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cts of forces on fluid motion (dynamics). et u - consider Ilrsl
ficld. For convenience. We follow an

lement in a flow
ass). as shown in Fig. 5.4.

a flow ficld. several things may
that the clement translates: it

“undergoes a lincar displacement from a diffcrent location Xy, Vi« <1
The element may also rotatc, the orientation of the clementas shown in Fig. 5.4, where
,éﬁ;,é_sides of the element are parallcl to the coordinate axes x, y. 2, may change as a result
of pure rotation about any one (or all three) of the coordinate axes. In addition the

= Before formulating the cfle
* the motion (kincmatics) of & fluid ¢
;__{_;égﬁnitesimul clement of fixed identity (m
% As the infinitesimal element of mass, dm, MOVES in
2;happen to it. Perhaps the most obvious of these is

location x, ).z tod

=0

l Yy
A

|
: @

/)- iy

// dz
dx
X

4
Fig. 5.4 Infinitesimal element of fluid.
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Fig. 5.5 Pictorial representation ol the components of fluid motion.

clement may deform. The deformation may be subdivided into two parts— lincar and
angular deformation. Lincar deformat‘on involves a change in shape without a change
in orientation of the clement: a deformation in which planes of the clement that were

originally perpendicular (c.g. the top and side of the element) remain perpendicular. |
Angular deformation involves a disiortion of the element in which planes that were

originally perpendicular are no longer perpendicular. In general, a fluid clement may
undergo a combination of translation, rotation, and linear and angular deformation
during the course of its motion.
These four components of fluid motion areillustrated in Fig. 5.5 for motion in the xy
plane. For a general three-dimensional flow, similar motions of the particle would be
depicted in the yz and xz planes. For pure translation or rotation, the fluid clement
retains its shape; there is no deformation. Thus shear stresses do not arise as a res It of
pure translation or rotation (recall from Chapter 2 that in a Newtonian fluid th uh .
stress is directly proportional to the rate of angular deformation). € sheat
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ation ¢an be obtained by considering o,

«np thests of continuum fluid mc‘-‘h:l?]‘,".-
iy he d~‘ Lid Nlow in which the prnpcr‘lics of a flow fielg :“

gtoalh \¢ space coordinates upd time. In particular ‘”’;L

y continuo | "-fl Piv, vz D). The field description is very powerful s‘incL

¥ feld 18 given b ) ﬂ:.\. N gi'\ en by one cyua o ¢
o far the LIHITE T Jescription for fluid properiies and obtain gy,

{

' 1ain the ficld ¢
°""“"“'m'hm " uid particle as it translates in a flow fie
-\ for the accele a fluid part held. Stated

Cficld, V= (v .50 find the acceleration of a fluid particle, g
b : ’ e

ngin i velocity i
ponding (0
= Vs

Ol Ccc'cr
The basic hypo

the veiocit
cld. At time, 1. the particle is at the position

 nsider a particie movi . cle
the velocity at that pointin space at

nsiv ! ,
s and has a velocity corres

particle has moved 10 @ NEwW position, with coordinates x + dx, y + dy

de,and has a velocity given by
3 Vdiea = Pix 4+ dx. v+ dyez 4 dzt + do)

is shown pictorially in Fig. 5.6.

ﬁf _ Particle path )

P \J
:. Y Particle at 5
2 e
‘% 4 ) \ Particle at
o V% Fo4dr Ume t 4+ dt
):"" /Il/." X

4 /’

m panidc el Fig 5.6 Motion of a particle in a flow field.
ity at 1 (position ) is given by V, = V(x Y
y V, = V(x.y,z1). Then dV,, the

R ]

4$20ge in the velocity o
gy y of the particle, in moving from location 7 to 7 + dF, is given by

dpr=i1'—,'dx +.F_E/.d ev ev
ix 0 Yp + ?Z_ d:p +— di

cl

e i - ——
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mind us that calculation of the acceleration of a fluid particle in a velocity field
Lo T & special derivative, it is given the symbol DV/Dr. Thus
req .

—
i

DV _ L av AL 55
— B, = U=t D W — o — :
3’ Dt ’ x cy or Tl ,

The derivative, DV/Dt, defined by Eq. 5.9, is commonly called the substantial derivative
to remind us that it is computed for a particle of “substance.” It often is called the
material or particle derivative.

From Eq. 5.9 we recognize that a fluid particle movingin a flow ficld may undergo an
acceleration for either of two reasons. It may be accelerated because it is convected into
aregion of higher (or lower) velocity. For cxample, in the steady flow through a nozzle,
in which, by definition, the velocity ficld is not a function of time, a fluid particle will
accelerate as it moves through the nozzle. The particle is convected into a region of
higher velocity. If a flow ficld is unsteady, a fuid particle will undergo an acceleration,a
“local™ acceleration, because the velocity field is a function of time.

AR et 3R

e

>
>

Bt

The physical significance of the terms in Eq. 59 s %’;

- - - - - i

| . DV LA 4 LA %g
; a,. = — = Yy — —_— W — — Y
: ; Dt ¢x cy 0z ot j
total convective local §

acceleration acceleration acceleration %

of a particle

For a two-dimensional flow, say V = V(x, y,1), Eq. 5.9 reduces to
by v N val‘/ N v
Dt 0x dy ot
For a one-dimensional flow, say ¥ = 7(x, 1), Eq. 5.9 becomes

i VT k4

- o - s,%—_"
3 | . Dt ox Ot

g

Finally, for a steady flow in three dimensions, Eq. 5.9 becomes
DV _ oV v oy ,
44 :-, H .'_l_, L -E -u‘-a;-+va_y+tw_a_z- ;

which is not necessarily zero. Thus a fluid p
acceleration due to its motion, even in a ste

Equation 5.9 is a vector equation, As wit

article can undergo a convective
ady velocity field,

h all vector equations, it may be written 0 f&
an xyz coordinate system, the scalar com

lar component eg ations, Relative (o

Du du du ou  Qu 2
" Dt uax+00;v+W5§+'é? (5103)
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PR (5.10b)
a)’" - Dt ax a)' 0z ’
o0 S (5.100)
- pp—tWa-t 3
4. =———= u e ' (1: a1
zp Dt - 0x Cy | thc
i in
. | ion of a particle anywhere
; xpression for the acceleration 0 : :
have obtained an cxpres e of 8 paric amyuher i

1d; this is the Eulerian method of desc , ; of the
e at a particular point in the flow ficld, onc substitutes (he coordinates

: ' des-
into the ficld expression for acceleration. In the Lagrangian mF‘L‘Od r(i)lr)cd oS
', the motion (position, velocity, and acceleration) of the particle is describe o
ion of time. The Eulcrian and Lagrangian methods of description arc illustrate

mple Problem 5.5.
t_u/c'zl.':’?q. “'"" “”&

ple 5.5 P,wh'c le Acc. L

er one-dimensional, steady, incompressible flow through the planc convcrg-
éhne! shown. The velocity ficld is given by Vv =W[l1+ (x/L)}i. Find the x
nent of acceleration for a particle moving in the flow ficld. If we use the mcthod
iption of particle mechanics, the position of the particle, located at x = 0 at

0, will be a function of time, X, = £(1). Obtain the expression for f(r) and then,
ng the second derivative of the function with respect to time, obtain an

”ion for the x component of the particle acccleration.

fesis

M Al . D(fé'ftf: r'T‘

'y

?—bl‘-——-————’+—

. i
. il
el i
rp=L

x=0

PLE PROBLEM 5.5
: Steady, one-dimensional, incompressible flow through the converging channel
nne

shown. )
: - x . yt_%
V=V il (O R . N
’ =]

n=0

o™

(i) The x component of the accelerati i

! : on of a particle moving i

(b) Forthe Pa}rtlclc located at x = 0 att = 0, obtain an cxprcgs;l" lh: ﬁqw Held.
(1) position, x,, as a function of time. SRS

2) xcom i =
(2) ponent of acceleration, a, , as a function of time.

JLUTION:
 acceleration of a particle moving in a velocity field is given by
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The x component of the acceleration is given by

¢ 3 ‘u  Cu |
E‘=ugi+r(—.l-'+\~".—u+7.' |
Dt cx cy cz o«
For the flow field given,
X
r=w=0 t4=l’;(\l+z)
3 Du
Du ¢y [ x\V, »? x) —
Therefore, — =, _ p ey bt PR R Dt
Bl Tk 'kH.L)L L( L)

. : v Id, we merely
{ To determine the acceleration of a particle at any point in the flow fic
substitute the present location cf the particle into the above result.

In the second part of this problem we are interested in following a particular particle,
namely, the one located at x = () at1 = 0, as it flows through the channcl. _ - i

The x coordinate that locates this particle will be a l’unclion. of time, .\',.'—l f‘ '
Furthermore, u, = df/di will be a function of time. The particle will have the velocity
corresponding to its location in the velocity field. At 1 = 0, the particle is at x = P, at_1d ns
velocityu, = V. Atsome later time. 1, the particle will reach the exit, x = L:at that time it will
have a velocity u, = 2¥,. To find the expression for x, = [f(1), we write

dx, df X f
SsSe—_— = e— = — =l’ ] —
AR V'(1+L) '( +L)

Separating variables gives
g df |
V. T
(T+f/Ly !

Sinceatt = 0, the particle in question was located at x = 0, and at t, this particle is located at
| x, =f; then

5 df t
PR A— Y
.L T +//0) .L “"

*t_h particl., located at x = Cat ¢ = 0, as a function of

time is given by
X, = f([) = L[e"ull. - l]
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. tion of the particle that wag ).
. essing the ﬂccc,lm _ Slocateq
_ o different WSS of cxll:f‘ « flow field is stcady, when we follow a Particuly,
-h:\:‘ “Note that a]lh?‘;ﬁ (and velocity for that ma}tcr} are !’unctnons of time,
O; position and ac;:‘clcf;in':“ions (or the acceleration give identical results,
i sec that both €Xpre™ pu V2
chcdlo : . D _Wif, L x
. Vg e}'.!.-l- r Dt L L
A a,, =7 '
0 At ¢ = 0, the particle is at x = 0
tt-O.x,: z Du=£”+0)_ﬁ
s, e (a) br & - (a)
o=, L —1
& Check
L (=1 At x = 0.5L
en x' = -i-, 1K
Du V3
o -yt 5 =T (109
o Du 1.5V}
L d —=
e }grc.e 1.5,an n L : (b)
- 2
a,, = —= et Check,
% 151
a" = _L_ (1-5) - L (b)
tWhen x, = L1 =1;, Atx=L
5 X=L=L[eV|fzIL_l] ﬁr-v—%(l'f‘l)
e f Dt L
. l'C, evmlt. = 2‘ and Du 2Vf
. e e
o, = Y v bt L (c)
Check.
L n o=
Xp L L (c)
e

g3 problem

illustrat? Ehc Eulerian and Lagrangian methods of describing the motion of }
iy~ oy Pgne "., e = g

f

St Fluld Rotation

BE rolatio
Hahiallv
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Fig. 8.7 Rotation of a fluid element ina two-dimensionaj llow field.
where w, is the rotation about the axis, w, is the rotation about the y axis, and 0. &
the rotation about the 2 ayis, The positive sense of rotatjon s given by the right-hangd
rule.
To obtain a mathematical ¢xpression for fluid rotation, consider m
clement in the x yplane. Th

g the interval, At, only if the velocities at poi
different from the velocity at o,
Consider first the rotation of line oa,
variations of the

y component of velocit
istaken as v,, then the y component of velocity at
series expansion, as

on of this

line is due 1o
component of v

clocity at the pointo
ritt>n, using a Taylor

The ahgular velocity of line oa is given by

o Ax L Ap/Ax
Wy = lim — = |jy 28X
a0 At gL At

Since
=2 ax A
= ox
" (0v/0x)Ax At/Ax < @
oa = A.lTo At ox .
@&l ngth Ay, results from variations i

n the x component of
onent i int o is tak then the x component

ponent f velocity at point o is taken as i,
U e

b can be written, using a Taylor series expansion, as

cu
— — Ay
u—""+6y Yy
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y lar veloaity of line ob is given by

. Af lim A¢/Ay
Do = JTQ Al - AI—=0 At

Al = —-(.—u- Ay At
ey

I ~(fu/cy)Ay At/Ay cu
(1)) = Iim e —
M=o At ¢y

Mhe negative sign is introduced 1o give a positive value of w,,. According to our sign
yention, counterclockwise rotation is positive.)

dhe rotation of the fluid clement about the = axis is the average angular velocity of
Awo mutually perpendicular line elements, oa and ob, in the xy plane.

= l (v d(u
£ p ‘U = - .—- — —
T_ ki £ 2 cx e)-

-x‘:); gonsidcring the rotation of two mutually perpendicular lines in the yz and xz

¢gancs, onc can show that
1 fcw oo
w,y=s|— - =
2\¢y ¢z

&

Bl o

v;‘* . 3 ' o - 1 . e“. Ev au a“’ . - A

SWE recognize the term in the square brackets as
oA

curl V=V x ¥V

#28Under what conditions might we expeet to have an irrotational flow? A fluid particle
210y 7ng, without rotation, in a flow ficld cannot develop a rotation under the action of a
@d0dy force or normal surface (pressure) forces. Development of rotation in a fluid
&Pdtticle, initially without rotation, requires the action of a shear stress on the surface of
&45ie particle, Since shear stress is proportional to the rate of angular deformation, then
Fpar ticle that is initially without rotation will not develop a rotation without a
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of angular

. . the rate .
simultancous angular deformation. The shear stress is related 10 the flow is

) - . means
deformation through the viscosity. The presence of viscous forces
rotational 3

ions of a
. : : hose regions ¢
The condition of irrotationality may be a valid assumption forcl ion exists outside
flow in which viscous forces are negligible.* (For example, suchar gn be climinatedin
the boundary layer in the flow over a solid surfa=:  The factor of § ¢a

boem e

3 . ation.
Eq. 5.12 by defining a quantity called the vorticity, §, 1o be twice the rota

i (5.3
{=20=VxV
In cylindrical coordinates,

and

.0
V=I,E

+
o
N | -

The vorticity, in cylindrical coordinates, is then®

A R AN LAY ki) _l"_"r) (5.4
v x "“"(;w"a—z)“'(s‘sr Y o Y0
The vorticity is a measure of the rotation of a fluid clement as it moves in the flow |

field. The circulation, T, is defined as the line integral of the tangential velocity |
component about a closed curve fixed in the flow,

r= (ﬁ V.ds (5.19)
C

where d5 is an clemental vector, of len

corresponds to a counterclockwise path

between circulation and vorticity can

Fig. 5.7. The clement has been redra

consistent with those used in determ
For the closed curve oach

ov ou
dr=qu+(v+5;Ax)Ay—(u+a—yAY)Ax-vAy.

: -dr=(aﬁ_i‘i)AxAy

gth ds, tangent to the curve; a positive sense
of integration around the curve, A relationship
be obtained by considering the fluid element of
wn in Fig. 5.8; the velocity variations shown are
ining the fluid rotation,

ions of motion for 3 fluid particle is

-ading, Mass.: Addison-W given in W, H, Lj and

esley, 1964), Pp. 142~l45.
:S-FMO4A, Visualizarion o

city with Vor:iciry Meter—

recall that 7, and 7, are functions of 0 (see footnoye!

he curl operation,

on p. 209)

]
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wation OF

am.
]

g mponents on De toundaries of a fluid element.
2 lDCYW con ’
rig 34 ve

-
",

r.§ P di = j 209, dA =j (v x V), d4 (5.16)
¢ 4 ‘

okes theorem in two dimensions. Thus the circulation .

: ntof St ) P
Beation 51618 2 stalcme m of the vorticity enclosed within it.

= 4 & closed contour 18 the su

Rample 58 {rec . . :
W now ficlds with purcly tangential motion (circular strecamlines): V, = 0 and

abw (). Evaluate the rotation, vorticity. and circulation for solid-body rotaticn, a
e roricx. Show that it is possible to choose f(r) so that flow is irrotational, to

),.'.T\ e a free vorieX. .

-
o

: :3} MPLE PROBLEM 5.6

PETVEN.  Flow ficld with tangential motion, ¥, = O and ¥, = f(r)

+

Xz
J. (2) Rotation, vorticity, and circulation for solid-body motion (a Jorced vortex).
(%) Evaluate f(r) for irrotational motion (a free vortex).

BATION: ‘
g equition [m2omV x

¢
¥ 34
pa.

(5.13)
% S0ty i lh g
prrsis "4 plaoe, the only components of rotation and vorticity are in the z

LT AR
r ‘or -;W
I8 reduces 10 {, = 20, = 1 Y0
rér
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(516

The circulation sl = (j: Vods = J 2, dA
¢ A

Since w, = o = constant, the circulation about any closed contour s givenby I' = 200,

where A is the area enclosed by the contour.
(a forced vortex), the rotation and vorticity are constants;

Thus for solid-body motion
the circulation depends on the arca enclosed by a contour.

: : ¥ , .
(b) For irrotational flow, - — rV, = 0. Intcgrating, we find
rer

™

rV, = constant or V= flr)=

~ |

For this flow, the origin is a singular point where b, — 7. The circulation for any

contour enclosing the origin is

n

C

r =J —rd0 =2rC
o

h Circ (2 y (3 p
('”l )I b ] '()' !

5-3.3 Fluid Deformation

Angular deformation of a flui
‘ a fluid clement involves ¢ :
mutuall ' —_— - es changes in the angle between tw
angular{ifé,?;n:i"cumr lines in the fluid. Referring to Fig. 5.9, we g:(fl‘;,bq“cm two
ation of the fluid clement is the rate of dccrcw‘sc of‘ the o :h(}:)rulc o
. anglce between

lin
es oa and ob. The rate of angular deformation is given by |
i
i _dn dp
dt dt  di
!
b
=T a8/
/f’ ,/ / | sl J'.
I—’?y . /Iiy -
e a _ V= NAa 47
L Vi T
,, /
/
/
l b‘
> X

A | .
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W ;"
%
ow,
dx . Az . An Ax (O ONAN AL AN O
b — = lim — = lim —(— = lim ——— : =
’*;i d' Ar—=0 « [ A0 Ay A0 Al '\
E: df Y . AXjAy C o (Cu/cy)Ay At Ay cu
o) e tm —=lm —= =1lm -— = =
= v dt u-0 At a-0 Al Ar=0 At ey

'C'o:nscqucnlly. the rate of angular deformation in the xy plane 1s
> ”-': I o b -
33 x dff d rocu
= dx P G2 (5.17)
L% 1 dr dt dt [BAN oy
ough the fuid viscosity.

e —

‘poundary-layer flow of Fig.

 shear stress is related to the rate of angular deformation thr
a viscous flow (where velocity gradients are present) it is highl

will be equal and opposite to cu/cy throughout the flow fic
3 11 and the flow over a cylinder, shown in Fig. 2.12). The

y unlikely that v 'Cx
Id (c.g. consider the

-~

'S

7]

esence of viscous forces means the flow is rotational.

g " Calculation of angular deformation < illustrated for a simple flow ficld in Example

Problem 5.7.
Tample 5.7 Lolalym in Vistomilau gl
x:%xomctric flow in the narrow gap between large parallcl plates is shown. The

?_ﬂic‘)clty ficld in the narrow gap is given by V=U (_\-,r‘h)f. where U = 4 mm/sec and
k=4 mm.Att = 0two lines, ac and hd. are marked in the fluid as shown. Evaluaie the
1.5 sec and sketch for comparison. Calculate the

287 :
positions of the marked points att =
rate of angular deformation and the rate of rotation of a fluid particle in this velocity

@d. Comment on your results.
=

i T = U

b(2,3)

¢ (3, 2) Lines marked
in flud
att=0

-

“EXAMPLE PROBLEM 5.7

IVEN: Veioeity field, V = U i i: U = 4 mm/sec, and h = 4 mm. Fluid parucles marked

G

att = 0 to form cross as shown.

;VD: (a) Positions of points a’, b, ¢, and d' at t = 1.5 sec; plot.
(b) - Rate of angular deformation.

¢} Rate of rotation of a fluid particle.

it on the significance of these results.

N e

.,
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SOLUTION: ] rtical motion. The velocity
. ) . c
For the given flow ficld. 1 = 0, so therc 15 N0 VET — 3 mm S¢C. S0
. | = . 4
stays constant. so Ax = n At for cach point. At point b, t .
Ay = 1T P g5 mm I
~h sec I ”._|<scCi5 ]
; , e plotati = == i
Points a and ¢ each move 3 mm, and point d moves 1.5mm. The p y
YRRy ot ALt T ;'
-" "
3 h /’I | -.
: - | }
a IS a ! :
2t iy | &
“Linesatt = 1 5sec |
] o (! ’I'
(4
o) IS WU S S B WU ]
T

3 4 5 6 7
The rate of angular deformation is
‘U qr | U 4mm - )
—',":f_-+'-_—=U--+()=--= - x = ] sec
A Y h h secc 4dmm

)
The rate of rotation is

l
1 4 | |
T U mm 1
), = \ i*l' - ‘i‘ = l 00— - | = — x —_— X — = —()5 scC
T 2\ex 7y 2 h 2 secc 4mm |
This flow is viscous, so we expect to have both angular deformation and rotation: shape and ‘
oricntation of a fluid particle both change. l

- During linear deformation, the shape of the fluid clement. described by the angles at
its vertices, remains unchanged, since all right angles conlinucllo be riizht angles (sec
Fig. 5.5). The element will change length in the x direction only if ¢u/éx is other than |
zero. Similarly, a change in the » dimension requires a nonzero value of cr/Cy and a
change in the - dimension rcqui5cs anonzero value of éw/cz. These quantities rc.prcscnt
the components of longitudinal rates of strain in the x, y, and = directions. respectively.

Changes in length of the sides may produce changes in volume of the clement. The rate
of local instantaneous volume dilation is given by

Volume dilation rate = ("_u Q fi — Y
xtytaE=vv (5.18)

D__Q_é(}t malun  rolis XQ/ Z[Jw ;/)\Cm'

Id, V = Axi — 4 yj, represents flow in a “Corner,” as show

Consider the case where A = 0.3 sec ™! and the °°0rdinate‘:am ;
measure

uare is marked in tffc fluid as shown at ¢ = ¢, Evaluate t ;

er points when point « has moved 10 y = ¢ MW positions

e A et m aftcrrsecond Ev

linear deformation in the x and y directions, Compare nds. Evaluate
t t = 0. Comment on this result. arcaa’b’c’'d’ ayy =+

nin Exampe

|
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F.\l" whenatt al '" ‘h“‘“m"un > b a‘. i (e 2)
¥ il R:"‘.\ 0[ llnc ,\.lh “h” ) \Hlmu 'hl"h‘q
n ompare arca d he'd " all = ()
v ) Comp o the results
& (@ ('pm'.’“fm ( ik
B all, h d(2, 1)
i
F L
i 0 ] p) o
pLUTIO\l find 1, s0 we must follow a fluid particle using Lagrangian description, Thu
we mus -
"".'“ dx *dx ' It
L dy, An: T o= Adn v = Adt: % = A1
u= - B r \ g 0 0

A dt
e | In(3)
:.""é ¢ ln_:—tf = BRLS = |.35 \CC
5 TETTAT 03!
fn the y direction !
- < . ‘l
Z*- r= ‘.l:'-’.' = = Ay, & - Adr; o=
i dt ’ ) Yo
k :
"nc point coordinates at t are: The plot 1s:
E: b
,qPomt t=0 1=t /r=o
fa wn a3 2= & c
b L2 3.9) i .
Ee (2.2) (3.3) " t=r
& g 210 (3 Ik a—t—d
Kj a’L.. S —— ___]dn
3

3 ] 1
%mtn of linear deformation are: % 2 3

cu ¢
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}amllcl there is linear deformation but no angular defor-
ormation arc equal and opposite, so the area of the
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We have shown in this section that the velocity field contains all information necdeg

io determine translation. rotation. deformation. and acceleration of a a particle in a floy
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