=t s—

R=a

e
—— T

_ each face of the element (obtained by a Taylor series expansion about the center of th¢

5-4 MOMENTUM EQUATION

A dynamic equation describing fluid motion may be obtained by applying Newton

second law to a particle. To derive the differential form of the momentum equation, w,

shall apply Newton's sccond law to an infinitesimal fluid particle of mass. dm.
Recall that Newton's second law for a finite system is given by

. dP
| S (4.2a)
d' )\\slcm

where the lincar momentum, P, of the system is given by

Piystem = J Vodm (4.2b)
mass {sysicm)
Then, for an infinitesimal system of mass, dm, Newton's second law can be written
d}l
dF = dm ———) (5.19)
‘h syvem |

moving in a velocity ficld (Eq. 5.9), we can now write Newton's second law as the vector

Having obtained an expression for the acceleration of a fluid clement of mass. dm. i
]
equation E

DV V V Y, U '
dF = dm — dml:u — +r (—- + w (—-!- + i:’ (5.20)
Dt cx cy Cz Ct

We need now to obtain a suitable formulation for the force, dF, or its componcents dF.
dF,, dF, acting on the element.

$5-4.1 Forces Acting on a Fluid Particle

Recall that the forces acting on a fluid element may be classified as body forces and
surface forces; surface forces include both normal forces and tangential (shear) forces

We shall consider the x component of the force acting on a differential element Qf
mass,dm, and volume, d¥ = dx dy d=. Only those stresses that act in the x direction “_'1”
give rise to surface forces in the x direction. If the stresses at the ceater of the differentia!
element are taken to be 6,,, 7,,, and 7_,, then the stresses acting in the x direction ¢

own in Fig. 5. 10

A T— .
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‘ : cady Cody
c”“ = (On + ,\\ P )(l'\' } Tz — 2, dy d=
y \ :

g N o “ 2
' (T, dy Ctoody
oo+ 2 s )dyds - - .
( JA ( “- 2 T.\\ ‘-\‘ 2 ‘l\ (!..
: ' (1, d: (1. d:
B + (1:\ + s dydy = (1., - A,;_:\ S ) dxdy
;n_simplifying. we obtain |
e
%ﬁ ”“ ‘.nll ‘.‘T‘-_‘ ‘Qt.‘
wr, =\-—c—+ 7= 4+ == |dxdyd:
( -\ ‘.\l ‘\: B

$
g}\cn‘ th‘c force of gravity is the only body force acting, then the body force per unit
nass is §. Then the net foree in the x direction, dF,, is given by

: . KL SL
dF, = dF,_ + dFy, = (l’.‘l.\ + e + ‘.: + = )d.\' dy d: (5.21a)
. y 0z

. . . ‘1, Co. (1.,
dF, = dF, + dFy = (/'-"r + ‘,‘:_' + ‘.':" + f‘:’) dx dy d:z (5.21b)
. . . (T (T, (0.,
dF. = dF,, + dFy = (p_q: + ==+ ==+ .") dx dy dz (5.21¢)
cx cy cz
y 97y, dy
A yx 3y 2
a'u dz
Tx= 50 7
Txx 80,y ds
__—>a’:+ ax ?

Stresses in the x direction on an element of fluid.
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| |
5-4.2 DiHferential Momentum Equation o
. 5 & H d dF-1 0 l ¢
We have now formulated expressions for the components, dF,. dFy. and €7z =0
i _— . substitute these expressions
force, dF, acting on the clement of mass, dm. If we subs £ Ea. 5,20, we
(Eqgs. 5.21) for the force components into the x. 3. and = components ol £q. 0-=t
obtain the differential equations of motion.
| a N
| (o, €1 e1. Cu ‘u fu 59
. Py, + ..\+ ..u+ .J:['(T+ll:'-*l";“+“7‘: (' a)
X oy (s ! X oy (-
Oty 00, (1, oA e (5.22b)
il e e m o e [ e o e o o O e
(X (y is 1 (X cy (=
! (1,. (1. J(a., “(w cw W cw "
| M + ==+ —E g rwakl i Rl G- collo o it ol U —;_-) (5.22¢)
(X cy 2 1 X cy [

Equations 5.22 are the differential equations of motion for any fluid satisfying the
continuum assumption. Before the cquations can be used to solve problems, suitable
expressions for the stresses must be obtained in terms of the velocity ficld.

| 7 5-4.3 Newtonian Fluid: Navier-Stokes Equations
For a Newtonian fluid the viscous stress is proportional to the rate of shecaring strain
! (angular deformation rate). The stresses may be expressed in terms of velocity gradients
| and fluid propertics in rectangular coordinites as follows:”
i P 4 cu
T = T. =l o=t — 7 .
Ty v I Cx Cy (5..3:1)
\ 4 -
g oW r
| By = Ty = M 5 t= (5.23b)
|
i . . (u Cw
{ e = T.. = Ji| — Eesi
=2 = R = BT oY (5.23¢)
' - cu
l Ope= —p—=pV-V 424"
| = 3/ o (5.23d)
i
(5.23¢)
(5.230)
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‘ ll' these expressions are introduced nto the differential equationy oof Motion
¥y . \ H
Fas. $.22). we obtn

' : ’ w2 TR
Du g L fl2— -V P+ =] pl= 4 2
P T T T s oy ] 1 OV (y

(e w\ )
i [u( .t . )J (3.24h)
{2 \(c ()}

i P
3= [n(l‘-)‘- ~ %V- i)] (5.24¢)
Ee .=

%‘hcsc equations of motion are called the Navier-Stokes cquations. The cquations are

tly simplificd when applied to incompressible flows in which variations in fluid
Viscosity can be neglected. Under these conditions the cquations reduce to

N

a - - - - -9 -y a9 \
S (u (u (u cn (p N (-l : (-l N U
2l N Tl F =t W ) =y —-— 4 9% B
T : (1 (X (y ez Yo (A Vo0t ) (5.25q)

‘r cr cr Cr cp v oo
[)_—I+u:'—+l':-+\t'_— =p‘([),--°;-+[l .,+“'-.,+‘*"-"
= c 1T

cy (s Cy Cx* 0yt (5.25h)
cw s ‘w N ‘w N ‘w ‘p N i N Ciw o Cow
— U ' — W— = . — — i ~= = =3
AT T Cy iz) ! i cxt a2t (5.25¢)

T"hc Navier-Stokes equations in ¢

5Cosity are given in Appendix B, :
#]" rthe case of frictionless flow (i = 0) the equations of motion (Eq. 5.24 or Eq. 5.25)

ylindrical coordinates for constant density and

DV
DP9 Vp
o ", l
;‘l“,{:?f;ha!l consider the case of frictionless flow in Chapter 6.



