30

95.30
 = 

477.5

95.30
 = 5.650 

The confidence limits of  is 

 mean  ±  Z1-/2  S.E (mean)              (3.21) 

Were Z1-/2 is taken 1.645 for 90%, 1.96 for 95% and 2.58 for 99% confidence level 

[Table 3.18]. The 90%, 95% and 99% confidence limits respectively are: 

  215.07 ± 1.645 x 5.650 = (205.80 - 224.36) is a 90% confidence limits 

  215.07 ± 1.96 x 5.650 = (203.996 - 226.074) is a 95% confidence limits 

  215.07 ± 2.58 x 5.650 = (200.493 ~ 229,647) is a 99% confidence limits 

In this example, we state that population mean is 214.62. Therefore, we say with 90% or 

95% or 99% confidence that these limits contain population mean. If the population mean 

is not known, even then we say with confidence that above statement is true. 

Example S3-1 (Selecting a Simple Random Sample using IBM-SPSS) 

To select a random sample of size 30 from the data in table 3.4, using IBM-SPSS, we 

follow the following steps: Data Select Cases: 

(we can either chose Filter out unselected cases, or Copy selected cases to a new 

dataset, or Delete unselected cases): 
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Then, click on  to get directly the desired random sample 

Example S3-2 

To obtain the Confidence limits for the mean using IBM-SPSS, for the data in table 3.5, 

we enter the data and follow the following steps:  

Analyze Descriptive Statistics  Explore: 

 

We move the variable into Dependent List and do as follows: 
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(Note that we can change the 95% to any other value, e.g. 90% or 99%). 

Once we click on , we get the following output for the 95%: 

 

(ii) Confidence limits for small sample 

The values of 90% or 95% or 99% are only used if the sample size is large.  

Example 3.7:  
A sample of size 10 is drawn from the population given in example 3.4 is given on next 

page table 3.6: 

 The sample mean = 2221/10 = 222.1, and the sample standard deviation using (3.8) is 

  

.060.38
10

)2221(
506321

110

1
s

2
















  

  (The divisor is (10 - 1) and not 10.) 

The confidence limits are 222.1 ± t1-/2 
10

060.38
 = 222.1± 2.262  

162.3

060.38
 or [194.875, 

249.325]. 2.262 is value from the t-table [Table 3.17]. 
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Table 3.6 
Selected sample of 10 persons 

Random members 
Value of cholesterol level 

X 
 

X
2
 

82 
44 
53 
60 
06 
07 
30 
65 
61 
85 

225 
259 
239 
262 
201 
204 
138 
200 
235 
258 

50625 
67081 
57121 
68644 
40401 
41616 
19044 
40000 
55225 
66564 

Total 2221 506321 

The question is how to see the table. If it is 95% confidence limit then subtract 0.95 from 

1, i.e. 1 - 0.95 = 0.05, divide 0.05 by 2, i.e. = 0.025, subtract 0.025 from 1 we will get 

0.975, consult the t-table under 0.975 and against 9 = (n - 1). This value is used at the 

place of 1 /2t  . (n - 1) is called the degree of freedom and 0.05 (5%) is called level of 

significance. This will be explained in the next Chapter. 

Example 3.8: 

A sample of 25 physically active adult males was selected and arterial blood gas analysis 

was performed. The results are given in terms of PaQ
2
 values i.e. 75, 88, 75, 88, 72, 83, 

83, 72, 87, 78, 78, 77, 79, 80, 80, 83, 79, 79, 72, 83, 76, 85, 86, 84, 75. Compute 95% 

confidence limits for the mean. 

Solution:  
Mean = 79.88 and sample standard deviation = 4.969. The 95% confidence limits will be  

  mean ± t1-/2 
25

)s(d.ssample
 

  79.88 ± 2.0639 x 
5

969.4
 = 79.88 ± 2.049 or [77.830 ~ 81.929]. 

(The table value at 5% level of significance with 24 degrees of freedom 2.0639) 

The confidence interval is narrow and therefore, we say our sample estimate is close to 

population parameter. 

Example S3-3 

To obtain the Confidence limits for the mean using IBM-SPSS, for the data in example 

3.8, we enter the data and follow the following steps:  

Analyze Descriptive Statistics  Explore: 
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We move the variable into Dependent List and do as follows: 

  

Once we click on , we get the following output for the 95%: 

 

Example 3.9:  
Among Saudi male children 7% asthma was found during a survey held at Yumboo. The 

sample size was 200. Estimate 95% confidence limits for population proportion of 

Yumboo city. 
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Solution:   p = 0.07 

    1 - p = 0.093 

    p ± Z1-/2 
n

)P1(P 
              (3.23) 

Since sample (n) is large we use 1.96 for 95% confidence level. 

  0.07 ± 1.96 
200

)07.01(07.0 
 

or 

  0.07 ± 0.035 [0.035, 0.105] 

These limits contain the proportion of children suffering from asthma in the city of 

Yumboo. 

Example S3-4 

To obtain the Confidence limits for the proportion using IBM-SPSS, for the data in 

example 3.9, we enter the data (14 of 1’s and 186 of 0’s) and follow the following steps:  

Analyze Descriptive Statistics  Frequency: 

  

We move the variable into Dependent List and use Bootstrap as follows: 

 

 

 

NCBA&E



Sampling Procedures and Sample Size Estimation  102 

Once we click on , we get the following output: 

 

3.3.6 Stratified Random Sampling 

As has been mentioned before, if there is a large variation among the population units, 

then simple random sampling selection procedure will be less precise, i.e. estimates 

obtained from using this selection procedure will not be a good estimate of population 

parameter. If relatively more precise results are to be obtained, then the population is to 

be divided into different homogeneous groups, called strata. The strata are formed so that 

inside each stratum, units are as homogeneous as far as possible. Stratification is a 

process of dividing the population into different strata and selecting a sample of the 

required number of units within strata, using the simple random sampling selection 

procedure. Estimates (i.e. mean, proportion, etc.) of each stratum are aggregated to 

produce an estimate for the whole population using a method of weighted mean. There 

are number of reasons for using this type of selection procedure, i.e. (i) it may increase 

precision by reducing the variation, (ii) information may be needed for individual strata, 

(iii) it is easy to control the execution of survey, and (iv) simultaneous work can be 

started by independent teams. Stratification can be done by area, age, gender, race, area, 

nationality, type of patients admitted in the hospital, etc. Sample may be selected using a 

method of proportional allocation. This method of allocation is more scientific and easily 

under stable by all. This allocation is highly useful if there is a considerable difference 

between strata averages or proportions and not many differences between the variances 

within the strata. In the study of population of smokers, the physician may wish to stratify 

according to type of smokers (light, medium or heavy smokers). The population of 

smokers may be divided into light smokers, medium smokers or heavy smokers. 

An unbiased estimator for population mean for stratified random sampling is 

  stY = 


k

1h

hh N/YN                 (3.24) 

The variance of sample mean of stratified random sampling is as: 

  ]
n

S
)nN(N[

N

1
)y(Var

h

2
h

hhh

k

1h
2st  



           (3.25) 

If the allocation of the sample size is proportional then the variance of sample mean will 

be  
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  





k

1h

2
hhstprop SW

Nn

nN
)y(Var                (3.26) 

If correction factor is ignored then (3.26) takes the following form 

  



k

1h

2
hhstprop n/SW)y(Var               (3.27) 

The optimum allocation of sample size when the cost in involved is 

  





k

1h
hhh

hhh
h

C/SW

C/SWn
n                (3.28) 

If the cost is ignored then the above formula takes the following form 

  





k

1h
hh

hh
h

SW

SWn
n                  (3.29) 

The variance of the sample mean for optimum allocation when cost is involved  

  
2

min
1 1 1

1 1
( ) /

k k k

h h h h h h h hst
h h h

Var y W S C W S C W S
n N  

  
   

  
      (3.30) 

If the cost factor is ignored then (3.30) will be 

  min
1 1

1
( ) /

k k

h h h h h hst
h h

Var y W S C W S C
n  

  
   

  
         (3.31) 

Example 3.10:  

The smoking information given in the following table and is obtained from census of an 

Australian City during 1966. 

 
Table 3.7 

Stratification with respect to number of cigarette smoking 

Type of Smoking Population Size of adult males 

Light smoker  
< 10 

 
28,900 

Medium smoker 
10 – 20 

 
38,300 

Heavy smoker 
> 20 

 
52,800 

Total 120,000 
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In order to examine the current smoking habits of adult males in the city, using the 

information, a sample survey was planned for 1968. It was further decided to use a 

sample size of 800 adult males.  

Solution:   
The sample size is allocated to each stratum by using proportional allocation method as: 

  Light smoker = 
120000

28900
 x 800 = 192.6 ~ 193 

  Medium smoker  = 
120000

38300
 x 800 = 255.3 ~ 255 

  Heavy smoker = 
120000

52800
 x 800 = 352 = 352    

3.3.7 Sytematic Sampling 

This selection procedure is different from simple random sampling selection procedure. 

In simple random sampling procedure every unit is selected by using random numbers 

table whereas in systematic selection procedure, only the first unit is selected at random 

and the rest of the units are automatically determined. Suppose there are 500 households 

in a population and 5 percent sample is to be selected from this population using 

systematic selection procedure. The sample size comes out to be 25 units. What we do is 

to calculate N/n = 500/25 = 20 (K), this is called skip interval. Note that 25 is the size of 

the sample. Select one unit randomly from first 20 units, using simple random sampling 

selection procedure. For this purpose, we will adopt the same procedure as it was done in 

case of simple random sampling selection procedure. Choose two columns of random 

number tables, and take the first number that is less or equal to 20 (00 is not considered). 

By using the random numbers table, 12th household is chosen from first twenty 

households, then remaining households will be chosen automatically with the skip 

interval as 12 + 20, 12 + 2(20), 12 + 3(20) and so on. The sample will consist of the 

following households. 

12, 32, 52, 72, 92, 112, 132, 152, 172, 192, 212, 232, 252, 272, 292, 

312, 332, 352, 372, 392, 412, 432, 452, 472 and 492. 

This procedure of selecting the sample is called systematic selection procedure. The 

probability of the selection of the sample is 1/K= 1/20, which is in fact the probability 

with which any member of the group is selected in the sample. This type of selection 

procedure is very useful when the population size is unknown or sampling frame is not 

possible. If the population size is known, it is advisable to use simple random sampling 

selection procedure. In summary, the following remarks are useful for systematic 

sampling procedure. 

i) Selection is simple, easier and quicker. 

ii) It involves less cost as compared to simple random sampling. 

iii) A complete and up to date frame is not strictly needed, but the idea of the 

population is necessary, whereas in simple random sampling selection, procedure 

a complete and up to date frame is necessary. 
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In practical situation N/n is not an integer. If population units are 1012 and sample of size 

40 is to be selected, the skip interval comes out to be as 1012/40 = 25.3, take 25 as skip 

interval. If population units are 1025 and a sample of size 40 is to be selected, the skip 

interval comes out to be as 1025/40 = 25.6, take 26 as skip interval, etc. In most of 

situations population size is not known, then skip interval is the choice of an experienced 

sampling statistician. Note that, if sampling frame is available then simple or stratified 

random sampling is a better choice. 

An unbiased estimator for population mean is  

  
 


k

1r

n

1i
risy y

nk

1
y                 (3.34) 

The variance of sample mean is  

  2
k

1r
rsy )Yy(

k

1
)y(Var 



                (3.35) 

Other form of variance is  

  ,S
N

)1n(k
S

N

1N
)y(Var 2

w
2

sy





             (3.36)  

where S
2 
is total sum of square and 

2
wS is within sum of squares i.e.  

  
 


k

1r

2
n

1i
ri

2 ]Yy[S)1nk(                 (3.37) 

and 

  
 





k

1r

n

1i

2
rri

2
w .)yy(

)1n(k

1
S              (3.38) 

3.3.8 Single Stage Cluster Sampling 

The word cluster was used by Hansen and Hurwitz (1942) to describe a group of 

elements that constitute a sampling unit. When the entire area containing the population 

under study is sub-divided into smaller areas and each element of the population is 

associated with one and only one such small area, the procedure is alternatively called 

area sampling. Cluster sampling is a selection procedure in which population units 

(elements) are divided into convenient number of groups, called clusters. Each cluster 

contains some elements. A random sample of some clusters is selected using a simple 

random sampling procedure or probability proportional to size selection procedure (see 

next section). Each selected cluster is studied in full. Since all the elements in the 

sampled cluster are examined in full, therefore it is known as a single stage cluster 

sampling. Sometimes clusters are known as primary units in the context of multistage 

sampling and elements within each cluster are called secondary units.  

The concept of cluster was developed for the cases, where the list of elements is not 

available. For example, in a population survey, list of households is available whereas a 

list of persons is not. Since cluster sampling consists of groups of elements, approach to 
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the elements is faster, easier and more convenient than other sampling procedures. Cost 

will be less if the elements are grouped in a cluster rather than randomly dispersed 

throughout the area. Since cluster sampling is not a true representative sampling method 

as compared to simple random method, therefore, the efficiency will be less. The 

efficiency of clustering sampling depends on the size of the cluster. If the size of clusters 

is large and the number of clusters is less the efficiency will also be decreased, but if the 

size is small and number of clusters is more, the efficiency will be increased. Cluster 

sampling procedure is different from stratified sampling in the sense that in the former 

case all elements within groups (clusters) are studied. 

The cluster sampling procedure is explained below: 

Suppose we would like to hold a TB survey in Dammam City and the list of households 

and list of persons are not known to us. We can divide the whole city into different 

sectors (clusters) say (40). We try to divide the population into equal size clusters as far 

as possible. Suppose 10 sectors (clusters) are likely to be selected. We will use simple 

random sampling procedure to select 10 clusters. Then all the 10 selected clusters will be 

examined fully to check the prevalence of TB. 

If the clusters vary in size then, simple random selection procedure will not be 

appropriate method of selection. We will select the sample keeping in view, the size of 

the clusters. The selection used in these situations will be known as probability 

proportional to size sampling selection procedure. 

An unbiased estimator of population mean is  

  ij

M

1j

n

1i
e y

nM

1
y 



                    (3.39) 

The variance of sample mean is 

   
 

 2i
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1NNn
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


 



             (3.40) 

An unbiased variance estimator of (3.40) is  

     2ei

n

1i
e yy

1n

1

Nn

nN
yvar 




 



            (3.41) 

where iy  is mean of the cluster of population and Y the mean of population.  

3.3.9 Probability Proportional to Size Sampling Procedure 

In all the above selection procedures, equal probability of selection was involved i.e. each 

unit or each cluster has equal chance to be in the sample, but in probability proportional 

to size sampling procedure, units are selected keeping in mind the size of units. This 

method is also known as sampling with unequal probabilities of selection procedure. 

Hansen and Hurwitz (1943) suggested this selection procedure. 

An unbiased estimator for population total is given as 
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  
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n

1
yory                  (3.42) 

where pi is the probability of selection of the ith population unit to be in sample. 

The variance and unbiased variance estimator are given respectively 
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Here only brief introduction is given, if anyone is interested, he may refer to a 

monograph on sampling with unequal probabilities by Brewer and Hanif (1983). This 

selection procedure is explained as: 

Example 3.11: 

Areas of 20 sectors and numbers of households in each area are given. Select a sample of 

5 sectors. 

Solution 

To select a sample, some basic calculations are required. In column 5, proportions 

(probability) of the area of each sector, and in column 6 cumulative size of the area have 

been calculated. In column 7 range of each sector is given. The ranges are given only for 

convenience otherwise it is not essential. Suppose we like to select a sample of 5 sectors 

under this selection procedure. Five random numbers are selected between 001 and 448. 

These random numbers are 153, 52, 414, 283 and 177. They fall in the ranges 151 - 156, 

43 - 58, 316 - 438, 257 - 310 and 162 - 256. Therefore, sector numbers, 8, 4, 16, 11, and 

10 are in the sample as given in Table 3.9. 
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Table 3.8: 
Population of house hold along with area 

Sector 
No. 
(1) 

Area 
Zi 
(2) 

No. of 
Households 

(3) 

Zi/Z 
 

(4) 

Proportion 
Zi /Z 
(5) 

Cumulative 
Zi 

(5) 

Range 
 

(6) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

33 
8 
1 

16 
43 
40 
9 
6 
5 

95 
54 
1 
1 
2 
1 

123 
1 
3 
4 
2 

2328 
754 
105 
949 
3091 
1736 
840 
311 
0 

3044 
2483 
128 
102 
60 
0 

11799 
26 
317 
190 
180 

33/448 
8/448 
1/448 
16/448 
43/448 
40/448 
9/448 
6/448 
5/448 
95/448 
54/448 
1/448 
1/448 
2/448 
1/448 

123/448 
1/448 
3/448 
4/448 
2/448 

0.074 
0.018 
0.002 
0.035 
0.096 
0.089 
0.020 
0.014 
0.011 
0.212 
0.121 
0.002 
0.002 
0.005 
0.002 
0.275 
0.002 
0.007 
0.009 
0.005 

33 
41 
42 
58 
101 
141 
150 
156 
161 
256 
310 
311 
312 
314 
315 
438 
439 
442 
446 
448 

1 - 33 
34 - 41 

42 
43 - 58 

59 - 101 
102 - 141 
142 - 150 
151 - 156 
157 - 161 
162 - 256 
257 - 310 

311 
312 

313 - 314 
325 

316 - 438 
439 

440 - 442 
433 - 446 
447 - 448 

Total 448 = Z 28443     

 
Table 3.9:  

Sample selected from Table 3.3 

Random  
Numbers 

Sr. No.  
of Sector 

Number of  
Houses 

Probability of 
Selection 

52 
153 
177 
283 
414 

4 
8 

10 
11 
16 

949 
311 
3044 
2483 
11799 

0.035 
0.014 
0.212 
0.121 
0.275 

This selection procedure is with replacement and a cluster can be selected twice. 

There are over 100 selection procedures relating to probability proportional to size 
without replacement. Here only one selection procedure that is most frequently used by 
non-statisticians is described. 

3.3.10 Random Systematic Selection Procedure 

This selection procedure is simple and easy for the selection of a sample. It is commonly 
used in a large-scale survey. In this selection procedure the population units (sectors) are 
randomly arranged. The size of each population is mentioned against every unit. The size 
may be area or may be total number of households in that sector.  
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Example 3.12:  
Suppose we have a population of 8 sectors. Select a sample of 3 sectors. These sectors are 

arranged randomly before the selection of sample. Against each sector, the size of sector 

is given. 

 
Table 3.10:  

Population of 8 Sectors 

Sectors Size of Sector Cumulative Size Cluster to be Selected 

1 
2 
3 
4 
5 
6 
7 
8 

15 
81 
26 
42 
20 
16 
45 
55 

15 
96 
112 
164 
184 
200 
245 
300 

 
36 

 
136 

 
 

236 
 

Total 300   

A sample of 3 sectors is to be selected. Divide the total by the sample size to obtain skip 

interval, i.e. 300/3 = 100. Select a random start from 001 to 300. Let the random start be 

36, so the first sector selected will be the 2nd one. For the selection of second and third 

sectors, we proceed as: add 36 + 100 = 136 and 36 + 2(100) = 236. 136 falls against 164 

and 236 falls against 245. So, 4th and 7th sectors are selected. As a result 2nd, 4th and 

7th sectors are in the sample. 

3.3.11 Multistage Sampling 

Simple random sampling and stratified random sampling selection procedures described 

above may be considered as a single stage sampling procedure. In a single stage selection 

procedure, a sample is drawn from a population and informations are obtained from the 

sampling units. In multistage sampling, a population is divided into a number of large 

units and a sample of large units is selected either using equal probability selection 

procedure or using probability proportional to size selection procedure. Each of selected 

large unit is further subdivided into smaller units, and a sample of these units is selected 

from each of the selected large units. Kendall and Bukland (1980) in the Dictionary of 

Statistical Terms define a multistage sample as one which is selected by stages, the 

sample units at each stage being sub-sampled from the (larger) units chosen at the 

previous stage or in multistage sampling selection is carried out in a succession of stages. 

Typical example of multistage sampling may be a health survey in Eastern Province, 

Saudi Arabia where the Eastern Province is divided into primary care centers as the first 

stage units. A sample may be selected from primary care centers as primary sampling 

units (P.S.U.) From each primary care centers; sample of patients may be selected as 

second stage units (SSU) and so on. 

Multistage sampling is most frequently used in field surveys where the list of last stage 

units is difficult to get. Though by using multistage sampling precision is lost but it is 

much cheaper and quicker than any other design. 
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Table 3.11 (Random Digits) 
57780 97609 52482 12783 88768 12323 64967 22970 11204 37576 
68327 00067 17487 49149 25894 23639 86557 04139 10756 76285 
55888 82253 67464 91628 88764 43598 45481 00331 15900 97699 
84910 44827 31173 44247 56573 91759 79931 26644 27048 53704 
35654 53638 00563 57230 07395 10813 99194 81592 96834 21374 

          

46381 60071 20835 43110 31842 02855 73446 24456 24268 85291 
11212 06034 77313 66896 47902 63483 09924 83635 30013 61791 
49703 07226 73337 49223 73312 09534 64005 79267 76590 26066 
05482 30340 24606 99042 16536 14267 84084 16198 94852 44305 
92947 65090 47455 90675 89921 13036 92867 04786 76776 18675 

          

51806 61445 32437 01129 03644 70024 07629 55805 85616 59569 
16383 30577 91319 67998 72423 81307 75192 80443 09651 30068 
30893 85406 42369 71836 74479 68273 78133 34506 68711 58725 
59790 11682 63156 10443 99033 76460 36814 36917 37232 66218 
06271 74980 46094 21881 43525 16516 26393 89082 24343 57546 

          

93325 61834 40763 81178 17507 90432 50973 35591 36930 03184 
46690 08927 32962 24882 83156 58597 88267 32479 80440 41668 
82041 88942 57572 34539 43812 58483 43779 42718 46798 49079 
14306 04003 91186 70093 62700 99408 72236 52722 37531 24590 
63471 77583 80056 59027 37031 05819 90836 19530 07138 36431 

          

68467 17634 84211 31776 92996 75644 82043 84157 10877 12536 
94308 57895 08121 07088 65080 51928 74237 00449 86625 06626 
52218 32502 82195 43867 79935 34620 37386 00243 46353 44499 
46586 08309 52702 85464 06670 18796 74713 81632 34056 56461 
07869 80471 69139 82408 33989 44250 79597 15182 14956 70423 

          

46719 60281 88638 26909 32415 31864 53708 60219 44482 40004 
74687 71227 59716 80619 56816 73807 94150 21991 22901 74351 
42731 50249 11685 54034 12710 35159 00214 19440 61539 25717 
71740 29429 86822 01187 96497 25823 18415 06087 05886 11205 
96746 05938 11828 47727 02522 33147 92846 15010 96725 67903 

          

27564 81744 51909 36192 45263 33212 71808 24753 72644 74441 
21895 29683 26533 14740 94286 90342 24671 52762 22051 31743 
01492 40778 05988 65760 13468 31132 37106 02723 40202 15824 
55846 19271 22846 80425 00235 34292 72181 24910 25245 81239 
14615 75196 40313 50783 66585 39010 76796 31385 26785 66830 

          

77848 15755 91938 81915 65312 86956 26195 61525 97406 67988 
87167 03106 52876 31670 23850 13257 77510 42393 53782 32412 
73018 56511 89388 73133 12074 62538 57215 23476 92150 14737 
29247 67792 10593 22772 03407 24319 19525 24672 21182 10765 
17412 09161 34905 44524 20124 85151 25952 81930 43536 39705 

          

68805 19830 87973 99691 25096 41497 57562 35553 77057 06161 
40551 36740 61851 76158 35441 66188 87728 66375 98049 84604 
90379 06314 21897 42800 63963 44258 14381 90884 66620 14538 
09466 65311 95514 51559 29960 07521 42180 86677 94240 59783 
15821 25078 19388 93798 50820 88254 20504 74158 35756 42100 

          

10328 60890 05204 30069 79630 31572 63273 13703 52954 72793 
49727 08160 81650 71690 56327 06729 22495 49756 43333 34533 
71118 41798 34541 76132 40522 51521 74382 06305 11956 30611 
53253 23100 03743 48999 37736 92186 19108 69017 21661 17175 
12206 24205 32372 46438 67981 53226 24943 68659 91924 69555 
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Tables 3.12 
Estimation of sample size with absolute precision (95%). 

Pd .01 .02 .03 .04 .05 .06 .07 .08 .09 .1 

.01 380 95 42 24 15 11 8 6 5 4 

.02 753 188 84 47 30 21 15 12 9 8 

.03 1118 279 124 70 45 31 23 17 14 11 

.04 1475 369 164 92 59 41 30 23 18 15 

.05 1825 456 203 114 73 51 37 29 23 18 

.06 2167 542 241 135 87 60 44 34 27 22 

.07 2501 625 278 156 100 69 51 39 31 25 

.08 2827 707 314 177 113 79 58 44 35 28 

.09 3146 787 350 197 126 87 64 49 39 31 

.1 3457 864 384 216 138 96 71 54 43 35 

.15 4898 1225 544 306 196 136 100 77 60 49 

.2 6147 1537 683 384 246 171 125 96 76 61 

.25 7203 1801 800 450 288 200 147 113 89 72 

.3 8067 2017 896 504 323 224 165 126 100 81 

.35 8740 2185 971 546 350 243 178 137 108 87 

.4 9220 2305 1024 576 369 256 188 144 114 92 

.45 9508 2377 1056 594 380 264 194 149 117 95 

.5 9604 2401 1067 600 384 267 196 150 119 96 

 
Table 3.13 

Estimation of sample size for absolute precision (99%) 

Pd .01 .02 .03 .04 .05 .06 .07 .08 .09 .1 

.01 658 165 73 41 26 18 13 10 8 7 

.02 1305 326 145 82 52 36 27 20 16 13 

.03 1937  484 215 121 77 54 40 30 24 19 

.04 2556 639 284 160 102 71 52 40 32 26 

.05 3162 790 351 198 126 88 65 49 39 32 

.06 3754 939 417 235 150 104 77 59 46 38 

.07 4333 1083 481 271 173 120 88 68 53 43 

.08 4899 1225 544 306 196 136 100 77 60 49 

.09 5452 1363 606 341 218 151 111 85 67 55 

.1  5991 1498 666 374 240 166 122 94 74 60 

.15 8487 2122 943 530 339 236 173 133 105 85 

.2 10650 2663 1183 666 426 296 217 166 131 107 

.25 12481 3120 1387 780 499 347 255 195 154 125 

.3 13978 3495 1553 874 559 388 285 218 173 140 

.35 15143 3786 1683 946 606 421 309 237 187 151 

.4 15975 3994 1775 998 639 444 326 250 197 160 

.45 16475 4119 1831 1030 659 458 336 257 203 165 

.5  6641 4160 1849 1040 666 462 340 260 205 166 

 

NCBA&E



Sampling Procedures and Sample Size Estimation  112 

Table 3.14  
Estimation of sample size with relative precision (95%) 

 PD .01 .02 .03 .04  .05 .06 .07 .08 .09 

.01 3803184 950796 422576 237699 152127 105644 77616 59425 46953 

.02 1882384 470596 209154 117649 75295 52288 38416 29412 23239 

.03 1242117  310529 138013 77632 49685 34503 25349 19408 15335 

.04 921984 230496 102443 57624 36879 25611 18816 14406 11383 

.05 729904 182476 81100 45619 29196 20275 14896 11405 9011 

.06 601851 150463 66872 37616 24074 16718 12283 9404 7430 

.07 510384 127596 56709 31899 20415 14177 10416 7975 6301 

.08 441784 110446 49087 27611 17671 12272 9016 6903 5454 

.09 388428 97107 43159 24277 15637 10790 7927 6069 4795 

.1 345744 86436 38416 21609 13830 9604 7056 5402 4268 

.15 217691 54423 24188 13606 8708 6047 4443 3401 2688 

.2 153664 38416 17074 9604 6147 4268 3136 2401 1897 

.25 115248 28812 12805 7203 4610 3210 2352 1801 1423 

.3 89637 22409 9960 5602 3585 2490 1829 1401 1107 

.35 71344  17836 7927 4459 2854 1982 1456 1115 881 

.4 57624 14406 6403 3601 2305 1601 1176 900 711 

.45 46953 11738 5217 2935 1878 1304 968 734 580 

.5 38416 9604 4268 2401 1537 1067 784 600 474 

.55 31431 7858 3492 1964 1257 873 641 491 388 

.6 25611 6043 2846 1601 1024 711 523 400 316 

.65 20686 5171 2298 1293 827 575 422 323 256 

.7 16464 4116 1829 1029 669 457 336 257 203 

.75 12805 3201 1423 800 512 366 261 200 158 

.8 9604 2401 1067 600 364 267 196 150 119 

.85 6779 1695 753 424 271 188 138 106 84 

.9 4268 1067 474 267 171 119 87 67 53 

.95 2022  505 225 126 81 56 41 32 25 
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Table 3.15 
Estimation of sample size for relative precision (99%) 

PD .01 .02 .03 .04 .05 .06 .07 .08 .09 

 .01 6589836 1647459 732204 411865 263583 183051 134486 102966 81356 

.02 3261636 815409 362404 203852 130465 90601 66564 50963 40267 

.03 2152236 538059 239137 134515 86089 59784 43923 33629 26571 

.04 1597536 399384 177504 99846 63901 44376 32603 24962 19723 

.05 1264716 316179 140524 79045 50589 36131 25811 19761 15614 

.06 1042836 260709 115871 66177 41713 28968 21282 16294 12875 

.07 884350 221088 96261 55272 35374 24565 18048 13818 10918 

.08 765486 191372 85054 47843 30619 21264 15622 11961 9450 

.09 673036 168259 74782 42065 26921 18695 13735 10516 8309 

.1 599076 149769 66564 37442 23963 16641 12226 9361 7396 

.15 377196 94299 41911 23575 15088 10478 7698 5894 4657 

.2 266256 66564 29684 16641 10650 7396 5434 4160 3287 

.25 199692 49923 22188 12481 7988 5547 4075 3120 2465 

.3 156316 36829 17257 9707 6213 4314 3170 2427 1917 

.35  123619 30905 13735 7726 4945 3434 2523 1932 1526 

.4 99846 24961 11094 6240 3994 2774 2038 1560 1233 

.45 81366 20339 9040 5085 3254 2260 1660 1271 1004 

.5 66564 16641 7396 4160 2663 1849 1358 1040 822 

.55 54461 13615 6051 3404 2178 1513 1111 851 672 

.6 44376 11094 4931 2774 1775 1233 906 693 548 

.65 35842 8961 3982 2240 1434 996 731 560 442 

.7 28527 7132 3170 1783 1141 792 582 446 352 

.75 22198 5547 2465 1387 888 616 453 347 274 

.8 18641 4160 1849 1040 666 452 340 260 205 

.85 11747 2937 1305 734 470 326 240 184 145 

.9 7396 1849 822 452 296 205 151 116 91 

.95 3503 876 389 219 140 97  71 55 43 
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Table-3.16: (Percentile of t-distribution) 

 
0 

 

d.f/  t.90 t.95 t.975  t.99  t.995 

1 3.078 6.3138 12.706 31.821 63.6570 

2 1.886 2.9200 4.3027 6.965 9.9248 

3 1.638 2.3534 3.1825 4.541 5.8409 

4 1.533 2.1318 2.7764 3.747 4.6041 

5 1.476 2.0150 2.5706 3.365 4.0321 

6 1.440 1.9432 2.4469 3.143 3.7074 

7 1.415 1.8946 2.3646 2.998 3.4995 

8 1.397 1.8595 2.3060 2.896 3.3554 

9 1.383 1.8331 2.2622 2.821 3.2498 

10 1.372 1.8125 2.2281 2.764 3.1693 

11 1.363 1.7959 2.2010 2.718 3.1058 

12 1.356 1.7823 2.1788 2.681 3.0545 

13 1.350 1.7709 2.1604 2.650 3.0123 

14 1.345 1.7613 2.1448 2.624 2.9768 

15 1.341 1.7530 2.1315 2.602 2.9467 

16 1.337 1.7459 2.1199 2.583 2.9208 

17 1.333 1.7396 2.1098 2.567 2.8982 

18 1.330 1.7341 2.1009 2.552 2.8784 

19 1.328 1.7291 2.0930 2.539 2.8609 

20 1.325 1.7247 2.0860 2.528 2.8453 

21 1.323 1.7207 2.0796 2.518 2.8314 

22 1.321 1.7171 2.0739 2.508 2.8188 

23 1.319 1.7139 2.0687 2.500 2.8073 

24 1.318 1.7109 2.0639 2.492 2.7969 

25 1.316 1.7081 2.0595 2.485 2.7874 

26 1.315 1.7056 2.0555 2.479 2.7787 

27 1.314 1.0733 2.0518 2.473 2.7707 

28 1.313 1.1701 2.0484 2.467 2.7633 

29 1.311 1.6991 2.0452 2.462 2.7564 

30 1.310 1.6973 2.0423 2.457 2.7500 

35 1.3602 1.6896 2.0301 2.438 2.7239 

40 1.3031 1.6839 2.0211 2.423 2.7045 

45 1.3007 1.6794 2.0141 2.412 2.6896 

50 1.2987 1.6759 2.0086 2.403 2.6778 

60 1.2959 1.6707 2.0003 2.390 2.6603 

70 1.2938 1.6669 1.9945 2.381 2.6480 

80 1.2922 1.6641 1.9901 2.374 2.6388 

 

t  
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Chapter 4 
 

Hypothesis Testing Procedures 
 

4.1 Introduction 

Generally there are two methods available and widely used for making inferences about 

the population parameters i.e. 

(a)  Inference may be drawn through confidence limits. 

(b)  Inference may be drawn about specific value of the population through testing of 

hypotheses. 

 

Though the confidence intervals and testing of hypotheses are related and either can be used 

in making decision about the population parameters yet the decision can be made in a more 

effective way by the use of testing of hypothesis procedure. Two examples are given to 

explain how the method of confidence intervals is used to make decision about a parameter.  

Example 4.1:  
Suppose a research worker, working for the Environmental Protection Agency [EPA] 

wants to determine whether the mean level of a certain type of pollutant released into the 

atmosphere by a certain chemical company meets the guidelines set by the EPA. If 4 

parts per million is the upper limit allowed by the EPA then the research worker will use 

a sample data (i.e. daily pollution measurements) to decide whether the mean is greater 

than 4. If, for example, 95% confidence interval for mean contains numbers greater than 

4, then the research worker would suspect that the mean exceeds the established limits. 

Example 4.2: 

Suppose that a certain hospital purchases some syringes from a manufacturer. The 

manufacturer claims that not more than 1% of the equipments are defective. It is not 
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possible for hospital authority to test each and every syringe; they will take a random 

sample to test the defective items. The hospital authority wants to see whether the 

proportion of defective items exceeds 1% or not, based on the information contained in 

the sample. If the sample proportion falls inside the confidence limits of 1% then the 

hospital authority will accept the lot, otherwise, the lot will not be accepted.   

This is how inferences are drawn through confidence intervals. 

Whenever any research worker in any field wants to test a new theory, he always first 

formulates a hypothesis that provides an explanation of his experience. He makes some 

assumptions about some characteristic of a population, tries to support it by information 

obtained from sample data. These assumptions are called hypotheses. This is the 

beginning of the concept of testing of hypotheses. The purpose of hypothesis testing is to 

help the research worker in making decision for the population on the basis of the 

information collected through sample. For example, we may examine a manufacturer's 

claim that his drug on the average is more effective than an alternative drug already 

available in the market. We will reach the decision through a sample of patients on whom 

the drugs are tried. 

Before we pass on to the application of testing of hypotheses it is useful and important to 

explain some basic terms to understand the concept of testing of hypothesis. More 

precisely one must understand what statistical hypothesis is? How should the tests be 

performed? What types of errors one can face? How to draw conclusion(s) regarding 

parameter(s) on the basis of sampled observations? What p-value is? 

4.1.1 Hypothesis or a Statistical Hypothesis 

As mentioned earlier, a research worker always makes certain assumptions, when he 

wants to test a new theory. In statistics, it is known as a hypothesis. A hypothesis or a 

statistical hypothesis is a statement about the specified value(s) of the parameter(s). In its 

most general form a statistical hypothesis tells us something about this distribution of an 

observed random variable. This statement may be true or may not be true. In fact this is a 

baseline to start the experiment. We set up two types of statistical hypotheses, viz. 

 (i) Null hypothesis H
0
 and (ii) Alternative hypothesis H

1
 

The Null Hypothesis states that there is no difference between the specified or stated 

value (µ0 = mean or P0= proportion) and actual unknown values of µ, or P of the 

parameters. An initial hypothesis of equivalence of two statements is called Null 

Hypothesis. For example, a manufacturer of some brand of cigarette claims that 30% of 

the smokers prefer his brand of cigarettes. The null hypothesis will be, that the claim of 

the manufacturer is correct. A manufacturer of a drug claims that the drug manufactured 

by him is more effective than the drug already available in the market. The null 

hypothesis states that there is no difference between the efficacies of the two drugs. 

An alternative hypothesis states that the specified or stated value and an actual unknown 

value of the parameter are not equivalent or the null hypothesis is not true. In the first case 

  H
0
: P = 0.30   (null hypothesis) 

  H
1
 : P > 0.30   (alternative hypothesis) 
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and in the second case  

  H
0
 : P

1
 = P

2
 (There is no difference between two types of drugs: null hypothesis) 

  H
1
: P

1
> P

2
 (Drug one is superior to that of the second drug: alternative hypothesis) 

There is an unstated willingness on this part of the investigator to accept H1 in case 

he/she rejects H0. 

An accepted convention in the simple testing of hypotheses is to write null hypothesis 

(H0) with an equality (=) sign and the alternative could be greater (>) or less (<) or not 

equal () depending on the problem. If not equal () then it is called two-tail test 

otherwise it is known as one-tail test. The one-tail and two-tail tests are explained in the 

following subsections: 

4.1.2 One-tail and Two-tail Test 

One-tail test is that in which alternative hypothesis is directional. This includes either 

less (<) or greater (>), i.e. unknown mean or proportion is either greater or less than 

specified or stated mean or proportion. Two- tail test is one in which the alternative 

hypothesis does not specify departure from null hypothesis in particular direction. One-

tail and two-tail tests are explained in Table 4.1 and Table 4.2  

 
Table 4.1 

 One-tail test of mean and proportion for one sample and two samples 

 Mean Proportion 

One 
sample 

H
0
  :  µ   =   µ

0
 

H
1
  :  µ   >   µ

0
 

H0  :  P   =   P
0
 

H1  :  P   >   P
0
 

Two 
samples 

H
0
  :  µ

1
  =  µ

2
 

H
1
  :  µ

1
>  µ

2
 

H0  :  P1
  =  P

2
 

H1
  :  P

1
>  P

2
 

 
Table 4.2 

Two-tailed test of  mean and proportion for one  and two samples 

 Mean Proportion 

One 
sample 

H0  :  µ   =   µ0 

H1  :  µ      µ0 

H0  :  P   =   P0 

H1  :  P      P0 

Two 

Samples 

H0  :  µ1  =  µ2 

H1  :  µ1  µ2 

H0  :  P1  =  P2 

H
1
  :  P1  P2 

An incidence of tuberculosis among people living in Eastern Province of Saudi Arabia is 

known to be not more than 0.03. After conducting a medical survey, the researcher 

believes that the incidence is much higher. The researcher is interested in detecting 

whether true incidence of tuberculosis is larger than 0.03. He forms the null and 

alternative hypotheses (one-tail) as:- 

H0 : P   =   0.03 

H1 : P   >   0.03 
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If the researcher is interested in detecting that there is no difference between incidences 

of two provinces of Saudi Arabia, then his null and alternative hypotheses (two-tail) are 

H0 : P1   =   P2 

H1 : P1   P2 

4.1.3 Level of Significance () 

The probability of rejecting the null hypothesis, when the null hypothesis is true is called 

the level of significance or probability of type I error. This probability is generally 

specified before the sample is drawn. Level of significance is generally chosen either 1% 

or 5%. In medical trials, because human lives are involved therefore, sometimes level of 

significance may go as low as 0.1% or even 0.05%. When we say that the level of 

significance is 5%, we mean that there are 5 in 100 chances that the null hypothesis is 

rejected when it is in fact is true and we are 95% confident regarding our decision. 

Commonly, the level of significance is denoted by the Greek letter  (Alpha). 

4.1.4 Confidence Level (1 - ) 

The complement of probability  is (1 -  that is called confidence level or confidence 

coefficient. It gives the probability of accepting H0 whenever it is true. 

4.1.5 A Critical Value 

A critical value is a boundary or separation point between rejection and acceptance 

regions. For example if we choose 5% level of significance, then the boundary points for 

a two-tailed test (critical values) at 5% level of significance are -1.96 and 1.96, see Fig. 

4.1. 

 

Fig. 4.1: Critical values 

The points beyond 1.96 and  -1.96 are called rejection regions and points between -1.96 

to 1.96 is known as acceptance region for two-tail- test. The points -1.96 and 1.96 are 

called critical values. If it is a one-tail-test then for the same level of significance, the 

rejection and acceptance regions are shown in Fig. 4.2. A critical value depends on the 

level of significance of the test. For large sample, the critical values or a critical z-value 

for one-tail and two-tail tests, commonly used are as given in Table 4.3. 

 

 
 

Reject 
H0 

–1.96 
z 

0 

/2=.025 /2=.025 

 
 

Reject 
H0 
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Table 4.3 
Level of Significance for Acceptance Region for  

One-tailed and two tailed tests 

Level of 
Significance 

Two-tail 
test 

One-tail test 

1% 

5% 

-2.58  to  +2.58 

-1.96  to  +1.96 

-2.33   to  +   or  -   to   2.33 

-1.645   to  +  or  -   to   1.645 

 
Rejection Region        Acceptance Region 

 
Acceptance Region       Rejection Region 

Fig. 4.2: Rejection and acceptance regions for given level of significance 

4.1.6 Test Statistic 

A decision based on a sample, is made to reject or accept null hypothesis. These 

decisions depend on the value of some statistic with a probability distribution  Such a 

statistic is called a test- statistic. 

4.1.7 Type I and Type II Errors 

The main aim of the testing of the hypotheses is to make decision whether to accept or 

not to accept the null hypothesis in favour of an alternative hypothesis. We always like to 

make correct decision, but this decision depends on the sampled observations. In spite of 

every precaution taken, there is a chance of committing an error. We may reject null 

hypothesis when it is true or we may accept the null hypothesis when it is false. 

Therefore, two types of errors may be committed during the process of testing of 

hypothesis, which are known as Type I and Type II errors. 

Type I error occurs when the null hypothesis is true and it is not accepted whereas Type 

II error occurs when the null hypothesis is false and it is accepted. The probability of 

committing Type I error is denoted by  (Alpha) whereas the probability of committing 

Type II error is denoted by (Beta). There is an interesting relationship between the 
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probabilities of two types of errors for a fixed sample size. If one increases the other 

decreases and if one decreases, the other increases.  

There are four possibilities regarding the correctness of the decision in any hypothesis 

test. These possibilities are explained in Table 4.4 on next page. 

We see in Table 4.4 that false positive corresponds to Type I error and false negative 

corresponds to Type II error 

 

Table 4.4 
Types of Errors 

              Decision   

Hypothesis  

 
Accept H

0
 

 
Reject H

0
 

 
H0  is  true 

True  + 
Correct decision 

False  + 
Type I error 

 
H0  is  false 

False  - 
Type II error 

True  - 
Correct decision 

Note that Type I error is more serious than Type II error. If H0 is rejected then usually 

one is not clear about what to substitute in its place. So we want to avoid unnecessary 

rejection of a true H0. The conventional practice is to ensure that probability of Type I 

error is controlled below a predetermined level of tolerance and then to choose among 

these tests, the one with the smallest possible probability of Type II error i.e. to fix 

probability of Type I error and then select an appropriate test which minimizes 

probability of Type II error. 

In practice, we are very careful in stating the decision. If sampled observations do not 

provide sufficient evidence to support the null hypothesis, we prefer the decision, and 

say, we fail to reject the null hypothesis. If we were to accept the null hypothesis, the 

reliability of the conclusion is measured by the probability of Type II error. The power of 

test for testing the hypothesis under consideration where x  A is unknown. For given 

and , we have the following two equalities for determining these values. 

  
 












 






xd
2

xn
exp

2

n

A

2
o                  (4.1) 

and 

  

 














 






1xd
2

xn
exp

2

n

A

2
1                 (4.2) 

hold. 

Let us write A = nz0   where z is chosen in such a way that for a random 

variable y with normal distribution N(0,1), P( Z  z ) = . From (4.2), we have  

A = nz1  , where z is chosen in such a way that P[Z  z] = . 

  

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

121 

From the equality: 

  
n

z

n

z
10

  , 

we obtain 

  
 
 201

2
zz

n






                      (4.3) 

and 

  









zz

zz
A

01
                     (4.4) 

 
Fig. 4.3: The power of a test  

The power 1- is defined as the probability of acceptance of H1 when it is true or 

rejecting of H
0
 when it is false. Unfortunately the probability of Type II error is not 

constant, but depends on the specific alternative value of the parameter. In order to 

calculate Type I error and Type II error some examples are given   

The purpose of presenting examples is not that health scientists should calculate and find 

amounts of probabilities of Type I and Type II errors but the main objective is to show 

how the probabilities of Type I and Type II errors behave with the increase of sample 

size, so that one should be careful in testing of hypotheses. 

Example 4.3.  

In a large school of USA, the proportion of high school students that regularly use some 

form of illegal drug is reported to be 0.50. The school authority took a random sample of 

200 students and it was found that 45% of the students were using illegal drug. If the rule 

of rejection is to calculate Z and reject H0 whenever Z ≤ -1.60 

i. Would you reject H0?. 

ii. Calculate the probability of Type I error. 
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Solution:  

  H
0
 : P = 0.50 

  H
1
 : P < 0.50 

Since  p  =  0.45  therefore,  P(Type I error)  =  P(p  <  0.45) 

We know from Chapter 2 

  Z  =

200

50.050.0

50.045.0




=  

035.0

05.0
=  -1.43 

(i) We will not reject as the calculated value of Z, is less than -1.60 

(ii) The probability of type I error for Z=+1.43 will be calculated as: 

  =P [p  <  0.45]   =   P[Z    1.43]   =   0.076  (Table 2.6).  

Therefore, one is planning to use about 7.6% level of significance. 

Probability of Type I or Type II error relate to a well-defined rule of rejection. For 

example if you decide that you will reject H0 whenever Z calculated exceeds a given 

value (say 1.64). Then correspondingly to this you say probability of Type I error is such 

and such.  

Example 4.4: 

For a certain hypothesis H
0
 : µ = 50  versus  H

1
 : µ > 50.  Suppose  = 9.0. Calculate 

probability of Type I error for the following cases: 

i)  A random sample of 40 observations was taken and found that sample mean is 52.0. 

ii) A random sample of 60 observations was taken and found that sample mean is 52.0. 

iii) A random sample of 120 observations was taken and found that sample mean is 52.0. 

Comment what happens if sample mean is fixed and sample size is increasing. 

Solution:   

 (i)  H
0
  :  µ  =  50 

  H
1
  :  µ  >  50 

 Sample mean ( x ) = 52, n=40, and  =9.0) 

  Z= 

40

9

5052 
 = 

9
2 x 40    =   1.40  

 Therefore, the probability of type I error is 

   = P[Z  >  1.40]  =  0.0808  (From Table 2.6)  =  8% 

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

123 

 

 (ii) H
0
  :  µ  =  50 

  H
1
  :  µ  >  50 

  Z = 

60

9

5052 
=  
9
2

x  60    =   1.72 

 Therefore, the probability of type I error is 

   = P[Z  >  1.72]  =  0.0427  (From Table 2.6)  =  4.3% 

 iii) H
0
  :  µ  =  50 

  H
1
  :  µ  >  50 

  Z = 
52 50

9

120


= 
9
2

x  120    =   2.43 

 Therefore, the probability of type I error is 

   = P[Z  >  2.43]  =  0.0075  (From Table 2.6)  = 0 .75% 

We find that if sample size increases probability of Type I error decreases provided 

variance is the same. 

Example 4.5: 

A quality control worker is going to check a large production of drug. If the lot has 5% or 

fewer defectives than the lot is of acceptable quality. He took a random sample of 100 

tablets of certain drug and found that the defective rate is 12%. For 1% level of 

significance, calculate probability of Type II error (). 

Solution: 

  H0 P = 0.05 

  H1  P > 0.05 

  Z  value is 2.33 at 1%       n  =  100 

  Actual sample proportion (p)  =  0.12 

The calculated proportion comes out to be 

  100

95.005.0

05.0p̂
33.2




  

  

NCBA&E



Hypothesis Testing Procedures 

 

124 

Solving this, we get: 

  101.0p̂   

or 

  
p̂    =   0.05  + 2.33 

0.05 × 0.95

100
  = 0.101. 

Now 

  Z = 0.101 - 0.120

0.12 × 0.88

100

  =   -0.59 

Therefore, the probability of type II error is 

   = P [ p̂
 
< 0.101]   =   P [Z  <  -0.59] =  0.2776 

The probability is about 28% that the quality worker will fail to detect that the proportion 

of defectives for this production is actually larger than 0.05 (5%). 

Note that 1 –  is the power of the test, this represents the probability that null 

hypothesis is rejected when it is false. In the above example, power of the test will be  

1 - 0.2776 = 0.7224. There is about 72% probability that null hypothesis is rejected when 

null hypothesis is false. Note that for fixed sample size power increases as  increases 

and for fixed level of significance, power increases as n increases. The power of the test 

may be stated as: 

The power of a test is the probability that the test will lead to rejection of the H
0
 when, in 

fact, H
1
 is true. 

Example 4.6: 

For hypothesis test H
0
 : µ  =  50.0 against  H

1
 : µ  <  50.0  and  = 0.05,   = 9.0. 

 (a) Calculate  if  µ = 48.0  and  n = 36 

 (b) Calculate  if  µ = 48.0  and  n = 81 

How does behave with the sizes of samples?   

Solution: 

 (a) H
0
 : µ   =   50.0   

  H
1
 : µ   <   50.0  9.0 

  0.05 

       Z = -1.645  for  95%  one-tailed test. 

 Sample mean  ( x )  =  50.0 - 1.645 
36

9 =  47.53 
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  Z = 

36

9

4853.47 
=   -0.31 

  = P [ x >  47.53] = P[Z  > -0.31] = P[Z  <  0.31]  =  0.6217 

 (b) x = 50.0  -  1.645  
81

9 =  48.355 

 Z = 

81

9

48355.48 
=   0.355 

  = P[ x >  48.355]  =  P[Z  >  0.355]   =  P(Z < -0.355)  =   0.3632 

 As the size of the sample increases,  decreases. 

4.2 Estimation of Sample size when Probability of Type I Error  

and Power of the test are known 

We know that type I and Type II errors cannot be controlled simultaneously. If we try to 

control Type I error then type II will go up and vice versa. In Chapter 3 we described the 

methods of estimation of sample size by fixing the type I error and Type II error was 

controlled by large sample size. In medical science, sometimes we are forced to a small 

sample size. What we do, we fix the probability of type I error and also fix the probability 

of Type II error in term of Power of the test then the calculation of sample size is made. 

Since calculations are bit cumbersome, therefore for the convenience of the users they are 

given in different tables at the end of the Chapter.  

4.2.1 Sample size for comparing proportions 

  

          
 

,
)a(P)0(P

0P10PBaP1aPA
n

2

2




          (4.5) 

where A and B are given for various level of significance. P(0)= present proportion, 

P(a)= anticipated proportion. Find sample size n from (4.5). 

(i) For 5% level of significance and 90% power (two sided), A=1.96,B=1.28  

(Table 4.10) 

(ii) For 1% level of significance and 90% power (two sided), A=2.58,B=1.28  

(Table 4.11). 

(iii) For 5% level of significance and 90% power(one sided), A=1.645, B=1.28 

(Table 4.12) 

(iv) For 1% level of significance and 90% power(one sided), A=2.58, B= 1.28 

(Table 4.13) 
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(v) For 5% level of significance and 80% power(two sided), A=1.96, B=0.84  

(Table 4.14) 

(vi) For 1% level of significance and 80% power(two sided) A=2.33, B=0.84  

(Table 4.15) 

(vii) For 5% level of significance and 80% power (one sided), A=1.645, B=0.84 

(Table 4.16) 

(viii) For 1% level of significance and 80% power (one sided), A=2.33, B=0.84 

(Table 4.15) 

Some more examples are given below: 

Example 4.7: 

An investigator wants to know the size of the sample in his study if he uses intermittent 

pneumatic (IPC) to prevent Deep Venous Thrombosis (DVT) following total hip 

replacement. He states that 70 patients in each group gives a probability of 80% of 

detecting a 20% difference (from the estimated frequency of 10%) between the three 

therapies groups when p is less than 5%. How large sample size is needed in the study in 

order to detect an overall reduction from previous studies that indicate 20-50% of patients 

develop DVT? It is assumed that investigator wants 80% power of detecting a decrease in 

rate of DVT from 20% to 10%. 

Solution: 

From this example we can easily extract following information. 

Test rate = 20% = P(0); anticipated rate = 10% = P(a); level of significance = 5% or 1%; 

power of the test = 80% (probability of type II error is 20%). The size of sample may be 

seen from the corresponding table(4.14), given at the end of the chapter. The sample sizes 

are reproduced below. 

 

Level of significance and sample sizes 

 5% 1% 

Two-tailed 108 165 

One-tailed 83 141 

Example 4.8: 

The five years cure rate for a particular cancer (the proportion of patients free from 

cancer five years after treatment) is reported in the literature to be 50%. An investigator 

wishes to test the hypothesis that his cure rate applies in a certain local health district. 

What minimum sample size would be needed if the investigator was interested in 

rejecting the null hypothesis only if the true rate was less than 50% and wanted to be 90% 

sure of detecting a true rate of 40% at 5% level of significance? 

Solution: 

True cure rate = 50%=P(0), anticipated cure rate = 40% = P(a); level of significance 5% 

or 1% and power of the test =90% (probability of type II error is 10%) 

The sample size for various levels of significance may be seen from the tables. The 

sampling sizes for all these cases are reproduced below. 
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Level of significance and sample sizes 

 5% 1% 

Two-tailed 259 368 

One-tailed 211 322 

Example 4.9: 

Previous surveys have demonstrated that the usual prevalence of dental caries among 

school children in a particular community is about 25%. How many children should be 

included in a new survey design to test for decrease in the prevalence of dental carries, if 

it is designed to be 90% sure of detecting a rate of 20% at 5% level of significance? 

Solution: 

Test caries rate = 25%=P(0); anticipated rate = 20%=P(a); power of the test = 90%; level 

of significance 5% or 1%. The tables are used to find the sizes of the samples: 

 
Level of significance and sample sizes 

 5% 1% 

two-tailed 741 1062 

one-tailed 600 926 

4.2.2 Sample size for a single mean 

We know that:  

  
n/

x
Z 0




  and 

n/

x
Z 1




  

Solving these two critical ratio for sample size n, we get:  

 
    

2

01

ZZ
n 












                      (4.6) 

where Z(a) =value against given level of significance; Z() =table value against given 

power;1 = given mean;  0= expected mean and  = standard deviation. If  = 1, then 

(4.6) is identical to (4.3). 

Example 4.10: 

Suppose the investigator wants to know whether PIMAX (maximal inspiratory mouth 

pressure) is the same in patients with kyphoscoliosis and in normal patients without 

kyphoscoliosis. Suppose the investigator wants the type I error to be 0.05 and he wants a 

0.90 probability of detecting a true difference. His past experience is that the mean 

PIMAX is 110 cmH2O in normal patients with a standard deviation of 20cm H2O. 

Suppose the investigator wants to be able to say that mean PIMAX of 80cm H2O or less 

in kyphoscoliosis patients is significantly different from normal. What would be the 

sample size to achieve this target? 
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Solution: 

Level of significance for 5%, then  96.1)05.0(  .Lower tail z-value (Power) for 

90%, 28.1)10.0(  . Given mean = 110; expected mean 80 and standard deviation = 20.  

Then using (4.2) we get that sample size is 5. 

4.2.3 Sample size for Comparing of two proportions 

  

         
 

,
)c(P)t(P

cP1)c(PtP1)t(PBcP1)c(PA
n

2

2






    

(4.7) 

where A and B are defined in (4.1), p( c ) = proportion of control group and  

P(t) = proportion of treatment group. 

Example 4.11:  

A randomized trial was used to evaluate the efficacy of J5 antiserum in presenting the 

serious consequences of gram-negative infection. This study involved a trial J5 antiserum 

in surgical patients to determine whether it is effective in preventing gram-negative 

infections. The actual study utilized 126 patients in the treatment group and 136 in the 

control group. Let us suppose that an investigator prior to doing the study wants to 

estimate the sample size needed to detect a reduction in proportion of patients who 

experience shock from 10% level according to the investigator’s previous experience to 

5% or less if patients are given transfusions from donors treated with J5. He is willing to 

accept a type I error of 0.05 and wants a 90% probability of detecting a true difference. 

Determine the sample size under this situation for each group. 

Solution: 

Proportion in the control group = P(c) = 10%; proportion in the treatment group = P(t)  

= 5%; level of significance = 5% [ 1.96 = Z(a)]; power of the test = 90% [table value  

= 1.28 = Z(b)]. Using (4.3) we get n = 682, the sample size for each group. Suppose the 

sample size is large and the chances are that the investigator will compromise and 

recalculate the sample size with less power or a larger difference. If we take the same 

difference and reduce the power from 90% to 70% (table value for 70% is approximately 

0.52) the sample size comes out to be 420 for each group. Again if he needs to detect a 

drop in the infection rate from 10% to 3% with power 70% then the sample size will be 

208 for each group. 

4.3 Diagnosing a Test-Statistic for Testing of Hypotheses and p-Value 

4.3.1 Diagnosing a Test-Statistic 

The manner in which the test-statistic is actually used depends on the parameter of 

interest. For example, if for large sample, we are interested to test population mean or 

proportion, and then the test-statistic for both will not be the same. If a variance is to be 

tested, then different test-statistic will be used. How to proceed to diagnose a test-

statistic, is first to determine the parameter of interest. What the researcher needs is very 

important.  Three steps will be useful to diagnose a test-statistic. 
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i)  First, try to understand the objectives for which the data are collected or 

measurements are taken. 

ii)  Second, try to identify the type of variable(s), whether measurements are 

qualitative or quantitative in nature. 

iii)  Third, try to identify the parameter(s) to be tested. 

Note that, if the variable is quantitative, then parameter may be either population mean or 

population variance and if it is qualitative, the parameter may be population proportion. 

If one looks into your objectives minutely, the problems can be solved easily. If it is a 

written statement then there is certainly an indication, and the hypothesis can be 

formulated easily. Let us try to guide how to formulate the hypothesis through these 

examples.   

There is one glass of Pepsi and another glass of Mecca-Cola and it is required to select 

one, which tastes best.  Here experimental units are the consumers and the variable under 

study is qualitative. Therefore, the parameter of interest is the proportion of population 

who favor Mecca-Cola over PEPSI or vice-versa. 

A dietician would like to see whether a new diet is effective in reducing weight of an 

obese woman. Here the experimental women will be obese women and the variable to be 

measured is quantitative. The dietician will be comparing mean weight before and after 

the completion of course. 

A manufacturer of a new drug claims that his drug is more effective than the one already 

available in the market. Naturally the experimenter will select two groups to see the 

effectiveness of these two types of drugs in terms of proportions and these proportions 

will be compared. 

4.3.2 p -Value 

Since it is difficult to understand the concept of p-value for non-statisticians, therefore, 

some remarks on p-value is devoted in this section. We know that in testing of 

hypotheses we choose the level of significance beforehand. The null hypothesis is 

accepted if the calculated value of test-statistic is less than the corresponding value at the 

level of significance. If both values are equal, we say that one is in a critical situation. 

There is one drawback that the test be conducted in this manner. A measure of the level of 

significance of the test results is not readily available. If the value of the test-statistic falls 

in the rejection region, we have no measure of the extent to which the data disagree with 

the null hypothesis. 

Consider the null hypothesis that the average weight of the university students is 68.5 kg 

to be tested against alternative hypothesis that the average weight is greater than 68.5 at 

fixed 5% level of significance. Consider the following possible values of the computed 

test-statistic (z-statistic) 

  Zc  =  2.01  and  Zc  =  3.87, 
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which of these values of test-statistic provides stronger evidence for the rejection of null 

hypothesis? How can we measure the extent of disagreement between the sample data 

and null hypothesis for each of the computed value? 

We know that at 5% level of significance the Z-value for one-tailed test is 1.645. Both 

computed values are greater than 1.645 and falls in the rejection region, therefore the 

result in each case is statistically significant.  

Note that Z-test-statistic of population mean is simply Z-score (Chapter 1, Section 1.9.6). 

Therefore, Z-score of 3.87 would present strong evidence that the true mean is larger 

than 68.5 kg. 

One way of measuring the amount of disagreement between sample mean and the value 

of population mean or proportion in the null hypothesis is to calculate the probability that 

the observed value of the test-statistic equals to or greater or less than the actual 

computed value under null hypothesis. The disagreement between sample statistic and 

population parameter H0 can be measured as: 

p-value = P[Z  > Zc] upper one-tailed 

p-value = P[Z  <  Zc] lower one-tailed 

p-value = P[Z    |Zc|]  two-tailed 

where  Zc  is the computed value of the test-statistic. From Table 2.1 we can calculate the 

probability. 

P(Z    2.01)   =   1  -  0.9778   =   0.0222  and 

P (Z    3.87)  =   1  -  0.9999   =   0.0001 

We can draw a conclusion that smaller the probability (p-value), greater is the extent of 

disagreement between sample statistic and population parameter (mean or proportion).  

Note that the p-value for the two-tailed test is twice the p-value of one-tailed test.   

Thus we can say that p-value is the maximum probability of rejecting the null hypothesis, 

when null hypothesis is true. Some statisticians referred to p-value as the observed level 

of significance of the test under consideration. In fact, for computer it is easy to calculate  

p-value but it takes much longer time to calculate the test-statistic value for a given  

-value.  

In most of the medical journals, dissertations and technical reports test-statistics and  

p-values associated with the tests are mentioned and it is left to the research workers to 

draw conclusions whether to accept or not to accept the null hypothesis. 

There are two advantages of reporting the results in the form of test-statistic and p-value: 

a)  Most software packages (like SPSS or SAS) present a p-value. This makes it easy 

for the researcher to decide whether to accept or not to accept the null hypotheses. 

b)  Researchers are allowed to select the maximum value of the level of significance 

that they would be willing to tolerate in carrying out standard tests of hypothesis. 
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One should follow two points to decide whether to accept the null hypothesis or not, 

when the results are presented in the form of p-values. 

i) Choose the maximum value of the level of significance (1%, 5%, 10%, .....) that 

one is willing to tolerate. 

ii) If p-value of the test is less than the stated -value (given level of significance) 

then do not accept the null hypothesis otherwise accept the null hypothesis. 

 

Fig. 4.4: Performing a hypothesis test 

4.4 General Procedure of Testing of Hypothesis 

There are several steps in testing of hypothesis, which lead to a conclusion to accept or 

not to accept the hypothesis. These steps are common for all types of tests of 

significance. These general steps lead us to the final decision about the null hypothesis. 

Step 1: Write two statements, which are appropriate concerning value of the parameter 

i.e. to state null and alternative hypotheses.   

Step 2:  State whether the test is a one-tailed or a two-tailed test. 

Step 3: Choose the level of significance. Usually 1% or 5% level of significance is 

chosen. 

Step 4:  State an appropriate test-statistic to be used. 

Step 5:  Calculate the value using the test-statistic mentioned in Step 4. 

Step 6:  State the decision rule for the acceptance of null hypothesis. The decision rule 

is to accept the null-hypothesis if calculated value is less (larger) than table 

value at a given level of significance otherwise do not accept the null 

hypothesis. 
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 Health scientists usually interpret the result in terms of p-value (observed level 

of significance). If the observed p-value is less than the stated p-value (given 

level of significance), then the null hypothesis is not accepted. 

Step 7: Draw the inference about the parameter on the basis of the above steps. 

All these steps are given in the flow chart Fig. 4.5 (next page) 

4.5 Tests of Significance 

The following tests of significance will be discussed in this section. 

 

Tests for mean and proportion Tests for variance 

Z-test 2 -test 

t-test F-test 

If the condition of normality is satisfied we use parametric tests. If the responses are 

distribution free then we use non-parametric tests  (non-parametric tests will be discussed 

in Chapter 8). The lay out for the tests of means and proportions (Z and t) on next page: 

 

Layout of the Test of Significance - I 

Test  for Means and Proportions

Small sample Large sample

Population

variation known

Population

variation known

Population variance

not known

Population variance

not known

Z-test t-test Z-test t-test

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

133 

Steps of General Procedure of the testing of Hypothesis 

 

  

 

  

 

 

  

 

 

   

  

 

 

   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: Flow chart of the testing of hypotheses 

 

Level of significance 

Calculate p-value 

Comparison of observed 
p-value (table value) and 

calculated p-value 

If calculated p-value is 
less than observed p-

value do not accept the 
hypothesis otherwise 

accept 

Conclusion(s) and 
Interpretation 

3 

4 

One tailed test or 
two tailed test 

5 

6 

Test-statistic  to be used 

7 

8 

9 

2 

1 

Write null and alternative 
hypotheses 

Assumptions(s) 
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Layout of the test of significance II 

 

Test  for Variance

(for large and small samples)

Single sample Two samples

Chi-square F-test

 
Fig. 4.7: Layout plan of the test of significance II 

Before the application of t-test, test of homogeneity (equality of variance) is applied, if 

this condition is satisfied, t-test is used otherwise non-parametric tests or some other 

alternatives are used. Five tests are available to test the homogeneity of samples. These 

are: 

(a) Bartlett's test (1936) 

(b) F-test 

(c) Levene's test (1962) 

(d) Cochran's test (1962) 

(e) Samiuddin-Hanif-Asad cube root test (1978) 

Cochran's test is a special test as it is applicable for equal number of observations in the 

samples. Only Levene's test of homogeneity is available in SPSS package, therefore, we 

stick to it. Note that in EPI-INFO package, Bartlett's test is available. Samiuddin-Hanif-

Asad test is very simple to calculate and more or less identical to Bartlett's test. When  

t-test is used the SPSS package automatically test the homogeneity (equality) of variance. 

The flow chart (layout) of tests of significance for parametric and non-parametric 

situations follows (Fig. 4.8). 
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Fig. 4.8: Flow chart from tests of significance. 
 

If t-test for unequal variance is there in computer printput, it is always advised to choose this instead of non-parametric tests. 

Layout of Test of Significance-III

Two samples More than two samples

Independent Matched Independent Matched

Test of equality of

variance
Paired

t-test

Non-parametric

tests

Test of equality

of variance

The sign

test

Wilcoxon signed-

rank test

Equal Not equal

Pooled

 t-test
t-test for unequal

variance

Non-parametric

tests

Wilcoxon Rank-

Sum test

The Mann-

Whitney test

The Median

 test

Parametric Non-parametric

Cochran

Q-test

Kendall's

W-test

Fridman's

test

Depending on situations

Equal Not equal
ANOVA

tw0-ways

ANOVA

one-ways

Non-parametric

tests

Median

test

Kruskal-Wallis

test

Parametric Distribution free

Fig. 4.7.  If t-test for unequal variance is there in computer printput, it is always advised to choose this instead of non-parametric tests.

Repeated

measure

design

 

Normal Non Normal 

Normal Non Normal 

Kolmogorov- 
Smirnov Test NCBA&E
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4.5.1  Z-Test for one and two samples for means and proportions 

This test is used to test mean and proportion for one sample and to test the difference 

between two sample means and proportions. Followings are the assumptions and 

conditions to apply Z-test. 

(i) Sampled population should be normal. 

(ii) Sample must be random. 

(iii) Sample size is large and population variance is known. If population variance 

is not known, sample variance may be used when sample size is large. 

(iv) If sample size is small and/or population variance is known, this test is also 

applicable. 

(v) Samples must be independent. 

Since in practice population variance is never known, we always use either t-test or its 

equivalent non-parametric test as the circumstances occur. 

(i) Z-test for one sample mean 

This is used to test whether a given sample has been selected from the population whose 

mean and variance are known. Since sample mean ( x ) is representative of the 

population mean (µ), we find the difference between sample mean and population mean. 

If there is no difference, we say that the sample has been selected from the population 

whose mean and variance are given. 

Some examples for Z-test are given. The purpose of these examples is to demonstrate 

how Z-test is used to test the mean and proportion.  Later on it will be demonstrated how 

SPSS package is used to solve the problems. 

Example 4.12:  
Family and Community Medicine Department feels through a study that patients in an 

area spend on the average 12 minutes with the doctors in the Family Care Centers. 

Ministry of Health feels that doctors should spend more time with the patients. For this, 

the Ministry took a random sample of 50 patients from the Family Care Centers of the 

area and found that doctors are spending on the average 13.6 minutes. The population 

standard deviation is 8.2 minutes. Use 5% level of significance to test that doctors are 

spending on the average more than 12 minutes with the patient. 

Solution:   

 (1)  H
0
 : µ  =  12 minutes  x   =   13.6,      =   8.2 

  H
1
 : µ  >  12 minutes   

 (2)  = 0.05 and n = 50 

  Since sample is large, Z-test  is used. 

 (3) Test-statistic:     nxZc
,           (4.8)  
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 where: 

  x = Sample mean   µ = population mean 

   = Population standard deviation n = sample size 

  zc = 
2.8

50)126.13( 
  =  1.38 

(4)  Since it is a one-tail test, the Z-value for 5% level of significance is 1.645. 

(5)  The calculated value is 1.38 which is less than table value, therefore, the result is 

non-significant and the null hypothesis is not rejected, we say with 95% 

confidence that the study conducted by the Family and Community Department 

shows that doctors are spending on the average 12 minutes with the patients. This 

conclusion may also be shown through p-value. 

 

Stated p-value Observed p-value 

 

0.05 
P [Z    1.38] 

=  1 - 0.9162  =  0.0838 

Since observed p-value is more than stated p-value, it falls in the acceptance region; 

therefore, we are 95% confident that the conclusion is correct.   

The virtue of the p-value in computation is, that one can simply report the p-value and 

different workers can make their decisions. 

95% confidence limits may be calculated as: 

  13.6  ±  1.645  
50

2.8
 or (11.692  ,  15.508) 

We say with 95% confidence that these two limits contain population mean (which in this 

case is 12). Since these limits do not contain zero, therefore, we can also say that there is 

significance difference between sample and population means. Note that in practice 

population mean or proportion is never known to us. That is why, we construct confidence 

limits to see the location of the population mean or proportion  (see Chapter 3). 

Example 4.13:  
An article published in Medical Journal where it was claimed that by better nutrition the 

mean weight of adult women in USA had increased to 79.5 kg. The authority of weight 

control felt that the figure was too high for the females. A sample of 45 women was taken 

and found that average weight was 76.6 kg with standard deviation 11.7.  Perform a test 

that  H0 : µ = 79.5 against µ <79.5 at 5% level of significance and give interpretation 

about conclusion. 

Solution: 

 (1)  H
0
 : µ  =  79.5  = 76.6, 

  H
1
 : µ  <  79.5  s = 11.7, 

 x
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 (2)  = 0.05  n = 45 

 Since sample is large, Z-test is applied. 

 (3)  test-statistic: 663.1

45

7.11

5.796.76
Zc 


  

(4) Since it is a one-tailed test, the Z-value is -1.645 at 5% level of significance. 

(5) The calculated absolute value of Zc is more than the table value of Z, therefore, 

the result is significant and the null hypothesis is not accepted. We say with 95% 

confidence level that the average weight of the women is less than 79.5 kg. 

Conclusion may also be drawn by the use of p-value as: 

 

Stated p-value Observed p-value 

0.05 P [Z  - 1.66] =  0.0485 

Since the observed p-value is less than the stated p-value, the statistic value falls in the 

rejection region. 

95% confidence limits may be calculated as: 

  76.6  ±  1.645  
45

7.11
   , or    [73.73,  79.47] 

We are 95% confident that these two limits do not contain the average weight of the 

women. The average weight of 95% women would not lie in (73.73, 79.47). 

(ii) Z-test for one sample proportion 

Example 4.14:   

It was reported in the Journal of the American Geriatric Society (1990) that hospital 

patients over the age of 65 apparently face high risk of serious treatment errors. The 

records of 122 elderly patients were randomly selected and 30 out of them found to have 

at least one erroneously prescribed medication. (They received unneeded drug or they 

failed to receive necessary drug). The researcher did not expect such a high rate. Test at 

5% level of significance that the true proportion of elderly patients who have at least one 

erroneously prescribed drug exceeds 20%. 

Solution: 

 (1) H
0
 : P = 0.20  p̂ = 

122

30
  =  0.246, 

  H
1
 : P > 0.20  n   =   122 

 (2)  = 0.05 

Since proportion is to be tested and sample is large, therefore, Z-test for the testing of 

proportion will be used. 
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 (3) test-statistic:  Zc  =

n

)P1(P

Pp̂




         (4.9) 

where: p̂   =  sample proportion P  =  population proportion 

Note that the denominator of the Z-statistic contains the population proportion. 

  Zc =  27.1

122

80.020.0

20.0246.0





 

(4)  Since it is a one-tailed test, Z-value is 1.645 at 5% level of significance. 

(5)  The calculated value of Zc is less than the table value of Z at 5% level of 

significance. Therefore, the result is non-significant and the null hypothesis is 

accepted. We can say with 95% confidence that the true proportion of elderly 

patients who received at least one erroneously prescribed drug does not exceed 

20%. 

The p-value will be calculated as: 

  P[Z  >  1.27]  =  1  -  0.8980  =  0.1020 (observed level of significance) 

Since observed p-value is more than stated p-value (0.05), therefore, the null hypothesis 

is accepted. The 95% confidence limits are 

  0.246  ±  1.645  
122

8.02.0 
  or  [0.186  ,  0.306]. 

The proportions of elderly patients who have at least one erroneously prescribed drug 

vary from 0.186 to 0.306. Since the value of H0 lies inside the interval, 0.186 to 0.306, 

the null hypothesis is accepted. 

Example 4.15: 

Prior to the Polio immunization program in the Eastern Province of Saudi Arabia, a 

survey revealed that 180 out of a random sample of 400 elementary school children have 

been immunized against Polio. Can we say at 5% level of significance that 50% of the 

elementary school children in this area had been immunized? 

Solution: 

 (1) H
0
 : P = 0.50  p̂  =  

400

180
 =  0.45 

  H
1
 : P   0.50  n =   400 

 (2)  = 0.05 

  Since sample is large, Z-test will be used. 
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 (3) test-statistic: 0.2

400

50.050.0

|50.045.0|
Zc 




  

(4) Since it is a two-tailed test, Z-value at 5% level of significance is 1.96. 

(5) The calculated value of Zc is more than the Z-value of the table, it falls in the 

rejection region. Therefore, it is significant. We may say with 95% confidence 

that the null hypothesis is not accepted and say that 50% of the children were not 

immunized.   

Conclusion may also be drawn by the use of p-value as: 

 

Stated p-value Observed p-value 

 

0.05 
2 P [Z    |2.0|] 

0.0228  +  0.0228  =  0.0456 

Since observed p-value is less than stated p-value, therefore, it falls in the rejection region 

and null hypothesis is rejected.  

The 95% confidence limits will be 

  0.45 ±  1.96  
400

5.05.0 
or   [0.401  ,  0.499] 

Since the interval does not contain 0.5, there is significance difference. 

(iii) Z-test for two samples (means) 

In case of Z - test for two samples, two random samples are selected independently, one 

from each population (case- control study) and the main purpose is to see whether two 

populations are different or not. Since samples are representative of two populations, we 

compare two sample means to compare two populations. 

Example 4.16:  
A study was conducted to compare percentage of body fat for rural and urban college 

male students. For this purpose, two random samples one from each area were selected. 

The percentage of body fat for each sample was measured. Can we say at 5% level of 

significance that there is no difference in body fat in two groups?  The data are given as: 

 

 Urban Rural 

Sample 193 188 

Mean 12.07 11.04 

s.d 3.04 2.63 

  (American Journal of Physical Anthropology, 1993, Vol. 54, pp. 119-112) 
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Solution: 

(1) H
0
 : µ

1
 = µ

2
 (There is no difference between population means) 

 H
1
 : µ

1
 µ

2
 (There is difference between population means) 

(2)  = 0.05 

Since two samples are given and sample size is large, then Z-test can be used to test 

the difference between means of two samples. 

 (3) test-statistic:  Zc  =

2

2
2

1

2
1

21

n

s

n

s

xx




                (4.10) 

 where: 1x   = mean of first sample,  2x  = mean of second sample 

2
1s  = variance of first sample,  2

2s  = variance of second sample 

n
1
 = size of first sample,   n

2
= size of second sample 

   Zc = 

188

)63.2(

193

)04.3(

04.1107.12

22




   =   3.54 

(4) Since it is a two-tailed test, Z-value at 5% level of significance is1.96. 

(5) The calculated value of Zc is greater than the Z-value of the Table; it falls in the 

rejection region. Therefore, it is significant. We say with 95% confidence that 

mean fat of two groups is different, i.e. two samples are different and 

consequently two populations are different. 

Since mean of the urban group is higher than rural group, therefore, we say that the 

average fat in urban males is more as compared to that of rural males.  

p-value may be calculated as: 

 

Stated p-value Observed p-value 

 

0.05 
2P [Z    |3.56|] 

0.0002  +  0.0002  =  0.0004 

The 95% confidence limits are 

  (12.07 - 11.04)  ±  1.96
188

)63.2(

193

)04.3( 22

 ,   (0.46 , 1.6) 

So we can say with 95% confidence that these limits contain the difference of two 

population means from which these samples are selected. Since these limits do not 
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contain zero, therefore, there is significance difference between two samples as we 

should expect. 

(iv) Z-test for two sample proportions 

Example 4.17:  
An epidemiologist compared a sample of 100 adult cases that were suffering from certain 

diseases with a sample of 120 controls (free from diseases). It was found that 69 of the 

diseased and 80 of the controls were employed in subsistence occupations. Can the 

epidemiologist say on the basis of this information at 5% level of significance that two 

population proportions differ with respect to the proportion employed in subsistence 

occupations? 

Solution: 

 (1)  H
0
 :P

1
 = P

2
 1p̂  (diseased)  = 

100

69
 =  0.69 

  H
1
 : P

1
 P

2
 2p̂  (controls)    =  

120

80
 =  0.67 

 (2)  = 0.05 

 Since sample size is large, Z-test for proportion is used. 

 (3) test-statistic 

  c:  Zc  =  

2

22

1

11

21

n

)p̂1(p̂

n

)p̂1(p̂

p̂p̂







              (4.11) 

 where: 1p̂  = proportion of first sample and 2p̂  = proportion of second sample 

  Zc = 196.0
102.

02.

120

)33(.)67(.

100

)31)(.69(.

67.69.





 

(4) Since it is a two-tailed test,  Z-value at 5 percent level is 1.96. 

(5) The calculated value is far less than the table value, the result is non-significant, 

we say with 95% confidence that there is no difference between two groups. 

4.5.2 t-test for single and two samples 

This is known as Student's t-distribution or t-test and was discovered by British Chemist, 

W.S. Gosset. He published his work under the pseudo-name Student in 1908. When 

sample size is small, t-test is applied. It is also used for one sample and two samples to 

test the mean and proportion like Z-test. Followings are the assumptions and conditions 

for the application of t-test. 
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(i)  Sampled population should be normal.   

(ii) The sample must be random, so that the observations are independently 
distributed. 

(iii) Sample is small and population variance is not known, it can also be applied 
when sample is large and population variance is not known. For large sample Z-
test and t-test are almost identical. (We have seen that in all the statistical 
packages only t-test is given). 

(iv)  In case of two samples, it is generally assumed that population variances are 
equal and samples are independent. 

(i) t-test for one sample mean 

Example 4.18:  
A new brand of oatmeal cereal claims that a 1.5-ounce serving of the cereal has 140 
calories. The staff of the laboratory analyzed the 12 different servings of 1.5-ounces each. 
The result yielded the mean equal to 153 calories with standard deviation of 21 calories. 
Can the company's claim of 140 calories be rejected based on the data collected?  Use 1% 
level of significance. 

Solution: 

 (1) H0 : µ  =  140 calories  X  = 153 calories 

  H
1
 : µ   140 calories   n = 12              s = 21 calories 

 (2)  = 0.01 

since the sample is small and also population standard deviation is not known, 
therefore, t-test is to be used. 

 (3) test-statistic: tc  = n
s

µx 
                (4.12) 

  

144.2
12/21

140153



  

(4) Since the sample size is small, we will see the t-table (Table 3.19). How to see the 
table? Since it is a two-tailed test, divide 0.01 by 2. We will get 0.005. Subtract 
0.005 from 1 which gives 0.995. Now see the table under 0.995 against  
(12 – 1) = 11 degrees of freedom. This gives 3.1058. (This was explained in 
Chapter 3 as well). 

(5) Since our calculated value is less than table value, therefore, the result is non-
significant and we do not reject the null hypothesis. We conclude that the sample 
mean calories is not different from the population mean. The 95% confidence 
limits are: 

   153    3.1058 [21/ 12 ], or  [134.17, 171.83] 

  Note that the H0 value lies in the interval. 
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Example 4.19:  
A series of 10 blood tests were run on a particular patient over several days. The variable 

monitored in the total protein level. Since the blood protein level should be neither too 

large nor too small, it is desirable to detect either situation μ = 7.25 or μ ≠ 7.25 based on a 

sample of size 10. The sample values are, 

  7.23, 7.24, 7.25, 7.28, 7.31, 7.29, 7.32, 7.26, 7.27, 7.24 

Test at 5% level of significance whether population mean is 7.25, 

  1- H0: μ = 7.25 

  2- H1: μ ≠ 7.25 

  3- α = 5% 

  4- Test Statistic: t-test for single sample. 

Solution: 

 (1) H0 : µ  =  7.25   

  H
1
 : µ   7.25    

 (2) By simple calculation, we get: 

      X  = 7.269,            s = 0.0307 

 (3)= 0.05, n=10 

since the sample is small and also population standard deviation is not known, 

therefore, t-test is be used. 

 (4) test-statistic:   tc  =   n
s

µx  7.269 7.25
1.956

0.0307 / 10


   

(5) Since the sample size is small, we will see the t-table (Table 3.19). Since it is a 

two-tailed test, divide 0.05 by 2. We will get 0.025. Subtract 0.025 from 1 which 

gives 0.975. Now see the table under 0.975 against (10 - 1) = 9 degree of freedom. 

This gives 2.2622.  

(6) Since our calculated value is less than table value, therefore, the result is non-

significant and we do not reject the null hypothesis. We conclude that the sample 

mean value is not different from the population mean, therefore the hypothesis is 

not rejected and one can say with 95% confidence level that on the average blood 

protein level is not different than 7.25 

This example can be solved by using IBM-SPSS package as follows: 

Example S4-1 

To test for the mean using IBM-SPSS, for the data in example 4.19, we enter the data and 

follow the following steps:  
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AnalyzeCompare MeansOne Sample T-Test: 

 

We move the variable into Test Variable(s) and change the Test Value from 0 to 7.25, as 

follows: 

 

Once we click on , we get the following output: 

 

 

NCBA&E



Hypothesis Testing Procedures 
 

 

146 

Since Sig. (2-tailed)- p-value = .082 which is greater than 0.05, therefore hypothesis is 

not rejected and one can say with 95% confidence level that on the average blood protein 

level is not different than 7.25. 

(ii) t-test for one sample proportion 

t-test is also applied for test of sample proportions. This has been explained in the 

following example. 

Example 4.20:  

A report claims that at least one-half of the patients with back pain who receive 

acupuncture treatments obtain relief. The doctors at a major hospital in New York City 

feel that the estimate of 0.50 is too high. They check the records of 25 patients at their 

hospital that received similar treatment for back pain. If 12 of these patients got relief, 

can figure of 0.50 be rejected as too high for patients at this hospital? Use 5% level of 

significance. 

Solution: 

 (1) H
0
 : p  =  0.50  p


   =   .47  

  H
1
 : p  <  0.50  n   =   225  

 (2)  = 0.05 (one tailed test) 

 (3) Test-statistic:  Z =  
 

n

P1P

Pp̂




               (4.13) 

 (4) Zcal  = 3
01.0

03.0

25

)50.01(50.0

50.047.0








 

(5) The table value for 95% confidence level is 1.645. The calculated value is more 

than the table value; therefore, we do not accept H0 and say that 50% of the 

patients receiving the treatment are not getting relief.  

This example can be solved be using IBM-SPSS package as follows: 

Example S4-2 

To test for the proportion using IBM-SPSS, for the information in example 4.20, for the 

alternative H
1
 : µ   0.50 we enter the data (twelve 1’s and thirteen 0’s) and follow the 

following steps:  

AnalyzeNonparametricLegacy Dialog  Binomial: 
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We move the variable into Test Variable List and be sure that the Test Proportion is 0.50, 

as follows: 

 

Once we click on , we get the following output: 
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Since the Exact Sig. (2-tailed)- p-value = 1.000 which is greater than 0.05, therefore the 

hypothesis H
0
 : µ  =0.50 is not rejected. 

(iii) t-test for two sample means 

t-test may be used to test the difference of two population means as: 

  t = 

21
p

21

n

1

n

1
s

xx




                   (4.14) 

where: sp = 
2nn

s)1n(s)1n(

21

2
22

2
11




                (4.15) 

is known as pooled standard deviation. We assume that variances are the same. 

Example 4.21:  
A study is conducted to compare the performances of two groups of non-handicapped 

children. One group is selected from those non-handicapped children who are studying 

with handicapped children and one group is selected from non-handicapped children 

studying in normal school. Each group contains 16 children. A test of skill development 

is administered to them the result is given as: 
 

 Children in  
handicapped school 

Children in non-
handicapped school 

Sample size 16 16 

Mean score 122.69 124.85 

s.d 10.50 10.50 

Can we conclude at 5% level of significance that there is no difference between the mean 

scores of two groups? (Journal of Exceptional Children, Vol. 51(1), pp. 41-48). 

Solution: 

 (1) H
0
 : µ

1
  =  µ

2
 

  H
1
 : µ

1
  µ

2
 

 (2) = 0.05 

Since the sample in each group is small, t-test is applied. In the application of t-test, it 

is assumed that the variances of the two populations are same.  The pooled variance 

is:   

  5.10
21616

)5.10)(116()5.10)(116(
s

22
2
p 




  

  sp  =  3.240 
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 (3)  Test-statistic:   t =  88.1
146.1

16.2

16

1

16

1
240.3

85.12469.122





 

(4) n
1
 = 16 and  n

2
 = 16, d.f. = n1 + n2 – 2 = 16 + 16 - 2 = 30. The table value is 2.0423. 

(5) Since our calculated value is less than the table value, the result is insignificant 

and we do not reject the null hypothesis and say with 95% confidence that the 

performance of two groups is the same. 

The 95% confidence limits are 

  (122.69  -  124.85)    2.0423  x  1.146,  [-4.4818,  0.1618] 

Example 4.22:   
The objective of the study was to see whether the risk of coronary heart disease (CHD) 

could be reduced by an increased consumption of fish. For this purpose, two groups of 

men were selected, one consisting of 159 men who did not use the fish and other 

consisting of 79 men who were using more than 45 gram fish per day. After 25 years, 

their level of dietary cholesterol (one of the risk factors for coronary disease) present in 

each was recorded. The mean levels of dietary cholesterol along with the standard 

deviation for each group are given below. Test at 5% level of significance whether 

consumption of fish has real effect on the level of dietary cholesterol? 

 

 Consumption of fish Consumption of fish 

Sample size 159 79 

mean  146 158 

s.d 66 75 

(Source: New England Journal of Medicine, Vol. 312, pp. 1205-1209, 1985) 

Solution: 

 (1) H
0
 : µ

1
  =  µ2 

       H
1
 : µ

1
 µ2 

 (2)   = 0.05 

Since the sample is large, therefore Z-test should be applied. (Here we will use Z-test 

and t-test and see how much these two differ when the size of the sample is large. It 

has been stated before that for large sample Z-test and t-test are almost identical) 

 (3) (a) test-statistic: 208.1
930.9

12

79

)75(

159

)66(

158146
Z

22
c 




  

  (b) test-statistic:    258.1
536.9

12

79

1

159

1
104.69

158146
t c 




  
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(4)  Since the sample is large and it is a two-tailed test, the table value will be 1.96 for 

5% level of significance. (Even t-table gives the same value). 

(5)  Our calculated values under both test-statistic are less than the table value. 

Therefore, under both tests the result is non-significant and we accept the 

hypothesis and say with 95% confidence that on the average, there is no difference 

in the level of dietary cholesterol in both the groups. We say eating fish has no 

effect in reducing the risk of coronary heart disease. 

(6) If Z-statistic and t-statistic give different values where as in one case it is rejected 

and in other case it is accepted, then if sample size is small, we make decision on 

the basis of t-test. 

The 95% confidence limits are 

(146-158)    1.96    9.536, [-30.69  6.690]. These two limits, contain the difference 

of two population means, therefore we accept the hypothesis. 

(iv) t-test for testing two sample proportions 

t-test for testing the difference of two proportions can be used as: 

  tc = 

21
cc

21

n

1

n

1
)p1(p

p̂p̂




                (4.16) 

where: p
c
(pooled proportions)  =   

21

21

nn

xx




              (4.17) 

where x
1 
and x

2
are the number of cases from the total in favor of certain characteristics.  

Example 4.23:  
Two preparations of drug, presented in the same table form are tested for their efficacy in 

alleviating headache.  Preparation A is given to 25 patients, 17 claiming it effective, 

while B has been given to 20 patients, 16 claiming it effective.  Does this provide 

evidence of a difference between A and B?  Use 5% level of significance. 

Solution: 

 (1)  H
0
 : P

1
  =  P

2
  1p̂    = 

25

17
  =  0.68 

  H
1
 : P

1
 P

2
  2p̂    =   

20

16
=  0.80 

 (2)  = 0.05 

Samples are small, and difference between two proportions is to be tested, therefore, 

t-test for proportions is used. The pooled proportion is,  

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

151 

   pc(pooled proportion)   =   733.0
2025

1617





 

 (3) test-statistic  905.0

20

1

25

1
)733.01(733.0

80.068.0
t c 




  

(4) Since it is a two-tailed test, therefore, for 5% level of significance, we see the 

table value under t0.975 and against (25 - 1 + 20 - 1) = 43 degrees of freedom. The 

table value is 2.023. 

(5) The calculated value is less than the table value. It falls in the acceptance region, 

the result is non-significant, and we therefore, do not reject the null hypothesis 

and say with 95% confidence that there is no difference in the preparation of A 

and B. 

p-value for the small-sample tests are computed in the same way as those for large 

sample test. Since SPSS package automatically gives p-value for two-tailed test. 

95% confidence limits for the difference of proportions will be: 

  

 

2

22

1

11

21

2/121

n

)p̂1(p̂

n

)p̂1(p̂

p̂p̂
p̂p̂ t







            (4.18) 

  (0.68 - 0.80) ± 2.023 
20

)733.01(733.0

25

)733.01(733.0 



 = [-0.37, 0.13] 

4.5.3 Application of SPSS package 

If we have two groups and the two groups are Independent’s we have to use  

AnalyzeCompare MeansIndependent Sample T-Test…        

How to do the test: 

1- Move the variable to be tested to  and its scale variable  

2- Move the variable Which determines the two groups to   and it 

have to be  or  

3- Definition of the two groups using  and we use number 1 as definition 

for group 1 and number 2 as definition for group 2 then click on  and 

 

Example S4-3 

Two random samples each of 50 children were selected from two different populations. 

Population A had iron deficiency anemia while population B have healthy children in the 

same age group as population A. The hemoglobin (Hb) measurements was collected for 
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each child. Can we say at 5% level of significance that mean Hb is different in the two 

populations?  The data is given in Table 4.5 taken from (Daniel, Biostat - 1991): 

 
Table 4.5: 

Healthy and anemic children 
Sample 1 

Children with iron deficiency anemia 

9.6 
4.9 
7.6 
6.9 
2.6 
10.5 
3.3 
7.4 

 

2.2 
5.5 
9.4 
7.8 
5.2 
3.7 
6.9 
4.2 

3.6 
8.7 
9.1 
6.6 
6.9 
5.3 
6.9 
7.1 

5.5 
7.9 
11.9 
7.8 
4.7 
7.5 
5.9 
6.9 

3.9 
6.0 
6.4 
4.8 
6.7 
4.7 
10.6 
6.7 
7.4 

5.5 
3.5 
9.9 
10.2 
8.4 
6.2 
4.3 
8.0 
5.8 

 

Sample 2 
Healthy Children 

14.6 
14.1 
11.6 
16.0 
10.3 
14.5 
14.6 
12.7 

 

12.7 
12.9 
12.6 
10.6 
14.1 
14.4 
13.1 
13.9 

10.1 
14.0 
13.4 
10.5 
10.2 
12.3 
14.1 
12.3 

11.8 
15.2 
13.3 
13.4 
14.9 
9.9 
10.6 
11.4 

13.2 
13.4 
14.6 
11.3 
9.6 
14.0 
15.2 
13.9 
10.5 

12.5 
14.6 
13.0 
11.8 
11.9 
15.6 
14.3 
13.5 
13.7 

Is there a difference between the Children with iron deficiency anemia and Healthy                                           

Children in the proportion of hemoglobin in the blood?: 

Solution: 

To test this Hypothesis we follow the following steps : 

AnalyzeCompare MeansIndependent Sample T-Test…    
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Move the variable Anemia to  

Move the variable population to  

 

 

Then click on  

 

use number 1 as definition for group 1 and number 2 as definition for group 2 then click 

on  

 

Once we click on , we get the following output: 

 

 

 In this example, the p-value for Levene's test is  0.108,  therefore the result is not 

significant, which means that both samples have equal variances. Therefore, we 
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choose t-test for equal variances for equal variances assumed. The p-value for t-

test is 0.000, which is less than stated p-value, i.e. 0.05. It falls in the rejection 

region and the test is significant. 

 We say with 95% confidence that the means Hb of two samples are different. 

Consequently the means Hb of two populations are different. 

Example S4-4 

Do we conclude that, on the average, lymphocytes and tumor cells differ in size?  The 

followings are the cell diameters (µm) of 40 lymphocytes and 50 tumor cells obtained 

from biopsies of tissue from patients with melanoma. 

 
Table 4.5 

Data relating to Lymphocytes and tumor cells 

Lymphocytes 

9.0 
6.3 
8.6 
7.4 
8.8 
9.4 
5.7 
7.0 
8.7 
5.2 

4.7 
5.0 
6.8 
4.9 
7.1 
4.8 
3.5 
7.1 
7.4 
5.3 

 

8.9 
7.8 
5.7 
6.4 
4.7 
4.9 
10.4 
7.6 
7.1 
8.4 

8.4 
8.0 
6.2 
6.3 
6.4 
5.9 
8.0 
7.1 
8.8 
8.3 

 

Tumor cells 

12.6 
16.7 
20.0 
17.7 
16.3 
14.6 
15.9 
17.8 
15.1 
17.7 

16.2 
15.8 
13.9 
16.9 
18.1 
23.9 
16.0 
22.1 
16.4 
24.3 

23.3 
17.9 
13.9 
22.8 
11.2 
17.1 
13.4 
18.3 
19.4 
19.5 

20.0 
19.1 
22.8 
19.6 
18.6 
21.0 
16.6 
13.0 
18.4 
16.4 

19.1 
18.9 
17.9 
18.2 
16.1 
19.4 
18.7 
15.2 
20.7 
21.5 

Can we say at 5% level of significance that on the average tumor cells differ in size?  

(source Daniel, 1991) 

To test  this Hypothesis we follow the following steps : 

AnalyzeCompare MeansIndependent Sample T-Test…    
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Move the variable diameters to  

Move the variable population to  

 

 

Then click on  

 

use number 1 as definition for group 1 and number 2 as definition for group 2 then click 

on  

 

Once we click on , we get the following output: 
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 In this example, the p-value for Levene's test is 0.003, therefore the result is 

significant, which means that we may consider both samples have different 

variances. Therefore, we choose t-test for equal variances for equal variances not 

assumed. The p-value for t-test is 0.000, which is less than stated p-value, i.e. 

0.05. It falls in the rejection region and the test is significant. 

 We say with 95% confidence that on the average tumor cells of both the samples 

differ in size. 

NOTE: When the condition of normality is not satisfied, we go for non-parametric-tests 

(to be discussed in Chapter 8). When the sampled populations are decidedly non-normal, 

any inference derived from the small samples (t-test) for µ
1
 = µ

2
is not reliable.  In this 

case, one alternative is to use Wilcoxon Rank-sum test. 

4.5.4 t-test for Paired Observations 

Till now, tests were used to find the difference between two independent samples. In this 

section, t-test will be used for paired observations. Let us first examine the potential 

drawback in using the t-test for two independent samples. 

Suppose an elementary school teacher wants to compare two methods of teaching of 

reading skills of first graders. One way is to choose randomly 40 students from the 

available first graders. Two equal groups are formed randomly and reading achievement 

test scores are obtained after completion of the experiment. t-test is used to test the 

difference between two methods. A potential drawback to this method is that IQ, reading 

ability, socio- economic of the elementary graders are not taken into consideration before 

dividing into two groups. 

A better method of forming the group is to remove the variation of extraneous factors 

such as IQ, reading ability, etc. One way to do this is to match the first graders in pairs 

according to IQ, socio-economic status, etc. and from each pair one member is selected 

randomly to be taught by Method-I and other member to be taught by Method II, then the 

difference between the matched pairs of achievement test scores would provide a clear 

picture of the true difference in achievement for the two rating methods as the matching 

would cancel the effects of the extraneous factors that formed the basis of matching. 

Groups formed in such a way are called matched groups. In medical trial it is all the 

matched frequency. Matching is done on age; on blood pressure (B.P) levels sometimes 

experiments are conducted on identical timings etc. 

The objective of the paired comparison test is to eliminate the effect of extraneous factors 

by making the pairs similar with respect to as many variables as possible. It gives an 

excellent result if one can do this but in the presence of many factors, it is not an easy 

task. Therefore, the research worker prefers to form independent groups. Here we do not 
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perform the analysis on individual observations but we use the differences between 

individual pairs of observations. Because of this reason, the condition of the equality of 

variances is not strictly required. 

In this type of problems, our hypothesis is, that there is no difference between two 

informations taken before and after the application of a treatment. This type of test is 

commonly used in medical science. If one wants to see the effect of medicine or diet on 

serum cholesterol levels, one will select a group of patients, measure their serum 

cholesterol levels, apply some medicine or diet and after completion of the course again 

measure the serum cholesterol levels and see the difference. 

To test the significance, we proceed as: 

  t = 
n/s

0d

d


                     (4.19) 

where d  is the average of the differences between two paired observations. s
d
 is the 

standard deviation of the differences. 

Example 4.24:  
Thirty-six children were selected at random from a school and an intelligence test was 

given on the day they had breakfast. The same children were given a similar test on the 

day they did not have the breakfast. Test, whether fasting affects the test performance. 

The result of the two tests are given in the following Table: 

With breakfast 17 16 21 20 21 19 20 14 13 

Without breakfast 14 15 18 15 16 15 16 17 15 

With breakfast 10 23 21 12 19 14 15 18 13 

Without breakfast 9 21 18 13 18 10 15 15 13 

With breakfast 24 20 18 18 11 19 10 15 17 

Without breakfast 23 18 13 16 7 15 8 11 13 

With breakfast 24 13 15 14 17 19 16 18 24 

Without breakfast 24 12 14 12 12 18 19 16 22 

Is there a difference between the scores with and without breakfast? 

Solution: 

From Table 4.7, we can see that: 

  Sum of the difference = d  =  72 

  Average of the difference  = d   = 
36

72
 =  2 

  d2 = 306 
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  s = 
 

151.2
36

72
306

136

1
2
















 

(1) H
0
 : There is no difference between two groups 

 H
1
 :There is difference between two groups. 

(2) Since the observations are paired, therefore, t-test for paired observations will be 

applied 

(3) Test –Statistics: 57.5
36151.2

2

ns

0d
t 


  

(4) The table value at 5% level of significance for 35 d.f is 1.6896 (note that is a one-

tail test) 

(5) Calculated value is much greater than table value. Therefore, the null hypothesis is 

not accepted, we say with 95% confidence that breakfast has positive effect on the 

students’ performance as we see that experiment has mean increase of 2.0 points 

on the test scores with standard deviation of 2.15. 

 
Table 4.7: 

Data relating to scores with and without breakfast 

With 
breakfast 

Without 
breakfast 

Difference 
d 

 

d2 

With 
Breakfast 

Without 
Breakfast 

Difference 
d 

 

d2 

17 
16 
21 
20 
21 
19 
20 
14 
13 
10 
23 
21 
12 
19 
14 
15 
18 
13 

14 
15 
18 
15 
16 
15 
16 
17 
15 
9 

21 
18 
13 
18 
10 
15 
15 
13 

3 
1 
3 
5 
5 
4 
4 
-3 
-2 
1 
2 
3 
-1 
1 
4 
0 
3 
0 

9 
1 
9 

25 
25 
16 
16 
9 
4 
1 
4 
9 
1 
1 

16 
0 
9 
0 

24 
20 
18 
18 
11 
19 
10 
15 
17 
24 
13 
15 
14 
17 
19 
16 
18 
24 

23 
18 
13 
16 
7 

15 
8 

11 
13 
24 
12 
14 
12 
12 
18 
19 
16 
22 

1 
2 
5 
2 
4 
4 
2 
4 
4 
0 
1 
1 
2 
5 
1 
-3 
2 
2 

1 
4 
25 
4 
16 
16 
4 
16 
16 
0 
1 
1 
4 
25 
1 
9 
4 
4 

      72 306 
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This Problem has been also solved by using IBM-SPSS Package. Before we proceed 

further the normality of the observations with breakfast and without breakfast has been 

checked using Kolmogorov-Smirnov method. If the observations will be  normal then the 

different of these observation will be normal 

Example S4-5 

To test  this Hypothesis that there is a difference between the scores with and without 

breakfast for the data given in example 4.26, we follow the following steps : 

AnalyzeCompare MeansPaired Sample T-Test…    

 

Then we move the variables as follows: 

 

 

Once we click on , we get the following outputs: 
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Note that the correlation between matched pair is high and significant (r=0.847 and  

p-value =  0.000). Since paired test is one-tailed test, we divide the p-value by 2 and we 

get p=.000, therefore, the null hypothesis is not accepted. We see that mean ( d ) is 

positive (d = with breakfast - without breakfast), therefore, we can say with 95% 

confidence that fasting has bad effect on the test score. 

Before we proceed to apply t-test for paired observations it is advised that one should test 

the normality of the observations using Kolmogorov-Smirnov Z test. If the condition of 

normality is satisfied then one should apply t-test for paired observations otherwise one 

must use non-parametric tests equivalent to t-test for paired observations. If one is not 

aware of Kolmogorov- Smirnov test, one can see the significance of correlation 

coefficient and can apply paired t-test if the correlation coefficient is significant.   

Example S4-6 

Sixteen students were selected at random, their rates of heartbeat were taken while taking 

a final examination and while they were in relaxing situation. The results are noted and 

given in table 4.8. Test at 5% level of significance, whether examination has an effect on 

the heartbeat? 

 
  

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

161 

Table 4.8 
Data relating to heartbeats during examination and relaxing situations 

During 
examination 

(x) 

Relaxing 
situation 

(y) 

During  
examination 

(x) 

Relaxing 
situation 

(y) 

98 
112 
85 
89 

106 
110 
92 
86 

78 
76 
80 
76 
82 
85 
75 
76 

102 
105 
120 
83 
97 
90 
101 
88 

80 
74 
86 
78 
74 
80 
87 
72 

Solution: 

We note the number of variables is 16 (small sample)  

Therefor we have to test the normality before testing t-test for paired samples 

And to test the normality follow the following steps: 

Analyze   Nonparametric tests  Legacy Dialogs   1-Sample K-S … 

 

We move the two variables to  and select  then we click on 
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In the output we will be: 

 

We note the p value for both variables is greater than 0.05 which means that both 

variables follow normal distribution so we can use t-paired test (no need for a non-

parametric test) 

Now to test the hypothesis that there is a difference between the during examination and 

relaxing situation? We follow the following steps: 4 

Analyze      Compare Means      Paired Sample T-Test…  
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Then we move the variables as follows: 

 

 

Once we click on , we get the following outputs: 

 

 

 

We can see that on the average 19 points heartbeat is more while students are in the 

examination hall with s.d. 9.6. p-value < 0.000 (one-tailed is half of two-tailed). We do 

not accept the null hypothesis and say that students have greater heart beat during 

examination. 
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4.6 Testing a Population Variance for Single Samples 

Hypothesis testing about a population variance may be carried out using chi-square  2  

distribution. Note that in the application of chi-square, the assumption of normality is 

required whether the sample is small or large and samples selected from the population 

must be random. Like t or z-tests, this can also be conducted as one-tailed and two-tailed 

tests. 

 
Table 4.9 

 One-tail Two-tail 

H
0
 2

0

2    
2

0

2    

H
1
 2

0

2 


  
2

0

2    

where 2
0 is the specified value of 2  (population variance) 

The test-statistic is    

  
  2

2

2

1n S
 


                  (4.20) 

where 2s  is the sample variance. The degree of freedom for 
2
 is n – 1. 


2
 distribution tends to normality as the sample size increases (see Figure 4.9). 

 
Fig. 4.9: Behavior of  

2
-distribution as sample size increases. 

The general principle of testing the hypothesis is the same as mentioned before. 95% 

confidence limits for population variance may be calculated as 
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                (4.21)

 

  %95
s)1n(s)1n(

P
2

975.0

2
2

2
025.0

2






















          (4.22) 

This provides confidence interval for 2  as 

  
2

975.0

2s)1n(




and

2
025.0

2s)1n(




                  (4.23) 

If we are interested in constructing confidence limits for then these may be 

approximately calculated as: 

  
2

975.0

2s)1n(




and

2
025.0

2s)1n(




                 (4.24) 

Example 4.25:  

A hospital conducted a study of acute leukemia.  For this purpose a random sample of 25 

patients was selected from an approximate normal population. The Hemoglobin (gm%) 

values were recovered. The variance of these observations was 4.6. Can we say at 5% 

level of significance that the variance of population from which the sample has been 

selected is 5? 

Solution: 

 (1) H
0
 : 2  = 5  s

2

 = 4.6 

  H
1
 : 2   5  2  = 5  n  = 25 

 (2)  = 0.05 

There is a single sample. It is required to test variance, therefore chi-square test for 

single sample will be used (using 4.15). 

(3)  test-statistic: 
2

2
2 s)1n(




  

       
08.22

5

6.424



  

(4) Since it is a two- tail test, to see table value we will divide 0.05 by 2 (as in the 

case of t or z) which come out to be 0.025. Subtract 0.025 from 1 which is 0.975. 

(See Chi square table-Chapter 8) under 2
975.0 and against (25 - 1) = 24 d.f. The 

table value is 39.364. 

 
%95

S1n
P 2

975.02
025.0

2
2

025.0 



















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(5) The calculated value of 2  is 22.08 for one tail test which is less than the table 

value. So we do not reject the null hypotheses and say with 97.5% confidence that 

this sample has been selected from a population whose variance is 5. 

Note that for one tailed test (less than or greater than) we see the table directly under 
2

975.0 and against the desired degrees of freedoms.  

 

Fig. 4.10: The location of 
2

)2/1(   and 2
2/  for Chi-square distribution. 

The confidence limits for 2  (population variance) may be calculated as: 

(a) We see from the table 

(i) 2
025.0  

at 24 = (25 - 1) degrees of freedom  =  12.401 

(ii) 2
975.0  

at 24 = (25 - 1) degrees of freedom  =  39.364 

(b) We calculate: 

 (i) 9.8
401.12

)6.4()24(s)1n(
2

025.0

2





 

 (ii) 8.2
364.39

6.424)1(

2
975.0

2









sn
 

Therefore, the confidence limits for 
2  are [2.8, 8.9][ see Fig 4.11}  

Note that the sample value 4.6 is covered by the interval and confidence limits for   are 

given by 

   ( 2.8   ,  8.9 ) = [1.67  ~  2.98] 

  

 

2



 

f(
2
) 

 
2

1
2






 

1 -  

2



 


2
 

2

2

  
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4.7 Testing the Ratio of Two Population Variances 

Variance test should invariably be applied before conducting a small-sample t-test, for 

the difference of two means, as the condition of equality of variances is required under its 

assumptions. In other words, the application of t-test for two independent samples 

requires the assumption that the variances of the two populations are equal. Sometimes, 

the assumptions of equality of variances need to be tested. If the variances are 

significantly different than any inference based on the t-test becomes suspected. 

Therefore, it is essential that we detect the significance difference between two variances 

before applying the small-sample t-test for two independent samples.  These variances 

may also be tested through variance ratio test commonly known as F-test, i.e. 

  F = 2
2

2
1 /                       (4.25) 

If two variances are equal then  F = 1. 

We know that population variances are never known and we also know that for large 

samples, 2
1s (variance of the first sample) and

2

2s (variance of the second sample) are 

unbiased estimates of population variances respectively, therefore, F-is defined as: 

  2
2

2
1

2
2

2
1 SSifS/SF   

   2
1

2
2

2
1

2
2 SSifS/S                 (4.26) 

Here the null hypothesis is H
0
 : 2

2
2
1   , H1 : 2 2 2 2

1 2 1 2or     . Samples are 

randomly and independently selected from two normal populations. Note that F takes 

only non-negative values, as it is the ratio of two variances. The range of the F is from 

zero to infinity. 

Example 4.26:  
An experiment was conducted to examine the diet metabolizable energy content of 

commercial cat foods. Fifty-seven domestic short hair cats were selected. Twenty eight 

were fed on a diet of commercial canned cat food whereas 29 cats were fed on a diet of 

dry cat food. This experiment was completed in three weeks. At the end of the 

experiment, metabolizable energy content was determined for each cat. Do you say at 5% 

level of significance that variation in metabolizable energy content in cats fed on two 

types of food were different. The data is given as: 

 

 Canned food Dry food 

Sample size Sample  28 29 

standard deviation 0.96 3.70 

(Feline Practice Vol. 15(2), 1986) 

Solution: 

 (1) H
0
 : 2

2
2
1   

  H
1
 : 2

2
2
1   
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Table (4.10) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 5% level of significance and 90% power (Two sided), A = 1.96, B = 1.28 

Pa 

Po 

0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  1518 301 96 51 32 23 17 13 10 8 7 6 5 4 3 3 2 2 

0.07 1421  930 165 73 43 29 21 16 12 10 8 6 5 4 3 3 2 2 

0.10 264 869  470 137 68 42 28 21 16 12 10 8 6 5 4 3 3 2 

0.15 79 144 437  617 171 82 49 33 23 17 13 10 8 7 5 4 3 2 

0.20 40 61 121 588  741 199 94 55 36 25 19 14 11 8 7 5 4 3 

0.25 25 35 58 158 717  844 222 102 59 38 26 19 14 11 8 6 5 4 

0.30 17 23 35 74 188 825  926 240 109 62 40 27 19 14 11 8 6 4 

0.35 12 16 23 43 87 213 911  987 252 113 63 40 27 19 14 10 7 5 

0.40 10 12 17 29 50 97 233 976  1027 259 115 63 40 26 18 13 9 6 

0.45 8 9 13 20 33 56 105 248 1021  1046 260 114 62 38 25 17 12 8 

0.50 6 8 10 15 23 36 60 111 257 1044  1044 257 111 60 36 23 15 10 

0.55 5 6 8 12 17 25 38 62 114 260 1046  1021 248 105 56 33 20 13 

0.60 4 5 6 9 13 18 26 40 63 115 259 1027  976 233 97 50 29 17 

0.65 3 4 5 7 10 14 19 27 40 63 113 252 987  911 213 87 43 23 

0.70 3 3 4 6 8 11 14 19 27 40 62 109 240 926  825 188 74 35 

0.75 2 3 4 5 6 8 11 14 19 26 38 59 102 222 844  717 158 58 

0.80 2 2 3 4 5 7 8 11 14 19 25 36 55 94 199 741  588 121 

0.85 2 2 2 3 4 5 7 8 10 13 17 23 33 49 82 171 617  437 

0.90 - 2 2 3 3 4 5 6 8 10 12 16 21 28 42 68 137 470  
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Table-(4.11) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 1% level of significance and 90% power (Two sided), A = 2.58, B = 1.28 

Pa 

Po 

0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  2197 444 145 77 49 35 26 20 16 13 10 8 7 6 4 4 3 2 

0.07 1976  1346 244 110 65 44 31 24 18 15 12 10 8 6 5 4 3 2 

0.10 359 1208  682 201 101 62 42 31 23 18 14 11 9 7 6 5 4 3 

0.15 104 195 607  887 248 120 72 48 34 25 19 15 12 9 7 6 4 3 

0.20 52 82 166 822  1062 288 135 79 52 37 27 20 15 12 9 7 5 4 

0.25 32 46 79 218 1007  1207 319 147 85 55 38 27 20 15 12 9 7 5 

0.30 22 30 47 102 262 1162  1321 343 156 89 56 39 27 20 15 11 8 6 

0.35 16 21 31 59 120 299 1286  1406 359 161 90 57 38 27 19 14 10 7 

0.40 12 16 22 39 69 136 328 1381  1461 368 163 90 56 37 25 18 12 8 

0.45 9 12 17 27 45 77 148 349 1446  1486 369 161 88 53 35 23 16 10 

0.50 8 10 13 20 32 50 84 156 363 1480  1480 363 156 84 50 32 20 13 

0.55 6 8 10 16 23 35 53 88 161 369 1486  1446 349 148 77 45 27 17 

0.60 5 6 8 12 18 25 37 56 90 163 368 1461  1381 328 136 69 39 22 

0.65 4 5 7 10 14 19 27 38 57 90 161 359 1406  1286 299 120 59 31 

0.70 4 4 6 8 11 15 20 27 39 56 89 156 343 1321  1162 262 102 47 

0.75 3 4 5 7 9 12 15 20 27 38 55 85 147 319 1207  1007 218 79 

0.80 3 3 4 5 7 9 12 15 20 27 37 52 79 135 288 1062  822 166 

0.85 2 3 3 4 6 7 9 12 15 19 25 34 48 72 120 248 887  607 

0.90 2 2 3 4 5 6 7 9 11 14 18 23 31 42 62 101 201 682  
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Table-(4.12) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 5% level of significance and 90% power (Two sided), A = 1.645, B = 1.28 

Pa 

Po 

0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  1221 239 76 40 25 18 13 10 8 6 5 4 4 3 3 2 2 - 

0.07 1174  748 131 58 34 23 16 12 10 8 6 5 4 3 3 2 2 - 

0.10 221 718  378 109 54 33 22 16 12 10 8 6 5 4 3 3 2 2 

0.15 67 121 362  498 137 66 39 26 19 14 11 8 7 5 4 3 3 2 

0.20 34 52 102 484  600 161 75 44 29 20 15 11 9 7 5 4 3 3 

0.25 21 30 49 131 588  685 180 83 48 31 21 16 12 9 7 5 4 3 

0.30 15 20 30 62 155 675  753 194 88 50 32 22 16 12 9 7 5 4 

0.35 11 14 20 36 72 175 745  803 205 92 52 33 22 16 11 8 6 5 

0.40 8 11 14 24 42 80 191 798  836 211 93 52 32 22 15 11 8 6 

0.45 7 8 11 17 27 46 86 203 833  852 212 93 51 31 21 14 10 7 

0.50 5 7 9 13 19 30 49 91 210 851  851 210 91 49 30 19 13 9 

0.55 4 5 7 10 14 21 31 51 93 212 852  833 203 86 46 27 17 11 

0.60 4 4 6 8 11 15 22 32 52 93 211 836  798 191 80 42 24 14 

0.65 3 4 5 6 8 11 16 22 33 52 92 205 803  745 175 72 36 20 

0.70 3 3 4 5 7 9 12 16 22 32 50 88 194 753  675 155 62 30 

0.75 2 3 3 4 5 7 9 12 16 21 31 48 83 180 685  588 131 49 

0.80 2 2 3 3 4 5 7 9 11 15 20 29 44 75 161 600  484 102 

0.85 2 2 2 3 3 4 5 7 8 11 14 19 26 39 66 137 498  362 

0.90 - - 2 2 3 3 4 5 6 8 10 12 16 22 33 54 109 378  
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Table-(4.13) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 1% level of significance and 90% power (Two sided), A = 2.33, B = 1.28 

Pa 

Po 

0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  1908 383 124 66 42 30 22 17 13 11 9 7 6 5 4 3 2 2 

0.07 1741  1169 210 94 56 37 27 20 16 13 10 8 7 5 4 3 3 2 

0.10 319 1064  592 174 87 53 36 26 20 15 12 10 8 6 5 4 3 2 

0.15 94 173 535  772 215 104 62 41 30 22 17 13 10 8 6 5 4 3 

0.20 47 73 147 723  926 250 118 69 45 32 23 18 14 10 8 6 5 3 

0.25 29 41 70 193 884  1053 278 128 74 48 33 24 18 13 10 8 6 4 

0.30 20 27 42 90 231 1019  1154 299 136 77 49 34 24 18 13 10 7 5 

0.35 14 19 28 53 106 263 1127  1228 314 141 79 50 33 23 17 12 9 6 

0.40 11 14 20 35 61 119 288 1209  1277 322 142 79 49 32 22 16 11 8 

0.45 9 11 15 24 40 68 130 306 1265  1299 323 141 77 47 31 21 14 9 

0.50 7 9 12 18 28 44 73 137 318 1295  1295 318 137 73 44 28 18 12 

0.55 6 7 9 14 21 31 47 77 141 323 1299  1265 306 130 68 40 24 15 

0.60 5 6 8 11 16 22 32 49 79 142 322 1277  1209 288 119 61 35 20 

0.65 4 5 6 9 12 17 23 33 50 79 141 314 1228  1127 263 106 53 28 

0.70 3 4 5 7 10 13 18 24 34 49 77 136 299 1154  1019 231 90 42 

0.75 3 3 4 6 8 10 13 18 24 33 48 74 128 278 1053  884 193 70 

0.80 2 3 3 5 6 8 10 14 18 23 32 45 69 118 250 926  723 147 

0.85 2 2 3 4 5 6 8 10 13 17 22 30 41 62 104 215 772  535 

0.90 2 2 2 3 4 5 6 8 10 12 15 20 26 36 53 87 174 592  
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Table-(4.14) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 5% level of significance and 80% power (Two sided), A = 1.96, B = 0.84 

Pa 

Po 

0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  1167 238 78 42 27 19 14 11 9 7 6 5 4 3 3 2 2 - 

0.07 1029  716 131 59 35 24 17 13 10 8 7 5 4 4 3 2 2 - 

0.10 185 629  363 108 54 34 23 17 13 10 8 6 5 4 3 3 2 2 

0.15 53 101 316  470 132 64 39 26 19 14 11 8 7 5 4 3 3 2 

0.20 26 42 86 430  562 153 72 43 28 20 15 11 8 7 5 4 3 2 

0.25 16 24 41 114 527  637 169 78 45 29 20 15 11 8 6 5 4 3 

0.30 11 15 24 53 137 609  697 181 83 47 30 21 15 11 8 6 4 3 

0.35 8 11 16 31 63 157 675  741 190 85 48 30 20 14 10 7 5 4 

0.40 6 8 12 20 36 71 172 726  770 194 86 48 30 20 13 9 7 4 

0.45 5 6 9 14 24 41 77 183 760  782 195 85 46 28 18 12 8 5 

0.50 4 5 7 11 17 26 44 82 191 779  779 191 82 44 26 17 11 7 

0.55 3 4 5 8 12 18 28 46 85 195 782  760 183 77 41 24 14 9 

0.60 3 3 4 7 9 13 20 30 48 86 194 770  726 172 71 36 20 12 

0.65 2 3 4 5 7 10 14 20 30 48 85 190 741  675 157 63 31 16 

0.70 2 2 3 4 6 8 11 15 21 30 47 83 181 697  609 137 53 24 

0.75 2 2 3 4 5 6 8 11 15 20 29 45 78 169 637  527 114 41 

0.80 2 2 2 3 4 5 7 8 11 15 20 28 43 72 153 562  430 86 

0.85 - 2 2 3 3 4 5 7 8 11 14 19 26 39 64 132 470  316 

0.90 - - 2 2 3 3 4 5 6 8 10 13 17 23 34 54 108 363  
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Table-(4.15) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 1% level of significance and 80% power (Two sided), A = 2.58, B = 0.84 

Pa 

Po 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  367 122 66 43 30 23 18 14 11 9 7 6 5 4 3 2 2 

0.10 266  551 165 84 52 36 26 20 15 12 10 8 6 5 4 3 2 

0.15 75 462  710 201 98 59 40 28 21 16 13 10 8 6 5 4 3 

0.20 36 124 633  845 231 110 64 42 30 22 16 13 10 7 6 4 3 

0.25 22 58 166 780  957 255 118 68 44 31 22 16 12 9 7 5 4 

0.30 15 34 76 201 903  1044 272 124 71 45 31 22 16 12 9 6 4 

0.35 11 23 44 92 231 1003  1109 284 128 71 45 30 21 15 11 7 5 

0.40 8 16 29 53 104 255 1079  1150 290 128 71 44 29 20 14 9 6 

0.45 7 12 20 34 59 114 272 1132  1167 290 126 68 41 27 18 12 8 

0.50 5 9 15 24 38 65 122 284 1161  1161 284 122 65 38 24 15 9 

0.55 4 8 12 18 27 41 68 126 290 1167  1132 272 114 59 34 20 12 

0.60 4 6 9 14 20 29 44 71 128 290 1150  1079 255 104 53 29 16 

0.65 3 5 7 11 15 21 30 45 71 128 284 1109  1003 231 92 44 23 

0.70 3 4 6 9 12 16 22 31 45 71 124 272 1044  903 201 76 34 

0.75 2 4 5 7 9 12 16 22 31 44 68 118 255 957  780 166 58 

0.80 2 3 4 6 7 10 13 16 22 30 42 64 110 231 845  633 124 

0.85 2 3 4 5 6 8 10 13 16 21 28 40 59 98 201 710  462 

0.90 - 2 3 4 5 6 8 10 12 15 20 26 36 52 84 165 551  
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Table-(4.16) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 5% level of significance and 80% power (One sided), A = 1.645, B = 0.84 

Pa 

Po 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  184 60 32 21 15 11 8 7 5 5 4 3 3 2 2 - - 

0.10 150  282 83 42 26 18 13 10 8 6 5 4 3 3 2 2 1 

0.15 44 252  368 103 50 30 20 14 11 8 7 5 4 3 3 2 2 

0.20 22 69 342  440 119 56 33 22 15 11 9 7 5 4 3 3 2 

0.25 14 33 91 418  500 132 61 35 23 16 12 9 7 5 4 3 2 

0.30 9 20 43 109 482  548 142 65 37 24 16 12 9 6 5 4 3 

0.35 7 13 25 50 124 534  583 149 67 38 24 16 11 8 6 4 3 

0.40 5 10 16 29 57 136 573  606 153 68 38 23 16 11 8 5 4 

0.45 4 7 12 19 32 62 145 600  616 153 67 37 22 15 10 7 5 

0.50 3 6 9 13 21 35 65 151 614  614 151 65 35 21 13 9 6 

0.55 3 5 7 10 15 22 37 67 153 616  600 145 62 32 19 12 7 

0.60 2 4 5 8 11 16 23 38 68 153 606  573 136 57 29 16 10 

0.65 2 3 4 6 8 11 16 24 38 67 149 583  534 124 50 25 13 

0.70 2 3 4 5 6 9 12 16 24 37 65 142 548  482 109 43 20 

0.75 2 2 3 4 5 7 9 12 16 23 35 61 132 500  418 91 33 

0.80 - 2 3 3 4 5 7 9 11 15 22 33 56 119 440  342 69 

0.85 - 2 2 3 3 4 5 7 8 11 14 20 30 50 103 368  252 

0.90 - - 2 2 3 3 4 5 6 8 10 13 18 26 42 83 282  NCBA&E
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Table-(4.16) 

 
 2a0

2

aa00

PP

)1(B)1(A
n

PPPP




  

For 1% level of significance and 80% power (One sided), A = 2.33, B = 0.84 

Pa 

Po 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05  312 104 56 36 26 19 15 12 9 8 6 5 4 3 3 2 2 

0.07 1304 927 172 78 47 32 23 17 14 11 9 7 6 5 4 3 2 2 

0.10 231  471 141 71 44 30 22 17 13 10 8 7 5 4 3 3 2 

0.15 66 400  608 172 84 50 34 24 18 14 11 8 7 5 4 3 2 

0.20 32 108 546  724 198 94 55 36 26 19 14 11 8 6 5 4 3 

0.25 19 51 143 672  820 218 101 58 38 26 19 14 11 8 6 4 3 

0.30 13 30 66 174 778  896 233 106 61 39 26 19 14 10 7 5 4 

0.35 10 20 38 79 199 863  952 244 109 61 39 26 18 13 9 7 4 

0.40 7 14 25 46 90 219 928  987 249 110 61 38 25 17 12 8 5 

0.45 6 11 18 30 51 99 234 973  1003 249 109 59 36 23 15 10 7 

0.50 5 8 13 21 33 56 105 244 998  998 244 105 56 33 21 13 8 

0.55 4 7 10 15 23 36 59 109 249 1003  973 234 99 51 30 18 11 

0.60 3 5 8 12 17 25 38 61 110 249 987  928 219 90 46 25 14 

0.65 3 4 7 9 13 18 26 39 61 109 244 952  863 199 79 38 20 

0.70 2 4 5 7 10 14 19 26 39 61 106 233 896  778 174 66 30 

0.75 2 3 4 6 8 11 14 19 26 38 58 101 218 820  672 143 51 

0.80 2 3 4 5 6 8 11 14 19 26 36 55 94 198 724  546 108 

0.85 2 2 3 4 5 7 8 11 14 18 24 34 50 84 172 608  400 

0.90 - 2 3 3 4 5 7 8 10 13 17 22 30 44 71 141 471  
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Chapter 5 
 

Analysis of Variance 
 

5.1 Introduction 

In Chapter 4, we have studied the testing of hypothesis procedure with two independent 

samples and for paired observations. In most practical situations, we study, more than 

two populations. In such cases the application of t-test is not appropriate. Sir R. A. Fisher 

and his colleagues developed designs of experiments and a statistical technique known as 

analysis of variance (ANOVA) technique. In medical research usually, observational and 

experimental studies are made. Observational studies are based on surveys whereas 

clinical case studies are based on experiments. Experimental studies are laboratory-

controlled experiments where each experiment is designed to compare factors. The 

experiments that concern clinicians are clinical trials. We allocate drugs or treatments to 

patients and observe the outcome. Suppose we have two new drugs to be tested along 

with a control drug, a placebo. There are various ways of performing the experiments 

depending on an objective. If we are interested in drugs efficacy only, then drugs are 

randomly assigned to patients and their response noted. A more controlled experiment 

may form blocks of patients given same age group and select randomly as many patients 

from a group as the number of drugs or multiple patients per drug. One drug to each 

patient in the age group called blocks is the randomly given to patients. This way each 

drug will get as many patients (an equal number for all drugs) as there are blocks. The 

idea is to make the units in a block as similar as possible. The first experiment is called 

Completely Randomized Design and the analysis of this design is made by using 

Analysis of Variance with One-Way Classification The second one is called Randomized 

Block Design and analysis of this design may be made by using Analysis of variance 

Two-Way Classification. Similarly other types of designs can be adopted depending on 

the objectives and resources available. The main purpose of analysis of variance 

technique is to see, whether there is any difference among k population means in (Note 

that ANOVA can also be applied on two samples). In this chapter only analysis of 

variance for one-way classification, two-way classification, repeated measure design, 

Multivariate Analysis of Variance (MANOVA) and simple factorial design will be 

discussed. The classification of observations on the basis of single criterion is called one-

way classification whereas the classification of observations according to two criteria is 

called two-way classification. If the classifications are based on multi-way classification 

with more than two factors then analysis is made using MANOVA (multivariate analysis 

of variance) and repeated measure design. 

5.2 Analysis of Variance with One- Way classification 

Suppose there are k treatments (drugs) that are randomly assigned to experimental units. 

Random allocation of treatments to experimental units is known as completely 

randomized design. For the analysis of such type of data, analysis of variance with one-
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way classification is used. What we do, we select independent random samples from 

different populations to make inferences about the population means associated with 

various treatments.  

The null hypothesis to be tested is 

  H0 = µ
1
 = µ

2
 = µ

3
 = . . . . . = µ

k
 

at a particular level of significance. Where µ
1
, µ

2
, µ

3
, ... µ

k
 are the means of k 

populations. The alternative hypothesis will be that at least two means differ. The 

following assumptions must be made: 

 In an additive model 

  yij =  + i + ij  i = 1, 2, 3,….n, j = 1, 2, 3,……, k         (5.1) 

where  is the general mean response and i is the effect of the ith drug. 

  i = 0 and ij ~ NID (0, 
2
) 

The assumptions are as: 

(i)  The observed values are all independent random variables selected from each 

sampled population  

(ii) Each sampled population is normally distributed  

(iii) The variances of all the populations are same and constant. 

When these assumptions are violated, the inferences become doubtful.  

One way analysis of variance technique partitions the total sum of square (TSS) into two 

components called, between sum of squares [SS(B)] and within sum of squares[SS(W)] 

as shown is diagram 5.1. 

Fig. 5.1: Partitioning of total sum of squares into different components. 

If H0 is true then the two components are used to provide independent estimates of 
2
. 

We compare the source of variability by forming F-test i.e. 

  
)]W(MS[squaresmeanWithin

)]B(MS[squaresmeanBetween
F   

 

Between sum of 
squares [SS(B)] 

Within sum of 
squares [SS(W)] 

Total sum of 
squares (TSS) NCBA&E
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In the definition of F both the numerator and denominator estimate the 
2
 and 

consequently if H0 is true F should be close to 1. 

F is based on 1 = k-1 and 2 = n-k degrees of freedom where k are treatments and n 

number of observations. If computed value exceeds the table value, we reject the null 

hypothesis and conclude that at least two treatment-means differ with each other. The 

results of the analysis of variance are usually summarized and presented in an analysis of 

variance table (ANOVA table). The table shows the sources of variation, their respective 

degrees of freedom, sum of squares, mean sum of squares and computed F-statistic, (in 

SPSS output, p-value is also given). If there are k treatments with n observations then the 

output may be displayed in the table 5.1. 

 
Table 5.1:  

ANOVA- ONE WAY 

Source of variation d.f SS MSS F-statistic 

Between treatments k-1 SS(B) SSB/(k-1) = MSB  

Within treatments n-k SS(W) SSW/(n-k) = MSW F = MS(B)/MS(W) 

Total  n-1 TSS   

We have further tests to determine which pairs are significantly different. For this 

purpose Multiple Range Tests are used and are given as: 

(i) LSD test 

(ii) Modified LSD (Bonferroni) test 

(iii) Duncan‟s test 

(iv) Student - Newman-Keuls test 

(v) Tukey -HSD test 

(vi) Tukey-B test 

(vii) Scheffe‟s test 

(viii) Dunnett‟s test 

Any one of the above tests can be applied to test the difference between two samples. 

LSD and Duncan's tests are commonly applied. 

Example 5.1:  

Suppose we wish to determine the usefulness of the measurement of serum Lipid-bound 

Silica Acid (LSA) in the detection of breast cancer. For this purpose, four populations are 

selected as: 

Population A: Normal/control. (Healthy subjects) 

Population B: Patients with benign breast cancer 

Population C: Patients with benign primary cancer 

Population D: Patients with recurrent meta-static breast cancer 

One sample from each population is selected randomly and LSA measurements (mg/dl) 

are recorded. We compare these samples to find out the difference between the means.  

The data regarding LSA measurements (mg/dl) are given in Table 5.2. 
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Table 5.2: 
Measurements of Lipid bound silica acid (LSA) 

Normal/ 
Control 

Patients with benign 
breast cancer 

Patient with primary 
breast cancer 

Patient with meta-static 
breast cancer 

18.80 
18.80 
20.10 
14.50 
15.80 
18.20 
15.70 
20.90 
20.40 
16.90 

24.30 
18.60 
24.70 
22.50 
23.00 
14.90 
22.70 
18.60 
20.60 
24.60 

18.00 
16.40 
22.50 
18.20 
17.50 
21.00 
23.20 
19.90 
19.80 
16.20 

22.30 
22.90 
22.70 
22.40 
25.20 
18.70 
22.20 
23.00 
25.50 
19.70 

180.1 214.5 192.7 224.6 

Grand total = 180.1+214.5+192.7+224.6= 811.9 

Test at 5% level of significance that there is no difference between 4 groups. 

Solution: 

 (1) H
0
 : µ

1
 = µ

2
 = µ

3
 = µ

4 

   H
1
 : At least two sample means are not equal 

 (2)  = 0.05 

 (3)  Test-statistic: F-test in one-way ANOVA. 

  For the calculation proceed as follows: 

(i) Correction factor = (811.9)
2 
/40 = 16479.5402 

(ii) Total sum of squares = 18.8
2
 + 18.8

2
 + …+ 19.7

2 
- 16479.5402 = 352.2097 

(iii) Between sum of squares 

       
2 2 2 2

180.1 214.5 192.7 224.6
16479.5402

10

  
   = 122.9308 

 Note that the divisor (10) is the number of observations on which the column or 

group totals are based. 

(iv) Within sum of squares = TSS-SS(B) = 352.2097 - 122.9308 = 229.2789 

(v) Mean sum of squares (B) = 122.9308/(4-1) = 40.9769 

(vi) Mean sum of squares (W) = 229.2789/36 = 6.3689  

(vii) F-statistic = 40.9769/ 6.3689 = 6.4339 

These may be presented in the ANOVA table 
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Table 5.3:  
One- Way ANOVA 

Source of variation d.f SS MSS Fcal Ftab 

Between groups 3 122.9308 40.9769 
40.9769/6.3689 

= 6.4339 
3.46 Within groups 36 229.2790 6.3689 

Total 39 352.2097  

(4) Table value against 3 and 36 degree of freedom at 5% level of significance is 3.46. 

(5) Calculated value is more than table value, result is significant, therefore we do not 

accept the null hypothesis and say that at least two sample means differs with each 

other. 

IBM-SPSS package may be used for the calculations, as explained by the following 

example: 

Example S5-1 

To test that there is no difference between the 4 groups for the data given in table 5.2, the 

data are entered in one column and we add another grouping variable with the numbers 

1,2,3 and 4 corresponding to the 4 (independent) groups, then we follow the following 

steps: 

AnalyzeCompare MeansOne-Way ANOVA…  

 

Move the variable measurement to Dependent List:  

Move the variable population to Factor: 
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Click on Options: 
 

We click on  and on , to get the following outputs: 

 

SPSS output for ANOVA One-way 

Analysis of Variance 

 

 

If the p-value of Levene‟s test of homogeneity of variance is greater than 0.05, then the 

condition of homogeneity is satisfied and ANOVA technique can be applied to test the 

difference between different groups. In this example, condition of homogeneity is 

satisfied (see Levene‟s test p-value = 0.267), so ANOVA technique is appropriate. 
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See the results of F-statistic from ANOVA table, p = 0.001, which is less than the p-value 

of 0.05, therefore, the null hypothesis is not accepted. We can say with 95% confidence 

that at least two sample means are different. 

POST HOC Test: Since samples are different, we apply any one of the multiple range 

tests to see which samples (groups) are homogeneous. We have applied LSD test and 

modified LSD test (Bonforroni) to see the differences between two means: 

AnalyzeCompare MeansOne-Way ANOVA…  

We chose Post Hoc: 
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We click on  and on , to get the following outputs: 

SPSS output for multiple range tests 

LSD and Modified LSD Tests with 5% level of significance 

 

(a) The result of LSD test 

 (i) Control group and Primary group are homogeneous 

 (ii) Benign group and Primary group are homogeneous 

 (iii)Benign group and Meta-Static group are homogeneous 

(b) The result of Bonferroni's test (Modification of LSD) 

 Results of Bonferroni test are the same as for LSD. 

The following figure (obtained through the Means Plot) may reflect the results: 

Multiple Comparisons

Dependent  Variable: DATA

-3.4400* 1.1286 .004

-1.2600 1.1286 .272

-4.4500* 1.1286 .000

3.4400* 1.1286 .004

2.1800 1.1286 .061

-1.0100 1.1286 .377

1.2600 1.1286 .272

-2.1800 1.1286 .061

-3.1900* 1.1286 .008

4.4500* 1.1286 .000

1.0100 1.1286 .377

3.1900* 1.1286 .008

-3.4400* 1.1286 .026

-1.2600 1.1286 1.000

-4.4500* 1.1286 .002

3.4400* 1.1286 .026

2.1800 1.1286 .368

-1.0100 1.1286 1.000

1.2600 1.1286 1.000

-2.1800 1.1286 .368

-3.1900* 1.1286 .046

4.4500* 1.1286 .002

1.0100 1.1286 1.000

3.1900* 1.1286 .046

(J) CODES

Benign

Primary

Meta-Static

Control

Primary

Meta-Static

Control

Benign

Meta-Static

Control

Benign

Primary

Benign

Primary

Meta-Static

Control

Primary

Meta-Static

Control

Benign

Meta-Static

Control

Benign

Primary

(I) CODES

Control

Benign

Primary

Meta-Static

Control

Benign

Primary

Meta-Static

LSD

Bonf erroni

Mean

Dif f erence

(I-J) Std.  Error Sig.

The mean dif ference is signif icant at the .05 level.*. NCBA&E
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In the previous example, the sample sizes were equal in the different groups (this is 

known as a balanced model). We can use the same procedure – under the same 

conditions in case of the unbalanced model, as can be seen in the following example: 

Example 5.2:  
Anionwu et al. (1981) reported data on steady-state hemoglobin levels for patients with 

different types of sickle cell disease. The question of interest is whether the steady-state 

hemoglobin levels differ significantly between patients with different types. The data are 

given as follows. 
 

Table 5.4 

Type of Sickle Cell Disease 

HB SS HB S/-Thalassaemia HB SC 

7.2 
7.7 
8.0 
8.1 
8.3 
8.4 
8.4 
8.5 
8.6 
8.7 
9.1 
9.1 
9.1 
9.8 
10.1 
10.3 

8.1 
9.2 
10.0 
10.4 
10.6 
10.9 
11.1 
11.9 
12.0 
12.1 

 
 
 
 
 
 

10.7 
11.3 
11.5 
11.6 
11.7 
11.8 
12.0 
12.1 
12.3 
12.6 
12.6 
13.3 
13.3 
13.8 
13.9 

 

Source: Anionwu et al. (1981) 

NCBA&E



Analysis of Variance 186 

By using analysis of variance technique, test whether there is any significant difference 

between three types of Sickle all disease at 5% level of significance. 

Example S5-2 

To test that there is no difference between the 3 groups for the data given in table 5.4, that 

is to test: 

  H
0
 : µ

1
 = µ

2
 = µ

3
  

  H
1
 : At least two sample means are not equal,  

the data are entered in one column and we add another grouping variable with the 

numbers 1,2 and 3 corresponding to the 3 (independent) groups, then we follow the 

following steps : 

AnalyzeCompare MeansOne-Way ANOVA…  

  

Move the variable measurement to Dependent List:  

Move the variable population to Factor: 

 

 

Click on Options: 
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We click on  and on , to get the following outputs: 

SPSS output for ANOVA One-way 

Analysis of Variance 

 

 

The p-value of Levene‟s test of homogeneity of variance is greater than 0.05, (p-value = 

0.414), then the condition of homogeneity is satisfied and ANOVA technique can be 

applied to test the difference between different groups.  

 

See the results of F-statistic from ANOVA table, p < 0.001, therefore, the null hypothesis 

is not accepted. We can say with 99% confidence that at least two sample means are 

different ( we may say that the test is highly significant). 

 

POST HOC Test: Since samples are different, we apply any one of the multiple range 

tests to see which samples (groups) are homogeneous. We have applied LSD test and 

modified LSD test (Bonforroni) to see the differences between two means: 

AnalyzeCompare MeansOne-Way ANOVA…  

We chose Post Hoc: 
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We click on  and on , to get the following outputs: 

 

SPSS output for multiple range tests 

LSD and Modified LSD Tests with 5% level of significance 
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(a) The result of LSD test all groups are different than each other 

(b) The result of Bonferroni's test (Modification of LSD) 

 Results of Bonferroni test are the same as for LSD. 

The following figure (obtained through the Means Plot) may reflect the results: 

 

Example 5.3:   
Vanadium is recently recognized essential trace element. An experiment was conducted 

to compare the concentration of vanadium in biological materials using isotope dilution 

mass spectrometry. The following table gives the quantities of vanadium (measured in 

nano-grams per gram) in dried samples of oyster tissue, citrus leaves, bovine liver and 

human serum. Use an appropriate method of analysis to determine whether the 

distribution of vanadium concentrations for the four biological materials differ in 

locations. The data is given in Table 5.5. Use 5% level of significance.  

  

Table 5.5 

Oyster tissue Citrus tissue Bovine lever Human serum 

2.35 
1.30 
0.34 

2.32 
3.07 
4.09 

0.39 
0.54 
0.30 

0.10 
0.17 
0.14 
0.16 
0.16 

(Source: Analytical Chemistry, Vol. 57(13), 1985, pp. 2475). 
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Solution: 

(1) H
0 : There is no difference between the Vanadium concentrations for the four 

biological materials.  

 H
1 : At least two differ. 

(2)   = 0.05 

(3) Test-statistic. Analysis of Variance 

Before applying the Analysis of Variance, test of Homogeneity is applied whether 

we can apply this test or not. 

 

(4)  Since the p-value of the homogeneity of test is less than 0.05, therefore, the 

condition for the equality of variances is not met. We may not apply Analysis of 

Variance technique to find out whether there is any difference between 

concentrations of four groups. 

To solve this problem and find out significant difference, we will apply non-parametric 

method called Kruskal-Wallis. This will be discussed in Chapter 8. 

5.3 Analysis of variance for two-Way classification 

Suppose there are k treatments (drugs) and b blocks (age groups). If k treatments are 

compared within each of b blocks k treatments are randomly assigned within each block. 

This is known as randomized block design. For the analysis of such data, two-way 

analysis of variance is appropriate. In simple language, if the data are given according to 

two criteria then analysis of variance for two-way classification is the proper method for 

analysis. Suppose we want to compare three types of drugs (A, B, C) on patients of 

different age groups and would like to see how these different types of drugs have an 

effect on patients of different age groups. To compare k drugs (treatments) on b blocks 

(age groups), our hypotheses will be: 

(a) H0 :  1 = 2 = 3 =…..= k 

 (i.e. there is no difference in the treatment means) 

 H1 : at least two treatments means differ significantly. 

(b) H0 : 1 = 2 = … = b 

 (i.e. there is no difference among means of the blocks) 

 H1 : at least two block means differ significantly. 

In the additive model 

Test of Homogeneity of Variances

concentration

3.955 3 10 .043

Levene

Stat ist ic df 1 df 2 Sig.
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Treatment sum of 
squares [SS(T)] 

Block sum of squares 
[SS(B)] 

Total sum of squares 
(TSS) 

Sum of Error squares 
[SS(E)] 

 yij = ij + ij =  + i + j +ij                (5.2) 

 i = 1,2,3,…,k; j = 1,2,3,….,b; n = bk,  

where   i = 0 and  j = 0 , where i is the net effect of the i
th

 drug and j is the net 

effect of the j
th

 age group and ij ~ NID (0, 
2
) 

The assumptions are as: 

(i) The population distribution of the difference between pairs of treatment 

observations within a block is approximately normal. 

(ii) (ii) The variance of the probability distributions is constant and same for all 

pairs of observations. 

(iii) (iii) The treatments (drugs) are randomly assigned to the experimental units 

(age) within each block. 

When the assumptions are violated, an alternative technique known as Friedman’s test 

(Chapter-8) may be used instead of ANOVA. 

Like one way analysis of variance, two-way analysis of variance partitions the total sum 

of squares (TSS) into three components i.e. treatment sum of squares [SS(T)]; Block sum 

of squares [SS(B)]; and error sum of squares (SSE). This is shown in Fig. 5.2. 

We compare the three sources of variation by the F-statistic 

  F1 = (mean squares treatments)/(Mean squares Error) 

  F2 = (mean squares blocks)/(Mean squares error). 

If there are k treatments and b blocks then F1 is based on v = k-1 and   1k1bv   

degrees of freedom whereas F2 is based on  1bv   and   1k1bv   degrees of 

freedom. 

Fig. 5.2: Partitioning of total sum of squares into different components 

The results of the analysis of variance two- way classification are usually summarized 

and presented in an analysis of variance (ANOVA) table and this table shows the sources 

of variation, their respective degrees of freedom, sum of squares, mean sum of squares 

and F-statistics. If SPSS package is used the p-value also appears in the table. If there are 

k treatments and b blocks then the output is displayed as: 
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Table 5.6  
Two-way ANOVA  

Sources of 
variations 

d.f SS MSS F(cal) 

Between treatments k-1 SS(T) SS(T)/(k-1)=MST MST/ MSE 

Between blocks b-1 SS(B) SS(B)/(b-1)=MSB MSB/ MSE 

Errors  (k-1)(b-1) SS(E) SSE/ (k-1)(b-1)=MSE  

Total Nk–1 = n-1 TSS   

Example 5.4:  

The pharmaceutical project manager decides to replicate the study, comparing the ACC 

inhibitors, grouping the subject into blocks on the basis of age. It is known that age 

affects systolic blood pressure systematically. The data regarding age and the use of the 

drug are as in Table 5.7 

 

Table 5.7: 
Measurements of systolic blood pressure 

Age Drug A Drug B Drug C Total 

20 - 30 
30 - 40 
40 - 50 
50 - 60 

> 60  

100 
105 
95 
110 
90 

90 
80 
80 
75 
90 

110 
90 
80 
100 
95 

300 
275 
255 
285 
275 

Total 500 415 475 1390 

Use the analysis of variance technique to find difference between the effect of drugs and 

between age groups. 

Solution: 

Here the data is given according to two criteria, i.e. use of drugs and age groups. Two-

way ANOVA technique is applied to see the difference between drugs and between age 

groups. Our null and alternative hypotheses are: 

(a) H
o
: All the drugs are equally effective. 

 H
1
: At least there is difference between two drugs. 

(b) H
o
 : There is no difference in age groups. 

 H
1
 : At least there is difference between two age groups. 

(2)  = 0.05 

(3) Test-statistic: F-test in Two-way ANOVA 
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For calculation we proceed as: 

(i) Correction factor = (1390)
2
 /15 = 128806.667

 

(ii) Total sum of squares = 100
2 
+ 105

2 
+ …+ 95

2 
- 128806.667 = 1693.333

 

(iii) Sum of squares of treatments.(drugs)  

  = 667.128806
5

475415500 222




 = 763.333 

(iv) Sum of squares of blocks.(age groups)  

  = 667.128806
3

275...275300 222




 = 360.0 

Note that the divisor is the number of observations in which the totals are based. 

(v) Sum of squares of residuals.(error) = TSS – SS(T)- SSB  

  = 1693.33 -763.33 - 360.0 = 570.0 

This can be presented in the standard ANOVA table 

 
Table 5.8 

ANOVA two-way 
Source of 
Variation 

Df SS MSS F(cal) 
F(tab) 

5% 

Between 
Drugs 

2 763.333 (763.333)/2= 381.667 381.667/71.25 = 5.357 4.46 

Between 
Age 

4 360.00 (360)/4= 90.00 90.00/71.25 = 1.263 3.81 

Error 24=8 570.00 570.0/8=71.25   

Total 14 1693.33    

Interpretation 

i) Between drugs: Fcal = 5.357 for drugs whereas Ftab (2,8) = 4.46. The calculated 

value is more than the table value therefore at 5% level of significance we do not 

accept the hypothesis and say with 95% confidence that effect of at least two 

drugs is not the same.  

ii)  Between Age groups: Fcal = 1.263 for blocks; Ftab = (4,8) = 3.81. The calculated 

value is less than table value therefore at 5% level of significance we accept the 

hypothesis and say that the effect of drugs on all the age groups is the same. 

Example S5-3 

To test that the null hypotheses: 

(a) H
o
: All the drugs are equally effective. 

  H
1
: At least there is difference between two drugs. 
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(b) H
o
 : There is no difference in age groups. 

 H
1
 : At least there is difference between two age groups. 

for the data given in table 5.7,  

the data are entered in one column and we add another two grouping variables with the 

numbers 1,2 and 3 corresponding to the 3 (independent) drug groups, and the numbers 

1,2,3,4 and 5 corresponding to the 5 (independent) age groups, the data and the value 

labels will look as : 

 

 

 

Note that, since the data for each drug doesn’t appear more than once with respect to 

each age group, we say that there is “no interaction”.  

Now, we follow the following steps : 

AnalyzeGeneral Linear ModelUnivariate…  
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Move the variable measurement to Dependent Variable:  

Move the grouping variables to Fixed Factor(s): 

  

We click on , chose Custom, click on Type and chose Main effects to remove 

the interaction option (also we remove the “include intercept model”): 
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We click on  and on , to get the following output: 

SPSS output for ANOVA Two-way Classifications 

 

Interpretation 

(i)  Calculated p-value for the age group is 0.360 which is more than 0.05, therefore, 

result is non-significant and we say with 95% confidence that there is no 

difference in the systolic blood pressure on age groups regarding the effect of 

drugs.  

(ii) The p-value of the drug is 0.033, which is less than 0.05; therefore the result is 

significant, we say with confidence that there is a significant difference in the 

effect of drugs. At least two of the drugs do not have the same effect. 

POST HOC Test: Since there is a significant difference w.r.t. the Drug, we have to 

apply a Post Hoc test, say LSD test to see the differences between each two drug means: 

AnalyzeGeneral Linear ModelUnivariate…  

We chose Post Hoc: 

 

We move the variable Drug only
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We click on  and on , to get the following outputs: 

 

The result of LSD test show that the difference is between Drug A and Drug B only  

Example 5.5:  
Sixteen overweight females participated in a study to compare four types of diets for 

weight reduction. Females were grouped according to initial weight and randomly 

distributed to one of the four types of diets. At the end of the experiment the following 

weight losses in pounds were recorded. 

 

Table 5.9: 
Type of diet and weight loss in pounds 

Initial weight(pounds) Diet 1 Diet 2 Diet 3 Diet 4 

150-174 12 26 24 23 

175-199 15 29 23 25 

200-225 15 27 25 24 

> 225 16 38 33 31 

After eliminating differences due to initial weight, do these data provide evidence to 

indicate that there is no difference in different types of diets? 

Solution: 

This is a question of randomized block design where types of diet are treatments and 

initial weight groups are blocks, therefore two-way analysis of variance technique is 

applied to see the difference in different types of diet. Our null and alternative hypotheses 

are: 

 H0 : there is no difference in the types of diet. 

 H1 : at least there is a difference in two types of diet. 

The SPSS package is used to solve this problem and the output is as: 
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SPSS output for ANOVA two-way classification 

 

Interpretation 

Diet:  The p-value = 0.000 which is less than 0.05, therefore the result is 

significant. We say with 95% confidence that effect of the types of diet in 

reducing the weight is not the same. 

Weight: The p-value = 0.002 which is less than 0.05, the result is significant. We say 

with 95% confidence that the effect of diets has significant effect in weight 

losses. 

5.4 Repeated Measure Design or Repeated Measure Analysis  

of Variance 

In Chapter 4, analysis was made when each subject was measured twice by using t-test 

for paired observations. Repeated measure design is an extension of this problem. Any 

design involving successive measurements on the same subject is called a repeated 

measures design. In a repeated measures designs, units are subject to repeated measures; 

for example blood pressures may be measured at successive intervals, say, once a week, 

for a group of patients attending a clinic. In this design, measurements on the same 

variable are made on two or more different occasions. Such data can be collected either 

prospectively, following subjects forward in time, or retrospectively, by extracting 

measurements on each person from historical records. 

In repeated measure design, each subject acts as its own control. This helps to control the 

variability between subjects since the same subject is measured repeatedly. This design 

has the ability to control for extraneous variation among subjects. Of course, when 

repeated measures are taken in different time sequences, it is not possible to include 

randomization.  

There are four important classes of repeated measures studies i.e. split-plot experiment; 

longitudinal studies, changeover studies and sources of variability studies. Because of the 

limited scope of this book it is not possible to discuss all of these. Some examples of 

longitudinal studies and changeover studies are given. In health sciences one can face 

such types of examples. 

Tests of Between-Subjects Effects

Dependent Variable: Type of  Diet  and Weight Loss in Pounds

698.500 6 116.417 26.694 .000

9312.250 1 9312.250 2135.293 .000

161.250 3 53.750 12.325 .002

537.250 3 179.083 41.064 .000

39.250 9 4.361

10050.000 16

737.750 15

Source

Corrected Model

Intercept

Weight

Diet

Error

Total

Corrected Total

Type I II Sum

of  Squares df Mean Square F Sig.
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1.  Two treatments for chronic pain are randomly assigned to subjects, and the extent 

of pain relief is evaluated at weekly visits for six weeks. 

2. Boys and girls from a cohort of one year old are observed every six months for 

five years to assess their ability to perform a manual dexterity task (or 

measurements of height, weight, or physical fitness might be made) 

3. Two treatments for a dental problem are randomly assigned to children. The status 

of teeth on the upper and lower jaws is evaluated every three months for one year. 

4. Information on smoking is obtained for each subject by two different methods: 

one was the subject‟s self-report to a direct question and the other is biochemical 

determination based on carbon monoxide levels in the blood. Subjects are 

randomly assigned to one of the two sequence groups: for one group, the self-

report preceded the biochemical determination: and for the second group, the self-

report followed the biochemical determination. 

5. The relative potency of two drugs that influence cardiovascular function is 

assessed through a changeover design. Volunteers are randomly assigned to one of 

two sequence groups. One group receives drug A during the first six-week study 

period and drug B during the second, and the other group receives the opposite 

regimen. A two -week washout period separates the two-treatment period. During 

each treatment period, three doses of the drug are tested with the drug dose being 

successively increased every two weeks. At the beginning of the treatment and at 

the end of each two-week dose interval, heart rate is measured before and after a 

treadmill exercise test. 

Most of the times health scientists use single-factor repeated measure design. This can be 

easily extended to two or more factors.  

Before we proceed for the discussion of repeated measure design it is necessary to 

explain the concept of Sphericity. Sphericity refers to the equality of variance of the 

difference between treatment levels. So, if you were to take each pair of treatment levels, 

and to calculate their differences, then it is necessary that these differences have equal 

variance. For any data, sphericity will hold when: 

  Variance A – B = Variance A – C = Variance B – C  

Assumptions of sphericity must hold; in other words we assume that relationship between 

pairs of experimental conditions is similar i.e. level of dependence between expert, 

mental conditions is roughly similar. This assumption is called the assumption of 

sphericity. Sphericity is denoted by ε. This can be tested by Mauchly‟s test. If the p-value 

of Mauchly‟s test is less than 0.05 we say that there is a significant difference between 

the variances of difference of each pair and say that condition of sphericity is not met. If 

p-value of Mauchly‟s test is greater than 0.05 we say that variance of difference are 

equal. Violation of the sphericity assumption makes the usual F-test inaccurate. We can 

use the corrected value of F by using either of the methods given by Greenhouse – 

Geisser (1959), Huynh- Feldt (1976) and lower bound (Milliken and Johnson-1984) for 

decision or multivariate analysis technique can be used. All these methods are given in 

SPSS. If the condition of sphericity does not hold then we look into the p-values of 
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Greenhouse–Geisser and Huynh–Feldt and take the average of these two. If the two 

corrections give rise to the same conclusion it makes little difference, which method you 

chose to draw inference.  

The additive model for fixed- effect single factor repeated measure design is 

  yij =  + i + j + ij i = 1, 2, 3,…., k, j = 1, 2, 3,…, b.        (5.3) 

where  denotes over all mean. Also i is the net effect of i
th

 treatment and j is the net 

effect of j
th

 block. ij ~ NID (0, 
2
). 

The simplest repeated measure design is one in which, in addition to the treatment 

variable, one additional variable is considered. This is known as single- factor repeated 

measure design.  

Example 5.6: 

The purpose of the study is to determine the pharmacokinetics of phenytoin in the 

presence and absence of concomitant fluconazole therapy. Blum et al. (1991) collected 

the data (reproduced below in Table 5.10) during the course of the study on trough serum 

concentration fluconazole for 10 healthy males at different points in time. By using a 

method of repeated measure design analyze the data and see if at different times there is 

any significant difference in the mean serum concentration of fluconazole. 

 
Table 5.10: 

Data relating to mean serum concentration of fluconazole 

 Day 14Cmin(g/ml) Day 18Cmin(g/ml) Day 21Cmin(g/ml) 

1 8.28 9.55 11.21 

2 4.71 5.05 5.20 

3 9.48 11.33 8.45 

4 6.04 8.08 8.42 

5 6.02 6.32 6.93 

6 7.34 7.44 8.12 

7 5.86 6.19 5.98 

8 6.08 6.03 6.45 

9 7.50 8.04 6.26 

10 4.92 5.28 6.17 

Solution: 

(1) H0 : 1 = 2 = 3 

 H1 : At least two differ 

(2)  = 0.05 

(3) Test Statistic; Repeated Measure Design 

Now, to perform the analysis we enter above data in IBM-SPSS just like the paired 

samples t-test (but more than two variables) and proceeds are as under: 
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Example S5-4 

The data will look as: 

 

Now, we follow the following steps: 

AnalyzeGeneral Linear ModelRepeated Measures…  

  
 

We Enter Within-Subject Factor 

Name “day” (By default it is  

“factor 1”) 

Number of Levels in this case  

are “3”, then click on Add. 

 

We click  

A new dialogue box will be opened named as 

(Repeated Measures), Select all the 3 variables 

and bring them to the right side in the space 

available for Within-Subjects Variables (day). 
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We click on , to get the following outputs: 

SPSS Output for Repeated Measures Design  

 

(4) Since the calculated p-value of Mauchly‟s test of sphericity is 0.173 for 5% 

significance level, which is more than 0.05 therefore assumption of Sphericity is 

met. 

 

Looking into the above table we can interpret the result 

(5) The calculated p-value is 0.116 which is greater than 0.05. We conclude that there 

is insignificant difference in the mean serum concentration of fluconazole, taken 

at different time. 

Example 5.7:  

A group of students investigated the consistency of marking by submitting the same 

assignments to four different tutors. The marks given by each tutor was recorded for each 

of the eight assignments. Data for the assignments marks is given in table 5.11. 

 
Table 5.11 

Assignments Tutor 1 Tutor 2 Tutor 3 Tutor 4 

1 62 58 63 64 
2 63 60 68 65 
3 65 61 72 65 
4 68 64 58 61 
5 69 65 54 59 
6 71 67 65 50 
7 78 66 67 50 
8 75 73 75 45 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.645 3.513 2 .173 .738 .848 .500

Within Subjects Ef f ect

DAY

Mauchly 's W

Approx.

Chi-Square df Sig.

Greenhouse-

Geisser Huynh-Feldt Lower-bound

Epsilon

Tests of Within-Subjects Effects

Measure: MEASURE_1

3.286 2 1.643 2.429 .116

3.286 1.476 2.227 2.429 .135

3.286 1.695 1.938 2.429 .127

3.286 1.000 3.286 2.429 .154

12.176 18 .676

12.176 13.280 .917

12.176 15.258 .798

12.176 9.000 1.353

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Source

DAY

Error(DAY)

Type I II Sum

of  Squares df Mean Square F Sig.
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Solution: 

(1) H0 : On the average all the four tutors are equal in marking the assignments. 

 H1 : At least two differ 

(2)  : 0.05 

(3) Test Statistic : Repeated Measure Design 

The output for the repeated measures design using IBM-SPSS package is given as 
follows. 

 

(4)  The calculated p-value of Mauchly‟s test of sphericity is 0.043, which is less than 
0.05 therefore assumption of sphericity is violated.  

Looking into the following table we can interpret the results. 

 

(5) Since the assumption of Sphericity is violated at 5% level of significance then 
according to the suggestion given by Stevens (1992) we have to check the  
p-values for the Greenhouse-Geisser test and Huynh-Feldt test simultaneously. 
The above table gives the calculated p-values for these two tests, which are 0.063 
and 0.047 respectively. In this example, one interesting thing is that both these  
p-values do not lead to the same conclusion because calculated p-value for the 
Greenhouse-Giesser is 0.063 which is greater than 0.05 but the calculated p-value 
for the Huynh-Feldt is 0.047 that is less than 0.05, so as suggested by Stevens 
(1992) the average value of these two p-values should be taken which comes out 

to be ,055.0
2

047.0063.0



which is more than 0.05, so we choose the results of 

Greenhouse-Geisser and say that at 95% confidence level there is no significant 
difference among four tutors in marking the assignment of the students. 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.131 11.628 5 .043 .558 .712 .333

Within Subjects Ef fect

TUTOR

Mauchly 's W

Approx.

Chi-Square df Sig.

Greenhous

e-Geisser Huynh-Feldt Lower-bound

Epsilon
a

Tests the null hypothesis that  the error covariance matrix of  the orthonormalized transf ormed dependent variables is

proportional to an identity  matrix.

May be used to adjust the degrees of  f reedom for the averaged tests of  signif icance. Corrected tests are display ed in the

Tests of  Within-Subjects Ef f ects table.

a. 

Design:  Intercept 

Within Subjects Design: TUTOR

b. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

554.125 3 184.708 3.700 .028

554.125 1.673 331.245 3.700 .063

554.125 2.137 259.329 3.700 .047

554.125 1.000 554.125 3.700 .096

1048.375 21 49.923

1048.375 11.710 89.528

1048.375 14.957 70.091

1048.375 7.000 149.768

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Source

TUTOR

Error(TUTOR)

Type I II Sum

of  Squares df Mean Square F Sig.
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If the condition of the sphericity is violated then other way is to go to Multivariate 

Analysis of Variance (MANOVA): 

Example S5-5 

The data will look as : 

 

Now, we follow the following steps : 

AnalyzeGeneral Linear ModelRepeated Measures…  

 
 

We Enter Within-Subject  

Factor Name “Tutor”  

Number of Levels in this case  

are “4”, then click on Add. 

 

We click  

A new dialogue box will be opened named as 

(Repeated Measures), Select all the 4 variables 

and bring them to the right side in the space 

available for Within-Subjects Variables (Tutor). 

Click on Options: 
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We click on , to get the following outputs: 

SPSS Output for MANOVA 

 

(6) In the output for Multivariate Tests four kinds of tests are used to test the 

significance of the model, but Wilks‟ Lambda is more powerful and is frequently 

used. The p-value of Wilks‟ Lambda is 0.063 which is greater than 0.05. We can 

say with 95% confidence that there is no significant difference in evaluating the 

assignments of the students. 

(the other outputs are the same given in Example 5.7) 

Multiple Comparison test: 

If the null hypothesis is not accepted we may use the multiple comparison test to see 

which two groups differ. The procedure for the multiple comparison tests is as: 

 Click defines and then click options. 

 Bring the factor name on the right side (Display Means for). 

 Click compare main effects. 

 Click confidence interval estimation (Bonferroni Test). 

 Click Continue. 

 Click ok. 
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5.5 Multivariate Analysis of Variance (MANOVA) 

In previous sections we have studied the methods to compare several groups; each 

measured on single variable of interest; by using simple and repeated measures ANOVA. 

There are several situations where we have to compare several groups; each measured on 

more than one variable. For example we may be interested in comparing the effectiveness 

of four medicines when reduction in blood pressure level and increase in sugar level is 

obtained after applying each medicine. In these situations simple or repeated measures 

ANOVA does not solve the problem and we have to use the technique known as 

Multivariate Analysis of Variance (MANOVA). The MANOVA technique is used to 

compare several groups and each group constitute several variables. In MANOVA the 

hypothesis of preliminary interest is that mean vectors of several groups are equal. Before 

we proceed for procedure to carry out MANOVA in SPSS it is worthwhile to discuss its 

assumptions. These assumptions are given as under. 

5.5.1 Assumptions 

The following assumptions must hold for applying MANOVA. 

1. Samples must be random. 

2. Condition of normality must hold. 

3. Errors covariance should be equal across various groups; [test of Homogeneity 

(Box‟s Test)]. 

4. Condition of additivity must hold. 

5. Condition of sphericity (Bartlett‟s test) may not hold. 

6. There should be several dependent variables. 

Example 5.8: 

Forty-five patients suffering from cancer were given the radiation therapy and the effects 

were recorded. The patients were grouped in four groups. The average score for the first 

three days following radiation therapy are given below Test the null hypothesis that four 

radiations therapy have equal average score for three days. 
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Table 5.12 
Control 25-50R 75-100R 125-250R 

1 2 3 1 2 3 1 2 3 1 2 3 

223 214 224 60 95 103 216 187 239 198 245 237 
72 80 65 45 45 76 210 176 139 167 259 185 

172 175 170 95 95 98 206 218 276 158 168 196 
180 175 165 175 175 167 198 225 216 176 168 244 
195 200 185 203 203 218 198 203 203 187 217 224 
35 25 25 191 191 116 118 181 198 260 234 238 
   114 114 123 248 245 187 214 267 265 
   35 35 76 260 206 167 216 248 265 
   55 55 45 95 116 214 234 248 259 
   106 106 121 238 214 255 158 269 268 
   264 264 216 234 243 167    
   210 210 216 95 103 34    
   34 34 56 134 147 168    
   255 255 270 136 138 234    
      98 89 201    

Solution: 

(1) H0 : On the average radiation therapy has equal effect on the four groups 

 H1 : At least two groups differ 

(2)  = 0.05 

(3) Test Statistic : Multivariate Analysis of Variance. 

Example S5-6 

The data will look as: 
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the steps for applying MANOVA are as:- 

AnalyzeGeneral Linear Model Multivariate …  

 
 

  

(i) Click Option then click Homogeneity of variance 

(ii) For multiple Comparison, bring the code in right window, then click compare 

main effect finally choose the method for comparison 

We click on , to get the following outputs: 

SPSS OUTPUT OF MANOVA 

Box’s Test of Equality  
of Covariance Matrice 

 

Bartlett’s Test of Sphericity 
a
 

 

        

(4) Since the p-value of Bartlett‟s Test of sphericity is less than 0.05 therefore 

MANOVA can be applied. 

Box's Test of Equal ity of Covariance Matrices

71.735

3.323

18

1962.936

.000

Box's M

F

df1

df2

Sig.

Bartlett's Test of Sphericitya

.000

105.558

5

.000

Likelihood Ratio

Approx.  Chi-Square

df

Sig.

Tests the null hy pothesis that the residual covariance

matrix is proportional to an identity  matrix.

Design:  Intercept+CODESa. 
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(5) Since the p-value of Wilks‟ Lambda is less than 0.05, therefore there is a 

significant difference between groups, regarding the effect of radiation therapy. 

(6) Multiple comparison test can be performed to see which groups differ. One can 

see the p-value (sig.), if it is less than 0.05 for any pair then these two groups 

differ. 

Example 5.9: 

Thirty individuals were randomly assigned to three different exercise types viz. at rest, 

walking leisurely and running. Each group was given two different types of diets; low-fat 

and high-fat. The pulse rate of these individuals was recorded at three different times 

during their exercise. The data obtained is given in table 5.14: 

 
Table 5.14 

 

Low-Fat High-Fat 

1 
minute 

15 
minute 

30 
minute 

1 
minute 

15 
minute 

30 
minute 

R
e
s
t 

85 85 88 83 83 84 

90 92 93 87 88 90 

97 97 94 92 94 95 

80 82 83 97 99 96 

91 92 91 100 97 100 

W
a

lk
in

g
 

L
e
is

u
re

ly
 86 86 84 84 86 89 

93 103 104 103 109 90 

90 92 93 92 96 101 

95 96 100 97 98 100 

89 96 95 102 104 103 

R
u
n
n

in
g

 93 98 110 95 126 143 

98 104 112 100 126 140 

98 105 99 103 124 140 

87 132 120 94 135 130 

94 110 116 99 111 150 

 

  

Multivariate Testsd

.901 118.612b 3.000 39.000 .000

.099 118.612b 3.000 39.000 .000

9.124 118.612b 3.000 39.000 .000

9.124 118.612b 3.000 39.000 .000

.517 2.843 9.000 123.000 .004

.522 3.234 9.000 95.066 .002

.842 3.524 9.000 113.000 .001

.745 10.175c 3.000 41.000 .000

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy 's Largest Root

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy 's Largest Root

Ef fect

Intercept

CODES

Value F Hypothesis df Error df Sig.

Exact statisticb. 

The statistic is an upper bound on F that y ields a lower bound on the signif icance level.c. 

Design: Intercept+CODESd. 
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Solution: 

The data entry is explained on next page. 

(1) H01 : On the average the pulse rate is equal at various time. 

 H02 : On the average the pulse rate is equal for various exercises. 

 H03 : On the average the pulse rate is equal for various diets. 

 H1 : At least two groups differ 

(2)  = 0.05 

(3) Test Statistic: MANOVA Repeated Measure Design (Between and Within Effects) 

Example S5-7 

The data will look as: 

Table 5.15 

 

 

 

the steps for applying MANOVA are as:- 

AnalyzeGeneral Linear Model Multivariate …  
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The steps for applying this design are as:  

click:- 

a. Against Within Subject Factor Name enter time 

b. Against Number of Levels enter 3 and click  then  

c. Take variables time1, time2 and time3 to Within Subject Variable box. 

d. Take variables Exertype (exercise) and diet to Between Subject Factor(s) box. 

  

We click on , to get the following outputs: 

 

Multivariate Tests

.782 41.209 2.000 23.000 .000

.218 41.209 2.000 23.000 .000

3.583 41.209 2.000 23.000 .000

3.583 41.209 2.000 23.000 .000

.836 8.611 4.000 48.000 .000

.172 16.214 4.000 46.000 .000

4.762 26.193 4.000 44.000 .000

4.753 57.035 2.000 24.000 .000

.252 3.865 2.000 23.000 .036

.748 3.865 2.000 23.000 .036

.336 3.865 2.000 23.000 .036

.336 3.865 2.000 23.000 .036

.518 4.189 4.000 48.000 .005

.483 5.047 4.000 46.000 .002

1.069 5.881 4.000 44.000 .001

1.068 12.819 2.000 24.000 .000

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest Root

Ef fect

TIME

TIME * EXERTYPE

TIME * DIET

TIME * EXERTYPE 

*  DIET

Value F

Hypothesis

df Error df Sig.
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(4) Since the p-value of Wilks‟ Lambda is less than 0.05 for Time therefore there is 

significant difference between pulse rate at various exercise time. 

(5) Since the p-value of Mauchly‟s Test is greater than 0.05 therefore the errors are 

spherical. 

 

 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.924 1.814 2 .404 .930 1.000 .500

Within

Subjects

Ef fect

TIME

Mauchly 's

W

Approx.

Chi-Square df Sig.

Greenhouse

-Geisser

Huynh-F

eldt

Lower-

bound

Epsilon

Tests of Within-Subjects Effects

Measure: MEASURE_1

2066.600 2 1033.300 31.721 .000

2066.600 1.859 1111.668 31.721 .000

2066.600 2.000 1033.300 31.721 .000

2066.600 1.000 2066.600 31.721 .000

2723.333 4 680.833 20.900 .000

2723.333 3.718 732.469 20.900 .000

2723.333 4.000 680.833 20.900 .000

2723.333 2.000 1361.667 20.900 .000

192.822 2 96.411 2.960 .061

192.822 1.859 103.723 2.960 .066

192.822 2.000 96.411 2.960 .061

192.822 1.000 192.822 2.960 .098

613.644 4 153.411 4.709 .003

613.644 3.718 165.046 4.709 .004

613.644 4.000 153.411 4.709 .003

613.644 2.000 306.822 4.709 .019

1563.600 48 32.575

1563.600 44.616 35.046

1563.600 48.000 32.575

1563.600 24.000 65.150

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Source

TIME

TIME * EXERTYPE

TIME * DIET

TIME * EXERTYPE 

*  DIET

Error(TIME)

Type I II Sum

of  Squares df

Mean

Square F Sig.
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(6) Since the errors are spherical therefore the Willk‟s Lambda statistics is 

appropriate for testing the significance of various factors. 

(7) Since the p-value of exertype and diet are less than 0.05 therefore there is 

significant difference among pulse rate at various exercise and diet levels.  

5.6 Simple Factorial Experiment 

An experiment in which two or more factors and each factor at different levels (variables) 

are investigated is called a factorial experiment. The model for the two-way factorial 

experiment with interaction is given below.  

  
ijkijjiijky                (5.4) 

   i = 1, 2, …, njk, j = 1, 2, …, mk,  k = 1, 2, …, p 

The data for a two-factor factorial experiment are presented in a two-way table with rows 

corresponding to levels of one factor and columns corresponding to levels of another factor. 

Example 5.10: 

A study was made as to how the concentration of a certain drug in the blood, 24 hours after 

being injected, is influenced by age(B) and gender(A). An analysis of the blood samples of 

40 patients yielded the following concentrations (in milligrams per cubic centimeter). 
 

Table 5.16:  
Age groups( B) 

   11-25 26-40 41-65 Over 65 

   B1 B2 B3 B4 

   52.0 52.5 53.2 82.4 
   56.6 49.6 53.6 86.2 
 Male A1 68.2 48.7 49.8 101.3 

Gender (A)   82.5 44.6 50.0 92.4 
   85.6 43.4 51.2 78.6 

   68.6 60.2 58.7 82.2 
   80.4 58.4 55.9 79.6 
 Female A2 86.2 56.2 56.0 81.4 
   81.3 54.2 57.2 80.6 
   77.2 61.1 60.0 82.2 

 

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transf ormed Variable: Av erage

894608.100 1 894608.100 10296.660 .000

8326.067 2 4163.033 47.915 .000

1261.878 1 1261.878 14.524 .001

815.756 2 407.878 4.695 .019

2085.200 24 86.883

Source

Intercept

EXERTYPE

DIET

EXERTYPE * DIET

Error

Type I II Sum

of  Squares df Mean Square F Sig.
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(1) test the hypothesis that gender does not affect the blood concentration 

(2) test the hypothesis that age does not affect blood concentration 

(3) test the hypothesis that there is no interaction between age and gender 

Here, there are 4 types of age groups and two types of gender. This experiment involves 

two factors. Factor “A” has two levels (A1, A2) whereas factor “B” has 4 levels (B1, B2, 

B3, B4), Each of the 2  4 combinations of this table represent the treatments of the 

experiment. For this reason the experiment is referred as 2 4 factorial experiment.  

In factorial experiment, when the difference between the mean levels of factor “A” 

depends on the different levels of factor “B”, we say that factors A and B interact. If the 

difference is independent of the levels of “B”, then there is no interaction between factors 

A and B. 

Following assumption should be kept in mind while applying factorial experiment 

1. The population of the observations for any factor level combination is 

approximately normal. 

2.  The variance of the probability distribution is constant and same for the factor 

level combinations. 

3. The treatments, factor level combinations, are randomly assigned to the 

experimental units. 

4. The observations for each factor level combination represent independent random 

samples. 

When the assumptions for the factorial experiment are violated, then we use non-

parametric test equivalent to simple factorial experiment.  

The hypotheses for the simple factorial experiment are: 

(1)  Factor A (main effect) 

 H0 : there is no difference among the means for main effect “ A” 

 H1 : At least two of the main effect differ 

(2)  Factor B ( main effect) 

 H0 : there is no difference among the means for main effect “B” 

 H1 : at least two of the main effect B means differ 

(3)  Interaction factor (AB) 

 H0 : there is no interaction between factors A and B 

 H1 : factors A and B interact.  
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An easy graphical representation is sometimes illuminating and can also throw light on 

the presence or absence of interaction. Plot levels of one factor on the x-axis and y-axis 

represent observations. Each line indicates the changes in responses in arrange Y for the 

different levels of factor A. See Fig. 5.3.  

 

 

Fig. 5.3: Main effect and interaction plots 

A diagram (5.3) showing parallel lines indicates absence of interaction. Intersecting lines 

estimates presence of interaction etc. 

The analysis of variance for the two-factor factorial experiment is very similar to the 

analysis of variance of two-way classification. The sum of squares of rows and blocks are 

now replaced by sum of squares of two factors, SS(A), and SS(B), called main effect sum 

of squares and the interaction sum of squares, SS(AB). 

Finally, because we have more than one observation per cell for the two-way table, we 

calculate a sum of squares of error, called SS(E).  

The partitioning of the sum of squares of the total into different components is shown in 

Figure 5.4. 

 

Fig. 5.4: Partitioning of total sum of squares into different components 

  

Main effect sum of squares  
Factor-A [SS(A)] 

Main effect sum of squares  
Factor-B [SS(B)] 

Total sum of squares (TSS) 

Error sum of squares  
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Sum of squares for the interaction 
between Factors-A and B [SS(AB)] 

Factor B1 
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These results are usually presented in the two-way factorial experiment as: 

 

Table 5.17 ANOVA table for two- factor factorial experiment 

Source of 

Variation 
Df SS MS Fcal Ftab 

A a-1 SS(A) MS(A)=SS(A)/(a-1) MS(A)/MSE  

B b-1 SS(B) MS(B)=SS(A)/(b-1) MS(B)/SSE  

2-way 

interaction 
     

A B (a-1) (b-1) SS(AB) MS(AB) = SS(AB)/(a-1)(b-1) MS(AB)/MSE  

Residual 

(error) 
ab(r-1) SSE MSE = SSE/[ab(r-1)]   

Total abr-1=n-1 TSS    

r = replication, n= a b r. 

Note that in running the SPSS package, one should follow exactly the same procedure as 

has been suggested by ANOVA two-way classification except that two ways interaction 

should be clicked instead of no interaction.  

Example S5-8 

The data will look as: 

Table 5.18 
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the steps for applying the two-way factorial experiment are as:- 

AnalyzeGeneral Linear Model Univariate …  

   

The steps for applying this design are as:  

  

We click on , to get the following outputs: 

SPSS Output for Simple Factorial Experiment (Univariate Analysis) 

ANALYSIS OF VARIANCE 
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The interpretation of the results is given as: 

Gender (Factor A) 

p-value = 0.035, which is less than 0.05 there is a significant difference between gender 

regarding concentration of drug in the blood, .. Gender does affect the blood 

concentration. 

Age groups (Factor B) 

p- value = 0.000, which is less than 0.05 the result is significant, therefore, there is a 

significant difference between age groups with respect to concentration of blood. 

Interaction between age and gender (AB) 

p-value = 0.028, which is less than 0.05 which shows that age and gender interact. This 

simply means that the response of treatment at different ages does not show the same 

pattern for both males and females. 

Example 5.11: 

An experiment is devised to test the hypothesis that an elderly person‟s memory retention 

can be improved by a set of oxygen treatments. A group of scientists administer these 

treatments to men and women. The men and women are each randomly divided into 4 

groups of 1, 2, 3, 4 (the two groups not given any treatments are served as control). The 

treatments are set up in such a manner so that all individuals thought they are receiving 

the oxygen treatments for the total three weeks. After the treatment ended, a memory 

retention test was administered. The result (higher scores indicating higher memory 

retention) are as follows: 
 

Table 5.19 
Number of week’s oxygen treatments (scores) 

  0 1 2 3 

  42 39 38 42 
  54 52 50 55 
 Male 46 51 47 39 
  38 50 45 38 

Gender  51 47 43 51 

  49 48 27 61 
  44 51 42 55 
 Female 50 52 47 45 
  45 54 53 40 
  43 40 58 42 

i) Test the hypothesis that length of treatment does not affect the memory retention. 

ii) Test the hypothesis that there is no difference in gender. 

iii) Test whether or not there is interaction effect. 

Solution: 

SPSS package is used and output is on next page: 
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SPSS output for simple factorial experiments 

 

Interpretation 

Length of treatment: p = 0.817, which is greater than 0.05 the result is not significant, 

therefore, we say with 5% level of significance that the length of treatment does not 

affect the memory retention. 

Gender: p = 0.543, which is greater than 0.05 therefore the result is not significant. We 

say with 95% confidence that there is no difference in males and females regarding 

memory retention. 

Interaction age and gender: p=0.927, which is greater than 0.05 therefore gender and 

time period have no interaction. 

Example 5.12: 

Twenty overweight individuals, each more than 40 pounds over-weight, were randomly 

assigned to one of 2 diets. After 10 weeks, the total weight loss (in pounds) of the 

individuals on each of the diets was as in Table 5.20: 

 
Table 5.20 

diet1 22.2 23.4 24.2 16.1 9.4 12.5 18.6 32.2 8.8 7.6 

diet2 24.2 16.8 14.6 13.7 19.5 17.6 11.2 9.5 30.1 21.5 

Test at 5% level of significance that two diets have equal effect. 

Suppose 10 people placed on each diet consisted of 5 men and 5 women. The data are 

given in Table 5.21. 

Tests of Between-Subjects Effects

Dependent  Variable: DATA

86862.400 1 86862.400 1589.431 .000

218.600 4 54.650a

19.600 1 19.600 .441 .543

177.900 4 44.475b

60.000 3 20.000 .311 .817

772.000 12 64.333c

218.600 4 54.650 .790 .579

341.288 4.933 69.183d

18.000 3 6.000 .151 .927

475.500 12 39.625

177.900 4 44.475 1.122 .391

475.500 12 39.625

. .

Source

Hypothesis

Error

Intercept

Hypothesis

Error

GENDER

Hypothesis

Error

WEEKS

Hypothesis

Error

SCORES

Hypothesis

Error

GENDER *

WEEKS

Hypothesis

Error

GENDER *

SCORES

Type I II Sum

of  Squares df Mean Square F Sig.

 MS(SCORES)a. 

 MS(GENDER * SCORES)b. 

 MS(WEEKS * SCORES)c. 

1.000 MS(GENDER * SCORES) +  MS(WEEKS * SCORES) - 1.000 MS(GENDER * WEEKS

* SCORES) - 8.327E-15 MS(Error)

d. 
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Table 5.21 

 Diet 1 Diet 2 

Women 

7.6 19.5 
8.8 17.6 
12.5 16.8 
16.1 13.7 
18.6 21.5 

Men 

22.2 30.1 
23.4 24.2 
24.2 9.5 
32.2 14.6 
9.4 11.2 

(i) Test the hypothesis that the diet has the same effect on men and women 

(ii) Test the hypothesis that there is no interaction between gender and diet. 

Solution: 

This question is left to the students to solve by using SPSS Package. 

5.7 “n of 1 Trials”: Controlled Trials in Single Subjects 

Controlled trials in individual patients have long been used in behavioral science and 

have recently been discussed and used by many authors. March et al. (1994) show that 

controlled trials offer a methodology for informed decision making. Johansson (1991) 

argues that “n of 1 trials” may be more economical and speedy in new drug development 

than the conventional clinical trials. Mahon et al. (1996) show that „n of 1 trials‟ lead to 

better outcome over standard practice in terms of use of less medication. 

In Statistics, we need a sample of reasonable size to draw valid inference for the 

population from which a sample is drawn. Statistics do not deal with individual units. 

However, in Fisher tea testing problem, a woman was asked to detect whether milk had 

been added before or after a tea infusion. She was given a number of cups of tea purely in 

random order. It was not envisaged for this tea testing experiment whether women in 

general could detect the difference between milk added before or after tea infusion. If a 

group of such individuals is involved in the tea testing experiment, the results can be 

generalized. 

In medical sciences and other areas like Psychology, behavioral medicine, etc. doctors 

are interested in the individual patients, and as such single case studies are more relevant 

to subjects of researchers. 

In order to deal with individual units, a method of „n of 1‟ trial or “controlled trial in 

single subjects” has been developed. The basic concept of “n of 1” trial is that two 

treatments can be compared on the same patient and that “n of 1” trials have been 

developed to find appropriate treatment for individual patients. 

It is true that observations on one individual are not independent and so many 

conventional statistical techniques are inapplicable but Campbell (1994) professes that 

data measured serially are not necessarily dependent. He gave an example of 
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independence in “randomly generated numbers purporting to be blood pressure 

recordings at 5 minutes intervals 20 minutes before and 20 minutes into a psychological 

stress test”. The example seems to contradict itself as „randomly generated numbers‟ 

cannot represent blood pressure recordings in individual patients. In statistics, particularly 

in Business and Economic Statistics, methods that can be applied to serially dependent 

observations are available and so these methods can be applied to data measured serially 

in medicine. 

5.7.1 Statistics in “n of 1 trials” 

In “n of 1 trial” experiments, treatments and/or treatment periods are randomly allocated 

to a single subject. The outcomes of such an experiment are observations that are not 

generally independent. 

A study was carried out by March et al. (1994) on individual patients where each patient 

was treated with a particular dose. Patients, doctors and research assistants were all 

blinded so far as treatment was concerned. Besides basic statistics, graphs of daily scores 

were plotted. Values from the second weeks are compared over the cycle by a paired t-

test with 2 degree of freedom. The sign test was also used to assess the effect of the dose.  

Because of danger of one dose over the other in a particular types of patients, the dose is 

not prescribed without an “n of 1 trial” to each patient. It was seen that „n of 1 trials” 

provided useful decision about the patients. It further avoided unnecessary treatment with 

a particular medicine.  

The main idea of “n of 1 trials” is that each patient is his own control as well as treated 

subject. Each treatment and treatment periods are randomly assigned to individual 

patient. Responses to each treatment and treatment periods are recorded. Many clinicians 

are confident that controlled single-subject-trial can be used to solve difficult issues. See 

Guyatt et al. (1990), Johann Essen (1991), Levis (1991), etc. However not all clinical 

drugs are appropriate for n of 1 trials. (Guyatt et al. 1988, Johannessen et al. 1991). 

Group trials or “n of 1 trials” are similar in nature as in statistics. Treatments and 

treatment periods are randomly allocated to subjects. With single subject, the number of 

treatment periods (sample size) is minimal or very low giving rise to large type II error 

but the “n of 1 trial” violates some of the assumptions needed in statistical tests. 

There is no reason to conduct “n of 1 trial” or for this purpose any experiment, if drug 

effect is well known and works for all patients. The “n of 1 trial” should be adopted in 

those cases where the efficiency of a drug is intended to be used in long-term 

management. 

In research where drugs efficiency needs to be tried, “n of 1 trials” may give new insight 

into the problems. In development of new drug, “n of 1 trials” could prove very useful 

instead of experiments run over many subjects. March et al. (1994) says, “In conclusion, 

the single subject trial bridges gap between research and clinical practice. It may provide 

new insight into vaguely defined conditions, improve therapeutic decisions, strengthen 

the doctor-patient relationship and create a more critical attitude towards drug treatment 

both among patients and doctors”. 
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The “n of 1 trial” avoids one of the biggest problems of finding enough suitable patients 

for clinical research. „n of 1‟ trials are advocated for such clinical conditions that are 

chronic and curable with repeated doses and that an individual patient responds to a 

particular treatment. 

In large number of cases in “n of 1 trials”, determination of variations within and between 

patients is possible and could provide information about the average effect. 

In an experiment, a patient is treated with a placebo and a drug over 12 treatment periods. 

The drug along with placebo is administered to particular patient in a double blind, 

randomized multiple cross over sequence. Each treatment period is randomly assigned. 

Patient is asked to give score in a scale of 6 for pain for each treatment period. Measures 

of responses are obtained for each treatment period. 
 

Table 5.22 
Scores given by a patient by treatment and treatment period 

Patient Treatment Period Drug Score out of 6 

1  Drug (D) 4 

1  Placebo (P) 2 

1  P 2 

1  D 4 

1  D 5 

1  P 3 

1  P 1 

1  D 4 

1  P 2 

1  D 5 

1  P 3 

1  D 4 

The data is summarized in Table 5.17 (next page) and is represented by single bar charts 

as given in Fig. 5.5. 

 
 

Fig. 5.5: Bar diagram of drug/placebo 
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Table 5.23 
Summary Statistics 

Drug Score Placebo Score 

4 2 

4 2 

5 3 

4 1 

5 2 

4 3 

4.33 2.17 

Average (Standard Deviation) is 2.17 (± 0.75) for Placebo and 4.33 (± 0.52) for Drug per 

treatment period. The ratio of drug to placebo seems to be 2 to 1. 

5.7.2 Use of Analysis of Variance for “n of 1 trials” 

The „n of 1 trials‟ is a special case of cross over design or repeated measure designs. The 

research unit is a human or an animal subject. Each subject is measured under several 

conditions, or at different points of time. 

Suppose we have n patients and each patient is subject to p treatments or each patient is 

administered a drug p times (viz. days) and each time a measurement of some character is 

made. The data format is as follows: 

Subjects Repeated Measures 

S1 y11 y12 ...... y1p 

S2 y21 y22 ...... y 2p 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

Sn yn1 yn2 ...... ynp  

The correct analysis of such data is more complex than if each patient is measured once. 

A simple additive model is applicable with usual conditions. 

  yij = m + bi + ij   i = 1, 2, ..., n 

   j = 1, 2, ..., p 

  




























1...

....

...1

...1

2  = s
2
 (1-)I + J 

where i ti = 0, eji ~ NID (0, ), J is a square matrix of 1‟s and I is an identity matrix. 

Bock (1963) and Huyuh and Feldt (1970) showed that the most general condition under 

which univeriate F-type remains valid is that C  C
/
 = 

2

I  where C is (p-1) xp matrix 

whose rows are orthogonal contrasts. In clinical trials where n and p are sufficiently 
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large, usual model conditions are met. When   
2
I, an approximate F-test for repeated 

measures is applicable with reduced degree of freedom 

  
 

)p/J(t)1p(

)p/J(t

r

2
r




 .                (5.5) 

Cases dealing with missing data can also be dealt with (Crepean et al, 1985). Bland and 

Altmar (1994) generated simulated data on 5 subjects with un-correlated pairs of 

measurements: 

 
Table 5.24 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

 A B A B A B A B A B 
 48 58 63 28 38 40 51 46 55 62 
 56 53 74 24 56 41 46 36 51 50 
 49 44 69 26 46 40 36 41 54 66 
 38 53 55 19 43 41 49 43 46 51 
 50 56 73 22 52 34 46 45 55 52 

Subject mean 48.2 52.8 66.8 23.8 47.0 39.2 45.6 42.2 52.2 56.2 

Correlation 
coefficient 

r = -0.02 
p = 0.97 

r = 0.32 
p = 0.59 

r = -0.30 
p = 0.63 

r = 0.37 
p = 0.55 

r = 0.55 
p = 0.33 

A and B may be two drugs. Each drug is administered 5 times to each subject.  

Bland and Altma (1994) made a correlation analysis on the repeated data. The same can 

be used to study variation between subjects, and A and B within subjects. 

There are 5 subjects and two types of drugs. It is a crossover design. Subjects and drugs 

cannot be randomized. However, drugs A and B can be randomized within subjects. Each 

subject is given the two drugs 5 times at random with all the medical conditions like drug 

A can be given say after drug B is given. We have 5 observations from each of the drugs 

for each of the subjects. 
 

Drugs x1 x2 x3 x4 x5 

1 48 63 38 51 55 

1 56 74 56 46 51 

1 49 69 46 36 54 

1 38 55 43 49 46 

1 50 73 52 46 55 

2 58 28 40 46 62 

2 53 24 41 36 50 

2 44 26 40 41 66 

2 53 19 41 43 51 

2 56 22 34 45 52 

Analysis is done and the result is given on the next page. 
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ANOVA TABLE 

 

 

 

Multivariate Tests

.965 34.475 4.000 5.000 .001

.035 34.475 4.000 5.000 .001

27.580 34.475 4.000 5.000 .001

27.580 34.475 4.000 5.000 .001

.996 303.053 4.000 5.000 .000

.004 303.053 4.000 5.000 .000

242.443 303.053 4.000 5.000 .000

242.443 303.053 4.000 5.000 .000

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest

Root

Pillai's Trace

Wilks' Lambda

Hotelling's Trace

Roy's Largest

Root

Ef fect

SUBJECTS

SUBJECTS * DRUGS

Value F

Hypothesis

df

Error

df Sig.

Mauchly's Test of Sphericity

Measure: MEASURE_1

.104 14.499 9 .116 .679 1.000

Within

Subjects Ef f ect

SUBJECTS

Mauchly 's

W

Approx.

Chi-Square df Sig.

Greenhouse

-Geisser Huynh-Feldt

Epsilon

Tests of Within-Subjects Effects

Measure: MEASURE_1

910.000 4 227.500 8.732 .000

910.000 2.714 335.261 8.732 .001

910.000 4.000 227.500 8.732 .000

910.000 1.000 910.000 8.732 .018

3856.720 4 964.180 37.01 .000

3856.720 2.714 1420.890 37.01 .000

3856.720 4.000 964.180 37.01 .000

3856.720 1.000 3856.720 37.01 .000

833.680 32 26.052

833.680 21.714 38.393

833.680 32.000 26.052

833.680 8.000 104.210

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity  Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Source

SUBJECTS

SUBJECTS * DRUGS

Error(SUBJECTS)

Type II I Sum

of Squares df

Mean

Square F Sig.NCBA&E



Analysis of Variance 226 

 

Repeated measurements are assumed independent as drugs were randomly administered 

to patients having no knowledge what drug is being administered to them. Subjects are 

significantly different whereas drugs are effective. 

„n of 1‟ with at least singly-blinded, can be easily analyzed and valid conclusion can be 

drawn. The results of 5 subjects can be pooled provided between subjects variation is not 

significant. Power of test and type I error can be usually calculated. 

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transf ormed Variable: Av erage

112338.000 1 112338.000 1979.873 .000

1039.680 1 1039.680 18.324 .003

453.920 8 56.740

Source

Intercept

DRUGS

Error

Type I II Sum

of  Squares df Mean Square F Sig.

NCBA&E



227 

Chapter 6 
 

Regression and Correlation 
 

6.1 Introduction 

In this Chapter, we will discuss and analyze the relationship between two and more than 

two variables. For example, a medical researcher may be interested in the relationship 

between a patient's blood pressure, X, and heart rate, Y; he may be interested to see the 

relationship of a certain drug and its effect in lowering the heart rate in adults; he may be 

interested in the relationship between the increase in age or weight and its effect on 

systolic blood pressure and so on. In each case, the objective of his interest is not merely 

academic but the medical researchers wish to determine whether blood pressure is a good 

indicator of a patient’s heart rate or increase in weight. 

One of the methods to investigate the increase (decrease) in one variable with the 

increase (decrease) in another variable is a regression method. Regression method refers 

to a set of techniques for studying the straight-line relationship among two or more than 

two variables, one of them is dependent (response) variable and others are all 

independent (explanatory) variables(s). The terms dependent and independent do not 

imply any cause and effect relationship between the two variables. It simply means that 

one variable is independent and the other variable depends on the first one. In the 

example of blood pressure and weight of patients, blood pressure is the response variable 

that depends on the weight, which is the explanatory variable. In case, regression is used 

for prediction, blood pressure is the outcome and weight is the predictor. Possibly the 

simple line could be Y = a + b X, where a and b are constant numbers, a is called 

intercept, b is slope of the straight line. It is not possible to determine a unique line that 

fits all points. We find the best possible line that passes through the nearest places of all 

these points. 

If we are interested in finding whether some sort of relationship exists between two or 

more than two variables, then it is a study of correlation. In fact correlation indicates 

relationship between two variables. The correlation refers to measurements of the 

strength of relationship between two or more than two variables. A numerical value of 

correlation is called a correlation coefficient. 

Note that in linear regression the dependent variable is always quantitative. 

6.2 Simple Linear Regression Analysis 

We explain the concept of simple regression analysis, with an example: 

Example 6.1:  

The following data and Table 6.1 show the age (X) and blood pressure B.P (Y) of 20 

healthy persons taken from a large population. 
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Table 6.1 

Age (x) B.P. (y) Age (x) B.P. (y) 

20 
43 
63 
26 
53 
31 
58 
46 
58 
70 

120 
128 
141 
126 
134 
128 
136 
132 
140 
144 

46 
53 
70 
20 
63 
43 
26 
19 
31 
23 

128 
136 
146 
124 
143 
130 
124 
121 
126 
123 

We can visualize the bivariate relationship by constructing a scatter diagram for this 

sample data. 

The scatter diagram is a useful aid in studying the relationship between two variables. 

The basic purpose of scatter diagram is to see whether there is any relationship between 

the two variables. The scatter diagram [6.1] allows visual examination whether there is a 

linear, non-linear or no relationship between variables. Plotting pairs of sample 

observations on two-dimensional graph paper construct a scatter diagram, i.e. age 

(independent variable) on the x-axis and blood pressure (dependent variable) on y-axis. If 

we draw a straight line through these points as shown in Figure 6.2, the line will not pass 

through all these points. It can be seen that blood pressure increases linearly as the age 

increases. Thus we could select a model that proposes a straight line relationship between 

age and blood pressure. We do not expect that the relationship, Y = + X will hold 

exactly for every healthy person. This model will be adequate if all the points fall exactly 

on the straight line. This model is known as a deterministic model. This ideal situation 

generally never occurs in practice. 

A more reasonable model is one that allows unexplained variation in blood pressure 

caused simply by random phenomena. 

AGE

8070605040302010

B
.P

150

140

130

120

110

 
AGE 

Fig. 6.1: Scatter diagram of age and blood pressure 
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A model that accounts for this random error is called a probabilistic model, i.e. 

              , ,  1,2,......... ,i i iY X i n               (6.1) 

where  and   are constants and i  are the deviations of points from the line. 
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Fig. 6.2: Straight line by the method of least squares 

This is known as a full linear regression model. We assume that i  follows a normal 

distribution with mean = 0 and variance = 2  i.e. N(0, 2 ),   is the intercept and   is 

called the slope of the line. The slope shows the amount of increase (or decrease) in the 

deterministic component of Y for every 1-unit increase (or decrease) in X.  

One interpretation of the regression line is that for a healthy person with age (X), the 

corresponding blood pressure (Y) will be normally distributed with mean X   and 

variance 2 . If 2  were 0, then every point would fall exactly on the regression line. 

However, the larger the 2 , the greater the deviations of points from the regression line.  

How can we interpret  ?  

   
(a) 0    (a) 0   (a) 0   

Fig. 6.3: Regression lines for different values of   
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If  is greater than 0 then as x increases, the expected value of y x   increases [see 

Fig. 6.3(a)]. If  is less than zero then as x increases, the expected value of y decreases 

[see Fig. 6.3(b)]. If   = 0 then there is no relationship between x and y [see Fig. 6.3(c)] 

and y-points lie around a line parallel to x-axis. 

Moreover the effect of 2  on a regression line may be seen from Figure 6.4. 
 

  
2 0   (imperfect fit) 2 0   (perfect fit) 

Fig. 6.4: The effect of 
2  on a regression line 

As with most statistical procedures, the validity of the inferences depends on certain 

assumptions being satisfied. The assumptions about the random error,  , required for a 

linear regression analysis are as: 

(i) The probability distribution of   is normally distributed with “zero” mean  

and “ 2 ” variance. 

(ii) The errors associated with any two observations are independent, i.e. the error 

associated with one value of y has no effect on the errors associated with other 

values of y. 

Note that there are some more assumptions i.e. non-zero variance of independent 

variable, Additivity, multi-colinearity, homo-scedasticity and normality; these are not 

mentioned here. The outcome variable must be quantitative. 

6.2.1 Method of Least Squares 

One way to use regression is to fit a straight line through a set of points. Many straight 

lines can be drawn, but a straight line fitted by the method of least squares is the best 

fitted straight line. 

The best line is that which passes as nearly as possible through the points i.e. deviations 

of points from the straight line is smallest. If sum of squares of all deviations of all the 

points from y of the straight line is minimized, then the line obtained through this process 

shall be the best-fitted line for the data. This method is called the Method of Least 

Squares. If the regression line of Y on X is linear, we have an equation (6.1), where i  

represent measurement errors in Y but not in X. 
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By the method of Least Squares, we minimize  
i

2
i (sum of the squares of errors) with 

respect to   and  . We get two least squares equations. If we solve them, we get 

  a = y  – byx x   

and 

  byx = ,              (6.2) 

where “a“ is an estimate of   and byx is an estimate of yx. 

The derivation of the formula is not given here. 

6.2.2 Some Applications of Simple Regression 

(i) In studying the effect of a certain drug in reducing heart rate in adults. 

(ii) In studying the relationship between an objective measurement of anxiety and 

heart rate in adults. 

(iii) In studying the relationship between age and systolic blood pressure. 

(iv) In studying the relationship between birth weight and cholesterol level in 

pregnant women near term. 

(v) In studying the relationship between HDL cholesterol and alcohol 

consumption. 

The solution of example 6.1 is first explained by manual process, then by using SPSS 

Package.  
 

No. Age (x) 
b.p. 
(y) x2 xy No. 

Age 
(x) 

b.p. 
(y) x2 xy 

1 20 120 400 2400 11 46 128 2116 5888 

2 43 128 1849 5504 12 53 136 2809 7208 

3 63 141 3969 8883 13 70 146 4900 10220 

4 26 126 676 3276 14 20 124 400 2480 

5 53 134 2809 7102 15 63 143 3969 9009 

6 31 128 961 3968 16 43 130 1849 5590 

7 58 136 3364 7888 17 26 124 676 3224 

8 46 132 2116 6072 18 19 121 361 2299 

9 58 140 3364 8120 19 31 126 961 3906 

10 70 144 4900 10080 20 23 123 529 2829 

    Total 862 2630 42978 115946 

 

  

  

xy

n
  -   

x

n
  

y

n

x

n
  -   

x

n

 
2 2

  

 








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  y = 2630 x = 862, y   = 131.50 x   = 43.10 

  x2 = 42978 xy = 115946 

  byx =     

20

862
  -  

20

42978

20

2630
  

20

862
  -  

20

115946

  
2









= 0.445089 ≈ 0.445 

The linear regression equation is 

  112.317yxa y b x     

The fitted Regression line will be  

  
 yxY y b X x                    (6.3) 

  ŷ  - 131.50 = 0.445 (x - 43.10) 

 or 

  ŷ  = 112.317 + 0.445 x 

Regression line may be fitted, alternatively, by using the SPSS package. 

How to use the IBM-SPSS package? And how to enter the data to fit linear regression 

line? It has been explained at the end of the Chapter. The IBM-SPSS package has been 

used: 

Example S6-1 

To see how we plot the scatter diagram and construct the regression equation, draw the 

regression line, we follow the following steps: 

The data will be in columns as follows: 
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We plot the scatter diagram as follows: 

GraphsChart Builder…  

From the Gallery select “Scatter/Dot” 

Double click or move the icon  

Move the variable Independent variable “Age” to the X-axis:  

Move the variable Dependent variable “Blood Pressure” to the Y-axis:  
 

 

 

 

We click on , to get the following Figure: 
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Fig. 6.5: The Scatter Diagram 

We obtain the regression equation as follows: 

Analyze Regression Linear …  
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Move the variable Independent variable “Age” to the Independent(s):  

Move the variable Dependent variable “Blood Pressure” to the Dependent:  

  

We click on , to get the following outputs: 

SPSS output for simple regression 

 

 

 
  

Model Summary

.967a .935 .931 2.12

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors:  (Constant), Age of  the Patientsa. 

ANOVAb

1154.116 1 1154.116 256.838 .000a

80.884 18 4.494

1235.000 19

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors:  (Constant), Age of  the Patientsa. 

Dependent Variable: Blood Pressureb. 

Coefficientsa

112.317 1.287 87.241 .000

.445 .028 .967 16.026 .000

(Constant)

Age of  the Patients

Model

1

B Std.  Error

Unstandardized

Coeff icients

Beta

Standardi

zed

Coeff icien

ts

t Sig.

Dependent Variable: Blood pressurea. 
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The output is divided into three general parts: 

(a) R, R
2

 and Adjusted R
2

 

(b) ANOVA Table   

(c) Parameters in the equation 

These need some explanations. 

a) R, R
2

 and Adjusted R
2

 

(i) Simple or Multiple Correlation R: 

The basic objective of correlation is to obtain a measure of the degree of relationship 

that exists between two or more than two variables. This is an index of correlation 

coefficient. For simple linear regression, it is the simple correlation coefficient, but if 

independent variables are more than one, it is a study of multiple correlations. 

Multiple correlations are the combined effect of all independent variables on 

dependent variable. The range of simple correlation coefficient is from -1 to 1 and for 

multiple correlation coefficients, R varies from 0 to +1. 

(ii) R2 (coefficient of determination): 

R2, which is commonly known as coefficient of determination, is the proportion of 

the variance of dependent Y that can be explained by the independent variable X. R2 

ranges from 0 to 1. The closer the value of R2 to 1 the better the model is that 

accounts for the variation in the data. If R2 = 1, then all the variation in the dependent 

variable Y can be explained by the variation in independent variable X and all the 

points fall on the regression line. In this situation, once we know X, we can predict Y, 

exactly with no error in prediction. If R
2
 = 0 then independent variable does not give 

any information about dependent variable. 

R2 can also be calculated from the ANOVA Table as: 

  

 
squares of sum Residuals) +n (Regressio Total

squares of sum Regression
R 2        (6.4) 

For this example the value of R2 is 

  0.93451
80.8841154.116

1154.116
  R 2 


  

R2 depends on the value of the sum of squares of the residuals. If sum of the squares 

of the residuals are zero then R
2

 = 1. This means all the points will fall on the 

regression line. As the sum of the squares of the residuals increases, the R
2

 decreases. 

In this table R
2

 is about 0.935 which means that 93.5% of the variation in Y (blood 

pressure) is explained by the X (age), or in other words we can say that 93.5% of the 

sum of squares of deviations of the y-values about their mean is attributable to the 

linear relationship between Y and X. The practical interpretation of the coefficient of 

determination, R
2

 is briefly described as:  

About 100% (R
2
) of the information in X explains Y. 
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(iii) Adjusted R
2
: 

This value indicates the loss of predictive power or shrinkage. This tells us how 

variation in Y would be accounted for if the model has been derived from the 

population from which the sample has been taken. In this example R
2
 = 0.935 and 

adjusted R
2
 = 0.931, therefore the shrinkage is about 0.4 % (0.935 – 0.931). This 

means if the model were derived from the population rather than sample, it would be 

approximately 0.4% less variance in the outcome variable. This can be calculated by 

using Stein’s formula reported by Stevens (1992). 

 

 















 
























 22 R1

n

1n

2kn

2n

1kn

1n
1RAdjusted ,  (6.4) 

where k is the number of predictors. 

(b) ANOVA Table: 

The terms in ANOVA table are defined below. 

(i) Degrees of Freedom (df)  

Degrees of freedom (df) is always 1 for a straight line model and the degrees of 

freedom of the total is one less than the total number of observations minus the 

number of parameters (in regression) estimated, (in this example, 20 - 1 = 19), 

whereas the degrees of freedom for the residual is, 19 - 1 = 18 (degrees of freedom of 

total - degrees of freedom of regression model). 

(ii) Sum of squares 

Sum of Squares column separates the variation in the data into portions that are 

attributable to the regression model and to the residual (error). 

(iii) Total sum of squares  

= Regression sum of squares + Residual sum of squares 

(iv) Mean sum of squares 

This is equal to the sums of squares of regression, divided by the degree of freedom. 

The Mean Square Error equals the sum of squares of errors divided by the error 

degrees of freedom. 

  
freedomofDegrees

errorsofregressionofsquaresofSum
Model)n(RegressioMS 

 

             116.1154
1

116.1154


 
and 

  9.4
18

884.80

freedomofdegreesError

errorsofsquaresofSum
(Error)MS   
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(v) t-statistic  

t is test-statistic and p-value is associated with the test of the hypothesis. For example, 

the value of t-statistic from the t-table at 5% significance level is 2.10 for 9 d.f. 

whereas calculated t-value is 16.06.  

(c) Parameters in the Equation 

(i) Intercept  
One constant term is the intercept of the line. Positive value of the intercept indicates 

that the line is passing through a point above the origin whereas negative constant 

value indicates that the line is passing through a point below the origin on the x-axis. 

(ii) p-Value  
p-value is the level of significance at the observed value of the test- statistic. It is the 

probability of observing a value beyond the value of test- statistic. It is sometimes 

matched with the given level of significance. The calculated p-value is 0.0000, which 

is less than 0.05 (table value). (This has been explained in details in Chapter 4). 

(iii) Slope  

The second parameter is the slope of the line. If  = 0, y is constant. If  > 0, then y 

increases (decreases) when x increases (decreases) and if  < 0, y decreases 

(increases) when x increases (decreases). These values are the coefficients of 

independent variable. The interpretation of the regression lines depends on the 

positive or negative values of B(  ). If   = 0 then there is no relationship between 

two variables. If p < 0.05, the variables are significant and if p  0.05, then the 

variables are non-significant.  

Suppose that variables are significant, the results are interpreted as: 

(i) If the coefficient (  ) of independent variable is positive then we say that 

independent variable has a positive effect on the dependent variable. 

(ii) If the coefficient is negative then we say that independent variable has 

negative effect on the dependent variable. 

(iii) The coefficient of independent variable tells us about the rate of change per 

unit in the dependent variable. 

 We can draw inference from this example as: 

The coefficient of X is about 0.45, and is positive. The increase of one year in age 

there is 0.45 points increase in blood pressure. To see the increase in blood pressure 

in 10 years in age, multiply the coefficient of X by 10, which gives 4.5. We say that 

with the increase of 10 years in age, there is 4.5 points increase in the blood pressure. 

Note: We obtain the regression line over the scatter diagram as follows: 

Double click on the scatter diagram in Fig 6.5 to open the Chart editor  
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Click on  and chose Linear 

 

Fig. 6.6: The Scatter Diagram with Regression line 
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Example 6.2: 
An experiment was conducted to study the relationship between an objective 

measurement of anxiety and heart rate in adults. The data relate to 12 normal adults and 

is given in Table 6.2. Fit a linear relationship between heart rate per minute and objective 

measurement of anxiety by using the method regression and interpret the result. 

Solution: 

Here X is independent and Y is considered as a dependent variable so a regression line 

 E Y X   is fitted. 

Table 6.2 

Heart rate per minute  
(X) 

Objective measurements of anxiety  
(Y) 

50 
55 
60 
65 
70 
75 
80 
85 
90 
95 
100 
105 

48 
41 
45 
41 
42 
36 
38 
36 
30 
32 
34 
25 

The IBM-SPSS package is used to solve the problem as explained in the following 

Example: 

Example S6-2 

The data will be in columns. 

We obtain the regression equation as follows: 

Analyze Regression Linear …  NCBA&E
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Move the variable Independent variable “X” to the Independent(s):  

Move the variable Dependent variable “Y” to the Dependent:  
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We click on , to get the following outputs: 

SPSS output for simple regression 

 

 

 

(i) R
2

 = 0.849, so about 85% of variation in objective measurement of anxiety has 

been explained by heart rate per minute. 

(ii) Adjusted R
2
 = 0.834, one can say that a loss of predicted power by using this 

model is 1.5% (0.849 – 0.834). 

(iii) Constant = 63.24 

(iv) Slope () = -0.334 (negative) 

Therefore, the regression line takes the following form. 

  
ŷ  = 63.24 - 0.334 X 

The p-value of heart rate per minute is 0.000, which is significant; therefore one can say 

that heart rate has an effect on anxiety.  

Moreover 0.33427 0.33B     , we say that with one unit increase in heart rate, the 

anxiety decreases by 0.33 units, i.e. for common understanding we multiply -0.334 by 10, 

which comes out to be -3.34. This means that with 10 points increase in heart rate, 

anxiety decreases by 3.34 points. 

  

Model Summary

.921a .849 .834 2.67

Model

1

R R Square

Adjusted

R Square

Std.  Error of

the Estimate

Predictors:  (Constant), Heart Rate Per Minutea. 

ANOVAb

399.448 1 399.448 56.087 .000a

71.219 10 7.122

470.667 11

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors:  (Constant), Heart Rate Per Minutea. 

Dependent Variable: Objectiv e measurements of  Anxietyb. Coefficientsa

63.239 3.544 17.845 .000

-.334 .045 -.921 -7.489 .000

(Constant)

Heart Rate Per Minute

Model

1

B Std.  Error

Unstandardized

Coeff icients

Beta

Standardi

zed

Coeff icien

ts

t Sig.

Dependent Variable: Objectiv e measurements of  Anxietya. 
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6.3 The Coefficient of Correlation 

In Section 6.2 we have discussed that least squares slope byx (yx) = b provides useful 

information between two variables Y and X. Another way to measure relationship is to 

compute the Pearson product moment correlation coefficient. This is commonly known 

as r. The correlation coefficient provides a quantitative measure of the strength of the 

linear relationship between two variables. Note that unlike the slope, the correlation 

coefficient r is scale less. The value of r is always between -1 and +1, no matter what the 

units of two variables are. Since r and  provide information about the utility of the 

model, it is not surprising that there is a similarity in computation. The correlation 

coefficient r is calculated as: 

  
2222

n

y

n

y

n

x

n

x

n

y

n

x

n

xy

r








 










 









            (6.5) 

The correlation coefficient is symmetrical in x and y. The derivation of the formula (6.5) 

may be seen in any textbook on statistics. If r = 1 or -1 then we say that there is a perfect 

positive or a perfect negative correlation. Positive value of r implies that y-value increases 

as x-value increases. Negative value of r implies that y-value decreases as x-value 

increases. r = 0 means that there is no correlation. It can be seen from the Fig. 6.5. 

A correlation coefficient measures the linear relationship between two variables. A 

coefficient of +1 means that a higher value of one variable is always associated with a 

higher value of another, and a coefficient of -1 means that a higher value of one is always 

associated with a lower value of the other and this relationship is perfect linear. The 

correlation coefficient does not indicate how much each variable changes but it indicates 

the degree of relationship between two variables. 

  

a) Positive r: Y increases as X increases b) r near 0: little or no linear relationship 

between Y and X 
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c) Negative r: Y decreases as X 

increases 

d) r = 1: a perfect positive relationship 

between Y and X 

 

e) r = -1: a perfect negative relationship between Y and X 

Fig. 6.7: Value of the correlation coefficient for different pattern of variables 

Since the two numerical descriptive measures r and R
2

 are very closely related, there may 

be some confusion as to when each should be used. The recommendations are as:  

Coefficient of correlation measures relationship between two variables X and Y, whereas 

the coefficient of determination (R
2
) determines how well the least squares straight-line 

model fits the data. 

Example 6.3:  
The followings are the systolic blood pressure of each of 25 pairs of identical twins. 

 

Table 6.3 

First twin (x) 118 116 118 120 122 122 122 120 124 125 138 140 

Second twin (y) 115 119 116 119 118 138 124 128 126 130 130 125 

 

First twin (x) 142 144 145 162 180 180 182 185 170 172 150 152 155 

Second twin (y) 164 160 158 145 184 190 188 180 174 170 160 155 160 

Calculate the correlation coefficient and interpret the result. 
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Solution: 

We can proceed with the calculations as: 

  (x) = sum of the x-values  = 3604 

  (y) = sum of the y-values  = 3676 

  x2 = sum of the squares of x-values = 532832 

  y2 = sum of the squares of y-values = 555618 

  xy = sum of the product of xy  = 543120 

  n = 25 

  93.0

25

3676

25

555618

25

3604

25

532832

25

3676

25

3604

25

543120

r
22























  

Alternatively IBM-SPSS package may be used to solve this problem as explained in the 

following Example: 

Example S6-3 

The data will be in columns. 

We obtain the Correlation coefficient: 

Analyze Correlate Bivariate …  
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Move the two variables to the Variables:  
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We click on , to get the following outputs: 

SPSS output for correlation coefficient 

 

r = 0.931, we can say there is about 93% correlation between two like twin. Since  

p-value = 0.00, therefore, it is highly significant. This means that the population from 

which this sample has been taken is highly correlated with respect of identical twins. 

6.4 Regression Model for Prediction 

After we have statistically checked the usefulness of the straight-line model and are 

satisfied that X contributes information for the prediction of Y, we are ready to 

accomplish our original objective using the model for estimation and prediction. The 

probabilistic model for making inferences can be divided into two categories, viz. 

(i) Estimating the mean value of Y, i.e. E (Y), for a specific value of X. 

(ii) Predicting Y value for a given value of X. 

In the first case, we want to estimate the mean value of Y for a very large number of 

experiments at a given X value. For example, the psychologist may want to estimate the 

mean creativity score for all mentally retarded children with flexibility score of 3. In the 

second case, we wish to predict the outcome of a single experiment at a given X value. 

For example, he may want to predict the creativity score of a particular mentally retarded 

child who exceeds 3 on the flexibility test. We use the least squares model 

  ˆ   y a bX  ,                  (6.6) 

both to estimate the mean value of Y, i.e. E(Y), and to predict a value of Y for given X. 

For this, consider an hypothetical data given in Table 6.4: 
 

Table 6.4 

Child Flexibility score (X) Creativity score (Y) 

1 
2 
3 
4 
5 

2 
3 
4 
5 
6 

2 
5 
7 
10 
11 

 

Correlations

1.000 .931**

. .000

25 25

.931** 1.000

.000 .

25 25

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

First Twin

Second Twin

First Twin Second Twin

Correlation is signif icant  at the 0.01 lev el (2-tailed).**. 
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Suppose we fit least squares model relating creativity score, y, to flexibility score, x to be 

  ŷ  = -2.2 + 2.3 x 

We estimate for the mean creativity score of all mentally retarded children that have a 

flexibility score of 3.  

We need to find estimate of E(Y). On the basis of least squares model, our estimate is 

simply ŷ . Then, when x = 3, we have 

  ŷ  = -2.2 + (2.3)(3) = 4.7 

Thus, the estimated mean creativity score for all mentally retarded children with 

flexibility score 3 is 4.7. 

We also use the least squares model to predict the creativity score of a particular retarded 

child whose flexibility score is 3. Just as we use ŷ  from the least squares model to 

estimate E(y), we also use ŷ  to predict a particular value of y for a given value of x. 

Again when x = 3, we obtain 
sŷ  = 4.7. Thus we predict that a retarded child with a 

flexibility score of 3 would have a creativity score of 4.7. 

Since the least squares model is used to obtain both the estimator of E (Y) and the 

predictor of y, then how do these two methods differ. The difference lies in the accuracy 

with which the estimate and prediction are made. This accuracy is best measured by the 

repeated sampling errors of the least squares line when it is used as an estimator and 

predictor, respectively. The 95% confidence interval for the mean creativity score for all 

mentally retarded children with a flexibility score of 3, will be 3.645 to 5.755 whereas the 

95% prediction interval, predict the creativity score of a particular retarded child if his 

flexibility score is 3 will be 2.503 to 6.897. (These limits can be calculated by using 

SPSS packages easily see Chapters 4 and 5.) It is important to note that the prediction 

interval for an individual mentally retarded child is wider than the corresponding 

confidence interval for the mean creativity score. (Note that this will always be true). 

Over the range of the sample data, the widths of both intervals increase as the value of x 

gets farther from x . Thus, the more x deviates from x , the less useful the interval will be 

in practice. In fact, when x is selected far away from x  so that it falls outside the range 

of the sample data, it is dangerous to make any inference about E(y) or y. 

Example S6-4 

The data will be in columns. 

We obtain the Correlation coefficient: 

Analyze Regression Linear …  
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Move the X variable to the Independent(s):  

Move the Y variable to the dependent(s):  

Click on Save 

 

For predicted values Mark on 

Unstandardized 

 

 

 

We click on  then , to get the following output: 

 

And the predicted values for Y will be added to the data file: 
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(Note that if the value wanted to be predicted is not one of the X values, we add it to the 

Data file and repeat the same steps and the predicted value of Y will be add 

automatically). 

6.5 Multiple Regression Analysis 

This is more complex than simple regression model. In example 6.1, two variables such 

as weight and blood pressure were used, additional variables such as age, family history, 

diet, etc. might also be related to blood pressure. Thus we would want to incorporate 

these and other potential variables into the model if we need to make accurate predictions 

of blood pressure. A more complex model relating blood pressure to various independent 

variables such as age, weight, family history is called a general linear statistical model.  

The general linear model is 

  1 1 2 2 3 3        ...     k kY X X X X                    (6.7) 

where X
1
, X

2
, X

3
, ... could be weight, height and family history etc. Here Y is dependent 

and X
1
, X

2
, X

3
, ... are independent variables. 's  determine the contribution of the 

independent variable X's and   as usual is random error component of the model. 

6.5.1 Applications of multiple-regression  

Some applications of regression  

(i) Relationship between age, HDL cholesterol and alcohol consumption 

(ii) Relationship between hypertension (mean arterial blood pressure) and age, 

weight, body surface area, duration of hypertension, basal pulse and measure of 

stress. 

(iii) Relationship between birth weight of a child and gestation period and smoking 

(note that smoking is a qualitative variable). 

(iv) Relationship of systolic blood pressure, birth weight and age of infants. 

Method of least squares will also be used to fit linear model to a set of data. This process, 

along with the estimation and test procedure associated with it, is called a multiple 

regression analysis. Since computations involved in the multiple regression are complex, 

therefore, all calculations will be made on the computer by using SPSS package. We will 

follow the same steps as in case of simple model, i.e. the assumptions about the random 

error term   in the general linear model are same as in case of simple model. 

NCBA&E



Hanif, Ahmad and Abdelfattah 251 

 

6.5.2 Fitting the model and interpretation of coefficients 

Several cases will be discussed as: 

(i)  All independent variables are quantitative. 

(ii)  Some independent variables are quantitative and some are qualitative of two 

levels. 

(iii)  Some independent variables as quantitative and some are qualitative of three 

levels. 

Case 1: All the independent variables are quantitative 

Example 6.4:   
The data given in Table 6.5 were collected using a simple random sample of 20 

hypertensive patients. 

Y = mean arterial blood pressure (mmHg) 

X1 = age (years), X2 = weight (kg), X3 = body surface area (sqms) 

X4 = duration of hypertension (years), X5 = basal pulse (beats/min) 

X6 = measures of stress 

 
Table 6.5 

Patient Y X1 X2
 X3

 X4
 X5 X6

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

105 
115 
116 
117 
112 
121 
121 
110 
110 
114 
114 
115 
114 
106 
125 
114 
106 
113 
110 
122 

47 
49 
49 
50 
51 
48 
49 
47 
49 
48 
47 
49 
50 
45 
52 
46 
46 
46 
48 
56 

85.4 
94.2 
95.3 
94.7 
89.4 
99.5 
99.8 
90.9 
89.2 
92.7 
94.4 
94.1 
91.6 
87.1 
101.3 
94.5 
87.0 
94.5 
90.5 
95.7 

1.75 
2.10 
1.98 
2.01 
1.89 
2.25 
2.25 
1.90 
1.83 
2.07 
2.07 
1.98 
2.05 
1.92 
2.19 
1.98 
1.87 
1.90 
1.88 
2.09 

5.1 
3.8 
8.2 
5.8 
7.0 
9.3 
2.5 
6.2 
7.1 
5.6 
5.3 
5.6 
10.2 
5.6 
10.0 
7.4 
3.6 
4.3 
9.0 
7.0 

63 
70 
72 
73 
72 
71 
69 
66 
69 
64 
74 
71 
68 
67 
76 
69 
62 
70 
71 
75 

33 
14 
10 
99 
95 
10 
42 
8 
62 
35 
90 
21 
47 
80 
98 
95 
18 
12 
99 
19 

Discuss the effect of all the independent variables on mean arterial blood pressure, by 

using the method of multiple regression. Comment on the individual variable. (Source 

Daniel, 1981). 
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Example S6-5 

The data will be in columns. 

We obtain the multiple regression coefficients as follows: 

Analyze regression  Linear …  

  

Move the variable Independent variables “X1,…,X6” to the Independent(s):  

Move the variable Dependent variable “Y” to the Dependent:  
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We click on , to get the following outputs (for the “Enter” Method): 

SPSS output for multiple regression 

 

We may note that X1, X2 and X3 are Not Significant (as the P-values > 0.05). Here we 

advise to use an alternative method than the Enter method. We will use the Stepwise 

method, which not only select the significant variables, but also it select them in order of 

importance as follows: 

Move the variable Independent variables “X1,…,X6” to the Independent(s):  

Move the variable Dependent variable “Y” to the Dependent:  

Chose the Stepwise Method: 

 

We click on , to get the following outputs (for the “Stepwise” Method): 
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In multiple regression analysis, the value of R
2

 is used as how much variation in the 

dependent variables has been explained by independent variable. As an alternative to 

using R
2

 as a measure of model accuracy, the adjusted R
2

 is computed. Unlike R
2

, 

adjusted R
2

 takes into account the loss of predictive power by this model, if the model 

were derived from the population rather than sample. Adjusted R
2

 will always be smaller 

than R
2

 and cannot be forced to 1 by simply adding more and more independent variables 

to the model as the case with R
2

. Consequently, analysts prefer more conservative 

adjusted R
2

, when choosing the measure of model accuracy. The value of adjusted R
2

 = 

0.99 which is slightly smaller than R
2

. Our interpretation is that after adjusting for sample 

size and number of parameters in the model, approximately 99% of sample variation in 

means arterial blood pressure has been explained by the linear model and loss of 

predictive power or shrinkage is about 0.3% (0.997 – 0.994). 

(1) We see that R
2

 (coefficient of determination) = 0.995, this implies that by using 

these independent variables (age, weight and body surface area) in a first order 

model to predict y, 99.5% variation has been explained of mean arterial blood 

pressure by age, weight, body surface area, whereas duration of hypertension, 

based pulse and measure of stress are not playing part in explaining the variation 

of mean arterial blood pressure as they are non-significant. Adjusted R
2
 is 0.994, 

the loss of predictive power is 0.6% if this model will be used for the purpose of 

forecasting. 

 

 

Model Summary

.997 .995 .994 .43705 .003 9.255 .008 1.896

Model

3

R R Square

Adjusted

R Square

Std. Error of

the Est imate

R Square

Change

F

Change Sig. F Change

Change Statistics

Durbin-

Watson

ANOVA

556.944 3 185.648 971.934 .000

3.056 16 .191

560.000 19

Regression

Residual

Total

Model

Sum of

Squares df Mean Square F Sig.

Coefficients

-13.667 2.647 -5.164 .000

.906 .049 .717 18.490 .000

.702 .044 .323 15.961 .000

4.627 1.521 .116 3.042 .008

(Constant)

Weight (kg)

Age (years)

Body  surface area (sqm)

Model B Std.  Error

Unstandardized

Coeff icients

Beta

Standardized

Coeff icients

t Sig.
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(2) Variables age, weight and body surface area are in the equation. They are highly 

significant (p < 0.0001), we say that these variables have very strong effect on the 

mean arterial blood pressure. 

(3) Since the variables, basal pulse, duration of hypertension and measure of stress are 

not in the equation, these are non-significant (p > 0.05) [can be seen in SPSS 

output]. Therefore, we say that these variables have no effect on mean arterial 

blood pressure. This does not mean that these variables are less important. 

The general model takes the following form: 

Mean arterial blood pressure  

  = –13.667 + 0.702 age + 0.906 weight + 4.627 body surface area 

or 

  ŷ  = - 13.667 + 0.702X1 + 0.906X2 + 4.627X3           (6.8) 

Coefficients of age, weight and body surface area are positive, therefore, these factors 

have positive effect on mean arterial blood pressure. These can be interpreted as: 

Age: with 10 years increase in age the mean arterial blood pressure is increased by 7 

points provided all other variables are held constant. 

Weight: with 10 kg increase in weight the mean arterial blood pressure is increased 

by 9 points provided all other variables are kept constant. 

Body surface area: with one square meter increase in the body the mean arterial 

blood pressure is increased by 4.6 points when all other variables are kept 

constant. 

Starting from Version 19, The IBM-SPSS add the “Automatic Linear Modeling” for the 

regression. Here, we will show the steps for using it: 

Example S6-5b (Automatic Linear Modeling) 

Before we use the Automatic Linear Model, we have to be sure that we define the 

Dependent Variable “Target” and the independent variable(s) “Input”. We Change the 

Role as follow: 

 

Excluded Variables

.026 1.359 .194 .331 .866

-.014 -.452 .658 -.116 .355

.018 .988 .339 .247 .992

duration of  hypertension

(years)

basal pulse (beats/min)

measures of  stress

Model Beta In t Sig.

Part ial

Correlation Tolerance

Collinearity

Stat istics
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We obtain the Automatic Linear Modeling as follows: 

Analyze regression  Automatic Linear Modeling …  

 

The dependent variable (Target) and the independent variables (Predictors or inputs) will 

be chosen in an automatic manner: 
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We just click on Run to get the following results: 
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The Forward Stepwise was chosen automatically and the R
2
 is given as the “Accuracy” 

with the value of 99.4%. 

Many features can be study from the Automatic Linear Modeling, we will mention the 

most important two of them:  

When we click on , the significant independent variables will be shown with 

corresponding Importance as predictors for the Target (dependent variable): 
 

Predictor Importance  
Target: Mean arterial blood pressure 

 

When we click on , and chose “Table”, we get the Coefficients of the model: 
 

Coefficients 

Target: Mean arterial blood pressure 

 

Least Important 

X3_Transformed 

Most Important 

X2_Transformed 

NCBA&E



Hanif, Ahmad and Abdelfattah 259 

 

Case 2: Multiple regression analysis when qualitative variables are involved as 

independent variable(s) 

Multiple regression analysis can also be performed if in the data, qualitative (non-metric) 

independent variables are also involved. Qualitative variables, unlike quantitative 

(metric) variables, cannot be measured on a numerical scale. Therefore, we need to code 

the values of the qualitative variable (called levels) before we perform regression 

analysis. These coded variables are called dummy variables, since the numbers assigned 

to various levels are selected arbitrarily. 

A convenient method of coding the values of a qualitative variable at two levels involves 

assigning a value one to one of the levels and a value zero to another. For example, the 

dummy variable used to describe smoking status could be coded as follows: 

  Smoking status X = 












kersmonon0

kersmo1
 

The choice of which level is assigned to 1 and which is assigned to 0 is arbitrary 

(nominal scale). The advantage of using a, (0, 1) coding scheme is that the  -coefficients 

are easily interpreted. This is explained as: 

It is a common observation that smoker mothers give birth to babies with low weight as 

compared to non-smoker mothers. We can write a model for average weight of babies as 

    0 1E Y X     

The dummy variable used to describe smoking status could be coded as: 

  X = 












kersmonon0

kersmo1
 

The model allows us to compare the average weight of smoker and non-smoker mothers. 

  Smoker mother      0 1 0 1  1 :    1    X E Y          

  Non-smoker mother      0 1 0  0 :   0   X E Y         

First note that 0  represents the average weight of babies with non-smoker mothers. 

When a 0-1 coding convention is used, 0  will always represent the mean response 

associated with the level of the qualitative variable assigned to value 0 (called the base 

level). The difference between the mean weight of the babies between smoker and non-

smoker mothers is 1 , i.e. 

   ( ( 0 1) ) 0 1                    NS Sµ µ         

Therefore, with the 0-1 coding convention, 1  will always represent the difference 

between mean responses for level assigned the value 1 and the mean for the base level. 

For models that involve the qualitative independent variable at more than two levels, 
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additional dummy variables must be created. In general, the number of dummy variables 

used to describe a qualitative variable will be one less than the number of levels of the 

qualitative variable, i.e. 

   0 1 1 2 2       E Y X X      

  X
1
 = 





notif0

Alevelif1  

  X
2
 = 





notif0

Blevelif1    

Base level = level C. 

Interpretation of s'  will be as: 

  0  = mean level of base level 

  1  = mean level of base A - mean level of base C 

  2  = mean level of base B - mean level of base C 

To interpret s'  we write: 

 Level 1: X
1
 = 1 if A otherwise 0 

         0 1 2 0 1    1   0  E Y           

 Level 2: X
2
 = 1 if B otherwise 0 

         0 1 2 0 2     0  1  E Y          

 Level 3: X
1
 = 0  X

2
 = 0 

         0 1 2 0    0   0  E Y         

0  = mean of the base (level 3) 

1  = mean of the base level (1) - mean of the base level 3 

2  = mean of the base level (2) - mean of the base level 3 

Example 6.5: 

Following data based on a random sample of 32 births regarding smoking and non-

smoking mothers. The birth weight of each baby at the time of birth and gestation period 

for each mother was recorded. Using multiple-regression, analyze the data and interpret 

the results. Data is given on next page. 

Solution: 
In this problem there are three variables, one dependent (birth weight = Y) and two 

independent variables (gestation period = X1 and smoking status = X2). Smoking status is 

a qualitative variable. 
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Table 6.6 

Case 

Birth weight Gestation Smoking Dummy code 

(grams) 
Y 

(weeks) 
X

1z
 

status of  
mothers 

X
2
 

S = 1 
NS = 0 

S = 0 
NS = 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

2940 
3130 
2420 
2450 
2760 
2440 
3226 
3301 
2729 
3410 
2715 
3095 
3130 
3244 
2520 
2928 
3523 
3446 
2920 
2957 
3530 
2580 
3040 
3500 
3200 
3322 
3459 
3346 
2619 
3175 
2740 
2841 

38 
38 
36 
34 
39 
35 
40 
42 
37 
40 
36 
39 
39 
39 
35 
39 
41 
42 
38 
39 
42 
38 
37 
42 
41 
39 
40 
42 
35 
41 
38 
36 

S 
N 
S 
N 
S 
S 
N 
S 
N 
N 
S 
N 
S 
N 
N 
S 
N 
S 
N 
S 
N 
S 
N 
S 
S 
N 
N 
S 
N 
S 
S 
N 

1 
0 
1 
0 
1 
1 
0 
1 
0 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
1 
1 
0 

0 
1 
0 
1 
0 
0 
1 
0 
1 
1 
0 
1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
1 
1 
0 
1 
0 
0 
1 

(Source: Daniel, 1991) 

For smoking status, the answer is either smoker or not smoker. These are coded as: 

  X
2
 =




otherwise0

kersmo1
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Fig. 6.6: Birth weight length of gestation (weeks) 

Fitted regression lines for smoking () and non-smoking mothers (). 

SPSS package was used to fit multiple-regression and the output is as: 

SPSS output for multiple regression 

 

R
2
 = 0.896, therefore one can say that 89.6% variation of birth weight of babies has been 

explained by gestation period and smoking status. 

Adjusted R
2
 = 0.889, the loss of predictive power by using this model is 0.3%  

[0.889 – 0.896]. Since R
2
 = 0.896 and is closer to 1 therefore fitted model is reasonably 

reliable for prediction. 

 

Model Summary

.947a .896 .889 115.5302

Model

1

R R Square

Adjusted

R Square

Std.  Error of

the Estimate

Predictors:  (Constant), Smoking Status 1,  Gestation

(weeks)

a. 

ANOVAb

3348720 2 1674359.837 125.446 .000a

387069.8 29 13347.235

3735790 31

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors:  (Constant), Smoking Status 1, Gestation (weeks)a. 

Dependent Variable: Birth Weight (grams)b. 
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The fitted linear model will be: 

Expected birth weight = -2389.573 +143.1(gestation)-244.544 (smoking status).  

  ŷ = -2389.573 + 143.1 X1 - 244.544 X2           (6.9) 

If we wish to consider only the birth to smoking mothers, then put X
2
 = 1 in the equation 

(6.9) then. 

  ŷ  = -2389.573 + 143.1 X1 - 244.544 (1) 

or 

  ŷ  = -2634.117 + 143.1 X1               (A) 

If we wish to consider only the births to non-smoking mothers, then put X2 = 0 in the 

model as: 

  
ŷ  = -2389.573 + 143.1 X1 - 244.544 (0) 

or 

  
ŷ  = -2389.573 + 143.1 X1               (B) 

The slope of the equations (A) and (B) is the same, but there is difference in intercepts for 

smoking and non-smoking mothers. The intercept for the equations associated with non-

smoking mothers is larger than smoking mothers. Therefore, we conclude from this 

sample that babies born to mothers who do not smoke, weighed, on the average, more 

than babies born to mothers who smoke, provided there is no change in gestation period. 

On the average, the amount of difference in weight is about 245 grams (2634.1 - 2389.5). 

A general rule is stated below to interpret the result for qualitative variables.  

General Rule 

(i) If the coefficient is negative, the higher code has negative effect. 

(ii) If the coefficient is positive, the higher code has positive effect. 

Let us reconsider the equation (6.9) 

  ŷ  = -2389.573 + 143.100 X
1
 - 244.544 X

2
 

X
2
 is a qualitative variable and coded as smoker = 1, non-smoker = 0. The coefficient of 

X
2
 is negative and the code of smoker is 1, therefore, the mothers who smoke will give 

Coefficientsa

-2389.573 349.206 -6.843 .000

143.100 9.128 .963 15.677 .000

-244.544 41.982 -.358 -5.825 .000

(Constant)

Gestation (weeks)

Smoking Status 1

Model

1

B Std.  Error

Unstandardized

Coeff icients

Beta

Standardi

zed

Coeff icien

ts

t Sig.

Dependent Variable: Birth Weight (grams)a. 
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birth to babies, who on the average will be less in weight than those babies born to non-

smoking mothers. 

If the smoker is coded as 0 and non-smoker as 1, then the output for multiple-regression, 

using SPSS is as: 

SPSS output for multiple regression 

Model Summary 

 

R
2
 and adjusted R

2
 are the same as in the previous analysis. 

 

The result for the ANOVA is the same as the previous analysis. 

 

The regression equation is as: 

  ŷ  = -2634.117 + 143.100 X
1
 + 244.544 X

2           (6.10) 

For smoking mothers put X
2
 = 0 as: 

ŷ  = -2634.117 + 143.100 X1 + 244.544 (0) 

ŷ  = -2634.117 + 143.100 X
1
               (C) 

For non-smoking mothers, put X
2
 = 1 as: 

ŷ  = -2634.117 + 143.100 X
1
 + 244.544 (1) 

ŷ  = -2389.57 + 143.100 X
1
                (D) 

  

Model Summary

.947a .896 .889 115.5302

Model

1

R R Square

Adjusted

R Square

Std.  Error of

the Estimate

Predictors:  (Constant), Smoking Status 2,  Gestation

(weeks)

a. 

ANOVAb

3348720 2 1674359.837 125.446 .000a

387069.8 29 13347.235

3735790 31

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors:  (Constant), Smoking Status 2, Gestation (weeks)a. 

Dependent Variable: Birth Weight (grams)b. 

Coefficientsa

-2634.117 358.872 -7.340 .000

143.100 9.128 .963 15.677 .000

244.544 41.982 .358 5.825 .000

(Constant)

Gestation (weeks)

Smoking Status 2

Model

1

B Std.  Error

Unstandardized

Coeff icients

Beta

Standardi

zed

Coeff icien

ts

t Sig.

Dependent Variable: Birth Weight (grams)a. NCBA&E
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The slopes of equations (C) and (D) are the same but there is difference in intercepts. The 

intercept for non-smoking mothers is greater than smoking mothers, therefore, non-

smoking mothers, will give birth to a child on the average more than smoking mothers 

and again the difference in weight is 245 grams. 

We can apply the general rule, mentioned before, to fitted regression equation (6.9). The 

code for non-smoker is 1, the coefficient of X2 is positive, therefore, higher code has 

positive effect. Therefore, non-smoker mothers give birth to babies, who on the average 

are more in weight than smoking mothers. This rule can be applied to any qualitative 

variable when they are coded. 

Example S6-6 

The data will be in columns were X2 has a Nominal measurement level. 

 

The values of X2 are as follow: 

  

We obtain the multiple regression coefficients as follows: 

Analyze regression  Linear …  
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Move the variable Independent variables “X1, X2” to the Independent(s):  

Move the variable Dependent variable “Y” to the Dependent:  

 

We click on , to get the following output (as before): 

 

We obtain the figure through the following steps: 

Graphs  Chart Builder …  
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We click on , to get the following figure: 

 

Double click the Fig to add change colors 

 

At Chart Editor add lines through  
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Case 3:  Multiple regressions when qualitative variable is of three levels 

We, now consider the situations where the independent qualitative variable is of three 
levels.  

Example 6.6:  
A team of mental health researcher wishes to compare three methods A, B, C of treating 
severe depression. They took a sample of 36 patients and randomly assign the method of 
treatment. 

  Y = measure of effectiveness  
  X1 = age of the patients 
  X2 = method of treatment 

Use the method of regression to study (1) the relationship between age and treatment 
effectiveness (ii). The relationship between age and treatment effectiveness as well as 
interaction (if any) between age and treatment the data are given in Table (6.7) 

Solution: 
There are two variables. 

(i)  Age = X1 (quantitative) 
(ii)  Method of treatment = X2 (qualitative) 

There are three levels A, B, C, therefore create two dummy variables say X
3 and X

4
 as: 

(iii)  If X
2
 = A then X

3 = 1 and X4 = 0 

(iv)  If X
2
= B then X

4 = 1 and X3 = 0 

(v)  If X3 = C then X3 = 0 and X4 = 0 

We want to consider the relationship between age and treatment effectiveness as well as 
an interaction (if any) between age and treatment. 

 

Table 6.7 
Y X1 X2 y X1 X2 

56 
41 
40 
28 
55 
25 
46 
71 
48 
63 
52 
62 
50 
45 
58 
46 
58 
34 

21 
23 
30 
19 
28 
23 
33 
67 
42 
33 
33 
56 
45 
43 
38 
37 
43 
27 

A 
B 
B 
C 
A 
C 
B 
C 
B 
A 
A 
C 
C 
B 
A 
C 
B 
C 

65 
55 
57 
59 
64 
61 
62 
36 
69 
47 
73 
64 
60 
62 
71 
62 
70 
71 

43 
45 
48 
47 
48 
53 
58 
29 
53 
29 
58 
66 
67 
63 
59 
51 
67 
63 

A 
B 
B 
C 
A 
A 
B 
C 
A 
B 
A 
B 
B 
A 
C 
C 
A 
C 

    Source (Daniel 1985) 
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If we use dummy variable the data will take the following form. 

Table 6.8 

Measure of 
effectiveness 

Age 
 

X1 

Method of 
treatment 

X2 

Dummy 
variables Measure of 

effectiveness 

Age 
 

X1 

Method of 
treatment 

X2 

Dummy 
variables 

X3 X4 X3 X4 

56 
41 
40 
28 
55 
25 
46 
71 
48 
63 
52 
62 
50 
45 
58 
46 
58 
34 

21 
23 
30 
19 
28 
23 
33 
67 
42 
33 
33 
56 
45 
43 
38 
37 
43 
27 

A 
B 
B 
C 
A 
C 
B 
C 
B 
A 
A 
C 
C 
B 
A 
C 
B 
C 

1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 

0 
1 
1 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 

65 
55 
57 
59 
64 
61 
62 
36 
69 
47 
73 
64 
60 
62 
71 
62 
70 
71 

43 
45 
48 
47 
48 
53 
58 
29 
53 
29 
58 
66 
67 
63 
59 
51 
67 
63 

A 
B 
B 
C 
A 
A 
B 
C 
A 
B 
A 
B 
B 
A 
C 
C 
A 
C 

1 
0 
0 
0 
1 
1 
0 
0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
0 

0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
0 
1 
1 
0 
0 
0 
0 
0 

The SPSS package is used and the output is as: 

SPSS output for multiple regression 

 

R
2

 = 0.914, therefore about 91% of the variation of dependent variable, measure of 

effectiveness, has been explained by the independent variables.  

Adjusted R
2
 = 0.900 therefore one can say that the loss of prediction power by using this 

model is 0.14%. 

 

Model Summary

.956a .914 .900 3.92

Model

1

R R Square

Adjusted

R Square

Std.  Error of

the Estimate

Predictors:  (Constant), X1X4, Age, X3, X4, X1X3a. 

ANOVAb

4932.852 5 986.570 64.043 .000a

462.148 30 15.405

5395.000 35

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors:  (Constant), X1X4, Age, X3, X4, X1X3a. 

Dependent Variable: Measure of  Ef f ectivenessb. 
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The fitted regression line will be 

  
ŷ  = 6.211 + 1.033 age + 41.304X

3
 + 22.707X

4
 - 0.703X

1
X

3
 - 0.510X

1
X

4
 

X
1
X

3
 and X

1
X

4
 are the interactions terms between quantitative and qualitative variables. 

X
3 
X

4
 will be zero as when X

3
 = 1, X

4
 = 0 and X

4
 = 1, X

3
 = 0.  

Put X
3
 = 1, X

4
 = 0, we get 

  
ŷ  = 47.515 + 0.33 X

1
 

If we put X
3
 = 0 and X

4
 = 1, then 

  
ŷ  = 28.918 + 0.5233 X

1
 

If we put X
3
 = 0 and X

4
 = 0, then 

  
ŷ  = 6.211 + 1.033 X

1
 

In order to draw the conclusion, one can look into slopes and the constants, i.e. 
 

Table 6.9 

Intercept (constant) Slope Tan -1  

47.52 
28.91 
6.21 

0.327 
0.523 
1.020 

18.11° 
27.61° 
45.57° 

We draw graph with the given angles and intercepts as given in Fig. 6.7: 

Slope of A and B are not much different but there is much difference in the intercept. 

Looking at the graph, we can say: 

(i)  Treatment A is better than treatment B up till the age of 65 but this difference is 

very small after age 65. 

(ii) Treatment C is less effective at younger age but it is as effective as treatment A 

and treatment B at higher age. 

Coefficientsa

6.211 3.350 1.854 .074

1.033 .072 1.218 14.288 .000

41.304 5.085 1.591 8.124 .000

22.707 5.091 .874 4.460 .000

-.703 .109 -1.298 -6.451 .000

-.510 .110 -.922 -4.617 .000

(Constant)

Age

X3

X4

X1X3

X1X4

Model

1

B Std.  Error

Unstandardized

Coeff icients

Beta

Standardi

zed

Coeff icien

ts

t Sig.

Dependent Variable: Measure of  Ef f ectivenessa. 
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Now look at intercepts: Treatment A has higher intercept value than B and C. C has the 

minimum intercept. We can say that on the average treatment A is more effective than B, 

C is less effective at younger ages. 

Now we look at the slopes: Treatment C has slope 1.033 which is higher than the other 

two, so one can say that at later stage this treatment is more effective than B and C. The 

difference in slopes of B and C are not much, therefore, at later stage both have almost 

equal effect. 

 

Fig. 6.7: Treatment effect 

Example S6-7 

The data will be in columns were X2 has a Nominal measurement level. 

 

The values of X2 are as follow: 
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We obtain the figure through the following steps: 

Graphs  Chart Builder …  

 

  

We click on , to get the following figure: 
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Double click the Fig to add change colors 

 At Chart Editor add lines through  

 

Example 6.7: 

Data for the risk factors given in the Appendix associated with low infant birth weight are 

given at the end of Chapter. Data were collected at Baystate Medical Center, Spring 

Field, Massachusetts, during 1986 for 189 females. The code sheet for these data is 

provided as: 

Variables and Code Abbreviation 

Age of mother in years 

Weight of mothers at the last menstrual period (pounds) 

Smoking status (1 = yes; 0 = no) 

Race (1 = white, 2 = black, 3 = others) 

History of premature labor (0 = none, 1 = one) 

History of hypertension (1 = yes, 0 = no) 

Pressure of uterine irritability (1 = yes, 0 = no) 

Number of physician visits (0 = none, 1 = one, 2 = two) 

Birth weight in grams 

AGE 

LWT 

SMOKE 

RACE 

PTL 

HT 

UI 

FTV 

BWT 

Use the multiple-regression to analysis the data and interpret the result. Data are given in 

the Appendix at the end of this chapter. 

Solution: 

In this example, there are 9 variables. Birth weight in grams (BWT) is dependent variable 

whereas all others are independent variables. Age and weight of mother are quantitative 

variables whereas all others are categorical variables. Race and number of visits of 

physicians have more than two categories, therefore, dummy variables will be created for 

these two variables, such as, two dummy variables for race and three dummy variables 

for number of visits of physicians. For the race two dummy variables may be created as: 
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 Race 1 = 


 

otherwise0

whiteraceif1
  

 Race 2 = 


 

otherwise0

blackraceif1
  

Race = others If race 1 = 0 and race 2 = 0 

Similarly dummy variables may be created for FTV. Because of complex calculation, 

SPSS package has been used and output is given as: 

SPSS output for multiple regression 

 

 

 

Model Summary

.492 .242 .222 643.26688 .026 .013 .556

Model

5

R R Square

Adjusted

R Square

Std. Error of

the Estimate

R Square

Change

Sig. F

Change

Change Statistics

Durbin-

Watson

ANOVA

24203675.763 5 4840735.153 11.698 .000

75723987.549 183 413792.282

99927663.312 188

Regression

Residual

Total

Model

Sum of

Squares df Mean Square F Sig.

Coefficients

3041.608 75.924 40.061 .000

-539.739 133.708 -.264 -4.037 .000

-656.615 201.852 -.211 -3.253 .001

-250.013 114.848 -.160 -2.177 .031

383.822 98.436 .264 3.899 .000

-283.067 112.951 -.190 -2.506 .013

(Constant)

Pressure of  uterine

irritability

History  of  hypertension

History  of  premature labor

RACE1

Smoking Status

Model B Std.  Error

Unstandardized

Coeff icients

Beta

Standardized

Coeff icients

t Sig.NCBA&E
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R
2
 = 0.242, this means that about 24% variation of dependent variable (birth weight) has 

been explained by the independent variables.  

If we look at the output, hypertension (HT), premature birth (PTL), race1, smoking and 

uterine irritability (UI) appeared as significant variables, whereas age, number of 

physicians' visits (FTV), weight at the last menstrual period (LWT) and race2, appeared 

as non-significant variables. 

The fitted regression model is  

  
ŷ  = 3596.619 – 530.610 HT - 276.611 PTL + 383.822 race 1 

    – 283.067 smoke - 539.739 UI 

The interpretation of these coefficients is as: 

(i) History of hypertension (HT) 

Since higher code is assigned for hypertensive cases and the coefficient for this 

variable is negative, therefore, all hypertensive cases will have a low weight at the 

time of birth on the average, provided all other variables are held constant. 

(ii) History of premature (PTL) 

Since higher code is assigned to premature cases and the coefficient is negative, 

therefore, all cases who have premature labour will have babies which will have less 

weight on the average, provided all other variables are held constant. 

(iii) Race (1) 

The coefficient of race (1) is positive. This indicates that white race will have the 

babies which on the average are more in weight than black and others provided all 

other variables are held constant. Note that other race is our reference point.  

(iv) Smoking (smoke) 

Since higher code is for non-smoker and the coefficient is negative, therefore, 

smoking mothers will give birth with low weight on the average, provided all other 

variables are held constant. 

(v) Presence of urine irritability (UI) 

Since higher code is for the presence of irritability and the coefficient is negative, 

therefore, all those cases who have urine irritability will have the babies with low 

weight on the average, provided all other variables are held constant. 

Excluded Variables

.005 .068 .946 .005 .939

.121 1.861 .064 .137 .967

-.013 -.198 .843 -.015 .973

-.009 -.130 .896 -.010 .812

Age of  mother in years

Weight of  mothers at the

last menstrual period

(pounds)

Number of  Phy sician

v isits

RACE2

Model Beta In t Sig.

Part ial

Correlation Tolerance

Collinearity

Stat ist ics
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6.6 Partial Correlation 

It is a linear relationship between two variables when the effect of other variables has 

been removed (or kept constant). Here we stick to three variables only and it is explained 

by the following examples. 

Example 6.8:  
The following data obtained on 12 males between the ages of 12 and 18 years. Calculate 

all partial correlation coefficients. 

 
Table 6.10 

Height 
(1) 

Radius length 
(2) 

Femur length 
(3) 

149.00 
152.00 
155.70 
159.00 
163.30 
166.00 
169.00 
172.00 
174.50 
176.10 
176.50 
179.00 

21.00 
21.79 
22.40 
23.00 
23.70 
24.30 
24.92 
25.50 
25.80 
26.01 
26.15 
26.30 

42.50 
43.70 
44.75 
46.00 
47.00 
47.90 
48.95 
49.90 
50.30 
50.90 
50.85 
51.10 

Solution: 

Using SPSS package, partial correlation coefficients calculated and the SPSS output is as: 
 

Variable Mean s. d. cases 

Height 166.0083 10.2065 12 

Radius length 24.2392 1.8396 12 

Femur length 47.8208 3.0132 12 

  r
23.1

 = 0.9011, r
13.2

 = –0.0856 r
12.3

 = 0.5080 

  r12.3 = partial correlation between 1 and 2 while 3 is kept as constant. 

Example S6-8 

We obtain r23.1 = partial correlation between X2 (Radius length) and X3 (Femur length) 

while X1 (Height) is kept as constant, through the following steps: 

Analyze  Correlate Partial …   
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We click on , to get the following output: 
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6.7 Intra-Class Correlation Coefficient 

In the previous section, we have discussed simple correlation coefficient (Pearson's 
correlation coefficient). Pearson correlation is based on regression analysis and is a measure 
of the extent to which the relationship between two variables can be described by a 
regression line. One of the properties of the correlation is that it provides a relative, rather 
than absolute, measure of agreement between pairs of scores for the same person. If the 
differences between the scores for the same persons are small relative to the differences 
between scores of different persons, then the test will tend to show a high reliability 
(Chapter 10). Conversely, if the differences between scores for the same persons are large 
relative to the scores of different persons, then the scores will show low reliability. 
Moreover, the perfect fit is obtained resulting in a Pearson correlation coefficient of 1.0 
despite the fact that the intercept is non-zero and the slope is not equal to 1. 

Let us consider the use of correlation coefficient to quantify measurement error. 
Measurement error is the variation between measurements of the same quantity on the 
same individual. A common design for the investigation of measurement error is to take 
pairs of measurements on a group of subjects. Following data relate to pairs of 
measurements of FEV (liters) a few weeks apart from 20 Scottish children taken from a 
large study  

 

Table 6.11 (Measurements) 
Subject No. 1st 2nd Subject No. 1st 2nd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.19 
1.33 
1.35 
1.36 
1.38 
1.38 
1.38 
1.40 
1.43 
1.43 

1.37 
1.32 
1.40 
1.25 
1.29 
1.37 
1.40 
1.38 
1.38 
1.51 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1.54 
1.59 
1.61 
1.61 
1.62 
1.78 
1.80 
1.85 
1.94 
2.10 

1.57 
1.60 
1.53 
1.61 
1.68 
1.76 
1.82 
1.89 
2.10 
2.20 

One way for the investigation of measurement error is to calculate the correlation 
coefficient between pairs of measurement. We know that in general, the correlation 
coefficient between repeated measurements depends on the variability between subjects. 
Samples containing subjects who differ greatly will produce larger correlation 
coefficients than will samples containing similar subjects. The correlation coefficient 
between the pairs of the above data is 0.96. Suppose we split this group in which we have 
measured forced expiatory volume in one second (FEV1) into two sub samples, the first 

10 subjects and the second 10 subjects. We see that the correlation coefficient for the first 
sub sample is r = 0.26 and for the second is r = 0.97. These values are not equal to full 
sample. Moreover if we change the order of even number of the sample then r = 0.94 
which is not equal to 0.96. The Pearson correlation coefficient depends on the way the 
sample is chosen. If we select subjects to give a wide range of the measurements, the 
natural approach when investigating measurement error, this will inflate the correlation 
coefficient. The correlation coefficient between repeated measurements is often called the 
reliability of the measurement method. It is widely used in the validation of 
psychological measures such as scales of anxiety and depression, where it is known as 
the test-retest method of reliability (see Chapter 10). 
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Another problem with the use of correlation coefficient between the first and second 
measurements is that there is no reason to suppose that their order is important. If the 
order were important the measurement would not be repeated observations of the same 
thing. We have seen that reversing the order of some subjects the correlation coefficient 
is changed. 

To avoid this problem we study intra-class correlation. Intra-class correlation is the 
proportion of the total variance of an observation that is associated with the class to 
which it belongs. 

As already stated that perfect fit is obtained resulting in a Pearson correlation coefficient 
of 1.0 despite the fact that the intercept is non-zero and the slope is not equal to one, by 
contrast the intra-class correlation coefficient will yield a value 1.0 only if the 
observations on each subject are identical which indicate slope of 1 and intercept is zero. 
This suggests that Pearson correlation coefficient is an inappropriate and a liberal 
measure of reliability. The intra-class correlation coefficient estimates the average 
correlation among all possible orderings of pairs. It also extends easily to the case of 
more than two observations per subject, whereas it estimates the average correlation 
between all possible pairs of observations. The best way to calculate the intra-class 
correlation coefficient is via analysis of variance one way classification. In the above data 
there are 20 subjects and each subject has 2 observations. We have used SPSS package to 
perform ANOVA-one way. The results are given as: 

 
Analysis of variance (one way) 

Sources of Variables df 
Sum of  
squares 

Mean sum  
of squares 

F 
ratio 

p-value 

Between subjects  2
b  19 2.3638 0.1244 43.65 0.0000 

Within subjects  2
W  20 0.0570 0.0029 - - 

Total 2
T  39 2.4208 - - - 

The intra-class correlation may be calculated as: 

  RI =                  (6.11) 

where m is number of observations per subject. Using (6.11) 

  RI = 953.0
4208.2)12(

4208.2)3638.2(2





 

The intra-class correlation coefficient is 0.953 with p = 0.000. 

In practice, there will be not much difference between Pearson correlation coefficient and 
intra-class correlation coefficient for true measurements. If, however, there is a 
systematic change from the first measurement to the second, as might be caused by a 
learning effect, intra-class correlation coefficient will be less than Pearson correlation 
coefficient. If there were such an effect the measurements would not be made under the 
same conditions and so we would not measure reliability. 

  
m s   -   s

(m -  1)  s
 

b

2

T

2

T

2NCBA&E
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The correlation coefficient can be used to compare measurements of different quantities, 
such as different scales for measuring anxiety. We could make repeated measurements of 
all the quantities on the same subjects and calculate intra-class correlation coefficients.  

Example 6.9:  
The data in Table 6.14 relate to the repeated peak expiatory flow rate (PEFR) 
measurements for 20 school children. Use the method of intra-class correlation 
coefficient to quantify the measurement error. 

 
Table 6.12 

Child 
No. 

PEFR (1/MIN) Child 
No. 

PEFR (1/MIN) 

1st 2nd 3rd 4th 1st 2nd 3rd 4th 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

190 
220 
260 
210 
270 
280 
260 
275 
280 
320 

220 
200 
260 
300 
265 
280 
280 
275 
290 
290 

200 
240 
240 
280 
280 
270 
280 
275 
300 
300 

200 
230 
280 
265 
270 
275 
300 
305 
290 
290 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

300 
270 
320 
335 
350 
360 
330 
334 
400 
430 

300 
250 
330 
320 
320 
320 
340 
385 
420 
460 

310 
330 
330 
335 
340 
350 
380 
360 
425 
480 

300 
370 
330 
375 
365 
345 
390 
370 
420 
470 

Solution:  
There are 20 subjects and each subject has 4 items. We have performed analysis of 
variance one way classification to calculate intra-class correlation coefficient. SPSS 
package was used and the result for ANOVA was as follows:  

 

SPSS out put 
Analysis of variance (one way) 

Source df 
Sum of  
squares 

Mean sum  
of squares 

F 
ratio 

p-value 

Between children 2
b  19 285318.4375 15016.7599 32.608 0.0000 

Within children 2
W  60 27631.2500 460.5208 - - 

Total 2
T  79 312949.6875 - - - 

Using (6.12), the intra-class correlation coefficient is 

  RI = 882.0
6875.312949)14(

6875.312949)4375.285318(4





 

Therefore, the measurement error is (1 – RI) 100 = (1 – 0.882) 100 = 11.8. 

  

NCBA&E



Regression and Correlation 

 

282 

APPENDIX 

 

age Lwt race pti smoke ht ut ftv bwt 

19 182 2 0 0 0 1 0 2523 
33 155 3 0 0 0 0 3 2551 
20 105 1 0 1 0 0 1 2557 
21 108 1 0 1 0 1 2 2594 
18 107 1 0 1 0 1 0 2600 
21 124 3 0 0 0 0 0 2622 
22 118 1 0 0 0 0 1 2637 
17 103 3 0 0 0 0 1 2637 
29 123 1 1 1 0 0 1 2663 
26 113 1 1 1 0 0 0 2665 
19 95 3 0 0 0 0 0 2722 
19 150 3 0 0 0 0 1 2733 
22 95 3 0 0 1 0 0 2750 
30 107 3 0 0 0 1 2 2750 
18 100 1 1 1 0 0 0 2769 
18 100 1 1 1 0 0 0 2769 
15 98 2 0 0 0 0 0 2776 
25 118 1 1 1 0 0 3 2782 
20 120 3 0 0 0 1 0 2807 
28 120 1 1 1 0 0 1 2821 
32 121 3 0 0 0 0 2 2835 
31 100 1 0 0 0 1 3 2835 
36 202 1 0 0 0 0 1 2836 
28 120 3 0 0 0 0 0 2863 
25 120 3 0 0 0 1 2 2877 
28 167 1 0 0 0 0 0 2877 
17 122 1 1 1 0 0 0 2906 
29 150 1 0 0 0 0 2 2920 
26 168 2 1 1 0 0 0 2920 
17 113 2 0 0 0 0 1 2920 
17 113 2 0 0 0 0 1 2920 
24 90 1 1 1 0 0 1 2948 
35 121 2 1 1 0 0 1 2948 
25 155 1 0 0 0 0 1 2977 
25 125 2 0 0 0 0 0 2977 
29 140 1 0 1 0 0 2 2977 
19 138 1 0 1 0 0 2 2977 
27 124 1 0 1 0 0 0 2992 
31 215 1 0 1 0 0 2 3005 
33 109 1 0 1 0 0 1 3033 
21 185 2 0 1 0 0 2 3042 
19 189 1 0 0 0 0 2 3062 
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age Lwt race pti smoke ht ut ftv bwt 

23 130 2 0 0 0 0 1 3062 
21 160 1 0 0 0 0 0 3062 
18 90 1 0 1 0 1 0 3076 
18 90 1 0 1 0 1 0 3076 
32 132 1 0 0 0 0 3 3080 
19 132 3 0 0 0 0 0 3090 
24 115 1 0 0 0 0 2 3090 
22 85 3 0 1 0 0 0 3090 
22 120 1 0 0 1 0 1 3100 
23 128 3 0 0 0 0 0 3104 
22 130 1 0 1 0 0 0 3132 
30 95 1 0 1 0 0 2 3147 
19 115 3 0 0 0 0 0 3175 
16 110 3 0 0 0 0 0 3175 
21 110 3 0 1 0 1 0 3203 
30 153 3 0 0 0 0 0 3203 
20 103 3 0 0 0 0 0 3203 
17 119 3 0 0 0 0 0 3225 
17 119 3 0 0 0 0 0 3225 
23 119 3 0 0 0 0 2 3232 
24 110 3 0 0 0 0 0 3232 
28 140 1 0 0 0 0 0 3234 
26 133 3 2 1 0 0 0 3260 
20 169 3 1 0 0 1 1 3274 
24 115 3 0 0 0 0 2 3274 
28 250 3 0 1 0 0 3 3303 
20 141 1 2 0 0 1 1 3317 
22 158 2 1 0 0 0 2 3317 
22 112 1 2 1 0 0 0 3317 
31 150 3 0 1 0 0 2 3321 
23 115 3 0 1 0 0 1 3331 
16 112 2 0 0 0 0 0 3374 
16 135 1 0 1 0 0 0 3374 
18 229 2 0 0 0 0 0 3402 
25 140 1 0 0 0 0 1 3416 
32 134 1 1 1 0 0 3 3430 
20 121 2 0 1 0 0 0 3444 
23 190 1 0 0 0 0 0 3459 
22 131 1 0 0 0 0 1 3460 
32 170 1 0 0 0 0 0 3473 
30 110 3 0 0 0 0 0 3475 
20 127 3 0 0 0 0 0 3487 
23 123 3 0 0 0 0 0 3544 
17 120 3 0 1 0 0 0 3572 
19 105 3 0 0 0 0 0 3572 
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age Lwt race pti smoke ht ut ftv bwt 

23 130 1 0 0 0 0 0 3586 
36 175 1 0 0 0 0 0 3600 
22 125 1 0 0 0 0 1 3614 
24 133 1 0 0 0 0 0 3614 
21 134 3 0 0 1 0 2 3629 
19 235 3 0 1 0 0 0 3629 
25 95 1 1 1 0 1 0 3637 
16 135 1 0 1 0 0 0 3643 
29 135 1 0 0 0 0 1 3651 
29 154 1 0 0 0 0 1 3651 
19 147 1 0 1 0 0 0 3651 
19 147 1 0 1 0 0 0 3651 
30 137 1 0 0 0 0 1 3699 
24 110 1 0 0 0 0 1 3728 
19 184 1 0 1 0 0 0 3756 
24 110 3 1 0 0 0 0 3770 
23 110 1 0 0 1 0 1 3776 
20 120 3 0 0 0 0 0 3770 
25 241 2 0 0 0 0 0 3790 
30 112 1 0 0 0 0 1 3799 
22 169 1 0 0 0 0 0 3827 
18 120 1 0 1 0 0 2 3856 
16 170 2 0 0 0 0 3 3860 
32 186 1 0 0 0 0 2 3860 
18 120 3 0 0 0 0 1 3884 
29 130 1 0 1 0 0 2 3884 
33 117 1 0 0 0 1 1 3912 
20 170 1 0 1 0 0 0 3940 
28 134 3 0 0 0 0 1 3941 
14 135 1 0 0 0 0 0 3941 
28 130 3 0 0 0 0 0 3969 
25 120 1 0 0 0 0 2 3983 
16 95 3 0 0 0 0 1 3997 
20 158 1 0 0 0 0 1 3997 
26 160 3 0 0 0 0 0 4054 
21 115 1 0 0 0 0 1 4054 
22 129 1 0 0 0 0 0 4111 
25 130 1 0 0 0 0 2 4153 
31 120 1 0 0 0 0 2 4167 
35 170 1 1 0 0 0 1 4174 
19 120 1 0 1 0 0 0 4238 
24 116 1 0 0 0 0 1 4593 
45 123 1 0 0 0 0 1 4990 
28 120 3 1 1 0 1 0 709 
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age Lwt race pti smoke ht ut ftv bwt 

29 130 1 0 0 0 1 2 1021 
34 187 2 0 1 1 0 0 1135 
25 105 3 1 0 1 0 0 1330 
25 85 3 0 0 0 1 0 1474 
27 150 3 0 0 0 0 0 1588 
23 97 3 0 0 0 1 1 1588 
24 128 2 1 0 0 0 1 1701 
24 132 3 0 0 1 0 0 1729 
21 165 1 0 1 1 0 1 1790 
32 105 1 0 1 0 0 0 1818 
19 91 1 1 1 0 1 0 1885 
25 115 3 0 0 0 0 0 1893 
16 130 3 0 0 0 0 1 1899 
25 92 1 0 1 0 0 0 1928 
20 150 1 1 1 0 0 2 1928 
21 200 2 0 0 0 1 2 1928 
24 155 1 1 1 0 0 0 1936 
21 103 3 0 0 0 0 0 1970 
20 125 3 0 0 0 1 0 2055 
25 89 3 0 0 0 0 1 2055 
19 102 1 0 0 0 0 2 2082 
19 112 1 1 1 0 1 0 2084 
26 117 1 1 1 0 0 0 2084 
24 138 1 0 0 0 0 0 2100 
17 130 3 1 1 0 1 0 2125 
20 120 2 1 1 0 0 3 2126 
22 130 1 1 1 0 1 1 2187 
27 130 2 0 0 0 1 0 2187 
20 80 3 1 1 0 1 0 2211 
17 110 1 1 1 0 0 0 2225 
25 105 3 0 0 0 0 1 2240 
20 109 3 0 0 0 0 0 2240 
18 148 3 0 0 0 0 0 2282 
18 110 2 1 1 0 0 0 2296 
20 121 1 1 1 0 1 0 2296 
21 100 3 0 0 0 0 3 2301 
26 96 3 0 0 0 0 0 2325 
31 102 1 1 1 0 0 1 2353 
15 110 1 0 0 0 0 0 2353 
23 187 2 1 1 0 0 1 2367 
20 122 2 1 1 0 0 0 2381 
24 105 2 1 1 0 0 0 2381 
15 115 3 0 0 0 1 0 2381 
23 120 3 0 0 0 0 0 2395 
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age Lwt race pti smoke ht ut ftv bwt 

30 142 1 1 1 0 0 0 2410 
22 130 1 1 1 0 0 1 2410 
17 120 1 1 1 0 0 3 2414 
23 110 1 1 1 0 0 0 2424 
17 120 2 0 0 0 0 2 2438 
26 154 3 0 0 1 0 1 2442 
20 105 3 0 0 0 0 3 2450 
26 190 1 0 1 0 0 0 2466 
14 101 3 1 1 0 0 0 2466 
28 95 1 0 1 0 0 2 2466 
14 100 3 0 0 0 0 2 2495 
23 94 3 0 1 0 0 0 2495 
17 142 2 0 0 1 0 0 2495 
21 130 1 0 1 1 0 3 2495 
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Chapter 7 
 

Analysis of Categorical Data 
 

7.1 Introduction 

The chi-square test is often used in experimental work where the data consist of 

frequencies or counts. For example, the number of boys and number of girls in a class 

who have had their tonsils out is distinct from quantitative data obtained from the 

measurement of continuous variable such as height, weight, temperature and so on.  

The most common use of the test is probably with categorical data such as level of 

education, marital status, etc. The test can also be used in experiments designed to assess 

the effect of inoculation in immunizing people against disease and in clinical trials 

involving drugs. 

The test is frequently employed to determine if there is an association between variables. 

When the word association is used in the statistical sense, a comparison is implied. For 

example, if we say that there is an association between inoculation and immunization 

against some disease, we mean that proportion of inoculated people who contracted 

disease is different from the proportion of not inoculated people who do so. Of course the 

two proportions might be expected to differ in some measure due to chance factor of 

sampling, and for other reasons which might be attributed to random causes, but the test 

enables us to calculate the probability that a difference as great as or greater than that 

obtained could have arisen in this way. 

Before we introduce the test, it would be better to illustrate the word classification. It is 

possible to classify a population in many different ways. For instance, population may be 

classified as males and females, married and unmarried, smokers and nonsmokers, etc. 

These classifications are known as dichotomous classifications. If the population is 

divided into more than two groups, like poor, good, very good, and high, medium, low 

education, etc., then these classifications are known as multiple (polychotomous) 

classifications. If the classification is dichotomous or multiple, it must be exhaustive and 

mutually exclusive. An example of dichotomous classification is given in Table 7.1. 

 
Table 7.1 

Number of patients with hypertension and no hypertension 
 Stroke history 

  
Present  

(+) 
not-present  

(-) 
 

Hyper 
tension 

Present (+) 
 

a 
15 

b 
185 

a+b = 200 

History Not-present (-) 
 

c 
5 

d 
795 

c+d = 800 

  a+c = 20 b+d = 980 a+b+c+d = 1000 
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This table is known as 2x2 contingency table or two-dimensional table or fourfold 

contingency table. The entries in the cells of the Table (7.1) may be frequencies and may 

be transformed into proportions or percentages. The frequencies of four cells may be 

represented by a, b, c, d. An example of multiple classification, which is called 24 

contingency table is given in Table 7.2: 

 
Table 7.2 

Distribution of patients by Diet and cancer tumor  
Diet 

  
high fat 
no fiber 

High fat 
Fiber 

low fat 
no fiber 

low fat 
fiber 

Total 

Cancer Yes 27 20 19 14 80 

Tumor No 3 10 11 16 40 

 Total 30 30 30 30 120 

Note that contingency table is always read as row (r) by column (c) i.e. rc. It is 

important to note that, in whatever form the entries are presented; the data are originally 

frequencies or counts. Of course, for the application of the chi-square test, continuous 

data can often be put into discrete form. For example, weight is a continuous variable, but 

if population is classified into different weight groups then different weight groups can be 

treated as if they were discrete groups. Below are given some examples where the chi- 

square test is applicable to test the association. 

(i) Cigarette smoking and premature death from cardiovascular disease. 

(ii) Smoking and lung cancer 

(iii) Smoking and myocardial infarction. 

(iv) Post laparotomy wound infection in patients receiving antibiotic versus placebo. 

(v) Two chemotherapy regiments for advanced acute lymphoblastic leukemia in 

children. 

(vi) Nutritional status and academic performance. 

(vii) Incidence of miscarriage among woman exposed to agricultural pesticides. 

(viii) Fat diet and cancer tumor. 

7.2 Assumptions 

(i) The sample must be random so that the observations are independently 

distributed. 

(ii) Each individual or unit in the sample has the same probability being from a 

particular cell and the sample is large. 

(iii) Each observation may be categorized either into class 1 or class 2, etc. 
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7.3 Uses of Chi-Square Test 

The chi-square test can be used in different forms to test: 

(i) The variance for a single sample. This has been discussed in Chapter 4. 

(ii) Goodness of fit. (This is not described here as health scientists use it very 

rarely). 

(iii) Independence of attribute and homogeneity of groups. 

(iv) Association when the data have linear trend (Mantel-Haenszel). 

(v) Association in matched samples. 

(vi) The significance of relative risk and odds ratio. 

In the application of chi-square test, there are two sets of frequencies, one set is called 

observed (actual) frequencies and other set is called expected frequencies. Observed 

frequencies are those which we get from a sample and are categorized into two or more 

than two classifications. Expected frequencies are the number of observations in our 

sample that we would expect to observe if some null hypothesis about the variable is true. 

For example, if we have a sample of 39 patients, who visit the hospital in a particular 

time, 13 out of them are old, 15 are young and 11 are children. These will be known as 

observed frequencies while in this case we would expect that sample must contain 13 old 

persons, 13 young persons and 13 children. This distribution gives us expected 

frequencies. Since expected frequencies are not known, we can estimate them from 

observed frequencies under the same hypothesis. An example, showing calculations of 

expected frequencies, is given as: 

Example 7.1: 

In a study of the relation between blood type and disease, large samples of patients with 

peptic ulcer, patients with gastric cancer and control persons free from these diseases 

were classified as to blood type (O, A, B). The observed frequencies are as follows: 

 

Table 7.3 
Distribution of patients by blood type and Disease 

Disease 

Blood type Peptic ulcer Gastric cancer Controls Total 

O 
A 
B 

983 = O
11

 

679 = O
21

 

134 = O
31

 

383 = O
12

 

416 = O
22

 

84 = O
32

 

2892 = O
13 

2625 = O
23

 

570 = O
33

 

R1 = 4258 
R2 = 3720 
R3 = 788 

Total C1 = 1796 C2 = 883 C3 = 6087 n = 8766 

 (Source: Snedecor and Cochran, 1980) 

Oij is the observed frequencies in the (i,j)th cell. 

If we assume that disease and blood type are independent then the expected frequencies 

are calculated as: 
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  Eij = 
i jR C

n


 

where Ri are the i
th

 row total and Cj the j
th

 column total. 

Thus we have:  

  E11 = 
8766

42581796 , E22 = 
8766

3720883 , etc. 

 

Table 7.4 
Distribution of expected patient by blood type and Disease 

Blood type Peptic ulcer Gastric cancer Controls Total 

O 
A 
B 

872.39 = E11 

762.16 = E21 

161.45 = E31 

428.91 = E12 

374.72 = E22 

79.37 = E32 

2956.70 = E13 

2583.12 = E23 

547.18 = E33 

4258 
3720 
788 

Total 1796 883 6087 8766 

7.4 Independence and Homogeneity 

7.4.1 2x2 Contingency Table 

This test can also be thought of as a test of difference between two proportions.  

Example 7.2:  
Following data relate to deaths of males and females due to T.B. 

 
Table 7.5  

Observed frequencies of deaths by gender and form of T.B. Gender 

Form of T. B Males Females Total 

T.B. of respiratory system 3534 1319 4853 

Other form of T.B. 270 250 520 

Total 3804 1569 5373 

Are the two classifications of the people in the sample independent? (Maxwell, 1961) 

Solution: 

(1) H0: Classification of people and the form of T.B. from which people die are 

 independent. 

 H1: They are not independent. (There is association) 

(2)  = 0.05 

(3) test-statistic:  Chi-square  (data is qualitative) 

  (i)  Chi-square ( 2 ) = 
 ij ij

ij

O E

E
i j


 ,            (7.1) 

    (where Oij = observed and Eij = expected frequencies). 
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(ii) If it is a 2 x 2 contingency table, then calculation may be simplified by using 

the following formula: 

    2 = 
)db)(ca)(dc)(ba(

n)bcad( 2




           (7.2) 

   where n = a + b + c + d: The placement of a, b, c and d is shown in Table 7.1. 

(4) To calculate chi-square we need expected frequencies, the calculations of 
expected frequencies have been explained in table 7.4 and for this example are 
given in Table 7.5. 

 

Table 7.6  
Expected Frequencies of deaths by gender and form of T.B. Gender 

Form of T.B Males Females Total 

T.B. of Respiratory 
system 

E11 = 
5373

48533804 
 

 = 3435.8 

E12 = 
5373

48531569 
 

 = 1417.2 

4853 

Other form of T.B. 
E21 = 

5373

5203804 
 

 = 368.2 

E22 = 
5373

5221569 
 

 = 151.8 

520 

Total 3804 1569 5373 

The chi-square value is calculated as: 
 

(O - E) (O - E)
2
 (O - E)

2
 / E 

98.2 
-98.2 
-98.2 
98.2 

9643.24 
9643.24 
9643.24 
9643.24 

2.807 
6.804 
26.190 
63.526 

Total  99.327 

   2  = 99.326 

If we use (7.2), then there is no need to calculate expected frequencies. We can 
use the observed frequencies directly to calculate chi-square. 

    213.99
)1569)(3804)(520)(4853(

5373)13192702503534( 2
2 


  

(There is a difference in result between two methods. This is because in first 
method approximation is involved. So it may be better to use the second form). 

(5) Since it is a one-sided test we can see the table value for the desired degree of 
freedom under chi-square 0.95 for 5% level of significance. The degree of 
freedom is determined as (r - 1) (c - 1) = (2 - 1) (2-1) = 1. (Note that in  

2 x 2 table, degree of freedom is always 1). (See table of 
2

 given at the end of this 
Chapter).  
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(6) The calculated value is 99.213, which is greater than table value (3.841) for one 
degree of freedom Therefore, the data do not show that the two variables are 
independent and we say with 95% confidence that two classifications of the 
people in our sample are not independent (see Fig. 7.1).  

 

 

Fig. 7.1 

To put it differently we may say that distribution of type of TB does depend on sex. In 
the application of chi-square, one point to be noted about the magnitude of the expected 
frequencies. If the expected frequencies are too small then chi-square will not reflect the 
departure of observed from expected frequencies.  

There is no general rule regarding the minimum value of the expected/observed 
frequencies, but values of 3, 4 or 5 are widely used as minimum. If one should get 
expected/observed frequencies too small, it can be combined with expected/observed 
frequencies in an adjacent class interval. Generally, if it is less than 5 then Pearson's chi-
square is not strictly valid. 

7.4.2 Phi Coefficient 

The Phi coefficient is a degree of association between two attributes and is calculated as: 

  Phi =    = 
)db)(ca)(dc)(ba(

bcad




 = 

n

2
        (7.3) 

     = 
5373

21346.99
= 0.13589 

The degree of association between death of people and form of T.B., with which people die, 

is about 13.6%. The range of  is from -1 to 1. If  is 0, the attributes are independent. If  
= 1, there is complete positive association and for –1 there is complete negative association. 
This happens only when entries are only in the leading diagonal when b = c = 0 and 

consequently  = 1 (or a = d = 0). This measure is not very satisfactory since it does not 
necessarily have an upper limit of 1. This is used when scale is nominal. 

7.4.3 Contingency coefficient (C) 

It also measures the degree of association. This coefficient lies between 0 and 1 and 

attains its lower limit in case of complete independence, that is when 
2

 = 0. It is also 
calculated when scale is nominal. It is calculated as: 

  C  = 
n2

2




                  (7.4) 

2
95.0
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    = 
99.21346

99.21346 5373
 = 0.1346 or 13.5% 

C cannot attain its upper limit even in case of complete association. 

7.4.4 Cramer's-V (V) 

This coefficient also measures the degree of association. For 2x2 table Cramer's-V is 

identical to Phi. It is designed in such a way that it can attain upper bound 1. This is often 

used for general contingency table of size r × c. It is calculated as: 

  V  = 
)1c,1rmin(

n/2




                (7.5) 

   = 13589.0
)12(

5373

21346.99




 

7.4.5 Adjusted Chi-square (Yates’ Correction) 

Some times in 2 x 2 contingency table, expected frequency is less than 5 where pooling 

of data is impossible. Yates (1934) recommended an adjustment as correction for 

continuity known as Yates’ correction. This is done by subtracting 1/2 from the positive 

discrepancies (O - E) and adding 1/2 to the negative discrepancies (O - E) before these 

values are squared. For this (7.1) takes the following form.  

  2 = 
 









i j
E

5.0EO

ij

2

ijij
               (7.6) 

Alternatively, this correction can be adjusted in (7.2). 

  2 = 
 

)cb)(ca)(dc)(ba(

nn5.0|bcad|
2




,             (7.7) 

where |A| means absolute value of A. (It is desirable to apply the Yates’ correction at all 

times, whether or not expected frequencies are greater than 5, but it is essential to do so 

in cases when expected frequencies are less than 5 and sample size is small). If the 

sample size is reasonably large, the correction will have little effect on the value of 2. 

The same result may be obtained using IBM-SPSS package. The entry of the data for the 

calculation of chi-square has been explained in the next example.  
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Example S7-1 

A part of the data will be in columns as follows: 

 

The Variable View is as follows: 

 

The labels are defined as: 

Form of T.B.: 

 

Gender 

 

We apply the Chi-square test for Independence as follows: 

Analyze Descriptive Statistics Crosstabs …  
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Move the variable “Form of T.B” to the Row(s):  

Move the variable “gender” to the Column(s):  

We click on  and mark on “Chi-square”,  

We also mark on “Contingency coefficient” and “Phi and Cramer’s V” then click  

on  

  

Now to show the expected values beside the observed values, and the percentages,  

We click on  and mark on Expected, Rows and Column, then click on  
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Now click on , to get the following outputs: 

SPSS output for chi-square 

 

 

 

Four results of chi-square are given at the end of the IBM-SPSS output, i.e. (i) chi-square 

Pearson, (ii) chi-square continuity correction, (iii) chi-square likelihood ratio and (iv) 

linear trend (Mantel-Haenszel). The important point is to choose the appropriate result, 

here we choose Pearson chi-square as the scale is nominal and no frequency in the cell is 

less than 5 (minimum expected frequency = 151.85), p-value = 0.000, which is less than 

0.05 (observed p-value). We confirm our previous result. Note that there is small 

difference between the results of chi-square in our manual and computer calculations. 

Other forms of chi-square will be explained later. Phi, Cramer’s V and contingency 

coefficient measure degree of association between two attributes and are calculated when 

scale is nominal.  

Chi-Square Tests

99.213b 1 .000

98.205 1 .000

91.588 1 .000

.000 .000

99.195 1 .000

5373

Pearson Chi-Square

Continuity  Correctiona

Likelihood Ratio

Fisher's Exact Test

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

Exact Sig.

(2-sided)

Exact Sig.

(1-sided)

Computed only  f or a 2x2 tablea. 

0 cells (.0%) hav e expected count less than 5. The minimum expected count is

151.85.

b. 

Symmetric Measures

.136 .000

.136 .000

.135 .000

5373

Phi

Cramer's V

Contingency  Coef f icient

Nominal by

Nominal

N of  Valid Cases

Value Approx. Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null

hypothesis.

b. 
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Example 7.3:  

The following data relate to suicidal feelings in samples of psychotic and neurotic 

patients: 
 

Table 7.7 
Distribution of Patients by type of patents and suicidal feelings 

 Psychotics Neurotics Total 

suicidal feelings 2 6 8 

no suicidal feelings 18 14 32 

Total 20 20 40 

Test at 5% level of significance whether there is an association between two psychotics 

groups and the presence or absence of suicidal feelings. 

Solution: 

(1) H0 : Two groups are independent with presence and absence of suicidal feelings. 

 H1 : Two groups are not independent.  

(2) = 0.05 

(3)  test-statistic: Chi-square is applied, but we compute expected frequencies to see 

if Yates’ correction can be applied?  

 
Expected frequencies 

 Psychotics Neurotics Total 

Suicidal feelings 4 4 8 

No suicidal feelings 16 16 32 

Total 20 20 40 

In two cells, expected frequencies are less than 5, so Yates’ correction is 

applicable. Using (7.6), we have:  
 

O - E 
Corrected 

discrepancy 
(O - E)

2
 (O - E)

2
 / E 

-2 
2 
2 
-2 

|-2| - 0.5 = 1.5 
| 2| - 0.5 = 1.5 
| 2| - 0.5 = 1.5 
|-2| - 0.5 = 1.5 

2.25 
2.25 
2.25 
2.25 

0.5625 
0.5625 

0.140625 
0.140625 

Total   1.40625 

The calculated value of 2 =1.40625 

This can be solved by using the formula given in expression (7.2) as: 

 2 = 
 

40625.1
2020328

)40(405.0|618142|
2





 

which is the same as above. 
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(4)  The table value for 5% level of significance at 1 degree of freedom is  
2

95.0 = 3.841.  

(5) Calculated value is less than the table value, therefore, we say with 95% 

confidence that there is no evidence that psychotics and neurotics groups differ 

with respect to symptoms. 

Note that minimum value of chi-square is zero. It is only possible when the expected 

minus observed value in each cell is zero. 

7.4.6 Fisher's exact test 

The method of Yates’ correction was useful when manual calculations were done. Now 

different types of statistical packages are available. Therefore, it is better to use Fisher's 

exact test rather than Yates’ correction as it gives exact result. It is used when expected 

frequency in the cell is less than 5 and sample size is small. The formula of Exact Test is 

  Fisher’s Exact test = 1 2 1 2R !   R !   C !   C !

n!   a!   b!   c!   d!
,            (7.8) 

where R
1
, R

2
 are rows totals and C

1
, C

2
 are columns totals. Note that Fisher's exact test 

for 2x2 contingency table does not use the chi-square approximation. 

IBM-SPSS package has been used for the above data and computer output is given 

below. Since expected frequencies are less than 5 in two cells we do not choose Pearson 

chi-square, we either choose chi-square with Yates’ correction (continuity correction) or 

Fisher's exact-test.  
 

SPSS output for chi-square 

(Yates’ correction and Fisher's exact test) 

 

suicidal feel ing * type of disease Crosstabulation

2 6 8

4.0 4.0 8.0

25.0% 75.0% 100.0%

10.0% 30.0% 20.0%

5.0% 15.0% 20.0%

18 14 32

16.0 16.0 32.0

56.3% 43.8% 100.0%

90.0% 70.0% 80.0%

45.0% 35.0% 80.0%

20 20 40

20.0 20.0 40.0

50.0% 50.0% 100.0%

100.0% 100.0% 100.0%

50.0% 50.0% 100.0%

Count

Expected Count

% within suicidal feeling

% within type of  disease

% of  Total

Count

Expected Count

% within suicidal feeling

% within type of  disease

% of  Total

Count

Expected Count

% within suicidal feeling

% within type of  disease

% of  Total

1.00

2.00

suicidal

f eeling

Total

1.00 2.00

ty pe of  disease
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Since the p-value for Yates’ correction (continuity correction) is 0.236(two tailed) and for 
Fisher's exact test is 0.235 (two tailed) which is greater than 0.05 therefore the data give 
no evidence that psychotics and neurotics differ with respect to symptoms (we confirm 
our above findings). Note that the p-value found in SPSS output by the use of Pearson 
Chi-square test, the Yates’ correction and Fisher's test reflect a number of general points 
about the three tests when applied to small and moderate sized samples. 

(i) Yates’ correction and Fisher's test give similar results. 

(ii) p-value obtained by Yates’ correction and Fisher's test are higher than those 
given by Pearson's chi-square method. 

(iii) In large samples, it is well known that all three methods give almost identical 
results. 

Fisher’s exact test is also available in statistical packages for 3  3, 4  4 etc. contingency 
tables. 

Example 7.4:  
An interaction study of two social groups of children was conducted. Two independent 
random samples of 15 children each were selected with and without development delays 
(mild mental retardation). After observing in a control playground environment, the 
children during free play the researcher recorded the number of children for each group 
who exhibited disruptive behavior (i.e. ignoring, rejecting other children, taking toys 
from another child). The data are summarized in the two-way table. Analyze the data 
given in Table 7.7 and interpret the results. 

Chi-Square Tests

2.500b 1 .114

1.406 1 .236

2.594 1 .107

.235 .118

2.437 1 .118

40

Pearson Chi-Square

Continuity  Correctiona

Likelihood Ratio

Fisher's Exact Test

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

Exact Sig.

(2-sided)

Exact Sig.

(1-sided)

Computed only  f or a 2x2 tablea. 

2 cells (50.0%) hav e expected count less than 5. The minimum expected count is

4.00.

b. 

Symmetric Measures

-.250 .114

.250 .114

.243 .114

40

Phi

Cramer's V

Contingency  Coef f icient

Nominal by

Nominal

N of  Valid Cases

Value Approx. Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null

hypothesis.

b. 
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Table 7.8 
Behavior 

 Disruptive 
Behavior 

Non-disruptive 
Behavior 

Total 

With development delay 12 3 15 
Without development delay 5 10 15 

Total 17 13 30 

(Doop, Baker and Brown, American Journal on Mental Retardation, Vol. 96(4), 1992. 

Solution: 

(1)  H0 : There is no difference between with development delay and without 
  development disruptive behavior. 

 H1 :  There is difference. 

(2)  = 0.05 

(3)  Test-statistic: Chi-square 

After the calculations of expected frequencies, we will decide whether we apply 
Pearson chi-square or adjusted chi-square (Yates’ correction). The expected 
frequencies as: 

 

 Disruptive 
Behavior 

non-disruptive 
behavior 

total 

with development delay 8.5 6.5 15 
without development delay 8.5 6.5 15 

Total 17 13 30 

Since no expected cell is less than 5, we use the method of Pearson chi-square 
(7.2) 

   2 = 
13171515

)531012( 2




 = 6.65 

(4)  Table value for 5% level of significance against one degree of freedom is 3.841, 
which is less than calculated value. The result is significant and we say that there 
is difference between with development delay and without development delay in 
disruptive behavior. 

7.4.7 R x C contingency table 

It is a generalization of the 2x2 contingency table. The case, where there are r rows and c 
columns, called the r x c contingency table. Suppose we have r populations and one 
random sample from each population is drawn. Each observation in each sample is 

classified into one of r c different categories. The assumptions are: 

(i) Each sample is random. 
(ii) The outcomes of various samples are all mutually independent. 
(iii) Each observation may be categorized into exactly one of the categories or 

classes. 
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Example 7.5:   
The researchers randomly divided 120 laboratory rats into four groups of 30 each. All 

rats were injected with a drug that causes breast cancer, then each rat was fed a diet of fat 

and fiber for 15 weeks. However, the levels of fat and fiber varied from group to group. 

At the end of the feeding period, the number of rats with cancer tumor was determined 

for each group. The data are given in Table 7.9. 

 
Table 7.9 

Diet 

  
high fat 

with no fiber 
High fat 

with fiber 
low fat 

with no fiber 
low fat 

with fiber 
total 

 
Cancer 

Yes 
27 

(22.5%) 
20 

(16.7%) 
19 

(15.8%) 
14 

(11.7%) 
80 

Tumor No 3 10 11 16 40 

 Total 30 30 30 30 120 

Is there any evidence to indicate that diet and presence/absence of cancer are 

independent? Use 5% level of significance.(source: Journal of the National Cancer 

Institute, 1991) 

Solution: 

(1)  H0 : Diet and presence/absence of cancer are independent. 

 H1 : They are not independent. 

(2)  = 0.05 

(3)  test-statistic: 
2 

SPSS output for Chi-square 

 

Chi-Square Tests

12.900a 3 .005

14.183 3 .003

11.900 1 .001

120

Pearson Chi-Square

Likelihood Ratio

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

0 cells (.0%) hav e expected count less than 5. The

minimum expected count is 10.00.

a. 

NCBA&E



Analysis of Categorical Data 302 

 

(4)  Calculated p-value is less than the observed p-value (0.05). The result is 

significant therefore, the null hypothesis is not accepted. We can say with 95% 

confidence that diet and presence/absence of cancer are not independent and there 

is about 33% association between these two factors (Cramer’s V). We can see 

from the table that direction of departure from low fat fiber to high fat fiber 

leading to less cases of cancer. 

Example 7.6:  
In a study of the relation between blood type and disease, large samples of patients with 

Peptic ulcer, patients with gastric cancer and control group were classified as to blood 

type O, A and B. The data are given in Example 7.1 and represent in Table 7.10. 

 
Table 7.10 
Disease 

Blood type Peptic ulcer Gastric cancer Controls Total 

O 983 383 2892 4258 

A 679 416 2625 3720 

B 134 84 570 788 

Total 1796 883 6087 8766 

 (Source: Snedecor and Cochran, 1980) 

Test the hypothesis that the blood type is the same for the three samples. 

Solution: 

(1)  H
0
 = All the blood types are same 

 H1 = blood type are not same 

(2)   = 0.05 

(3)  Test-statistic 
2
 

 By using SPSS package, we get 2 = 40.54339, p-value = 0.0000 

(4)  Since p-value is less than 0.05, therefore, the result is significant. The hypothesis 

is not accepted and we can say that the blood types are not dependent. 

Symmetric Measures

.328 .005

.328 .005

.312 .005

.289 .074 3.810 .000

.333 .087 3.810 .000

120

Phi

Cramer's V

Contingency  Coef f icient

Nominal by

Nominal

Kendall's tau-b

Kendall's tau-c

Ordinal by

Ordinal

N of  Valid Cases

Value

Asy mp.

Std.  Error
a

Approx. T
b

Approx. Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null hypothesis.b. 
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If we look into the data carefully and convert into percentage as 
 

Blood type Peptic ulcer (%) Gastric cancer (%) Controls (%) 

O 983 (54.7) 383 (43.4) 2892 (47.5) 

A 679 (37.8) 416 (47.1) 2625 (43.1) 

B 134 (7.5) 84 (9.5) 570 (9.4) 

We see that there is not much difference between blood type distributions for gastric 

cancer patients and controls but peptic ulcer patients differ from both in blood type O. 

We go back to the data and see if there is any difference between the blood type in gastric 

cancer patients and control. 
 

Blood type Gastric cancer Controls Total 

O 383 2892 3275 

A 416 2625 3041 

B 84 570 654 

Total 883 6087 6970 

The calculated value of 
2

 = 5.6361 with p-value = 0.05972. Therefore, there is no 

difference in blood types between gastric cancer patients and controls.  

Further we combine the gastric cancer and controls and omit blood type O and try to test 

whether the distribution of blood type A and B is the same or different. By doing so, we 

get the table as: 
 

Blood type Peptic ulcer Gastric + Controls 

A 679 3041 

B 134 654 

The calculated value of 2 = 0.68471, p-value = 0.408. The result is insignificant and 

there is no difference between blood type A and B. 

We further test whether the proportion of O type versus A + B type in the sample is the 

same. We get  
 

Blood type Peptic ulcer Gastric + Controls Total 

O 983 3275 4258 

A + B 813 3695 4508 

Total 1796 6970 8766 

The calculated value of 2 = 34.298 with p-value = 0.000. The result is significant, 

therefore, we conclude that low p-value or high value of 2 is due primarily to an excess 

of O type blood among the peptic ulcer. 

7.4.8 Application of Kendall's Tau b (
b
) 

It takes into considerations the ties and is based on the number of concordant and 

discordant pairs. An example is presented where the application of Kendall's Tau b 

coefficient is fruitful. The solution of the following example will be given using IBM-

SPSS: 
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Example S7-2 

An animal epidemiologist tested dairy cows for the presence of a bacterial disease. The 

disease is detected by the analysis of blood samples, and the disease severity for each 

animal was classified as None (0), Low (1) and High (2). Moreover, the size of the herd 

that each cow belongs to a category is classified as Large (1), Medium (2) and Small (3). 

The number of animals in each of the 9 cells are recorded as: 

 

Table 7.11 
Disease severity 

Size of the herd None (0) Low (1) High (2) Total 

Large (1) 11 88 136 235 

Medium (2) 18 4 19 41 

Small (3) 9 5 9 23 

Total 38 97 164 299 

The disease is transmitted from cow to cow by bacteria, so the epidemiologist wants to 

know if disease severity depends on herd size. 

Does disease severity increase as herd size increases? 

Solution: 

Since the categories for herd size and for disease severity are ordered, therefore, both 

characteristics are ordinal.  

The 
2
–statistic tests the independence of herd size and disease severity, but the test does 

not show whether there is a trend in disease severity related to increasing herd size and 

as such Kendall's Tau-b can be used.  

The Variable View is as follows: 

 

The labels are defined as: 

Size of the herd

 

Disease severity 

 

We apply the Chi-square test for Independence and calculate Kendall's Tau-b as follows: 

Analyze Descriptive Statistics Crosstabs …  
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Now click on , to get the following outputs: 
 

SPSS output for Chi-square and related indices 

  

 

Chi-Square Tests

67.041a 4 .000

56.642 4 .000

23.636 1 .000

299

Pearson Chi-Square

Likelihood Ratio

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

1 cells (11.1%) have expected count less than 5. The

minimum expected count is 2.92.

a. 

Symmetric Measures

-.217 .061 -3.402 .001

-.148 .044 -3.402 .001

-.233 .066 -4.131 .000c

-.282 .066 -5.058 .000c

299

Kendall's tau-b

Kendall's tau-c

Spearman Correlation

Ordinal by

Ordinal

Pearson's RInterv al by  Interv al

N of  Valid Cases

Value

Asy mp.

Std.  Error
a

Approx. T
b

Approx. Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null hy pothesis.b. 

Based on normal approximation.c. 
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The value of the Kendall's Tau-b is -0.217, which is a measure of association between 

disease severity and herd size. A negative value means that as one variable decreases, the 

other increases. In this example, -0.217 means that the disease severity increases as the 

herd size decreases. This is exactly what one may conclude looking at the observed cell 

and expected cell frequencies. 

One can get incorrect result if the order of the values does not match an increasing or 

decreasing trend. One can associate large with 1, medium with 2 and small with 3. 

However, one could receive incorrect result if the order of the values do not match an 

increasing or decreasing trend. For example, if we associate large as 2, medium as 1 and 

small with 3, Kendall's Tau-b is meaningless. In general, one needs to look at the values of 

the variables (both character and numeric) when using Kendall's Tau-b, and make sure that 

the "order" of values is one that makes sense. The approximate 95% confidence limits are: 

- 0.21731 ± 1.96 (0.06065) or - 0.21731 ± 0.11887 [-0.984 ~ -0.336] 

Since the confidence limits do not include zero (0), one can be fairly sure that the 

association between disease severity and herd size is an increasing one. 

Example 7.7:  
A simple random sampling procedure was used to select 5 primary health care (PHC) 

centers out of 9 from Al-Khobar area. Within each selected PHC center, a systematic 

sampling scheme was applied and 659 patients were selected to determine the pattern of 

laboratory (Lab) utilization. The data of lab utilization (proper and improper) are as: 
 

Table 7.12 
Primary Health Care Centers 

Utilization 1 2 3 4 5 Total 

Proper 48 51 44 103 77 323 

Improper 67 51 37 96 85 336 

Total 115 102 81 199 162 659 
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Moreover, these data are further divided as over utilization, proper utilization and under-

utilization. These data are given as: 

 

Table 7.13 
Primary Health Care Centers 

Utilization 1 2 3 4 5 Total 

Over 18 4 15 21 29 87 

Proper 48 51 44 103 77 323 

Under 49 47 22 75 56 249 

Total 115 102 81 199 162 659 

Use a statistical technique to analyze the data and to see the difference, if any, between 

primary health care centers regarding lab utilization. 

Solution: 

In the first table, we will apply chi-square test as the rows are divided into two categories 

"yes" and "no". In the second table, the rows are ordinal and columns are nominal. There 

should be no longer any hesitation in applying the rank test to situations that have many 

ties. The alternative and frequently used method is Kruskal-Wallis. (This will be 

described in Chapter 8). In fact the Kruskal-Wallis-H test is excellent test to use in 

contingency tables, where rows represent ordered scale and columns represent nominal 

scale. 

7.4.9 2 x 2 x K Tables (Meta Analysis) 

Sometimes it is possible that a number of 2x2 tables, all bearing on the same question 

may be available. It becomes of interest how to combine all the tables so that meaningful 

results may be derived. For example, in an investigation into occurrence of lung cancer 

among smokers and non-smokers, data may be obtained from several different areas and 

for each area the data might be arranged in 2x2 table. Again, in an investigation of the 

occurrence of lung cancer in smokers and non-smokers in different parts of China, data 

may be obtained from each of several different areas. The question is how this separate 

information may be pooled? This is explained in the following example. Firstly it is 

solved manual process and then by using SPSS Package. 

Example 7.8:  
The following data relating to Chinese smoking and lung cancer study in different parts 

of China ( S = smoker; S  = non-smoker). Analyze the data to find out whether there is 

any association between smoking and lung cancer. 
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Table 7.14 

City 
Smoking 

Status 

Lung 
Cancer Total 

Proportion 
of lung 
cancer 


2

 
p-

value 
Phi  

Yes No 

 S 126 100 226 0.558     

Beijing S  35 61 96 0.365 10.033 0.002 0.177 3.17 

  161 161 322      

 S 908 688 1596 0.569     

Shanghi S  497 807 1304 0.381 101.326 0.000 0.187 10.07 

  1405 1495 2900      

 S 913 747 1660 0.550     

Shenyang S  336 598 934 0.360 86.660 0.000 0.183 9.31 

  1249 1345 2594      

 S 235 172 407 0.577     

Nanjing S  58 121 179 0.324 31.925 0.000 0.233 5.63 

  293 293 586      

 S 402 308 710 0.566     

Harbin S  121 215 336 0.360 38.743 0.000 0.192 6.22 

  523 523 1046      

 S 182 156 338 0.538     

Zhebzou S  72 98 170 0.423 5.976 0.014 0.108 2.44 

  254 254 508      

 S 60 99 159 0.377     

Taiyuan S  11 43 54 0.204 5.470 0.018 0.160 2.34 

  71 142 213      

 S 104 89 193 0.539     

Nanchang S  21 36 57 0.368 5.113 0.023 0.143 2.26 

  125 125 250  285.246   41.46 

Source:  Liu, Z (1992) smoking and lung cancer in China. Inter. J. Epidemiology,  

Vol. 21, 197-201 

Solution: 

There are several methods to pool the data. 

(i) Pooling the data into 2x2 table 

One way is to pool the data in a single table and usual chi-square is calculated. This 

procedure is applicable or legitimate if the corresponding proportions in the various 

tables are alike. If the proportions vary from table to table, or we suspect that they 

vary, then this procedure should not be used, as the combined data will not accurately 

reflect the information contained in the original tables. In fact in some cases it so 

happens that combining several tables each having the two attributes are highly 

associated and results in a table shows no association. For example, in the lung cancer 

and smoking study conducted in China at eight places, it may well be the case that the 

occurrence of lung cancer is more frequent in some areas than the other. If we 

combine the data into 2x2 table, we get 
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 C c  

s 2930 2359 

S  1151 1979 

  2 = 273.091  Phi = 0.180  p < 0.0001 

The occurrence of lung cancer is associated with localities of China. Since there is 

variation in proportion of lung cancer, we may not combine all the groups in a single 

2x2 table. 

(ii) Adding the value of 2 

The second technique that is often used is to compute the usual chi-square value 

separately for each table and then add them together. The resulting value may then be 

compared with the value of chi-square from tables with k degrees of freedom, where k 

is the number of separate tables. This is not a good method since it does not take into 

account the direction of the difference between the proportions in various tables and 

consequently lacks power in detecting a difference that show up consistently in the 

same direction in all or most of the individuals. If we use this method, we get  

 2
pooled = 285.246. The table value for 8 degrees of freedom (since there are 8 tables) 

is 15.507. Since table value is much less than calculated value, therefore the result is 

significant and we can say that there is association between smoking and lung cancer. 

(iii) The method of summing  rather than2  

If the sample sizes of the individual tables do not differ greatly (say by more than a 

ratio of 2 to 1) and the values taken by the proportions are between approximately 0.2 

and 0.8, then a method based on the sum of the square root of the 
2

 statistic, taking 

account of the signs of the differences in proportions, may be used. This will be 

normally distributed with mean zero and standard deviation K if the sample is 

large. Then  

 Z = 
k

i
K

1i





 = 
8

46.41
 = 14.66 

Using Table 7.12 we have Z = 1.96. Since calculated Z is much more than 1.96 (table 

value at 5% level of significance), therefore result is significant and there is a strong 

association between smoking and lung cancer. 

If the sample sizes and the proportions do not satisfy the conditions mentioned above, 

the addition of the  value tends to lose power. Tables that arise from very small 

sample size cannot be expected to be as much of use as those where the sample size is 

moderate to large in detecting the difference in the proportions, yet in the 2

method all tables receive the same weight. When differences in the sample sizes are 

extreme, some method of weighting the results from individual tables is needed. 

Cochran (1954) suggested a test to solve this problem. Another test procedure for 

examining series of 2x2 tables is that suggested by Mantel and Haenszel (1959). By 

combining this test, it is known as Cochran -Mantel -Haenszel test. 
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(iv) The Cochran- Mantel-Haenszel test 

To apply Cochran-Mantel-Haenszel test, some further calculations are required. 

These calculations are made in the Table 7.15.  

 
Table 7.15 

City 
Smo-
king 

Status 

Lung Cancer 
Total 

n

)ca)(ba( 
= E(a) 

)1n(n

)db)(ca)(dc)(ba(

2 


 a – E(a) 

Yes No 

1 

S 126 100 226    

 35 61 96 113.0 16.9 13.0 

 161 161 322    

2 

S 908 688 1596    

 497 807 1304 773.2 179.3 134.8 

 1405 1495 2900    

3 

S 913 747 1660    

 336 598 934 799.3 149.3 113.7 

 1249 1345 2594    

4 

S 235 172 407    

 58 121 179 203.5 31.1 31.5 

 293 293 586    

5 

S 402 308 710    

 121 215 336 355.0 57.1 47.0 

 523 523 1046    

6 

S 182 156 338    

 72 98 170 169.0 28.3 13.0 

 254 254 508    

7 

S 60 99 159    

 11 43 54 53.0 9.0 7.0 

 71 142 213    

8 

S 104 89 193    

 21 36 57 96.5 11.0 7.5 

 125 125 250  482.0 367.5 

Cochran-Mantel-Haenszel (CMH) test = 
0.482

)5.367( 2

 = 280.2. This test has a large sample 

chi-squared distribution with 1 d.f. We can see that the result is highly significant. A 

statistical analysis that combines information from several studies is called meta analysis. 

This meta analysis may provide stronger evidence of an association than any single 

partial table. 

Calculation of Cochran-Mantel-Haenszel (CMH) test to perform Meta Analysis using 

IBM-SPSS package. 

Example S7-3 

In example 7.8 there are eight study areas regarding smoking and lung cancer. In order to 

apply Cochran-Mantel-Haenszel (CMH) technique these informations will be entered in 

the following way. 

 s

 s

 s

 s

 s

 s

 s

 s NCBA&E
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 Enter the data in the following manner. 

  

The Variable View is as follows: 

 

The labels are defined as: 

City 

 

Smoking status 

 
 

Lungs Cancer 
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To proceed for analysis 

1. Click Data and then click Weight Cases (Weight the cases by the variable data) 

 

 

2. Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  

  

Move the variable “row” to the Row(s):  

Move the variable “column” to the Column(s):  

We click on  and mark on “Chi-square”,  

We also mark on “Cochran-Mantel-Haenszel” then click on  
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Now click on and on , to get the following outputs: 

 

Case Processing Summary

8419 100.0% 0 .0% 8419 100.0%
Smoking Status *

Lungs Cancer * CITY

N Percent N Percent N Percent

Valid Missing Total

Cases
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The Chi-Square along with significance level (p-value) for each table is given as 
 

CITY Chi-Square Tests df Asymp. Sig. (2-sided) 

Beijing 10.033 1 0.002 

Shanghi 101.327 1 0.000 

Shenyang 86.661 1 0.000 

Nanjing 31.925 1 0.000 

Harbin 38.743 1 0.000 

Zhebzou 5.976 1 0.014 

Taiyuan 5.470 1 0.019 

Nanchang 5.113 1 0.024 

 

Smoking Status * Lungs Cancer * CITY Crosstabulation

Count

126 100 226

35 61 96

161 161 322

908 688 1596

497 807 1304

1405 1495 2900

913 747 1660

336 598 934

1249 1345 2594

235 172 407

58 121 179

293 293 586

402 308 710

121 215 336

523 523 1046

182 156 338

72 98 170

254 254 508

60 99 159

11 43 54

71 142 213

104 89 193

21 36 57

125 125 250

Smokers

Non Smokers

Smoking

Status

Total

Smokers

Non Smokers

Smoking

Status

Total

Smokers

Non Smokers

Smoking

Status

Total

Smokers

Non Smokers

Smoking

Status

Total

Smokers

Non Smokers

Smoking

Status

Total

Smokers

Non Smokers

Smoking

Status

Total

Smokers

Non Smokers

Smoking

Status

Total

Smokers

Non Smokers

Smoking

Status

Total

CITY

Beijing

Shanghi

Sheny ang

Nanjing

Harbin

Zhebzou

Taiyuan

Nanchang

Yes No

Lungs Cancer

Total

- 

- 

- 

- 

- 

- 

- 

- 
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Tests for Homogeneity of the Odds 
Ratio 

280.38
3 

1 .000 
279.37
6 

1 .000 

5.200 7 .636 

5.200 7 .636 

Statistic
s Cochran's- 

Mantel-Haenszel 

Conditional- 
Independenc
e 

Breslow-Day- 

Tarone'
s 

Homogenei
ty 

Chi-Squared df 
Asymp. Sig. 
(2-sided) 

Under the conditional independence assumption, Cochran's statistic is 
asymptotically distributed as a 1 df chi-squared distribution, only if the number of 
strata is fixed, while the Mantel-Haenszel statistic is always asymptotically 
distributed as a 1 df chi-squared distribution. Note that the continuity correction is 
removed from the Mantel-Haenszel statistic when the sum of the differences 
between the observed and the expected is 0. 

 

There is a small difference in Chi- Square value in manual calculation and in computer 

application as approximation is involved in manual process. 

Example 7.9:   
Data regarding incidence of tumors in the two hemispheres for three sites in the cortex is 

available as: 

 
Table 7.16 

Sr. 
No. 

Site of tumor 
Benign 
tumors 

Malignant 
tumors 

Total 
Proportion of  

malignant tumors 

 Left hemisphere 17 5 22 0.2273 

1 Right hemisphere 6 5 11 0.4545 

  23 10 33  

 Left hemisphere 12 3 15 0.2000 

2 Right hemisphere 7 5 12 0.4167 

  19 8 27  

 Left hemisphere 11 3 14 0.2143 

3 Right hemisphere 11 9 20 0.4500 

  22 12 34  

Can we say that there is association between type of tumor and among hemisphere?  

Solution: 

We left this problem to the students to solve by using IBM-SPSS package on the lines 

suggested in Example 7.9. 

7.5 Matched Samples (McNemar test) 

One to one matching is frequently used by research workers to increase the precision of 

the comparison. This point has also been discussed in Chapter 4 in details as well. The 

matching is usually done on variable such as age, sex, weight, etc. and like information 

about which data can be obtained easily. Two samples matched in a one-to-one way must 

Independence 
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be thought of correlated samples and consequently are not independent. As a result, the 

ordinary chi-square test is not strictly applicable for assessing the difference between 

frequencies obtained with reference to these samples. The appropriate test for comparing 

frequencies in matched samples is one due to McNemar (1955). This is a special case of 

Cochran-Mantel-Haenszel test. 

Suppose the data are nominal with two categories that we call 1 and 0, i.e. Xi = 1 or 0 and 

Yi = 1, 0, i.e.  

 
Table 7.17  
Sample 1 

 
Xi 

Yi 
Total 

 Yes = 1 No = 0 

 Yes = 1 (1, 1) 
a 

(1, 0) 
b 

a + b 

Sample 2 No = 0 c 
(0, 1) 

d 
(0, 0) 

c + d 

 Total a + c b + d a + b + c + d 

Since we are concerned with the difference between sample 1 and sample 2. There is no 

difference in the cells of the table corresponding to cell a and cell d therefore, the 

comparison is confined to cells b and c only. In these situations, our null hypothesis will 

be that the two samples do not differ as regards to the attribute. We would expect cell b 

and cell c to be equal. We expect that the values in these two cells would each be  

(b + c)/2. Then the null and alternative hypotheses are 

(1)  H
0
 : Two samples do not differ with regards to the attributes 

 H
1
 : These are not equal. 

(2)  = 0.05 

(3)  test-statistic: 
2
McNemar

  

  
2
McNemar

 = 
cb

)cb( 2




              (7.9) 

 If the frequency in the cell b or c or in both is less than 5 then corrected value of 

McNemar test will be calculated as: 

  
2

)c(McNemar
 = 

 
cb

1cb
2




            (7.10) 

7.5.1 Layout of Tests of Significance 

The following layout will be useful to understand the applications of chi-squares and 

McNemar's tests. 
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LAYOUT OF TEST OF SIGNIFICANCE 

Cross sectional Case-control Cohort 

Not  
matched 

Not  
matched 

Matched 

Chi-  
square  

Chi-  
square  

McNemar 

Not  
matched 

Matched 

Chi-  
square 

McNemar 

 

 

McNemar test is applicable in case-control and cohort matched samples.  

Example 7.10:   

Following data relate to 400 study subjects, consisting of 200 matched-pairs. For 7 pairs 

both the smokers and non-smokers developed myocardial infarction (MI) and for 150 

pairs, neither did. In 14 pairs only the non-smoker have myocardial infarction whereas in 

29 pairs only the smoker did. This data relate to the results of a cohort study of 

myocardial infarction in 200 smoking and 200 non-smoking men matched by age, blood 

pressure and serum cholesterol concentration. Cells a and d represent those matched pairs 

in which both exposed and non-exposed members develop the same outcome whereas b 

and c represent those matched pairs in which members experience opposite results. The 

data are given as: 
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Table 7.18  
 Smokers   

Non-Smokers MI not MI Total 

MI 
7 

(1, 1) 
a 

14 
(1,0) 

b 
21 

Not MI 
c 

(0,1) 
29 

d  
(0, 0) 
150 

179 

Total 36 164 200 

Test the significance between smoking and myocardial infarction at 5% level of 

significance. 

Solution: 

(1)  H
0
 : Smoking has no effect on myocardial infarction. 

 H
1
 : Smoking and myocardial infraction are associated. 

(2)   = 0.05 

(3)  test-statistic: Since the pairs are matched, the value of chi-square depends on the 

observed frequencies in the two discordant cells b and c. It is interpreted in the 

same way as the usual 
2
 with 1 d.f. McNemar chi-square procedure is used below 

(using equation 7.1): 

  
2
McNemar

 = 
 

1429

1429
2




= 5.233 

(4)  Table value of 
2 
for 5% level of significance and for 1 degree of freedom is 3.841 

(5)  Since the calculated value is more than the table value, we do not accept the null 

hypothesis and say that smokers are indeed at risk for subsequent myocardial 

infarction. 

McNemar test is also applicable to situations in which the same subjects are observed on 

two occasions. 

Example S7-4 

In Re-solving example 7.10 using IBM-SPSS, 

 Enter the data in the following manner. 
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(up to row 200) 

The Variable View is as follows: 

 

The labels are defined as: 

Non smokers 

 

Smokers 

 

To proceed for analysis 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  
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Move the variable “Non-smokers” to the Row(s):  

Move the variable “Smokers” to the Column(s):  

We click on  and mark on “McNemar”,  

  

Now click on  and on , to get the following output: 

  

Since the P-value= 0.032 and is less than 0.05, we do not accept the null hypothesis and 

say that smokers are indeed at risk for subsequent myocardial infarction. 

Example 7.11:   
Two drugs A and B are used to same patients on two different occasions in the treatment 

of depression and are compared in terms of possible side-effects, nausea. The drugs are 

given to the patients on two different occasions and the incidence of nausea recorded in 

the following table. 

 

Table 7.19  
  Drug A   

  Nausea No-Nausea Total 

Drug B Nausea 9 3 12 

 No-Nausea 13 75 88 

 Total 22 78 100 

Compare the effect of two drugs. 
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Solution:   

Here we are dealing with correlated rather than independent observations since the same 

group receives both drugs A and B, the comparison of the drugs will be made by using 

McNemar's test.  

(1)  H
0
 : Incidence of nausea is same for the two drugs 

 H
1
 : Incidence of nausea is different for the two drugs 

(2)   = 0.05 

(3)  test-statistic: McNemar 

Since one of the values in the one cell is less than 5, therefore we will apply (7.10) to 

calculate test-statistic, i.e. 

 
2
McNemar

 = 
133

)1|133(| 2




= 5.06 

(4)  Table value of 2 for 5% level of significance and for 1 degree of freedom is 

3.841.  

(5)  Since calculated value is greater than the table value, we do not accept the 

hypothesis and say that incidence of nausea is different for the two groups of 

drugs. 

(Note that the P-value when using IBM-SPSS will be equal 0.021 which gives the same 

result for significance) 

7.6 Mantel-Haenszel Test for Linear Association 

If the exposure variable is ordinal, then the ordinary chi-square test does not take into 

account the inherent order among the categories. It merely tests the overall departure of 

observed from expected across the r × 2 cells of the table. A test of linear association 

between columns and rows will be statistically inefficient, because it fails to distinguish 

between one-and two-category differences. Following example is given to explain this 

concept.  

Example 7.12:  
The following table gives a summary of the results of a cohort study in which children 

with otitis media (Middle-ear infection) were treated with oral amoxicillian in either the 

dosage range recommended (RD) by the manufacturer, a dosage above that 

recommended dose (HD), or a dosage below the recommended dose (LD). The children 

were followed for the duration of their 10-days course of treatment for the occurrence of 

diarrhea, a well-known side effect of oral amoxicillian. 
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Table 7.20 
Response 

Dose 

 Diarrhea no diarrhea total 

high dose 12 38 50 

recommended dose 13 87 100 

Low dose 4 46 50 

Total 29 171 200 

Is the dose response relation significant?  

Solution:  

Health Scientists will immediately apply Pearson chi-square (ordinary chi-square) to see 

the association between dose and response. The test is not applicable because of existence 

of linearity in one of the categories. 

Suppose we apply ordinary chi-square. 

 

Response 

Dose D D  Total 

HD 12 
(7.25) 

38 
(42.75) 

50 

RD 13 
(14.50) 

87 
(85.50) 

100 

LD 4 
(7.25) 

46 
(42.75) 

50 

Total 29 171 200 

where:  D  = Diarrhea;  D   = Not diarrhea 

   HD  = High dose;  RD  = Recommended dose 

   LD  = Lower dose 

The 
2
 = 5.5253 with p-value = 0.06312, but at 5% level of significance, there is no 

association between dose - response. 

For this type of problem a preferable test is chi-square with linear trend (Mental-

Haenszel). The formula for chi-square for linear trend is 

  2
MH = 

])wn(wtn)[tn(t

]wntwtn[n
2

ii
2
ii

2
iiii




 ,            (7.11) 

where: n = sum of all the frequencies 

  wi = weight (score) assigned to ith category 

  ti = number of subjects within the ith category 

who experience the target outcome 

  ni = number of subjects in the ith exposure category 

  t = total number who experience the outcome 
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2
MH has one degree of freedom. To solve this, the table can be rearranged as  

Weight 

 D D  Total 

w1 = +1 

HD 
t1 = 12 38 50 = n1 

W2 = 0 

RD 
t2 = 13 87 100 = n2 

W3 = -1 

LD 
t3 = 4 46 50 = n3 

Total t = 29 
171 

(n – t) 
n = 200 

(Note that if there are four categories the weight will be assigned as +3, +1, -1, -3 

and so on). 

Using the above formula of chi-square for linear trend, we get 

 = 5.137 at 1 degree with  

p-value = 0.023 (two tailed). The result is significant and we can say with 95% 

confidence that there is dose-response relationship.  

This example is solved by using IBM-SPSS package and the steps are as follows: 

Example S7-5 

 Enter the data in the following manner. 

  

(up to row 200) 

The Variable View is as follows: 
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The labels are defined as: 

Dose 

 

Response 

 

To proceed for analysis 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  

  

Move the variable “Dose” to the Row(s):  

Move the variable “Response” to the Column(s):  

We click on  and mark on “McNemar”,  
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Now click on  and on  , to get the following output: 

SPSS output 

 

 

There is a simple way to calculate 2
MH is as; 

  2
MH = (n - 1) r

2
,                  (7.12) 

where r is the correlation coefficient between two attributes, n is the total number of 

frequencies. Here n = 200, r = 0.161, thus 

  2
MH = (200 - 1) (0.161)

2
 = 5.158 

which gives little different result as in manual calculation some approximations are 

involved. We can also apply if both variables are linear or on ordinal scale. 

Note, that failure to consider the ordinal nature of the exposure variable in the analysis 

would thus have led to a loss of statistical efficiency. In these types of situations, Mann-

Whitney-U-test can be used. This will be discussed in Chapter 8. 

  

Chi-Square Tests

5.525a 2 .063

5.313 2 .070

5.137 1 .023

200

Pearson Chi-Square

Likelihood Ratio

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

0 cells (.0%) hav e expected count less than 5. The

minimum expected count is 7.25.

a. 

Symmetric Measures

.166 .063

.166 .063

.161 .069 2.290 .023c

.161 .069 2.290 .023c

200

Phi

Cramer's V

Nominal by

Nominal

Pearson's RInterv al by Interval

Spearman CorrelationOrdinal by  Ordinal

N of  Valid Cases

Value

Asy mp.

Std.  Error
a

Approx.  T
b

Approx.  Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null hypothesis.b. 

Based on normal approximation.c. 
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7.7 Testing the Statistical Significance of Relative Risk  

and Odds Ratio 

In this section, a great deal of discussion is devoted to definition, estimation and 
statistical significance of relative risk and odds ratio. The theoretical background of the 
relative risk and odds ratio are not discussed as this has been given in detail in books on 
epideomology. 

7.7.1 Relative Risk (RR) Estimate 

Relative risk is a measure of the association between exposure to a particular factor and 
risk of a certain outcome. For two dichotomous variables viz. exposure (E) and disease 
(D), the relative risk (RR) estimate in 2x2 table is defined as 

  RR = 
 

 

P D yes / E yes

P D yes / E No

 

 
 

   = 
risk  the toexposednot  if disease ofrisk 

risk  the toexposed if disease ofrisk 
 

   = 
group exposed-nonin  disease of incidence

group exposedin  disease of incidence
 

Consider a 2x2 table 

Table 7.21 
 Disease 

  D  D  Total 

 E  a b a + b 

Exposed E  c d c + d 

 Total a + c b + d a + b + c + d 

where: E = exposed;  E  = not exposed 

  D = disease;   D  = no disease 

and a, b, c, d are frequencies in the relevant cells. 

  RR = 
)dc/(c

)ba/(a




 =  

p

p
 

2

1  where p1 =  
b+a

a
 and p2 =  

d+c

c
       (7.13) 

Note that relative risk is calculated for cohort, longitudinal or experimental studies. 
Relative risk does not measure the probability that someone with this factor will develop 
the disease but it measures the strength or magnitude of exposed-outcome association. 
The greater the value of RR the stronger the association between exposure and disease to 
risk factor. If the value of RR is 1, this indicates that exposure and disease are unrelated. 
If the value of RR is less than 1, this indicates that there is a negative association between 
exposure and the disease. If the value of RR is greater than 1, this indicates that there is a 
positive association between exposure and disease. In case-control study, the relative risk 
cannot be calculated directly. Therefore, in case-control study risk can be estimated by 
the odds ratio. It acts as an approximation to the relative risk. 
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7.7.2 Odds ratio 

If the two possible states of the variable are labeled success and failure, then the odds 

ratio is a measure of the odds of a success in one group relative to that in the other. 

The steps in the calculation of odds ratio are given below: 

Consider the data in Table 7.22. 

 
Table 7.22 

  Case  Control Total 

E a b a +  b 

E  c d c +  d 

Total a + c b + d a + b + c + d 

(i)  Rate of exposure in cases = 
ca

a


            (7.14) 

(ii)  Rate of exposure in controls = 
db

b


           (7.15) 

(iii)  The odds that an individual exposed to the risk has the disease is 

  
)ba/(b

)ba/(a




= a/b               (7.16) 

 (iv) The odds that an individual who has not been exposed to the risk factor has the 

disease. 

  
)dc/(d

)dc/(c




= c/d               (7.17) 

(v)  Odds of exposure in cases = a/c. 

(vi)  Odds of exposure in controls = b/d. 

(vii)  OR = 
)ba/(b

)ba/(a




/ 

)dc/(d

)dc/(c




= 

bc

ad
           (7.18) 

The odds ratio can directly be calculated from the table by using 

  OR = 
bc

ad
                    (7.19) 

Note that relative risk is a ratio of two probabilities and the odds ratio is a ratio of two 

odds. 

7.7.3 Attributable risk (Risk difference, Rate difference) 

It is a measure of association between exposure to a particular factor and the risk of a 

particular outcome and is calculated as: 

  Incidence rate among exposed – Incidence rate among non-exposed  
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In terms of a 2 x 2 table, it is calculated as: 

  A. R = 
ca

a


 – 

dc

c


                (7.20) 

It measures the amount of the incidence that can be attributed to one particular factor. 

Before we pass on to the statistical significance of relative risk and odds ratio, the 

following steps should be kept in mind. 

(a) General results 

(i) If RR or OR is greater than 1, exposure is associated with increased risk of 

outcome (positive association). 

(ii) If RR or OR is less than 1, it indicates that exposure protects against the 

development of the outcome (negative association). 

(iii) If RR or OR is equal to 1, exposure and outcome are independent (no 

association). 

(b) Warning 

If any cell has zero frequency, then 0.5 is added to each cell and odds ratio can be 

calculated. 

(c) Test of significance for relative risk and odds ratio 

RR or OR may occur greater or less than 1 by chance, if H0 is true. For this purpose, it is 

advisable to test the significance as: 

(i) Chi-square 

(i) If RR or OR is greater than 1 and chi-square gives significant result, then 

exposure is associated significantly with increased risk of the outcome. 

(ii) If RR or OR is less than 1 and chi-square is significant, there is a protection 

of exposure against outcome. 

(iii) If RR or OR is less than or greater than 1 and chi-square is non-significant 

then RR or OR is by chance. 

(ii) Confidence limits 

The confidence limits of RR and OR are derived by Miettinen (1969). We may 

construct 95% or 99% confidence limits for RR or OR. If the interval does not include 

1, then RR or OR is statistically significant. The result can be interpreted on the basis 

of the values of the RR and OR. 

Example 7.13:  
The data regarding cohort study of 200 smokers (cases) and 200 non-smokers (controls) 

for occurrence of myocardial infarction (MI) are given in Table 7.23. 
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Table 7.23 

 MI IM  Total 

Smoker 32 

a 

168 

b 

200 

Nonsmoker c 

15 

d 

185 

 

200 

Total 47 353 400 

where MI = myocardial infraction and IM  = no myocardial infraction 

Calculate relative risk of myocardial infarction in smokers. 

Solution: 

MI in smokers = 32/200 = 0.16 (16%) 

MI in non-smokers = 15/200 = 0.075 (7.5%) 

RR = 
200/15

200/32
 = 

)dc/(c

)ba/(a




= 2.13 

This indicates that those who smoke have 2.13 times more chance of myocardial 

infarction than those who do not smoke. 

  AR = 
47

32
 - 

353

168
 = 0.681 – 0.476 = 0.205 

(i) Testing of significance of relative risk 

The significance of relative risk may be tested by the method of chi-square. Confidence 

limits can also be constructed for RR and AR. 

Commonly, health scientists use the confidence limits to draw inference. However, it is 

advisable that method of chi-square be used as this method has a general application and 

is commonly understandable. Using formula (7.2) 

  (a) 97.6
35347200200

400]1516818532[ 2
2 




  

The table value for 1 degree of freedom at 5% level of significance is 3.841. Since our 

calculated value is more than the table value, therefore, the result is significant. Since 

relative risk is greater than 1 and 2 gives significant result, therefore, smoking has 

positive effect on myocardial infarction. 

(ii) Confidence limits 

  95% confidence limits of RR are 

  (i)      
21 1.96 1 1.96 6.97

2.13 1.22, 3.73RR
  

          (7.21) 
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  (ii)  RR  80.3,19.1e c

dc

c
1

a

ba

a
1

96.1











          (7.22) 

These limits do not include 1, so the value of the relative risk is not by chance. This can 

also be calculated by using IBM-SPSS package. The entry of data is just like, the entry of 

data for the calculations of 2.  

Example S7-6 

 Enter the data in the following manner. 

  

(up to row 400) 

The Variable View is as follows: 

 

The labels are defined as: 

Risk Factor 

 

Response 

 

To proceed for analysis 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 
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Analyze Descriptive Statistics Crosstabs …  

Move the variable “Risk factor (smoking)” to the Row(s):  

Move the variable “Response (MI)” to the Column(s):  

We click on  and mark on “Phi and Cramer’s V” and on Risk”,  

  

Now click on  and on , to get the following output: 

SPSS output for Relative Risk 

 

Chi-Square Tests

6.968b 1 .008

6.172 1 .013

7.110 1 .008

.012 .006

6.950 1 .008

400

Pearson Chi-Square

Continuity  Correctiona

Likelihood Ratio

Fisher's Exact Test

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

Exact Sig.

(2-sided)

Exact Sig.

(1-sided)

Computed only  f or a 2x2 tablea. 

0 cells (.0%) hav e expected count less than 5. The minimum expected count is

23.50.

b. 
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The confidence limits calculated on the basis of equation 7.22 matches with computer 

output. 

Example 7.14: 

The director of community health for a certain state observes that women living in rural 

parts of the state have a high rate of miscarriage than women living in urban areas as they 

are exposed to pesticides. The director takes 100 cases from the rural parts and 100 from 

urban areas and both groups are followed up. The results are in Table 7.24. 

 
Table 7.24 

 Miscarriage Not Miscarriage 
total 

  

Exposed  30 70 100 

Not-exposed 10 90 100 

Total 40 160 200 

Calculate relative risk for the women who are exposed to pesticide. 

Solution: 

  Miscarriage in exposed group = 
100

30
= 0.3 (30%) 

  Miscarriage in not exposed group = 10/100 = 0.1 (10%) 

  Relative risk in exposed group = 3
100/10

100/30
  

Symmetric Measures

.132 .008

.132 .008

400

Phi

Cramer's V

Nominal by

Nominal

N of  Valid Cases

Value Approx. Sig.

Not assuming the null hy pothesis.a. 

Using the asymptotic standard error assuming the null

hypothesis.

b. 

Risk Estimate

2.349 1.229 4.491

2.133 1.193 3.815

.908 .845 .976

400

Odds Rat io f or SMOKING

(1 / 2)

For cohort myocardial = 1

For cohort myocardial = 2

N of  Valid Cases

Value Lower Upper

95% Conf idence

Interv al
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Those women who are exposed to pesticide, have 3 times more chance of miscarriage 

than those women who are not exposed to the pesticide. 

The significance of relative risk may be tested by using formula Chi-Square, (7.2) 

 (a) 

 = 

16040100100

200]10709030[ 2




= 12.5 

The 5% table value of chi-square with 1 degree of freedom is 3.841. The calculated value 

is much greater than table value, therefore, the incidence of miscarriage in women 

exposed to the pesticide differs significantly. Since relative risk is 3 and the value of chi-

square gives significant result, therefore, exposure to pesticides has three times more 

chances of miscarriage. 

The confidence limits for relative risks may be used to test the significance. 

(i) 5.12/96.113   = [1.63 , 5.52] 

(ii) 10

100

10
1

30

100

30
1

96.1

e3








= [1.55 , 5.80] 

Both sets of confidence limits do not include 1, so the value of relative risk is not by 

chance. IBM-SPSS Package may be used for calculations  

7.7.4 Relative risk of matched-pairs  

Paired matching is often used in observational studies to reduce confounding. If pair 

matching is used in the design, the statistical analysis will be more efficient (have greater 

power of the test). 

When both exposure and outcome are dichotomous and the matching is by pairs, the 

result can be expressed as in Table 7.25. 

 
Table 7.25 

Non 
Smokers 

Smokers 

MI IM   

MI A b a + b 

IM  c d c + d 

 a + c b + d a+b+c+d 

where MI = myocardial infraction and IM  = no myocardial infraction 

Cells a and d represent those matched pairs in which both the exposed and non-exposed 

members develop the same outcome, whereas cells b and c represent those matched pairs 

in which the members experience opposite results. 

The relative risk of matched pair is = 
ba

ca




 is a ratio of exposed to non-exposed matched 

pairs. The chi-square relative risk of matched pairs may be calculated by using (7.9): 
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The matched-pair 
2
 -test, [also called McNemar 

2
 test], is the test generally used for 

comparing proportions in two pair matched groups. It is analogous to categorical data of 

the paired t-test (discussed in Chapter 4) for continuous variables. 

Example 7.15:  
Calculate the Relative Risk from Example 7.9 and test its significance. 

Solution: 

The relative risk of matched pairs is 

  RRMatched = 
147

297




 =  

21

36
 = 1.71 

Therefore, smokers have 1.71 time more chance of myocardial infarction than non-

smokers. 

(i) 
2
McNemar

  =
 

cb

cb
2




               (7.9) 

      = 
2914

)2914( 2




 = 5.233 

The 5% table value of 
2
 at 1 degree of freedom is 3.841. The calculated value of 

chi-square test, is greater than the table value, therefore, result is significant. Since 

RR is greater than 1 and the value of chi-square gives significant result, therefore, 

smokers have 1.71 times more chance of myocardial infarction than non-smokers. 

 (ii) Confidence limits (using formula 7.21) 

     233.596.11
71.1


 or [1.08, 2.69] 

This does not include 1, therefore. The result is significant and smokers have 1.71 

times more chance of Myocardial Infarction than non-smokers. 

When the expected frequency in any cell is less than five, then correction factor 

(Yates’ Correction) may be used in the calculation of chi-square as explained in 

sub-section (7.4.5).  

7.7.5 Odds ratio and tests of significance 

As we know that odds ratio is calculated for case-control study. It is assumed that the 

[exposure = yes, disease = yes] cell is on the main diagonal of a matrix. 

Example 7.16:  
We have taken an hypothetical example to show how odds ratio is calculated. The data is 

given in Table 7.26. 
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Table 7.26 

Non Smokers 

Smokers  

Case 
MI 

Control 

MI  
Total 

MI a = 90 b = 40 a + b = 130 

MI  c = 10 d = 60 c + d = 70 

Total a + c = 100 b + d = 100 a+b+c+d=200 

Solution: 

  Rate of exposure in cases: a/(a + c) = 90/100 = 90% 

  Rate of exposure in controls: b/(b + d) = 40/100 = 40% 

Using (7.19) 

  Odds ratio = 
1040

6090




 = 13.5 

This shows that smokers have 13.5 times more chance of developing myocardial 

infarction than non-smokers. 

(i) Test of significance 

(a) Using the method of chi-square 

   9.54
10010070130

200)10406090( 2
2 




  

Since calculated value of chi-square gives significant result, therefore, we say 

with 95% confidence that smokers have 13.5 times more chance of myocardial 

infarction than non-smokers. 

(ii) Confidence limits (using 7.21), we get  

(i)    9.54/96.11
5.13


 or [6.87, 26.55] 

 (ii) (OR) d

1

c

1

b

1

a

1
96.1

e


                  (7.23) 

  60

1

10

1

40

1

90

1
1.96

(13.5)e


 or [6.275 ~ 29.04] 

This does not include 1, therefore, we confirm our previous result. 
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Example S7-7 

 Enter the data in the following manner. 

  

(up to row 200) 

The Variable View is as follows: 

 

To proceed for analysis 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  

Move the variable “Non-smoking” to the Row(s):  

Move the variable “Smoking” to the Column(s):  

 

We click on  and mark on “Cochran’s and Mentel-Haenszel statistics”,  
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Now click on  and on , to get the following output: 

 

7.7.6 Matched analysis in case-control study 

A matched analysis in case-control is similar to the analysis of matched Cohort studies 

with dichotomous exposure and outcome. 

Example 7.17:  
Data regarding case-control study of breast feeding (BF) as a possible protective factor 

against subsequent gastroenteritis (intestinal infection) in first year of life in 100 pairs 

(200 total subjects) of infant matched for age, sex and socio-economic status is given in 

Table 7.27.  
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 Table 7.27 
 Cases 

Controls 

 BF FB  Total 

BF 6 
a 

26 
b 

32 

 

FB  

c 
9 

d 
59 

 
68 

Total 15 85 100 

Calculate the odds ratio for case-control study. 

Solution: 
The matched odds ratio is defined as the ratio of the number of pairs discordant for 
exposure history i.e. 

  ORMatched = 
b
c   = 

26

9
 = 0.35              (7.24) 

Since OR is less than 1, so we say that breast-feeding has a protective effect against 
gastroenteritis. 

(i) Test of significance 

(a) Using chi-square 

Matched pairs: McNemar test is used to calculate chi-square. 

 
2
McNemar

 =  
cb

)cb( 2




 = 

269

)269( 2




 = 

35

289
= 8.25 

(ii) Confidence limits 

   
8.251.961(0.35) 

 or [0.17, 0.71] 

This does not include 1, therefore, result is significant and we confirm our above 
findings. 

7.8 Relation between odds ratio and relative risk 

The physicians’ health study research group at Harvard Medical School takes the 
following data from a report on the relationship between aspirin use and myocardial 
infarction. The physicians’ study was a five-year randomized study testing whether intake 
reduces mortality from cardiovascular disease. Physicians were blind in the study and did 
not know which type of pill they were taking. The results are given in Table 7.28. 

 
Table 7.28 

 Myocardial Infarction  
Group Yes No Total 

Placebo 189 10845 11034 
Aspirin 104 10933 11037 
Total 293 21778 22071 
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Solution: 

  p
1
 = 189/11034 = 0.0171 ; p

2
 = 104/11037 = 0.0094 

The estimated standard error is (see Chapter 3) 

   
11037

9906.00094.0

11034

9829.00171.0 



 = 0.0015 

The 95% confidence limits are  

  0.0171 - 0.0094 ± 1.96 x 0.0015 or [0.005, 0.011] 

Since this interval contains only positive values, we conclude that taking aspirin reduces 

the risk of myocardial infarction. 

The odds ratio for aspirin study is 

   OR = 
)10845)(104(

)10933)(189(
 = 1.832 

The estimated odds of myocardial infarction for physicians taking placebo equal 1.832 

times the estimated odds for physicians taking aspirin. The estimated odds were 83.2% 

higher for the placebo group. 

A sample odds ratio of 1.832 does not mean that p
1
 is 1.832 times p

2
; that would be the 

interpretation of a relative risk. The relative risk will: 

   RR = 
11037/104

11034/189
= 

0094.0

0171.0
= 1.819 

The relationship between odds ratio and relative risk is given as: 

  Consider 
b

d
.

c

a
OR   and 

 
 dcc

baa
RR




  

  Then odds ratio  = 
bc

ad
 = Relative risk 

)ba/(b

)dc/(d




         (7.25) 

       = 1.832 = 1.819 x 
9829.0

9906.0
 = 1.833 

When the proportion of success is close to zero for both the groups, the fraction in the last 

term of this expression approximately equals to 1.0, then odds ratio and relative risk take 

similar values. In the above table for each group, the sample preparation of myocardial 

infarction cases is close to zero. Thus, the sample odds ratio of 1.83 is similar to the 

sample relative risk of 1.82. In such a case, an odds ratio of 1.83 does mean that  

p
1   baa   is about 1.83 times p

2   dcc  . The relationship between the odds 

ratio and the relative risk is useful as for some data sets, calculation of relative risk is not 

possible, yet one can calculate the odds ratio and use it to approximate the relative risk. 
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7.9 Mantel-Haenszel Procedure for Relative Risk and Odds Ratio 

When exposure and outcome variables are all categorical and the number of variables is 

small, stratification is usually the procedure of choice. We have seen in Chapter-3 that 

stratification controls sampling error. Here a more commonly used approach is the 

Mantel-Haenszel procedure in which the result from each stratum are weighted 

approximately according to the sample size of stratum to yield an overall relative risk or 

odds ratio.  

The Mantel-Haenszel procedure is the most appropriate and widely used technique for 

controlling a small number of categorical confounding factors. As the number of 

confounding factors increases, the computations become difficult, moreover, there may 

be some loss of control when continuous confounding variables are arbitrarily 

categorized. For these situations multiple logistic regressions (to be discussed in Chapter-

8) is commonly used for multiple confounding factors. Note that Mantel-Haenszel tests 

are generally not affected by tables with zero cell. 

Example 7.18:  
For a Cohort study, data of success (S) and failure (F) for two medical treatments (T1 and 

T2) which may control confounding variable. (gender) are given below in Table 7.29. 

 
Table 7.29 
 Outcome 

Treatment S F Total 

T1 40 60 100 

T2 60 40 100 

Total 100 100 200 

  Compare T
1
 and T

2
 and test its significance. 

Solution: 

Using (7.13), the relative risk of success [T1, T2] = 
100/60

100/40
 = 0.667.  

This shows that T1 is less efficient than treatment T2. The crude relative success of T1 

versus T2 is 0.667, which may be biased by the confounding effect of sex. To test its 

significance, the chi-square is calculated using (7.2). 

   2
Pearson  = 

2(40 40 60 60) 200

100 100 100 100

  

  
= 8.000 

Since 5% table value for 1 degree of freedom is 3.841, therefore, the result is significant. 

We say that success of T1 is as less efficient than T2.  

If the data is stratified by sex, then relative risks for each gender are as follows: 
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Table 7.30 
Stratification of data by sex 

Treatment Males Females 

 S F Total S F Total 

T1 24 3 27 16 57 73 

T2 58 30 88 2 10 12 

Total 82 33 115 18 67 85 

  RR (males) of success (T1, T2) = 
88/58

27/24
= 1.349 

  RR (females) of success (T1, T2)  = 
12/2

73/16
= 1.315 

In males, treatment T1 is 1.349 times more effective than T2. In females, treatment T1 is 

1.315 times more effective than T2. 

This means that relative success rate T1 versus T2 has almost equal effect on both sexes. 

Example S7-8 

 For the data given in table 7.30, Enter the data in the following manner. 

  

(up to row 200) 

The Variable View is as follows: 

 

To proceed for analysis for table 7.29 (regardless of gender), 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  
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Move the variable “Treatment” to the Row(s):  

Move the variable “Result” to the Column(s):  

We click on  and mark on “Chi-square” and “Risk”,  

  

Now click on  and on , to get the following outputs: 

 

 

NCBA&E



Analysis of Categorical Data 344 

 

The results are exactly as given by hand calculation. 

Now to proceed for analysis for table 7.30, we first split the file using  according to 

the gender, as follows: 

 

Now, click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  

 

Move the variable “Treatment” to the Row(s):  
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Move the variable “Result” to the Column(s):  

We click on  and mark on “Risk”,  

  

Now click on  and on , to get the following outputs: 

 

 

The results are exactly as given by hand calculation. 
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7.9.1 Mantel-Haenszel relative risk 

The relative risk is calculated as 

  RRMH = 
iiii

iiii

n/)ba(c

n/)dc(a




              (7.26) 

The Mantel-Haenszel relative risk analysis combines the stratum-specific result to yield 

an un-confounded overall result. Using (7.28) we get 

  RRMH = 

24(58 30) 16(2 10)

115 85
58(24 3) 2(16 57)

115 85

 


 


= 1.34 

This is not very much different from the relative risk of males and females. 

7.9.2 Mantel-Haenszel chi-square 

As we know that this is a method of controlling confounding in stratification. This 

requires that the confounder be categorical variable. If it is continuous, categorized, the 

formula of chi-square given by Mantel-Haenszel for the significance of Mantel-Haenszel 

relative risk is 

   2
MH = 

2
ii

i2i1i2i1

2

i

iiii

n)1n(

ccrr

n

cbda











 


,              (7.27) 

with 1 df, where r1i and r2i are row totals for different strata and c1i and c2i are column 

totals for different strata. Using (7.27), we get. 

   2
MH = 

22

2

)85(84

67181273

)115(114

33828827

85

2571016

115

3583024

















 




 = 4.658  

which is more than 3.841 (table value). The result is significant, we say that gender does 

not play role as confounder. We conclude that the higher success rate of T1 observed in 

the sample arose was by chance. 

The output of SPSS Package is given as below there are some minor difference in the 

result, which is due to approximation in manual calculations.  
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Tests for Homogeneity of the Odds 
Ratio 

4.703 1 .030 
3.819 1 .051 
1.096 1 .295 

1.092 1 .296 

Statistics 

Cochran's- 
Mantel-Haenszel 

Conditional 
Independence 

Breslow-Day- 
Tarone's 

Homogeneity 

Chi-Squared df 
Asymp. Sig. 

(2-sided) 

Under the conditional independence assumption, Cochran's statistic is 
asymptotically distributed as a 1 df chi-squared distribution, only if the number of 
strata is fixed, while the Mantel-Haenszel statistic is always asymptotically 
distributed as a 1 df chi-squared distribution. Note that the continuity correction is 
removed from the Mantel-Haenszel statistic when the sum of the differences 
between the observed and the expected is 0. 

 

The p-value for 5% degree of freedom for two tailed is 0.030 for one tailed will be  

2 0.030 = 0.06 

 
 

Mantel-Haenszel Common Odds Ratio 
Estimate 

2.853 

1.048 
.507 

.038 
1.057 
7.699 

.056 
2.041 

Estimate 

ln(Estimate) 
Std. Error of 
ln(Estimate) Asymp. Sig. (2-sided) 

Lower Bound 

Upper Bound 

Common Odds 

Ratio 
Lower Bound 

Upper Bound 

ln(Common 
Odds Ratio) 

Asymp. 95% Confidence 

Interval 

The Mantel-Haenszel common odds ratio estimate is asymptotically normally 

distributed under the common odds ratio of 1.000 assumption.   

 

 

Risk Estimate

4.138 1.152 14.862

1.349 1.103 1.649

.326 .108 .985

115

1.404 .279 7.066

1.315 .345 5.008

.937 .708 1.241

85

Odds Ratio for

Treatment (T1 / T2)

For cohort Males = S

For cohort Males = F

N of  Valid Cases

Odds Ratio for

Treatment (T1 / T2)

For cohort Males = S

For cohort Males = F

N of  Valid Cases

Sex

Males

Females

Value Lower Upper

95% Conf idence

Interv al

For cohort Females = S 
For cohort Females = F 
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7.9.3 Mantel-Haenszel odds ratio 

For case-control study the odds ratio is calculated as: 

  ORMH = 
iii

iii

n/cb

n/da




                (7.28) 

Example 7.19:   
A hypothetical data regarding coffee drinkers and renal cancer are as: 

 

Table 7.31 
Renal Cancer 

Coffee drinker RC CR  Total 

CD 400 333 733 

DC  100 167 267 

Total 500 500 1000 

 

Solution:  

Using (7.19), the odds ratio is 

  OR = 
333100

167400




 = 2.006 

Using (7.2), the chi-square is 

  

 = 

267500500733

1000)3330066800( 2




 = 22.9 

Since 

 is significant, OR is 2; therefore, coffee drinkers have double the risk of renal 

cancer than non-coffee drinkers.  

We take smoking as confounding factor. The data for smokers and non-smokers are given 

as:  

Table 7.32  
Stratification of data according to smokers and non-S smokers  

 
Smokers non-smokers 

RC CR  Total RC CR  Total 

CD 350 80 430 50 253 303 

DC  75 20 95 25 147 172 

Total 425 100 525 75 400 475 

The odds ratios for smokers and non-smokers are 1.17 and 1.16. The Mantel- Haenszel 

the odds ratio using (7.28) is: 

  ORMH = 

475

25253

525

7580
475

14750

525

20350











 = 1.16 
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Using (7.27), the chi-square is 

   2
MH  = 0.619 

Since at 5% level of significance, the calculated value of 

 value is less than the table 

value, therefore, OR > 1 is by chance, therefore smoking does not play any role as 

confounder. 

Here is the results using IBM-SPSS: 

Example S7-9 

 For the data given in table 7.32, Enter the data in the following manner. 

  

(up to row 1000) 

The Variable View is as follows: 

 

To proceed for analysis for table 7.31 (regardless of Smoking), 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  

 

Move the variable “Coffee” to the Row(s):  

Move the variable “Renal” to the Column(s):  
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We click on  and mark on “Chi-square” and “Risk”,  

  

Now click on  and on , to get the following outputs: 

 

 

The results are exactly as given by hand calculation. 
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Now to proceed for analysis for table 7.32, we first split the file using  according to 

the Smoking, as follows: 

 

Now, click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  

 

We click on  and mark on “Risk”,  
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Now click on  and on , to get the following outputs: 

 

 

 
  

Risk Estimate

1.167 .673 2.022

1.031 .921 1.155

.884 .571 1.368

525

1.162 .690 1.957

1.135 .730 1.767

.977 .902 1.058

475

Odds Rat io f or Treatment

(Coff ee Drinker /

Non-Cof f ee Drinker)

For cohort Males = Ranal

Cancer

For cohort Males = 2

N of  Valid Cases

Odds Rat io f or Treatment

(Coff ee Drinker /

Non-Cof f ee Drinker)

For cohort Males = Ranal

Cancer

For cohort Males = 2

N of  Valid Cases

Sex

Smokers

Non-Smokers

Value Lower Upper

95% Conf idence

Interv al

Tests for Homogeneity of the Odds Ratio

.621 1 .431

.476 1 .490

.000 1 .992

.000 1 .992

Stat ist ics

Cochran's

Mantel-Haenszel

Condit ional

Independence

Breslow-Day

Tarone's

Homogeneity

Chi-Squared df

Asy mp. Sig.

(2-sided)

Under the conditional independence assumption, Cochran's stat ist ic is

asymptot ically  distributed as a 1 df  chi-squared distribution, only  if  the number of

strata is f ixed, while the Mantel-Haenszel statistic is always asymptotically

distributed as a 1 df  chi-squared distribut ion. Note that the continuity  correct ion is

remov ed from the Mantel-Haenszel stat ist ic when the sum of  the dif f erences

between the observed and the expected is 0.

Mantel-Haenszel Common Odds Ratio Estimate

1.164

.152

.193

.431

.797

1.700

-.226

.530

Estimate

ln(Estimate)

Std.  Error of  ln(Estimate)

Asy mp. Sig. (2-sided)

Lower Bound

Upper Bound

Common Odds

Ratio

Lower Bound

Upper Bound

ln(Common

Odds Rat io)

Asy mp. 95% Conf idence

Interv al

The Mantel-Haenszel common odds ratio estimate is asymptotically  normally

distributed under the common odds ratio of  1.000 assumpt ion. So is the natural log of

the estimate.
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Example 7.20: 

Calculate the odds ratio from the data given in Example 7.10. Also calculate odds ratio 

using Mantel-Haenszel method. 

Solution: 

Table 7.33 

City 
Smoking 

Status 

Lung Cancer 
Total Odds ratio 

Yes No 

 S 126 100 226  

1  35 61 96 2.20 

  161 161 322  

 S 908 688 1596  

2  497 807 1304 2.14 

  1405 1495 2900  

 S 913 747 1660  

3  336 598 934 2.18 

  1249 1345 2594  

 S 235 172 407  

4  58 121 179 2.85 

  293 293 586  

 S 402 308 710  

5  121 215 336 2.32 

  523 523 1046  

 S 182 156 338  

6  72 98 170 1.59 

  254 254 508  

 S 60 99 159  

7  11 43 54 2.37 

  71 142 213  

 S 104 89 193  

8  21 36 57 2.00 

  125 125 250  

  ORMH = 
250/8921.....322/10035

250/36104.....322/61126




 = 2.17 

Testing the Significance 

(i)  Using 2 method  

 The Mantel-Haenszel chi-square has been calculated in Example 7.10 and is 280.2 

which is much more than the table value of 
2

 for 1 df. Therefore, there is a strong 

evidence that smoking causes cancer. 

  

 s

 s

 s

 s

 s

 s

 s
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(ii) Using confidence limits 

 The formula for the calculation of standard error is very complex [Robinson et al. 

(1996)] but SPSS Package is used to compute the standard error. 95% confidence 

interval is (1.98, 2.38) which does not include 1. Therefore one can conclude that 

smoking causes cancer. 

The IBM-SPSS output for odds ratios and confidence limits is as: 

 

(The student has to check the results using IBM-SPSS) 

7.10 Sensitivity, Specificity and Kappa-Statistic 

7.10.1 Screening test 

A test is reliable if it provides consistent result when performed more than once. The test 

is valid if it correctly identifies those who probably have the disease (true positive) and 

those who are probably free from disease (true negative). Validity is measured by both 

sensitivity and specificity. 

7.10.2 Validity of a screening test 

Consider the screening test results of patients in the 2x2 contingency table, where  

P = patients with disease, P  = patients with no diseases. 

 
Table 7.34 

Disease status 

Screening test P P  Total 

Positive a = TP b = FP a + b 

Negative c = FN d = TN c + d 

Total a + c b + d a + b + c + d 

TP = true positive; The result is positive and patient possesses the disease. 

TN = true negative;  The result is negative and patient possesses no disease. 

FP = false positive;  The result is positive and patient doesn't possess the disease. 

FN = false negative;  The result is negative and patient has disease. 

Mantel-Haenszel Common Odds Ratio Estimate

2.174

.777

.047

.000

1.984

2.383

.685

.868

Estimate

ln(Estimate)

Std.  Error of  ln(Estimate)

Asy mp. Sig. (2-sided)

Lower Bound

Upper Bound

Common Odds

Ratio

Lower Bound

Upper Bound

ln(Common

Odds Rat io)

Asy mp. 95% Conf idence

Interv al

The Mantel-Haenszel common odds ratio estimate is asymptotically  normally

distributed under the common odds ratio of  1.000 assumpt ion. So is the natural log of

the estimate.
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(i) Sensitivity is the proportion of truly ill people in the screened population who 
are identified as ill by the screening test. It is the ability of the test to identify 
accurately those who have the disease. It is calculated as a/(a + c). 

(ii)  Specificity is the proportion of truly healthy people who are so identified by the 
screening test. It is the ability of the test to identify accurately those who do not 
have the disease. It is calculated as d/(b + d). 

(iii)  Positive predictive value (rate) is the probability of a person having the disease 
when the test is positive. (This is also called predictive value of a positive test) 

 a/(a + b)  . 

(iv)  Negative predictive value (rate) is the probability of a person not having the 
disease when the test is negative. (This is also called predictive value of a 

negative test)  d/(c + d)  . 

(v)  False positive rate is the proportion that a disease-free person has a positive test 

result  b/(b + d)  . 

(vi)  False negative rate is the proportion that a diseased individual will have a 

negative test result  c/(c + d)  . 

(vii)  Prevalence of disease = (a + c) / (a + b + c + d) 

Example 7.21: 
In a BCP screening test of 1600 cancer for breast patients, the results are given below: 
 

Table 7.35 

Test 
Disease 

D+ D  Total 

 
Positive 

a 
570 

TP 

b 
150 

FS 

 
720 

 
Negative 

 

c 
30 

FN 

d 
850 

TN 

 
880 

Total 600 1000 1600 

Compute validity of screening test and discuss the result. 

Test = BCP, Disease = Breast cancer 

Solution: 

(i) Sensitivity = 
ca

a


 = 

600

570
= 0.95 × 100 =95% 

 It shows that 95% of patients are correctly identified as cases of disease and 5% 
are incorrectly identified as cancer patients. 
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(ii)  Specificity = 
db

d


 = 

1000

850
= 0.85 × 100 = 85% 

 It shows that 85% of patients correctly identified as cases of free from disease. 

(iii)  Positive predictive value =
ba

a


= 

720

570
= 0.792 × 100 = 79.2% 

 0.792 is the probability of patients having the disease as the test result is 

positive. 

(iv)  Negative predictive value = 
dc

d


= 

880

850
= 0.966 × 100 = 96.6% 

 Since the test is negative 0.966 is the probability of not having the disease. 

(V)  False positive rate = 
db

b


= 

1000

150
= 0.15 × 100 = 15% 

 15% of the patients that are diseased free have a positive test result. 

(vi)  False negative rate = 
dc

c


= 

880

30
= 0.034 × 100 = 3.4% 

 3.4% of the patients that are diseased individual and have negative result. 

(vii) Prevalence of disease=
dcba

ca




=

85030150570

30570




=

1600

600
= 37.5% 

 Since the sensitivity and specificity are both large whereas false positive and false 

negative are small, therefore, the test is useful and valid. 

The IBM-SPSS package results are as follows:-  

Example S7-10 

 For the data given in table 7.35, Enter the data in the following manner. 

  

(up to row 1600) 

The Variable View is as follows: 
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Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  

 

We click on  and mark on “Row” and “Column” Percentages; 

  

Now click on  and on , to get the following outputs: 
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7.10.3 Diagnostic Tests (Sensitivity and Specificity) 

The simplest diagnostic test is one where the results of an investigation, such as an x-ray 

examination or biopsy, are used to classify patients into two groups according to the 

presence and absence of symptom. For example, the following table (7.32) shows the 

results of a test on a liver scan and the correct diagnosis based on necropsy, biopsy, or 

surgical inspection. The data is given in Table 7.36. 

 

Table 7.36 
Results of liver scan and correct diagnosis  

 Pathology  

Liver scan Abnormal (+) Normal (-) Total 

Abnormal (+) 231 32 263 

Normal (-) 27 54 81 

Total 258 86 344 

How good is the liver scan as diagnosis of abnormal pathology? 

One approach is to calculate the proportions of patients with normal and abnormal liver 

scans who are correctly diagnosed by the scan. The terms positive and negative are used 

to refer to the presence or absence of the condition of interest, here abnormal pathology. 

Thus there are 258 true positives and 86 true negative. The proportion of these  

two groups that were correctly diagnosed by the scan were 231/258 = 0.895 and  

54/86 = 0.628. These two proportions are known as sensitivity and specificity 

respectively. We can thus say that, based on the sample studies, we would expect about 

90% of patients with abnormal pathology to have abnormal liver scans, while about 63% 

of those with normal pathology would have normal lever scans. 

Sensitivity and specificity are one approach to quantify the diagnostic ability of the test. 

In clinical practice, however, the test result is all that is known, so we want to know how 

good the test is at predicting abnormality .In other words, what proportion of patients 

with abnormal test results are truly abnormal? The whole point of a diagnostic test is to 

use it to make a diagnosis, so we need to know the probability that the test will give the 

correct diagnosis. The sensitivity and specificity do not give us this information. Instead 

we must approach the data from the direction of the test results, using predictive values, 

i.e. positive predictive value and negative predictive value. 

If we go back to the above table we see that 231 from 263 patients with abnormal liver 

Scans had abnormal pathology, giving the proportion of correct diagnoses as 231/263 = 

0.878  88%. Similarly, among the 81 patients with normal liver scans, the proportion of 

correct diagnoses was 54/81 = 0.667  67%. These proportions are of limited validity, 

however, the predictive values of a test in clinical practice depend critically on the 

prevalence of the abnormality in the patients being tested. This may well differ from the 

prevalence in a published study assessing the usefulness of the test. 

In the liver scan study, the prevalence of abnormality is 258/344 = 0.75  75%. If the 

same test was used in a different clinical setting where the prevalence of abnormality was 

0.25 (25%), we would have positive predictive value of 0.45 and a negative predictive 

value of 0.95. The rare the abnormality the more sure we can be that a negative test 
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indicates no abnormality and the less sure that a positive result really indicates an 

abnormality. Predictive values observed in one study do not apply universally. The other 

ways of calculating the positive and negative predictive values (PPV and NPV) are: 

  PPV = 
)prevalence1()yspecificit1(prevalenceysensitivit

prevalenceysensitivit




    (7.29) 

  NPV = 
)prevalence1(yspecificitprevalence)ysensitivit1(

)prevalence1(yspecificit




   (7.30) 

If the prevalence of the disease is very low, the positive predictive value will not be close 

to 1 even if both the sensitivity and specificity are high. Thus in screening the general 

population it is inevitable that many people with positive test results will be false 

positive. 

The prevalence can be interpreted as the probability that the subject has the disease, 

before the test is carried out, known as the prior probability of disease. The positive and 

negative predictive values are the revised estimates of the same probability for those 

subjects who are positive and negative on the test and are known as posterior 

probabilities. The difference between the prior and posterior probabilities is one way of 

assessing the usefulness of the test. 

For any test result, we compare the probability of having a positive result the patient is 

truly diseased with the corresponding probability if he or she were healthy. The ratio of 

these probabilities is called likelihood ratio and is calculated as 

  LR = 
yspecificit1

ysensitivit


                 (7.31) 

The likelihood ratio indicates the value of the test for increasing certainty about a positive 

diagnosis. For the lever scan data the prevalence of abnormal pathology was 0.75, so the 

pretest odds of disease were 0.75/(1 - 0.75) = 3.0. The sensitivity was 0.895 and the 

specificity was 0.628. The post-test odds of disease given a positive test is 0.878/(1 - 

0.878) = 7.22 and the likelihood ratio is 0.895/(1 - 0.628) = 2.41. The posttest odds of 

having the disease can be calculated as: 

  Pretest odds x likelihood ratio = 3.0 x 2.41 = 7.23. 

A high likelihood ratio may show that the test is useful, but it does not necessarily follow 

that the positive test is a good indicator of the presence of disease. 

7.10.4 Kappa (Cohen's Kappa)-Statistic 

In Chapter 6, we have discussed the method of correlation that is used to measure the 

degree of agreement between two variables. Pearson's correlation coefficient is calculated 

when the variables are continuous whereas Spearman's rank correlation (Chapter-8) 

coefficient is used when the variables are ordinal. 

For qualitative variables, a frequently used index of agreement between observers is 

known as Cohen's Kappa coefficient (Cohen-1960). This measure has the desirable 
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feature of showing how much more agreement there is than would be expected by 

chance. Kappa has been extended to situations where more than one rater is to be 

compared and where the variable is polychotomous rather than dichotomous (Fliess-

1981). 

Kappa (K) statistic is calculated as: 

  K = 
c

c0

P1

PP




                   (7.32) 

where P0 = observed proportion of agreement, and Pc = expected proportion of 

agreement under the assumption of independence. 

Landis and Koch (1977) provided the following guidelines for the evaluation of Kappa. 

These guidelines are arbitrary but potentially useful benchmarks for evaluating observed 

values of the Kappa coefficient. They are as follows: 

 

Table 7.37 

K Strength of agreement 

0.00 
0.00 - 0.20 
0.21 - 0.40 
0.41 - 0.60 
0.61 - 0.80 
0.81 - 1.00 

Poor 
Slight 
Fair 
Moderate 
Substantial 
Almost perfect 

In general practice K > 0.75 means excellent agreement; 0.4  K  0.75 means good 

agreement; less than 0.4 means poor agreement (Fleiss 1981). This method is often used 

to investigate the reliability of the categorical scale usually by evaluating agreement 

between the two observers. It is not, however, an adequate measure of agreement since it 

ignores agreement between the observers that might be due to chance. To illustrate the 

problem we take some examples. 

Example 7.22:  
A diet questionnaire was administered by male to 537 females on two different occasions 

several months apart regarding beef consumption. The data regarding beef consumption 

reported by 537 females at two different surveys are as: 

 
Table 7.38 

Consumption of beef 

 
 

Survey 2 
Total 

 = 1 serving/week > 1 serving/week 

 = 1 serving/week 136 92 228 

Survey 1 > 1 serving/week 69 240 309 

 Total 205 332 537 

Solution: 

Since in the calculations expected frequencies are involved, therefore, these are 

calculated as: 
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 Expected Frequencies 

 
 

Survey 2 
Total 

 = 1 serving/week > 1 serving/week 

 = serving/week 87 141 228 

Survey 1 > serving/week 118 191 309 

 Total 205 332 537 

  P
0
 = 

537

240136 
 = (observed proportion of agreement) = 0.70 

  P
c
 = 

537

19187 
 = (expected proportion of agreement) = 0.52 

  K = 
52.01

52.070.0




 = 0.375 = 37.5% 

IBM-SPSS package is used to calculate Kappa, the data are entered as for 
2
 statistic, as 

in the following example; 

Example S7-11 

 For the data given in table 7.38, Enter the data in the following manner. 

  

(up to row 537) 

The Variable View is as follows: 

 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  
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We click on  and mark on “Chi-square”, “Phi and Cramer’s V” and “Kappa”; 

  

Now click on  and on , to get the following outputs: 

SPSS output for KAPPA 
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Since K = 37.8 %, therefore, according to scale suggested by Fliess (1981), there is a 

poor agreement between the two related information. The details of Kappa-statistic will 

be discussed in Chapter 10. Phi ()= 0.37969 is almost identical to Kappa. 

For some research workers, informal evaluation of observed Kappa values will not be 

sufficient, instead they will be interested in testing hypotheses about the population 

Kappa. For this purpose standard error of Kappa needed to be calculated. Fleiss, Cohen 

and Everitt (1969) derived an asymptotic large sample variance of K. This is beyond the 

scope of this book. The standard error and confidence limits for population Kappa may 

be derived by using SPSS Package. This may be calculated as:  

In the above example, the value of SE (K) = 0.040. Approximate 95% confidence limits 

for population Kappa are 

  0.375 ± 1.96 x 0.040  [ 0.297 , 0.453]. 

Example 7.23:   
The data regarding the agreement about the severity of byssinosis for first and second 

examinations for 183 patients are given below. Calculate the agreement index between 

two examinations. 

 
Table 7.39 

Agreement about the severity of byssinosis 

  2nd examination  

 Normal Grade 1 Grade 2 Total 

1
st

 Normal 72 6 0 78 

Examination Grade 1 6 47 17 70 

 Grade 2 1 14 20 35 

 Total 79 67 37 183 

Chi-Square Tests

77.417b 1 .000

75.844 1 .000

78.396 1 .000

.000 .000

77.273 1 .000

537

Pearson Chi-Square

Continuity  Correctiona

Likelihood Ratio

Fisher's Exact Test

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

Exact Sig.

(2-sided)

Exact Sig.

(1-sided)

Computed only  f or a 2x2 tablea. 

0 cells (.0%) hav e expected count less than 5. The minimum expected count is

87.04.

b. 
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Solution: 

The expected frequencies (as required) are  

 

  2nd Examination  

 Normal Grade 1 Grade 2 Total 

1st Normal 33.7   78 

Examination Grade 1  25.6  70 

 Grade 2   7.1 35 

 Total 79 67 37 183 

  Observed proportion of agreement = 
183

204772 
= 0.76 

  Expected proportion of agreement = 
183

1.76.257.33 
= 0.36 

  K = 
36.01

36.076.0




 = %5.62  

According to the scale suggested by Fleiss (1981), there is 62.5% agreement that is 

considered as good agreement. This table is 3x3, we can calculate Cramer's V which is 

0.6227 (almost identical). This difference is because of zero frequency in one cell.  

IBM-SPSS package is used to calculate Kappa-statistic as follows: 

Example S7-12 

 For the data given in table 7.33, Enter the data in the following manner. 

  

(up to row 183) 

The Variable View is as follows: 

 

Click Analyze then click Descriptive Statistics and then click Cross-tab. 

Analyze Descriptive Statistics Crosstabs …  
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We click on and mark on “Observed” and “Expected”; 

  

Also, click on  and mark on “Chi-square”, “Phi and Cramer’s V” and “Kappa”; 

 
 

Now click on  and on , to get the following outputs: 
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SPSS output for Kappa-statistic 

 

 

 

The 95% confidence limits for population Kappa is  

  0.623 ± 1.96 x 0.048  (0.53, 0.72). 

Example 7.24: 
The joint ratings of the two clinicians (psychiatrists) regarding 118 patients have been 
displayed in Table 7.40. 

 

Table 7.40  
Rating of two cliniciens 

 Psychiatrist 1 

  D1 D2 D3 D4 D5 Total 
 
 

Psychiatrist 2 

D1 
D2 
D3 
D4 
D5 

22 
5 
0 
0 
0 

2 
7 
2 
1 
0 

2 
14 
36 
14 
3 

0 
0 
0 
7 
0 

0 
0 
0 
0 
3 

26 
26 
38 
22 
6 

 Total 27 12 69 7 3 118 

EXAM1 * EXAM2 Crosstabulation

72 6 0 78

33.7 28.6 15.8 78.0

6 47 17 70

30.2 25.6 14.2 70.0

1 14 20 35

15.1 12.8 7.1 35.0

79 67 37 183

79.0 67.0 37.0 183.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

1

2

3

EXAM1

Total

1 2 3

EXAM2

Total

Chi-Square Tests

151.907a 4 .000

173.160 4 .000

109.463 1 .000

183

Pearson Chi-Square

Likelihood Ratio

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

0 cells (.0%) hav e expected count less than 5. The

minimum expected count is 7.08.

a. 

Symmetric Measures

.911 .000

.644 .000

.623 .048 11.541 .000

183

Phi

Cramer's V

Nominal by  Nominal

KappaMeasure of  Agreement

N of  Valid Cases

Value

Asy mp.

Std.  Error
a

Approx.  T
b

Approx.  Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null hypothesis.b. 

1st Exam 
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Calculate the degree of agreement between the two clinicians. 

Solution: 

  Observed proportion of agreement = 
118

3736722 
 = 0.636 

  Expected proportion of agreement = 273.0
118

2.03.12.226.291.5



 

  K = 
273.01

273.0636.0




 = 0.499 = 49.9% 

The IBM- SPSS package is used and the output is as: 

SPSS output for Kappa-statistic 

 

 

The 95% confidence limits for population K may be calculated as: 

  0.49842 ± 1.96 (0.05660) 

 or   (0.387 ~ 0.609) 

the agreement between psychiatrist 1 and psychiatrist 2 is about 50% which according to 

Landis and Koch (1977) is moderate. 

  

PSYCH1 * PSYCH2 Crosstabulation

22 2 2 0 0 26

5.9 2.6 15.2 1.5 .7 26.0

5 7 14 0 0 26

5.9 2.6 15.2 1.5 .7 26.0

0 2 36 0 0 38

8.7 3.9 22.2 2.3 1.0 38.0

0 1 14 7 0 22

5.0 2.2 12.9 1.3 .6 22.0

0 0 3 0 3 6

1.4 .6 3.5 .4 .2 6.0

27 12 69 7 3 118

27.0 12.0 69.0 7.0 3.0 118.0

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

1

2

3

4

5

PSYCH1

Total

1 2 3 4 5

PSYCH2

Total

Symmetric Measures

.498 .057 10.335 .000

118

KappaMeasure of  Agreement

N of  Valid Cases

Value

Asy mp.

Std.  Error
a

Approx.  T
b

Approx.  Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null hypothesis.b. 
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Table 7.42: 

Percentage points of the 

-distribution 

 
P(

2
20 31.410) = .95 

 

df 2
.005 2

.025 2
.05 2

.90 2
.95 2 

.975 2
.99 2

.995 

1 .0000393 .000982 .00393 2.706 3.841 5.024 6.635 7.879 
2 .0100 .0506 .103 4.605 5.991 7.378 9.210 10.597 
3 .0717 .216 .352 6.251 7.815 9.348 11.345 12.838 
4 .207 .484 .711 7.779 9.488 11.143 13.277 14.860 
5 .412 .831 1.145 9.236 11.070 12.832 15.086 16.750 
6 .676 1.237 1.635 10.645 12.592 14.449 16.812 18.548 
7 .989 1.690 2.167 12.017 14.067 16.013 18.475 20.278 
8 1.344 2.180 2.733 13.362 15.507 17.535 20.090 21.955 
9 1.735 2.700 3.325 14.684 16.919 19.023 21.666 23.589 
10 2.156 3.247 3.940 15.987 18.307 20.483 23.209 25.188 
11 2.603 3.816 4.575 17.275 19.675 21.920 24.725 26.757 
12 3.074 4.404 5.226 18.549 21.026 23.336 26.217 28.300 
13 3.565 5.009 5.892 19.812 22.362 24.736 27.688 29.819 
14 4.075 5.629 6.571 21.064 23.685 26.119 29.141 31.319 
15 4.601 6.262 7.261 22.307 24.996 27.488 30.578 32.801 
16 5.142 6.908 7.962 23.542 26.296 28.845 32.000 34.267 
17 5.697 7.564 8.672 24.769 27.587 30.191 33.409 35.718 
18 6.265 8.231 9.390 25.989 28.869 31.526 34.805 37.156 
19 6.844 8.907 10.117 27.204 30.144 32.852 36.191 38.582 
20 7.434 9.591 10.851 28.412 31.410 34.170 37.566 39.997 
21 8.034 10.283 11.591 29.615 32.671 35.479 38.932 41.401 
22 8.643 10.982 12.338 30.813 33.924 36.781 40.289 42.796 
23 9.260 11.688 13.091 32.007 35.172 38.076 41.638 44.181 
24 9.886 12.401 13.848 33.196 36.415 39.364 42.980 45.558 
25 10.520 13.120 14.611 34.382 37.652 40.646 44.314 46.928 
26 11.160 13.844 15.379 35.563 38.885 41.923 45.642 48.290 
27 11.808 14.573 16.151 36.741 40.113 43.194 46.963 49.645 
28 12.461 15.308 16.928 37.916 41.337 44.461 48.278 50.993 
29 13.121 16.047 17.708 39.087 42.557 45.722 49.588 52.336 
30 13.787 16.781 18.493 40.256 43.773 46.979 50.892 53.672 
35 17.192 20.569 22.465 46.059 49.802 53.203 57.342 60.275 
40 20.707 24.433 26.509 51.805 55.758 59.342 63.691 66.766 
45 24.311 28.366 30.612 57.505 61.656 65.410 69.957 73.166 
50 27.991 32.357 34.764 63.167 67.505 71.420 76.154 79.490 
60 35.535 40.482 43.188 74.397 79.082 83.298 88.379 91.952 
70 43.275 48.758 51.739 85.527 90.531 95.023 100.425 104.215 
80 51.172 57.153 60.391 96.578 101.879 106.629 112.329 116.321 
90 59.196 65.647 69.126 107.565 113.136 118.136 124.116 128.299 

100 67.328 74.222 77.929 118.498 124.342 129.561 135.807 140.169 
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Chapter 8 
 

Non-Parametric Tests 
 

8.1 Introduction 

The application of some parametric tests has been discussed in Chapter 4. It dealt with 

the comparison of means or proportions of two or more than two samples, paired or 

independent. This Chapter presents a number of alternative methods relating to the same 

problems when the conditions for parametric tests are not met. Suppose that a researcher 

wants to study the population and needs to draw inference about a measure of central 

tendency, i.e. mean, proportion, median based on a small sample then he has to have the 

assumption of an approximately normal population needed to justify using a t-test for a 

hypothesis or construct confidence limits. In absence of this assumption, the t-test would 

be inappropriate and as such one would not apply the parametric tests. In this Chapter, we 

will study some statistical tests that may be used to draw inferences about the population 

when assumption of normality is not met. These include some of the statistical methods 

that are collectively referred to as non-parametric methods or distribution free methods. 

These methods use, for example ranks of observations to perform tests rather than 

observations. Since these methods are using ranks rather than actual observations, the 

result obtained through these methods will not be as robust as by the methods used in 

Chapter 4. In brief, these methods are applied when; (i) data are in the form of ranks or 

the data are converted into ranks, and (ii) data do not satisfy the condition of normality. 

Non-parametric tests are distribution-free, that is, they rely on very few assumptions 

about the probability distributions of sampled population. These methods are commonly 

used in medical and health sciences, as their samples are always small. Sometimes they 

are forced by the situations to take small samples because of non-availability of patients 

and expenditure involved. These methods are used, as they are relatively easy to apply as 

compared to the parametric tests. 

One of the advantages of non-parametric statistical procedures is that they can be used 

with data that are based on a week measurement scale. These scales have been discussed 

in detail in Chapter 1.  

Note: We use the non-parametric tests if the measurement level of the dependent variable 

has either nominal or ordinal scale level, or if its measurement level is scale, but not 

drawn from a normal population specially for the case of small samples. 
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The following non-parametric tests are discussed in this Chapter. 

(i)  The sign test (one sample)   (ii)  The sign test (two samples) 

(iii)  The Wilcoxon signed-rank test (iv) McNemar test 

(v)  The Wilcoxon rank-sum W-test (vi) Mann-Whitney U-test 

(vii)  The Median test     (viii) The Kruskal-Wallis H-test 

(ix)  Fridman's test      (x)  Kendall's W-test and 

(xi)  Cochran Q-test.      (xii) Kolmogorov-Smirnov test 

8.2 The Sign Test 

When the population is non-normal and the size of the sample is less than 30, the t-test is 

not valid. We look for a non-parametric test. The simplest non- parametric test to apply in 

this situation is the sign test. This test is specifically designed for testing hypotheses 

about the median of any continuous population. Like mean, median is also a measure of 

central tendency, because of this the sign test is sometimes referred to as a test for 

location. The only assumption underlying the test is that the distribution of a variable of 

interest is continuous. The sign test gets its name from the fact that plus and minus signs, 

rather than numerical values, provide the raw data used in the calculations. Since the 

signs are either yes (+) or no (-), and trials are independent, the properties of a binomial 

experiment listed in Chapter 2 are satisfied. We use binomial probability table to 

calculate the p-value. The sign test is explained first for one sample then for paired 

observations (paired samples). The following points should be kept in mind while using 

the sign test? 

(a)  The sample is randomly selected from the population.  

(b)  If any sign is zero, it is ignored and the number of trials are counted on the basis 

of (+) and (-) signs only. 

8.2.1 The Sign test for a single sample 

Example 8.1: 

The Environmental Protection Agency (EPA) sets certain pollution guidelines for major 

industries. For a particular company that discharges waste water into a nearby river, the 

EPA criterion is that the median amount of pollution in water from the river may not 

exceed 5 parts per million (ppm). Responding to numerous complaints, the EPA takes 10 

water samples from the river at the discharge point and measures the pollution level in 

each sample. The results (in ppm) are as: 

  5.1, 4.3, 5.3, 6.2, 5.6, 4.7, 8.4, 5.9, 6.8, 3.0 

Do the data provide sufficient evidence to indicate that median pollution level in water 

discharged at the plant exceeds 5 ppm? Use 5 percent level of significance. 
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Solution: 

(i)  H0: M0 (median) = 5 

 H
1: M0 > 5 

(ii)    = 5% (This is the one tailed test. Note that one-tailed and two-tailed tests 

have been explained in detail in Chapter 4). 

(iii)  Test-statistic: The sign test for a single sample: 

To apply the sign test, we calculate the scores above (+) and below (-) the 

specified value of the median (in our case it is 5). 

 
Table 8.1 

Epm 5.1 4.3 5.3 6.2 5.6 4.7 8.4 5.9 6.8 3 

Score + - + + + - + + + - 

It is expected that p(+) = p(-) = 0.5. In this example total number of (+) scores 

are 7 and (-) scores are 3. There is no zero, therefore, n = 10. Suppose one of the 

scores is zero then n will be 9 instead of 10. The p-value will be calculated by 

using the binomial probability table for (p = 0.5, n = 10, X  7). 

Note: We calculate the probability (p-value) of the number of pluses or minuses 

that is larger than the observed pluses or minuses.  

 p-value = P(≥ 7) = P(7)+P(8)+P(9)+P(10) = 1–P(≤ 6) = 1–0.8281 = 0.1719. 

We can also calculate it for number of minuses using binomial distribution as 

follows: 

  10

x
px (1 – p)

10-x

, where x = 0, 1, 2,3 and p = 0.5, then      (8.1) 

 p-value =  10

0
(0.5)

0
(0.5)

10-0

 +  10

1
(0.5)

1
(0.5)

9

  

     +  10

2
(0.5)

2
(0.5)

8

 +  10

3
(0.5)

3
(0.5)

7
 = 0.1719 

or directly we see binomial table for p = 0.5, n = 10, X = 3, we get 0.1719. 

(iv)  Stated p-value (-value) = 0.05, observed p-value = 0.1719 

 Since observed (calculated p-value) is more than stated p-value, therefore, result is 

non-significant, we cannot reject the null hypothesis. (See the rule for rejection and 

acceptance of null hypothesis using p-value in Chapter 4). That is, there is insufficient 

evidence to indicate that median pollution level of water discharge from the plant exceeds 

5 or the permissible level. 

Like parametric test, it can be one-tailed or two-tailed test as: 
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One-tailed Two-tailed 

H0: M = M
0
 

H1: M > M
0 or M < M0

 

H0: M = M
0 

H1: M  M
0
 

Observed p-value 

= P[X ≥ number of “+” signs] 

Observed p-value 

2P[X ≥ number of “+” signs] 

The method of acceptance and rejection is as follows 

(i)  Reject the null hypothesis if, p-value (observed p-value) < (stated p-value) = 

. 

(ii) If n exceeds 10 then we may use test statistic: 

    
npq

npX
Z


 ,                (8.2) 

where X is the maximum number of “+” signs. Then, the null hypothesis is 

rejected on the basis of Z-value from the table. For example, in this case n = 

10 then p = 0.5, np = 5 and npq = 1.58, X = 7, then using (7.2) we get 

    
7 5 2

1.27
1.580.5 10

Z


     

where X is the number of sample observations that exceeds the median. In this 

case X=7. The p-value can be seen from the normal Table 2.6 given in 

Chapter-2, which is 0.102. This is more than stated p-value, therefore, we 

cannot reject the hypothesis. As n increases, binomial distribution tends to 

normality. When p = 0.5 .The normal approximation performs reasonably well 

even for n as small as 10 if p is near 1

2
. Thus for n ≥ 10, we can conduct the 

sign test using the formula (8.2).  

(iii)  For two-tailed test one may calculate the test statistic as either x1 = number of 

observations greater than M0 for number of successes in n-trials.  

x2 = number of observations less than M0, the number of failures in  

n-trials. Note that x1 + x2 = n. 

Note: We can obtain the p-value for the Sign test through IBM-SPSS by one of two 

methods; 1st by the choice is manually through Legacy Dialogs while the 2nd method 

will be automatically which gives also the decision rule of rejecting or not rejecting the 

null hypothesis as follows:  
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Example S8-1 

The data will be in columns as follows (we add a column for the median): 

 

The Variable View is as follows: 

 

A (the Sign test manually) 

We apply the Sign test manually as follows: 

Analyze Nonparametric Tests Legacy Dialogs 2 Related Samples …  

 

Move the variable “EPA” to Variable1:  

Move the variable “Median” to Variable2:  
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Now click on , to get the following output: 

SPSS output for Sign test 

 

 

Note: The p-value for one tailed test will be 0.344/2 = 0.172, as given before. 

B (the Sign test automatically) 

We apply the Sign test automatically as follows: 

Analyze Nonparametric Tests 2 Related Samples …  
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We may choose either  for a complete 

automation , Or , as follows: 

 

We choose the Sign test and click on  to move the variables: 
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We click on  to get the following final result: 

 

Note: We obtain the p-value and the decision rule of not rejecting (Retain) the null 

hypothesis.  

8.2.2 The Sign test for samples of paired observation 

The sign test may also be used with samples of paired observations in which each 

member of one sample is matched with a member of the other sample to form a sample of 

matched pairs. This is equivalent to t-test for paired observations. 

Example 8.2: 

A sample of 15 patients suffering from asthma participated in an experiment to study the 

effect of a new treatment on pulmonary function. Among various measurements recorded 

were those of forced expiratory volume (liters) in one second (FEV1) before and after 

application of the treatment. The results are given in Table 8.2. Can we conclude that 

treatment is effective in increasing the FEV1 level? Use 5% level of significance. 

 

Table 8.2 

Subject Before After Subject Before After 

1 
2 
3 
4 
5 
6 
7 
8 

1.69 
2.77 
1.00 
1.66 
3.00 
0.85 
1.42 
2.82 

1.69 
2.22 
3.07 
3.35 
3.00 
2.74 
3.61 
5.14 

9 
10 
11 
12 
13 
14 
15 

2.58 
1.84 
1.89 
1.91 
1.75 
2.46 
2.35 

2.44 
4.17 
2.42 
2.94 
3.04 
4.62 
4.42 
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Solution: 

(1) H
0
 : Median (before) = Median (after) 

 H
1
 : Median (after) > Median (before) 

(2)   = 0.05 

(3)  Test-statistic: The sign test for paired observations. 

 For the purpose of calculations, we proceed as follows: 

 

Subject Before After Before-After Subject Before After Before-After 

1 
2 
3 
4 
5 
6 
7 
8 

1.69 
2.77 
1.00 
1.66 
3.00 
0.85 
1.42 
2.82 

1.69 
2.22 
3.07 
3.35 
3.00 
2.74 
3.61 
5.14 

0 
+ 
- 
- 
0 
- 
- 
- 

9 
10 
11 
12 
13 
14 
15 

2.58 
1.84 
1.89 
1.91 
1.75 
2.46 
2.35 

2.44 
4.17 
2.42 
2.94 
3.04 
4.62 
4.42 

+ 
- 
- 
- 
- 
- 
- 

X
1
 = total plus signs = 2; X

2
 = total minus signs = 1 and there are two are zeros 

and zeros are ignored, therefore, n = 15 - 2 = 13. The p-value may be calculated 

using (8.1) when n = 13, and X = 2. The p = value 

= P [X  2] =  13

0
(0.5)

0
(0.5)

13

 +  13

1
(0.5)

1

 (0.5)
13

 +  13

2
(0.5)

2 

(0.5)
13

 = 0.0112 

This p-value may directly be seen from binomial probability table when n = 13,  

p = 0.5 and X  2. 

(4)  The stated p-value is 0.05 (one-tailed test). The observed p-value is 0.0112 

(calculated p-value). Since observed p-value is less than the stated p-value, we do 

not accept the hypothesis, therefore, new treatment is effective. 

 Since n = X1 + X2 is ≥ 10, therefore, the sign test can also be carried out using 

normal approximation to the binomial distribution, i.e. µ = np = 13 x 0.5 = 6.5 and 

σ = 80.15.05.013   

  

1

2 2

0.5 13

n
x

Z

 
  

 
                  (8.3) 

   

1 13
2

2 2

1.80
Z

 
  

 
 Z = 

2.5 6.5

1.80


= 5.0  
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which is more than 1.64, therefore, we reject the null hypothesis, we say with 95% 

confidence that new treatment is effective. 

The p-value may also be found using Z-table, p-value = 0.0091, which is less than 

0.05, we confirm our previous result. 

Another possible test to test the hypothesis P[+] = P[-] = 1/2 is the chi-square test. 

Given observed values, X1 and X2, the expected values are calculated as: 

 

Observed X1 X2 

Expected 
2

XX 21   
2

XX 21   

Now 

 2 = 
21

2
21

XX

)XX(




,               (8.4) 

where X1 and X2 represent the number of “ +” and “ –“ signs. In this example  

X1 = 2 and X2 = 11, then chi-square will be 

 2 = 
112

)112( 2




 = 

13

81
= 6.23 

Since it is one-tailed test, the table value of chi-square for one degree of freedom is 5.024 

(see Chapter-4). Therefore, we reject the null hypothesis and confirm our above findings. 

IBM-SPSS package has been used to solve this problem and the output has been given in 

the following example (using the automated way). 

Example S8-2 

The data will be in columns as follows: 
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The Variable View is as follows: 

 

(The Sign test for samples of paired observation automatically) 

We apply The Sign test for samples of paired observation automatically as follows: 

Analyze Nonparametric Tests 2 Related Samples …  

 

We will choose , as follows: 
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We choose the Sign test and click on  to move the variables: 

  

We click on  to get the following final result: 

 

Note: The p-value for one tailed test will be 0.022/2 = 0.011, and the decision rule is to 

reject the null hypothesis (as before). 
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8.3 The Wilcoxon Signed-rank test 

The test is applied to paired observations when the condition of normality is not met. For 

the application of this test, we have random sample like all other non-parametric tests. 

The variable must be continuous. The measurement scale is interval. This test is better 

than the sign test as the sign test completely ignores the magnitude of the differences 

between paired observations whereas this test takes into consideration this point. The 

Wilcoxon signed-rank test for matched pairs for one-tailed and two-tailed tests is 

explained below: 

Let X and Y represent the population variables then 

 One-tailed test Two-tailed test 

1. H
0
 : X and Y are identical  

H1 : X is shifted to the left of X or  

  Y is shifted to the left of X 

H
0
 : X and Y are identical  

H
1 : X shifted either to the right or to the left 

2. Calculate the difference between the n matched pairs of observations. Take absolute 

value of differences. Then rank the absolute values from the smallest to the highest. 

Attach sign to ranks based on the signs of differences. 

3. T(-) or T(+) T, the smaller of T(-) or T(+) 

4. Rejection region 

T(-)  T0 (table value) 

or T(+)  T0 (table value) 

 

T < T
0
 (table value) 

5. Note that zero is eliminated and matched pairs are counted without zero.  

Example 8.3:  

Use the data given in Example 8.2 (Table 8.2) and apply Wilcoxon -Signed-rank test to 

see whether the treatment is effective in existing the FEV1 level?  

Solution: 

To solve this question follow these steps (table given below): 

(i)  Take the differences between the paired observations i.e. y – x = d. These 

differences are calculated in column 4 of the above table. 

(ii)  Take the absolute values of the differences (discard the algebraic sign). This is 

done in column 5 of the above table. 

(iii) Assign the ranks to differences (as in column 6) assigning rank 1 to the smallest 

observed differences. If there is a tie then use the method of tied rank and ignore 

zero. This step is completed in column 7. 

(iv)  Sum of positive ranks is 87 and sum of the negative ranks is 4. 

(v) The table against number of matched pairs 13 (excluding zeros), at 5% level of 

significance is 17. 

 

 

NCBA&E



Hanif , Ahmad and Abdelfattah 383 

1 2 3 4 5 6 Rank 7 

Subject Before (x) After (y) d |d| Ranks 
Positive 

ranks 
Negative 

ranks 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1.69 
2.77 
1.00 
1.66 
3.00 
0.85 
1.42 
2.82 
2.58 
1.84 
1.89 
1.91 
1.75 
2.46 
2.35 

1.69 
2.22 
3.07 
3.35 
3.00 
2.74 
3.61 
5.14 
2.44 
4.17 
2.42 
2.94 
3.04 
4.62 
4.42 

0.0 
-0.55 
2.07 
1.69 
0.0 

1.89 
2.19 
2.32 
-0.14 
2.33 
0.35 
1.03 
1.29 
2.16 
2.07 

0 
0.55 
2.07 
1.69 
0.0 

1.89 
2.19 
2.32 
0.14 
2.33 
0.35 
1.03 
1.29 
2.16 
2.07 

- 
3 

8.5 
6 
- 
7 
11 
12 
1 
13 
2 
4 
5 
10 
8.5 

- 
- 

8.5 
6 
- 
7 

11 
12 
- 

13 
2 
4 
5 

10 
8.5 

- 
-3 
- 
- 
- 
- 
- 
- 

-1 
- 
- 
- 
- 
- 
- 

    20.08  87 -4 

(vi) Reject H0 if calculated value is less than table value. In this example calculated 

value is 4 which is smaller than 87 and 4, and table value is 17, so the null 

hypothesis is rejected and we say that the new treatment is better than the old 

one. 

In IBM-SPSS package, the data are entered like t-test for paired observations. The 

difference between the calculation of these tests and t-test for paired observations is that 

in the former case we click non-parametric rather than click compare means. The IBM-

SPSS package is used and the results (using Analyze Nonparametric Tests Legacy 

Dialogs 2 Related Samples …) are given as: 

SPSS output for Wilcoxon Singed-Rank Test and the Sign Test 

 

 

Ranks

2a 2.00 4.00

11b 7.91 87.00

2c

15

Negative Ranks

Positive Ranks

Ties

Total

AFTER - BEFORE

N Mean Rank Sum of  Ranks

AFTER < BEFOREa. 

AFTER > BEFOREb. 

AFTER = BEFOREc. 

Test Statisticsb

-2.901a

.004

Z

Asy mp. Sig. (2-tailed)

AFTER -

BEFORE

Based on negat iv e ranks.a. 

Wilcoxon Signed Ranks Testb. 
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The calculated p-value is 0.008 for one tailed test, which is less than 0.05, therefore we 

do not accept the null hypothesis and say with 95% confidence treatment is effective.  

Example S8-3 

The data will be in columns as in example S8-2. 

(The Wilcoxon signed-rank automatically) 

We apply the Wilcoxon signed-rank for samples of paired observation automatically as 

follows: 

Analyze Nonparametric Tests Related Samples …  

 

We will choose , as follows: 
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We choose the Sign test and click on  to move the variables: 

  

We click on  to get the following final result: 

 

Note: The p-value for one tailed test will be 0.004/2 = 0.002, and the decision rule is to 

reject the null hypothesis. 
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8.4 Test for Two Independent Samples 

In Chapter 4, we have discussed t-test for two independent samples. When the conditions 

for t-test are not met then any one of the following alternative tests may be used. 

 (i) The median test,   (ii) The Mann-Whitney test   

 (iii) Wilcoxon test   (iv) Kolmogorov-Smirnov Test 

8.4.1 The median test 

The median test can be used for two or more than two independent samples to test 

whether two or more than two populations have the same median. This is a replacement 

for t-test for two independent samples and one way-ANOVA technique. For this, 2x2 or  

r x c contingency table is constructed. The number in each cell is the number that is 

below or above the median (the median of all observations in two or more than two 

samples). Commonly the median test is used for t-test for two independent samples. If 

samples are more than two then Kruskal-Wallis test is used. Kruskal-Wallis test will be 

discussed in next section. 

Assumptions: 

(i) Sample is a random sample  

(ii) Samples are independent. 

(iii) The measurement scale is at least ordinal. 

(iv) If any cell has zero frequency, then this test cannot be used. The null and 

alternative hypotheses are 

 H0 : two (or more) populations have the same median. 

 H1 : at least two of the populations have different medians. 

Example 8.4: 

A study was conducted to compare the amount of time (in minutes) spent watching 

television each day by rural and urban elementary school children in Eastern Province of 

Saudi Arabia. Eight urban and nine rural children were randomly selected from 

elementary schools. The results are given in Table 8.3. 

 
Table 8.3 

Urban children Rural children 

60 
240 
190 
75 
30 
150 
220 
190 

140 
80 
45 
210 
120 
135 
30 
120 
200 
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Is there any difference between two types of elementary school children in television 

viewing habits? Use 5% level of significance. 

Solution: 

(1)  H
0 : The median time for two types of children is the same. 

 H
1 : The median times are not equal. 

(2)   = 0.05 

(3)  Test-statistic: Since two samples are independent, one possible test is the median 

test. To apply median test, we proceed as: 

(i)  Arrange the observations in order in the combined samples, i.e. 30, 30, 45,  

60, 75, 80, 120, 120, 135, 140, 150, 190, 190, 200, 210, 220, 240. The median 

= 135. 

(ii) Prepare 2x2 contingency table as: 

If H0 is true then the common median may be estimated from the combined 

sample this is precisely what the test does. Testing the equality of proportions 

can therefore test any difference in the Urban and rural pattern. 

 

 Urban Rural Total 

Above median 5 
a 

3 
b 

8 

 
Below median 

c 
3 

d 
6 

 
8 

Total 8 9 17 = n 

Note that if any observation is equal to median, it may be ignored in analysis. 

(iii) Apply chi-square  

     

5)thanlessiscellsthein(number

)db()ca()dc()ba(

n
2

n
|bcad|

2

2













          (8.5) 

     576.0
8889

17
2

17
|930|

2

2 












  

(4)  The table value of chi-square for 5% level of significance is 5.024 which is more 

than calculated value, therefore, we say that there is no difference between two 

types of children regarding watching the television  

SPSS package can be used and one can follow these steps: 

(i)  Enter the data on SPSS package like t-test for two independent samples. 
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(ii)  Choose a non-parametric test.  

(iii)  Choose "more than two independent samples". 

(iv)  There are two tests: 

 (a)  Kruskal Wallis    (b)  Median   

Choose either of them; you will get the same result. 

It is advised that the median test should be used for two samples and the Kruskal-Wallis 

is to be used for more than two independent samples. The IBM-SPSS package is used and 

the result (using Analyze Nonparametric Tests Legacy Dialogs 2 Independent 

Samples …) is as follows: 

SPSS output for Median test 

 

Median Test 

 

 

Calculated p = 0.347, which is more than 0.05, the result is non-significant. Therefore, 

there is no difference between two types of children belonging to urban and rural 

facilities of watching the television. 

  

Descriptive Statistics

17 131.47 69.39 30 240

17 1.53 .51 1 2

TIME

CATEGORY

N Mean Std.  Dev iat ion Minimum Maximum

Frequencies

5 3

3 6

> Median

<= Median

TIME

1 (Urban) 2 (Rural)

CATEGORY

Test Statisticsa

17

135.00

.347

N

Median

Exact Sig.

TIME

Grouping Variable:  CATEGORYa. 
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Example S8-4 

(The Median test automatically) 

The data will be in columns as follows: 

 

  

 

 

 

We apply the Wilcoxon signed-rank test for samples of paired observation automatically 

as follows: 

Analyze Nonparametric Tests Independent Samples …  
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We may choose either , or . Both 

will give the same result. Choosing  will give the result 

of the median test directly. We will choose , as follows: 

 

We choose the Median test and click on  to move the variables: 

  

We click on  to get the following final result: 

 

Note: The p-value for two tailed test is 0.347, and the decision rule is to reject the null 

hypothesis. 
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8.4.2 The Mann-Whitney and Wilcoxon Rank sum-W tests 

Two tests are given in this section.  

(a) The Mann-Whitney test 

This test is based on two independent random samples.  

 Assumptions 

(i)  These samples are random and independent. 

(ii) The measurement scale is at least ordinal. 

Example 8.5:  
In a controlled environment laboratory, 10 men and 10 women were tested to determine 

the room temperature (in Fahrenheit) they found to be the most comfortable. The results 

are given in Table 8.4: 

 
Table 8.4 

Men 74 72 77 76 76 73 75 73 74 75 

Women 75 77 78 79 77 73 78 79 78 80 

Assuming that these temperatures resemble a random sample from their respective 

populations. Is the average comfortable temperature the same for men and women? Use 

5% level of significance. 

Solution: 

(1)  H0 : The average (median) comfortable temperature for men and women is the 

same. 

 H1 : The average comfortable temperature is not the same. 

(2)   = 0.05 

(3)  test-statistic: Mann-Whitney test  

 To apply the Mann-Whitney test, we will proceed as: 

(i) Arrange the observations of two samples together in ascending order, like 

the Median test, i.e. 72, 73, 73, 73, 74, 74, 75, 75, 75, 76, 76, 77, 77, 77, 

78, 78, 78, 79, 79, 80 

(ii) Rank these observations as: 

    1, 3, 3, 3, 5.5, 5.5, 8, 8, 8, 10.5, 10.5, 13, 13, 13, 16, 16, 16, 18.5, 18.5, 20. 

(iii)  R1 (sum of the ranks of first sample)  

  = 5.5 + 1 + 13 + 10.5 + 10.5 + 3 + 8 + 3 + 5.5 + 8.5 = 68.5. 

 R2 (sum of the ranks of second sample)  

   = 8.5 + 13 + 16 + 19 + 13 + 16 + 3 + 16 + 19 + 20 = 143.5. 

(iv) Calculate: 

NCBA&E



Non-Parametric Tests 392 

 µ1 = n1n2 + 
 

2

1nn 11 
- R1, µ2 = n1n2 + 

 
2

1nn 22 
- R2      (8.6) 

 µ1 = 10 x 10 + 55 - 68.5 = 86.5, µ2 = 10 x 10 + 55 - 143.5 = 9.5 

(v)  Take the smaller value, which is 9.5. 

(4)  The table value for 10 by 10 at 5% level of significance is 28. 

(5)  Our calculated value 9.5 does not fall in the acceptance region, therefore, the 

average comfortable temperatures for the men and women are not equal. 

IBM-SPSS package is used for Mann-Whitney U-Test and Wilcoxon Rank Sum W-Test 

and the result (using Analyze Nonparametric Tests Legacy Dialogs 2 

Independent Samples … ) is as follows: 

SPSS output for Mann-Whitney U-Test and Wilcoxon Rank Sum W-Test 

 

Median test is not as robust as Man-Whitney test because median test loses information 

of equal ranks whereas Man-Whitney use these information.  

IBM-SPSS package is used for Two samples Kolmogorov-Smirnov test and the  

result (using Analyze Nonparametric Tests Legacy Dialogs 2 Independent 

Samples … ) is as follows: 

Two-Sample Kolmogorov-Smirnov Test 

 

The p-value for this test is 0.015, which is less than 0.05; hence we confirm our previous 

findings. 

  

Test Statisticsb

13.000

68.000

-2.817

.005

.004
a

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

temprature

Not corrected f or ties.a. 

Grouping Variable:  CATEGORYb. 

Test Statisticsa

.700

.700

.000

1.565

.015

Absolute

Positive

Negativ e

Most Extreme

Dif f erences

Kolmogorov-Smirnov Z

Asy mp. Sig. (2-tailed)

temprature

Grouping Variable:  CATEGORYa. 
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Example S8-5 

(The Mann-Whitney U-test automatically) 

The data for example 8.5 will be in columns as follows: 

 

  

 

 

 

We apply the Mann-Whitney U-test for samples of paired observation automatically as 

follows: 

Analyze Nonparametric Tests Independent Samples …  
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We may choose either , or . Both 

will give the same result. Choosing  will give the result 

of the median test directly. We will choose , as follows: 

 

We choose the Median test and click on  to move the variables: 

  

We click on  to get the following final result: 

 

Note: The decision rule is to reject the null hypothesis. 
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(b) The Wilcoxon Rank-sum-W test 

This test is based on two independent random samples. The Mann-Whitney and 

Wilcoxon-Rank sum tests are identical. Any one of the tests can be applied. 

Assumptions 

The assumptions of this test are the same as in case of the Mann-Whitney test. 

Example 8.6: 

A preliminary study was conducted to obtain information on the background levels of the 

toxic substance polychlorinated biphenyl (PCB) in soil sample in the United Kingdom. 

Such information could then be used as a benchmark against which PCB levels at waste 

disposal facilities in the United Kingdom can be compared. Table 8.5 contains the 

measured PCB levels of soil samples taken at 14 rural and 15 urban locations in the 

United Kingdom. (PCB concentration is measured in 0.0001 gram per kilogram of soil). 

From these preliminary results, the researchers reported "a significant difference between 

(PCB levels) for rural areas and for urban areas". Do the data support the researcher's 

conclusion regarding significance difference? Test using 5% level of significance 

(source: Chemosphere, Feb. 1986). 

Solution: 

(1)  H
0
 : There is no difference in PCB levels in two areas. 

 H
1
 : There is a difference in PCB levels in two areas. 

(2)   = 0.05 

(3)  test-statistic: Three possible tests can be used.  

(i) The Median test, (ii) The Mann-Whitney test, and (iii) Wilcoxon rank sum-W 

test 
 

Table 8.5 

Rural R1 Urban R2 

5.3 
8.1 
1.8 
9.0 
1.6 

23.0 
1.5 
5.3 
9.8 

15.0 
12.0 
8.2 
9.7 
1.0 

5.5 
7.0 
4.0 
9.0 
3.0 

23.0 
2.0 
5.5 

11.0 
17.0 
14.5 
8.0 

10.0 
1.0 

24 
29 
16 
21 

107 
94 

141 
11 
11 
49 
22 
13 
18 
12 
18 

24.0 
25.0 
18.0 
21.0 
28.0 
27.0 
29.0 
12.5 
12.5 
26.0 
22.0 
16.0 
19.5 
14.5 
19.5 

 120.5 = T1  314.5 = T2 
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The Median test and Mann-Whitney test have been explained before. Now, here 

we demonstrate the application of Wilcoxon rank sum test. The test-statistics is  

 
2

)1n(n
ST


 ,                (8.7) 

where S is the smaller sum of the ranks of the rural and urban areas. 

(i)  Rank the rural (sample-1) and urban (sample-2), considering it as one sample. 

This has been done in the above table. 

(ii)  Add the ranks for each sample. 

    T
1
 = 120.5 and T

2
 = 314.5 

(iii)  S = Smaller {T1, T2}. Since T
1
 is less than T2 then, we calculate the test-

statistic using n=14, S = T
1 
 

    T = 120.5 - 
2

)114(14 
= 15.5 

(4)  Table value for Wilcoxon Rank against n1 = 14 and n2 =15 for 5% level of 

significance is 67. 

Since calculated value of 15.5 is less than the table value, therefore, we do not accept the 

null hypothesis and say with 95% confidence that there is a significance difference 

between PCB levels for rural and urban areas. The IBM-SPSS package is used and the 

results for Mann-Whitney U and Wilcoxon Rank sum tests and the result (using 

Analyze Nonparametric Tests Legacy Dialogs 2 Independent Samples … ) is 

as follows: 

SPSS output for Mann-Whitney U test and Wilcoxon Rank-Sum W test 

 

Test Statisticsb

15.500

120.500

-3.908

.000

.000
a

Mann-Whitney U

Wilcoxon W

Z

Asy mp. Sig. (2-tailed)

Exact Sig. [2*(1-tailed

Sig.)]

PCB

Not corrected f or ties.a. 

Grouping Variable:  CATEGORYb. 
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Observed p-value < 0.000, which is less than stated p-value (0.05), therefore, we confirm 

our above findings. 

For the Median test SPSS output is as: 

Median Test 

 

 

p-value is less than 0.05 (observed p-value), again we confirm the previous findings. 

8.5 Test for K-Independent Samples 

There are two possible tests that can be used for K-independent samples. 

 (a) The Median test   

 (b) The Kruskal-Wallis-H test 

The Median test has already been explained for two samples in section 8.4, here SPSS 

package will also be applied to more than two samples. We describe the Kruskal-Wallis-

H test in details first and application of the Median test later on in this section.  

8.5.1 The Kruskal-Wallis test (or H-test) 

The Kruskal-Wallis test provides a non-parametric alternative to the one-way ANOVA 

for comparing more than two independent samples. Like Median test, the Mann-Whitney 

Test Statisticsa

.786

.000

-.786

2.114

.000

Absolute

Positive

Negative

Most Extreme

Dif f erences

Kolmogorov -Smirnov  Z

Asy mp. Sig. (2-tailed)

PCB

Grouping Variable: CATEGORYa. 

Frequencies

2 12

12 3

> Median

<= Median

PCB

1(rural) 2(urban)

CATEGORY

Test Statisticsa

29

12.0000

.001

N

Median

Exact Sig.

PCB

Grouping Variable:  CATEGORYa. NCBA&E
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test and Wilcoxon test, no assumption regarding the normality or equality of variances of 

sampled populations is required. 

Assumptions 

(i)  The K-samples are randomly and independently selected from their respective 

populations. 

(ii)  In addition to randomness within each sample, there is mutual independence 

among various samples. 

(iii)  The measurement scale is ordinal. 

(iv)  For the chi-square approximation to be adequate, there should be five or more 

observations in each sample. 

Following rules must be taken into consideration to see the significance of the Kruskal-

Wallis test. 

(i) If there are two or three groups, all groups are 5 or less in size and there are no 

ties, ties determine the significance of computed table. 

(ii) If there are three groups and number of observations in each group are five or 

more consult chi-square table. 

(iii) If there are four or more groups, consult chi-square table for the significance 

of the result. 

Example 8.7:  

Vanadium is recently recognized essential trace element. An experiment was conducted 

to compare the concentration of vanadium in biological materials using isotope dilution 

mass spectrometry. The following table gives the quantities of vanadium (measured in 

nanograms per gram) in dried samples of oyster tissue, citrus leaves, and bovine liver and 

human serum. Use an appropriate method of analysis to determine whether the 

distribution of vanadium concentrations for the four biological materials differ in 

locations. The data is given in Table 8.6. Use 5% level of significance.  

 
Table 8.6 

Oyster 
tissue 

Ranks 
Citrus  
tissue 

Ranks 
Bovine 
lever 

Ranks 
Human  
serum 

Ranks 

2.35 
1.30 
0.34 

12 
10 
7 

2.32 
3.07 
4.09 

11 
13 
14 

0.39 
0.54 
0.30 

8 
9 
6 

0.10 
0.17 
0.14 
0.16 
0.16 

1 
5 
2 

3.5 
3.5 

Total T1 = 29  T2 = 38  T3 = 23  T4 = 15 

 (Source: Analytical chemistry, Vol. 57(13), 1985, pp. 2475). 

  

NCBA&E



Hanif , Ahmad and Abdelfattah 399 

Solution: 

(1)  H
0 : There is no difference between the Vanadium concentrations for the four 

biological materials. (Population distributions are all identical). 

 H
1 : They are different. 

(2)  = 0.05 

(3)  Test-statistic: Since there are more than two independent samples, therefore, the 

Kruskal-Wallis (H) test is used. We proceed as follows: 

(i)  Rank all the observations as if it were a one sample. This is done in the 

above table. 

(ii)  The sum of the ranks in each sample is also given. 

  T1 = 29, T2 = 38, T3 = 23 and T4 = 15 

(iii)  test-statistic   

  H = 
i

2
i

k

1i n

T

)1n(n

12



- 3 (n + 1) ,     (8.8) 

 where:  

 n = n1 + n2 + n3 + n4 = 3 + 3 + 3 + 5 = 14 

 k = number of groups = 4 

 Ti = sum of the ranks in the ith group (T1 = 29, T2 = 38, T3 = 23, T4 = 15. 

 H = 









 5

225

3

529

3

1444

3

841

1514

12 - 3 (14 + 1) = 11.17 

(4)  Rejection region is calculated as: 

 There are k = 4 samples. The degrees of freedom are k - 1 = 3.  

 The table value of chi-square for 5% level of significance is 9.348.  

(See the 

-Table 7.1, Chapter 7). 

(5)  The calculated value is more than the table value so we do not accept the null 

hypothesis and say that there is difference between the vanadium concentrations 

for four biological materials, or we say that populations are not identical. 

Note that the entry of data in SPSS package is like one-way ANOVA and we click non-

parametric methods for K-independent samples. The following methods appear on 

monitor: 

 (i) The Kruskal-Wallis (ii) The Median 

We choose one of them. If any cell is zero, the Median test fails. The Kruskal-Wallis test 

is usually more powerful than the Median test The IBM-SPSS package is used and (using 

Analyze Nonparametric Tests Legacy Dialogs K Independent Samples … ) is 

as follows: 
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SPSS output for the Kruskal-Wallis and the Median tests 

 

 

(a) p-value = 0.011 which is less than 0.05, we reject the null hypothesis and confirm 

our above findings.  

(b) We apply the median test, as the frequencies in the cell are less than 5 and two 

cells have zero frequency. 

So far, we have seen only one picture of the application of the Kruskal-Wallis H-test, 

which is a substitute of one way-ANOVA. There are recent advances in the theory of 

rank tests. There should no longer be any hesitation in applying the rank test to situations 

that have many ties. In fact Kruskal-Wallis H-test also gives an excellent performance in 

contingency table, where rows represent ordered category (rows are ordinal) and columns 

represent different populations (columns are nominal). 

The IBM-SPSS Package is used to apply Median test for the Example 8.8 and the  

output (using Analyze Nonparametric Tests Legacy Dialogs K Independent 

Samples … ) is as follows: 

SPSS Output for Median Test 

 

 

Ranks

3 9.50

3 12.67

3 7.83

5 3.00

14

CATEGORY

1 (Oyster)

2(citrus)

3(bovine)

4(Human)

Total

Concentration

N Mean Rank

Test Statisticsa,b

11.116

3

.011

Chi-Square

df

Asy mp. Sig.

Concentration

Kruskal Wallis Testa. 

Grouping Variable:  CATEGORYb. 

Frequencies

2 3 2 0

1 0 1 5

> Median

<= Median

concentration

1.00 2.00 3.00 4.00

identif ication
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p-value for median test is 0.034 which is less than 0.05, we can conclude at 5% level of 

significance that there is significant difference in concentration of different categories. 

Example S8-6 

(The Kruskal-Wallis H-test automatically) 

The data for example 8.7 will be in columns as follows: 

 

  

 

 

 

We apply the Kruskal-Wallis H-test for independent samples automatically as follows: 

Analyze Nonparametric Tests Independent Samples …  

Test Statisticsb

14

.3650

8.667a

3

.034

N

Median

Chi-Square

df

Asy mp. Sig.

concentration

8 cells (100.0%) have expected f requencies less

than 5. The minimum expected cell f requency  is 1.5.

a. 

Grouping Variable:  ident if icationb. 
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We may choose either , or . Both 

will give the same result. Choosing  will give the result 

of the Kruskal-Wallis H-test directly. We will choose , as follows: 
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We choose the Kruskal-Wallis H-test and click on  to move the variables: 

  

We click on  to get the following final result: 

 

Note: The decision rule is to reject the null hypothesis. Double click on the output will 

yield the following comparisons: 

 

 

Example 8.8:   
Three instructors gave the grades to students. They assigned scores over the past semester 

and to see if some of them tend to give lower grades than others. The data is given below: 
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Table 8.7 

Grades 
Instructors 

I1 I2 I3 

A 
B 
C 
D 
E 

4 
14 
17 
6 
2 

10 
6 
9 
7 
6 

6 
7 
8 
6 
1 

Can we say at 5% level of significance that three instructors graded evenly with each 

other? 

Solution: 

(i)  H
0
 : There is no difference in 3 instructors in grading the students. 

 H
1
 : At least two differ. 

(ii)   = 0.05 

(iii)  test statistics : Kruskal-Wallis, using (8.8), we have H = 0.845 

(iv)  p-value = 0.6447, which is greater than 0.05. Therefore, there is no difference 

in these instructors in assigning the grades. 

The IBM-SPSS package is used and the result is: 

SPSS output for the Kruskal-Wallis H Method 

 

Example 8.9:  
A simple random sampling procedure was used to select 5 primary health care centers out 

of 9 from Al-Khobar area. The data regarding lab utilization are given as: 

 
Table 8.8 

Primary health care centers 

Utilization 1 2 3 4 5 Total 

Over 18 4 15 21 29 87 

Proper 48 51 44 103 77 323 

Under 49 47 22 75 56 249 

Total 115 102 81 199 162 659 

Test Statisticsa,b

.878

2

.645

Chi-Square

df

Asy mp. Sig.

score

Kruskal Wallis Testa. 

Grouping Variable:  CATEGORYb. 
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Use proper method of analysis to the data and to see the difference, if any, between 

primary health care centers regarding laboratory utilization. 

Solution: 

(i)  H
0
 : There is no difference in lab utilization 

 H
1
 : At least two differ. 

(ii)   = 0.05 

(iii)  test statistics : Kruskal-Wallis 

 (as rows are ordinal and columns are nominal) 

(iv)  The IBM-SPSS package is used and output is given as: 

SPSS output for Kruskal-Wallis H-test 

 

Calculated p-value = 0.388, we say that there is no difference in all PHC centers in 

utilization of laboratory facilities. 

8.6 K-Related Samples 

In Section 8.2, we have discussed two tests for related samples but in this section, we 

consider some tests for more than two related samples. These are: 

(i)  The Friedman test  

(ii) Kendall's coefficient of concordance (Kendall's W-test)   

(iii)  Cochran's test 

8.6.1 The Friedman test 

It is an extension of sign test for two related samples. This is a better-known test for the 

experimental situation, but it has less power in some situations. The test is appropriate 

whenever the data are measured on ordinal scale and can be meaningfully arranged in a 

two-way ANOVA classification. The problem of several related samples arises in an 

experiment that is designed to detect differences in k possibly different treatment (k  2). 

The observations are arranged in blocks, which are groups of k experimental units.  

Test Statisticsa,b

4.133

4

.388

Chi-Square

df

Asy mp. Sig.

Lab Utilization

Kruskal Wallis Testa. 

Grouping Variable:  CATEGORYb. 
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Assumptions 

(i)  The variables are mutually independent. 

(ii) Within each block the observations may be ranked according to some criterion of 

interest. 

(1) H
0
 : The k-populations are identical. 

 H
1
 : At least two of the k-populations are different. 

(2)   = 0.05 

(3)  test-statistic: 

   )1k(n3R
)1k(nk

12 2
i

k

1i

2
F 


 



,          (8.9) 

 where  k = number of samples or treatments 

  n = number of blocks 

  Ri = sum of the ranks for the ith treatment 

Example 8.10:   
There are three observers who assess a total of 10 patients for some attributes, say, 

sadness on a 10-point scale. Their scores are shown on Table 8.9: 

 
Table 8.9 

Patients Observer 1 Observer 2 Observer 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6 
4 
2 
3 
5 
8 
5 
6 
4 
7 

7 
5 
2 
4 
4 
9 
7 
7 
6 
9 

8 
6 
2 
5 
6 

10 
9 
8 
8 
8 

Can we say that there is a difference in three observers in assessing the sadness on 10-

point scale? Use 5% level of significance. 
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Solution: 

We proceed as; 

(i)  Rank the observations according to rows as in the following table: 
Patients Observer 1 Ranks Observer 2 Ranks Observer 3 Ranks 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

6 
4 
2 
3 
5 
8 
5 
6 
4 
7 

1 
1 
2 
1 
2 
1 
1 
1 
1 
1 

7 
5 
2 
4 
4 
9 
7 
7 
6 
9 

2 
2 
2 
2 
1 
2 
2 
2 
2 
3 

8 
6 
2 
5 
6 

10 
9 
8 
8 
8 

3 
3 
2 
3 
3 
3 
3 
3 
3 
2 

Sum  R1 = 12  R2 = 20  R3 = 28 

(ii)   Sum the ranks in each column and calculate 

     
2

F = 
)13(310

12


[122 + 202 + 282] - 3(10)(3 + 1) = 12.8 

(iii)  The table value of chi-square for 2 degree of freedom at 5% level of 

significance is 3.841. 

(iv) The calculated value of 2 is much greater than the table value, therefore, we 

reject the null hypothesis and say that the observers are different in assessing 

the sadness rank on 10-point scale. 

 

Example S8-7 

(The Friedman test automatically) 

The data for example 8.9 will be in columns as follows: 
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We apply the Friedman test for related samples automatically as follows: 

Analyze Nonparametric Tests Related Samples …  

 

We may choose either  , or  

to choose Friedman test manually. Both will give the same result. Choosing 

 will give the result of the Friedman test 

directly, as follows: 

We click  to move the variables, and then we click on  and choose

: 
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We click on  to get the following final result: 

 

Note: The decision rule is to reject the null hypothesis. Double click on the output will 

yield the following comparisons: 

 

 

8.6.2 Kendall's coefficient of concordance or W-statistic 

A statistic, called Kendall's W coefficient was introduced by Kendall (1939). It may be 

used in the same situation where Friedman's test statistic is applicable. It has a special 

advantage that it gives the index of agreement. It is calculated as: 

  

2

i

k

1i
2 2

)1k(n
R

)1k()1k(kn

12
W 







 



 



,        (8.10) 

where n, k an Ri has been defined in (8.9). 

If there is perfect agreement in the observers in all the blocks, the result of W is 1.0. If 

there is a perfect disagreement among observers then W is 0 or very close to zero. W can 

be easily calculated using Example 8.10. If IBM SPSS package is to be used, the entry of 

data is like the previous example.  
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SPSS output for Friedman and Kendall's Coefficient W 

Friedman Two-Way ANOVA 

Cases Chi-Square D.F. Significance 

10 12.80 2 .0017 

Kendall Coefficient of Concordance 

Cases W Chi-Square D.F. Significance 

10 .711 14.22 2 .0008 

We conclude at 5% level of significance that there is disagreement between the 

observers. Since W = 0.71, we say that there is 71% agreement. 

Example S8-8 

(The Kendall's coefficient of concordance automatically) 

The data for example 8.9 will be in columns as follows: 

 

We apply the Kendall's coefficient of concordance automatically as follows: 

Analyze Nonparametric Tests Related Samples …  
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We may choose either  , or  

to choose Kendall's coefficient of concordance test manually. Both will give the same 

result. We will Choose  and click on Kendall's coefficient of 

concordance, as follows: 

  

We click on  to get the following final result: 

 

Note: The decision rule is to reject the null hypothesis. Double click on the output will 

yield the following comparisons: 
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8.6.3 Cochran's Q test  

Sometimes the use of a treatment results in one of two possible outcomes, i.e. the 
medicine is effective or not effective, a certain treatment may result in a success or a 
failure. If there are several treatments and each is applied in several different trials, the 
result is given in the form of a 2x2 contingency table and treatment differences may be 
tested using chi-square method. If the treatment result is classified into one of two 
categories then Cochran (1950) proposed a test known as Cochran's Q-test. This is an 
extension of McNemar test, which has been discussed in Chapter 7. 

Each of k treatments is applied independently to each of n blocks and the result of each 
treatment is recorded as either 1 or 0, i.e. success or failure. Then the table takes the 
following form: 

 

Table 8.10 

Blocks 
(patients) 

Treatment 
Total 

1 2 3 ... K 

1 
2 
3 
4 

 
n 

1 
0 
0 
1 

 

0 
1 
0 
0 

 

1 
1 
0 
0 

 

 1 
1 
0 
1 

 

R1 

R2 

 
Rn 

Total C1 C2   Ck  

Assumptions: 

Responses within blocks are correlated and the blocks (patients) are independent and as 
such are randomly selected. 

The outcome of the treatment within each block may be dichotomized so the outcomes 
are tested as either 0 or 1. 

(i)  H
0
 : All the treatments are equally effective. 

 H
1
 : There is difference in effectiveness. 

(ii)  = 0.05 

(iii)  test-statistic: Cochran's test.  

   
2
i

n

1i

22
j

k

1j2
C

RkN

N)1k(C)1k(k













 ,          (8.11) 

 where k is the number of treatments or samples 

   Ci is the sum of the columns 

   Ri is the sum of rows 

(iv) 2
C  is calculated and is compared with table value of 

2
 with (k - 1) degree of 

freedom and significance is determined accordingly. 
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Example 8.11:   
One hundred people were asked to taste four new brands of cough syrup and state which 

new brands taste better than the present formula and which brands do not. As indicated in 

the following table, 15 subjects preferred the new taste to the old for all four brands, 3 

subjects preferred brands A, B and C over the old brand but did not prefer brand D over 

the present formula, and so on. Test the null hypothesis that there is no significant 

difference in preferences among the four new brands of cough syrup. 

 
Table 8.11 

 Brand Number of subjects 
with this response  A B C D 

 1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 

1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 

1 
1 
0 
1 
1 
0 
1 
1 
0 
0 
1 
0 
0 
1 
0 
0 

1 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
0 

15 
3 
3 
6 
21 
1 
1 
1 
2 
2 
19 
3 
3 
2 
13 
5 

Total 8 8 8 8 100 

Solution: 

(1)  H
0
 : There is no difference among A, B, C and D 

 H
1
 : There is difference. 

(2)  = 0.05 

(3)  test-statistic: Cochran's Q-test. 

 The SPSS package is used and the result is given as 

SPSS output for Cochran's Q test 

Cases Cochran's Q-test d.f Significance 

100 58.015 3 0.0000 

Note that the data entry on SPSS package is like data for t-test (paired). 

The result is significant at 5% level of significance and we conclude that there is 

difference in the taste of all the four brands of cough syrup. Note that at the time of 

entering the data, each set is entered a number of times mentioned against each set (see 
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application of SPSS package). If there are two treatments then the experimenter has a 

choice to use either Cochran's Q-test or McNemar test. Algebraically for two treatments 

Cochra's Q-test is identical to McNemar test and these are approximated by 
2
 with one 

degree of freedom. The McNemar test is used for brand A and B. The result is significant 

at 5% level of significant; therefore, we conclude that there is a difference in taste in two 

brands of syrup A and B. 

SPSS output for McNemar test 

Var 1 by Var 2 
  Var 2 

  0 1 Total 

Var 1 0 27 39 66 

 1 22 12 34 

   Cases 100 

  Chi- square = 5.0256 Significance = 0.0250 

 

Example S8-9 

(The Cochran's Q test automatically) 

The data for example 8.11 will be in 4 columns and 100 rows. The 1
st
 18 case, as a part of 

the data is as follows: 
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We apply the Cochran's Q test automatically as follows: 

Analyze Nonparametric Tests Related Samples …  

 

We may choose either , or  

to choose Kendall's coefficient of concordance test manually. Both will give the same 

result. We will Choose  and click on Kendall's coefficient of 

concordance, as follows: 

  

We click on  to get the following final result: 
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Note: The decision rule is to reject the null hypothesis. Double click on the output will 

yield the following comparisons: 

 
 

8.7 Measures of Rank Correlation 

It is commonly known as Spearman Rank Correlation. This is frequently used because of 

its simplicity. This measure of correlation may be used with ordered data or data 

transformed to ranks without any requirements concerning the scale of measurement 

although it is difficult to interpret unless the scale of measurement is interval. The 

measure of correlation as given by Spearman (1904) is usually designated by  (rho) and 

if there is no tie, then 

   = 1 - 
)1n(n

d6
2

2
i




                  (8.12) 

where 
2
id is the sum of square of the differences. If there are not many ties, the 

procedure for calculation is as: 

(i)  Rank the values of one set (say x) from 1 to n and also rank the value of 

second set (say y) from 1 to n. 

(ii)  Find the differences (di) between the ranks of first set and the second set. 

(iii)  Find 
2
id . 

Example 8.12: 
Twelve sets of identical twins were given psychological tests to measure their 

aggressiveness. The emphasis is on examination of the degree of similarity between twins 

within the set. The data were measures of aggressiveness and are given in Table 8.12: 
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Table 8.12 

Twin Set 1 2 3 4 5 6 7 8 9 10 11 12 

First Born 86 72 77 68 91 73 75 92 70 71 88 87 

Second Born 88 77 76 64 96 72 65 90 66 80 81 73 

Calculate the rank correlation coefficients between the two measures aggressiveness and 

test the significance of this correlation coefficient. 

Solution: 

 

First Born (x) R1 Second Born (y) R2 (R1 - R2) = di 
2
id  

(1) (2) (3) (4) (5) (6)
 

86 
72 
77 
68 
91 
73 
75 
92 
70 
71 
88 
87 

8 
4 
7 
1 
11 
5 
6 
12 
2 
3 
10 
9 

88 
77 
76 
64 
96 
72 
65 
90 
66 
80 
81 
73 

10 
7 
6 
1 
12 
4 
2 
11 
3 
8 
9 
5 

-2 
-3 
+1 
0 
-1 
1 
4 
1 
-1 
-5 
1 
4 

4 
9 
1 
0 
1 
1 
16 
1 
1 
25 
1 
16 

Total     76 

The rank of x and y are given in column 2 and 4 respectively of the above table. 

  N = 12  
2
id = 76 

Using formula (8.12), we can calculate  as 

   = 1 - 
)112(12

)76(6
2 

 = 0.7343 

with p < 0.007 

If we calculate Pearson correlation coefficient then r = 0.7215 with p < 0.003 

The significance of this can be tested as: 

(i)  H0 : The measure of aggressiveness of two identical twins are mutually 

independent. 

 H1 : There is either a positive correlation or a negative correlation between  

 the two measures of aggressiveness. 

(ii)   = 0.05 
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(iii)  It is a two tailed-test, the table value at 5% level of significant for 11 df is 

0.623. 

(iv)  The calculated value of  is 0.7343 which is greater than the table value. 

Therefore, it is significant and we say that there is a relation between the 

measures of aggressiveness. The SPSS package is used to calculate the rank 

correlation coefficient. The entry of data is like Pearson's correlation. 

Example S8-10 

The data for example 8.12 will be as follows: 

 

We apply the Spearman Rank Correlation as follows: 

Analyze Correlate Bivariate …  
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Move the two variables to “Variables”. Mark on Spearman.  

  

We click on  to get the following final result: 

 

The p-value = 0.007, the result is significant therefore we can say with 95% level of 

confidence that there is 73.4% correlation between the measure of aggressiveness in the 

population where from this sample has been selected. 
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Chapter 9 
 

Logistic Regression 
 

9.1 Introduction 

In Chapter 6, we studied linear regression but this method of analysis is generally not 

applicable when the dependent variable is binary or has only two values (yes, no), or has 

a nominal measurement level with more than two values. An other method known as 

logistic regression is commonly used for such situations. Before this, a method of 

discreminatnt analysis was also in practice but this allows direct prediction of group 

membership but the assumptions of multivariate normality if independent variables is 

required for prediction rule to be optimal. Logistic regression model requires fewer 

assumptions than discriminant analysis and even when the assumptions required for 

discriminant analysis are not met, logistic regression, still performs well. [see Hosmer 

and Lemesho (1989) and Kleinbaum (1992).] In logistic regression one can directly 

estimate the probability of an event whereas in linear regression it is not possible as they 

do not fall in the inteval 0 to 1. 

The method of logistic regression has become the standard method of analysis for the last 

three decades, when the dependent variable is binary or dichotomous (yes, no). The 

difference between logistic and linear regression lies both in the choice of a model and 

assumptions. Once the difference is accounted for, then logistic method of analysis 

follows the same general principles as used in linear regression. To illustrate logistic 

regression, let us consider a dichotomous disease outcome with zero representing not 

diseased and 1 representing diseased, i.e. coronary heart disease (CHD) may be classified 

as either zero (without CHD) or 1 (with CHD). The CHD is an outcome of some cause, 

so we call CHD as dependent variable. Suppose we are interested in a single dichotomous 

exposure variable, i.e. smoking which is classified as “yes” for smoker and “no” for non-

smoker. To evaluate the extent to which smoking is associated with CHD, we perform 

analysis by the method of logistic regression. We can take into consideration some 

control variables, if we like, such as age, race, sex, etc. The difference between logistic 

regression and odds ratio is: 

i)  The method of logistic regression, is applicable in even elementary analysis. 

ii) The probability of an event is calculated by the use of logistic method, whereas 

we cannot calculate the probability of an event by the method of odds ratio. 

iii) Odds ratio tells us only how much risk of CHD is involved after a certain period 

but does not explain how much the risk of CHD is involved with the increase in 

age whereas the method of logistic regression explains this point also in an 

elegant way. 

In fact, logistic regression is needed by health scientists and others despite the fact that 

some approximation is involved because of the tranformation of the data from one mode 

to another mode. This subject is very vast and it is not possible to cover all the aspects of 
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logistic regression in this book. We have tried to summarize the necessary points which 

are useful for health scientists. 

The logistic regression model is given as:  

  f   =Prob (event) = 
zz

z

e1

1

e1

e





          (9.1) 

where z = 0 + 1X1(simple model) and z = 0 + 1X1
 + 2X2 + ---- for multiple model 

and 0, 1, 2, .... are coefficients,  

Prob (Event) = loge 











 p1

p , p is the proportion of the event of “yes” or “no” and e is the 

base of natural logarithms. 

The probability of the event not occurring is estimated as: 

  Prob (no event) = 1 - Prob (event) (recall binomial distribution) 

Many distribution functions have been proposed for use in the analysis of a dichotomous 
outcome (See Cox-1970) but logistic regression method is very popular for the following 
reasons. 

(1) Logistic function [f(z)] ranges between 0 and 1 and is the primary reason for its 
popularity. The model is designed to describe probabilities, which is always some 
number between 0 and 1. In epidemiological terms, such a probability gives the 

risk of an individual getting a disease, i.e. individual risk is measured by 0  Prob 

 1. By using the logistic model, we can never get a risk estimate either above 1 or 
below 0. This is the primary reason why logistic method is the first choice. 

(2) The shape of the logistic model f(z) is s-shaped. This is considered to be widely 
applicable for the multivariable nature of an epidemiological research. The  
s-shape of f(z) indicates that the effect f(z) on an individual's risk is minimal for 
low z's until some threshold is reached. This risk then rises rapidly over a certain 
range of intermediate z values, and then remains extremely high around 1. The 
shape is indicated in Fig. 9.1. 

 
Fig.9.1: Shape of the logistic regression 

 

f(z)  1 1 

S-shape 
f(z)  0 

-  0 
+  

z 
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By the use of logistic model, we can estimate the probability that the disease will develop 

during a defined period say t0 to t
1
. 

9.2 Fitting of Simple Logistic Model 

For fitting of logistic regression following example is given. 

Example 9.1:  
In a study of 100 subjects that participated in the study, the age in years alongwith the 

presence (yes=1) and absence (no = 0) of evidence of coronary heart disease is recorded. 
 

Table 9.1 
Age and Coronary Heart Disease Status (CHD) of 100 Subjects 

ID AGE CHD ID AGE CHD ID AGE CHD 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

20 
23 
24 
25 
25 
26 
26 
28 
28 
29 
30 
30 
30 
30 
30 
30 
32 
32 
33 
33 
34 
34 
34 
34 
34 
35 
35 
36 
36 
36 
37 
37 
37 
38 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

 

38 
39 
39 
40 
40 
41 
41 
42 
42 
42 
42 
43 
43 
43 
44 
44 
44 
44 
45 
45 
46 
46 
47 
47 
47 
48 
48 
48 
49 
49 
49 
50 
50 

0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 
1 
0 
0 
1 
0 
1 

68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

51 
52 
52 
53 
53 
54 
55 
55 
55 
56 
56 
56 
57 
57 
57 
57 
57 
57 
58 
58 
58 
59 
59 
60 
60 
61 
62 
62 
63 
64 
64 
65 
69 

0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 

  *AG = Age groups 

It is of interest to explore the relationship between age and presence or absence of CHD 

in this study. 
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Solution: 

The outcome (dependent) variable is CHD, which is dichotomous, therefore, multiple 

linear regression cannot be fitted, instead logistic model will be fitted. Because of the 

complexity in calculations the IBM SPSS package is used to fit the logistic regression, as 

can be seen in the following steps: 

Example S9-1 

The data will be in 3 columns and a part of the data is as follows: 

 

The Variable View is as follows: 

 

We apply the Binary logistic as follows: 

Analyze Regression Binary Logistic…  
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Move the variable “CHD” to Dependent:  

Move the variable “Age” to Covariates:  

  

Click on  and select the following: 

 

Now click on  then , to get the following outputs: 

SPSS output for logistic regression 

 

 The value -2 log likelihood for model containing independent variables = 107.353. 

Model Summary

107.353 .254 .341

Step

1

-2 Log

likelihood

Cox & Snell

R Square

Nagelkerke

R Square
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Classification 
Table 

a 

45 12 78.
9 14 29 67.
4 74.
0 

Observe
d 0 

1 

CH
D 

Overall 
Percentage 

0 1 

CH
D 

Percenta
ge Corre

ct 

Predict
ed 

The cut value is 
.500 

a.   

From the above Classification Table for CHD we see that 45 patients without CHD were 

correctly predicted by the model not to have CHD. Similarly 29 men with CHD were 

correctly predicted to have CHD. A total of 26 (12 + 14) men were miss classified in the 

analysis- 12 men with negative CHD and 14 men with positive CHD, whereas 78.95% of 

the men were correctly classified without disease and 67.44% were correctly classified as 

with CHD. Overall 74% of the 100 men were correctly classified.  

 

Omnibus Tests of Model 
Coefficients 

29.310 1 .000 

29.310 1 .000 

29.310 1 .000 

Step 

Block 

Model 

Chi-square df Sig. 

 

The value of model chi-square is 29.31 with p = 0.000. This is highly significant. 

Therefore we are 95% confident that the fitted model is appropriate. 

 

Interpretation of results 

(1) exp(e

 ) = OR = e

0.111
 = 1.1173 

A value of 1.12 of odds ratio means that with the increase of one year in age the risk 

of CHD is increased 1.12 times provided all other factors are kept constant. Since one 

year increase does not give any significant change, therefore, we can see the 

significant change after 10 years. This is calculated as: 

 e
years × 

 = e
10 × 0.1109

 = 3.03 

This indicates that with an increase of 10 years in age the risk of CHD increases 

3.03 times.  

  

Variables in the Equation

.111 .024 21.25 1 .000 1.117 1.066 1.171

-5.309 1.134 21.94 1 .000 .005

AGE

Constant

Step

1
a

B S.E. Wald df Sig. Exp(B) Lower Upper

95.0% C.I.f or EXP(B)

Variable(s) entered on step 1: AGE.a. NCBA&E
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(2) Wald's statistic, W 

   
2

2

0241.0

1109.0ˆE.S/ˆW 







 = 21.18,           (9.2) 

This estimate, under the hypothesis that 1 = 0, follows a standard normal 

distribution, N(0, 1). In this example, Wald statistic shows that age has significant 

affect on CHD, i.e. as age increases, chances of CHD increases. Hauck and Donner 

(1977), examined the performance of Wald statistic and found that it behaved in an 

aberrant manner, after failing to reject when the coefficient is significant. Moreover, it 

has an undesirable property, i.e. this method fails when the coefficient  ̂  is large. If 

the coefficient is large, the SE  ̂  is too large, then the Wald-statistic is too small, to 

reject the null hypothesis, when in fact the null hypothesis should be accepted. 

Therefore, when coefficient is large, one should not rely on Wald-statistic, instead 

one should build a model with and without that variable and base the hypothesis test 

on chi-square test. 

(3) Partial Correlation Coefficient(R) 

R ranges from -1 to +1. A positive value of R indicates that as the variable increases 

in value so does the likelihood of the event occurring. If R is negative, the opposite is 

true. Small value of R indicates that the variable has little contribution to the model.  

9.2.1 Application of simple logistic model for prediction 

We can apply the simple logistic model to find the chances of a disease of a person at a 

given age. If the probability is less than 0.5, we say that the event is not likely to occur 

but if the probability is 0.5 or more we say that there is a chance of the occurrence of an 

event. The higher the probability the greater the chance of occurrence of the disease. 

Using the results of Example 9.1. in (9.2) 

  Z = -5.31 + 0.111 (age) 

The probability of the occurrence of an event (CHD) may be calculated as: 

  P(CHD) = 
Ze1

1


        

Suppose the age is 40 years then 

  Z = -5.31 + 0.111(40) = -0.87 and e
-(-0.87)

 = 2.39 

Using (9.1) the probability of CHD will be 

  P(CHD) = 
39.21

1


 = 0.29 

On the basis of data given if the age of a person is 40, there is a small chance of CHD as 

the probability is less than 0.50 or we say that there is only 29% chance of CHD. 
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Again suppose the age = 60, then from the model Z = 1.35 and e
-1.35

 = 0.26. The 

probability of the occuring of CHD will be  

 P(CHD) = 
26.01

1


 = 0.79 

Since the probability is high, so a person who is approaching the age of 60 has about 80% 

chances of CHD.  

We will show how to calculate the probabilites directely through the IBM SPSS in the 

following example: 

Example S9-2 

We will add the age of 40 and age of 60 to the data and apply the Binary logistic and get 

the predicted values directly, as follows: 

Analyze Regression Binary Logistic…  

 

Move the variable “CHD” to Dependent:  

Move the variable “Age” to Covariates: choose “save” 

Click on  and choose “Probabilites” for the Predicted Values, as follows: 
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Now click on  then , to find out the predicted values added to the data 

directly, as: 

 

9.2.2 Confidence limits for odds ratio 

95% confidence limit may be calculated as: 

    ˆE.S96.1ˆ
e                   (9.3) 

   = e
0.111 ± 1.96 (0.0241)

 or [1.07 , 1.17]  

The odds ratio is greater than 1 and the confidence limits does not include 1 so age is 

playing a significant role in the CHD. We can say as the age increases there are more 

chances of CHD. The other formula for the calculation of confidence limits is as: 

  (OR   ̂E.S96.1e , OR   ̂E.S96.1e ) = [1.07 , 1.17]         (9.4) 

Anyone of the above formula can be used for the calculation of confidence limits. 

We will show how to calculate the confidence limits for the odds ratio, through the IBM 

SPSS in the following example: 
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Example S9-3 

We apply the Binary logistic for the data in example S9-1, as follows: 

Analyze Regression Binary Logistic…  

 

Move the variable “CHD” to Dependent:  

Move the variable “Age” to Covariates: choose “Options” 

Mark on “CI for exp(B), at 95%; 
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Now click on  then , to find out the 95% Confidence limits for odds ratio, 

as: 

 

9.3 The Multiple Logistic Model 

Like linear regression model we will generalize the simple logistic regression model to 

the case of multiple logistic regression model. This has been defined before and is as: 

  Prob(event) = 
Z

Z

e1

e


 = 

Ze1

1


    

where: 

  Z = 
0
 + 

1
X

1
 + 

2
X

2
 + .... + 

K
X

K 

Example 9.2:   
Suppose the disease of interest is CHD. Here CHD is coded as 1 if a person has the 

disease and 0 otherwise. There are three independent variable such as X
1
 = Age 

(quantitative); X
2
 = ECG (electro-cardiogram status) is 1 if abnormal and 0 if normal;  

X
3
 = CAT (catecholamine level) is 1 if high and 0 if low. The data are of 609 white males 

[Kleinbaum (1992)].  

Solution: 

Here CHD is a dependent variable and dichotomous. In order to see the effect of Age, 

ECG and CAT, we fit multiple logistic regression model taking Age, ECG and CAT as 

independent variables. These 609 people are followed for 9 years to determine CHD 

status. 

Multiple logistic regression model was fitted using IBM SPSS package and the 

coefficients are obtained 

  0̂  = -3.911, 1̂  = 0.029, 2̂  = 0.342 and 3̂  = 0.652, therefore 

  Z = -3.911 + 0.029(Age) + 0.342(ECG) + 0.652(CAT)       (9.5) 

The odds ratio for the variables alongwith coefficients are as:- 

 
Table 9.3 

Variable Coefficient OR 

Age 
ECG 
CAT 
Constant 

0.029 
0.342 
0.652 
-3.911 

1.03 
1.41 
1.92 
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Since the odds ratio are greater than 1 in all cases, therefore, Age, abnormal ECG, (code 

is 1 if abnormal) and high CAT (catecholamine level is 1 of high) will have significant 

role in CHD. The odds ratio for the age is 1.03, therefore the increase of one year in age 

increases the risk of CHD by 1.03 times more. The odds ratio for ECG is 1.41 and the 

code is 1 if ECG is positive, therefore the risk of CHD is 1.41 more if the ECG is 

negative. Similarly the odds ratio for the CAT is 1.92 and code for abnormal CAT is 1, 

the risk of CHD is 1.92 time more if CAT is abnormal. 

Suppose we want to use our fitted model, to obtain the predicted risk for a certain 

individual. For this purpose, we would like to specify the values of Age, ECG and CAT. 

suppose the Age is 45, ECG = 1 and CAT = 0, then from (9.5) 

  Z = -3.911 + 0.029(45) + 0.342(1) + 0.652(0) = -2.264 

  P(predicted risk) = %4.9
62.10

1

e1

1

e1

1
264.2Z





 

 

Then the individual has 9.4% risk of CHD over the period of follow up study. If we say 

that Age = 45, ECG = 1 and CAT = 1, then we have 

  Z = -3.911 + 0.029(45) + 0.342(1) + 0.652(1) = -1.16 

  P(predicted risk) = %6.16
013.6

1

e1

1
)162.1(


 

 

The person has 16.6% risk of CHD over the period of follow up study. 

From the above example we conclude that a person whose age is 45, ECG is abnormal 

(1) but CAT is low (0), the risk of CHD is 9.4% whereas, the same person whose CAT is 

also high the risk of CHD is 16.6%. 

The risk ratio can be calculated as: 

  77.1
094.0

166.0

)0CAT(P

)1CAT(P
PR 




            (9.6) 

Thus using a fitted model, we find that the person with high CAT has 1.77 times more 

risk than a person with low CAT. 

Note that two conditions must be satisfied to estimate risk ratio (RR) directly. First that 

we must have follow up study so that we can legitimately estimate individual risk. 

Second, for the two individuals being compared, we must specify values for all the 

independent variables in our fitted model to compute risk for each individual. If either of 

the above condition is not satisfied we cannot estimate risk ratio directly but it may be 

possible to estimate risk ratio indirectly. For this purpose odds ratio is computed. In fact 

the odds ratio is the only measure of association directly estimated from a logistic model, 

regardless of whether the study design is follow up, case-control or cross-sectional. 

Though logistic model is applicable to case-control and cross-sectional studies, there is 

one important limitation in the analysis of such studies. This model cannot be used to 
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predict individual risk for case-control or cross-sectional studies whereas in follow-up 

studies a fitted logistic model can be used with specified independent variables. In fact 

estimates of odds ratio can be obtained for case-control and cross-sectional studies. 

For a 2x2 table, risk estimates can be used only if the data are derived from a follow-up 

study, whereas odds ratio is appropriate if the data are derived from case-control or cross-

sectional study. 

Example 9.3:  
The treatment and prognosis depends how much the disease has spread. One of the 

regions to which a cancer may spread is the lymph nodes. If the lymph nodes are 

involved the prognosis is generally poorer than if they are not, that is why it is desirable 

to establish as early as possible whether the lymph nodes are cancerous. For certain 

cancers exploratory surgey is done to determine whether the nodes are cancerous, since 

this will determine what treatment is needed. If one could predict whether the nodes are 

affected or not on the basis of data, then surgery is not required. By doing so considerable 

discomfort and expense could be avoided. For this purpose Brown (1982) took a sample 

of 53 men with possible prostrate cancer. 

For each patient age, serum acid phophate(ACID). the stage of the disease (STAGE); an 

indication how advanced the disease is, the grade of the tumor; an indication of 

malignancy, X-Ray, as well as the cancer has spread to the regional lymph nodes at the 

time of surgery was recorded. This data is given in Table 9.4 and has been analysed using 

logistic model and prediction whether nodes have been affected are made. 

Solution: 

X-Ray, STAGE, GRADE are qualitative( 0, 1) variable and are coded as 1 if  

X-Ray indicates positive result, the value is 1 if the Stage is advanced, the value is 1 if it 

is malignant tumor. Node involvement is dependent variable coded as yes or no or 1 or 0. 

The result of the Logistic regression model using IBM SPSS package is given as : 

 (i) 22 Table 

Table 9.4: 
predicted 

Observed 

 0 1  

0 28 5 84.85% 

1 7 13 65.00% 

 35 18 77.36% 

  -2log likelihood = 70. 252 

It can be seen from the table that 28 men with negative nodes are predicted correctly 

by the logistic model; 13 men with positive nodes were correctly predicted to have 

positive nodes. The off diagonal entries (12) of the table were missclassified, 5 men 

with negative nodes and 7 men with positive nodes; 84.85% were correctly classified 

without diseases. 65% were correctly classified with diseased nodes. Overall 77.36% 

of 53 men were correctly classified. 
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 (ii) Coefficients 
 

Table 9.5 

variable coeff. S.E 
Wald statistic 

p-value R OR 
T F 

age -.069 0.058 1.20 1.44 0.23 0.00 0.93 

ACID 0.024 0.013 1.84 3.39 0.06 0.14 1.02 

X-Ray 2.045 0.807 2.53 6.40 0.01 0.25 7.73 

GRADE 0.761 0.771 0.99 0.98 0.32 0.00 2.14 

STAGE 1.564 0.774 2.02 4.08 0.04 0.17 4.78 

Constant 0.618 3.460 - - - - - 

Let us first interpret the result through Wald’s statistic. In the table given above only  

X-ray and stage appear as significant as the t- values are more than 1.96 at 5% level 

of significant variables. We conclude that positive result of X-ray and Stage will 

indicate that nodes are affected. As mentioned earlier one cannot rely on the results of 

Wald’s statistic as this method fails when coefficients are large. The p-values of  

X-Ray and Stage also indicate that variables have significant contribution. All other 

variables appear as non significant. This can be interpreted through odds ratio as: 

Since the coefficient of X-ray is positive, and high code is 1 for X-ray which indicates 

positive result, odds ratio is 7.33, therefore a man whose X-ray report is positive has 

7.33 times more chances that nodes are affected than the person whose X-ray result is 

negative. Again the coefficient of the Stage is positive and high code is 1 if the stage 

of the disease is advanced,odds ratio is 4.7, therefore a person whose stage is 

advanced has about 5 times more chances that nodes are affected.  

The probability( predicted) of the involvement of nodes will be calculated 

 P(nodal involvement) = 
ze1

1


 

where: 

 z = 0.618-0.069(age) + 0.024(ACID) + 2.045(X-Ray)  

  + 0.761(GRADE) + 1.564(STAGE). 

Case 1 

Suppose the age of a person is 66 years; his serum phosphatase level is 48 and all other 

have zero values then 

  z = 0.0618 - 0.693(66) + 0.0243(48) = -3.346, 

The probability of nodal involvement may be calculated using (9.3) 

  P(nodal involvement) = %4.3034.0
e1

1
)346.3(


 

 

Since the probability is very low, it can be predicted that nodes are unlikely to be 

malignant. 
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Case 2  

  Age = 60 years; serum Acid Phophatase = 62; X-ray =1(positive) 

the z value will be  

  z = 0.0618 - 0.0693(60) + 0.0243(62) + 2.0453(1) = -0.54 

The estimated probability will be = P (malignant node) = 0.37 

Again the probability is less than 0.50, therefore we conclude that nodes are unlikely to 

be malignant. 

Case 3  

  Age = 60, ACID = 62, X-Ray = 1, Grade = 1 Stage = 0 

The z is 0.22. Therefore the estimated probability will be = P(malignant node) = 0.554 

Since it is more than 50% we say under the rule that nodes are likely to be malignant. 

Case 4  

  Age = 60, ACID = 62, X-Ray = 1, Grade = 1, Stage = 1  

The estimated probability will be 

  P(malignant node) = 0.73 

There is a high chance that nodes are likely to be malignant.. 

Example 9.4:  
Data for the risk factors associated with low infant birth weight were given in example 

Chapter-6 alongwith code sheet. The dependent variable is low birth weight. It is 1 if 

weight is less than 2500 pounds, otherwise = 0, the independent variables  

are Age of the mother (Age); weight in pounds at the last menstural period (LWT); 

smoking status (yes = 1, no = 0); race (white = 1, black = 2, other = 3); History of 

premature labor (none = 0, yes = 1), history of hypertension (yes = 1, no = 0), presence of 

uterine irritability (yes = 1, no = 0), number of physician visit (none = 0, one = 1). Fit the 

multiple logistic regression and interpret the result. 

Solution:  

The data are entered like multiple linear regression, instead of clicking linear regression 

we now go to logistic regression. Here Low birth weight with coding system is dependent 

variable where age, number of visits of physicians, history of hypertension, weight at the 

last menstrual period, history of premuature labor, race, smoking, and uterine irritability 

are independent variables.  

Because of the complexity of the data the caculations are done using SPSS package and 

the output is given below 

SPSS output for Logistic Regression 
Model Summary 

-2 Log Likelihood Cox & Snell R Square Nagelkerke R Square 

201.614 0.160 0.226 
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The value of –2log likelihood for model containing independent variable = 201.614. 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 33.058 8 .000 

Block 33.058 8 .000 

Model 33.058 8 .000 

Model chi-square gives significant result with p = 0.000, therefore the model is an 

appropriate one. 

Classification Table 

Observed 

Predicted 

0 1 Percentage Correct 

 0 120 10 92.3 
 1 37 22 37.3 

Overall 
Percentage 

  75.1 

From the above Classification Table we can see that 120 children with high birth weight 

were correctly predicted 22 children with low birth weight were predicted correctly 

classified a total of 47 children were miss-classified 10 with high birth weight, and 37 

with low birth weight. 92.03% of high birth weights are correctly classified, whereas 

37.3% with low birth weight were correctly classified overall 75.1% children were 

correctly classified. 

 

Variable(s) entered are AGE, LWT, RACE, PTL, SMOKE, HT, UI, FTV. 

If we look into the result of Wald’s statistics, hypertension (HT), weight at the last 

menstrual period (LWT), history of premature labor (PTL), race, smoking (Smoke) and 

presence of uterine irritability (UI) are appearing as significant variables.. Since Wald’s 

statistic does not provide reliable result, therefore we try to inference through odds ratio. 

The elimination process will be used by the SPSS package and the results are as follows:  

Note that step 4 is the final answer. 

Variables in the Equation

-.033 .036 .798 1 .372 .968 .901 1.040

-.010 .007 2.324 1 .127 .990 .977 1.003

.482 .217 4.934 1 .026 1.620 1.058 2.480

.926 .399 5.388 1 .020 2.523 1.155 5.513

.694 .431 2.599 1 .107 2.002 .861 4.656

1.933 .685 7.972 1 .005 6.911 1.806 26.442

.799 .457 3.065 1 .080 2.224 .909 5.443

.055 .189 .086 1 .770 1.057 .729 1.532

-.563 1.27 .198 1 .656 .569

AGE

LWT

RACE

PTI

SMOKE

HT

UI

FTY

Constant

B S.E. Wald df Sig.

Exp

(B) Lower Upper

95.0% C.I.f or

EXP(B)
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SPSS output after Elinimation Process 

 

 

 

Here Hypertension, Histrory of premature labor, race and uterine irritability are appearing 

as significant variables with odds ratio 6.3,3.5, 1.5, and 2.5 respectively.  

Now dummy variables can be created by the automatic process of the logistic regression 

model and the result is given as: 

Model Summary

224.638 .052 .073

217.790 .085 .120

212.363 .111 .157

208.303 .130 .183

Step

1

2

3

4

-2 Log

likelihood

Cox & Snell

R Square

Nagelkerke

R Square

Classification Tablea

120 10 92.3

44 15 25.4

71.4

Observed

Step 4

0 1

BWT1 Percentage

Correct

Predicted

The cut v alue is .500a. 

Variables in the Equation

1.035 .332 9.750 1 .002 2.816 1.470 5.393

-1.074 .188 32.49 1 .000 .342

1.137 .339 11.25 1 .001 3.117 1.604 6.056

1.693 .661 6.562 1 .010 5.434 1.488 19.843

-1.217 .202 36.37 1 .000 .296

.434 .189 5.270 1 .022 1.544 1.066 2.237

1.321 .361 13.36 1 .000 3.747 1.845 7.608

1.690 .678 6.220 1 .013 5.421 1.436 20.459

-2.096 .451 21.55 1 .000 .123

.412 .192 4.604 1 .032 1.510 1.036 2.199

1.249 .367 11.58 1 .001 3.488 1.698 7.164

1.835 .681 7.255 1 .007 6.264 1.648 23.805

.909 .447 4.142 1 .042 2.481 1.034 5.953

-2.194 .460 22.70 1 .000 .112

PTI

Constant

Step

1

PTI

HT

Constant

Step

2

RACE

PTI

HT

Constant

Step

3

RACE

PTI

HT

UI

Constant

Step

4

B S.E. Wald df Sig.

Exp

(B) Lower Upper

95.0% C.I. for

EXP(B)

PTL 

PTL 

PTL 

PTL 
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Categorical Variables Codings

95 1.000 .000

26 .000 1.000

68 .000 .000

1

2

3

RACE

Frequency (1) (2)

Parameter coding

Omnibus Tests of Model Coefficients

10.034 1 .002

10.034 1 .002

10.034 1 .002

6.847 1 .009

16.882 2 .000

16.882 2 .000

4.763 1 .029

21.644 3 .000

21.644 3 .000

Step

Block

Model

Step

Block

Model

Step

Block

Model

Step 1

Step 2

Step 3

Chi-square df Sig.

Model Summary

224.638 .052 .073

217.790 .085 .120

213.028 .108 .152

Step

1

2

3

-2 Log

likelihood

Cox & Snell

R Square

Nagelkerke

R Square

Classification Tablea

121 9 93.1

45 14 23.7

71.4

Observed

0

1

BWT1

Overall Percentage

Step 3

0 1

BWT1 Percentage

Correct

Predicted

The cut v alue is .500a. 
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Note that race is not appearing as significant whereas Race1 appear as significant in set 

variables not in the equation. It happens so as the race race2 is not significant. 

 

Note that in automatic process Race1 is not appearing as significant variable 

Interpretation of the Coefficients 

1. Hypertension (HT)  
The odds ratio for hypertension is 6.4 and code for hypertension is high, therefore 

hypertensive mothers have 6.4 times more chance of having low weight babies on the 

average. The confidence limits for this variable 1.727 to 23.509. This does not incude 

1, so hypertension plays a significant roll. 

2. History of premature labor (PTL) 

Since the odds ratio is 2.93, therefore all those cases which have premature labor will 

have 2.93 times chance of having low birth weight than those who do not have 

premature labor. The confidence limts for the PTL are 1.491 ~ 3.758 which does not 

include 1 so this factor plays a significance roll. 

3. Presence of Uterine Irritability 

The odds ratio for uterine irritability is about 2.6, therefore all those mothers who 

have problem of uterine irritability will have 2.6 times more chance of having low 

weight babies at birth. 

Variables in the Equation

1.035 .332 9.750 1 .002 2.816 1.470 5.393

-1.074 .188 32.49 1 .000 .342

1.137 .339 11.25 1 .001 3.117 1.604 6.056

1.693 .661 6.562 1 .010 5.434 1.488 19.843

-1.217 .202 36.37 1 .000 .296

1.075 .345 9.725 1 .002 2.930 1.491 5.758

1.852 .666 7.730 1 .005 6.372 1.727 23.509

.967 .439 4.863 1 .027 2.630 1.114 6.212

-1.373 .220 38.92 1 .000 .253

PTI

Constant

Step

1

PTI

HT

Constant

Step

2

PTI

HT

UI

Constant

Step

3

B S.E. Wald df Sig. Exp(B) Lower Upper

95.0% C.I. for

EXP(B)

Variables not in the Equation

2.354 1 .125

3.771 1 .052

5.495 2 .064

5.492 1 .019

1.190 1 .275

.857 1 .355

.242 1 .623

AGE

LWT

RACE

RACE(1)

RACE(2)

SMOKE

FTY

VariablesStep

3

Score df Sig.

PTL 

PTL 

PTL 
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4. Race  

Before the interpretation of the result one should look into the coding system of the 

race. After the creation of dummy variables the odds ratio for white race is 0.44. If we 

recall Chapter 6, the code is 1 for white race and the odds ratio is less than 1 therefore 

white race has protection against low birth weight. In simple language other race will 

have babies less than average weight. If we look into the analysis without creating the 

dummy variables we see that the coefficient of race is positive and the odds ratio for 

the race is 1.5; code for other race is 3 therefore other race will have the babies low in 

weight on the average,than the black and white repectively. 

The method of multiple regression analysis was also used to analyse this data in Chapter-

6 and was found that variables like hypertension,history of premature labor, race, uterine 

irribability and smoking turned out to be significant. In logistic regression hypertension, 

premaiure labour, race and uterine irritability are significant factors, where smoking is 

insignificant. The reason is very simple as multiple regression uses actual birth weight 

whereas in logistic regression we used binary system for birth weight, therefore some 

information is lost. It is recommended that logistic regression be used binary data is to be 

analysed.  

Example 9.5:  

The variables given in Table 9.7 relate to the study of risk factors associated with ICU 

mortality. Data were collected at Baystate Medical center, Sprinng Field, Massacuhusetts 

U.S.A. The primary out come (dependent variable) is vital status (live or dead) at hospital 

discharge (STA). The major goal of this study was to develop a logistic model to predict 

the probability of survival to hospital discharges of patients. The variables associated 

with this study and code sheet are given below. Analyze the data by logistic regression 

and interpret the results. The data is given at the end of this Chapter. Analyze the data 

and interprete the result. 

 

Table 9.7 

S# Variable Code Number ID 

1 vital status 0=live,1=dead ST 

2 Age Years AGE 

3 Gender 0=male,1=female GE 

4 Race 1=white,2= black,3=other RA 

5 service at ICU 0=medical, 1= surgical SE 

6 Cancer 0=no, 1=yes  CA 

7 history of chronic renal failure 0=no, 1= yes CR 

8 infection probable at ICU admission 0=no, 1=yes IN 

9 CPR prior to ICU 0=no,1=yes CP 

10 systolic blood pressure mmHg BP 

11 heart rate at ICU admission beat/min HR 

12 previous admission to an ICU within 6 months No=0, yes=1 PA 

13 type of admission 0= elective, 1= emergency TY 

14 long bone, multiple, neck, single area,  

or hip fracture 

0=no, 1=yes FR 
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S# Variable Code Number ID 

15 PO2 from initial blood 0 if > 6o, 1 if  60 PO 

16 Ph from inital blood gases 0 if  7.25, 1 if < 7.25 PH 

17 POC2 from initial blood gases 0 if  45, 1 if > 45 PC 

18 bicarbonate from initial blood gases 0 if  18, 1 if < 18  BI 

19 creatinine from initial blood gases 0 if 2, 1 if >2 CE 

20 Level of consciousness at ICU admission 0 = no coma or stupor,  

1= deep stupor, 2= coma 

LO 

Example S9-4 

The data will be in columns and a part of the data is as follows: 

 

We apply the Binary logistic as follows: 

Analyze Regression Binary Logistic…  
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Move the variable “st” to Dependent:  

Move all other variables to Covariates:  

 

 

Click on Categorical to specify the categorical variables (i.e with Nominal or Ordinal 

measurements) 

Now click on Method then choose Forward LR (to select the best Model): 
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Now click on , to get the following outputs: 

 

SPSS output after the creation of dummy variables by automatic process 

 

Model Summary

172.697 .128 .203

163.558 .167 .264

151.540 .216 .341

144.907 .241 .382

Step

1

2

3

4

-2 Log

likelihood

Cox & Snell

R Square

Nagelkerke

R Square
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Classification Table a 

153 7 95.6 

29 11 27.5 
82.0 

Observed 
0 
1 

Vital 
status 

Overall 
Percentage 

0 1 
Vital 
status 

Percentage 

Correct 

Predicted 

The cut value is .500 a.  

 

Interpretation of the variables 

Age, history of chronic renal failure (CR), level of consciousness (LO) and type of 

admission (TY) are appearing as significant variables with odds ratio 1.03,3.3, .016, 0.14 

and 15.5. The interpretation of individual variable is given below: 

Age 

The coefficient is positive and odds ratio is 1.03, therefore as the age increases by one 

year the chances of death of the patient is increased 1.03 time. 

History of chronic renal failure 

The coefficient is positive, therefore a patient who is suffering with this problem has 

more chance of death. The odds ratio is 3.3. The chances of death of the patient suffering 

from renal failure appears 3.3 times more than those who are not suffering with renal 

failure. 

Type of admission 

The coefficients is positive and odds ratio is 15.5, therefore a patient admitted under 

emergency has 15.5 times more chances of death.  

Hosmer and Lemeshow Test

.003 1 .955

.167 2 .920

5.496 8 .703

Step

2

3

4

Chi-square df Sig.

Variables in the Equation

.028 .012 5.878 1 .015 1.028 1.005 1.052

1.191 .546 4.756 1 .029 3.291 1.128 9.599

2.742 1.041 6.945 1 .008 15.526 2.020 119.356

4.657 2 .097

-1.949 .924 4.446 1 .035 .142 .023 .872

8.517 22.75 .140 1 .708 4998.533 .000 1.2E+23

-3.927 1.576 6.212 1 .013 .020

AGE

CR

TY

LO

LO(1)

LO(2)

Constant

Step 4

B S.E. Wald df Sig. Exp(B) Lower Upper

95.0% C.I. for

EXP(B)
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Level of Consciousness at ICU admission 

If we look into the coding sheet,low code is for that patient who has no coma stupor and 
high code for the coma patient at the time of admission. We created dummy variables 
with base zero i.e a patient admitted in the hospital without coma. The odds ratio is 0.142 
which is less than 1 and the coefficient is negative. We say that a patient without coma 
has about 86% chances that he would be discharged alive. 

9.4 The Ordinal Regression 

Ordinal Regression allows us to model the dependence of a polytomous ordinal response 
on a set of predictors, which can be factors or covariates. The design of Ordinal 
Regression is based on the methodology of McCullagh (1980, 1998. 

Standard linear regression analysis involves minimizing the sum-of-squared differences 
between a response (dependent) variable and a weighted combination of predictor 
(independent) variables. The estimated coefficients reflect how changes in the predictors 
affect the response. The response is assumed to be numerical, in the sense that changes in 
the level of the response are equivalent throughout the range of the response. For 
example, the difference in weight between a person who is 70 kg weight and a person 
who is 60 kg weight is 10 kg, which has the same meaning as the difference in weight 
between a person who is 90 kg weight and a person who is 80 kg weight. These 
relationships do not necessarily hold for ordinal variables, in which the choice and 
number of response categories can be quite arbitrary. 

As an example, Ordinal Regression could be used to study patient reaction to drug 
dosage. The possible reactions may be classified as none, mild, moderate, or severe. The 
difference between a mild and moderate reaction is difficult or impossible to quantify and 
is based on perception. Moreover, the difference between a mild and moderate response 
may be greater or less than the difference between a moderate and severe response. 

Generalized linear models. An alternative approach uses a generalization of linear 
regression called a generalized linear model to predict cumulative probabilities for the 
categories. With this method, we fit a separate equation for each category of the ordinal 
dependent variable. Each equation gives a predicted probability of being in the 
corresponding category or any lower category. 

Generalized linear models are a very powerful class of models, which can be used to 
answer a wide range of statistical questions. The basic form of a generalized linear model 
is shown in the following equation: 

  1 1 2 2( ) ...ij j i i k iklink b x b x b x          

where 

link( ) is the link function 

ij is the cumulative probability of the j
th

 category for the i
th

 case 

j is the threshold for the j
th

 category 

P is the number of regression coefficients 

xi1...xip are the values of the predictors for the i
th

 case 

1...p are regression coefficients 
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Link function. The link function is a transformation of the cumulative probabilities that 

allows estimation of the model. Five link functions are available, summarized in the 

following table. 
 

Function Form Typical application 

Logit log( x / (1−x) ) Evenly distributed categories 

Complementary log-log log(−log(1−x)) Higher categories more probable 

Negative log-log −log(−log(x)) Lower categories more probable 

Probit F−1(x) Latent variable is normally distributed 

Cauchit (inverse Cauchy) tan(π(x−0.5)) Latent variable has many extreme values 

Note: If we didn’t chose the link function then the default is the (logit) 

Example 9.6: 

Data for a study done to predict a baby’s weight category, given various medical and 

personal characteristics for 189 women. From their database, the Birth Weight Category 

is the (dependent) variable, with four ordinal levels: >3500 grams, 3000-3500 grams, 

2500-3000 grams , and <2500 grams. Potential predictors consist of various medical and 

personal characteristics of women, including age, race (white = 1, black = 2, other = 3), ); 

smoking status (yes = 1, no = 0), premature labor (none = 0, yes = 1), hypertension  

(yes = 1, no = 0), and Uterine Irritability (yes = 1, no = 0) 

Example S9-5 

The data will be in 7 columns and a part of the data is as follows: 

 

The variable view is as follows:  

 

The target variable is the baby’s weight category and we apply the Ordinal regression as 

follows: 
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Analyze Regression Ordinal …  

 

Move the Target ordinal variable “BWC” to Dependent: 

Move the Categorical variables to Factors:  

Move the Containous variables to Covariate(s):  
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Now click on , to get the following outputs: 

SPSS outputs  
Case Processing Summary 

 N Marginal Percentage 

Birth Weight Category 

>3500 grams 46 24.3% 

3000-3500 grams 46 24.3% 

2500-3000 grams 38 20.1% 

<2500 grams 59 31.2% 

RACE 

white 96 50.8% 

black 26 13.8% 

other 67 35.4% 

Smoke status 
No 115 60.8% 

Yes 74 39.2% 

Hypertension 
No 177 93.7% 

Yes 12 6.3% 

Uterine Irritability 
No 161 85.2% 

Yes 28 14.8% 

Valid 189 100.0% 

Missing 0  

Total 189  

N -N provides the number of observations fitting the description in the first column. For 

example, the first four values give the number of observations for which the “Birth 

Weight Status” is >3500 grams, 3000-3500 grams, 2500-3000 grams and <2500 grams, 

respectively.  

Marginal Percentage - The marginal percentage lists the proportion of valid 

observations found in each of the outcome variable's groups. This can be calculated by 

dividing the N for each group by the N for "Valid". Of the 189 subjects with valid data, 

46 were categorized as birth weight >3500 grams. Thus, the marginal percentage for this 

group is (59/189) * 100 = 31.2 %.  

Valid - This indicates the number of observations in the dataset where the outcome 
variable and all predictor variables are non-missing.  

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

449 

Missing - This indicates the number of observations in the dataset where data are missing 
from the outcome variable or any of the predictor variables. 

Total - This indicates the total number of observations in the dataset--the sum of the 
number of observations in which data are missing and the number of observations with 
valid data. 

Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 423.904    
Final 386.608 37.295 7 .000 

Link function: Logit. 

Model - This indicates the parameters of the model for which the model fit is calculated. 
"Intercept Only" describes a model that does not control for any predictor variables and 
simply fits an intercept to predict the outcome variable. "Final" describes a model that 
includes the specified predictor variables and has been arrived at through an iterative 
process that maximizes the log likelihood of the outcomes seen in the outcome variable. 
By including the predictor variables and maximizing the log likelihood of the outcomes 
seen in the data, the "Final" model should improve upon the "Intercept Only" model. This 
can be seen in the differences in the -2(Log Likelihood) values associated with the 
models.  

-2(Log Likelihood) - This is the product of -2 and the log likelihoods of the null model 
and fitted "final" model. The likelihood of the model is used to test of whether all 
predictors' regression coefficients in the model are simultaneously zero and in tests of 
nested models. 

Chi-Square - This is the Likelihood Ratio (LR) Chi-Square test that at least one of the 
predictors' regression coefficient is not equal to zero in the model. The LR Chi-Square 
statistic can be calculated by -2*L(null model) - (-2*L(fitted model)) = 423.904- 
386.608= 37.295 

df - This indicates the degrees of freedom of the Chi-Square distribution used to test the 
LR Chi-Square statistic and is defined by the number of predictors in the model.  

Sig. - This is the probability of getting a LR test statistic as extreme as, or more so, than 
the observed under the null hypothesis; the null hypothesis is that all of the regression 
coefficients in the model are equal to zero. In other words, this is the probability of 
obtaining this chi-square statistic (37.295) if there is in fact no effect of the predictor 
variables. This p-value is compared to a specified alpha level, our willingness to accept a 
type I error, which is typically set at 0.05 or 0.01. The small p-value from the LR test, 
<0.00001, would lead us to conclude that at least one of the regression coefficients in the 
model is not equal to zero. The parameter of the Chi-Square distribution used to test the 
null hypothesis is defined by the degrees of freedom in the prior column. 

 
 

Pseudo R-Square 

Cox and Snell .179 
Nagelkerke .191 

McFadden .072 
Link function: Logit. 
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Pseudo R-Square - These are three pseudo R-squared values. Logistic regression does 

not have an equivalent to the R-squared that is found in OLS regression; however, many 

people have tried to come up with one. There are a wide variety of pseudo R-squared 

statistics which can give contradictory conclusions. Because these statistics do not mean 

what R-squared means in OLS regression (the proportion of variance for the response 

variable explained by the predictors), we suggest interpreting them with great caution. 

 

 

Threshold - This represents the response variable in the ordered logistic regression. The 

threshold estimate for [birth weight category= 1.00] is the cutoff value between 

birthweight<2500 and birthweight 2500-3000 grams and the threshold estimate for 

[birthweight_stauts = 2.00] is the cutoff value between 2500-3000 grams and 3000-3500 

grams and so on. Underneath Threshold are the predictors in the model. 

Estimate - These are the ordered log-odds (logit) regression coefficients. Standard 

interpretation of the ordered logit coefficient is that for a one unit increase in the 

predictor, the response variable level is expected to change by its respective regression 

coefficient in the ordered log-odds scale while the other variables in the model are held 

constant. Interpretation of the ordered logit estimates is not dependent on the ancillary 

parameters; the ancillary parameters are used to differentiate the adjacent levels of the 

response variable. However, since the ordered logit model estimates one equation over all 

levels of the outcome variable, a concern is whether our one-equation model is valid or a 

more flexible model is required. The odds ratios of the predictors can be calculated by 

exponentiating the estimate.  

Age - This is the ordered log-odds estimate for a one unit increase in Age on the expected 

birthweight category given the other variables are held constant in the model. If age of 

mother were to increase by one point, then ordered log-odds of being in a higher 

birthweight category would increase by 0.001 while the other variables in the model are 

held constant. 
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[SMOKE=0] - This is the ordered log-odds estimate of comparing smoking status on 

expected birthweight given the other variables are held constant in the model. The 

ordered logit for [SMOKE=0] being in a higher birthweight category is 1.093 more than 

smoker mothers when the other variables in the model are held constant. 

Wald - This is the Wald chi-square test that tests the null hypothesis that the estimate 

equals 0.  

df - These are the degrees of freedom for each of the tests of the coefficients. For each 

Estimate (parameter) estimated in the model, one df is required, and the df defines the 

Chi-Square distribution to test whether the individual regression coefficient is zero given 

the other variables are in the model. 

Sig.- These are the p-values of the coefficients or the probability that, within a given 

model, the null hypothesis that a particular predictor's regression coefficient is zero given 

that the rest of the predictors are in the model. They are based on the Wald test statistics 

of the predictors, which can be calculated by dividing the square of the predictor's 

estimate by the square of its standard error. The probability that a particular Wald test 

statistic is as extreme as, or more so, than what has been observed under the null 

hypothesis is defined by the p-value and presented here. The Wald test statistic for the 

predictor age is 0.002 with an associated p-value of 0.963. If we set our alpha level to 

0.05, we would fail to reject the null hypothesis and conclude that the regression 

coefficient for age has not been found to be statistically different from zero in estimating 

birthweight_status given other predictor(s) are in the model. The Wald test statistic for 

the predictor smoke is 11.150 with an associated p-value of 0.001. If we set our alpha 

level to 0.05, we would fail to reject the null hypothesis and conclude that the regression 

coefficient for smoke has been found to be statistically different from zero in estimating 

birthweight_status given other predictor(s) are in the model.  

95% Confidence Interval - This is the Confidence Interval (CI) for an individual 

regression coefficient given the other predictors are in the model. For a given predictor 

with a level of 95% confidence, we'd say that we are 95% confident that the "true" 

population regression coefficient lies in between the lower and upper limit of the interval.  

9.5 The Multinomial Logistic Regression 

Linear regression is not appropriate for situations in which there is no natural ordering to 

the values of the dependent variable. Multinomial Logistic Regression is useful for 

situations in which we want to be able to classify subjects based on values of a set of 

predictor variables.. This type of regression is similar to binary logistic regression, but it 

is more general because the dependent variable is not restricted to two categories.  

For a dependent variable with k categories, consider the existence of k unobserved 

continuous variables, Z1, ... ZK, each of which can be thought of as the "propensity 

toward" a category. In the case of a many categories to chose from, Zk represents a 

customer's propensity toward selecting the k
th 

category, with larger values of Zk 

corresponding to greater probabilities of choosing that category (assuming all other Z's 

remain the same).  

We will generalize the binary logistic regression model to the case of multinomial 
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logistic regression model. This has been defined before and is as: 

  Prob(event Zik) = 
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where: 

Prob(event Zik) is the probability the i
th

 case falls in category k 

Zik is the value of the k
th

 unobserved continuous variable for the i
th

 case  

Xij is the j
th

 predictor for the i
th

 case 

bkj is the j
th

 coefficient for the k
th

 unobserved variable 

j is the number of predictors 

If Zk were observable, we would simply fit a linear regression to each Zk and be done. 

However, since Zk is unobserved, we must relate the predictors to the probability of 

interest by substituting for Zk. 

Zk is also assumed to be linearly related to the predictors. 

Zik = bk0 + bk1Xi1 + bk2Xi2 + .... + bkjXij 

Example 9.7:  
In order to market new drugs, pharmacy copmany want to predict what to test two new 

drugs in compare with an old one. By performing a Multinomial Logistic Regression, the 

company can determine the strength of influence a person's age, gender, and marital 

status has upon the type of drug they used. The company can then slant the advertising 

campaign of a particular drug toward a group of people likely to use it. The variables 

given in Table 9.8 relate to the study: The variables associated with this study code and 

data sheet are given below. Analyze the data by logistic regression and interpret the 

results.  
 

Table 9.8 

S# Variable Code Number ID 

1 Age in years Years Age 

2 Sex 1=male,2=female Sex 

3 Marital status 1=Unmarried,2= Married Marital 

4 Drug 1= Regular drug,2=Drug A, 3=Dug B Drug 
 

Age Sex Marital Drug Age Sex Marital Drug Age Sex Marital Drug 

50 1 2 3 59 1 2 3 26 2 2 3 

23 2 2 3 70 2 2 2 61 1 2 2 

30 2 1 3 62 1 2 2 41 2 2 2 

44 1 2 3 30 1 1 1 67 1 2 3 

32 2 1 1 25 1 1 1 44 1 2 3 

65 1 2 2 61 2 1 2 28 1 2 3 

36 2 2 1 28 2 2 3 29 1 1 1 

39 2 2 1 48 2 2 2 52 2 2 2 

46 2 2 3 66 2 1 2 22 2 1 3 

 

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

453 

Example S9-6 

The data will be in 4 columns as follows: 
 

Age Sex Marital Drug 

 

Age Sex Marital Drug 

50 1 2 3 50 Male Married Drug B 

23 2 2 3 23 Female Married Drug B 

30 2 1 3 30 Female Unmarried Drug B 

44 1 2 3 44 Male Married Drug B 

32 2 1 1 32 Female Unmarried Regular drug 

65 1 2 2 65 Male Married Drug A 

36 2 2 1 36 Female Married Regular drug 

39 2 2 1 39 Female Married Regular drug 

46 2 2 3 46 Female Married Drug B 

59 1 2 3 59 Male Married Drug B 

70 2 2 2 70 Female Married Drug A 

62 1 2 2 62 Male Married Drug A 

30 1 1 1 30 Male Unmarried Regular drug 

25 1 1 1 25 1 Male Unmarried 

61 2 1 2 61 2 Female Unmarried 

28 2 2 3 28 2 Female Married 

48 2 2 2 48 2 Female Married 

66 2 1 2 66 2 Female Unmarried 

26 2 2 3 26 2 Female Married 

61 1 2 2 61 1 Male Married 

41 2 2 2 41 Female Married Drug A 

67 1 2 3 67 Male Married Drug B 

44 1 2 3 44 Male Married Drug B 

28 1 2 3 28 Male Married Drug B 

29 1 1 1 29 Male Unmarried Regular drug 

52 2 2 2 52 Female Married Drug A 

22 2 1 3 22 Female Unmarried Drug B 

 

The target variable is the Drug and we apply the Multinomial Binary logistic as follows: 

Analyze Regression Multinomial Logistic…  NCBA&E
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Move the variable “Drug” to Dependent: 

Move the categorical variables to Factors:  

Move the containous variable (Age) to Covariate(s):  

  

Click on Reference Category to specify the reference category (First Category, which is 

the Regular drug) 
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Now click on , to get the following outputs: 

SPSS output after the creation of dummy variables by automatic process 

Case Processing Summary 

 N Marginal Percentage 

Drug 

Regular drug 6 22.2% 

Drug A 9 33.3% 

Drug B 12 44.4% 

Sex 
Male 12 44.4% 

Female 15 55.6% 

Marital status 
Unmarried 8 29.6% 

Married 19 70.4% 

Valid 27 100.0% 

Missing 0  

Total 27  

Subpopulation 26
a
  

According to the case processing summary, the modal category is the new Drug B, with 

44.4% of the cases.   
 

Model Fitting Information 

Model Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood Chi-Square df Sig. 

Intercept Only 57.286    

Final 32.164 25.122 6 .000 

This is a likelihood ratio test of our model (Final) against one in which all the parameter 

coefficients are 0 (Null). The chi-square statistic is the difference between the -2 log-

likelihoods of the Null and Final models.  
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Since the significance level of the test is less than 0.05, we can conclude the Final model 

is outperforming the Null. 
 

Pseudo R-Square 

Cox and Snell .606 

Nagelkerke .688 

McFadden .439 

Pseudo R-Squared Statistics. The r-squared statistic, which measures the variability in the 

dependent variable that is explained by a linear regression model, cannot be computed for 

multinomial logistic regression models. The pseudo r-squared statistics are designed to 

have similar properties to the true r-squared statistic.  

In the linear regression model, the coefficient of determination, R
2
, summarizes the 

proportion of variance in the dependent variable associated with the predictor 

(independent) variables, with larger R
2
 values indicating that more of the variation is 

explained by the model, to a maximum of 1. For regression models with a categorical 

dependent variable, it is not possible to compute a single R
2
 statistic that has all of the 

characteristics of R
2
 in the linear regression model, so these approximations are 

computed instead. The following methods are used to estimate the coefficient of 

determination: 

Cox and Snell's R
2
 (Cox and Snell, 1989) is based on the log likelihood for the model 

compared to the log likelihood for a baseline model. However, with categorical 

outcomes, it has a theoretical maximum value of less than 1, even for a "perfect" model. 

Nagelkerke's R
2
 (Nagelkerke, 1991) is an adjusted version of the Cox & Snell R-square 

that adjusts the scale of the statistic to cover the full range from 0 to 1. McFadden's R2 

(McFadden, 1974) is another version, based on the log-likelihood kernels for the 

intercept-only model and the full estimated model. What constitutes a “good” R
2
 value 

varies between different areas of application. While these statistics can be suggestive on 

their own, they are most useful when comparing competing models for the same data. 

The model with the largest R
2
 statistic is “best” according to this measure, which is given 

here by Nagelkerke. 

Likelihood Ratio Tests 

Effect 
Model Fitting Criteria Likelihood Ratio Tests 

-2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 32.164
a
 .000 0 . 

Age 51.582 19.418 2 .000 

Sex 38.322 6.158 2 .046 

Marital 34.940 2.776 2 .250 

The likelihood ratio tests check the contribution of each effect to the model. For each 

effect, the -2 log-likelihood is computed for the reduced model; that is, a model without 

the effect. The chi-square statistic is the difference between the -2 log-likelihoods of the 

reduced model from this table and the Final model reported in the model fitting 

information table. If the significance of the test is small (less than 0.05) then the effect 

contributes to the model. And since the significance of the test is less than 0.001, we can 

say that the effect contributes to the model.  
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Some effects can be difficult to test. For example, the intercept cannot be tested in this 

model because removing the intercept simply causes one of the previously redundant 

factor levels to become non-redundant.  

 

The parameter estimates table summarizes the effect of each predictor. The ratio of the 

coefficient to its standard error, squared, equals the Wald statistic. If the significance 

level of the Wald statistic is small (less than 0.05) then the parameter is different from 0. 

Age is the only signficant. The odds ratio with its confidence intervals was also given.  

• Notes: Parameters with significant negative coefficients decrease the likelihood of that 

response category with respect to the reference category. Parameters with positive 

coefficients increase the likelihood of that response category. The parameters associated 

with the last category of each factor is redundant given the intercept term.  

Example S9-7 

We will add a Married male case of age of 55 to the data and apply the Multinomial 

logistic and get the predicted values directly, also we will see how to calculate the correct 

percentage for the prediction as follows: 

Analyze Regression Multinomial Logistic…  

Move the variable “Drug” to Dependent: 

Move the categorical variables to Factors:  

Move the containous variable (Age) to Covariate(s):  

Click on  and choose “Estimate response probabilites” and “Pridicted category”, 

as follows: 
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Now click on  then , to find out the predicted values added to the data 

directly, as: 

 

It can be seen that a Married male case of age of 55 is predicted to prefere Drug B. 

Note also that using the Cross tabulation between the Predicted Response Category and 

the actual Drug will lead to the following crosstabulation table: 
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According to this table, we can see that the correct prediction percentage for this model 

equals to 14.8+29.6+29.6 = 74.0% 
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APPENDIX 

 

age gen ra se ca cr in cp bp hra pa ty fr po ph pc bi ce lo st 

27 1 1 0 0 0 1 0 142 88 0 1 0 0 0 0 0 0 0 0 

59 0 1 0 0 0 1 0 112 80 1 1 0 0 0 0 0 0 0 0 

77 0 1 1 0 0 0 0 100 70 0 0 0 0 0 0 0 0 0 0 

54 0 1 0 0 0 0 0 142 103 0 1 1 0 0 0 0 0 0 0 

87 1 1 1 0 0 1 0 110 154 1 1 0 0 0 0 0 0 0 0 

69 0 1 0 0 0 1 0 110 132 0 1 0 1 0 0 1 0 0 0 

63 0 1 1 0 0 1 0 104 66 0 0 0 0 0 0 0 0 0 0 

30 1 1 0 0 0 0 0 144 110 0 1 0 0 0 0 0 0 0 0 

35 0 2 0 0 0 0 0 108 60 0 1 0 0 0 0 0 0 0 0 

70 1 1 1 1 0 0 0 138 103 0 0 0 0 0 0 0 0 0 0 

55 1 1 1 0 0 0 0 188 86 1 0 0 0 0 0 0 0 0 0 

48 0 2 1 1 0 0 0 162 100 0 0 0 0 0 0 0 0 0 0 

66 1 1 1 0 0 1 0 160 80 1 0 0 0 0 0 0 0 0 0 

61 1 1 0 0 0 0 0 174 99 0 1 0 0 1 0 1 1 0 0 

66 0 1 0 0 0 0 0 206 90 0 1 0 0 0 0 0 1 0 0 

52 0 1 1 0 0 1 0 150 71 1 0 0 0 0 0 0 0 0 0 

55 0 1 1 0 0 1 0 140 116 0 0 0 0 0 0 0 0 0 0 

59 0 1 0 0 0 1 0 48 39 0 1 0 1 0 1 1 0 2 0 

63 0 1 0 0 0 0 0 132 128 1 1 0 0 0 0 0 0 0 0 

72 0 1 1 0 0 0 0 120 80 1 0 0 0 0 0 0 0 0 0 

60 0 1 0 0 0 1 1 114 110 0 1 0 0 0 0 0 0 0 0 

78 0 1 1 0 0 0 0 180 75 0 0 0 0 0 0 0 0 0 0 

16 1 1 0 0 0 0 0 104 111 0 1 0 0 0 0 0 0 0 0 

62 0 1 1 0 1 0 0 200 120 0 0 0 0 0 0 0 0 0 0 

61 0 1 0 0 0 1 0 110 120 0 1 0 0 0 0 0 0 0 0 

35 0 1 0 0 0 0 0 150 98 0 1 0 0 0 0 0 0 0 0 

74 1 1 1 0 0 0 0 170 92 0 0 0 0 0 1 0 0 0 0 

68 0 1 1 0 0 0 0 158 96 0 0 0 0 0 0 0 0 0 0 

69 1 1 1 0 0 0 0 132 60 0 1 0 0 0 0 0 0 0 0 

51 0 1 0 0 0 0 0 110 99 0 1 0 0 0 0 0 0 0 0 

55 0 3 1 0 0 0 0 128 92 0 0 0 0 0 0 0 0 0 0 

64 1 1 1 0 0 1 0 158 90 1 1 0 0 0 0 0 0 0 0 

88 1 1 1 0 0 1 0 140 88 1 1 1 0 0 0 0 0 0 0 

23 1 1 1 0 0 0 0 112 64 0 1 0 0 0 0 0 0 0 0 

73 1 1 1 1 0 0 0 134 60 0 0 0 0 0 1 0 0 0 0 

53 0 3 1 0 0 0 0 110 70 1 0 0 0 0 0 0 0 0 0 

74 0 1 1 0 0 0 0 174 86 0 0 0 0 0 0 0 0 0 0 

68 0 1 1 0 0 0 0 142 89 0 0 0 0 0 0 0 0 0 0 

66 1 1 0 0 0 1 0 170 95 1 1 0 0 0 0 0 0 0 0 

60 0 1 1 1 0 1 0 110 92 0 0 0 0 0 0 0 0 0 0 

64 0 1 1 0 0 1 0 160 120 0 0 0 0 0 0 0 0 0 0 

66 0 2 1 1 0 1 0 150 120 0 0 0 0 0 1 0 0 0 0 
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age gen ra se ca cr in cp bp hra pa ty fr po ph pc bi ce lo st 

19 1 1 1 0 0 1 0 142 106 0 1 1 0 0 0 0 0 0 0 

18 1 1 0 0 0 0 0 146 112 0 1 0 0 0 0 0 0 0 0 

63 0 1 1 0 0 1 0 162 84 1 1 0 0 0 0 0 0 0 0 

45 0 1 0 0 0 0 0 126 110 0 1 0 0 0 0 0 0 0 0 

64 0 1 0 0 0 0 0 162 114 0 1 0 0 0 0 0 0 0 0 

68 1 1 0 0 0 0 0 200 170 1 1 0 0 0 0 0 0 0 0 

64 0 1 0 0 0 0 0 126 122 0 1 0 1 0 1 0 0 0 0 

82 0 1 1 0 0 0 0 135 70 0 0 0 0 0 0 0 0 0 0 

73 0 1 1 0 0 0 0 170 88 0 0 0 0 0 0 0 0 0 0 

70 0 1 0 0 0 0 0 86 153 1 1 0 0 0 1 0 0 0 0 

61 0 1 1 0 0 1 0 68 124 0 1 0 0 0 0 0 0 0 0 

64 0 1 1 1 0 1 0 116 88 0 0 0 0 0 0 0 0 0 0 

47 0 1 1 1 0 1 0 120 83 0 0 0 0 0 0 0 0 0 0 

69 0 1 1 0 0 0 0 170 100 0 0 0 0 0 0 0 0 0 0 

67 1 1 0 0 0 1 0 190 125 0 1 0 0 0 0 0 0 0 0 

18 0 1 1 1 0 0 0 156 99 0 0 0 0 0 0 0 0 0 0 

77 0 1 1 0 0 1 0 158 107 0 0 0 0 0 0 0 0 0 0 

32 0 2 1 0 0 0 0 120 84 0 1 0 0 0 0 0 0 0 0 

19 1 1 1 0 0 1 0 104 121 1 0 0 0 0 0 0 0 0 0 

72 1 1 1 0 0 0 0 130 86 0 1 0 0 0 0 0 0 0 0 

49 0 1 0 0 0 1 0 112 112 0 1 0 0 0 0 0 0 0 0 

68 1 1 1 0 0 0 0 154 74 0 0 0 0 0 0 0 0 0 0 

82 0 1 1 0 1 1 0 130 131 0 1 0 0 0 0 0 0 0 0 

32 1 3 0 0 0 1 1 110 118 0 1 0 0 0 0 0 0 0 0 

78 1 1 1 0 0 1 0 126 96 0 1 0 0 0 0 0 0 0 0 

57 0 1 0 0 0 1 0 128 104 0 1 0 0 0 1 0 0 0 0 

46 1 1 1 1 0 0 0 132 90 0 1 0 0 0 0 0 0 0 0 

23 0 1 0 0 0 1 0 144 88 0 1 0 0 0 0 0 0 0 0 

55 0 1 0 0 0 0 0 132 112 0 1 0 0 0 0 0 0 0 0 

18 0 1 1 0 0 0 0 112 76 0 1 1 0 0 0 0 0 0 0 

20 0 1 1 0 0 0 0 164 108 0 1 0 0 0 0 0 0 0 0 

75 1 1 1 0 0 0 0 100 48 0 0 0 0 0 0 0 0 0 0 

79 0 1 1 0 0 1 0 112 67 0 0 0 0 0 0 0 0 0 0 

40 0 1 1 0 0 0 0 140 65 0 1 1 0 0 0 0 0 0 0 

76 0 1 1 0 0 1 0 110 70 0 1 0 0 0 0 0 0 0 0 

66 1 1 1 0 0 1 0 139 92 0 0 0 0 0 0 0 0 0 0 

76 0 1 0 0 0 1 0 190 100 0 1 0 0 0 0 0 0 0 0 

80 1 1 1 0 0 0 0 162 44 0 1 0 0 0 0 0 0 0 0 

23 1 1 0 0 0 1 0 120 88 0 1 0 0 0 0 0 0 0 0 

48 0 2 1 0 0 1 0 92 162 1 1 0 0 0 0 0 0 0 0 

67 0 2 1 0 0 0 0 90 92 1 0 0 0 0 0 0 0 0 0 

69 1 1 1 0 0 0 0 150 85 0 1 0 0 0 0 0 0 0 0 

65 0 3 1 0 0 0 0 208 124 0 0 0 0 0 0 0 0 0 0 

72 0 1 1 0 0 0 0 126 88 0 0 0 0 0 0 0 0 0 0 
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age gen ra se ca cr in cp bp hra pa ty fr po ph pc bi ce lo st 

55 0 1 0 0 0 0 0 190 136 0 1 0 1 1 1 0 0 0 0 

40 0 1 0 0 0 0 0 130 65 0 1 0 0 0 0 0 0 0 0 

55 1 1 0 0 0 1 0 110 86 0 1 0 0 0 0 0 0 0 0 

34 0 1 1 0 0 0 0 110 80 0 1 1 0 0 0 0 0 0 0 

47 1 1 1 0 0 0 0 132 68 0 1 0 0 0 0 0 0 0 0 

41 1 1 0 0 0 1 0 118 145 0 1 0 0 1 0 1 0 0 0 

84 1 1 0 0 1 1 0 100 103 0 1 0 0 0 0 1 1 0 0 

88 1 1 1 0 0 0 0 110 46 1 0 0 0 0 0 0 0 0 0 

77 1 1 1 1 0 0 0 212 87 0 0 0 0 0 1 0 0 0 0 

80 0 1 0 0 0 0 0 122 126 0 1 0 1 0 0 1 0 0 0 

16 0 1 1 0 0 0 0 100 140 0 1 1 0 0 0 0 0 0 0 

70 0 1 1 0 0 0 0 160 60 0 0 0 0 0 0 0 0 0 0 

83 1 1 1 0 0 1 0 138 91 0 1 0 0 0 0 0 0 0 0 

23 0 2 0 0 0 0 0 130 52 0 1 0 0 0 0 0 0 0 0 

67 1 1 0 0 0 0 1 120 120 0 1 0 0 1 1 0 0 0 0 

18 0 1 1 1 0 0 0 130 140 0 0 0 0 0 0 0 0 0 0 

77 1 1 0 0 0 1 0 136 138 0 0 0 1 1 1 0 0 0 0 

48 1 1 0 0 0 0 1 128 96 0 1 0 0 0 0 0 0 0 0 

24 1 2 0 0 0 0 0 140 86 0 1 0 0 0 0 0 0 0 0 

71 1 1 0 0 0 1 0 124 106 0 1 0 0 0 0 0 0 0 0 

72 0 1 1 0 0 0 0 134 60 0 1 0 0 0 0 0 0 0 0 

77 1 1 1 0 1 0 0 170 115 1 0 0 0 0 0 0 0 0 0 

60 0 1 1 0 0 1 0 124 135 0 1 0 0 0 0 0 0 0 0 

46 0 1 1 1 0 0 0 110 128 0 0 0 0 0 0 0 0 0 0 

65 1 1 0 0 0 0 0 100 105 0 1 0 0 0 0 0 0 0 0 

36 0 1 0 0 0 0 0 224 125 0 1 0 0 0 0 0 0 0 0 

68 0 1 1 0 0 0 0 112 64 0 0 0 0 0 0 0 0 0 0 

58 0 1 0 0 0 0 0 154 98 0 1 0 0 0 0 0 0 0 0 

76 1 1 0 0 0 1 0 92 112 0 1 0 0 0 0 0 0 0 0 

41 1 2 0 0 0 0 0 110 144 0 1 0 0 0 0 1 1 0 0 

20 0 3 0 0 0 0 0 120 68 0 1 0 0 0 0 0 0 0 0 

91 0 1 0 1 1 1 0 152 125 0 1 0 0 0 0 0 0 0 0 

75 0 1 1 0 0 0 0 140 90 0 1 0 0 0 0 0 0 0 0 

25 1 1 0 0 0 0 0 131 135 0 1 0 0 0 0 1 0 0 0 

70 0 1 0 0 0 1 0 78 143 0 1 0 1 0 0 0 0 0 0 

47 0 1 1 0 0 0 0 156 112 0 1 0 0 0 0 0 0 0 0 

75 0 3 1 0 0 0 0 144 120 0 1 0 0 0 0 0 1 0 0 

40 0 2 0 0 0 1 0 160 150 1 1 1 0 0 0 0 0 0 0 

71 0 1 0 0 0 1 0 148 192 0 1 0 1 1 1 0 0 0 0 

70 1 1 0 0 0 1 0 90 140 0 1 0 1 0 0 1 0 0 0 

58 0 1 1 0 0 0 0 148 95 1 1 0 0 0 0 0 0 0 0 

54 0 1 1 0 0 0 0 136 80 0 0 0 0 0 0 0 0 0 0 

77 0 1 1 0 0 0 0 128 59 0 0 0 0 0 0 0 0 0 0 

55 0 1 1 1 0 1 0 138 140 0 0 0 0 0 0 0 0 0 0 
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age gen ra se ca cr in cp bp hra pa ty fr po ph pc bi ce lo st 

21 0 1 1 0 0 0 0 120 62 0 1 0 0 0 0 0 0 0 0 

53 0 2 0 0 1 0 1 170 115 0 1 0 0 0 0 0 0 0 0 

31 1 1 0 1 1 1 1 146 100 0 1 0 0 1 1 0 0 0 0 

71 0 1 1 1 0 0 0 204 52 0 0 0 1 0 0 0 0 0 0 

49 0 2 0 0 0 0 0 150 100 0 1 1 0 0 0 0 0 0 0 

60 1 2 0 0 0 1 0 116 92 1 1 0 0 0 0 0 0 0 0 

50 0 1 0 0 0 1 0 156 99 0 1 0 0 0 1 0 0 0 0 

45 1 1 1 0 0 0 0 132 109 0 1 1 0 0 0 0 0 0 0 

21 0 1 1 0 0 0 0 110 90 0 1 1 0 0 0 0 0 0 0 

73 1 1 1 0 0 0 0 130 83 0 1 0 0 0 0 0 0 0 0 

28 0 1 1 0 0 1 0 122 80 1 0 0 0 0 0 0 0 0 0 

17 0 1 1 0 0 0 0 140 78 0 1 0 0 0 0 0 0 0 0 

17 1 3 0 0 0 0 0 130 140 0 1 0 0 0 0 0 0 0 0 

21 1 1 1 0 0 0 0 142 79 0 1 0 0 0 0 0 0 0 0 

68 1 1 1 0 0 0 0 91 79 0 0 0 0 0 0 0 0 0 0 

17 0 3 1 1 0 0 0 136 78 0 1 0 0 0 0 0 0 0 0 

60 0 1 0 0 0 1 0 108 120 0 1 0 0 0 0 0 0 0 0 

69 0 1 1 0 0 0 0 169 73 0 1 0 0 0 0 0 0 0 0 

88 1 1 0 0 1 0 0 190 88 0 1 0 0 0 0 0 0 0 0 

20 0 1 1 0 0 0 0 120 80 0 1 0 0 0 0 0 0 0 0 

89 1 1 1 0 0 0 0 190 114 0 1 0 0 0 1 0 0 2 0 

62 1 1 0 0 0 0 0 110 78 0 1 0 0 0 0 0 0 0 0 

46 0 1 0 0 1 1 0 142 89 0 1 0 0 1 0 1 0 0 0 

19 0 1 1 0 1 1 0 100 137 0 1 0 0 0 0 0 0 0 0 

71 0 1 0 0 1 1 0 124 124 0 1 0 1 1 1 0 0 0 0 

67 0 1 1 0 0 0 0 152 78 0 0 0 0 0 0 0 0 0 0 

20 0 1 1 0 0 0 0 104 83 0 1 0 0 0 0 0 0 0 0 

73 1 2 0 0 0 0 0 162 100 0 1 0 0 0 0 0 0 0 0 

59 0 1 0 0 0 0 0 100 88 0 1 0 0 0 0 0 0 0 0 

42 0 1 1 0 0 0 0 122 84 0 1 1 0 0 0 0 0 0 0 

87 1 1 1 0 1 1 0 80 96 0 1 1 1 1 1 0 0 0 1 

76 1 1 1 0 0 1 0 128 90 1 1 0 0 0 0 0 0 0 1 

78 0 1 0 0 0 1 0 130 132 0 1 0 0 0 0 1 0 0 1 

63 0 1 0 1 1 1 0 112 106 1 1 0 1 0 0 0 0 0 1 

19 0 1 1 0 0 0 0 140 76 0 1 0 0 0 0 0 0 0 1 

67 1 1 0 0 0 1 0 62 145 0 1 0 0 0 0 0 1 0 1 

53 1 1 0 0 0 1 0 148 128 0 1 0 0 1 1 0 0 0 1 

92 0 1 0 0 0 1 0 124 80 0 1 0 0 0 0 1 0 0 1 

57 0 1 0 0 0 1 1 110 124 0 1 0 0 0 0 0 0 2 1 

75 1 1 1 0 0 0 0 130 136 0 0 0 0 0 0 0 0 0 1 

91 0 1 0 0 0 1 0 64 125 0 1 0 0 0 1 0 0 0 1 

70 0 1 1 0 0 0 0 168 122 0 0 0 1 0 0 0 0 1 1 

88 0 1 0 0 0 1 1 141 140 0 1 0 0 0 0 0 0 0 1 

41 0 1 1 0 0 1 0 140 58 0 1 0 0 0 0 0 0 2 1 
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age gen ra se ca cr in cp bp hra pa ty fr po ph pc bi ce lo st 

61 0 1 0 0 0 0 0 140 81 1 1 0 0 0 0 0 0 0 1 

80 0 1 1 0 0 0 0 100 85 0 1 0 0 0 0 0 0 0 1 

40 0 1 0 0 0 1 0 86 80 0 1 0 0 0 0 0 0 0 1 

75 0 1 0 0 0 1 0 90 100 0 1 0 0 0 0 0 0 1 1 

63 1 1 1 0 1 1 1 36 86 0 1 1 0 0 0 0 1 2 1 

75 1 1 0 1 0 0 0 190 94 0 1 0 0 0 0 0 0 0 1 

20 0 1 1 0 0 0 0 148 72 0 1 1 0 0 0 0 0 0 1 

71 0 1 0 0 0 0 0 142 95 0 1 0 0 0 0 0 0 0 1 

51 1 1 1 0 0 1 0 134 100 1 1 0 0 0 0 0 0 1 1 

65 0 1 0 0 0 0 0 66 94 0 1 0 0 0 0 0 0 2 1 

69 1 3 0 0 1 0 0 170 60 1 1 0 1 0 0 0 0 0 1 

55 0 1 1 0 1 1 0 122 100 1 1 0 0 0 0 0 0 0 1 

50 1 1 1 1 0 0 0 120 96 0 1 0 0 0 0 0 0 0 1 

78 0 1 0 0 0 1 0 110 81 0 1 0 0 0 0 0 0 0 1 

71 1 1 0 0 0 0 1 70 112 0 1 0 0 0 0 0 0 0 1 

85 1 1 1 0 1 0 0 136 96 0 1 0 0 0 0 0 0 0 1 

75 0 1 0 0 0 1 0 130 119 0 1 0 0 1 0 1 1 1 1 

65 1 1 0 0 0 1 1 104 150 0 1 0 0 0 1 0 0 0 1 

49 0 1 0 0 1 1 1 140 108 0 1 0 0 0 0 1 0 0 1 

75 1 1 0 0 0 1 1 150 66 0 1 0 0 0 0 0 1 1 1 

72 1 1 0 0 0 0 0 90 160 0 1 0 0 0 0 0 0 0 1 

69 0 1 0 0 1 0 0 80 81 0 1 0 0 0 0 0 0 0 1 

64 0 1 0 1 0 1 0 80 118 0 1 0 1 0 0 0 1 1 1 

60 0 1 0 0 0 1 0 56 114 1 1 0 0 1 0 1 0 0 1 

60 0 3 1 0 1 1 0 130 55 0 1 0 0 0 0 0 0 0 1 

50 1 2 0 0 0 0 0 256 64 0 1 0 0 0 0 0 0 0 1 
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id AGE RACE SMOKE PTL HT UI BWC 

1 28 3 1 1 0 1 4 

2 29 1 0 0 0 1 4 

3 34 2 1 0 1 0 4 

4 25 3 0 1 1 0 4 

5 25 3 0 0 0 1 4 

6 27 3 0 0 0 0 4 

7 23 3 0 0 0 1 4 

8 24 2 0 1 0 0 4 

9 24 3 0 0 1 0 4 

10 21 1 1 0 1 0 4 

11 32 1 1 0 0 0 4 

12 19 1 1 2 0 1 4 

13 25 3 0 0 0 0 4 

14 16 3 0 0 0 0 4 

15 25 1 1 0 0 0 4 

16 20 1 1 0 0 0 4 

17 21 2 0 0 0 1 4 

18 24 1 1 1 0 0 4 

19 21 3 0 0 0 0 4 

20 20 3 0 0 0 1 4 

21 25 3 0 2 0 0 4 

22 19 1 0 0 0 0 4 

23 19 1 1 0 0 1 4 

24 26 1 1 1 0 0 4 

25 24 1 0 0 0 0 4 

26 17 3 1 1 0 1 4 

27 20 2 1 0 0 0 4 

28 22 1 1 1 0 1 4 

29 27 2 0 0 0 1 4 

30 20 3 1 0 0 1 4 

31 17 1 1 0 0 0 4 

32 25 3 0 1 0 0 4 

33 20 3 0 0 0 0 4 

34 18 3 0 0 0 0 4 

35 18 2 1 1 0 0 4 

36 20 1 1 1 0 1 4 

37 21 3 0 1 0 0 4 

38 26 3 0 0 0 0 4 

39 31 1 1 1 0 0 4 

40 15 1 0 0 0 0 4 

41 23 2 1 0 0 0 4 

42 20 2 1 0 0 0 4 

43 24 2 1 0 0 0 4 

44 15 3 0 0 0 1 4 

45 23 3 0 0 0 0 4 

46 30 1 1 1 0 0 4 

47 22 1 1 0 0 0 4 
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id AGE RACE SMOKE PTL HT UI BWC 

48 17 1 1 0 0 0 4 

49 23 1 1 1 0 0 4 

50 17 2 0 0 0 0 4 

51 26 3 0 1 1 0 4 

52 20 3 0 0 0 0 4 

53 26 1 1 0 0 0 4 

54 14 3 1 1 0 0 4 

55 28 1 1 0 0 0 4 

56 14 3 0 0 0 0 4 

57 23 3 1 0 0 0 4 

58 17 2 0 0 1 0 4 

59 21 1 1 0 1 0 4 

60 19 2 0 0 0 1 3 

61 33 3 0 0 0 0 3 

62 20 1 1 0 0 0 3 

63 21 1 1 0 0 1 3 

64 18 1 1 0 0 1 3 

65 21 3 0 0 0 0 3 

66 22 1 0 0 0 0 3 

67 17 3 0 0 0 0 3 

68 29 1 1 0 0 0 3 

69 26 1 1 0 0 0 3 

70 19 3 0 0 0 0 3 

71 19 3 0 0 0 0 3 

72 22 3 0 0 1 0 3 

73 30 3 0 1 0 1 3 

74 18 1 1 0 0 0 3 

75 18 1 1 0 0 0 3 

76 15 2 0 0 0 0 3 

77 25 1 1 0 0 0 3 

78 20 3 0 0 0 1 3 

79 28 1 1 0 0 0 3 

80 32 3 0 0 0 0 3 

81 31 1 0 0 0 1 3 

82 36 1 0 0 0 0 3 

83 28 3 0 0 0 0 3 

84 25 3 0 0 0 1 3 

85 28 1 0 0 0 0 3 

86 17 1 1 0 0 0 3 

87 29 1 0 0 0 0 3 

88 26 2 1 0 0 0 3 

89 17 2 0 0 0 0 3 

90 17 2 0 0 0 0 3 

91 24 1 1 1 0 0 3 

92 35 2 1 1 0 0 3 

93 25 1 0 0 0 0 3 

94 25 2 0 0 0 0 3 

95 29 1 1 0 0 0 3 
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id AGE RACE SMOKE PTL HT UI BWC 

96 19 1 1 0 0 0 3 

97 27 1 1 0 0 0 3 

98 31 1 1 0 0 0 2 

99 33 1 1 0 0 0 2 

100 21 2 1 0 0 0 2 

101 19 1 0 0 0 0 2 

102 23 2 0 0 0 0 2 

103 21 1 0 0 0 0 2 

104 18 1 1 0 0 1 2 

105 18 1 1 0 0 1 2 

106 32 1 0 0 0 0 2 

107 19 3 0 0 0 0 2 

108 24 1 0 0 0 0 2 

109 22 3 1 0 0 0 2 

110 22 1 0 0 1 0 2 

111 23 3 0 0 0 0 2 

112 22 1 1 0 0 0 2 

113 30 1 1 0 0 0 2 

114 19 3 0 0 0 0 2 

115 16 3 0 0 0 0 2 

116 21 3 1 0 0 1 2 

117 30 3 0 0 0 0 2 

118 20 3 0 0 0 0 2 

119 17 3 0 0 0 0 2 

120 17 3 0 0 0 0 2 

121 23 3 0 0 0 0 2 

122 24 3 0 0 0 0 2 

123 28 1 0 0 0 0 2 

124 26 3 1 2 0 0 2 

125 20 3 0 1 0 1 2 

126 24 3 0 0 0 0 2 

127 28 3 1 0 0 0 2 

128 20 1 0 2 0 1 2 

129 22 2 0 1 0 0 2 

130 22 1 1 2 0 0 2 

131 31 3 1 0 0 0 2 

132 23 3 1 0 0 0 2 

133 16 2 0 0 0 0 2 

134 16 1 1 0 0 0 2 

135 18 2 0 0 0 0 2 

136 25 1 0 0 0 0 2 

137 32 1 1 1 0 0 2 

138 20 2 1 0 0 0 2 

139 23 1 0 0 0 0 2 

140 22 1 0 0 0 0 2 

141 32 1 0 0 0 0 2 

142 30 3 0 0 0 0 2 

143 20 3 0 0 0 0 2 
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id AGE RACE SMOKE PTL HT UI BWC 

144 23 3 0 0 0 0 1 

145 17 3 1 0 0 0 1 

146 19 3 0 0 0 0 1 

147 23 1 0 0 0 0 1 

148 36 1 0 0 0 0 1 

149 22 1 0 0 0 0 1 

150 24 1 0 0 0 0 1 

151 21 3 0 0 0 0 1 

152 19 1 1 0 1 0 1 

153 25 1 1 3 0 1 1 

154 16 1 1 0 0 0 1 

155 29 1 0 0 0 0 1 

156 29 1 0 0 0 0 1 

157 19 1 1 0 0 0 1 

158 19 1 1 0 0 0 1 

159 30 1 0 0 0 0 1 

160 24 1 0 0 0 0 1 

161 19 1 1 0 1 0 1 

162 24 3 0 1 0 0 1 

163 23 1 0 0 0 0 1 

164 20 3 0 0 0 0 1 

165 25 2 0 0 1 0 1 

166 30 1 0 0 0 0 1 

167 22 1 0 0 0 0 1 

168 18 1 1 0 0 0 1 

169 16 2 0 0 0 0 1 

170 32 1 0 0 0 0 1 

171 18 3 0 0 0 0 1 

172 29 1 1 0 0 0 1 

173 33 1 0 0 0 1 1 

174 20 1 1 0 0 0 1 

175 28 3 0 0 0 0 1 

176 14 1 0 0 0 0 1 

177 28 3 0 0 0 0 1 

178 25 1 0 0 0 0 1 

179 16 3 0 0 0 0 1 

180 20 1 0 0 0 0 1 

181 26 3 0 0 0 0 1 

182 21 1 0 0 0 0 1 

183 22 1 0 0 0 0 1 

184 25 1 0 0 0 0 1 

185 31 1 0 0 0 0 1 

186 35 1 0 1 0 0 1 

187 19 1 1 0 0 0 1 

188 24 1 0 0 0 0 1 

189 45 1 0 0 0 0 1 

 

  

NCBA&E



Hanif, Ahmad and Abdelfattah 

 

469 

 
 

Question 1 

(Measurment level) 

(Scale) 

 

(Ordinal) 

 

(Nominal) 

 

How can we represent Data? 

(Histogram), 

(Line) 

(Curve) 

(Boxplot) 

(Error bar) 

(Scatter plot) 

(Bars), 

(Pie) 

 

 

Question 2 

 (Measurment level)  

 (Scale) 

 

 (Ordinal) 

  

(Nominal) 

 
How can we describe the 

variable? 

 (Mean), 

 (Standard deviation)  
 (Median), 

 (Interquartile range)  

 (Mode), 

 (Proportions) 

 

Question 3 

 (Measurement level)  

 (Scale) 

 

 (Ordinal) 

  

 (Nominal) 

 

Is there is a 

relation 

between 

variables? 

(Scale) 

 
(Pearson)  (Ordinal Bi-serial) 

(Point Bi-serial) 

(Eta) 

 (Ordinal) 

  
 (Ordinal Bi-serial) 

 (Kendall ) 

 (Spearman) 

 (Gamma) 

 (Bi-serial) 

(Nominal) 

 

 (Point Bi-serial) 

(Eta) 
 (Bi-serial) 

 (Phi) 

 (Contingency Coefficient) 

 (Lambda) 

 

Note that we can use SPSS to calculate each of Ordinal Bi-serial, Point Bi-serial, Bi-

serial, by the same way we calculate Pearson correlation coefficient.  

 

Question 4 

Measurment level of Dependent variable  

 (Scale) 

 

 (Ordinal) 

  

 (Nominal) 

 

How Can we 

predict? 
 (Liner Regression) 

(Nonliear Regression) 
(Ordinal regression) (Logistic regression) 

 

 

 

 

 

Answering a Statistical Question 
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Question 5 

 (Measurment level)  

 (Scale) 

 

 (Ordinal) 

  

 (Nominal) 

 

How Can we Estimate?  (CI for Mean)  (CI for Median)  (CI for Proportion) 

     

Question 6 

Measurment level of Dependent variable  

Scale  Ordinal  Nominal  

Scale  

(from Normal 

Population) 

Rank, or Scale 

(from Non-

Normal 

Population) 

Binomial 

(Two Possible 

Outcomes) 

 

Is there a 

difference 

between 

groups? 

1 

group 
 (One sample 

 t test) 
(Wilcoxon test) 

 (Binomial test) 
 

2 

independent 

groups 

 (Independent 

sample t test) 
 (Mann-Whitney)   (Chi-square test) 

2 

matched 

groups 

 (Paired sample  

t test) 
 (Wilcoxon test) (McNemar) 

3+ 

independent 

groups 
 (One-way ANOVA)  (Kruskal-Wallis)   (Chi-square test) 

3+ 

matched 

groups 

 (Repeated 

Measurements) 
 (Friedman test)  (Chi-square test) 
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 Goal 

Measurement level of Dependent variable 

Scale 
(from Normal 
Population) 

Rank or Scale 
(from Non-Normal 

Population) 

Binomial 
(Two Possible 

Outcomes) 

Describe one 
Group 

Analyze   
Descriptive 
Statistics  
Descriptives… 

Analyze  Descriptive 
Statistics  Frequencies 

 Statistics… 

Analyze  Descriptive 
Statistics  
Frequencies  
Statistics… 

Compare one 
group to a 
hypothetical 
value 

Analyze  Compare 
means  One-sample 
T Test… 

Analyze  
Nonparametric Tests  
2 Related samples  
Wilcoxon (after adding 
median value as the 
2nd variable) 

Analyze  
Nonparametric Tests  
Binomial… 

Compare two 
unpaired 
groups 

Analyze  Compare 
means  
Independent-sample 
T Test… 

Analyze  
Nonparametric Tests  
2 Independent samples 

 Mann-Whitney U 

Analyze  Descriptive 
Statistics  
Crosstabs…  
Statistics…  Chi-
square 

Compare two 
paired groups 

Analyze  Compare 
means  Paired-
sample T Test… 

Analyze  
Nonparametric Tests  
2 Related samples  
Wilcoxon 

Analyze  
Nonparametric Tests  
2 Related samples  
McNemar 

Compare three 
or more 
unmatched 
groups 

Analyze  Compare 
means  One-Way 
ANOVA… 

Analyze  
Nonparametric Tests  
k Independent samples 

 Kruskal-Wallis H 

Analyze  Descriptive 
Statistics  
Crosstabs…  
Statistics…  Chi-
square 

Compare three 
or more 
matched 
groups 

Analyze  General 
Linear Model  
Repeated 
Measures… 

Analyze  
Nonparametric Tests  
k Related samples  
Friedman 

Analyze  
Nonparametric Tests  
k Related samples  
Cochran’s Q 

Quantify 
association 
between two 
groups 

Analyze  
Correlate   
Bivariate   
Pearson 

Analyze  Correlate  
Bivariate  Spearman 

Analyze  Descriptive 
Statistics  
Crosstabs…  
Statistics…  
Contingency coefficient 

Predict value 
from another 
measured 
variable 

Analyze  
Regression  
Linear… 

Analyze  
Regression  Ordinal 
… 

Analyze  
Regression  Binary 
Logistic… 

Predict value 
from several 
measured or 
binomial 
variables 

Analyze  
Regression  
Linear… (chose more 
variables) 

Analyze  
Regression  Ordinal 
… 

Analyze  
Regression  
Multinomial Logistic… 

 

  

Selecting a Statistical test using SPSS  
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Chapter 10 
 

Survival Analysis 
 

10.1 Introduction 

Study data may be collected in many different ways. In addition to surveys, which are 

cross-sectional, biomedical research data may come from different sources. 

The two fundamental designs being retrospective and prospective.  

Retrospective studies gather past data from selected cases and controls to determine 

differences, if any, in exposure to a suspected risk factor.  

They are commonly referred to as case–control studies; each case–control study is 

focused on a particular disease.  

In a typical case–control study, cases of a specific disease are ascertained as they arise 

from population-based registers or lists of hospital admissions, and controls are sampled 

either as disease-free persons from the population at risk or as hospitalized patients 

having a diagnosis other than the one under study.  

The advantages of a retrospective study are that it is economical and provides answers to 

research questions relatively quickly because the cases are already available. Major 

limitations are due to the inaccuracy of the exposure histories and uncertainty about the 

appropriateness of the control sample; these problems sometimes hinder retrospective 

studies and make them less preferred than prospective studies.  

Prospective studies, also called cohort studies, are epidemiological designs in which 

one enrolls a group of persons and follows them over certain periods of time; examples 

include occupational mortality studies and clinical trials.  

The cohort study design focuses on a particular exposure rather than a particular disease 

as in case–control studies. Advantages of a longitudinal approach include the opportunity 

for more accurate measurement of exposure history and a careful examination of the time 

relationships between exposure and any disease under investigation.  

An important subset of cohort studies consists of randomized clinical trials where follow-

up starts from the date of enrollment and randomization of each subject. 

Basic survival analysis and Cox’s proportional hazards regression—were developed to 

deal with survival data resulting from prospective or cohort studies.  
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Survival analysis, which was developed to deal with data resulting from prospective 

studies, is also focused on the occurrence of an event, such as death or relapse of a 

disease, after some initial treatment—a binary outcome.  

The basic difference with the logistic regression analysis is that: 

a- For survival data, studies have staggered entry, and subjects are followed for 

varying lengths of time; they do not have the same probability for the event to 

occur even if they have identical characteristics, a basic assumption of the logistic 

regression model. 

b- Second, each member of the cohort belongs to one of three types of termination: 

1. Subjects still alive on the analysis date 

2. Subjects who died on a known date within the study period 

3. Subjects who are lost to follow-up after a certain date (This is known as 

Censoring). 

That is, for many study subjects, the observation may be terminated before the 

occurrence of the main event under investigation: for example, subjects in types 1 and 3. 

10.2 Survival analyses  

Survival analyses or time to event analyses are frequently used in medical sciences where 

the interest is in observing time to death either of patients or of laboratory animals. There 

are certain aspects of survival analysis data, such as censoring and non-normality, that 

cause great difficulty when trying to analyze the data using traditional statistical methods 

such as t-test, ANOVA and linear regression etc.  

A censored observation is defined as an observation with incomplete information.  There 

are four different types of censoring possible: right truncation, left truncation, right 

censoring and left censoring.   

Right truncation occurs when the entire study population has already experienced the 

event of interest (for example: a historical survey of patients on a cancer registry). 
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Left truncation occurs when the subjects have been at risk before entering the study (for 

example: a life insurance policy holder where the study starts on a fixed date, event of 

interest is age at death). 

Right censoring occurs when a subject leaves the study before an event occurs, or the 

study ends before the event has occurred. For example, we consider patients in a clinical 

trial to study the effect of treatments on stroke occurrence. The study ends after 5 years. 

Those patients who have had no strokes by the end of the year are censored. If the patient 

leaves the study at time te ; then the event occurs in (te,∞). 

Left censoring is when the event of interest has already occurred before registration in 

study. This is very rarely encountered. 

In this chapter we will focus exclusively on right censoring for a number of 

reasons.  Most data used in analyses have only right censoring.  Furthermore, right 

censoring is the most easily understood of all the four types of censoring and if a 

researcher can understand the concept of right censoring thoroughly it becomes much 

easier to understand the other three types.  When an observation is right censored it 

means that the information is incomplete because the subject did not have an event during 

the time that the subject was part of the study.  The point of survival analysis is to follow 

subjects over time and observe at which point in time they experience the event of 

interest. It often happens that the study does not span enough time in order to observe the 

event for all the subjects in the study. This could be due to a number of reasons. Perhaps 

subjects drop out of the study for reasons unrelated to the study (i.e. patients moving to 

another area and leaving no forwarding address). The common feature of all of these 

examples is that if the subject had been able to stay in the study then it would have been 

possible to observe the time of the event eventually. 

Outcome Variable: Time until an Event occurs 

Start Follow-up  Time    Event 

  Event of Interest: Death 

         Disease 

          Relapse 

           Recovery 
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Censoring: Don’t know survival time exactly 

Reasons of Censoring? 
   Study ends – no event 

     Lost of follow-up 

       Withdraws 

Two Key Quantities of interest in survival analysis 

1. S(t) = survivor function 

2. h(t) = hazard function 

Survivorship or Survival Function S(t) 

Survivorship or Survival Function, S(t), is the probability that an individual's time, T, is 

greater than a specified time, t. In mathematical terms: 

 

   S(t) = Prob(survives longer than t) 

        = Prob(T>t) 

        = 1 - F(t) 

where F(t) is the cumulative distribution function of T. 

Hazard Function h(t): 

Hazard Function, h(t), is the conditional failure rate. It is the probability of failure during 

a small time interval given that the individual has survived until the beginning of the 

interval. 

  
 

0

|
( ) lim

t

P t T t t T t
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Relationship between S(t) & h(t) 
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Life Table Analysis 

A life table presents the proportion surviving, the cumulative hazard function, and the 

hazard rates of a large group of subjects followed over time. The analysis accounts for 

subjects who die (fail) as well as subjects who are censored (withdrawn). The life-table 

method competes with the Kaplan- Meier product-limit method as a technique for 

survival analysis. The life-table method was developed first, but the Kaplan-Meier 

method has been shown to be superior and with the advent of computers is now the 

method of choice. However, for large samples, the life-table method is still popular in 

that it provides a simple summary of a large set of data.   
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Example 10.1: 

We will give a brief introduction to the subject in this section. For a complete account of 

life- table analysis, we suggest the books by Lee (1992) and Elandt-Johnson and Johnson 

(1980). 

Lee (1992) constructs a life table. The survival experience of 2418 males with angina is 

recorded in years. The life table will use 16 intervals of one year each. (1=Events and 

0=Censored). 
 

 

Time Event Count 

0.5 1 456 

1.5 1 226 

2.5 1 152 

3.5 1 171 

4.5 1 135 

5.5 1 125 

6.5 1 83 

7.5 1 74 

8.5 1 51 

9.5 1 42 

10.5 1 43 

11.5 1 34 

12.5 1 18 

13.5 1 9 

14.5 1 6 
 

 

Time Event Count 

1.5 0 39 

2.5 0 22 

3.5 0 23 

4.5 0 24 

5.5 0 107 

6.5 0 133 

7.5 0 102 

8.5 0 68 

9.5 0 64 

10.5 0 45 

11.5 0 53 

12.5 0 33 

13.5 0 27 

14.5 0 23 

15.5 0 30 
 

The IBM-SPSS package is used as shown in the following Example: 

Example S10-1 

The data will be in 3 columns and a part of the data is as follows: 
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We first weight data by count as follows: 

Data  Weight Case 

 

Weight Cases by: Select ―count‖ as frequency variable 
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Now click on , to start Survival analysis as follows: 

Analyze Survival Life Tables…   

 

Move the Survival Time Variable (time) to Time 

For: Display Time Intervals we define it from 0 through 16 by 1 

Click on ―Define Event‖ , mark on ―Single value:‖ put 1 

Click on ―Continue‖ 
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 Also click on ―Options‖ and mark on ―Life Table‖ 

For ―Plot‖, mark on Survival, Hazard and Density 

 

 Now click on then , to get the following outputs: 
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Column A 

Interval start time 

Indicates the intervals of supervision in years; 0 = up to 1 year, 1 = 1 year up to 2 

years, etc. 

Column B 

Number entering this interval 

 The number of cases still alive up to the beginning of the interval (t).  

  Bt = (Bt-1) – (Ct-1 + Et-1)  

  B4 = (1697) – (22 + 152) = 1523 

Column C 

Number withdrawn during interval 

Censored cases.  

These censored cases are called ―withdrawn‖ since they do not appear in later 

intervals (t). 

Column D 

Number exposed to risk 

 This is the average number exposed to risk in the interval and calculated as: 

The number of cases entering the interval minus 1/2 the cases withdrawing (censored 

cases) during the interval. 

   Dt = (Bt) – (Ct) (0.5)  

  D4 = (1523) – (23) (0.5) = 1511.5 

Column E 

Number of terminal events 

 The number of cases that were died in the interval, i.e. coded 1 in the database 

Column F 

Proportion Terminating 

This is the proportion of cases that were died in the interval, which is the probability 

of death in the interval.  

  Ft = (Et) / (Dt) 

  F4 = (171) / (1511.5) =~ 0.1131 

Column G 

Proportion surviving  
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The proportion of cases still alive through the end of the interval, the probability of 

being successful through the end of the interval 

  Gt = (1.0 - Ft)  

  G4 = (1.0 – 0.1131) =~ 0.8869   

Column H 

Cumulative proportion surviving at end  

 The probability of a case remaining alive up to and through the end of the Interval. 

   Ht = (Ht-1) (Gt) 

   H4 = (H4-1) (G4)  

   H4 = (0.6524) (0.8869)  

   H4 =~ 0.5786 

Column I 

Standard error of the cumulative proportion surviving.  

The error associated with the estimated probability of a case surviving up to and 

through the end of the interval. 

Column J 

Probability density.  

The estimated Probability of revocation during interval (t).  

  Jt = (Ht-1) - (Ht) 

Column K 

Standard error of the probability density.  

Estimated error of the probability density estimate. 

Column L 

Hazard rate.  

The proportion of case that have survived, i.e. been on probation, up to the interval (t) 

who are expected to fail in the interval. 

  Lt = (Et) / [ Dt - Et (0.5) ] 

Column M 

Standard error of the hazard rate.  

Estimated error of the hazard rate. 

The Median Survival Time 

How many years elapse before half the survivors died? Median survival time = 5.3313 

years means By 5.3313 years, half the patients in the sample were died. 
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Graphs Section: 
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The Survival Function: A plot of the cumulative proportion of cases surviving up to the 

end of each interval of time. 

The Density Function: A plot of the probability density associated with each interval of 

time. This illustrates the difference between the proportion of cases that began each 

interval and the proportion that survived to the end of the interval. 

The Hazard Function: A plot of the  hazard rate. This illustrates the proportion of 

cases that have survived up to the beginning of the interval that are expected to fail in the 

interval. As a rate, it can take values greater than 1. 

Over all write up for the Life Table Analysis 

This table shows the estimated survival probabilities within 15 intervals for a total of 

2418 items.  It shows how many items were at risk at the start of each interval, how many 

failed before the end of the interval, and how many were withdrawn (censored) during 

the interval.  The column labeled Cumulative Survival shows the estimated probability of 

an item surviving as least as long as the beginning of the interval.  The column labeled 

Hazard is the estimated hazard function (instantaneous failure rate) over each interval.  

Density shows an estimate of the density function of the corresponding lifetime 

distribution. Standard errors are also shown in parentheses for each of the three functions. 

10.3 Kaplan Meier  

There are many situations in which we would want to examine the distribution of times 

between two events, such as length of employment (time between being patient and 

leaving the hospital).  

However, this kind of data usually includes some censored cases. Censored cases are 

cases for which the second event isn't recorded.  

The Kaplan-Meier procedure is a method of estimating time-to-event models in the 

presence of censored cases.  

The Kaplan-Meier model is based on estimating conditional probabilities at each time 

point when an event occurs and taking the product limit of those probabilities to estimate 

the survival rate at each point in time. 

Kaplan-Meier Product Limit Estimation: 

The life table method is the oldest and most commonly used technique for estimating the 

survival function (and the hazard and probability density functions). However, the exact 

estimates from the life table will depend on the choice of the number and widths of 

survival time intervals. The Kaplan-Meier product-limit method estimates the survival 

function directly from the survival times, without tabulation. 

Kaplan-Meier product-limit estimator is defined as follows 
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The variance of S(T) is estimated by Greenwood’s formula 
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Nelson-Aalen Hazard Estimator 

The Nelson-Aalen estimator is recommended as the best estimator of the cumulative 

hazard function, H(T). This estimator is give as 
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Example 10.2: 

Dataset given below was reported by Crowley and Hu (1977) pertaining to the survival of 

heart transplant patients. 

The data is as follows: 

 

id time Censoring hospital age antigen mismatch status 

1 1 Censored BINER 54 0 0.47 0 

2 1 Censored ST_AND 35 0 0.67 0 

3 3 Censored HILLVIEW 40 0 1.66 0 

4 10 Complete HILLVIEW 55 1 2.76 1 

5 10 Complete     1 

6 12 Censored HILLVIEW 29 0 0.61 0 

7 13 Censored HILLVIEW 28 1 0.77 0 

8 15 Censored HILLVIEW 54 0 1.11 0 

9 23 Censored HILLVIEW 56 0 2.05 0 

10 25 Complete ST_AND 53 1 1.68 1 

11 26 Censored ST_AND 52 1 0.82 0 

12 29 Complete ST_AND 54 0 1.08 1 

13 30 Censored ST_AND 45 0 0.16 0 

14 39 Complete     1 

15 39 Complete HILLVIEW 42 0 1.38 1 

16 44 Censored ST_AND 36 0 0 0 

17 46 Complete ST_AND 42 0 0.61 1 

18 47 Complete ST_AND 61 1 0.87 1 

19 48 Censored BINER 53 0 3.05 0 

20 50 Complete BINER 49 0 0.66 1 

21 50 Complete HILLVIEW 46 0 2.25 1 

22 51 Complete HILLVIEW 47 0 1.38 1 

23 51 Complete ST_AND 52 0 1.51 1 

24 54 Complete HILLVIEW 49 0 2.09 1 

25 60 Complete HILLVIEW 64 0 0.69 1 

26 63 Complete BINER 56 1 2.16 1 

27 64 Complete ST_AND 54 0 1.89 1 
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id time Censoring hospital age antigen mismatch status 

28 65 Complete ST_AND 45 1 1.68 1 

29 66 Complete HILLVIEW 51 0 1.12 1 

30 68 Complete HILLVIEW 51 1 1.33 1 

31 110 Censored BINER 23 1 1.78 0 

32 127 Censored ST_AND 48 0 0.36 0 

33 136 Complete ST_AND 52 1 1.62 1 

34 161 Complete BINER 43 0 1.2 1 

35 167 Censored BINER 26 0 0.46 0 

36 228 Censored HILLVIEW 19 0 1.02 0 

37 237 Censored ST_AND 47 0 0.33 0 

38 253 Complete HILLVIEW 48 1 1.08 1 

39 280 Complete BINER 49 0 1.12 1 

40 297 Complete BINER 42 0 0.6 1 

41 305 Censored HILLVIEW 49 0 0.81 0 

42 322 Complete ST_AND 48 1 1.82 1 

43 339 Censored HILLVIEW 54 0 0.68 0 

44 389 Censored BINER 48 1 1.44 0 

45 439 Censored ST_AND 52 1 1.94 0 

46 456 Censored ST_AND 46 0 1.41 0 

47 499 Censored HILLVIEW 52 1 1.7 0 

48 551 Censored HILLVIEW 48 0 0.12 0 

49 589 Censored BINER 47 0 0.97 0 

50 592 Censored BINER 26 1 1.46 0 

51 624 Complete HILLVIEW 51 0 1.32 1 

52 660 Censored ST_AND 48 0 1.2 0 

53 730 Complete ST_AND 58 0 0.96 1 

54 815 Censored BINER 32 1 1.93 0 

55 836 Complete BINER 44 0 1.58 1 

56 838 Censored BINER 41 0 0.19 0 

57 875 Censored ST_AND 38 0 0.98 0 

58 994 Complete BINER 48 0 0.81 1 

59 1024 Complete BINER 43 0 1.13 1 

60 1106 Censored HILLVIEW 36 0 1.35 0 

61 1264 Censored BINER 45 0 0.98 0 

62 1350 Complete BINER 54 0 0.87 1 

63 1367 Censored BINER 48 0 0.75 0 

64 1536 Censored BINER 49 0 0.91 0 

65 1549 Censored HILLVIEW 40 0 0.38 0 

66 1775 Censored ST_AND 33 0 1.06 0 

The first variable in this data set is survival time, that is, the date of the heart transplant 

and the date when the respective patient either died or dropped out of the study (could no 

longer be contacted).  Variable Censored is the censoring indicator variable with the 

codes that identify whether a respective time represents an observation that is completely 

specified or a censored observation (0-Complete; 1-Censored). The variable Hospital is a 

(fictitious) grouping variable which identifies to which one of three different hospitals a 

respective case belongs. 
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Example S10-2 

Given below is a part of the Data in SPSS Data sheet. 

 

We start Kaplan-Meier as follows: 

Analyze Survival Kaplan-Meier…   

 

Move the Survival Time Variable (time) to Time 

Click on ―Define Event‖ , mark on ―Single value:‖ put 0 

Click on ―Options‖ and mark on Survival table(s), Mean and median survival and 

Survival 
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Now click on  then , to get the following outputs: 
 

 

Survival Table 

 Time Status 

Cumulative Proportion  
Surviving at the Time 

N of  
Cumulative 

Events 

N of  
Remaining  

Cases Estimate 
Std. 
Error 

1 1.000 Censord . . 0 65 
2 1.000 Censord . . 0 64 
3 3.000 Censord . . 0 63 
4 10.000 Complete . . 1 62 
5 10.000 Complete .968 .022 2 61 
6 12.000 Censord . . 2 60 
7 13.000 Censord . . 2 59 
8 15.000 Censord . . 2 58 
9 23.000 Censord . . 2 57 

10 25.000 Complete .951 .027 3 56 
11 26.000 Censord . . 3 55 
12 29.000 Complete .934 .032 4 54 
13 30.000 Censord . . 4 53 
14 39.000 Complete . . 5 52 
15 39.000 Complete .899 .039 6 51 
16 44.000 Censord . . 6 50 
17 46.000 Complete .881 .042 7 49 
18 47.000 Complete .863 .045 8 48 
19 48.000 Censord . . 8 47 
20 50.000 Complete . . 9 46 
21 50.000 Complete .826 .050 10 45 
22 51.000 Complete . . 11 44 
23 51.000 Complete .789 .054 12 43 
24 54.000 Complete .771 .056 13 42 
25 60.000 Complete .753 .058 14 41 
26 63.000 Complete .734 .059 15 40 
27 64.000 Complete .716 .060 16 39 
28 65.000 Complete .698 .062 17 38 
29 66.000 Complete .679 .063 18 37 
30 68.000 Complete .661 .064 19 36 
31 110.000 Censord . . 19 35 
32 127.000 Censord . . 19 34 
33 136.000 Complete .641 .065 20 33 
34 161.000 Complete .622 .065 21 32 
35 167.000 Censord . . 21 31 
36 228.000 Censord . . 21 30 
37 237.000 Censord . . 21 29 
38 253.000 Complete .601 .067 22 28 
39 280.000 Complete .579 .068 23 27 
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 Time Status 

Cumulative Proportion  
Surviving at the Time 

N of  
Cumulative 

Events 

N of  
Remaining  

Cases Estimate 
Std. 
Error 

40 297.000 Complete .558 .068 24 26 
41 305.000 Censord . . 24 25 
42 322.000 Complete .535 .069 25 24 
43 339.000 Censord . . 25 23 
44 389.000 Censord . . 25 22 
45 439.000 Censord . . 25 21 
46 456.000 Censord . . 25 20 
47 499.000 Censord . . 25 19 
48 551.000 Censord . . 25 18 
49 589.000 Censord . . 25 17 
50 592.000 Censord . . 25 16 
51 624.000 Complete .502 .073 26 15 
52 660.000 Censord . . 26 14 
53 730.000 Complete .466 .076 27 13 
54 815.000 Censord . . 27 12 
55 836.000 Complete .427 .079 28 11 
56 838.000 Censord . . 28 10 
57 875.000 Censord . . 28 9 
58 994.000 Complete .380 .083 29 8 
59 1024.000 Complete .332 .085 30 7 
60 1106.000 Censord . . 30 6 
61 1264.000 Censord . . 30 5 
62 1350.000 Complete .266 .090 31 4 
63 1367.000 Censord . . 31 3 
64 1536.000 Censord . . 31 2 
65 1549.000 Censord . . 31 1 
66 1775.000 Censord . . 31 0 

This table shows estimated survival probabilities based on the data in Time.  Each row of 

the table represents a single data value, displayed in increasing order.  If the data value 

represents a failure or death, the status column indicates Event.  If the data value 

represents a censored observation, the status column indicates Censored.  The number at 

risk is the number of items which have survived up until each data value.  For each 

unique failure time, the data displays the estimated survival probability, the standard error 

of that estimate, and the estimated hazard function. 
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Means and Medians for Survival Time 

Mean
a
 Median 

Estimate 
Std. 
Error 

95% Confidence 
Interval 

Estimate 
Std. 
Error 

95% Confidence  
Interval 

Lower  
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

783.645 109.726 568.582 998.708 730.000 312.810 116.893 1343.107 

a. Estimation is limited to the largest survival time if it is censored. 

Median Survival Time: This is not the conventional median, this is the time associated 

with the first case to have a cumulative survival probability ≤ 0.5 

 

Test of Significance for comparison of Kaplan Meier Survival Curves 

Are Kaplan Meier survival curves statistically equivalent? There are three Tests available 

in SPSS for the comparison of KM survival curves 

1. Log-Rank (Mantel-Haenszel Test) 

2. Breslow Generalized Wilcoxon Test 

3. Tarone-Ware Test 
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Log-Rank Test  

In survival analysis, the log-rank test is a hypothesis test to compare the survival 

distributions of two or more samples. It is a nonparametric test and appropriate to use 

when the data are right skewed and censored. Log-rank test is widely used in clinical 

trials to establish the efficacy of a new treatment compared to a control treatment when 

the measurement is the time to event (such as the time from initial treatment to a heart 

attack). The test is also called the Mantel–Cox test, named after Nathan Mantel and 

David Cox. 

The log-rank (Mantel-Cox) test is the more powerful of the two tests if the assumption of 

proportional hazards is true. Proportional hazards means that the ratio of hazard functions 

(deaths per time) is the same at all time points. One example of proportional hazards 

would be if the control group died at twice the rate as treated group at all time points. 

Prism actually computes the Mantel-Haenszel method, which is nearly identical to the 

log-rank method (they differ only in how they deal with two subjects with the same time 

of death).  

In Log-Rank test all cases weighted equally, log-rank is least conservative of the three 

tests available in SPSS 

Breslow Test  

The Gehan-Breslow-Wilcoxon method gives more weight to deaths at early time points. 

This often makes lots of sense, but the results can be misleading when a large fraction of 

patients are censored at early time points. In contrast, the log-rank test gives equal weight 

to all time points. The Gehan-Wilcoxon test does not require a consistent hazard ratio, but 

does require that one group consistently have a higher risk than the other.  

You need to choose which P value to report. Ideally, this choice should be made before 

you collect and analyze your data.  

If in doubt, report the log-rank test (which is more standard) and report the Gehan-

Wilcoxon results only if you have a strong reason. 

Tarone-Ware Test  

Breslow test and Tarone ware test are identical the only difference is Tarone-Ware test 

uses Square root of the number of cases at risk at event time (t) as weights (i.e Weights 

earlier cases less heavily than the Breslow Test does). Tarone-Ware Test is mid-

conservative of the three tests. 

SPSS Procedure 

Analyze  Survival  Kaplan Meier 

   Time: Survival Time Variable (time) 

   Status: Censored Variable  

   Define: 0-Complete; 1-Censored 

   Factor: Choose Hospital as factor variable 
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   Options: Plots: Choose Survival 

 

 

  

Now click on then , to get the following outputs: 

        

Case Processing Summary 

Hospital Name Total N N of Events 
Censored 

N Percent 

HILLVIEW 22 10 12 54.5% 

ST_AND 21 10 11 52.4% 

BINER 21 9 12 57.1% 

Overall 64 29 35 54.7% 
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Overall Comparisons 

 Chi-Square df Sig. 

Log Rank (Mantel-Cox) 3.013 2 .222 

Breslow (Generalized Wilcoxon) 5.195 2 .074 

Tarone-Ware 4.523 2 .104 

Test of equality of survival distributions for the different levels of Hospital Name. 

Three tests have also been performed to determine whether there is a statistically 

significant difference between the survival probabilities of the 3 groups (hospitals).  

Since the smallest P-value is greater than or equal to 0.05, there is not a statistically 

significant difference between the groups at the 95% confidence level. 

10.4 Cox – Regression 

(Proportional Hazards Model (PHM)) 

Cox Regression builds a predictive model for time-to-event data. The model produces a 

survival function that predicts the probability that the event of interest has occurred at a 

given time t for given values of the predictor variables. The shape of the survival function 

and the regression coefficients for the predictors are estimated from observed subjects; 

the model can then be applied to new cases that have measurements for the predictor 

variables.  

Note that information from censored subjects, that is, those that do not experience the 

event of interest during the time of observation, contributes usefully to the estimation of 

the model. 

Cox (proportional hazards) regression analysis models the relationship between a set of 

one or more covariates and the hazard rate. Covariates may be discrete or continuous. 

Cox Regression can be used to study the impact of various factors on survival. You may 

be interested in the impact of diet, age, amount of exercise, and amount of sleep on the 

survival time after an individual has been diagnosed with a certain disease such as cancer. 

Under normal conditions, the obvious statistical tool to study the relationship between a 

response variable (survival time) and several explanatory variables would be multiple 

regression. Unfortunately, because of the special nature of survival data, multiple 

regression is not appropriate. Survival data usually contain censored data and the 

distribution of survival times is often highly skewed. These two problems invalidate the 

use of multiple regression. Many alternative regression methods have been suggested. 

The most popular method is the proportional hazard regression method developed by Cox 

(1972). 

The Cox (1972) expressed the relationship between the hazard rate and a set of covariates 

using the model 
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The Regression Coefficients can thus be interpreted as the relative risk when the value of 

the covariate is increased by one unit. Unlike most regression models, this does not 

include and intercept term. This is because if an intercept term were included, it would 

became part of h0(t). 

Example 10.3: 

You have data on 48 participants in a cancer drug trial. Of these 48, 28 received treatment 

(drug=1) and 20 receive a placebo (drug=0). The participant range in age from 47 to 67 

years. You wish to analyze time until death, measured in months. You have data given 

below. 

 

study time died drug age  Study time died drug age 

1 1 0 61  10 0 1 49 

1 1 0 65  11 0 1 61 

2 1 0 59  13 1 1 62 

3 1 0 52  15 0 1 50 

4 1 0 56  16 1 1 67 

4 1 0 67  19 0 1 50 

5 1 0 63  20 0 1 55 

5 1 0 58  22 1 1 58 

8 1 0 56  23 1 1 47 

8 0 0 58  32 0 1 52 

8 1 0 52  6 1 1 55 

8 1 0 49  10 1 1 54 

11 1 0 50  17 0 1 60 

11 1 0 55  19 0 1 49 

12 1 0 49  24 1 1 58 

12 1 0 62  25 0 1 50 

15 1 0 51  25 1 1 55 

17 1 0 49  28 1 1 57 

22 1 0 57  28 0 1 48 

23 1 0 52  32 0 1 56 

6 1 1 67  33 1 1 60 

6 0 1 65  34 0 1 62 

7 1 1 58  35 0 1 48 

9 0 1 56  39 0 1 52 
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Example S10-3 

Given below is the preview of cases in SPSS Data sheet. 

Analyze  Survival  Cox Regression 

 

Time: Survival Time Variable (time) 

Status: Censored Variable  

Define: 1-Complete; 0-Censored 

Covariates: Choose independent variable(s) (Drug, Age) 

Categorical: Choose factor variable(s) (Drug)  
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Now click on  then , to get the following outputs: 

 

 

The output shows the results of fitting a cox regression model to describe the relationship 

between Time and 2 independent variable(s) drug and age.  The hazard function at a 

selected combination of the input factors x is a multiple of the baseline hazard function 

h(t|0), as shown below: 

  h(t|x)=h(t|0)*exp(0.00820993*Age + 0.878992*Drug=1) 

In determining whether the model can be simplified, notice that the highest P-value for 

the likelihood ratio tests is 0.8723, belonging to Age.  Because the P-value is greater or 

equal to 0.05, that term is not statistically significant at the 95.0% or higher confidence 

level.  Consequently, you should consider removing Age from the model. 
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Chapter 11 
 

Reliability Coefficient 
 

11.1 Introduction 

The degree of stability is exhibited when measurement is repeated under identical 

situation. Reliability refers to the closeness of measurements of observations obtained 

under identical situations. If the cholesterol concentration of two portions of the same 

serum specimen is measured in an automated chemical analyzer, ideally two results 

should be exactly the same. 

Note that all the fluctuations in measurements or observations are attributable to lack of 

reliability. The attributes themselves usually vary in a variety of ways. Consider the 

distribution of blood pressure found in a community survey in which each subject has 

two measurements. The major components of variation in the distribution are as follows: 
 

1.  Difference among subgroups 

For example, older persons have higher blood pressure than younger ones. 

2.  Difference among individuals within subgroups 

For example, among old men aged 60, some individuals have higher blood 

pressure than the others. 

3.  Difference within each individual 

Due to variety of influences each individual‟s blood pressure varies from one 

moment to another. 

4.  Measurement errors 

Even if the blood pressure measured were exactly the same, it would appear to 

vary because of the observers‟ failure in accurate measurements. 

5.  Sampling variations 

We know if sample is small, sampling error is more whereas if sample is large, 

sampling error is less, moreover if repeated samples are selected from a 

population, the findings in each sample will differ from one to the other. 

Daily experiences constantly remind us of measurement errors for instance, bath room 

scales are typically accurate to no better than ± 1 kg, home thermometer is accurate to 

about ± 0.2c etc. Therefore we can say that error of measurement is a relatively small 

fraction of the observations. 

The definition of reliability is 

  Reliability = Re = 
errortMeasuremenvariationSubject

groupswithinvariationSubject


         (11.1) 

or 

  Reliability = 
)(σerrorofVariance)(σsubjectsamongcomponentsVariance

)(σsubjectsamongcomponentsVariance
2
E

2
s

2
s


  

                       (11.2) 
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11.2 Reliability of a Test 

The reliability coefficient for a test of scores from a group of examinees is the coefficient 

of correlation between that set of scores and another set of scores on an equivalent test 

obtained independently from the members of the same groups. 

The analytical approach is based on the statistical technique called Analysis of Variance. 

This will be explained by an example. 

Example 11.1:   
The data given in Table 11.1 relate to degree of sadness of 10 patients rated by 3 

observers. 
 

Table 11.1 
Patients Observer 1 Observer 2 Observer 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6 
4 
2 
3 
5 
8 
5 
6 
4 
7 

7 
5 
2 
4 
4 
9 
7 
7 
6 
9 

8 
6 
2 
5 
6 

10 
9 
8 
8 
8 

Mean 5.0 6.0 7.0 

Calculate the reliability coefficient among patients with regards to three observers. 

Solution: 

This problem relates to TWO WAY ANOVA. This method of analysis has been 

explained in Chapter 5.  There are three observers and 10 patients. There could be three 

sources of variations-Patients-Observers and Error.  

The IBM-SPSS package is used as shown in the following Example: 

Example S11-1 

The data will be in 3 columns and a part of the data is as follows: 
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We apply the TWO WAY ANOVA as follows: 

Analyze General Linear Model Univariate…    

 

Move the variable “Score” to Dependent Variable:  

Move both “Observers” and “Patients” to Fixed Factor(s):  

  

Choose “Custom”;  

Move both “Observers” and “Patients” to Model: 

Select “Main effects” from the Type:  
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Now click on then , to get the following outputs: 

 

SPSS Output for ANOVA 2 Ways 

ANALYSIS OF VARIANCE   

  scores 

by observers 

  patients 

  unique sum of squares 

  all effects entered simultaneously 

Source of  
Variation 

E(MS) 
Sum of 

Squares 
DF 

Mean 
Square 

F Sig 

OBSERVER 
2 210E O   20.000 2 10.000 18.000 .000 

PATIENTS 2
E + 3 2

P  114.000 9 12.667 22.800 .000 

Residual 2
E  10.000 18 0.556   

Total  144.000 29 4.966   

By simple calculations we get variance components: 

 
2
E   = 


= MS(E) = 0.556 

 
2
P   =  

 (patients) = {MS(P) - MS(E) }/3  =   {12.667-.556}/3  =  4.037 

 
2
O   =  


 (observers) = {MS(O) -MS(E) }/10  =  {10.00-0.556}/10  =  0.94 



 (patients) and 


 (observers) are called variance components of sources of 

variation. The reliability may be calculated using (11.2) as  

  Re = 
2
E

2
P

2
P




=   (4.037)/{4.037 + 0.556}  = 0.88,  

where Re is the coefficient of reliability. 

This shows that 88% of the variance in the scores results from true variance among 

patients. This coefficient is known as reliability coefficient. 

11.3 Different Forms of Measuring Reliability Coefficients 

Reliability is measured by performing two or more independent measurements and 

comparing the findings, using an appropriate statistical index. There has been a number 

of methods suggested in literature but no method is perfect. There are some drawbacks 

and good points in each method. 

There has been a considerable debate in the literature regarding the most appropriate 
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choice of the reliability coefficients. Four tests of measuring the reliability are given and 

for each case an example is presented so that it should be very clear which method is 

applicable under what situation.  However, more than one methods can be used for one 

problem. The methods are given as: 

(i) Test -retest method 

(ii) Split-half 

(iii) Kuder and Richardson-20 method 

(iv) Cronbach's Alpha () 

11.3.1 Test-Retest Method 

In test-retest method comparison may be based on observations by different observers or 

interviews by different observers or repeated measurements or interviews using the same 

questionnaire. Replicated tests may be made on the same blood specimens. A question 

may be repeated in the same questionnaire, or differently worded questions asking for the 

same information may be included. The results of test-retest comparison depend on the 

interval between the tests. A questionnaire based measure of overall health, for example, 

was found to have test-retest reliability of about 0.85 over a 1-month period, but only 

about 0.56 over a 3-year interval (Ware, J.E -1984). 

The methods of correlation and KAPPA-Statistic may be used to test-retest method of 

testing reliability coefficient. They are as: 

 

Continuous Data  Ordinal Data  Categorical Data  

(i) Person correlation  

coefficient 

(1)  Spearman-Brown  

correlation coefficient 

(1) KAPPA-Statistic 

(ii) Intra-class correlation  

coefficient 
(2) Kendall‟s Tau() (2) i-  Phi 

      ii- Cramer's V 

(i) Person and intra-class correlation coefficients 

This has been explained in Section 6.4. Spearson Brown formula (rank correlation) is 

used when data is ordinal. Kendall's tau can also be categorized in this rank. 

(ii) Kappa-Statistic 

There are many situations in medicine which has only two levels i.e. presence or 

absence, positive or negative, normal or abnormal. A straightforward approach is to 

calculate simple agreement: the proportion of responses in which the two 

observations agreed. For such types of qualitative variable a frequently used index of 

reliability or agreement between observers is known as Cohen's Kappa coefficients 

(Cohen-1960).  This index or measure has the desirable feature of showing how much 

more agreement there is than would be expected by chance. This measure is very 

strongly influenced by the distribution of positive and negative values. If there is a 

preponderance of either normal or abnormal causes, there will be high agreement. The 

Kappa-Statistic explicitly deals with the situations by examining the proportion of 
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responses in the two agreement cells in relation to the proportion of responses in these 

cells, which would be expected by chance.  

 
)C(P1

)C(P)O(P
K




  

by using (7.34), where: 

 P(O) = observed proportion of agreement and  

 P(C ) = expected proportion of agreement 

 This has already been explained in the context of Chi-square (Chapter 7) 

Example 11.2: 

Suppose we were to consider a judgment by two observers of the presence and absence of 

a Babinski sign, an up going toe following scratching of the bottom of the foot, on a 

series of neurological patients. The data are given in Table 11.2 by 22 table. 
 

Table 11.2: 
Observer 1 

Observer 2 Present Absent Total 

Present 
Absent 

20 
10 

15 
55 

35 
65 

Total 30 70 100 

Calculate the agreement index between two observers using Kappa-statistic. 

Solution:   
Since in the calculation of Kappa index expected frequencies will be used therefore these 

are given as: 
 

Observer 1 

Observer 2 Present Absent Total 

Present 
Absent 

10.5 
19.5 

24.5 
45.5 

35 
65 

Total 30 70 100 

  P(O) = 
100

5520 
 = 0.75 

  P(C) = 
100

5.455.10 
 = 0.56 

The Kappa index is 

  K = 
56.01

56.075.0




 = 0.43. 

We say that there is good agreement between two observers. 
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The IBM-SPSS package is used as shown in the following Example: 

Example S11-2 

The data will be in 2 columns and a part of the data is as follows: 

  

The variable view is as follows: 

 

We calculate Kappa index as follows: 

Analyze Descriptive Statistics Crosstabs…    

 

Move the variable “Observer1” to Row(s) and “Observer2” to Column(s):  

Click on Statistics:  

Mark on both “Kappa” and “Phi and Cramer‟s V”: 

NCBA&E



Reliability Coefficient 508 

  

Now click on  then , to get the following outputs: 

 

 

Note that phi, Cramer's V and coefficient of contingency are other methods of testing of 

association. The results obtained from these indices are almost identical with Kappa 

index. An alternative form of testing the reliability for such cases, without collecting 

information second time, has been suggested by Kuder-Richardson, given in Section 

11.3.3.  

Kappa index can also be used for multiple-classification (n x n table). This has been 

explained in Chapter 8. Cramer‟s V, which is close to Kappa, can be used in nm table. 
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11.3.2 Split-half Method 

Another approach to test the reliability or homogeneity of a scale is called split-half 

method. Here the items are randomly divided into two halves which are then correlated. 

The easiest way is to put all odd number items in one half and even number items in the 

second half randomly and calculate Pearson correlation coefficient and Guttman split-half 

coefficient. It also depends on the order in which observation are written down. One 

problem with method is that the resulting correlation coefficient under estimates of the 

true reliability of the scale, as the reliability of a scale is directly proportional to the 

number of items in it.  Since the sub-scales being correlate are only half the length of the 

version that will be used in practice, the resulting correlation coefficient will be low or 

too low. The Pearson-Brown formula is used to correct this occurrence. The equation for 

correlation coefficient is  

  (Rho) = 
r)1k(1

kr


,                  (11.3) 

where, k is the factor by which the scale is increased and  r is the original correlation 

coefficient. 

If we need only the reliability of a test twice as in the case of reliability estimation by 

split-half method, the formula is simple as 

 (Rho) = 
r

r

1

2
.                    (11.4) 

If for example 40-items scale has been divided into two-half and found that correlation 

coefficient between two half is 0.82, we can use (11.4) to increase the reliability. This is 

known as Guttman Reliability Index. The revised index by using (11.4) will be 0.90. 

It is not self- evident why this method should help, but the answer lies in the statistical 

theory. As long as the test items are not perfectly correlated, the true variance will 

increase as the square of the number of the items, whereas the error variance will increase 

only as the number of items decreases. So if the test length is doubled, the true variance 

will be 4 times as large and error variance 2 times as large as the original test. 

This method of testing the reliability is commonly used when study of knowledge, 

attitude and practice is conducted and questions are in the form of Likert's scale (Likert-

1952). In a Likert scale a person expresses an opinion by rating his agreement with a 

series of statements such as: 

(i) Recent research doubled the association between smoking and lung cancer 

Strongly  

agree 

Somewhat  

agree 
not sure 

Somewhat  

disagree 

Strongly  

disagree 

 (ii) Passive smoking is always harmful 

Strongly  

agree 

Somewhat  

agree 
not sure 

Somewhat  

disagree 

Strongly  

disagree 

The application of this method is shown below: 
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Example 11.3:   
There are four questions and five students for an essay contest. Their scores are given 

below. (These scores may be regarded as the rating by four judges of the performances of 

five students). 

 

Table 11.3 

Students Question 1 Question 2 Question 3 Question 4 

1 2 1 1 3 

2 6 4 5 6 

3 3 2 1 1 

4 6 3 3 3 

5 6 4 4 3 

Use the Split-half method and calculate the reliability index. 

Solution: 

In this question there are 4 items. We can combine odd-items together and even items 

together as: 

Q 1 

Q 3 

Q 2 

Q 4 

and apply the method of split-half to calculate the reliability. 

The SPSS package was used and the result is given as: 

 

SPSS output for Split-Half Method 
RELIABILITY ANALYSIS - SCALE (SPLIT) 

Analysis of Variance 

Source of  
Variation 

Sum  
of Sq. 

DF 
Mean  

Square 
F Prob. 

Between students 41.2000 4 10.3000   
Within questions 13.2000 3 4.4000 18.8571 .0001 
Residual 2.8000 12 .2333   

Total 57.2000 19 3.0105   

Grand Mean 3.2000     

Reliability Coefficients 

 N of Cases  = 5.0 N of Items =  4 

 Correlation between forms  = .9529 Equal length Spearman-Brown  = .9759 

 Guttman Split-half  = .9757 Unequal-length Spearman-Brown  = .9759 

 2 Items in part 1  2 Items in part 2 

 Alpha for part 1  = .9320  Alpha for part 2 = .9815 
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Since there are many ways to divide a test into two halves, so there are in fact many 

possible coefficients of reliability. A 10-item test can be divided into 126 ways, a 12 item 

test 462 ways and so on. (These numbers represent the combination of n items taken n/2 

at a time). The reliability coefficients may differ quite considerably from one split to 

another split.  This can be seen as: 

 

Table 11.4 

Different  
halves 

Person correlation  
coefficient 

Split-half  
reliability 

1,3 and 2,4 0.9011 0.9278 

1,2 and 3,4 0.7863 0.8763 

1,4 and 2,3 0.9423 0.9691 

This is one of the major objection of the application of this test. A refined form of this 

test has been suggested by Cronbach, known as Cronbach's Alpha() (see section 11.3.4 

below).  

The IBM-SPSS package is used as shown in the following Example: 

Example S11-3 

The data will be in 5 columns and the data is as follows: 

 

We calculate Split-half Method as follows: 

Analyze Scale Reliability Analysis…    
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Move the variables “Question 1,…, Question 4” to Items:  

Click on Model:  

Chose Split-half: 

 

 

Now click on , to get the following output: 
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11.3.3 Kuder-Richardson Formula-20 

Kuder-Richardson formula-20 is appropriate for scale items which are answered 

dichotomously such as „true - false‟, „yes - no‟, „present - absent‟ etc.  Their formula 20 

is 

  






 






2

pq
1

1k

k
r                   (11.5) 

where k = the number of items in the test 

  p = proportion of correct response to a particular item 

  q = proportion of incorrect response to that item 

  2 = variance of the total scores of the test. 

To compute the reliability we measure the proportion of the people answering positively 

to each of the questions and the variance of the scores must be known. This is explained 

with the following example. 

Example 11.4:    

Ten students took a six -item test. The results were as follows: 
 

Student Q1 Q2 Q3 Q4 Q5 Q6 

1 1 1 1 1 1 1 
2 1 1 1 1 1 0 
3 1 1 1 1 0 0 
4 1 1 1 1 0 0 
5 1 1 1 0 0 0 
6 1 1 0 0 0 1 
7 1 1 0 1 0 0 
8 1 0 0 0 1 0 
9 0 0 0 0 1 1 

10 0 0 0 0 0 1 

where 1 means true answer and 0 means false answer. 

The distribution of the scores of the students and item scores are given in Table 11.5. 

Calculate the reliability coefficient using Kuder-Richardson formula-20. 
 

Table 11.5 

Student scores  Item scores 

Score Frequency  Score Frequency 

6 
5 
4 
3 
2 
1 

1 
1 
2 
3 
2 
1 

 8 
7 
6 
5 
4 
- 

1 
1 
0 
2 
2 
- 

Total 10  Total 6 
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Solution: 
 

Score of the students 

Score (x) Frequency (f) fx fx
2
 

6 
5 
4 
3 
2 
1 

1 
1 
2 
3 
2 
1 

6 
5 
8 
9 
4 
1 

36 
25 
32 
27 
8 
1 

Total 10 33 129 

  fx   =   33, fx2   =   129 

  2    = 
10

129
- 

2

100

33








 =  2.01   

Item scores 

 

Score Frequency p q pq 

8 
7 
6 
5 
4 

1 
1 
0 
2 
2 

0.8 
0.7 
0.6 
0.5 
0.4 

0.2 
0.3 
0.4 
0.5 
0.6 

0.16 
0.21 
0.24 
0.25 
0.24 

Total    1.35 

 

Similarly 

= 2.01 and pq = 1.35, k = 6. Using (11.5), we get the reliability coefficient 

as: 

  r  =  









01.2

35.1
1

5

6
  =   0.394    which is low. 

Example S11-4 

The data will be in 7 columns and the data is as follows: 
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Where 1 means true answer and 0 means false answer. 

We calculate Kuder-Richardson formula-20 as follows: 

Analyze Scale Reliability Analysis…    

 

Move the variables “Question 1,…, Question 6” to Items:  
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Now click on , to get the following output: 

 

Note that in case of 0/1 response, Kuder-Richardson is the same as Cronbach‟s Alpha. 

11.3.4 Cronbach's Alpha () 

Cronbach's alpha is an extension of KR-20, allowing it to be used when there are more 

than two response alternatives. If alpha were used with dichotomous items, the result 

would be identical to KR-20. The formula for alpha is very similar to KR-20, except that 

the standard deviation for each item is substituted for p q 

   = 

















 2
T

2
i1

1k

k
               (11.6) 

where k = number of items 

 
2
i  = variance of the scores on a particular question or from a particular person 

 
2
i  = sum of the  rating variances for all persons 

 
2
T  = variance of the sum of the ratings from all the persons 

Conceptually, both the formulas give the average of the possible split-half reliabilities of 

scale. This method is explained as: 

Example 11.5:   
This example was used as in split-half method. The data is given as:  
 

Student Question 1 Question 2 Question 3 Question 4 x x
2
 

1 
2 
3 
4 
5 

2 
6 
3 
6 
6 

1 
4 
2 
3 
4 

1 
5 
1 
3 
4 

3 
6 
1 
3 
3 

7 
21 
7 

15 
17 

49 
441 
49 
225 
289 

Total (y) 23 14 14 16 67 1053 

y
2
 529 196 196 256 1177  

Solution: 

 20 question scores squared  = 22 + 62 + .... + 32   = 283 

 5 student totals squared  = 72 + 212 + .... + 172  = 1053 

 4 question totals squared  = 232 + 142 + 142 + 162 = 1177 

For the solution we will calculate the variance of the total score as: 
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  0.31
5

67

5

1053
2

2
t 








  

  5.9
5

1177

5

283
2

2
i   

Using formula (11.6), we get 

  
4 9.5

1 0.924
3 31.0

 
  

 
 

Thus the reliability question 0.924 whereas in split-half method 0.9278.  

The IBM-SPSS package were used as follows: 

Example S11-5 

The data will be in 5 columns and the data is as follows: 

 

We calculate Cronbach's Alpha as follows: 

Analyze Scale Reliability Analysis…    

 

Move the variables “Question 1,…,Question 4” to Items:  
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Now click on , to get the following output: 
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Hypothesis testing 115 
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Kaplan Meier survival curves 491 

Kappa 354, 359 

Kappa statistic 354, 359, 505 
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Lift table analysis 476 

Log-Rank test 492 
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Model 247, 423, 427, 431 
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Proportional hazard model 494 
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Ratio 42 

Ratio case-fatality 43  

Ratio fetal death 43 

Ratio immaturity 43 
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Ratio odd mantel Haenszel 341 

Regression 227 

Regression logistic 421, 451 

Regression model 247 
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R-square adjusted 236, 237 

Sample 2, 83 

Sample size estimation 83 
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Sampling error 83, 84, 88, 248, 501 
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Sampling non-probability 84 
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