OCL Notes

Object Constraint Language (OCL)

A UML diagram (e.g., a class diagram) does not provide all relevants aspects of

a specification
It is necessary to describe additional constraints about the objects in the model

Constraints specify invariant conditions that mmst hold for the system being
modeled

Constraints are often described in natural language and this always result in

ambiguifies

Traditional formal languages allow to write unambignons constraints, but they
are ditheult for the average system modeler

(CL: Formal language used to express constraints, that remains easy to read
and write

Object Constraint Language (OCL)

Pure expression language: expressions do not have side effet

 when an OCL expression is evaluated, it returns a value

its evaluation cannot alter the state of the corresponding executing svstem

© an OCL expression can be used to specify a state change {e.g., in a post-
condition)

MNot a programming language

it is not possible to write program logic or fow of control in OCL

cannot be used to invoke processes or activate non-query operations

Typed language: each expression has a type
well-formed expressions must obey the type conformance rules of OCL
< each classifier defined in a UML model represents a distinct OCL type
OCL includes a set of supplementary predefined types

The evaluation of an (JCL expression is instantaneous

< the state of objects in a model cannot change during evaluation

Where to Use OCL

To specily invariants on classes and types in the class model

To specify type invariants for stercotypes

To describe pre- and post-conditions on operations and methods
To deseribe puards

As a navigation language

To specify constraints on operations

OCL is used to specify the well-formedness rules of the UML metamodel

Comments and Infix Operators

Comments

o Denoted by —-

—— this is a comment
Infix Operators
o Use of infix operators (e.g., +, -, =, <, ...) 18 allowed

« Expression a + b is conceptually equivalent to a.+({b), i.e., invoking the + op-

eration on a with b as parameter

Inhx operators defined for a fype must have exactly one parameter

Context and Self

All classifiers (types, classes, interfaces, associations, datatypes, ...) from an

UML model are types in the OCL expressions that are attached to the model

Each OCL expression is written in the context of an instance of a specific type
context Person

Reserved word self is used to refer to the contextual instance

If the context is Person, self referes to an instance of Person

Object and Properties

All properties (attributes, association ends, methods and operations without
gide effects) defined on the types of a UML model can be used in OCL expressions

The value of a property of an object defined in a class diagram is specified by a
dot followed by the name of the property

If the context is Person, self.age denotes the value of attribute age on the
instance of Person identified by self

The type of the expression is the type of attribute age, i.e., Integer

If the context is Company, self.stockPrice() denotes the value of operation
stockPrice on the instance identified by self

Parentheses are mandatory for operations or methods, even if they do not have
parameters

Invariants

Determine a constraint that must be true for all instances of a type

Value of attribute noEmployees in instances of Company must be less than or
ciqual to 5

context Company inv:
self .noEmployees <= 50

Equivalent formulation with a ¢ playing the role of self, and a name for the
constraint

context ¢: Company inv SME:
c.noEmployeas <= L0

The stock price of companies is greater than ()

context Company inv:
self.stockPrice() > 0

Pre and Post conditions

Constraints associated with an operation or other behavioral feature
Pre-condition: Constraint assumed to be frue before the operation is executed
Post-condition: Conpstraint satisfied after the operation is executed

Pre- and post-conditions associated to operation income in Person

context Person::income(): Integer
pra: self.age >= 18
post: result < 5000

self i3 an instance of the type which owns the operation or method
result denotes the result of the operation, if any
Type of result is the resnlt type of the operation (Integer in the example)

A name can be given fo the pre- and post-conditions

context Person::income(): Integer
pre adult: self.age >= 18
post resultlK: result < 5000

.

Previous values in Post conditions

In a postcondition, the value of a property p is the value upon completion of the

operation

The value of p at the start of the operation is referred to as plpre

context Person::birthDayHappens()
post: age = agelpre + 1

For operations, ‘@pre’ is postfixed to the name, before the parameters

context Company::hireEmployee(p: Person)
post: employee = employeelpre->including(p) and
stockPrice() = stockPrice@pre() + 10

The “@pre’ posthix is allowed only in posteonditions
Accessing properties of previous object values

< a.b@lpre.c: the new value of ¢ of the old value of b of a
 a.b@pre.clpre: the old value of ¢ of the old value of b of a

Body Expression

Used to indicate the result of a query operation

Income of a person is the sum of the salaries of her jobs

context Person::income(): Integer
body: self.job.salary->sum()

Expression must conform to the result type of the operation

Definition may be recursive: The right-hand side of the definition may refer to

the operation being defined

A method that obtains the direct and indirect descendants of a person

context Person::descendants(): Set
body: result = self.children->union/(
self.children->collect(c | c.descendants()))

Pre-, and postconditions, and body expressions may be mixed together after one

operation context
context Person::income(): Integer
pre: self.age >= 18
body: self.job.salary->sum()
post: result < 5000

Let Expression

e Allows to define a variable that can be used in a constraint

context Person inv:
let numberJobs: Integer = self.job->count() in
if isUnemployed then
numberJobs = 0
else
numberJobs > 0
endif

e A let expression is only known within its specific expression

Definition Expression

e Enable to reuse variables or operations over multiple expressions

e Must be attached to a classifier and may only contain variable and/or operation
definitions
context Person

def: name: String = self.firstName.concat(‘ ’).concat(lastName)
def: hasTitle(t: String): Boolean = self.job—>exists(title = t)

e Names of the attributes/operations in a def expression must not conflict with
the names of attributes/association ends/operations of the classifier

Enumeration Types

senumeration»

Person Gender
gender: Gender male
isMarried: Boolean female

maidenMName: String [0..1]

e Define a number of literals that are the possible values of the enumeration
e An enumeration value is referred as in Gender: :female

e Only married women can have a maiden name

context Person inv:
self .maidenName <> ‘’ implies
self.gender = Gender::female and self.isMarried = true

Navigating Associations

employee employer
Person Company
0.* 0.
1 0.*

manager managedCompanies

IsUnemployed: Boolean noEmployees:Integer

e From an object, an association is navigated using the opposite role name

context Company
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty()

e Value of expression depends on maximal multiplicity of the association end
1: value is an object
*: value is a Set of objects (an OrderedSet if association is {ordered})
e If role name is missing, the name of the type at the association end starting with

a lowercase character is used (provided it is not ambiguous)

context Person
inv: self.bank.balance >= (

Navigating Associations

When multiplicity is at most one, association can be used as a single object or
as a set containing a single object

self .manager is an object of type Person

context Company inv:
self.manager.age > 40

self .manager as a set

context Company inv:
self .manager->size() = 1

For optional associations, it is useful to check whether there is an object or not

when navigating the association

context Person inv:

self.wife->notEmpty() implies self.gender = Gender::male and
self.husband->notEmpty() implies self.gender = Gender::female

OCL expressions are read and evaluated from left to right

Association Class

employee employer
Person K . K Company
IsUnemployed: Boolean) l - noEmployees: Integer
age: Integer : .
.. Job

title: String

e For navigating to an association class: a dot and the name of the association
class starting with a lowercase character is used

context Person
inv: self.isUnemployed = false implies self.job->size() >= 1

e For navigating from an association class to the related objects: a dot and the

role names at the association ends is used

context Job
inv: self.employer.noEmployees >= 1
inv: self.employee.age >= 18

e This always results in exactly one object

Association Class

employee employer
Person K . K Company
IsUnemployed: Boolean) l - noEmployees: Integer
age: Integer : .
.. Job

title: String

e For navigating to an association class: a dot and the name of the association
class starting with a lowercase character is used

context Person
inv: self.isUnemployed = false implies self.job->size() >= 1

e For navigating from an association class to the related objects: a dot and the

role names at the association ends is used

context Job
inv: self.employer.noEmployees >= 1
inv: self.employee.age >= 18

e This always results in exactly one object

