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16.4 Green’s Theorem

FIGURE 1

FIGURE 2

Recall that the left side of this equation
is another way of writing [ F + dr,
where F = Pi + Qj.

Green’s Theorem gives the relationship between a line integral around a simple closed
curve C and a double integral over the plane region D bounded by C. (See Figure 1. We
assume that D consists of all points inside C as well as all points on C.) In stating Green’s
Theorem we use the convention that the positive orientation of a simple closed curve C
refers to a single counterclockwise traversal of C. Thus if C is given by the vector func-
tion r(r), « < t < b, then the region D is always on the left as the point r(¢) traverses C.
(See Figure 2.)
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(a) Positive orientation (b) Negative orientation

Green’s Theorem Let C be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let D be the region bounded by C. If P and Q have
continuous partial derivatives on an open region that contains D, then

J.cde+ QdyZJDJV (%— %) dA

NOTE The notation

§dex +0dy or ?dex + Qdy

is sometimes used to indicate that the line integral is calculated using the positive orien-
tation of the closed curve C. Another notation for the positively oriented boundary curve
of D is D, so the equation in Green’s Theorem can be written as

1] g <£—£>dA=LDde+Qdy

0x dy

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem
of Calculus for double integrals. Compare Equation 1 with the statement of the Funda-
mental Theorem of Calculus, Part 2, in the following equation:

[ " F'(x) dx = F(b) — F(a)

In both cases there is an integral involving derivatives (F’, 90 /dx, and dP/dy) on the left
side of the equation. And in both cases the right side involves the values of the original
functions (F, Q, and P) only on the boundary of the domain. (In the one-dimensional case,
the domain is an interval [a, b] whose boundary consists of just two points, a and b.)
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George Green

Green'’s Theorem is named after the
self-taught English scientist George
Green (1793-1841). He worked full-
time in his father’s bakery from the
age of nine and taught himself math-
ematics from library books. In 1828
he published privately An Essay on the
Application of Mathematical Analysis
to the Theories of Electricity and Mag-
netism, but only 100 copies were
printed and most of those went to
his friends. This pamphlet contained
a theorem that is equivalent to what
we know as Green'’s Theorem, but it
didn’t become widely known at that
time. Finally, at age 40, Green entered
Cambridge University as an under-
graduate but died four years after
graduation. In 1846 William Thomson
(Lord Kelvin) located a copy of Green'’s
essay, realized its significance, and
had it reprinted. Green was the

first person to try to formulate a
mathematical theory of electricity
and magnetism. His work was the
basis for the subsequent electromag-
netic theories of Thomson, Stokes,
Rayleigh, and Maxwell.
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/
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FIGURE 3
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Green’s Theorem is not easy to prove in general, but we can give a proof for the spe-
cial case where the region is both type I and type II (see Section 15.2). Let’s call such
regions simple regions.

PROOF OF GREEN’S THEOREM FOR THE CASE IN WHICH D IS A SIMPLE REGION Notice
that Green’s Theorem will be proved if we can show that

2] [ Pax=—[] %dA
D
and
8 fon =]
D

We prove Equation 2 by expressing D as a type I region:
D={xy|a<x<b g <y< g

where g, and ¢» are continuous functions. This enables us to compute the double
integral on the right side of Equation 2 as follows:

@l

oP
—dA =

fg:0 OP
ay J‘aqu()

V() dydx = [T PG ga(0) = Plxgi()] d
gilx y Ja

where the last step follows from the Fundamental Theorem of Calculus.

Now we compute the left side of Equation 2 by breaking up C as the union of the
four curves C,, C,, Cs, and C, shown in Figure 3. On C, we take x as the parameter and
write the parametric equations as x = x, y = ¢1(x), a < x < b. Thus

J. Py ax = [ Pl gy ax

Observe that C; goes from right to left but —Cs goes from left to right, so we can write
the parametric equations of —Cs as x = x, y = ¢»(x), a < x < b. Therefore

L P(x,y) dx = —f_a P(x,y)dx = —J;b P(x, g2(x)) dx

On G, or Cq4 (either of which might reduce to just a single point), x is constant, SO
dx = 0 and

fa P(x,y)dx=0= L‘ P(x,y) dx

Hence

L P(x,y) dx = Ll P(x,y) dx + Lz P(x,y) dx + Jla P(x,y) dx + J'a P(x,y) dx

— Lb P(x, g1i(x)) dx — Lb P(x, g2(x)) dx
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1098 CHAPTER 16 Vector Calculus
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FIGURE 4

Instead of using polar coordinates, we
could simply use the fact that D is a
disk of radius 3 and write

[[4aa =4 7() = 36m
D
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Comparing this expression with the one in Equation 4, we see that

fc P(x,y)dx = — ” %dA

JJ

Equation 3 can be proved in much the same way by expressing D as a type II region
(see Exercise 30). Then, by adding Equations 2 and 3, we obtain Green’s Theorem. W

EXAMPLE 1 Evaluate [ x*dx + xy dy, where C is the triangular curve consisting of
the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).

SOLUTION Although the given line integral could be evaluated as usual by the meth-
ods of Section 16.2, that would involve setting up three separate integrals along the
three sides of the triangle, so let’s use Green’s Theorem instead. Notice that the region
D enclosed by C is simple and C has positive orientation (see Figure 4). If we let
P(x,y) = x*and Q(x, y) = xy, then we have

¢ a0 P flfl—x

4 e —— — P —

ch dx + xy dy H(ax ay)dA jo L (y — 0) dy dx
D

y=1—x

= Jol [%yz]y:” dx = %jol (1 — x)*dx

1
_%(] - x)a]” = é u

EXAMPLE 2 Evaluate §. (3y — ™"*) dx + (7x + /y* + 1) dy, where C is the circle
x4+ y?=0.

SOLUTION The region D bounded by C is the disk x* + y* < 9, so let’s change to
polar coordinates after applying Green’s Theorem:

f{;( By — e™)dx + (7x + y* + 1) dy
d d .
= jf [— (7x + y*+ 1) — —@y — ebl“")] dA
Js 0x Jdy

=" -3 raras=4|"do |'rar=36m n
0 0 0 Jo

In Examples 1 and 2 we found that the double integral was easier to evaluate than the
line integral. (Try setting up the line integral in Example 2 and you’ll soon be con-
vinced!) But sometimes it’s easier to evaluate the line integral, and Green’s Theorem is
used in the reverse direction. For instance, if it is known that P(x, y) = Q(x,y) = 0 on
the curve C, then Green’s Theorem gives

g (%—Z—i)dA=Lde+Qdy=0

no matter what values P and Q assume in the region D.
Another application of the reverse direction of Green’s Theorem is in computing
areas. Since the area of D is j j » 1 dA, we wish to choose P and Q so that

9Q 9P
0x ay
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There are several possibilities:

P(x,y) =0 P(x,y) = —y P(x,y) = =3

Qx.y) =x Ox,y) =0 O(x,y) = 3x

Then Green’s Theorem gives the following formulas for the area of D:

_ __ 1 —
E] A—§dey— fﬁydx 2§dey ydx
x2 y2
EXAMPLE 3 Find the area enclosed by the ellipse — + BT 1.
a

SOLUTION The ellipse has parametric equations x = a cos t and y = b sin ¢, where
0 =< ¢ < 2. Using the third formula in Equation 5, we have

A =%fcxdy — ydx

= % fiﬁ (acos f)(bcost) dt — (bsin t)(—asin 1) dt

Clb 27
= TJO dt = wab |

Formula 5 can be used to explain how planimeters work. A planimeter is a mechani-
cal instrument used for measuring the area of a region by tracing its boundary curve.
These devices are useful in all the sciences: in biology for measuring the area of leaves
or wings, in medicine for measuring the size of cross-sections of organs or tumors, in
forestry for estimating the size of forested regions from photographs.

Figure 5 shows the operation of a polar planimeter: the pole is fixed and, as the tracer
is moved along the boundary curve of the region, the wheel partly slides and partly rolls
perpendicular to the tracer arm. The planimeter measures the distance that the wheel
rolls and this is proportional to the area of the enclosed region. The explanation as a
consequence of Formula 5 can be found in the following articles:

R. W. Gatterman, “The planimeter as an example of Green’s Theorem” Amer:
Math. Monthly, Vol. 88 (1981), pp. 701-4.

Tanya Leise, “As the planimeter wheel turns” College Math. Journal, Vol. 38
(2007), pp. 24-31.

B Extended Versions of Green'’s Theorem

Although we have proved Green’s Theorem only for the case where D is simple, we can
now extend it to the case where D is a finite union of simple regions. For example, if D
is the region shown in Figure 6, then we can write D = D; U D,, where D, and D, are
both simple. The boundary of Dy is C; U C; and the boundary of D, is C; U (—C3) so,
applying Green’s Theorem to D, and D, separately, we get

) _ ([ (22 _ 9P
Jclucxpdx T ody = j] ( 0x 8y> dA
D

1

. 90 0P
n _ oL of
Jc:u(—c.x) Pdv+ Qdy ﬂ ( ox BY> a

2
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1100 CHAPTER 16 Vector Calculus

C If we add these two equations, the line integrals along C; and —C; cancel, so we get

¥ B 00 oP
Jc.ucgpdx +ody= J:{ ( 0x dy ) aA
D

which is Green’s Theorem for D = D; U D», since its boundary is C = C; U C,.
D The same sort of argument allows us to establish Green’s Theorem for any finite union
of nonoverlapping simple regions (see Figure 7).

FIGURE 7
EXAMPLE 4 Evaluate gﬁc y?dx + 3xy dy, where C is the boundary of the semiannular

region D in the upper half-plane between the circles x> + y> = 1 and x* + y* = 4.

y SOLUTION Notice that although D is not simple, the y-axis divides it into two simple
2ty=4 regions (see Figure 8). In polar coordinates we can write

D={ro)|1<r<20<0<mn
Therefore Green’s Theorem gives

h)

of L. > ffc vidx + 3xydy = “
D

9 I
[5(3@) - 5(}' )]dA

FIGURE 8 _ ” ydA = L” f (rsin @) rdr do

o

= f sin 6 db f rdr = [—cos B]Z[%r‘]f = 74 ]

—_—

Green’s Theorem can be extended to apply to regions with holes, that is, regions that
are not simply-connected. Observe that the boundary C of the region D in Figure 9 con-
sists of two simple closed curves C; and C,. We assume that these boundary curves are
oriented so that the region D is always on the left as the curve C is traversed. Thus the

D positive direction is counterclockwise for the outer curve C, but clockwise for the inner
C, curve C,. If we divide D into two regions D" and D" by means of the lines shown in
FIGURE 9 Figure 10 and then apply Green’s Theorem to each of D' and D", we get

) (52 55)an =[] (32 -5 )an [ (3255 o
D D' D"

= | Pdx+Qdy+ | Pdx+Qdy

Since the line integrals along the common boundary lines are in opposite directions, they

cancel and we get
FIGURE 10

aQ aP B » N _ N .
ﬁ(ax ay)dA—jclde+ Qdy+JClde+ Qdy—JCde+Qdy

which is Green’s Theorem for the region D.

EXAMPLE5 IfF(x,y) = (—=yi + xj)/(x* + y?), show that | F + dr = 2 for every
positively oriented simple closed path that encloses the origin.

SOLUTION Since C is an arbitrary closed path that encloses the origin, it’s difficult to
compute the given integral directly. So let’s consider a counterclockwise-oriented circle C’
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SECTION 16.4 Green’s Theorem 1101

y with center the origin and radius a, where a is chosen to be small enough that C’ lies
inside C. (See Figure 11.) Let D be the region bounded by C and C'. Then its positively
oriented boundary is C U (—C’) and so the general version of Green’s Theorem gives

D . Jde+Qdy+f de+Qdy-JI(——£>dA

yz — 52
FIGURE 11 ” o +y Ty |40

Therefore j‘Cde + Qdy = JC Pdx+ Qdy

that is, JCF cdr = JC F-dr

We now easily compute this last integral using the parametrization given by
r(f) = acosti+ asinrj, 0 <1< 2. Thus

J;F.dr=tf F- dr—’ F(e(t) - ¥ (1) dr

2w (—asinf)(—asint) + (acos t)(acos 1) 2
- J 2 .2 22 dr = f
0 a“cos’t + a“sin’t Jo
We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that F = Pi + Q jis a vector
field on an open simply-connected region D, that P and Q have continuous first-order

partial derivatives, and that
aP 0
-— = 99 throughout D
ay 0x

If C is any simple closed path in D and R is the region that C encloses, then Green’s
Theorem gives

§CF.dr=§Cde+ Qdy=ﬂ <% ?;;)dA ﬂOdA—o

A curve that is not simple crosses itself at one or more points and can be broken up

into a number of simple curves. We have shown that the line integrals of F around these
simple curves are all 0 and, adding these integrals, we see that [. F « dr = 0 for any
closed curve C. Therefore J‘C F - dr is independent of path in D by Theorem 16.3.3. It
follows that F is a conservative vector field. ]

16.4 EXERCISES

1-4 Evaluate the line integral by two methods: (a) directly and 2. §, -y dx — xdy,
(b) using Green’s Theorem. C is the circle with center the origin and radius 4
1. §.y>dx + x’y dy, 3. &(,xy dx + x*y* dy,
C is the rectangle with vertices (0, 0), (5, 0), (3, 4), and (0, 4) C is the triangle with vertices (0, 0), (1, 0), and (1, 2)
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CHAPTER 16 Vector Calculus

$.x’y? dx + xydy, C consists of the arc of the parabola
y = x*from (0, 0) to (1, 1) and the line segments from
(1,1) to (0, 1) and from (0, 1) to (0, 0)

5-10 Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

5.

6.

7.

8.

9.
10.

foye*dx + 2e* dy,

C is the rectangle with vertices (0, 0), (3, 0), (3, 4),

and (0, 4)

Jo (7 + ¥y dx + (x> = y) dy,

C is the triangle with vertices (0, 0), (2, 1), and (0, 1)
Jo(y + e)dx + 2x + cos y*)dy,

C is the boundary of the region enclosed by the parabolas
y=x?and x = y?

[ey*dx + 2xy3dy, Cistheellipse x* + 2y? = 2
[¢y*dx —x*dy, Cisthecircle x* + y? = 4

[e (1 =y¥)dx + (x* + ¢7)dy, Cis the boundary of the
region between the circles x> + y> = 4 and x> + y> =9

11-14 Use Green’s Theorem (o evaluate [ F - dr. (Check the
orientation of the curve before applying the theorem.)

11.

12,

13.

14.

F(x, y) = (ycosx — xy sin x, xy + x cos x),

C is the triangle from (0, 0) to (0, 4) to (2, 0) to (0, 0)
F(x,y) =(e™ + y%e™ + x7),

C consists of the arc of the curve y = cos x from (—/2, 0)
to (7/2, 0) and the line segment from (7/2, 0) to (—/2, 0)

F(x,y) =(y — cosy, xsiny),
Cis the circle (x — 3)* + (v + 4)> = 4 oriented clockwise

F(x,y) = < X2+ 1, tan_1x>, C is the triangle from (0, 0)
to (1, 1) to (0, 1) to (0, 0)

@3 15-16 Verify Green’s Theorem by using a computer algebra
system to evaluate both the line integral and the double integral.

15.

16.

Plx,y) = xy", 0Ox,y) = x'y%,

C consists of the line segment from (—/2, 0) to (7/2, 0)
followed by the arc of the curve y = cos x from (m/2, 0) to
(=m/2,0)

P(ry) = 26— X'y Q(xy) = £y,
Cis the ellipse 4x* + y> = 4

17.

18.

Use Green’s Theorem to find the work done by the force
F(x,y) = x(x + y)i + xy?j in moving a particle from the
origin along the x-axis to (1, 0), then along the line segment
to (0, 1), and then back to the origin along the y-axis.

A particle starts at the origin, moves along the x-axis to
(5, 0), then along the quarter-circle x> + y> = 25, x = 0,
vy = 0 to the point (0, 5), and then down the y-axis

back to the origin. Use Green’s Theorem to find

19.

A9 20.

21.

23.

24,

25,

26.

27.

28.

29.

the work done on this particle by the force field
F(x,y) = <sin x,siny + xy? + %x”).
Use one of the formulas in (5) to find the area under one

arch of the cycloid x =t — sint,y = 1 — cos t.

If a circle C with radius 1 rolls along the outside of the
circle x* + y* = 16, a fixed point P on C traces out a
curve called an epicycloid, with parametric equations

x = 5cost— cos5t,y = 5sint — sin 5¢. Graph the epi-
cycloid and use (5) to find the area it encloses.

(a) If C is the line segment connecting the point (xi, y;) to
the point (x», y,), show that
‘dey — ydx = x1y2 — x2)1

(b) If the vertices of a polygon, in counterclockwise order,
are (x1, y1), (x2,v2), .. ., (x4, yu), show that the area of
the polygon is

A= %[(XI.VZ —xoy) + (xoys — x3y2) -
+ (-xﬂ—lyﬂ - xnyn—l) + (xﬂyl - xlyn)]

(c) Find the area of the pentagon with vertices (0, 0), (2, 1),
(1,3),(0,2),and (-1, 1).

. Let D be a region bounded by a simple closed path C in the

xy-plane. Use Green’s Theorem to prove that the coordi-
nates of the centroid (x, y) of D are

i §;Cx2dy

where A is the area of D.

X =

y= —ifﬂyzdx

Use Exercise 22 to find the centroid of a quarter-circular
region of radius a.

Use Exercise 22 to find the centroid of the triangle with
vertices (0, 0), (a, 0), and (a, b), where @ > 0 and b > 0.

A plane lamina with constant density p(x, y) = p occupies a
region in the xy-plane bounded by a simple closed path C.
Show that its moments of inertia about the axes are

Use Exercise 25 to find the moment of inertia of a circular
disk of radius a with constant density p about a diameter.
(Compare with Example 15.4.4.)

Use the method of Example 5 to caleulate [ F - dr, where
C 2xyi (P —xY)

( x2 + yZ)Z
and C is any positively oriented simple closed curve that
encloses the origin.

F(x, y)

Calculate [ F - dr, where F(x,y) = (x* + y, 3x — y?) and
C is the positively oriented boundary curve of a region D
that has area 0.

If F is the vector field of Example 5, show that
| F + dr = 0 for every simple closed path that does not
pass through or enclose the origin.
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SECTION 16.5 Curl and Divergence 1103

30. Complete the proof of the special case of Green’s Theorem Here R is the region in the xy-plane that corresponds to the
by proving Equation 3. region S in the uv-plane under the transformation given by
x=g(u,v),y = h(u, v).

[Hint: Note that the left side is A(R) and apply the first
part of Equation 5. Convert the line integral over dR to a
line integral over dS and apply Green’s Theorem in the
uv-plane. ]

31. Use Green’s Theorem to prove the change of variables
formula for a double integral (Formula 15.9.9) for the case
where f(x,y) = 1:

JJ aray=|

R N

Ax,y)

on.0) u dv

16.5 Curl and Divergence

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and
magnetism. Each operation resembles differentiation, but one produces a vector field
whereas the other produces a scalar field.

B Curl

IfF = Pi+ Qj + Rkisa vector ficld on R* and the partial derivatives of P, Q, and R
all exist, then the curl of F is the vector field on R? defined by

R ] oP 4R 3] oP
E] curl F = R _ 99, i+t|\————1)j+ 99 _ b k
ady 0z 0z 0x ox ady

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector dilferential operator V (“del”) as

ad ad )
V=i—+j—+k—
0x dy 0z

It has meaning when it operates on a scalar function to produce the gradient of f:

S) i) i) i) i) a
PR SO S
0x dy 0z 0x dy 0z
If we think of V as a vector with components 8/dx, 9/dy, and 9/9z, we can also consider
the formal cross product of V with the vector field F as follows:

i j k
vxF-| > 2 2
ox ay 0z
P R
aR AW a0 P
=|\—-— —]j+t|——-——Jk
az ox ax dy
=curl F

So the easiest way to remember Definition 1 is by means of the symbolic expression

(2] ‘ cul F =V X F ’
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1104 CHAPTER 16 Vector Calculus

EXAMPLE1 IfF(x,y,z) = xzi + xyzj — y”k, find curl F.
SOLUTION Using Equation 2, we have

i
0 d
culF=VXF=|— — —
dx dJdy Oz
Xz xyz —y’
d d . d 0 .
= |0 (=) = =) |i— | = (=) — —=(2) [ ]
[E3 Most computer algebra systems dy 0z ax dz
have commands that compute the curl
and divergence of vector fields. If 9 9
you have access to a CAS, use these + 5 (xyz) — G_y (x2) | k

commands to check the answers to the
examples and exercises in this section.

(=2y =xp)i=(0=-0j+(z-0k
=—yQ2+x)i+xj+tyzk [ |
Recall that the gradient of a function f of three variables is a vector field on R* and

so we can compute its curl. The following theorem says that the curl of a gradient vector
field is 0.

(3] Theorem If £ is a function of three variables that has continuous second-
order partial derivatives, then

curl(Vf) =0

PROOF We have
i k
Notice the similarity to what we know 9 9

J
9 9 9
from Section 12.4: a X a = 0 for every curl(Vf) = VX (Vf) =| ax ay oz
three-dimensional vector a. of  of of

Jx Jdy 0z
0 0 0 o 0 0
S (S L PO (L L [P QR LY %
dy 0z Jdz dy Jdz 0x dx 0z dx dy Jdy dx
=0i+0j+0k=0
by Clairaut’s Theorem. [ |

Since a conservative vector field is one for which F = Vf, Theorem 3 can be rephrased
as follows:

Compare this with Exercise 16.3.29. If F is conservative, then curl F = 0.

This gives us a way of verifying that a vector field is not conservative.
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SECTION 16.5 Curl and Divergence 1105

EXAMPLE 2 Show that the vector field F(x, y, z) = xzi + xyz j — y?k is not
conservative.

SOLUTION In Example 1 we showed that
curl F = —y2 + x)i+xj +yzk

This shows that curl F # 0 and so, by the remarks preceding this example, F is not
conservative. ]

The converse of Theorem 3 is not true in general, but the following theorem says the
converse is true if F is defined everywhere. (More generally it is true if the domain is
simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional version
of Theorem 16.3.6. Its proof requires Stokes’ Theorem and is sketched at the end of
Section 16.8.

E] Theorem If F is a vector field defined on all of R* whose component func-
tions have continuous partial derivatives and curl F = 0, then F is a conservative
vector field.

EXAMPLE 3
(a) Show that

F(x,y,z) = y?2*i + 2xyz*j + 3xy*2°k
is a conservative vector field.
(b) Find a function f such that F = V.

SOLUTION
(a) We compute the curl of F:

i j k
d ad d
curlF=VXF=| — — —
ox Jdy Jz

vizb 2xyzt 3xy*Z?

= (6xyz? — 6xyz?)i — (3y?z2 — 3y?zY)j + (2yz* — 2yz)k
=0

Since curl F = 0 and the domain of F is R?, F is a conservative vector field by
Theorem 4.

(b) The technique for finding f was given in Section 16.3. We have

(5] flxy,2) =72

@ filx,y,2) = 2xyz2?

Flxy,2) = 3xy’2?
Integrating (5) with respect to x, we obtain

[y, 2) = xy’z* + gy, 2)
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*\ curl F(x, y, z)

FIGURE 1
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Differentiating (8) with respect to y, we get f,(x, v, z) = 2xyz* + g¢,(y, z), so compari-
son with (6) gives g,(y, z) = 0. Thus g(y, z) = h(z) and

£(x,y,2) = 3xy*22 + h'(z)
Then (7) gives h'(z) = 0. Thercfore

flx,y,z) =xy*2* + K [

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 37. Another occurs when F represents the velocity
field in fluid flow (see Example 16.1.3). Particles near (x, y, z) in the fluid tend to rotate
about the axis that points in the direction of curl F(x, y, z), and the length of this curl
vector is a measure of how quickly the particles move around the axis (see Figure 1). If
curl F = 0 at a point P, then the fluid is free from rotations at P and F is called irrota-
tional at P. In other words, there is no whirlpool or eddy at P. If curl F = 0, then a
tiny paddle wheel moves with the fluid but doesn’t rotate about its axis. If curl F # 0, the
paddle wheel rotates about its axis. We give a more detailed explanation in Section 16.8
as a consequence of Stokes’ Theorem.

@ Divergence

IfF =Pi+ Qj+ RKkis a vector field on R* and 9P/dx, 9Q/dy, and dR/dz exist, then
the divergence of F is the function of three variables defined by

P 90 | OR
(9] divF=22 92 R
) ay Jz

Observe that curl F is a vector field but div F is a scalar field. In terms of the gradi-
ent operator V = (3/dx) i + (9/dy) j + (9/9z) k, the divergence of F can be written
symbolically as the dot product of V and F:

divF=V - F

EXAMPLE4 IfF(x,y,z) = xzi + xyzj — y*k, find div F.
SOLUTION By the definition of divergence (Equation 9 or 10) we have

d ad d
divF =V -F=—(xz2) + —(xyz) + —(—y*) =z + xz [ |
ox Jy 0z

If F is a vector field on R?, then curl F is also a vector field on R>. As such, we can
compute its divergence. The next theorem shows that the result is 0.

(11] Theorem IfF = Pi + Qj + Rk s a vector field on R* and P, Q, and R
have continuous second-order partial derivatives, then

divcurl F =0
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SECTION 16.5 Curland Divergence 1107

PROOF Using the definitions of divergence and curl, we have

Note the analogy with the scalar triple divcurl F =V (V X F)

product: a + (a X b) = 0.
_ o (or o0\, o (op R\ o (30 P
dx \ dy 0z dy \ 0z 0x dz \ ox dy

PR &0 N PP IR N ’Qo PP
ax dy 0x 0z dy 0z dy 0x dz 0x 0z dy

=0

because the terms cancel in pairs by Clairaut’s Theorem. [ |

EXAMPLE 5 Show that the vector field F(x, y, z) = xzi + xyzj — y*’k can’t be
written as the curl of another vector field, that is, F # curl G.

SOLUTION In Example 4 we showed that
divF =z + xz
and therefore div F # 0. If it were true that F = curl G, then Theorem 11 would give

divF =divcurl G =0

which contradicts div F # 0. Therefore F is not the curl of another vector field. [ ]
The reason for this interpretation of Again, the reason for the name divergence can be understood in the context of fluid
div F will be explained at the end of flow. If F(x, y, z) is the velocity of a fluid (or gas), then div F(x, y, z) represents the net
Section 16.9 as a consequence of the rate of change (with respect to time) of the mass of fluid (or gas) flowing from the point

Divergence Theorem. (x, v, z) per unit volume. In other words, div F(x, y, z) measures the tendency of the fluid

to diverge from the point (x, y, z). If div F = 0, then F is said to be incompressible.
Another differential operator occurs when we compute the divergence of a gradient
vector field V. If f is a function of three variables, we have

av(v) = V- (V) = T 2k e

and this expression occurs so often that we abbreviate it as V> £. The operator
Vi=V-V
is called the Laplace operator because of its relation to Laplace’s equation

K Ah i

Vif=
f ox?  ayr 977

0

We can also apply the Laplace operator V? to a vector field
F=Pi+Qj+Rk
in terms of its components:
V?F =V?Pi+ VQj+ VRk
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B Vector Forms of Green’s Theorem

The curl and divergence operators allow us to rewrite Green’s Theorem in versions that
will be useful in our later work. We suppose that the plane region D, its boundary curve
C, and the functions P and Q satisfy the hypotheses of Green’s Theorem. Then we con-

sider the vector field F = P i + Q j. Its line integral is
§CF < dr = §dex +0dy

and, regarding F as a vector field on R* with third component 0, we have

i j k
P
curl F = 9 9 9 = 99 _ oF k
ox Jdy 0z 0x Jdy

P(x,y) Qxy) 0

Therefore

£_£>k.k=£_£

(curl F) -+ k =
dx dy 0x Jdy

and we can now rewrite the equation in Green’s Theorem in the vector form

[12] ffc F-dr = U (curl F) - k dA
D

Equation 12 expresses the line integral of the tangential component of F along C as
the double integral of the vertical component of curl F over the region D enclosed by C.

We now derive a similar formula involving the normal component of F.
If C is given by the vector equation

r(t) = x(6)i+ y(@)j ast<b

y then the unit tangent vector (see Section 13.2) is
T(t (t ¢
\ () () — x,() - y’()‘l
5 UM |l‘(l‘) | |l‘(1‘)|
c You can verify that the outward unit normal vector to C is given by
Y . X0 .
0 . n(t) = ’ 1= ’ J
r@] - ro]
FIGURE 2 (See Figure 2.) Then, from Equation 16.2.3, we have

ffc F-nds = L” (F - n)(0) |r'()| dr

a

fb [P(xm, Y)Y o), y(H) (1)

e 0] 0| ] v @)] ar

= J;b P()C(l‘), )’(l‘)) )’/(l‘) dt — Q(X(l), y(t)) x’(t) dt

[ pav-oae=[[ (£ +2)an
D
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SECTION 16.5 Curl and Divergence 1109

by Green’s Theorem. But the integrand in this double integral is just the divergence
of F. So we have a second vector form of Green’s Theorem.

[13) §(F-nds=”divF(x,y)dA
D

This version says that the line integral of the normal component of F along C is equal to
the double integral of the divergence of F over the region D enclosed by C.

16.5 EXERCISES

1-8 Find (a) the curl and (b) the divergence of the vector field. 12. Let f be a scalar field and F a vector field. State whether
each expression is meaningful. If not, explain why. If so, state

1. F(x, v, 2) = xy%22i +x2y22j + x2y2z k
(¥ y,2) = xy’z i+ ayz i+ xyz whether it is a scalar field or a vector field.

2. Fx,y,2) = xyz7j + y'2 'k (a) curl f (b) gradf
3. F(x,y,2) = xye’i + yze'k (c) divF (d) curl(gradf)
4. F(x,y,z) = sinyzi + sinzxj + sinxyk (e) grad F (f) grad(divF)
(2) div(gradf) (h) grad(div f)
5. Flx, 3,2) = Vi oW Ve (i) curl(curl F) (j) div(div F)
L+z I +x L+y (k) (grad f) X (div F) (1) div(curl(grad £))

o

F(x,y,2) = In(2Qy + 3z)i + In(x + 32) j + In(x + 2y) k
13-18 Determine whether or not the vector field is conservative.
If it is conservative, find a function f such that F = V.

8. F(x, y, z) = (arctan(xy), arctan(yz), arctan(zx)) 13

N

. F(x,y,2) = (e*siny, e’ sin z, e’ sin x)

cF(xy,z) =y 0 + 2xy2° j + 3xy* 2%k

14. F(x, y,z) = xyz*i + x’2*j + 4x*y2°k
9-11 The vector field F is shown in the xy-plane and looks the

same in all other horizontal planes. (In other words, F is indepen- 15. F(x,y,z) =zcosyi + xzsinyj + xcosyk
dent of z and its z-component is 0.)
(a) Is div F positive, negative, or zero? Explain. 16. F(x,y,z) =i+ sinzj + ycoszk
(b) Determine whether curl F = 0. If not, in which direction does . . .
curl F point? 17. F(x,y,2z) = i + xze** j + xye”* k
9. 10. y 18. F(x,y,z) = e‘sinyzi + ze'cos yz j + ye“cos yzk
borot / / / / (x,y,2) y yzj +y y
T T T T S /S 19. Is there a vector field G on R? such that
curl G = (xsin y, cos y, z — xy)? Explain.
T T T I ST P 08 ’ P
> —> —> — > 20. Is there a vector field G on R* such that curl G = (x, y, z)?
0 % 0 X Explain.
" 21. Show that any vector field of the form
e Y
T Flx,y,2) = f)i+g(y)j+ h2)k
> > > > where f, g, h are differentiable functions, is irrotational.
: :__ : :__ 22, Show that any vector field of the form
0 it F(x,y,2) = f(y,2)i + g(x,2) j + h(x,y) k

is incompressible.
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23-29 Prove the identity, assuming that the appropriate partial
derivatives exist and are continuous. If f is a scalar field and F, G
are vector fields, then fF,F - G, and F X G are defined by

23.
24,
25.
26.
27.
28.
29.

(fE)(x,y,2) = f(x,5,2) F(x, v, 2)
(F-G)(x,y,2) = F(x,y,2) - G(x,y,2)
(F X G)(x,y,2) = F(x,y,2) X G(x,,2)
div(F + G) =divF + divG
curl(F + G) = curl F + curl G
div(fF) = fdivF + F - Vf
curl(fF) = fcurl F + (Vf) X F
div(F X G) =G - curlF — F - curl G
div(Vf X Vg) = 0
curl(curl F) = grad(div F) — V°F

30-32 Letr = xi +yj+zkandr = |r|.

30.

31.

32,

Verify each identity.
(@ V.r=3
(©) V*i=12r

() V- (rr)=4r

Verity each identity.
(a) Vr=r/r
© Y0/ = —x/r’

If F = r/r?, find div F. Is there a value of p for which
divF = 0?

b)) VXr=20
(d) Vinr=r/r’

33.

34,

35

Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

jJ V2 dA = fﬂf(Vg) “nds — [[Vf-Vgada

D D

where D and C satisty the hypotheses of Green’s Theorem

and the appropriate partial derivatives of f and g exist and are
continuous. (The quantity Vg - n = D, g occurs in the line inte-
gral. This is the directional derivative in the direction of the
normal vector n and is called the normal derivative of g.)

Use Green’s first identity (Exercise 33) to prove Green’s
second identity:

([ (192 = gVp)da = (Vg = gv/) - nds

D

where D and C satisfy the hypotheses of Green’s Theorem
and the appropriate partial derivatives of f and g exist and are
continuous.

Recall from Section 14.3 that a function g is called harmonic
on D if it satisfies Laplace’s equation, that is, V?9 = 0 on D.
Use Green’s first identity (with the same hypotheses as in

36.

37.

38.

Exercise 33) to show that if g is harmonic on D, then
¢, Dag ds = 0. Here Dy, g is the normal derivative of g defined
in Exercise 33.

Use Green’s first identity to show that if f is harmonic
on D, and if f(x, y) = 0 on the boundary curve C, then
1, Vf |* dA = 0. (Assume the same hypotheses as in

Exercise 33.)

This exercise demonstrates a connection between the curl

vector and rotations. Let B be a rigid body rotating about the

z-axis. The rotation can be described by the vector w = wk,

where w is the angular speed of B, that is, the tangential speed

of any point P in B divided by the distance d from the axis of

rotation. Let r = (x, y, z) be the position vector of P.

(a) By considering the angle 6 in the figure, show that the
velocity field of B is given by v =w X r.

(b) Show thatv = —wyi + wxj.

(¢) Show that curl v = 2w.

z

<

X

Maxwell’s equations relating the electric field E and magnetic
field H as they vary with time in a region containing no charge
and no current can be stated as follows:

divE =0 divH=0
1 oH 0
curl E = —— curlH:Lﬁ
c ot c ot

where ¢ is the speed of light. Use these equations to prove the
following:

1 &E
VX (VXE)=——
@ ( E) c?r or?
1 H
b) VX (VXH)=——
() VX (V X H) = ——
s 1 9E , ,
(¢) V’E = pERv [Hint: Use Exercise 29.]
- P
c? or?
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