
Usecases
LECTURE 5



Types of Languages
Domain specific Language (DSL)

Language specially designed to perform a task in a certain domain e.g HTML, C++, SQL etc

A formal process able language targeting at a specific viewpoint or aspect of a software system

Its semantics flexibility and notation is designed in order to support working with that viewpoint 
as good as possible

General Purpose language (GPL)

GPL is not domain specific e.g UML, Petrinets, Graphs etc

A GPL provides notations that are used to describe a computation in a human-readable form 
that can be translated into a machine-readable representation

A GPL is a formal notation that can be used to describe problem solutions in a precise manner.

A GPL is a standardized communication technique for expressing instructions to a computer. 



Anatomy of Language
Abstract Syntax

Describes the structure of the language and the way the different primitives can be combined 
together, independently of any particular representation or encoding

Concrete Syntax

Describes specific representations of the modeling language, covering encoding and/or visual 
appearance

Semantics

Describing the meaning of the elements defined in the language executed? and the meaning of 
the different ways of combining them.



UML Diagrams



What is a use case?
• A requirements analysis concept 

• A case of a use of the system/product 

• Describes the system's actions from a the point of view of a user 

• Tells a story 

• A sequence of events involving 

• Interactions of a user with the system 

• Specifies one aspect of the behavior of a system, without specifying the structure of the 
system

• Is oriented toward satisfying a user's goal



How do we describe use cases?
• Textual or tabular descriptions 

• User stories 

• Diagrams



Textual and Tabular Description

Secondary 
actors:



What is a user story?
An abbreviated description of a use case

Description of scenario or events in the bulleted points

Answers 3 questions:
1) Who?

2) Does what?

3) And why?



Use Case Diagram
A picture 
 describes how actors relate to use cases 

 and use cases relate to one another

Diagrams are not essential 

They are helpful in giving an overview, but only secondary in importance to the 
textual description

They do not capture the full information of the actual use cases 

In contrast, text is essential



Use Case Diagram – 0bjective
Built in early stages of development 

Purpose
 Specify the context of a system

 Capture the requirements of a system

 Validate a systems architecture

 Drive implementation and generate test cases 

 Developed by Requirement analysts and domain experts 



Use Case Diagram Elements
Actors 

- something with a behavior or role, e.g., a person, another system, organization. 

Scenario 

- a specific sequence of actions and interactions between actors and the system, a.k.a. a use case 
instance 

Use case 

-a collection of related success and failure scenarios, describing actors using the system to 
support a goal

Other Elements

-Associations, include, exclude



What is an Actor?
Include all user roles that interact with the system

Include system components only if they responsible for initiating/triggering a 
use case. 

For example, a timer that triggers sending of an e-mail reminder 

Each Actor must be linked to a use case, while some use cases may not be 
linked to actors.

Actor is someone interacting with use case (system function). 

Named by noun



Kind of Actors
Primary - a user whose goals are fulfilled by the system 

importance: Define user goals

Supporting/Secondary - provides a service (e.g., info) to the system

importance: clarify external interfaces and protocols

 Offstage - has an interest in the behavior but is not primary or supporting, 
e.g., government

importance: ensure all interests (even subtle) are identified and satisfied



UseCase
System function (process – automated or manual).

Named by verb

Each Actor must be linked to a use case, while some use cases may not be 
linked to actors.

Represented by oval in Diagrams

Login Account



Other Elements
Connection between Actor and Use Case

Boundary of system

Include relationship between Use Cases (one UC must call another; e.g., 
Login UC includes User Authentication UC)

Extend relationship between Use Cases (one UC calls Another under certain 
condition; think of if-then decision points)

<<include>>

<<extend>>



Linking Usecases
Association relationships

Generalization relationships

One element (child) "is based on" another element (parent)

Include relationships

One use case (base) includes the functionality of another (inclusion case)

Supports re-use of functionality

Extend relationships

One use case (extension) extends the behavior of another (base) 



Generalization
The child use case inherits the behavior and meaning of the parent use case.

The child may add to or override the behavior of its parent.



Include
The base use case explicitly incorporates the behavior of another use case at a location 
specified in the base. 

The included use case never stands alone. It only occurs as a part of some larger base that 
includes it. 

Include relationship – a standard case linked to a mandatory use case. 

Standard use case can NOT execute without the include case

Example: to Authorize Car Loan (standard use case), a clerk must run Check Client’s Credit 
History (include use case)

The standard UC includes the mandatory UC (use the verb to figure direction arrow)



Include



Extend
The base use case implicitly incorporates the behavior of another use case at certain points 
called extension points.

The base use case may stand alone, but under certain conditions its behavior may be 
extended by the behavior of another use case.

Extend relationship – linking an optional use case to a standard use case

Example: Register Course (standard use case) may have Register for Special Class (extend use 
case) – class for non-standard students, in unusual time, with special topics, requiring extra 
fees…)

The optional UC extends the standard UC

Standard use case can execute without the extend case



How to create use case diagrams
List main system functions (use cases) in a column:

– think of business events demanding system’s response 

– users’ goals/needs to be accomplished via the system 

– Create, Read, Update, Delete (CRUD) data tasks 

– Naming use cases 

– user’s needs usually can be translated in data tasks 

Draw ovals around the function labels

Draw system boundary

Draw actors and connect them with use cases (if more intuitive, this can be done as step 2)

 Specify include and extend relationships between use cases (yes, at the end - not before, as 
this may pull you into process thinking, which does not apply in UC diagramming).


