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under a constant applied shear stress are called thixotropic: many pants are
thirotropic. Fluids that show an nerease in i with time are termed rheopectic. In
addition. some fluids after deformation partially return to their onginal shape when the
applied stress is released: such flwds are called viscoclastic,

2.5 DESCRIPTION AND CLASSIFICATION OF FLUID MOTIONS

In Chapter 1 we listed a wide variety of typical problems cncountered in fluid
mechanics and outlined our method of approach to the subject. Before proceeding with
our detailed study. we shall attempt a broad classification of fluid mechanics on the
basis of observable physical characteristics of flow ficlds. Since there is much overlapin
the types of flow ficlds encountered, there 1s no universally accepted classification
scheme. One possible classification is shown in Fig. 2.10

2.5.1 Viscous and Inviscid Flows

The main subdivision indicated is between inviscid and viscous flows. In an inviscid
flow the fluid viscosity, u. is assumed to be zero. Fluids with zero viscosity do not exist;
however. there are many problems where an assumption that g = 0 will simphfy the
analysis and. at the same time. lead 1o meaningful results. (While simplification of the
analysis is always desirable. the results must be reasonably accurate if the solutionis to
be of value.)

All fluids posscss viscosity and. conscquently, viscous flows arc of paramount
importance in the «tudy of continuum fluid mechanics. We shall study viscous flows in
some detail later; here we consider a few examples of viscous flow phenomena.
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In our discuswon following the defimition of a fluid (Section 1-:2k we noted that " .-m,\‘
viscous flow, the fluid in direct contact with a sohd boundary has the same veloaity as

the boundary 11<lf: there 1s no slip at the boundary. For the one-dimensional viscous
flow of Fig. 2K the shear sress® was given by Eq. 210,

G (2.10)
dy
Since the fluid velocity at a stationary solid surface in a moving fluid is zero, but the
bulk fluid is moving. velocity gradients and hence shear stresses must be present in the
flow. These stresses in turn affect the motion.

As a practical case. consider the flurd motion around a thin wing or <hip hull. Such a
flow might be represented crudely by the flow over a flat plate. as shown in Fig. .11
The flow approaching the plate is of uniform velocity, U, . We are interested in
providing a qualitative picture of the velocity distribution at various locations along
the plate. Two such locationd are denoted by x, and v,. Consider first location., X;. In
crder 1o arrive at a qualtative picture of the velocity distnibution, we start by labeling
the y coordinates at which the velocity is known. (For clanty, distances in the v
direction have been exaggerated greatly in Fig. 2.11)) ‘

From the no-slip condition. we know the velocity at point 4 must be zero: we have
one point on the velocity profile. Can we locate any other points on the profile? Let us
Etgp _{t__’)_g_,i;t_gjnulc and ask ourselves, “What is the effect of the plate on the flow?" The
 plateis stationary and, therefore, exerts a retarding force onlthe flow: it slows the fluid

*“iﬁn.gl;borhood of the surface. At a y location sufficiently far from the plate, say
tgthe ﬂgw will not be influenced by the presence of the plate. If the pressure does

ary in the x direction (as is the case for flow over a semi-infinite flat plate) the
velocity at point B will be UI: It seems reasonable to expect the velocity to increase
_ool’ﬁ'llyﬁand{monotomcally irom the value u = 0 at y=0tou=1U, at ¥ = vg. The

file hz ‘been so drawn; thus at some point. C. intermediate between points 4 and
zero and U,. For 0 <y < Vg, then

rom these characteristics of the velocity profile and our definition of the
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i#y has a value that lies between
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— 4 -_——-) for flows that are not one-dimensional, see Chapter 5.
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consequently the shear stress must ben ga _ .

To establish the qualitative picture of the velocity profileat x;, we recognize that the
no-slip condition requires the velocity at the wz.ﬂl 10 bc zero: this fixes l}‘1c velocity at 4
as zero. Since, at location, x,. the slower moving fluid exerts a retarding fgrcg on the
fuid above it, we would expect the distance out to the point where the velocity s U, to
be increased at location, Xy 1€ Vg > V- Furthermore, it is rcasonable to expect that
uc < Uc.

From our qualitative picture of the flow field. we see that we can divide the flow into
two general regions. In the region adjacent to the boundary, shear stresses are present:
this region is called the boundary layer.!® Outside the boundary layer the veloaty
gradient is zero and hence the shear stresses are zero. In this rCEiON We may use invisac
flow theory to analyze the flow.

Before leaving our discussion of the viscous fiow over a semi-infinite flat piate, we
should stop and reflect on two points. In our qualitative description of the flow held.
we were only concerned about the behavior of the x component of veloaty, the
component, u. What about the y component of vilocity, the component, ¢? Is 1t zero

. throughout the flow field? We also might ask if the edge of the boundary layeris 2
- streamline.

- To answer these questions, consider the streamlines of the flow. Rather than consider
= all possible streamlines, let us consider the streamline through the point M. Recalling
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5 }hal a streamline is defined as a line drawn tangent to the velocity vector at every point
the flow, our first inclination might be to depict the streamline through Masa

A ¢ parallel to the x axis. However, this would violate the reqtﬁr;m-cm that
ere ca J‘&Ec no flow across a streamline. Because there can be no fiow across 2
¢, the mass flow between adjacent streamlines (or between a streamline and 2
) must be a constant. For the incompressible viscous flow of Fig 211
}ha‘ the streamline through the point M cannot be a straight line raralid
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Fig- 212 Qualitative picture of Incompressitie fiow over a cylinder

The spacing between the streamline through the point M and the x axis must
increase continuously as we m

ove along the plate. Therefore., although small.'lhc )
componcent of velocity is not zero. The streamlinge through M crosses the dashed line we
have used to denote the cdge of the boundury layer. Conscquently, we conclude that the
cdge of the boundary ]
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layer as we move down the plate. Indeed
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x and y axes. The velocity around the cylinder increases to a maximum at pmm D and
then decreases as we move further around the cylinder. For inviscid flow, an increase in
velocity is accompanied by a decrease in pressure: conversely, a decrease in velocity is
accompanied by an increase in pressure. Thus in the case of an incompressible inviscid
flow, the pressure along the surface of the cylinder decreases as we move from point A
to point D and then increases again from point D to point E. Since the flow is symmictric
with respect to both the x and y axes, we would also expect the pressure distribution (o
be symmetric with respect to these axes. This is indeed the case for inviscid flow.

Since no shear stresses arc present in an inviscid flow, the pressure forces arc the only
forces we need consider in determining the net force on the cylinder. The symmetry of
the pressure distribution leads to the conclusion that for an inviscid flow, there is no nct
force on the cylinder in cither the x or y directions. The net force in the x direction is
termed the drag. Thus for an inviscid flow over a cylinder, we arc led to the conclusion
that the drag is zcro; this conclusion is contrary to expericnce, for we know that all
bodies experience some drag when placed in a real flow. In treating the inviscid flow
over a body we have, by the definition of inviscid flow, neglected the presence of the
boundary layer. Let us go back and look again at the real flow situation.

In the real flow, Fig. 2.12a. experiments show the boundary layer to be thin between
points A and C. Since the boundary layer is thin, it is rcasonable to assume that the
pressure ficld is qualitatively the same as in the inviscid flow case. Since the pressure
decreases continuously between points 4 and B, a fluid clement inside the boundary
layer experiences a net pressure force in the direction of flow. In the region between A4
and B, this nct pressure force is sufficient to overcome the resisting shear force and
motion of the element in the flow direction is maintained.

Now consider an clement of fluid inside the boundary layer on the back of the
cylinder beyond point B. Since the pressure increases in the direction of flow, the fluid
element expericnces a net pressure force opposite to its direction of motion. Finally the
. momentum of the fluid in the boundary layer is insufficient to carry the element further
& into the region of increasing pressure. The fluid layers adjacent to the solid surface will

5 be_broughl to rest and the flow will separate from the surface.!? The point at which this
=3 rs is called the point of separation. Boundary-!ayer separation results in the

A rmauon of a relatwely low pressure region behind a body; this region, which is
tin momentum, is called the wake. Thus, for separated flow over a body, there
a net unbalance of pressure forces in the direction of flow; this results in a pressure
’%am‘g”n ‘the body. The greater the size of the wake behind a body, the greater is the
sure drag.
qglcal to ask how one might reduce the size of the wake and thus reduce the
- pressuredrag. Since a large wake results from boundary-layer separation, which in turn
ed to the presence of an advcrsc prcssure gradient (increase of pressure in the

~ 1

i

ow over a variety of models. illustrating flow separation, is demonstrated in the NCFMF film loops:
1012, Flow Separation and Vortex Shedding: S-FMOO4, Separated Flows— Part I; and S-FMO0S,
ed Flows—Part 1],
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were added to the cylinder of Fig 2.12. the flow ficld would appear q-ahhough the
shown in Fig. 2.13. Streamlining the body delays the onset of SL‘P""'“O?]‘ o tnorancad
surfacc arca of the body and, hence. the total shear force acting on the body I -
the drag is reduced significantly.'
. o , . as a result of
Flow scparation also may occur in internal flows (lows through ducts) as a rc
rapid or abrupt changes in duct geometry.'*

2-5.2 Laminar and Turbulent Flows

Viscous flow regimes arc classified as laminar or turbulent on the basis of inlﬁrna.l ﬂo.w
structure. In the laminar regime. flow structure is characterized by smooth motion in
laminac or layers. Flow structure in the turbulent regime is characterized by random.
three-dimensional motions of fluid particles superimposed on the mean motion.

In laminar flow there is no macroscopic mixing of adjacent fluid layers. A thin
filament of dye injected into a laminar flow appears as a single line; there is no
dispersion of dye throughout the flow, except the slow dispersion du

¢ to molecular
motion. On the other hand. a dye filament injected into a turbulent flow disperses

quickly throughout the flow field: the line of dye breaks up into myriad entangled
threads of dye. This behavior of turbulent flow is due to small velocity fluctuations
superimposed on the mean motion; the macroscopic mixing of fluid particles from
adjacent },3)@59’: fluid results in rapid dispersion of the dye. The straight filament of

Loy ’fng fi om a cigarette in still surroundings gives a clear pi

01 quantitative picture of the dj
.examining the output from a sensit
If one measures the x component

«nd turbulent steady flow, th
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Fig. 214 Varnaton of axial velocity with ime

appear as shown in Fig. 2.14. For steady I;lminfgr flow., l-hc velocity at a point remaing
constant with time. In turbulent flow the \c!ocu}‘ trace mdxf:ulcr ra'ndnm fluctuations
of the instantancous velocity. u, about the l|mc mcan velocity, u_\& ¢ can consider the
instantancous velocity. u, as the sum of the time mean veloaty, u, and the ﬂuc:u.n'mg

component, u’,
u=u+u

Because the flow is stcady. the mean velocity, i, does not vary with ime.

Although many turbulent flows of intcrest are stcady in the mean (@ 1s not a function
of time). the presence of the random. high-frequency velocity fluctuations makes the
analvsis of turbulent flows extremely difficult. In a one-dimensional laminar flow the
shear stress is related to the velocity gradient by the simple relation

du -
T, = jl— (2.10)
' dy
Fo: a turbulent flow in which the mean velocity field is one-dimensional, no such
simple relation is valid. Random, three-dimensional velocity fluctuations (u”, ¢, and w)
transport momentum across the mean flow streamlines, increasing the eff=ctive shear
stress. Consequently, in turbulent flow there is no universal relationship between the
sgé;ﬁn;ns;ﬁﬁ:ld and the mean-velocity ficld. Thus in turbulent flows we must rely heavily on
¢ semi-empirical theories and on experimental data.
4 3 :
Ak

:m@pressmle and Incompressible Flows

whi Sl it 1 when
: 1 igi incompressible; W
N(.j,ﬁgl'l,lch vanations in density are negligible are termed incomp if one

nsity ,‘%#lions within a flow are not neeligible, the flow is called compressible- s

tbe two states of matier, liquid and gas, included within the d-:ﬁ?;}m;s e
3”“; » Onc is tempted to muke the general statement that all liquid fo eases
Halabtl :ble flows and all gas flows are compressible flows. For many practic ol
the fist portion of the statement is correct; most liquid flows are SSEP T
,.1€- However, water hammer and cavitation are examples
»‘-,;.Comprtszsibility effects in liquid flows. Gas flows also may
-.b‘c provided the flow speeds are small relative to thes
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ratio of the flow speed. V. 1o the local speed of sound. c. in the gas s defined as the Mach

number.

"
M=-—
7

For values of M <0.3, the maximum density variation is less than 5 percent. Thus gas
(lows with M <0.3 can be treated as incompressible: a value of M = 0.3 in wir at
standard conditions corresponds 1o a speed of approximately 100 misec.

Compressible flows occur frequently in engincering applications. Common
examples include compressed air systems used to power shop tools and dental drills,
transmission of gases in pipelines at high pressure. and pncumatic or fluidic control
and sensing systems. Compressibility effects are very important in the design of modern
high-speed aircraft and missiles, power plants, fans, and compressors.

2-5.4 Internal and External Flows

Flows completely bounded by solid surfaces are called internal or duct flows. Inter-
nal flows may be laminar or turbulent, compressible or incompressible.

In the casc of incompressible flow through a pipe. the nature of the flow (laminar or
turbulent) is determined by the value of a dimensionless parametcr. the Reynolds
number. Re = pb'D . where pis the density of the fluid. i the average flow velocity, D
the pipe diameter. and g the viscosity of the fluid. Pipe flow is laminar when Re < 2300;
it may be turbulent for larger values. (The Reynolds number and other important
i dimensionless parameters encountered in fluid mechanics will be discussed in
' Chapter 7.) Chapter 8 will be devoted 1o a study of internal incompressible flow.

In the case of internal compressible flows, proper duct design is necessary 1o attain
supersonic flow. The variation of fluid properties within a variable-arca flow passage is
not the same for supersonic flow (M > 1)as itis for subsonic flow (M < 1). Likewise the
boundary conditions on the flow at theexitof an intcrnal Aow (c.g. the discharge from a
nozzle) are different in the two cascs. For subsonic flow discharge, the pressure in the
exit planc of the nozzle is ambicnt pressure. For sonic flow, the nozzle exit pressure may
be greater than ambicnt. For a supersonic jet, the pressure in the exit plane of the nozzle
may be greater than, cqual to. or less than ambient pressure. One-dimensional, steady
compressible flow will be treated in Chapters 11 and 12.

_External flows occur over bodies immersed in an unbounded fluid. The flow over a
semi-infinite flat plate (Fig. 2.11) and the flow over a cylinder (Fig. 2.12a) are examples
f external flows.

Boundary-layer flows also may be laminar or turbulent; the definitions of laminar
ind turbulent flows given carlier also apply to boundary-layer flows; the details of a
ow field may be significantly different depending on whether the boundary layer is
or turbulent. In Chapter 9. boundary-layer flows and flow over immersed
s will be discussed in detail.

Fm; of liquids in which the duct does not flow full—where there is a free surface
jject to a constant pressure—are termed open-channel flows. Common examples of
mbannel flow include flow in rivers, irrigation ditches, and aqueducts. Open-
channel flow will be treated in Chapter 10,
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