
Usecases
LECTURE 5



Types of Languages
Domain specific Language (DSL)

Language specially designed to perform a task in a certain domain e.g HTML, C++, SQL etc

A formal process able language targeting at a specific viewpoint or aspect of a software system

Its semantics flexibility and notation is designed in order to support working with that viewpoint 
as good as possible

General Purpose language (GPL)

GPL is not domain specific e.g UML, Petrinets, Graphs etc

A GPL provides notations that are used to describe a computation in a human-readable form 
that can be translated into a machine-readable representation

A GPL is a formal notation that can be used to describe problem solutions in a precise manner.

A GPL is a standardized communication technique for expressing instructions to a computer. 



Anatomy of Language
Abstract Syntax

Describes the structure of the language and the way the different primitives can be combined 
together, independently of any particular representation or encoding

Concrete Syntax

Describes specific representations of the modeling language, covering encoding and/or visual 
appearance

Semantics

Describing the meaning of the elements defined in the language executed? and the meaning of 
the different ways of combining them.



UML Diagrams



What is a use case?
• A requirements analysis concept 

• A case of a use of the system/product 

• Describes the system's actions from a the point of view of a user 

• Tells a story 

• A sequence of events involving 

• Interactions of a user with the system 

• Specifies one aspect of the behavior of a system, without specifying the structure of the 
system

• Is oriented toward satisfying a user's goal



How do we describe use cases?
• Textual or tabular descriptions 

• User stories 

• Diagrams



Textual and Tabular Description

Secondary 
actors:



What is a user story?
An abbreviated description of a use case

Description of scenario or events in the bulleted points

Answers 3 questions:
1) Who?

2) Does what?

3) And why?



Use Case Diagram
A picture 
 describes how actors relate to use cases 

 and use cases relate to one another

Diagrams are not essential 

They are helpful in giving an overview, but only secondary in importance to the 
textual description

They do not capture the full information of the actual use cases 

In contrast, text is essential



Use Case Diagram – 0bjective
Built in early stages of development 

Purpose
 Specify the context of a system

 Capture the requirements of a system

 Validate a systems architecture

 Drive implementation and generate test cases 

 Developed by Requirement analysts and domain experts 



Use Case Diagram Elements
Actors 

- something with a behavior or role, e.g., a person, another system, organization. 

Scenario 

- a specific sequence of actions and interactions between actors and the system, a.k.a. a use case 
instance 

Use case 

-a collection of related success and failure scenarios, describing actors using the system to 
support a goal

Other Elements

-Associations, include, exclude



What is an Actor?
Include all user roles that interact with the system

Include system components only if they responsible for initiating/triggering a 
use case. 

For example, a timer that triggers sending of an e-mail reminder 

Each Actor must be linked to a use case, while some use cases may not be 
linked to actors.

Actor is someone interacting with use case (system function). 

Named by noun



Kind of Actors
Primary - a user whose goals are fulfilled by the system 

importance: Define user goals

Supporting/Secondary - provides a service (e.g., info) to the system

importance: clarify external interfaces and protocols

 Offstage - has an interest in the behavior but is not primary or supporting, 
e.g., government

importance: ensure all interests (even subtle) are identified and satisfied



UseCase
System function (process – automated or manual).

Named by verb

Each Actor must be linked to a use case, while some use cases may not be 
linked to actors.

Represented by oval in Diagrams

Login Account



Other Elements
Connection between Actor and Use Case

Boundary of system

Include relationship between Use Cases (one UC must call another; e.g., 
Login UC includes User Authentication UC)

Extend relationship between Use Cases (one UC calls Another under certain 
condition; think of if-then decision points)

<<include>>

<<extend>>



Linking Usecases
Association relationships

Generalization relationships

One element (child) "is based on" another element (parent)

Include relationships

One use case (base) includes the functionality of another (inclusion case)

Supports re-use of functionality

Extend relationships

One use case (extension) extends the behavior of another (base) 



Generalization
The child use case inherits the behavior and meaning of the parent use case.

The child may add to or override the behavior of its parent.



Include
The base use case explicitly incorporates the behavior of another use case at a location 
specified in the base. 

The included use case never stands alone. It only occurs as a part of some larger base that 
includes it. 

Include relationship – a standard case linked to a mandatory use case. 

Standard use case can NOT execute without the include case

Example: to Authorize Car Loan (standard use case), a clerk must run Check Client’s Credit 
History (include use case)

The standard UC includes the mandatory UC (use the verb to figure direction arrow)



Include



Extend
The base use case implicitly incorporates the behavior of another use case at certain points 
called extension points.

The base use case may stand alone, but under certain conditions its behavior may be 
extended by the behavior of another use case.

Extend relationship – linking an optional use case to a standard use case

Example: Register Course (standard use case) may have Register for Special Class (extend use 
case) – class for non-standard students, in unusual time, with special topics, requiring extra 
fees…)

The optional UC extends the standard UC

Standard use case can execute without the extend case



How to create use case diagrams
List main system functions (use cases) in a column:

– think of business events demanding system’s response 

– users’ goals/needs to be accomplished via the system 

– Create, Read, Update, Delete (CRUD) data tasks 

– Naming use cases 

– user’s needs usually can be translated in data tasks 

Draw ovals around the function labels

Draw system boundary

Draw actors and connect them with use cases (if more intuitive, this can be done as step 2)

 Specify include and extend relationships between use cases (yes, at the end - not before, as 
this may pull you into process thinking, which does not apply in UC diagramming).


