
MODEL DRIVEN SOFTWARE DEVELOPMENT
LECTURE : 8



MODEL INTERPRETATION

 Model interpretation does not generate code from a model to create a working software application.

 Instead, a generic engine is implemented, which parses and executes the model on the fly, with an 

interpretation approach

 exactly as interpreters do for interpreted programming languages



MODEL INTERPRETATION- ADVANTAGES

 It enables faster changes in the model because it does not require any explicit code-generation step. This can lead 

to a significant shortening of the turnaround time in incremental development approaches, as the model can be 

run and modified on the fly.

 It even allows changing the model at runtime without stopping the running application, as the interpreter would 

continue the execution by parsing the new version of the model

 In case of model interpretation you don’t need (and you cannot) delve into the source code of the application 

anymore, simply because such a concept does not exist anymore (though some tools still allow you to add 

custom behavior as black-box components to be “interpreted” with the model depending on certain conditions).

 It makes possible the empowerment or modification of the behavior of the running application by updating the 

interpreter and still keeping the same models (the same can be achieved in case of code-generation by updating 

the generator but then the code needs to be regenerated, compiled, and deployed again)

 It allows easy debugging of models at runtime, because interpretation can proceed step by step.

 No deployment phase is needed, because the model is already the running version of the application.



COMBINING CODEGENERATION ANDMODEL INTERPRETATION

 Both code-generation and model interpretation are used in practice, and not necessarily as mutually 

exclusive alternatives

 Hybrid approaches are often used, either intertwined in the development process based on the 

experience of the developers or within a development platform as a combined solution.

 For instance, within the MDSE process a developer may choose code-generation to take an application to 

production

 but at the same time the developer can adopt model interpretation during development time, e.g., to speed up 

the design of functional prototypes of the system 

 thanks to the use of model simulations that help him to get a better understanding



POSSIBILITIES OF HYBRID

 To provide a model interpretation approach based on an internal code-generation strategy. 

 This means that the tools actually generate, compile, and execute the code. However, this is hidden from 

designer and he feels like interpretation

 To provide a code-generation oriented strategy that relies on predefined runtime components or 

frameworks to drastically reduce the amount of code to be generated.

 The predefined components might be flexible enough to carry out complex tasks, which need only simple 

pieces of code to be generated on purpose.



REVERSE ENGINEERING

 These legacy systems are often large applications playing a critical role in the company’s overall 

information system;

 They have been in use for a long time, they have been developed with now obsolete technology, 

and sometimes they are not completely documented.

 Therefore, the first problem to be solved when dealing with the evolution and/or modernization of 

legacy systems is to really understand

 what their architecture, provided functionalities, handled data, and enforced business rules 

and processes actually are.

 This process of obtaining useful higher-level representations of legacy systems is commonly

 called reverse engineering



REVERSE ENGINEERING

 The main goal of MDRE is to offer a better support for the comprehension of existing systems. 

 Taking as input the set of artifacts associated to the various components of the legacy system 

(spanning from source code, configuration files, databases, partial documentation, and so on), 

 MDRE aims to create a set of models that represent the system

 These models can then be used for many different purposes, e.g., metrics and quality assurance 

computation, documentation generation, and tailored system viewpoints



MODEL-DRIVEN REVERSE ENGINEERING PROCESS

A MDRE process includes three main phases.

Model Discovery

 In MDRE, the idea is to switch as soon as possible from the heterogeneous real world (with many legacy artifacts 

of different nature) to the homogeneous world of models,

 where all artifacts are represented as a set of interrelated models.

 This is what we call the model discovery phase.

 A good approach for creating these models is to first focus on quickly creating a set of initial models that 

represent the legacy system at the same (low) abstraction level



MODEL-DRIVEN REVERSE ENGINEERING PROCESS

Model Understanding

 Most MDRE applications will require the processing of the raw models discovered in the previous phase in order 

to obtain higher-level views of the legacy systems that

 facilitate their analysis, comprehension, and later regeneration. 

 Thus, the second phase is the model understanding phase where chains of model manipulation techniques are 

employed to query and transform the raw models into more manageable representations

Model (Re)Generation

 The processed models obtained at the end of the model understanding phase are finally used to generate and/or 

display the expected outcome of the reverse engineered process (e.g., the code of a refactored version of the 

system)



SYSTEM INTEROPERABILITY

 The ability of computer systems or software to exchange information and to use the information that has been 

exchanged

 MDI (Model Driven Interoperability) bridging process is actually composed of three main consecutive parts:

 injection (text-to-model);

 transformation (model-to-model); and

 Extraction (model-to-text).

 Both projections and transformations can be either atomic or composite (i.e., chains of transformations).

 In most cases, such transformation chains are actually required in order to be able to split the overall problem 

into simpler ones, and so provide better extensibility, reusability, and maintainability for the bridge.


