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FLUID STATICS
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By definition, a fluid must deform continuously when a shear stress of any magnitudc is
applied. The absence of relative motion (and thus, angular dcformation) implics the
absence of shear stresses, Therefore, fluids cither at rest or in “rigid-body™ motion are
able to sustain only normal stresscs. Analysis of hydrostatic cases is thus appreciably
simpler than for fluids undergoing angular deformation (see Section 5-3.3).

Mere simplicity docs not justify our study of a subject. Normal forces transmitted by
fluids arc important in manypractical situations. Using the principles of hydrostatics,
we can compute forces on submerged objects, develop instruments for measuring
pressures, and deduce propertics of the atmosphere and oceans. The principles of
hydrostatics also may be uscd to determine forces developed by hydraulic systems in
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applications such as industrial presses or automobile brakes.
In a static fluid, or in a fluid undcrgoing rigid-body motion, a fluid particle retains its [.
identity for all time. Since there is no relative motion within the fluid, a fluid element ‘fj‘
'dogg;pqg_v_,dpform. We may apply Newton's sccond law of motion to evaluate the Bl
reaction of the particlc to the applicd forces. i
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BASIC EQUATION OF FLUID STATICS 3

h

jective is to obtain an equation that will enable us to determine the

thi

vith n the fluid. To do this, we choose a differential element of mass, dm,

nd dz as shown in Fig. 3.1. The fluid element is stationary relative to
tangular coordinate system shown. (Fluids in rigid-body motion will
&I tion 3-7.)
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ous discussion, rccall that two general types of forces may be applied
rees and surface forces. The only body force that must be considered
ng problems is due to gravity. In some situations body forces due to

| _;ic ficlds might be present; they will not be considered in this text.
atial fluid clement, the body force, dF,, is
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Fig. 3.1 Differential fluid element and pressure forces 1n the y direction.

where g is the local gravity veetor. pis the density. and dV is the volume of the clement.
In Cartesian coordinates dV = dx dy d=. 50

;11‘1,, = pg dx dy dz

In a static fluid no shear stresses can be present. Thus the only surface force is the
pressure force. Pressure is a ficld quantity, p = p(x. ).2); the pressurc varics W with
pasition within the fluid. The net pressure force that results from this variation can be
cevaluated by summing the forces that act on the six faces of the fluid cleme nt.

Let the pressure at the center, 0. of the clement be p. To determine the pressure at
cach of the six faces of the element. we use a Taylor series expansion of the pressure
about the point O. The pressure at the left face of the differential element is

_.fp o ép( dy\_ épdy
' PL"p+‘:",(-‘L -\)_P+(‘:.\‘( ?‘)-—p—g}'—?:-

; (Terms of higher order are omitted because they will vanish in the subsequent limiting
process.) The pressure on the right face of the differential element is
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cp )
Py = P+ 5 U =W =t g
C) - y

orces acting on the two y surfaces of the differential clement are shown
essure force is a product of three terms. The first is the magnitude of
litude is multiplied by the area of the face to give the pressure
lintroduced to indicate direction. Note also in Fig. 3.1 that the

face acts against the face. A positive pressure corresponds to a
L ——

e other faces of the element are obtained in the same wa

gives the net surface force acting on the element. Thus g
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( F‘p dz -l pds ——
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= 'i‘)“"‘ Wb+ (p 55 )\ =T
Collecting and canceling terms, we obtain
< / (‘-P-_(fge_llp‘. b livde
d"‘\——'(—(\_\-\‘" (‘-“n" (_‘: )(4_ ‘. t
or,
S LSSV LN E AU
dkg = —(0—.\_:+-(;}j+-‘;;k) dx dy d: (u1a)

The term in parentheses is called the gradient of the

pressure or simply the Pressure
gradient and may be written grad p or Vp. In rectangular coordinates
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The gradient can be viewed as av

cctor operator; t
gives risc 10 a vector field. Using

aking the gradient of asc
the gradient des;

gnation, Eq. 3.1a ¢
dFs = — grad p(dx dydz) = —Vp dx dy d:

alar field
an be writien as

(3.1b)
From Eq. 3.1p,

TC€ may be present in a static fluid, we can combine the
vody force

s that we have developed to obtain the total
nt. Thus
dF = ¢ F,.

ions for surface ang
Cting on a flujg eleme

+ dFB = (—gradp + pg) dx dy‘dz
unit volume basis

dF dF 4 ) (32)
vy dxdydz ~ ~&R4P+pg
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For a lnd particle, Newton's second law PIVeS ,”-‘ = O dm ‘ip dV. Fora static
Nud. d = 0. Thus

dr
AV

Substituting for dF/dV from Eq. 3.2, we obtain

: ['si = ()

—gradp 4 pj =0 (33

Let us review briefly our deriv

. ation of this equation, The physical sipnificance of
cach term is

—grad p + i = 0
pressure foree body force per
perunit volume § + { unit volume = ()
at a point at a point

This is a vector equation, which means that it consists of three component equations
that must be satisfied individually. The components are

cp )
=a R + py, =0 x direction

cp C
~ A + py, =0 v direction (3.4)

¢ g 5
- ‘_g +py. =0 zdircction J

Equations 3.4 describe the pressure variation in cach of the three coordinate
directions in a static fluid. To simplify further, it is logical to choose a coordinate system
such that the gravity vector is aligned with one of the axes. If the coordinate system is
chosen such that the = axis is dirccted vertically, then g, = 0, g,=0,and g, = —¢.
Under these conditions, the component equations become

¢ ¢ §
?E =0, +f= 0, (:E = —pg (3.5)
cx cy 02

Equations 3.5 indicate that under the assumptions made, the pressure is independent of
coordinates x and y; it depends on = alone. Thus since pis a function of a single variable,
a total derivative may be used instcad of a partial derivative. With these simplifications,

Egs. 3.5 finally reduce to

-
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Restnictions: (1) Static fluid

(2)  Gravity is the only body force

(3) The : axis is vertical

This equation 1s the b

asic pressure-height rel
restrictions noted. T

herefore it must be
reasonable for the physical situation. To d
fluid, Eq. 3.6 may be integrated and appr

ation of fluid statics. It is subject 1o the
applied only where these restrictions are
ctermine the pressure distribution in a static
opriate boundary conditions apphed.

3-1.1 Pressure Varlation In a Static Fluid

Although pg may be defined as the specific weight, it has been written as pg in Eq. 3.6
to ecmphasize that hoth n and g must be considered variables. In order to integrate
Eq. 3.6 to find the pressure distribution, assumptions must be made about variations in
both p and ¢.

For most practical engineering situations, the
for a situation such as com
elevation difference w
shall assume ¢ to be

variation in g will be negligible. Only
puting very preciscly the pressure change over a large
ould the variation in g need to be included. For our purposcs we
constant with clevation at any given location,

In many practical engincering problems the variation in p will be appreciable, and
accurate results will require that it be accounted for. Sev

cral types of variation are casy
to treat analytically. The simplest is the idealization of

an incompressible fluid.

a. Incompressible Fluid

For an incompressible fluid, p = p, = constant. Then for constant gravity,
d
;Ig = — pog = constant

. To determine the pressure variation, we must integrate this equation and_ apply
£ appropriate boundary conditions. If the pressure at the reference level, 2, is designated
"= as p,, then the pressure, p, at location z is found by integration

p z
J dp=—| pogdz
Po 20

P — Po= —pod(z — 2o) = pog(2o — 2)

Zp—2=h

37
p = po + poyh (
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p— , , ‘ 2 solve manomeie?
his form of the basic pressurc-height relation often is used 10

s ‘ analyzi iple tubc manomeier
problems, Students sometimes have trouble analyzing multiple 1
situations. The following rules of thumb are useful;

. : iquid are 21 the
L Any two points at the same elevation in a continuous Jength of the same lig
same pressure,
, . change on
2. Pressure increases as one yoes donn 4 liquid column (remember the pressure &
diving into a swimming pool).

Example 3.1 ‘ ,
Water flows through pipes A and B, Oil, with specific gravity 0.4, s in the upper portion
of the inverted U, Mercury (specific gravity 13605 is in the bottom of the manometer
bends. Determine the pressure difference. p, — py,, in units of 1bf 102

E) T
—H,0 "f

dp p -
d_p,,_._z-_pgz—y SG=-—"1 - _1_
d: dh PH;0 TH,0
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For y = constant

Pr—M = vlhy = Iy)
Beginning at point A and applying the equation between successive points around the
manometer gives

Pe = Pa= +7m0ds

o= Pc = ":'n,dz
Pr = Pp = +ionds
Pr — Pe = “}'n,dc
P — Pr= —"n0ds

Pa—Ps=(Ps—=pc)+ (pc—pp)+pp—pe) + (P — Pe) + (pr — pp)
= —¥u,0d; + 'I’H,dz — Youdy + 'r'u,d.: + 7n0ds

Substituting y = SGyy,o yields
Pa— P8 = —7n,0d1 + 13.67y,0d; — 0.874,0d5 + 13.67,0ds + 74,0ds
= szO(-dl + l3.6d2 = 08d3 4 l3.6d4 + ds)

= Yn,0(— 10 + 40.8 — 3.2 + 68 + 8) in.
= .I'Hzo X ]03.6 in. _

6241bf , 1036in, fi fi?
” i = _...3. x\ X - X ;
: fi S 12in.  144in.2
Pa— Py =374 Ibffin.? P

L —
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. u{ﬁ:::;SBare simple and inexpensive devices used frequently for pressure
ube manometer :]::usg: tg_eﬂlilqund level change is small at low pressure differential, 2 U-
ychanging the m ybed cul.t to read accurately. The level change can be increase
lysis. - rometer design or by using two liquids of slightly different density:
anometer design is illustrated in Example Problem 3.2

of a typical reservoir m
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Example 3.2

A reservoir manometer 1s built with a tube
dameter of 10 mm and a reservoir dia-

meter of 30 mm. The manometer liquid 30 mm
v Mernam ored ol with SG = 0.827.
Determine the manometer deflection in

milhmeters per nullimeter of water applicd
pressure differential.

EXAMPLE PROBLEM 3.2

GIVEN: Reservoir manometer as shown. p
d=10mm P —d}e-
D = 30 mm ' I @ L4
: | |
Hom [D— h
=y e (ETP P s
[quulubnum] 2
hquid level 1 @
. 1
Nol, s6=0827

FIND: Liquid deflection. h, in millimeters per millimeter of water applied pressure

differential.
SOLUTION:
d
Basic equations: = - py. n
< - Puo

Then

P2 22
dp= —pyd: and J dp=—J pg d:

Py —py = —pg(z; — 2))

Py — P2 =py(z; — zy) = pouglh + H)

al the mlume of manometer hqund must rcmmn constant. Thus the

% pip =T g
4DH 4¢l h or n (D) h

d\2
h—p= I’ou.‘ih[l + (5) ]
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This cquation can be simplified by expressing the applied pressure differential as an
equivalent water column of height Ah,
Py = P2 = 09 Ah,

and noting that p;, = SG,;,py,0- Then

. d\2
Moy Bh, = S(’uu/’u,()gh[l + (I)) ]

or

h l
Al,  SG,,[1 + (d/D)*]

Evaluating, we obtain
h 1 h

e T s ———————s 1.0¢

Ah, ~ 0827[1 + (10/30)]) ~ Ah,

This problem illustrates the cffects of manometer design and choice of gage liquid on




