

Protection Against Overvoltages

- 24.1 Voltage Surge
- 24.2 Causes of Overvoltages
- 24.3 Internal Causes of Overvoltages
- 24.4 Lightning
- 24.5 Mechanism of Lightning Discharge
- 24.6 Types of Lightning Strokes
- 24.7 Harmful Effects of Lightning
- 24.8 Protection Against Lightning
- 24.9 The Earthing Screen
- 24.10 Overhead Ground Wires
- 24.11 Lightning Arresters
- 24.12 Types of Lightning Arresters
- 24.13 Surge Absorber

Introduction

here are several instances when the ele ments of a power system (e.g. generators, transformers, transmission lines, insulators etc.) are subjected to overvoltages *i.e.* voltages greater than the normal value. These overvoltages on the power system may be caused due to many reasons such as lightning, the opening of a circuit breaker, the grounding of a conductor etc. Most of the overvoltages are not of large magnitude but may still be important because of their effect on the performance of circuit interrupting equipment and protective devices. An appreciable number of these overvoltages are of sufficient magnitude to cause insulation breakdown of the equipment in the power system. Therefore, power system engineers always device ways and means to limit the magnitude of the overvoltages produced and to control their effects on the operating equipment. In this chapter, we shall confine our attention to the various causes of overvoltages on the power system with special emphasis on the protective devices used for the purpose.

24.1 Voltage Surge

A sudden rise in voltage for a very short dura-

tion on the power system is known as a voltage surge or transient voltage.

Transients or surges are of temporary nature and exist for a very short duration (a few hundred μs) but they cause overvoltages on the power system. They originate from switching and from other causes but by far the most important transients are those caused by lightning striking a transmission line. When lightning strikes a line, the surge rushes along the line, just as a flood of water rushes along a narrow valley when the retaining wall of a reservoir at its head suddenly gives way. In most of the cases, such surges may cause the line insulators (near the point where lightning has struck) to flash over and may also damage the nearby transformers, generators or other equipment connected to the line if the equipment is not suitably protected.

Fig. 24.1 shows the wave-form of a typical lightning surge. The voltage build-up is taken along y-axis and the time along x-axis. It may be seen that lightning introduces a steep-fronted wave. The steeper the wave front, the more rapid is the build-up of voltage at any point in the network. In most of the cases, this build-up is comparatively rapid, being of the order of $1-5 \,\mu$ s. Voltage surges are generally specified in terms of *rise time t_1 and the time t_2 to decay to half of the peak value. For example, a $1/50 \,\mu$ s surge is one which reaches its maximum value in 1 μ s and decays to half of its peak value is 50 μ s.

24.2 Causes of Overvoltages

The overvoltages on a power system may be broadly divided into two main categories viz.

- 1. Internal causes
- (*i*) Switching surges (*ii*) Insulation failure
- (*iii*) Arcing ground (*iv*) Resonance
- 2. External causes *i.e.* lightning

Internal causes do not produce surges of large magnitude. Experience shows that surges due to internal causes hardly increase the system voltage to twice the normal value. Generally, surges due to internal causes are taken care of by providing proper insulation to the equipment in the power system. However, surges due to lightning are very severe and may increase the system voltage to several times the normal value. If the equipment in the power system is not protected against lightning surges, these surges may cause considerable damage. In fact, in a power system, the protective devices provided against overvoltages mainly take care of lightning surges.

^{*} It is the time from the beginning of the surge to the peak value.

24.3 Internal Causes of Overvoltages

Internal causes of overvoltages on the power system are primarily due to oscillations set up by the sudden changes in the circuit conditions. This circuit change may be a normal switching operation such as opening of a circuit breaker, or it may be the fault condition such as grounding of a line conductor. In practice, the normal system insulation is suitably designed to withstand such surges. We shall briefly discuss the internal causes of overvoltages.

1. Switching Surges. The overvoltages produced on the power system due to switching operations are known as switching surges. A few cases will be discussed by way of illustration :

(*i*) **Case of an open line.** During switching operations of an unloaded line, travelling waves are set up which produce overvoltages on the line. As an illustration, consider an unloaded line being connected to a voltage source as shown in Fig. 24.2.

When the unloaded line is connected to the voltage source, a voltage wave is set up which travels along the line. On reaching the terminal point A, it is reflected back to the supply end without change of sign. This causes voltage doubling *i.e.* voltage on the line becomes twice the normal value. If $E_{r.m.s.}$ is the supply voltage, then instantaneous voltage which the line will have to withstand will be

 $2\sqrt{2} E$. This overvoltage is of temporary nature. It is because the line losses attenuate the wave and in a very short time, the line settles down to its normal supply voltage *E*. Similarly, if an unloaded line is switched off, the line will attain a voltage of $2\sqrt{2} E$ for a moment before settling down to the normal value.

(ii) Case of a loaded line. Overvoltages will also be produced during the switching operations of a loaded line. Suppose a loaded line is suddenly interrupted. This will set up a voltage of $2 Z_n i$ across the break (*i.e.* switch) where *i* is the instantaneous value of current at the time of opening of line and $*Z_n$ is the natural impedance of the line. For example, suppose the line having $Z_n = 1000 \Omega$ carries a current of 100 A (r.m.s.) and the break occurs at the moment when current is maximum. The voltage across the breaker (*i.e.* switch) = $2\sqrt{2} \times 100 \times 1000/1000 = 282.8 \text{ kV}$. If V_m is the peak value of voltage in kV, the maximum voltage to which the line may be subjected is = $(V_m + 282.8) \text{ kV}$.

(*iii*) Current chopping. Current chopping results in the production of high voltage transients across the contacts of the air blast circuit breaker as detailed in chapter 19. It is briefly discussed here. Unlike oil circuit breakers, which are independent for the effectiveness on the magnitude of the

* It can be shown that natural impedance of the line is given by :

$$Z_n = \sqrt{L/C}$$

where L and C are the constants of the line. The term 'natural' is used because this impedance has nothing to do with any load, but depends only upon line constants.

554

current being interrupted, air-blast circuit breakers retain the same extinguishing power irrespective of the magnitude of this current. When breaking low currents (*e.g.* transformer magnetising current) with air-blast breaker, the powerful de-ionising effect of air-blast causes the current to fall abruptly to zero well before the natural current zero is reached. This phenomenon is called current chopping and produces high transient voltage across the breaker contacts. Overvoltages due to current chopping are prevented by resistance switching (See Chapter 19).

2. Insulation failure. The most common case of insulation failure in a power system is the grounding of conductor (*i.e.* insulation failure between line and earth) which may cause overvoltages in the system. This is illustrated in Fig. 24.3.

Suppose a line at potential *E* is earthed at point *X*. The earthing of the line causes two equal voltages of -E to travel along *XQ* and *XP* containing currents $-E/Z_n$ and $+E/Z_n$ respectively. Both these currents pass through *X* to earth so that current to earth is $2 E/Z_n$.

3. Arcing ground. In the early days of transmission, the neutral of three phase lines was not earthed to gain two advantages. Firstly, in case of line-to-ground fault, the line is not put out of action. Secondly, the zero sequence currents are eliminated, resulting in the decrease of interference with communication lines. Insulated neutrals give no problem with short lines and comparatively low voltages. However, when the lines are long and operate at high voltages, serious problem called *arcing ground* is often witnessed. The arcing ground produces severe oscillations of three to four times the normal voltage.

The phenomenon of intermittent arc taking place in line-to-ground fault of a 3\$\$ system with consequent production of transients is known as arcing ground.

The transients produced due to arcing ground are cumulative and may cause serious damage to the equipment in the power system by causing breakdown of insulation. Arcing ground can be prevented by earthing the neutral.

4. **Resonance.** Resonance in an electrical system occurs when inductive reactance of the circuit becomes equal to capacitive reactance. Under resonance, the impedance of the circuit is equal to resistance of the circuit and the p.f. is unity. Resonance causes high voltages in the electrical system. In the usual transmission lines, the capacitance is very small so that resonance rarely occurs at the fundamental supply frequency. However, if generator *e.m.f.* wave is distorted, the trouble of resonance may occur due to 5th or higher harmonics and in case of underground cables too.

24.4 Lightning

An electric discharge between cloud and earth, between clouds or between the charge centres of the same cloud is known as lightning.

Lightning is a huge spark and takes place when clouds are charged to such a high potential (+ve or -ve) with respect to earth or a neighbouring cloud that the dielectric strength of neighbouring medium (air) is destroyed. There are several theories which exist to explain how the clouds acquire charge. The most accepted one is that during the uprush of warm moist air from earth, the friction

between the air and the tiny particles of water causes the building up of charges. When drops of water are formed, the larger drops become positively charged and the smaller drops become negatively charged. When the drops of water accumulate, they form clouds, and hence cloud may possess either a positive or a negative charge, depending upon the charge of drops of water they contain. The charge on a cloud may become so great that it may discharge to another cloud or to earth and we call this discharge as lightning. The thunder which accompanies lightning is due to the fact that lightning suddenly heats up the air, thereby causing it to expand. The surrounding air pushes the expanded air back and forth causing the wave motion of air which we recognise as thunder.

24.5 Mechanism of Lightning Discharge

Let us now discuss the manner in which a lightning discharge occurs. When a charged cloud passes over the earth, it induces equal and opposite charge on the earth below. Fig. 24.4 shows a negatively charged cloud inducing a positive charge on the earth below it. As the charge acquired by the cloud increases, the potential between cloud and earth increases and, therefore, gradient in the air increases. When the potential gradient is sufficient (5 kV*/cm to 10 kV/cm) to break down the surrounding air, the lightning stroke starts. The stroke mechanism is as under :

(i) As soon as the air near the cloud breaks down, a streamer called *leader streamer* or *pilot streamer* starts from the cloud towards the earth and carries charge with it as shown in Fig. 24.4 (*i*). The leader streamer will continue its journey towards earth as long as the cloud, from which it originates feeds enough charge to it to maintain gradient at the tip of leader streamer above the strength of air. If this gradient is not maintained, the leader streamer stops and the charge is dissipated without the formation of a complete stroke. In other words, the leader streamer will not reach the earth. Fig. 24.4 (*i*) shows the leader streamer being unable to reach the earth as gradient at its end cloud not be maintained above the strength of air. It may be noted that current in the leader streamer is low (<100 A) and its velocity of propagation is about 0.05% that of velocity of light. Moreover, the luminosity of leader is also very low.</p>

- (*ii*) In many cases, the leader streamer continues its journey towards earth [See Fig. 24.4 (*ii*)] until it makes contact with earth or some object on the earth. As the leader streamer moves towards earth, it is accompanied by points of luminescence which travel in jumps giving
- It has been found that in a region occupied by droplets of the size expected in the clouds, the breakdown voltage is 5 kV/cm to 10 kV/cm compared to 30 kV/cm in air without droplets. One reason for this is that the low pressure at high altitudes decreases the breakdown gradient.

556

rise to stepped leaders. The velocity of stepped leader exceeds one-sixth of that of light and distance travelled in one step is about 50 m. It may be noted that stepped leaders have sufficient luminosity and give rise to first visual phenomenon of discharge.

(iii) The path of leader streamer is a path of ionisation and, therefore, of complete breakdown of insulation. As the leader streamer reaches near the earth, a *return streamer* shoots up from the earth [See Fig. 24.4 (iii)] to the cloud, following the same path as the main channel of the downward leader. The action can be compared with the closing of a switch between the positive and negative terminals; the downward leader having negative charge and return streamer the positive charge. This phenomenon causes a sudden spark which we call lightning. With the resulting neutralisation of much of the negative charge on the cloud, any further discharge from the cloud may have to originate from some other portion of it.

The following points may be noted about lightning discharge :

- (*a*) A lightning discharge which usually appears to the eye as a single flash is in reality made up of a number of separate strokes that travel down the same path. The interval between them varies from 0.0005 to 0.5 second. Each separate stroke starts as a downward leader from the cloud.
- (b) It has been found that 87% of all lightning strokes result from negatively charged clouds and only 13% originate from positively charged clouds.
- (c) It has been estimated that throughout the world, there occur about 100 lightning strokes per second.
- (d) Lightning discharge may have currents in the range of 10 kA to 90 kA.

24.6 Types of Lightning Strokes

There are two main ways in which a lightning may strike the power system (*e.g.* overhead lines, towers, sub-stations etc.), namely;

1. Direct stroke2. Indirect stroke

1. Direct stroke. In the direct stroke, the lightning discharge (*i.e.* current path) is directly from the cloud to the subject equipment *e.g.* an overhead line. From the line, the current path may be over the insulators down the pole to the ground. The overvoltages set up due to the stroke may be large enough to flashover this path directly to the ground. The direct strokes can be of two types *viz*. (*i*) Stroke *A* and (*ii*) stroke *B*.

(*i*) In stroke *A*, the lightning discharge is from the cloud to the subject equipment *i.e.* an overhead line in this case as shown in Fig. 24.5 (*i*). The cloud will induce a charge of opposite

sign on the tall object (e.g. an overhead line in this case). When the potential between the cloud and line exceeds the breakdown value of air, the lightning discharge occurs between the cloud and the line.

(*ii*) In stroke *B*, the lightning discharge occurs on the overhead line as a result of stroke *A* between the clouds as shown in Fig. 24.5 (*ii*). There are three clouds *P*, *Q* and *R* having positive, negative and positive charges respectively. The charge on the cloud *Q* is bound by the cloud *R*. If the cloud *P* shifts too near the cloud *Q*, then lightning discharge will occur between them and charges on both these clouds disappear quickly. The result is that charge on cloud *R* suddenly becomes free and it then discharges rapidly to earth, ignoring tall objects.

Two points are worth noting about direct strokes. Firstly, direct strokes on the power system are very rare. Secondly, stroke A will always occur on tall objects and hence protection can be provided against it. However, stroke B completely ignores the height of the object and can even strike the ground. Therefore, it is not possible to provide protection against stroke B.

2. Indirect stroke. Indirect strokes result from the electrostatically induced charges on the conductors due to the presence of charged clouds. This is illustrated in Fig. 24.6. A positively charged cloud is above the line and induces a negative charge on the line by electrostatic induction. This negative charge, however, will be only on that portion of the line right under the cloud and the portions of the line away from it will be positively charged as shown in Fig. 24.6. The induced positive charge leaks slowly to earth *via* the insulators. When the cloud discharges to earth or to another cloud, the negative charge on the wire is isolated as it cannot flow quickly to earth over the insulators. The result is that negative charge rushes along the line is both directions in the form of travelling waves. It may be worthwhile to mention here that majority of the surges in a transmission line are caused by indirect lightning strokes.

24.7 Harmful Effects of Lightning

A direct or indirect lightning stroke on a transmission line produces a steep-fronted voltage wave on the line. The voltage of this wave may rise from zero to peak value (perhaps 2000 kV) in about 1 μ s and decay to half the peak value in about 5 μ s. Such a steep-fronted voltage wave will initiate travelling waves along the line in both directions with the velocity dependent upon the *L* and *C* parameters of the line.

- (*i*) The travelling waves produced due to lightning surges will shatter the insulators and may even wreck poles.
- (ii) If the travelling waves produced due to lightning hit the windings of a transformer or generator, it may cause considerable damage. The inductance of the windings opposes any sudden passage of electric charge through it. Therefore, the electric charges "piles up" against the transformer (or generator). This induces such an excessive pressure between the windings that insulation may breakdown, resulting in the production of arc. While the normal voltage between the turns is never enough to *start* an arc, once the insulation has

broken down and an arc has been started by a momentary overvoltage, the line voltage is usually sufficient to *maintain* the arc long enough to severely damage the machine.

(*iii*) If the arc is initiated in any part of the power system by the lightning stroke, this arc will set up very disturbing oscillations in the line. This may damage other equipment connected to the line.

24.8 Protection Against Lightning

Transients or surges on the power system may originate from switching and from other causes but the most important and dangerous surges are those caused by lightning. The lightning surges may cause serious damage to the expensive equipment in the power system (*e.g.* generators, transformers etc.) either by direct strokes on the equipment or by strokes on the transmission lines that reach the equipment as travelling waves. It is necessary to provide protection against both kinds of surges. The most commonly used devices for protection against lightning surges are :

- (i) Earthing screen
- (ii) Overhead ground wires
- (iii) Lightning arresters or surge diverters

Earthing screen provides protection to power stations and sub-stations against direct strokes whereas overhead ground wires protect the transmission lines against direct lightning strokes. However, lightning arresters or surge diverters protect the station apparatus against both direct strokes and the strokes that come into the apparatus as travelling waves. We shall briefly discuss these methods of protection.

24.9 The Earthing Screen

The power stations and sub-stations generally house expensive equipment. These stations can be protected against direct lightning strokes by providing earthing screen. It consists of a network of copper conductors (generally called shield or screen) mounted all over the electrical equipment in the sub-station or power station. The shield is properly connected to earth on atleast two points through a low impedance. On the occurrence of direct stroke on the station, screen provides a low resistance path by which lightning surges are conducted to ground. In this way, station equipment is protected against damage. The limitation of this method is that it does not provide protection against the travelling waves which may reach the equipment in the station.

24.10 Overhead Ground Wires

The most effective method of providing protection to transmission lines against direct lightning strokes is by the use of overhead ground wires as shown in Fig. 24.7. For simplicity, one ground wire and one line conductor are shown. The ground wires are placed *above* the line conductors at such positions that practically all lightning strokes are intercepted by them (*i.e.* ground wires). The ground wires are grounded at each tower or pole through as low resistance as possible. Due to their proper location, the *ground wires will take up all the lightning strokes instead of allowing them to line conductors.

When the direct lightning stroke occurs on the transmission line, it will be taken up by the ground wires. The heavy lightning current (10 kA to 50 kA) from the ground wire flows to the ground, thus protecting the line from the harmful effects of lightning. It may be mentioned here that the degree of protection provided by the ground wires depends upon the footing resistance of the tower. Suppose, for example, tower-footing resistance is R_1 ohms and that the lightning current from tower to ground

^{*} The degree of protection by ground wires depends upon the shielding angle (*i.e.* the angle subtended by the outermost line conductors at the ground wire). The lower this angle, the greater the protection.

is I_1 amperes. Then the tower *rises to a potential V_t given by ;

 $V_t = I_1 R_1$

Since V_t (= I_1R_1) is the approximate voltage between tower and line conductor, this is also the voltage that will appear across the string of insulators. If the value of V_t is less than that required to cause insulator flashover, no trouble results. On the other hand, if V_t is excessive, the insulator flashover may occur. Since the value of V_t depends upon tower-footing resistance R_1 , the value of this resistance must be kept as low as possible to avoid insulator flashover.

Advantages

- (i) It provides considerable protection against direct lightning strokes on transmission lines.
- (*ii*) A grounding wire provides damping effect on any disturbance travelling along the line as it acts as a short-circuited secondary.
- (*iii*) It provides a certain amount of electrostatic shielding against external fields. Thus it reduces the voltages induced in the line conductors due to the discharge of a neighbouring cloud.

Disadvantages

- (*i*) It requires additional cost.
- (*ii*) There is a possibility of its breaking and falling across the line conductors, thereby causing a short-circuit fault. This objection has been greatly eliminated by using galvanised stranded steel conductors as ground wires. This provides sufficient strength to the ground wires.

24.11 Lightning Arresters

The earthing screen and ground wires can well protect the electrical system against direct lightning strokes but they fail to provide protection against travelling waves which may reach the terminal apparatus. The lightning arresters or surge diverters provide protection against such surges.

A lightning arrester or a surge diverter is a protective device which conducts the high voltage surges on the power system to the ground.

560

^{*} As a numerical illustration, if $I_1 = 50$ kA and $R_1 = 50 \Omega$, then $V_t = 50 \times 10^3 \times 50 = 2500$ kV. However, if $R_1 = 10 \Omega$, then $V_t = 50 \times 10^3 \times 10 = 500$ kV. Clearly, lesser the tower-footing resistance, smaller the potential to which the tower rises.